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Abstract

Prompt-based learning has been an effective
paradigm for large pretrained language mod-
els (LLM), enabling few-shot or even zero-shot
learning. Black-box prompt search has received
growing interest recently for its distinctive prop-
erties of gradient-free optimization, proven par-
ticularly useful and powerful for model-as-a-
service usage. However, the discrete nature and
the complexity of combinatorial optimization
hinder the efficiency of modern black-box ap-
proaches. Despite extensive research on search
algorithms, the crucial aspect of search space
design and optimization has been largely over-
looked. In this paper, we first conduct a sensitiv-
ity analysis by prompting LLM, revealing that
only a small number of tokens exert a dispro-
portionate amount of influence on LLM predic-
tions. Leveraging this insight, we propose the
Clustering and Pruning for Efficient Black-box
Prompt Search (CLAPS), a simple black-box
search method that first clusters and prunes the
search space to focus exclusively on influen-
tial prompt tokens. By employing even sim-
ple search methods within the pruned search
space, CLAPS achieves state-of-the-art perfor-
mance across various tasks and LLMs, surpass-
ing the performance of complex approaches
while significantly reducing search costs. Our
findings underscore the critical role of search
space design and optimization in enhancing
both the usefulness and the efficiency of black-
box prompt-based learning.

1 Introduction

Many of the recent astounding breakthroughs in ar-
tificial intelligence have revolved around pretrained
large language models (LLMs). Though capabili-
ties of LLMs have advanced at a breakneck speed,
modern LLMs are remarkably consistent in that
they are almost invariably powered by Transformer-
based architectures (Vaswani et al., 2017) pre-

*Equal contribution. Code is available at https://
github.com/cambridgeltl/ClaPS
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Figure 1: Our proposed method achieves the best any-
time performance: Anytime test accuracy against wall-
clock time CLAPS (our proposed method) compared to
other baselines in a few-shot learning setup on SST-2
with Flan-T5base. Lines and shades denote the mean and
standard deviation over 5 random seeds, respectively
(single seed for CLAPS (greedy)).

trained with simple, self-supervised text comple-
tion on a large corpus. This is typically followed by
fine-tuning and/or, more recently, prompting-based
methods on specific tasks (Lyu et al., 2022; Kojima
et al., 2022; Chen et al., 2023).

Prompt-based learning is particularly appealing
for modern LLMs due to its sample efficiency and
flexibility compared to conventional fine-tuning.
This enables few-shot or even zero-shot learning
(Brown et al., 2020; Liu et al., 2023). It can be
categorized into two types: soft and hard prompt
tuning. Soft prompt tuning directly optimizes the
embedding space of the model with other model
parameters frozen (Li and Liang, 2021; Lester et al.,
2021, inter alia). Although these methods do not
require full gradient updates like fine-tuning, they
still require parameter access, back-propagation
through massive models, and are typically model-
and/or task-specific.

Hard prompt tuning (HPT), on the other hand,
is an emerging paradigm that directly searches for
discrete tokens to be added to text input. Hard
prompts are more portable and more amenable

https://github.com/cambridgeltl/ClaPS
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to human interpretation, as they are actual tokens
rather than abstract arrays in the embedding space
(Shin et al., 2020). More importantly, unlike soft
prompting, which invariably requires parameter
access of LLMs due to the need to modify the em-
beddings, HPT is feasible even if the task LLM is
only available as a ‘black box’, i.e., only the model
outputs, but not information like parameters and
gradients, are available. Indeed, methods leverag-
ing reinforcement learning (RL) (Deng et al., 2022;
Zhang et al., 2023) and gradient estimation (Diao
et al., 2023) have been recently proposed to exploit
this powerful property, particularly since many ad-
vanced LLMs (e.g., GPT-4 (OpenAI, 2023) and
Bard) are increasingly made available in a model-
as-a-service (MaaS) manner, on which parameter
or gradient access is expensive or impossible – thus,
in this paper, we also focus on this practical but
challenging black-box setup.

Despite the promising progress, one challenge
plaguing the aforementioned black-box HPT ap-
proaches is the difficulty of the discrete and combi-
natorial optimization inherent to this problem when
no gradient guidance is available – it is common
that existing methods require a large number of
model queries, frequently in the order of O(103) or
more, before convergence. While previous works
have attempted to alleviate this problem by improv-
ing the search strategy, search space design has
been largely overlooked. For example, previous
works take the natural decision of using the entire
tokenizer vocabulary as the search space (Deng
et al., 2022), by a convenient extension from the
soft prompt tuning. However, as we will show
with an analysis of the search spaces of discrete
prompts, such a practice is actually suboptimal and
has made the optimization unnecessarily difficult.
Similar to the phenomenon observed in related dis-
crete optimization problems such as neural archi-
tecture search (Wan et al., 2022; Ru et al., 2020;
Zhou et al., 2023b), we find the influence exerted
by different tokens on the LLM when prepended
to the text queries as discrete prompts to be highly
non-uniform, with a small number of tokens (e.g.,
0.1 - 1% of all tokens) exerting a disproportionate
amount of influence. Meanwhile, the models are
insensitive to or even harmed by the vast majority
of the other, ‘non-influential’ tokens, which never-
theless act as nuisance variables during the search
to substantially increase the optimization difficulty
and resources required.

Inspired by these findings, we then propose
Clustering and Pruning for Efficient Black-box
Prompt Search (CLAPS), a simple black-box
search method that first clusters and prunes the
search space to focus on this subset of influential
tokens, followed by the discrete prompt search on
a few-shot objective. We find that after pruning,
even the simplest search strategy (e.g., random or
evolutionary search) can outperform state-of-the-
art methods with much more complicated search
strategies, often at a fraction of the search costs
over these competing methods (e.g., CLAPS out-
performs RLPrompt with only 2.8% of its cost mea-
sured in terms of wall-clock time). In summary, in
this paper, we offer the following contributions:
1) We analyze the influence different tokens in the
vocabulary exert on LLM predictions, and find that
only a small fraction of tokens positively influence
LLMs when used as discrete prompts.

2) We propose CLAPS, a black-box discrete
prompt search method compatible with a few-shot
learning setup, via a cluster-prune-then-search rou-
tine that focuses on a small set of influential tokens
as discrete prompt candidates.

3) We then show that while conceptually simple,
CLAPS attains state-of-the-art performance, of-
ten achieved at a very small fraction of the cost
of competing methods in more than 8 tasks with
instruction-finetuned Flan-T5 models.

2 Preliminaries

Hard prompt tuning (HPT). As mentioned in
§1, HPT aims to find discrete tokens to be concate-
nated directly to the test queries with the goal of
maximizing task performance. Formally, HPT may
be represented as an optimization problem:

p∗ = argmax
p∈P

E
xi,yi∼D

[
R
(
f(C(p, xi)), yi

)]
, (1)

where {xi, yi} denotes a query-target pair, p =
{p1, ..., pK} are the additional tokens to be con-
catenated with the text query x – this is often re-
ferred to as the discrete prompts, whose optimiza-
tion is the focus of HPT and we use P to denote the
prompt search space, the set of all possible discrete
prompts. C(p, xi) refers to the concatenation of p
and a formatted query xi:

C(p, xi) = Concat(p, template(xi)), (2)

where template(·) denotes any human-designed
pre-processing procedure that formats xi;



f
(
C(p, xi)

)
∈ R|Y|

≥0 is the output probability
distribution of the model given xi over all possible
classes Y (defined by the verbalizers) with∑|Y|

j=1 f
(j)

(
C(p, xi)

)
= 1; it is worth stressing

again that under a black-box setup considered in
this paper, the output probabilities are the only
observation available to us and we assume no
access to other information, including but not
limited to the model architectures, parameters
or gradients. Finally, R(·, ·) refers to a reward
function given the model predictions and the
ground-truth labels (an example is the negative
cross-entropy loss). The goal of HPT is thus to
find the optimal p∗ that maximizes this reward on
expectation over some data-generating distribution
D. Since the true data-generating distribution is
always assumed to be latent, in practice we solve
Eq. (1) via empirical risk minimization with a
standard train-validation-test split.

Search strategy and search space. Solving Eq. (1)
is, in general, challenging, as it involves difficult
combinatorial discrete optimization, and the gradi-
ents essential for standard first-order optimization
are not available. A natural recourse, that most
previous works have focused on, is developing bet-
ter zeroth order search strategies, via, for example,
reinforcement learning and Monte Carlo gradient
estimation. Search space (i.e., P), on the other
hand, is much less well-studied despite the fact
that its design has been previously shown to be
one of the most important influencing factors in
related discrete optimization problems. In HPT, the
overall search space P can be decomposed as a
Cartesian product over the search space of individ-
ual tokens: P =

∏K
k=1 Pk, which is in turn often

designed heuristically, and popular choices include
the entire tokenizer vocabulary Pk = V (and thus
|P| = |V|K for a K-token discrete prompt) (Deng
et al., 2022) or a subset of frequent n-grams from it
(Diao et al., 2023) – given the exponential scaling
w.r.t. the value of K, |P| is typically huge even for
modest |Pk| and/or K.

3 Analyzing Prompt Search Spaces

General search spaces are highly redundant. We
argue that, like any other optimization problem, the
search space, in our case, may also have a pro-
found effect on both the search strategy and the
downstream performance. As the research com-
munity of HPT grows, we argue that a systematic
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Figure 2: Only a small fraction of tokens improve perfor-
mance. Distribution of the incremental reward ∆R(v)
(Eq. 3) evaluated on 16-shot RTE samples with Flan-
T5base. The top-{1,5,10}% tokens in terms of their in-
cremental reward are highlighted in colors.

study of the search space design is crucial. As dis-
cussed, existing search spaces are often expensive
and heuristically designed. However, a large search
space is not necessarily well-designed: crucially, it
is unknown whether all parts of P positively con-
tribute to downstream task performance, or it could
simply be highly redundant, i.e., a large fraction
of P might in fact be unimportant or even harmful,
which simply increase complexity but nevertheless
act as confounding factors that make the optimiza-
tion in Eq. (1) unnecessarily hard.

To answer this question, we analyze the building
blocks of the most general search space where the
individual tokens of the discrete prompts may be
any token in the vocabulary V . To quantify the
incremental influence for a token v ∈ V , we define:

∆R(v) :=

∑N
i=1 R

(
f(C(v, xi)), yi

)
−R

(
f(C(xi)), yi

)
N

,

(3)

where we treat a token v as a single-token discrete
prompt to be concatenated to text queries xi and its
influence ∆R(v) is the change in reward compared
to the case where a formatted input without any
prompt token C(xi); N denotes the number of la-
beled samples randomly sampled from the training
set of the target task – we use N = 16 throughout
this paper, and we define R(·, ·) as the negative
cross-entropy:

R(f(C(p, xi)), yi) =

|Y|∑
j=1

y
(j)
i log f (j)(C(p, xi)

)
. (4)

We visualize the results of the above analysis on
a representative task in Fig. 2 where we compute
∆R(v) for all tokens in the vocabulary1, and we

1Note that the enumeration here is over Pk, which is typ-
ically tractable, as opposed to P . The computation may be
further accelerated via clustering – see §4.
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Figure 3: Pruning improves prompt search. Distribu-
tion of accuracy on RTE with Flan-T5base by random
sampling 100 5-token prompts from different vocabu-
lary spaces. Random refers to a random vocabulary set,
and BDPL prunes a context-relevant vocabulary set based
on task-dependent n-gram scores. Pruning indicates
our reward pruning on the vocabulary space. RLPrompt
denotes the final test accuracy achieved by RLPrompt
(Deng et al., 2022) on this task.

find the distribution of influence over the vocabu-
lary of tokens is, in fact, heavily non-uniform, with
a small fraction (roughly 1%, marked in green) of
all tokens exerting a disproportionate amount of
influence on the prediction of LLMs whereas the
vast majority of tokens either actively harm LLM
predictions or exert negligible influence.

Search space pruning. The finding above means
that it would be highly challenging for any search
method to navigate in the original search space,
especially in a black-box setup: the method has
to learn to both identify the small fraction of func-
tioning tokens and to avoid the vast majority of
unimportant or harmful ones. Instead of doing so,
we propose to prune Pk by focusing on the small
fraction of the most influential tokens identified
above only – given the Cartesian structure of P , this
results in an exponential reduction of the overall
search space P: with a representative K = 5 and
if we retain the top-1% tokens in terms of ∆R(v)
given by Eq. 3, there is a O(1010) reduction in |P|.

To validate the effectiveness of the pruning pro-
cedure and that the search space reduction does
not lead to sacrifices in performance, we randomly
sample 100 5-token discrete prompts from the re-
duced search space after the aforementioned prun-
ing procedure and use their performances as an
approximation of the overall search space qual-
ity, and we compare the results against the sam-
ples drawn from 1) the original, unmodified search
space (Vocab), 2) a reduced search space with Pk

reduced to 10% of the original, but the tokens are

Algorithm 1 CLAPS.
1: Input: Original token search space Pk (typically the en-

tire vocabulary V); search space size to retain after clus-
tering |Vc| (can be set to |V| if no clustering is required);
search space fraction to retain after pruning α; discrete
prompt length (in terms of # tokens) K.

2: Output: Optimized discrete prompts p∗

3: if |V∫ | < |V| then
4: [Clustering]: Obtain a reduced set of representative

tokens Vc with clustering (§4) as the new token search
space Pk ← Vc

5: end if
6: for v ∈ Pk do
7: Compute the incremental influence ∆R(v) of each

token v according to Eq. 3.
8: end for
9: [Pruning]: Rank and prune the tokens in Pk and only

retain the top-α fraction of tokens in terms of ∆R(v) as
the new token search space.

10: [Search]: Run black-box prompt search in the prompt
search space P =

∏K
k Pk to solve Eq. 1 to obtain an

optimized discrete prompt p∗.

randomly selected (Random), and 3) a Pk consists
of frequent n-grams selected via pointwise mutual
information as in Diao et al. (2023) (BDPL). We
visualize the test accuracy distribution in the RTE
task in Fig. 3, and we find pruning to massively
improve search space quality and reduce search
difficulty compared to both random pruning and
the pruning strategy proposed in BDPL, the latter
of which does outperform Random and Vocab but
is nevertheless outperformed by our pruning strat-
egy. Crucially, the fact that the median of the 100
randomly sampled discrete prompts already per-
forms similarly to RLPrompt (Deng et al., 2022),
a state-of-the-art method that features much more
complicated and expensive RL search strategy and
a tailored reward function, highlights the extreme
importance of search space design.

4 Efficient Black-Box Prompt Search via
Clustering and Pruning

Inspired by the analyses presented in §3, we now
present Efficient Black-Box Prompt Search via
Clustering and Pruning, or CLAPS in short, with
the overall procedure illustrated in Fig. 4 and Al-
gorithm 1. At a high level, CLAPS utilizes a multi-
step approach, combining the search space pruning
proposed in §3 with an optional clustering step to
reduce further the computational cost and a simple
black-box prompt search routine. We describe the
procedure in detail below.

Clustering. By default, CLAPS enumerates the
tokens in V and obtains the influence score (Eq. 3)



(a) Original search space (b) K-Means clustering (c) Rank & prune (d) Black-box hard prompt search

Figure 4: Illustration of the CLAPS pipeline. Starting from (a) the original search space (in this case, the entire
vocabulary V with |V| ∼ O(104), visualized via t-SNE plots of vector embeddings for illustration only), (b) we
first perform the optional, unsupervised step of K-Means clustering to retain a fraction of representative tokens Vs

with |Vs| ∼ O(103). We then (c) prune the tokens using the procedure described in §3 to retain a small fraction of
influential (∼ O(102)) tokens as the search space. We finally perform (d) black-box prompt search over the reduced
search space to identify the final K-token discrete prompts.

of each token by evaluating on a 16-shot training
set. While this procedure, which requires O(104)
model evaluations can be already tractable, here
we propose an additional optional step to acceler-
ate further our method: instead of enumerating all
tokens, we may use an unsupervised algorithm on
the token embedding space to obtain a subset of di-
verse tokens Vc that well-represent V (illustrated in
Fig. 4(b)) – while alternative methods that explic-
itly optimize for diversity set selection exist, we opt
for the simple greedy K-means++ (Arthur and Vas-
silvitskii, 2007) to generate Vc (we set |Vc| = 2000
unless otherwise stated). Formally, for each cen-
troid ec identified by K-means++, we collect the
closest token in terms of its embedding ℓ2 distance:

Vc = {vc}|Vc|
c=1 where vc = argmin

v∈V
∥ev − ec∥2.

(5)
The size of the retained vocabulary |Vc| is a hyper-
parameter of the search algorithm (to be discussed
in detail at the end of this section) and determines
the number of model queries in the next stage, with
a smaller |Vc| leading to more aggressive reduc-
tion and improved query efficiency but may lead to
some performance loss as some influential tokens
may be removed from the search space at this stage.
In our experiments, we set |Vc| = 2000 for all
model and task combinations without further hy-
perparameter tuning, and after the above procedure,
the number of LLM queries at the pruning stage
reduces from O(104) to O(103). Empirically, as
shown in §6, we find this additional procedure to
reduce the cost by roughly 3/4 relative to enumera-
tion (i.e., no pruning) in terms of wall-clock time
at only a small performance impact. A sensitivity
study of hyperparameters is also performed in §6.

Ranking and pruning. As illustrated in Fig. 4(c),
we prune Vc (with clustering) or V (without cluster-
ing) using the procedure described in §3 to obtain
the set of influential tokens for prompt search Vit.
The size of Vit is another hyperparameter, which
in this case encodes the greediness with a small
|Vit| suggesting a more greedy algorithm that only
considers tokens that minimize the validation loss.
However, as we empirically show in §6, combining
the most influential tokens does not necessarily lead
to the optimal prompt, and balancing greediness
with prompt search in the next stage leads to the
optimal outcome – in this paper, we set |Vit| = 200
for all experiments without further model- or task-
specific hyperparameter tuning.

Black-box prompt search. The final step of
CLAPS, as illustrated in Fig. 4(d), is search.
To demonstrate that CLAPS is search method-
agnostic, we consider three different search strate-
gies in our experiments. To differentiate from pre-
vious work focusing on search strategies, we first
consider a lightweight search strategy with a basic
evolutionary search algorithm with the following
ingredients:

• Initialization: we initialize with a population of
M uniformly sampled K-token discrete prompts
from the pruned search space, and we evaluate
the accuracy of each discrete prompt on a held-
out, 16-shot validation set.

• Evolution: after evaluating all prompts in the
population, at each search epoch, we retain the
top 10% of the population in terms of the vali-
dation loss as seed prompts. We then generate
the next population of M

2 prompts via crossover,
where two randomly selected seed prompts ex-



change tokens to create a new offspring, and M
2

new prompts via mutation, where we swap a to-
ken in a seed prompt with another token in the
(pruned) vocabulary with a fixed probability.

• Termination: at the end of the final search epoch,
we simply return the prompt that leads to the best
validation loss seen as the final p∗.

To demonstrate the versatility of CLAPS, we
also consider two additional search strategies,
namely greedy search and particle swarm optimiza-
tion (Kennedy and Eberhart, 1995; Bonyadi and
Michalewicz, 2017). The greedy algorithm is a
commonly used baseline in combinatorial optimiza-
tion: Starting with an empty string p∗

0 := ∅, at the
k + 1-th iteration, we iterate through the search
space Vit (with |Vit| = 200 following the previous
paragraph) and simply select the token that leads to
the highest reward, conditioned on partial prompt
p∗
≤k with k tokens already selected so far. More

formally, the (k + 1)-th token of p∗ is recursively
selected by:

p∗k+1 = argmax
v∈Vit

N∑
i=1

R(f(C(Concat(p∗
≤k, v), xi)), yi),

(6)

and the algorithm terminates when all K tokens
are selected. For the particle swarm optimizer, we
use an adapted version of the algorithm described
by Zang et al. (2020) to work in the discrete search
space, and we refer the reader to Appendix A for
further implementation details.

It is worth noting that we only consider a small
representative, and definitely non-exhaustive set
of search algorithms. CLAPS, which focuses on
search space design, can be deemed as a meta-
method that is compatible with any search strategy,
including but not limited to the ones proposed in
previous work, in a plug-and-play manner. It is
therefore possible that combining CLAPS with a
more advanced search method would lead to even
stronger performance – we defer a thorough inves-
tigation to future work.

5 Related Work

Prompt learning. Prompt learning is a class of
powerful methods for LLM adaptation and has be-
come an efficient alternative to full model finetun-
ing (Liu et al., 2023). Earlier methods (Li and
Liang, 2021; Lester et al., 2021; Liu et al., 2022b)
typically feature soft prompt tuning, where con-
tinuous prompts which modify the input embed-
ding of an otherwise frozen LLM are optimized.

Other methods, such as the parameter-efficient fine-
tuning (PEFT) techniques (He et al., 2022), which
only tune a small fraction of the model parameters
(Houlsby et al., 2019; Hu et al., 2022), may also be
regarded as soft prompt learning. While promising,
a drawback of the soft prompting methods is that
since the model-specific input embedding layers
often need to be modified, these methods inevitably
require internal model access. Furthermore, with
a few exceptions like BBT (discussed in the next
paragraph), many soft prompting methods still re-
quire back-propagation of gradients through mas-
sive models, which can still be computationally ex-
pensive. In contrast to soft prompting, hard prompt
learning learns discrete tokens: AutoPrompt (Shin
et al., 2020) uses model gradients to select appro-
priate tokens automatically, but is nevertheless re-
stricted to a ‘white-box’ setup.

Black-box prompt optimization. In contrast to
the white-box methods discussed above, several
methods are proposed to tune discrete prompts in
a black-box manner (i.e., not using internal knowl-
edge about the pretrained LLM). Black-box tun-
ing (BBT) and BBTv2 (Sun et al., 2022b,a) use
gradient-free optimization to learn soft prompts
that are projected back to the embedding/weight
space and concatenated to the query embedding
and/or weights. While not using model gradi-
ents, these methods nevertheless require access
to input embedding of the task model itself, and
hence are not black-box in the strictest sense. In
the strictly black-box setup, methods using rein-
forcement learning (Deng et al., 2022; Zhang et al.,
2023), discrete optimization (Prasad et al., 2023),
and gradient estimation (Diao et al., 2023) have
been proposed; we empirically compare against
them in §6. Furthermore, as discussed in §4,
CLAPS is fully orthogonal to the previous work
since these techniques focus on improving search
strategy. Several other works have focused on opti-
mizing specific components of the prompt design,
e.g., Rubin et al. (2022); Liu et al. (2022a); Wan
et al. (2023a,b) focus on selecting in-context exam-
ples and Zhou et al. (2023a) mitigate the in-context
bias by calibration. We argue that these methods
are again orthogonal to our contributions and thus
may offer combining benefits.

6 Experiments and Results

Evaluation data. We include various tasks from
single-sentence to multi-sentence classification



Model Flan-T5base Flan-T5large

Method FT Manual BDPL RLP. Search
CLAPS

FT Manual BDPL RLP. Search
CLAPS

Genetics Greedy Genetics Greedy
SST-2 76.19 85.32 84.89 86.01 85.85 87.78 90.37 83.72 92.32 92.43 92.55 92.73 93.03 94.27
RTE 51.55 73.65 72.27 78.52 77.47 81.23 79.42 49.10 84.12 84.12 84.55 85.05 86.12 86.28
SNLI 60.98 48.97 51.65 63.06 59.30 65.92 63.47 74.62 76.50 78.05 85.57 84.27 84.08 84.75
QNLI 67.94 62.40 61.53 74.85 65.83 70.52 80.07 77.32 82.67 80.45 83.80 82.78 85.81 86.47
MNLI 45.99 43.15 42.52 57.60 47.30 50.45 57.02 51.91 70.68 75.32 80.85 79.26 81.81 77.82
MRPC 68.73 69.12 71.49 58.82 72.74 68.43 65.93 70.83 76.72 83.96 80.15 74.85 77.11 75.49
QQP 66.31 79.07 68.44 80.09 80.57 80.87 81.40 77.23 81.29 77.25 72.23 82.01 81.31 78.10
News 83.62 71.15 70.71 76.91 77.20 76.06 77.13 83.72 81.22 80.77 82.62 82.96 84.24 83.08
Average 65.16 66.60 65.44 71.98 70.78 72.66 74.35 71.06 80.69 81.54 82.39 82.99 84.19 83.28

Table 1: Accuracy on Flan-T5base (Left) and Flan-T5large (Right). We reproduce all baselines and report the mean
for 5 random seeds for Flan-T5base. For computation-expensive experiments, we report single-seed results for
Flan-T5large. The best and second-best results are marked in bold fonts and ranked by color.

Model Flan-T5base Flan-T5large

Method FT Manual BDPL RLP. Search
CLAPS

FT Manual BDPL RLP. Search
CLAPS

Genetics Greedy Genetics Greedy
BG 34.85 33.97 33.36 37.16 35.67 36.16 34.57 33.95 43.87 44.91 44.61 44.78 45.13 44.63
DE 37.35 35.47 35.07 38.16 36.91 39.56 41.64 40.56 55.17 55.63 62.67 60.80 62.29 57.74
EN 47.69 41.20 40.08 54.23 46.17 54.14 54.77 69.04 69.84 76.77 81.18 79.04 81.15 77.11
ES 35.51 34.53 33.82 34.27 36.62 38.00 40.50 52.40 53.03 51.92 58.58 58.55 60.52 55.59
FR 40.23 35.15 33.92 37.27 35.67 38.16 41.98 48.30 54.69 55.07 63.81 60.35 63.76 57.62
HI 33.50 33.33 33.33 33.13 33.51 33.99 34.61 32.95 33.81 34.41 35.45 34.97 35.03 34.61
RU 34.99 33.85 33.42 33.51 36.91 37.46 37.01 37.13 48.96 49.34 49.74 49.68 50.62 47.84
SW 34.01 33.37 33.33 34.19 33.72 33.71 35.95 36.33 36.87 37.29 38.94 36.67 37.56 36.81
TR 34.14 33.81 33.54 36.53 33.86 36.11 36.67 35.35 43.91 44.57 45.69 45.85 45.31 42.91
Avg. 36.92 34.96 34.43 37.61 36.56 38.59 39.74 42.89 48.91 50.00 53.41 52.30 53.49 50.54

Table 2: Accuracy in 9 languages on XNLI with Flan-T5base (Left) and Flan-T5large (Right). Methods in other
languages show similar performance to Hindi and Swahili with marginal improvements over random prediction and
are omitted from the table. We report single-seed RLPrompt results due to its computation costs for XNLI tasks.
Refer to Table 1 for additional explanations.

tasks, from mono-lingual to multi-lingual NLI
datasets for widely validating the performance
of CLAPS at different levels of task difficulty.
We conduct experiments on the standard GLUE
dataset (Wang et al., 2018) including: SST-2, RTE,
QNLI, MNLI, MRPC, QQP. Furthermore, we in-
clude AG’s News (Zhang et al., 2015) and SNLI
(Bowman et al., 2015) following the previous hard
prompt tuning papers (Deng et al., 2022; Zhang
et al., 2023). In addition, we include XNLI (Con-
neau et al., 2018), a multilingual NLI task, as the
most challenging unseen dataset for revealing the
potential of our method in different languages. For
all tasks, we follow the standard few-shot setting
(Perez et al., 2021), where 16 shots represent 16
examples per class for both training and valida-
tion sets. Since the test labels for GLUE tasks are
unavailable, following standard practice we take
validation shots from the training sets and treat the
validation set as the test set.

Baselines. In the few-shot learning setup, we
mainly compare CLAPS with gradient-free black-
box baselines. Training details of all the methods

in comparison are included in Appendix A.
• Finetuning: we finetune the seq2seq language
model following the standard setup (Karimi Ma-
habadi et al., 2021; Zeng et al., 2023).

• BDPL (Diao et al., 2023): BDPL first mod-
els the prompt generation as samples drawn from
a multi-dimensional categorical distribution, and
uses Monte Carlo-estimated gradients to optimize
the distribution parameters. The search space is
over a subset of V that appear as frequent n-grams
in the task training corpus.

• RLPrompt (Deng et al., 2022): It trains a pol-
icy network that generates discrete prompts (an
MLP layer on top of a frozen, pretrained GPT-2
model) with a bespoke piece-wise reward. The
search space is over the whole vocabulary.

• Search and Prune & Search: we include these
baselines both as ablation experiments and to di-
rectly gauge the impact of search space design on
the downstream task performance. Search baseline
utilizes the genetics search algorithm described
in §4 directly in the full, non-pruned vocabulary



search space without clustering and pruning. Prune
& Search refers to CLAPS without the clustering
step where we prune on the whole vocabulary fol-
lowed by the genetics search.

Models. We explore the potential of CLAPS with
instruction-finetuned models, and we test on a wide
range of challenging tasks with Flan-T5base and
Flan-T5large models, one of the most powerful open-
sourced models of their size (Chung et al., 2022).
We refer readers for detailed hyperparameters and
training setups to Appendix A.

Discussion of main results. We present the re-
sults on all tasks except XNLI in Table 1, whereas
the XNLI results are provided in Table 2. For
CLAPS results, we present CLAPS with genetics
and greedy search algorithms in the main text and
show the results with particle swarm optimization
in Appendix B. Across both sets of tasks, we find
CLAPS (i) to consistently improve on standard,
no-prompt Manual baseline and (ii) to outperform
the other prompting baselines across the models
and tasks. More specifically, CLAPS (genetics)
outperforms RLPrompt 0.6% and 1.8% on average
for Flan-T5base and Flan-T5large, respectively. In
addition, we find that when used with CLAPS, the
greedy search algorithm, although straightforward,
can be surprisingly strong across many experiments
except for XNLI with Flan-T5large; this concretely
shows that CLAPS may orthogonally benefit dif-
ferent suitable search algorithms. Furthermore, in
contrast to other prompting baselines like BDPL
and RLPrompt, which occasionally lead to perfor-
mance deterioration from Manual, CLAPS consis-
tently improves over the latter. We hypothesize
that it is exactly due to the stability of our approach
enabled by searching only on pruned search space
featuring positively influential tokens, whereas the
competing methods may suffer from unstable and
noisy gradient estimations and/or RL policies over
a search space with more harmful sub-components.

Finally, we emphasize that CLAPS achieves
state-of-the-art performance with rather naïve
search strategies, which stands in stark contrast
to the competing methods that are both much more
complicated methodologically and often orders-of-
magnitude more expensive – we argue that this
highlights that methods focusing on search space
design warrant further investigation in future work.

Efficiency analysis. We analyze the performance-
cost trade-off of various methods on a represen-

Methods # Param. VRAM Time # Query SST-2 (%)

FT 250M 6.53GB 0.42 min - 76.15
RLPrompt 3M 3.60GB 65.1 min 12000 86.01
BDPL 1K 2.54GB 0.20 min 600 84.89
Search 0 2.54GB 1.26 min 4000 85.82
Prune & Search 0 2.54GB 7.65 min 24000 87.84
CLAPS (Genetics) 0 2.54GB 1.80 min 6000 87.78
CLAPS (Greedy) 0 2.54GB 0.86 min 3000 90.37

Table 3: Comparing the efficiency of CLAPS with base-
lines in the few-shot learning setup with Flan-T5base.
We report the number of trainable parameters, the peak
VRAM load, and the wall-clock time for the training
phase of all methods. The pruning-phase time span is
included in CLAPS. Note that RLPrompt and BDPL are
run under their default settings, respectively.

Dataset RLPrompt-found Prompt

SST-2 ReviewCustomerBankBankBank
RTE DatabaseansweranswerYesĠyes
QQP ComponentArgsArgsChangeĠaffecting
XNLIEN NodeArgsArgsArgsĠaffecting

Dataset CLAPS-found Prompt

SST-2 cruise perfect properly review cruise
RTE answer respectively minimum tell answer
QQP suggest outside cause exists statement
XNLIEN think ask relevant description mind

Table 4: Examples of CLAPS-discovered prompts com-
pared to RLPrompt for a collection of tasks using Flan-
T5base. The CLAPS prompts are prepended to the for-
matted text queries, whose templates are listed in Ap-
pendix A.

tative task in Table 3, which highlights the much-
enhanced practicality of CLAPS compared to the
baselines: CLAPS is extremely storage-efficient as
it requires no additional parameters to be stored
in the GPU, and the only memory requirement
is to maintain the task model under an inference-
only (i.e., no gradient storage) mode. CLAPS also
achieves the best trade-off between time efficiency
and performance as faster methods (FT and BDPL)
perform much worse, whereas methods like RL-
Prompt perform better, but are orders-of-magnitude
slower. It is worth noting for fairness of compar-
ison, we also perform additional experiments by
running BDPL longer than the default, but we find
that doing so only brings marginal improvement
over the Manual baseline, as illustrated in Fig. 1.

Examples of discovered discrete prompts. Ta-
ble 4 presents examples of CLAPS-discovered
prompts, and interestingly, we often observe some
interpretability even though CLAPS has not been
explicitly tuned towards fluency. For example,
in SST-2, a movie review sentiment-classification
task, CLAPS picks ‘review’ as a part of the best
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Figure 5: Ablation studies. Top row: Flan-T5base accu-
racy on SST-2/RTE with (ClaPS-genetics) and with-
out (Prune&Search) clustering. Bottom row: perfor-
mance sensitivity to pruning strength from 0% (no prun-
ing, i.e., the Search baseline in Tables 1 & 2 to 99.9%.
Mean ± standard deviation (error bar or shade) shown.

prompt. On the other hand, RTE and XNLIEN
are both textual entailment tasks and CLAPS
again spontaneously discovers prompts provide
an instruction-like signal to ‘ask’ the model to
‘answer’ the question. While the other prompts
are less immediately interpretable, we hypothesize
that they nevertheless act to tune the model embed-
ding towards the optimal direction for the target
task for performance improvement. CLAPS does
share some words with the competitive baseline,
RLPrompt, and these words (e.g., ‘review’ and
‘answer’) are usually ‘influential prompts’ identi-
fied by our pruning strategy and have significant
impacts on the model’s prediction. With a similar
or even better quality of prompts, CLAPS stands
out by first establishing an efficient search space
while saving substantial computation costs.

Ablation and sensitivity studies. In Fig. 5, we first
study the performance impact of the use of cluster-
ing by comparing CLAPS against Prune&Search:
we find that in the tasks considered, clustering mini-
mally affects the performance, but leads to a ∼75%
speed-up in terms of wall-clock time. We also in-
vestigate the effect of different pruning strengths,
and find that 1) pruning generally improves per-
formance, 2) performance is rather insensitive to
(reasonable) pruning strength, and 3) the threshold
of 1% (corresponding to 99% in Fig. 5) is a gener-
alizable choice across tasks. Finally, we conduct

additional ablation experiments to test the robust-
ness of CLAPS w.r.t. other hyperparameters, such
as the number of clusters during clustering and
the prompt length; the readers are referred to Ap-
pendix B for details.

7 Conclusion

We first analyzed the search spaces in the gen-
eral paradigm of hard prompt search. Inspired
by the findings that only a small fraction of to-
kens exert a positive influence on prediction, we
proposed CLAPS, an efficient black-box prompt
search method via clustering and pruning. The
CLAPS method is methodologically simple, easy
to implement, and cost-effective, and we showed
that it achieves state-of-the-art performance in both
mono-lingual and multi-lingual tasks with Flan-T5
models. CLAPS is a meta-method orthogonal to
the search strategy, and we expect more efficient
and effective prompt search algorithms can be cre-
ated on top of it. We hope that future work will
invest more time into the important problem of
search space design.

Limitations

We argue that CLAPS only serves as a first step
towards the promising direction of better search
space design and automation, and thus, the room
for improvement is ample. First, we have only con-
sidered a suite of natural language understanding
(NLU) tasks that may be cast as classification in
the present study, whereas prompting techniques
for generative tasks are, in general, less developed.

Second, we have only explored a token-based
search space for hard prompts as it is the most
general, but alternative search spaces built on the
overall instruction templates and exemplifiers exist
(such as the ones used in Zhang et al. (2023) and
Prasad et al. (2023). We hypothesize that since
these search spaces are also often heuristically de-
signed, the search space issues and the pruning
procedure may also apply to these search spaces,
which are often claimed to be more interpretable,
and thus, it would be interesting to extend our anal-
ysis, and methodology to these alternative spaces.

Third, as we discussed in §4, while the present
paper primarily focuses on search space, it is possi-
ble to combine CLAPS with more advanced search
methods for further potential gains: some promis-
ing strategies include reinforcement learning, as
used in Deng et al. (2022) and Zhang et al. (2023),



and sample-efficient zeroth-order algorithms that
may operate directly over the token search spaces,
such as the recent advancements in Bayesian opti-
mization over discrete and/or combinatorial vari-
ables (Baptista and Poloczek, 2018; Wan et al.,
2021; Daulton et al., 2022). We defer thorough
investigations to future work.
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A Implementation Details

A.1 Additional Experimental Details

For all experiments that record wall-clock time, we
run on a single RTX 4090 24GB GPU. The main
experimental results in Table 1 & 2, we run on the
RTX 4090 24GB GPU and the A100 80GB GPU.

CLAPS. During the phase of search space pruning,
we exclusively focus on tokens with a space in front
of it, which removes the majority of tokens that
are not a single word and various symbols across
different languages. In clustering, we collect 2000
centroids with the closest word in the embedding
space. Then, we filter the clustered set by removing
repetitive words, which then gives 1867 tokens as
the initial search space before pruning.

In implementing the evolutionary search algo-
rithm, we conduct a 30-epoch search with a popu-
lation size of 128, and both mutation and crossover
size of 64. At each epoch, we retain a 10% fraction
of top candidates to the next epoch. We searched
only for the 5-token length for all our experiments.

For the particle swarm optimization, we
use the open-source implementation (https://
github.com/thunlp/SememePSO-Attack) from
Zang et al. (2020) that is compatible with dis-
crete search spaces over word tokens. The key
changes that we made were to reflect the fact that
the prompting setup is less restrictive than the ad-
versarial attack that Zang et al. (2020) considered,
which would also require the changes in text to be
as imperceptible as possible. As such, we removed
constraints such as only substitution is allowed,
and, unlike adversarial attacks where the algorithm
is terminated whenever a successful perturbation is
found, we always run full 40 epochs.

Fine-tuning. We follow the same implementation
of standard T5 fine-tuning (Karimi Mahabadi et al.,
2021; Zeng et al., 2023). Due to the simplicity of
the seq2seq pipeline, we keep the default training
templates for all fine-tuning experiments.

BDPL. We use the same prompt templates for both
CLAPS and BDPL. We use the default hyperparam-
eter setup for all its experiments with a sample size
of 20 and 30 epochs. For the experiments in Fig.
1, we run BDPL for roughly the same wall-clock
time as CLAPS, which lasts 360 epochs.

RLPrompt. We implement the same prompt tem-
plates for both CLAPS and RLPrompt for a fair
comparison. We report the default hyperparam-
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Method FT Manual BDPL RLP. Search
CLAPS

Genetics Particle Swarm Greedy
SST-2 76.190.93 85.32 84.892.29 86.011.32 85.851.79 87.781.77 87.551.81 90.37
RTE 51.552.46 73.65 72.272.37 78.520.60 77.471.13 81.230.56 79.931.85 79.42
SNLI 60.984.18 48.97 51.653.95 63.060.42 59.302.27 65.923.14 66.123.35 63.47
QNLI 67.944.19 62.40 61.531.81 74.853.40 65.832.20 70.522.04 69.451.73 80.07
MNLI 45.994.81 43.15 42.524.29 57.600.88 47.303.85 50.453.09 53.711.78 57.02
MRPC 68.730.71 69.12 71.497.93 58.821.83 72.741.11 68.433.03 70.832.14 65.93
QQP 66.312.81 79.07 68.442.64 80.090.59 80.571.76 80.870.75 81.510.25 81.40
AG’s News 83.620.77 71.15 70.710.60 76.910.76 77.201.76 76.060.86 77.031.13 77.13
Average 65.16 66.60 65.44 71.98 70.78 72.66 73.27 74.35

Table 5: Accuracy on Flan-T5base with three different search algorithms on CLAPS. We reproduce all baselines and
report the mean and standard deviation for 5 random seeds for Flan-T5base. The best and second-best results are
marked in bold fonts and ranked by color.

#Cluster 20000 6000 2000 1000

SST-2 87.842.11 87.662.07 87.781.77 88.190.52
RTE 81.950.94 80.431.57 81.230.56 77.911.43

Table 6: Performance of CLAPS (Genetics) with respect
to the number of clusters in the phase of clustering.

#Token 2 5 10

SST-2 87.041.18 87.781.77 87.410.88
RTE 80.071.87 81.230.56 79.491.59

Table 7: Performance of CLAPS (Genetics) over the
number of discrete tokens in the stage of black-box
prompt search.

eter setup for all experiments. For computation-
ally expensive experiments with XNLI or using
Flan-T5large as the backbone, we set the training
steps as 6000 instead of 12000. In addition, since
RLPrompt requires an order-of-magnitude training
cost than CLAPS, we set a strict wall-clock limit
to all RLPrompt experiments that go beyond 12
training hours via A100. We then take the same
number of evaluation prompts as CLAPS at fixed
time intervals. Following RLPrompt’s open-source
script, we test the prompt with the highest valida-
tion reward score.

B Additional Experimental Results

We attach the main experimental results from Ta-
ble 1 with standard deviation and one additional
CLAPS results by particle swarm optimization in
Table 5. Based on three different CLAPS search
strategies, we find that, in absolute terms, it does
matter what search strategy is used to yield im-

proved task performance, and this is thus largely
task-dependent. In relative terms, CLAPS im-
proves almost all of the tasks with significantly
enhanced efficiency, validating its orthogonality to
the selected search algorithm.

We provide an ablation study that conducts the
CLAPS pipeline with different numbers of clusters
in the phase of clustering in Table 6. It reveals that
having the number of clusters at 2000 stands as a
good empirical trade-off point for saving the cost
while showing strong performance across tasks.

We then provide an ablation study with various
token lengths in Table 7. First, increasing the token
length from 2 to 5 leads to an improvement in per-
formance over the two tasks. It shows that a longer
sentence can provide more expressive control and
description for prompting the language model. By
further increasing the token length from 5 to 10,
we observe a decrease in performance and consider
this to be due to the dimensionality problem in
derivative-free optimization.

C Prompt Template

We present the prompt template of the tasks con-
sidered in Table 8.



Dataset Prompt template
SST2 Template: {prompt}. Sentence: {sentence1}, Sentiment:

Verbalizer: negative, positive
CLAPS: cruise perfect properly review cruise

RTE Template: {prompt}. Sentence 1: {sentence1}, Sentence 2: {sentence2}, Textual Entailment:
Verbalizer: yes, no
CLAPS: answer respectively minimum tell answer

SNLI Template 1: {prompt} {sentence1} {sentence2} Entailment:
Template 2: {prompt}. In this task, the goal is to predict textual entailment with ’yes’ ’maybe’
’no’. sentence A implies sentence B entailment: yes; sentence A is neutral to sentence B
entailment: maybe; sentence A contradicts sentence B entailment: no. Sentence A: {sentence1},
Sentence B: {sentence2}, Entailment:
Verbalizer: yes, maybe, no
CLAPS: möchten kannst procent dass that

QNLI Template: {prompt}. Question: {sentence1}, Sentence: {sentence2}, Entailment:
Verbalizer: yes, no
CLAPS: leider respectively read grey respectively

MNLI Template 1: {prompt} {sentence1} {sentence2} Entailment:
Template 2: {prompt}. In this task, the goal is to predict textual entailment with ’yes’ ’maybe’
’no’. sentence A implies sentence B entailment: yes; sentence A is neutral to sentence B
entailment: maybe; sentence A contradicts sentence B entailment: no. Sentence A: {sentence1},
Sentence B: {sentence2}, Entailment:
Verbalizer: yes, maybe, no
CLAPS: tell relevant statement suggest suggest

MRPC Template: {prompt}. Sentence 1: {sentence1}, Sentence 2: {sentence2}, Semantically Equivalent:
Verbalizer: no, yes
CLAPS: courses beschrieben serial vertical Über

QQP Template: {prompt}. Sentence 1: {sentence1}, Sentence 2: {sentence2}, Semantically Equivalent:
Verbalizer: no, yes
CLAPS: suggest outside cause exists statement

AG’s
News

Template: {prompt}. Classify the news articles into the categories of World, Sports, Business,
and Technology. {sentence1}:
Verbalizer: World, Sports, Business, Technology
CLAPS: prize computing panel Congress certified

XNLI Template 1: {prompt} {sentence1} {sentence2} Entailment:
Template 2: {prompt}. In this task, the goal is to predict textual entailment with ’yes’ ’maybe’
’no’. sentence A implies sentence B entailment: yes; sentence A is neutral to sentence B
entailment: maybe; sentence A contradicts sentence B entailment: no. Sentence A: {sentence1},
Sentence B: {sentence2}, Entailment:
Verbalizer: yes, maybe, no
CLAPS: think ask relevant description mind

Table 8: Prompt templates for prompt search experiments, where we also implement the same template for both
BDPL and RLPrompt experiments. We use Template 1 for Flan-T5base experiments. Due to the level of difficulty of
SNLI/MNLI/XNLI, we evaluate Template 2 with task instruction for Flan-T5large experiments, which demonstrate
better in-context learning capability than small language models. All templates are manually created and fixed
without iterations.


