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Abstract

Aspect-based Sentiment Analysis (ABSA)
helps to explain customers’ opinions towards
products and services. In the past, ABSA mod-
els were discriminative, but more recently gen-
erative models have been used to generate as-
pects and polarities directly from text. In con-
trast, discriminative models first select aspects
from the text, and then classify the aspect’s
polarity. Previous results showed that gener-
ative models outperform discriminative mod-
els on several English ABSA datasets. Here,
we rigorously contrast discriminative and gen-
erative models in several settings. We com-
pare both model types in cross-lingual, cross-
domain, and cross- lingual and domain, to un-
derstand generalizability in settings other than
mono-lingual English in-domain. Our more
thorough evaluation shows that, contrary to
previous studies, discriminative models still
clearly outperform generative models in almost
all settings.

1 Introduction

Online reviews make it easy for customers to share
their feelings about products and services in a quick
and efficient way. But, for the business owner, this
can mean a deluge of comments with a variety of
concerns. Companies with millions of customers
receive a massive amount of online reviews that
cannot be analyzed manually, and thus, automation
is needed.

Some natural languages receive more research
effort compared to other languages (e.g. English vs.
Swahili). Although the community has remarkably
accelerated the improvement of English NLP tech-
niques, techniques for other languages lag behind.
Working on a lower resource language is a challeng-
ing task, where few datasets, lexicons, and models
exist. Thus, utilizing cross-lingual approaches is
important to migrate knowledge across languages.

ABSA involves predicting the aspect terms and
their associated sentiment polarities. For example,

"The service was good at the restaurant, but the
food was not" has two aspect terms (“restaurant”
and “food”), associated with the sentiments "posi-
tive" and "negative", respectively.

In this work, we conduct a comparative study of
two different ABSA model types (discriminative
and generative). Discriminative models commonly
use sequence labeling techniques to detect aspects
in a given review (extraction) and then, use an-
other step to classify those aspects (classification).
On the other hand, generative models use encoder-
decoder language models to generate aspects and
their sentiment polarities together without separate
steps for extraction and classification. It is worth
mentioning that a few discriminative models do
the extraction and classification steps at once (Li
et al., 2020, 2019a; Hu et al., 2019). However, the
results showed that doing both tasks together does
not always lead to better performance.

The results from previous works (Zhang et al.,
2021; Yan et al., 2021) showed that generative mod-
els achieve better performance than discriminative
models when trained and evaluated on the English
in-domain setting. While recent studies compared
generative to discriminative models in English in-
domain setting, none have explored their efficiency
in cross-lingual or cross-domain settings. Our aim
from this study is to evaluate the performance of the
two model types in cross-lingual and cross-domain
settings. Additionally, we propose a more challeng-
ing setting: both cross-lingual and cross-domain.
Our results demonstrated that generative models
perform worse than discriminative models in all
the proposed scenarios.

2 Methodology and Experimental Setup

2.1 Datasets

In our experiments, we consider several languages
and domains for a more valid evaluation. For the
languages we use SemEval datasets - Restaurant



Datasets Data Split | #Pos | #Neg | #Neu
Train 864 313 47
Rest16.,, Val 130 32 6
Test 427 119 28
Train 972 338 72
Rest16.; Val 101 46 5
Test 420 142 29
Train 1068 216 99
Rest16,., Val 223 56 23
Test 608 193 85
Train 591 515 268
Lap14 Val 99 71 50
Test 341 128 169
Train 636 552 982
MAMSE, Val 403 325 605
Test 400 330 607

Table 1: Datasets’ statistics - Count of aspects with sen-
timent polarities for the sampled and cleaned datasets.
Multiple aspects can exist in single record

(Rest16) (Pontiki et al., 2016) in English, Span-
ish, and Russian. For the domains we use Rest16
and Laptop (Lap14) from SemEval (Pontiki et al.,
2014) which are widely used in the literature for
evaluation purposes (Li et al., 2019b; Tian et al.,
2021; Liang et al., 2021). In addition to the pre-
vious domains, we use MAMS dataset for ABSA
(Jiang et al., 2019). MAMS dataset (Jiang et al.,
2019) is a recently developed challenge dataset in
which each sentence contains at least two aspects
with different polarities, making the dataset more
challenging than the SemEval datasets.

We remove sentences with no opinions and
aspect terms with multiple sentiments from the
datasets, as seen previously in studies (Tian et al.,
2021; Tang et al., 2016). For the SemEval datasets,
since the validation sets are not given, we sam-
ple 10% of the training dataset to use for valida-
tion. The datasets we considered vary in terms
of the type of content and the training set size.
For a fair comparison, we reduce the larger train-
ing datasets to have an equal number of records.
For this purpose, we sample 857 records from all
training datasets, which is the minimum number of
training instances across datasets (cleaned Rest16,
training dataset has 857 records). Table 1 presents
the datasets’ statistics after cleaning and sampling.

2.2 Models and Baselines

For the generative model, we use the approach pro-
posed in (Zhang et al., 2021), which is an encoder-
decoder T5-based model. This model takes a re-
view as input and generates the aspects with their
polarities. The aspect-polarity terms have the fol-
lowing format: "waiter positive <sep> food nega-

tive", indicating the presence of two aspect terms
("waiter" and "food"), with the associated polari-
ties ("positive" and "negative"). Since there can
be multiple aspect-polarity pairs in a single review,
we add a separator token "<sep>" to demarcate a
separation between multiple aspect-polarity pairs.

In the mono-lingual setting, the model is trained
on English and generates English aspect-polarity
pairs. When we move to the cross-lingual setting,
we ask a multilingual model to generate aspect-
polarity pairs for a language that was not used in
the training process. Thus, we use an approach that
augments the training data with a version of itself
translated to the test language (Riabi et al., 2021).
This does not require additional annotated data to
solve the issue. In Appendix A.1, we give more
details regarding this approach taken.

For the discriminative model, we consider the
SPAN-BERT model (Hu et al., 2019) which is one
of the state-of-the-art models that uses BERT trans-
former. It has a good performance in mono-lingual
datasets, and has been used as a baseline for the
generative model released by Zhang et al. (2021).
The SPAN-BERT model extracts spans (continuous
span of text) for multiple target aspect terms using a
decoder heuristic and then classifies their polarities
using contextualised span representations.

The discriminative and generative models ref-
erenced above use transformers trained solely on
English, so we need to modify them before train-
ing on other languages. To make our experiments
consistent, we use multilingual versions of the base
transformers. For the generative model, we use
the multilingual T5 (mT5-base) model (hugging-
face implementation of mT5-base'). For the SPAN-
BERT model, we use the multilingual BERT model
from Google.

In order to understand the performance of both
models, we set two baselines: mono-lingual in-
domain, and a random selection baseline. In the
mono-lingual in-domain, we train each model on
each dataset to define the theoretical performance
ceiling. The random baseline will allow us to see if
our cross-lingual or domain results are better than
chance. In the random baseline, we have the model
pick aspect words from the text (excluding stop
words), and their polarities at random. For further
details refer to Appendix A.2.

"https://huggingface.co/transformers/
model_doc/mt5.html


https://huggingface.co/transformers/model_doc/mt5.html
https://huggingface.co/transformers/model_doc/mt5.html

2.3 Preprocessing for Evaluation

We find that the generative model sometimes gen-
erates a different variant of a term, e.g. plural or
singular. Prior to evaluating the model outputs, we
perform a normalisation process. For normalising,
we remove characters such as ",", ".", """ from
the sentences, lower-case and lemmatise the words,
and remove common stop words. This idea of nor-
malising the generated output is similar to Zhang
et al. (2021), where Levenshtein distance is used to
align the generated aspect words with the closest
words existing in the original sentence. Compared
to this, our normalisation process followed by an
exact matching is stricter. Levenshtein distance
may align the model’s predictions with unrelated
words in the original sentence. For example, if a
generated word - "salmon", has the least distance
with the word "not" out of all the words in the
original sentence, then "salmon" can get aligned
to "not", as is mentioned by Zhang et al. (2021),
which is a loose matching.

After model outputs and the gold data are nor-
malised, then an exact matching is used to com-
pare the predicted aspect-polarity terms with cor-
responding aspect-polarity terms in the gold data.
We consider a hit only if both the aspect term and
the polarity term match. We use the standard evalu-
ation metrics for calculating ABSA scores, which
are Micro- Precision, Recall and F1. We use the
evaluation code released by Li et al. (20192)>.

3 Results and Discussion

3.1 Monolingual and In-Domain

First, we evaluate models with the train and test
data of the same dataset type and language, and
we get the results of the random selection base-
line. Table 2 presents the results for the model.
For detailed results refer to Appendix A.3. From
a mono-lingual perspective, we can see that the
discriminative model performs better than the gen-
erative in almost all the datasets except in Restl6¢,.
During our experiments, we had evaluated models
using the mono-lingual version of the transform-
ers models, and we had noticed a similar scenario;
the generative approach performed better than the
discriminative one in both Rest16.,, and Lap14.,
datasets. Thus, it seems that the generative ap-
proach works best only with the English datasets.
The random baseline results in all the datasets are

http://github.com/lixindever/E2E-TBSA

Domainz .., | Discriminative | Generative
Rest16 5, 0.56 0.58
Rest16 . 0.63 0.58
Rest16r., 0.47 0.42
Lapl4g. 0.50 0.36
MAMSg, 0.54 0.44

Table 2: Mono-lingual and in-domain F1 scores. Bolded
results are the best among models.

Train — Test | Discriminative | Generative
Es — En 0.51 (-6%) 0.34 (-24%)
Ru — En 0.53 (-3%) 0.45 (-13%)
En — Ru 0.44 (-3%) 0.27 (-15%)
FEs — Ru 0.42 (-5%) 0.29 (-13%)
En — Es 0.54 (-9%) 0.39 (-19%)
Ru — Es 0.52 (-11%) 0.45 (-13%)

Table 3: Cross-lingual F1 scores using Rest16 in several
languages. Bolded results are the best per model and
test language. Bracketed % values show performance
decrease compared to the mono-lingual, in-domain re-
sult 2.

around 4% F1 (individual results can be seen in 6)

3.2 Cross-Lingual

Table 3 presents the cross-lingual results. For de-
tailed results refer to Appendix A.3. From a cross-
lingual perspective, we can clearly see that all mod-
els, perform above random. For the discrimina-
tive model, we notice that when we train on En-
glish, we obtain the highest F1 results. And the
largest decrease in performance happens when we
train on Russian and test on Spanish. Interestingly,
when we train on Russian and test on the other
languages, we obtain the highest results for the
generative model. Overall, the performance drop
of the generative cross-lingual results compared to
the monolingual ones is high, considering the dis-
criminative model’s results. We can conclude that
the discriminative model generalizes better than the
generative one in the cross-lingual setting.

3.3 Cross-Domain

Table 4 presents the cross-domain results. More de-
tails can be found in Appendix A.3. Generally, con-
sidering both models’ results, training on Rest16 g,
and Mams g, datasets produced the highest results.
Like the Rest16 dataset, Mams dataset contains
reviews related to restaurants. Thus it is not sur-
prising that training on one of these two datasets
and testing on the other gives higher results com-
pared to training on Lap14. However, we can see
that this gap is larger when we experiment with the
generative model. This observation demonstrates


http://github.com/lixin4ever/E2E-TBSA

Train — Test Discriminative | Generative
Restl6g,, — Lapldg, 0.29 (-21%) 0.21 (-15%)
MAMSEg, — Lapldg, 0.31 (-19%) 0.19 (-17%)
Lapl4z, — Restl6g, 0.44 (-12%) 0.21 (-37%)
MAMSE, — Restl6g, 0.47 (-9%) 0.38 (-20%)
Restl6z, — MAMSE, 0.32 (-22%) 0.3 (-14%)
Lapl4g, — MAMSEg, 0.29 (-25%) 0.12 (-32%)

Table 4: Cross-domain F1 scores. Bolded results are
the best per model and test language. Bracketed % val-
ues show performance decrease compared to the mono-
lingual, in-domain result 2.

Train — Test Discriminative | Generative
Restl6z, — Lapl4g, 0.3 (-20%) 0.17 (-19%)
Restl6r, — Lapl4g, 0.28 (-22%) 0.16 (-20%)
Lapl4g, — Restl6z, 0.54 (-9%) 0.33 (-25%)
Lapl4z, — Restl6r, 0.34 (-13%) 0.27 (-15%)

Table 5: Cross-domain and cross-lingual F1 scores.
Bolded results are the best per model and test language,
when more than 1 train language to compare. Bracketed
% values show performance decrease compared to the
mono-lingual, in-domain result 2.

that the generative model is more domain sensitive.

3.4 Cross-Lingual and Cross-Domain

In this experiment, we evaluate both models in
a extreme setting, which combines the previous
cross-lingual and cross-domain. Table 5 shows
the evaluation results. More details can be found
in Appendix A.3. We can see a larger drop com-
pared to the results in the cross-lingual experiment
(see Table 3), except when we test on Rest16. us-
ing the discriminative model; training on Rest16,,
or Lapl4,,, gives the same F1 result. Similar to
the previous results, the generative model achieves
lower results compared to the discriminative one.

4 Discussions and Conclusion

In this work, we compared two types of ABSA
models in terms of performance differences. We
compare those models across languages and do-
mains. Previous studies showed that generative
models achieve higher results than the discrimina-
tive ones across almost all the available English
ABSA datasets. However, the results in our study
demonstrated that generative models perform lower
than the discriminative ones in all the proposed sce-
narios, namely, cross-lingual, cross-domain, and
cross- lingual and domain.

We experimented with datasets from three lan-
guages, and from three different domains. Briefly,
the results showed that the generative model is

more language and domain sensitive. Generative
models sample words from the entire data distribu-
tion so they might be more sensitive to the training
data size compared to discriminative models which
classify only the words in the original sentence.
Given that we have around 900 instances for train-
ing, the generative model did not generalize as well
as the discriminative to the other domains or lan-
guages.

The generative model outperformed the discrim-
inative model in only the English mono-lingual
experiment, perhaps due to a favourable bias in the
mTS5 model towards the English language. Recent
studies showed that Multilingual encoder-decoder
transformers do not perform well in languages
other than English (Tang et al., 2020; Fan et al.,
2021). Another explanation for the variation in
results could be that each model uses a different
encoder. The discriminative model uses a BERT
encoder whereas the generative one uses an mT5
encoder. Additionally, it is also possible that the
evaluation process is very strict and hurts the gener-
ative model. Nevertheless, our results are a useful
comparison of state of the art models from each
model type. In the future, we plan to investigate the
effect of using a common encoder for both models.

Considering the random selection baseline in our
experiments, we can conclude that generative mod-
els are capable of generating correct aspects and
polarities. The results showed that the generative
model, in the worst case (training on Lap14g,, and
testing on MAMS ,,), performs better than the ran-
dom baseline by 8% F1. On the other hand, the
discriminative model in the worst case (training
on Rest16p, and testing on Lapl14g,,), performed
better than the random baseline by 25% F1.

These results do not suggest using generative
models in cross- lingual or domain settings; dis-
criminative models are more accurate and reliable.
For future work, we plan to study other generative
models in this task. We also plan to study both
types of models in other scenarios like conflicting
polarities (aspects with both positive and negative
polarities).
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A Appendix

A.1 Generative models with Cross-lingual
Setting

In this section, we provide more details regarding
the proposed approach in (Riabi et al., 2021) to
solve the issue of controlling the generated lan-
guage. The idea of the method is that, for instance,
when we train on English and generate for Spanish,
we translate the English training data to Spanish
(using Google Translator) and we include it in the
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training part with the original English language.
Additionally, to control the target language, we use
a specific prompt (token) per language (<KLANG>),
which corresponds to the desired target language
(e.g. Spanish : Spanish_review). When we trans-
late a language into another, we discard instances
that their translated aspect terms do not exist in
the translated review. This is important for SPAN-
BERT models as terms indices are needed. Also,
we sample an equal number of translated training
instances in all the languages (507 instances per
language), as we prepared the monolingual training
data. For consistency, we train SPAN-BERT model
on the same data.

A.2 Random Baseline

We consider a randomised model for baselining
the performance of the considered models. How-
ever, instead of just randomly assigning positive,
negative, neutral or none labels to words in a sen-
tence, we give the randomised model a biased edge
through knowledge of the test dataset. For each of
the considered test datasets, we see the gold predic-
tions and see what the distribution is of the different
polarities. e.g. if positive polarity is assigned to
5% words in the dataset. Then we consider this
distribution of polarities while assigning randomly.
Moreover, we prevent the randomised model from
assigning polarities to stop words.

A.3 Detailed Results

Here we have the detailed results for the experi-
ments we conducted. The precision, recall and F1
values can be found here.



Discriminative Generative Random Selection

Domainzgng P R F1 P R F1 P R F1

Rest16x, 0.67 048 056 | 0.64 052 0.58 | 0.07 0.04 0.05
Rest16£, 0.65 0.60 0.63 | 0.67 051 058 | 0.07 0.03 0.05
Rest16 ., 047 048 047 | 046 039 042 | 0.06 0.04 0.05
Lapl4z, 048 052 050 | 04 033 036 | 0.05 0.02 0.03

MAMSE, 053 055 054 | 048 04 044 | 0.06 0.03 0.04

Table 6: Mono-lingual and in-domain results. Bolded results are the best among models.

Discriminative Generative

P R F1 P R F1

Restl6z; — Restl6g, | 0.58 045 0.51 (-6%) 048 026 0.34 (-24%)
Restl6r, — Restl6g, | 0.55 051 0.53 (-3%) 0.6 0.36  0.45 (-13%)
Restl6x, — Restlér, | 0.53 037 0.44 (-3%) 043 020 0.27 (-15%)
Restl6z, — Restlég, | 042 043 042(-5%) | 052 021 0.29 (-13%)
Restl6z, — Restlégs | 0.75 0.42  0.54 (-9%) 055 03 0.39 (-19%)
Restl6r, — Restl6ps | 0.59 046 0.52(-11%) | 0.62 0.35 0.45 (-13%)

Train — Test

Table 7: Cross-lingual results. Bolded results are the best per model and test language. The percentage values
between brackets represent the amount of drop compared to the mono-lingual and in-domain result.

Discriminative Generative

P R F1 P R F1

Restl6z, — Lapldg, 028 03 0.29 (-121%) | 042 0.14 0.21 (-15%)
MAMSEg,, — Lapldg, 041 025 031(-19%) | 023 0.16 0.19 (-17%)
Lapl4g, — Restl6ég, | 046 043 044 (-12%) | 0.34 0.15 0.21 (-37%)
MAMSg, — Restl6g, | 0.51 044 0.47(-9%) | 036 042  0.38 (-20%)
Restl6z, — MAMSEg, | 038 027 0.32(22%) | 0.39 024 0.3 (-14%)
Lapl4g, — MAMSEg, | 033 027 029 (-25%) | 0.29 0.07 0.12(-32%)

Train — Test

Table 8: Cross-domain results. Bolded results are the best per model and test language. The percentage values
between brackets represent the amount of drop compared to the mono-lingual and in-domain result.

Discriminative Generative
P R F1 P R F1
Restl6g; — Lapldg, | 031 028 0.3 (-20%) | 0.31 0.11 0.17 (-19%)
Restl6r, — Lapldg, | 0.3 026 0.28 (-22%) | 0.24 0.12 0.16 (-20%)
Lapl4g, — Restl6gs | 0.53 0.56  0.54 (-9%) 048 025 0.33(-25%)
Lapl4z, — Restl6r, | 0.53 025 0.34(-13%) | 047 0.18 0.27 (-15%)

Train — Test

Table 9: Cross-domain and cross-lingual results. Bolded results are the best per model and test language. The
percentage values between brackets represent the amount of drop compared to the mono-lingual and in-domain
result.



