

GRADPOWER: POWERING GRADIENTS FOR FASTER LANGUAGE MODEL PRE-TRAINING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 We propose **GradPower**, a lightweight gradient-transformation technique for
 012 accelerating language model pre-training. Given a gradient vector $\mathbf{g} = (g_i)_i$,
 013 GradPower first applies the elementwise sign-power transformation:

$$\varphi_p(\mathbf{g}) = (\text{sign}(g_i)|g_i|^p)_i$$

015 for a fixed $p > 0$, and then feeds the transformed gradient into a base optimizer.
 016 Notably, GradPower requires only a **single-line code change** and no modifications
 017 to the base optimizer’s internal logic, including the hyperparameters. When applied
 018 to Adam (termed **AdamPower**), GradPower consistently achieves lower terminal
 019 loss across diverse architectures (LLaMA, Qwen2MoE), parameter scales (66M to
 020 2B), datasets (C4, OpenWebText), and learning-rate schedules (cosine, warmup-
 021 stable-decay). The most pronounced gains are observed when training modern
 022 mixture-of-experts models with warmup-stable-decay schedules. GradPower also
 023 integrates seamlessly with other state-of-the-art optimizers, such as Muon, yielding
 024 further improvements. Finally, we provide theoretical analyses that reveal the
 025 underlying mechanism of GradPower and highlights the influence of gradient
 026 noise.

1 INTRODUCTION

030 Large language models (LLMs) have revolutionized modern artificial intelligence (Brown et al., 2020;
 031 Achiam et al., 2023; Liu et al., 2024a). However, pre-training LLMs is computationally intensive due
 032 to the massive scale of model size and training data. Improving the pre-training efficiency has thus
 033 become a primary objective in the continued scaling of LLMs. Among the factors affecting efficiency,
 034 the choice of optimizer is critical. In practice, the Adam optimizer (Kingma & Ba, 2014; Loshchilov
 035 & Hutter, 2017) has emerged as the de facto choice in most LLM pre-training pipelines, owing to its
 036 adaptive learning rate features (Zhang et al., 2024; Kunstner et al., 2024).

037 To further accelerate Adam, several approaches have been proposed to refine or simplify its moment
 038 estimation (Xie et al., 2024; Pagliardini et al., 2025; Chen et al., 2024b; Liu et al., 2025b; Zhang
 039 et al., 2025). Other strategies modify the update rule directly, such as direction correction (Wang
 040 et al., 2024; Liang et al., 2024), incorporating curvature information (Liu et al., 2024b; Wang et al.,
 041 2025), or applying matrix-based preconditioning (Keller et al., 2024; Liu et al., 2025a). While these
 042 methods often deliver tangible gains, they typically require substantial modifications to the existing
 043 training pipeline and careful extra hyperparameter tuning, which hinders their practical adoption.

044 In contrast to these intrusive modifications, we instead propose a lightweight, plug-in approach by
 045 revisiting the core component of optimization: the *gradient itself*. We apply a simple elementwise
 046 transformation to the gradient vector – enhancing its informativeness while leaving the base optimizer
 047 entirely unchanged. This design preserves compatibility with existing training pipelines and avoids
 048 additional tuning burden. Specifically, **our contributions** are as follows:

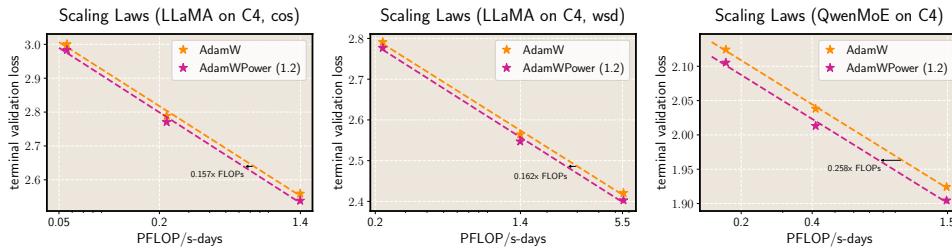
- 049 • **Our approach.** We propose GradPower, a simple but effective approach for boosting the
 050 convergence of general gradient-based optimizers. Specifically, given a raw gradient $\mathbf{g} =$
 051 $(g_i)_i \in \mathbb{R}^d$ and a fixed $p > 0$, we define the **powered gradient** as

$$\varphi_p(\mathbf{g}) := |\mathbf{g}|^p \text{sign}(\mathbf{g}) = (|g_1|^p \text{sign}(g_1), \dots, |g_d|^p \text{sign}(g_d))^\top. \quad (1)$$

052 GradPower applies this powered gradient to the base optimizer, preserving its original structure.

054
 055 • **Empirical performance.** We first evaluate the effectiveness of GradPower by integrating it
 056 into Adam, termed **AdamPower**. We test its performance across a broad LLM pre-training
 057 landscape: **dense** models (LLaMA (Touvron et al., 2023)) and **mixture-of-experts** models
 058 (Qwen2MoE (Yang et al., 2024a)), ranging from **66M** to **2B** parameters, using the C4 and
 059 OpenWebText corpora, and under both cosine-decay (`cos`) and warmup-stable-decay (`wsd`)
 060 learning-rate schedules. Across all settings, AdamPower consistently achieves lower terminal
 061 loss and exhibits more favorable scaling laws compared to vanilla Adam (see Figure 1), demon-
 062 strating its potential for improved scalability to larger models. Notably, the performance gains
 063 are most significant for modern MoE architectures and `wsd` schedules.
 064 Furthermore, we show that GradPower can be also seamlessly integrated with other state-of-the-
 065 art optimizers, such as Muon (Keller et al., 2024; Liu et al., 2025a) and Blockwise LR (Wang
 066 et al., 2025), yielding additional performance improvements.
 067

068 • **Theoretical analysis.** (1) Recent analyses suggest that steady progress along flat “river-like”
 069 directions is crucial for reducing loss in LLM pre-training (Wang et al., 2024; Wen et al.,
 070 2025). We show that AdamPower amplifies these directions, thereby accelerating optimization.
 071 (2) Moreover, for general *smooth non-convex objectives*, we prove that augmenting adaptive
 072 optimizers (e.g., AdaGrad) with GradPower strictly accelerates their convergence in both low-
 073 and high-noise regimes, supporting the intuitions developed in Section 2.
 074



075 Figure 1: Scaling-law comparison of AdamPower and Adam on the C4 dataset for dense LLaMA models and
 076 mixture-of-experts Qwen2MoE models.
 077

078 **Notations.** For $\{a_s\}_{s=1}^\infty$, its β -exponential moving average at time t is denoted as $\text{EMA}_\beta(\{a_s\}_1^t) := (1 - \beta) \sum_{s=1}^t \beta^{t-s} a_s$. For $g \in \mathbb{R}$ and $p \in \mathbb{R}_+$, we denote $g^p := |g|^p \text{sign}(g)$; for a vector g , the
 079 notation g^p denotes element-wise application of this transformation. For simplicity, we use *a.s.* to
 080 denote “almost surely”, and use *w.r.t.* to denote “with respect to”. We use standard big-O notations
 081 $\mathcal{O}(\cdot)$, $\Omega(\cdot)$, $\Theta(\cdot)$ to hide problem-independent constants, and use $o(\cdot)$ to denote the infinitesimal. Let
 082 $\|\cdot\|_q$ denote the ℓ_q norm for vectors for a $q > 0$. We denote $[n] = \{1, \dots, n\}$ for an integer $n \in \mathbb{N}_+$.
 083

2 THE GRADPOWER APPROACH

084 Let $\mathbf{g}_t \in \mathbb{R}^d$ denote the stochastic gradient at step t . A gradient-based optimizer can be expressed as
 085 $\theta_{t+1} = \theta_t - \eta_t \mathcal{Q}(\mathbf{g}_1, \dots, \mathbf{g}_t)$, where η_t is learning rate and \mathcal{Q} denotes update rule.
 086

087 **A unified view of preconditioning.** In practice, raw gradients may not be sufficiently informative
 088 or stable, and thus, it is common to transform the gradients before applying the update rule. This
 089 leads to the general form of *preconditioned optimizers*:

$$\theta_{t+1} = \theta_t - \eta_t \mathcal{Q}(\varphi(\mathbf{g}_1), \dots, \varphi(\mathbf{g}_t)) \quad (2)$$

090 where φ denotes a transformation (or preconditioning) applied to each gradient.
 091

092 To *avoid computational overhead*, we restrict attention to *elementwise* transformations. For a
 093 gradient vector $\mathbf{g} = (g_i)_i \in \mathbb{R}^d$, we consider $\varphi(\mathbf{g}) := (\varphi(g_1), \dots, \varphi(g_d))^\top \in \mathbb{R}^d$, where $\varphi : \mathbb{R} \rightarrow \mathbb{R}$ is a scalar nonlinearity applied coordinate-wise. The function φ is designed to enhance
 094 the informativeness of the raw gradient. The simplest choice is a linear transformation $\varphi(z) = cz$
 095 with $c \in \mathbb{R}$. However, as shown in Appendix C, such linear preconditioners may exhibit limited
 096 effectiveness when used in modern optimizers for LLM pre-training. In this work, we explore
 097 **nonlinear preconditioning** as an alternative.
 098

099 **The GradPower family.** Empirically, we find that a simple power transformation already yields non-
 100 trivial improvements in LLM pre-training. Specifically, we define the *sign-power* transformation

108 $\varphi_p : \mathbb{R} \rightarrow \mathbb{R}$ with exponent $p > 0$ as

$$\varphi_p(z) = |z|^p \text{sign}(z).$$

111 The powered gradient is shown in Equation (1). Incorporating this transformation into Adam
 112 leads to a new optimizer we call **AdamPower**, detailed in Algorithm 1. Remarkably, AdamPower
 113 introduces only one additional line of code compared to standard Adam.

114 In the following sections, we first present empirical evidence demonstrating the effectiveness of
 115 AdamPower, followed by a theoretical analysis that sheds light on its underlying mechanisms.

117 **Algorithm 1: AdamPower** (with decoupled weight decay)

118 **Given** learning rates $\{\eta_t\}_{t=1}^T$; hyperparameters $\beta_1, \beta_2, \epsilon, \lambda$; power $p \in \mathbb{R}_+$;

119 **Initialize** $\theta_0 \in \mathbb{R}^d$, first momentum vector $\mathbf{m}_t \leftarrow \mathbf{0}$, second momentum vector $\mathbf{v}_t \leftarrow \mathbf{0}$;

120 **for** $t = 1, \dots, T$ **do**

121 compute the mini-batch gradient \mathbf{g}_t ;

122 **GradPower**: compute powered gradient $\mathbf{g}_t \leftarrow |\mathbf{g}_t|^p \text{sign}(\mathbf{g}_t)$ using Eq. (1);

123 $\mathbf{m}_t \leftarrow \beta_1 \mathbf{m}_{t-1} + (1 - \beta_1) \mathbf{g}_t$; $\hat{\mathbf{m}}_t \leftarrow \mathbf{m}_t / (1 - \beta_1^t)$;

124 $\mathbf{v}_t \leftarrow \beta_2 \mathbf{v}_{t-1} + (1 - \beta_2) \mathbf{g}_t^2$; $\hat{\mathbf{v}}_t \leftarrow \mathbf{v}_t / (1 - \beta_2^t)$;

125 $\theta_t \leftarrow \theta_{t-1} - \eta_t \left(\hat{\mathbf{m}}_t / (\sqrt{\hat{\mathbf{v}}_t} + \epsilon) + \lambda \theta_{t-1} \right)$;

126 **Output**: optimized parameters θ_T .

129 **3 EMPIRICAL EVALUATION**

131 **3.1 EXPERIMENTAL SETUP**

133 We evaluate AdamPower for the task of LLM pre-training across a range of model architectures,
 134 parameter scales, datasets, and learning rate (LR) schedulers. The main experimental configurations
 135 are summarized below, while additional implementation details are provided in Appendix B.

- 136 • **Models.** We consider two widely used LLM architectures: **LLaMA** (dense) models (Touvron
 137 et al., 2023) and **Qwen2MoE** (MoE) models (Yang et al., 2024a). We experiment with model
 138 sizes ranging **from 6M to 2B** parameters.
- 139 • **Datasets.** We evaluate our methods on the **Colossal Clean Crawled Corpus (C4)** dataset (Raffel
 140 et al., 2020)¹ and **OpenWebText** dataset (Gokaslan & Cohen, 2019)². For pre-training on C4,
 141 we follow the setup of Wortsman et al. (2024); Zhao et al. (2025), using a batch size of 512.
 142 The total number of training tokens is set to be approximately 20 times the number of model
 143 parameters, in accordance with the Chinchilla scaling law (Hoffmann et al., 2022).
- 144 • **LR schedulers.** We evaluate two popular LR scheduling strategies: (i) **cos**: a linear warm-up to
 145 peak `lr_max`, followed by cosine decay to a terminal LR `lr_min`. (ii) **wsd** (warmup-stable-
 146 decay scheduler) (Zhai et al., 2022; Hu et al., 2024; Hägle et al., 2024): a linear warm-up LR to
 147 peak `lr_max`, followed by a stable phase where LR remains at `lr_max` (up to 80% of the total
 148 training steps), and then a linear decay to `lr_min`. It should be noticed that `wsd` introduces a
 149 non-traditional loss curve: slowly decrease during the stable phase and suddenly drop during the
 150 final decay phase.

151 We further evaluate our method on vision tasks, and report detailed implementation settings in
 152 Appendix B.

153 **Adam Baselines.** We use the standard Adam optimizer (with decoupled weight decay) as the
 154 baseline in most experiments (expect Section 3.4). The baseline is configured with hyperparameters
 155 $\beta_1 = 0.9, \beta_2 = 0.95$, weight decay $\lambda = 0.1$, and gradient clipping threshold of 1.0, following
 156 protocols used in LLaMA pre-training (Touvron et al., 2023). For each experiment, we first tune
 157 `lr_max` over $\{1e-4, 2e-4, 3e-4, 6e-4, 1e-3, 1.5e-3\}$ to be optimal for Adam, and
 158 the baselines are trained using these optimal `lr_max`'s. Details can be found in Appendix B.

159 ¹A large-scale public language datasets, widely used for LLM pre-training such as T5 (Raffel et al., 2020),
 160 and prior pre-training studies (Zhao et al., 2024; 2025).

161 ²An opensource recreation of the WebText corpus, commonly used in pre-training models such as
 RoBERTa (Liu et al., 2019), GPT-2, and NanoGPT (Karpathy, 2022).

162
 163 **The tuning of power p and its transferability.** We only tune
 164 the power p in a single small-scale experiment: pre-training
 165 LLaMA (0.2B) on C4. As shown in Figure 2, the tuned power is
 166 1.2. Interestingly, this aligns with the optimal power observed in
 167 the high-noise regime of our illustrative toy example (Figure 7).
 168 Then, we adopt $p = 1.2$ as the default in most experiments
 169 (expect Section 3.5). Importantly, the power proves to be **highly**
 170 **robust**: AdamPower with $p = 1.2$ **consistently outperforms**
 171 Adam and exhibits better scaling laws, across model types,
 172 model sizes, datasets, and LR schedulers.

173 3.2 RESULTS ON DENSE MODELS

174
 175 **Main findings.** Figure 3 compares the performance of AdamPower (with $p = 1.2$) to that of vanilla
 176 Adam across a range of settings, including LLaMA models of size 66M, 0.2B, 0.4B, 1B and 2B;
 177 both cos and wsd LR schedulers; and the C4 and OpenWebText datasets. Across all experiments,
 178 AdamPower **consistently achieves a lower terminal loss** than well-tuned Adam baseline. To further
 179 assess its scalability, we visualize the **scaling laws** of AdamPower versus Adam in Figure 1 (left and
 180 middle). We observe that the performance gain of AdamPower over Adam remains consistent across
 181 a wide range of model scales, **highlighting the potential scalability of AdamPower**.

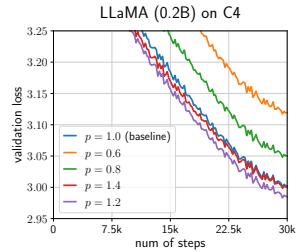


Figure 2: Pre-training LLaMA (0.2B) on C4 using AdamPower with different power p 's. The optimal power is 1.2.

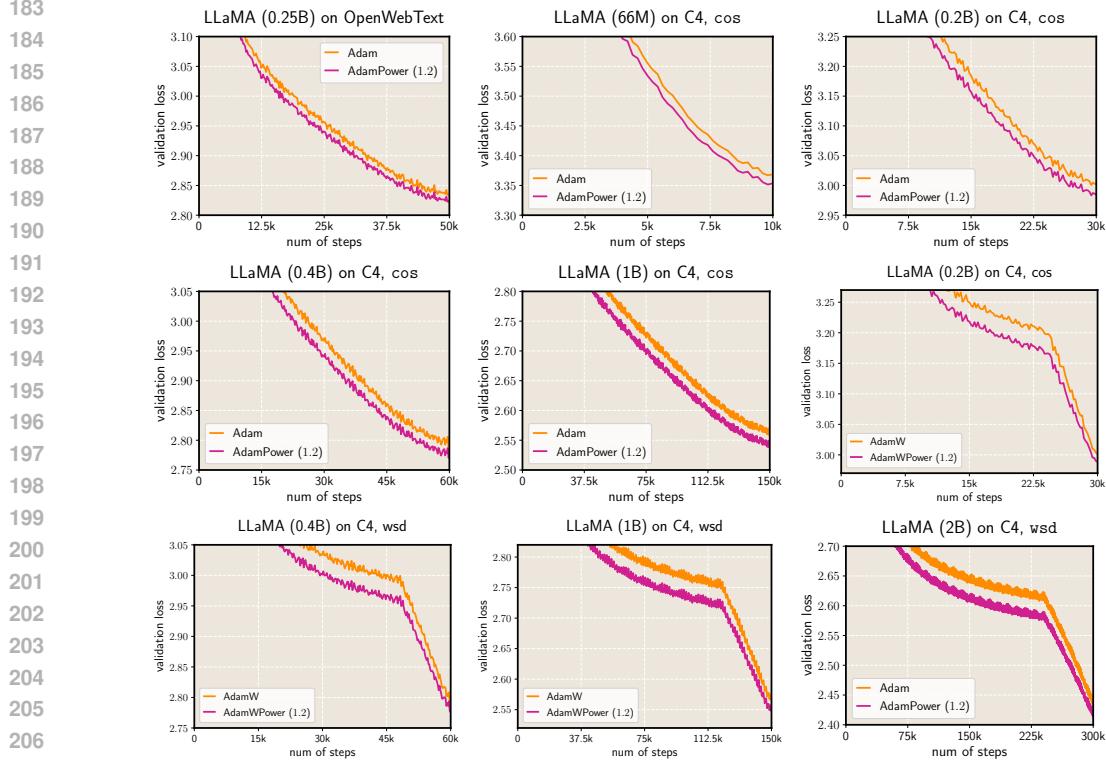


Figure 3: AdamPower ($p = 1.2$) consistently outperforms Adam in LLaMA pre-training tasks across a range of model sizes, datasets and LR schedulers.

207
 208 **Evaluation on downstream tasks.** Additionally, We also evaluate zero-shot performances of our
 209 method on common benchmarks including ARC (Yadav et al., 2019), PIQA (Bisk et al., 2020),
 210 HellaSwag (Zellers et al., 2019), OBQA (Mihaylov et al., 2018), WinoGrande (Sakaguchi et al.,
 211 2021), using the lm-evaluation-harness codebase (Gao et al., 2024). The results are reported in in
 212 Table 1. The model pre-trained with AdamPower outperforms that trained with AdamW on five out of
 213 six tasks, as well as on the overall average score, demonstrating improved downstream performance
 214 under the same number of pre-training steps.

METHOD	ARC-E	ARC-C	PIQA	HELLASWAG	OBQA	WINOGRANDE	AVG.
AdamW	60.02	26.45	73.56	44.65	24.80	56.83	47.72
AdamPower (1.2)	60.35	26.28	73.61	44.93	25.00	59.43	48.26

Table 1: The evaluation results of LLaMA (2B) models pre-trained using the C4 dataset. The best scores in each column are bolded.

3.3 RESULTS ON MoE MODELS

Mixture-of-experts (MoE) architectures have emerged as a key design choice in modern LLMs, as exemplified by Qwen-2.5 (Yang et al., 2024b) and DeepSeek-V3 (Liu et al., 2024a). Compared to dense models, MoE models often exhibit greater training instability. To assess whether the benefits of AdamPower extend to MoE models, we conduct experiments on Qwen2MoE (Yang et al., 2024a).

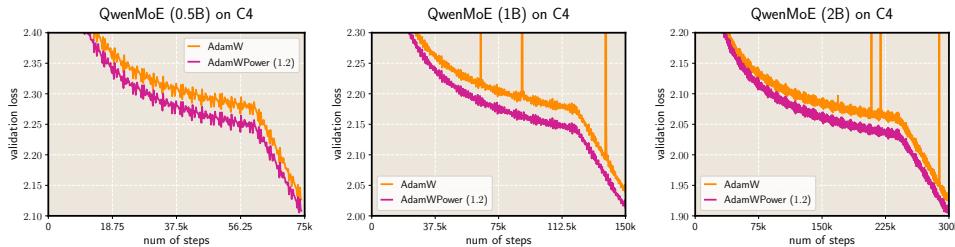


Figure 4: AdamPower ($p = 1.2$) consistently outperforms Adam in QwenMoE pre-training tasks on C4, across varying model sizes. The learning rate schedule is `wsd`.

Main findings. Figure 4 compares the performance of AdamPower ($p = 1.2$) and standard Adam for pre-training QwenMoE models of sizes 0.5B, 1B, and 2B on the C4 dataset, using the `wsd` scheduler. Across all settings, AdamPower **consistently achieves a lower terminal loss** than the well-tuned Adam baseline. To further examine scaling behavior, Figure 1 (right) visualizes the **scaling laws** of AdamPower versus Adam during Qwen2MoE pre-training. The performance gap between the two optimizers remains stable across model scales, with the corresponding scaling curves remaining nearly parallel – *suggesting that the gains offered by AdamPower may persist at larger model scales*.

Special potential for MoE models. Additionally, we observe two surprising phenomena, suggesting that AdamPower may offer unique advantages for MoE model training:

- Although the power $p = 1.2$ was originally tuned for LLaMA, it generalizes well to Qwen2MoE models without further tuning. (it is likely that an even better p exists for MoE-specific training.) Remarkably, the absolute improvement achieved by AdamPower on Qwen2MoE-2B (0.028) is **more significant** than that on LLaMA-2B (0.022). Noteworthily, Qwen2MoE-2B reaches a much lower loss (1.93) compared to LLaMA-2B (2.43), making further improvements more challenging – yet AdamPower still yields remarkable gains.
- AdamPower also exhibits improved **training stability**, reducing the occurrence of loss spikes seen with Adam. This effect is particularly visible in the 1B and 2B curves in Figure 4 (middle, right). Based on recent understanding in Section A, the fast vibrations along the sharp (valley) directions mainly decide the training (in)stability. We *hypothesize* that the gradient power transformation in AdamPower may help suppress the vibrations along these directions. We leave a detailed investigation of this phenomenon to future work.
- The `wsd` scheduler has become increasingly popular in recent LLM pre-training (Liu et al., 2024a; Hägle et al., 2024), always taking a long stable phase. We observe that the advantage of AdamPower **gradually increases throughout the LR stable phase**. This suggests that AdamPower may be particularly suited for modern training pipelines that adopt `wsd` schedules.

3.4 COMPATIBILITY WITH OTHER OPTIMIZERS

As discussed in Section A, several optimizers have recently been proposed to enhance LLM pre-training. While AdamPower has demonstrated superiority over Adam in both dense and MoE models, we now ask: *can GradPower also improve the performance of other state-of-the-art optimizers?*

To investigate this, we focus on two representative optimizers: Adam with **Blockwise LR** (Wang et al., 2025) and **Muon optimizer** (Keller et al., 2024; Liu et al., 2025a). Blockwise LR assigns

separate learning rates to different Transformer blocks and has shown substantial improvements over standard Adam. Muon, on the other hand, breaks away from the Adam framework entirely and has recently been shown to achieve better scaling laws than Adam (Liu et al., 2025a). We refer to the application of GradPower to Muon as **MuonPower**.

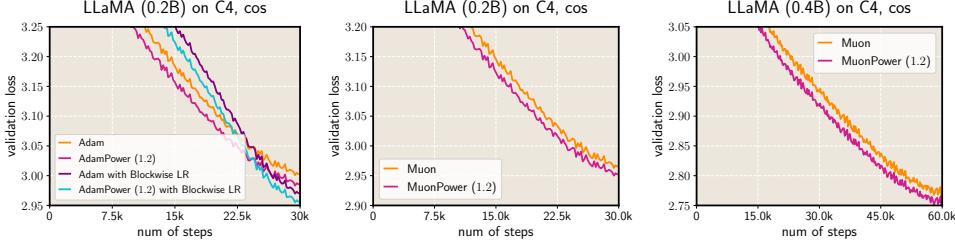


Figure 5: (left) AdamPower with Blockwise LR outperforms both AdamPower and Adam with Blockwise LR in LLaMA pre-training. (middle, right) MuonPower (with $p = 1.2$) outperforms Muon in LLaMA pre-training.

The results, presented in Figure 5, highlight two key findings. **(i) AdamPower with Blockwise LR** achieves a lower terminal loss than both AdamPower and Adam with Blockwise LR individually. Notably, the observed improvement (0.45) is *nearly the sum* of the gains from AdamPower alone (0.15) and Blockwise LR alone (0.3), suggesting that their benefits are largely orthogonal. **(ii) MuonPower ($p = 1.2$)**, the GradPower-augmented variant of Muon, also outperforms the well-tuned Muon baseline. These results demonstrate the versatility of GradPower as a general enhancement that can be seamlessly integrated into other optimizers.

3.5 INFLUENCE OF BATCH SIZE

Finally, we investigate how batch size influence the performance of GradPower. Batch size plays a critical role in deep learning, with larger batch sizes producing lower gradient noise and more accurate gradient (Keskar et al., 2017; McCandlish et al., 2018).

Unlike the previous experimental settings, here we conduct the experiments on C4 dataset, varying the batch size from the standard 512 up to 8192. For each batch size, we evaluate AdamPower with multiple values of p , and record their validation loss of when the optimal validation loss reaches approximately 3.5. The experimental details are provided in Appendix B.

Main findings. The results, shown in Figure 6, demonstrate a clear trend: the optimal power p decreases as batch size increases, i.e., as the gradient noise level decreases. This finding reveals a strong correlation between batch size and the optimal power p in AdamPower. For standard (small) batch sizes, the optimal power p tends to be greater than 1; in contrast, for large batch sizes, the optimal power p might fall below 1.

Vision tasks. We also conduct the experiments using ResNet-34 model (He et al., 2016) on CIFAR-10 dataset (Krizhevsky & Hinton, 2009), varying the batch size from 32 to 128. The results in Table 2 further validates above point. Moreover, it demonstrates the generalizability of our method beyond language model pre-training.

batch size	$p = 0.8$	$p = 0.85$	$p = 0.9$	$p = 1.0$	$p = 1.1$	$p = 1.2$	$p = 1.4$
128	94.35	94.27	94.22	93.98	93.38	93.15	91.66
64	94.22	94.4	94.22	94.1	93.97	93.77	92.61
32	94.04	94.07	94.15	94.3	94.25	93.85	93.71

Table 2: The influence of batch size for the optimal power p in vision tasks.

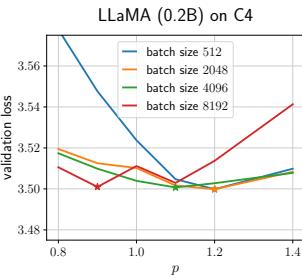


Figure 6: The influence of batch size for the optimal power p in LLM tasks.

In the next section, we provide a theoretical explanation for this phenomenon.

324 4 THEORETICAL INSIGHTS

326 4.1 AN ILLUSTRATIVE CASE STUDY

328 This subsection investigates a phenomenological example, both theoretically and empirically, to
 329 illustrate how varying the power p in AdamPower affects the update magnitude. Motivated by the
 330 empirical findings in Section 3.5, which show that batch size (gradient noise) affects the optimal
 331 value of p , we study our example under varying signal-to-noise regimes.

332 **Slow dynamics along flat directions.** As discussed in Section A, recent studies have revealed key
 333 properties of the landscape and training dynamics in LLM training. In particular, the landscape can
 334 be decomposed into flat and sharp directions (also referred to as river and valley components (Wen
 335 et al., 2025)). The loss along river component typically determines the loss at the bottom of the
 336 landscape. Along these flat directions, the optimizer tends to make slow but steady progress, and
 337 appears to remain aligned for a period of time.

338 Motivated by this picture, we consider a one-dimensional example to study whether varying p in
 339 AdamPower can *accelerate these slow dynamics along the flat directions*, thereby leading to more
 340 efficient loss descent.

341 **Example 4.1.** For simplicity, consider a 1-dimensional flat direction. Let the stochastic gradients at
 342 time $t \in \mathbb{N}$ follow $g_t \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(\mu - \sigma, \mu + \sigma)$, where $0 < \mu, \sigma \ll 1$ ³. Here, μ reflects the full-batch
 343 gradient, and σ captures the stochastic noise level.

344 Our goal is to investigate the values of p that maximize the update magnitude $u_t = m_t / (\sqrt{v_t} + \epsilon)$ in AdamPower (Alg. 1).
 345 For simplicity, we set weight decay to 0. We now present
 346 both empirical and theoretical analysis.

347 **Empirical findings.** We begin by numerically simulating
 348 the update u_t . The results are presented in Figure 7. Notably,
 349 the optimal value of p varies across noise-to-signal regimes,
 350 exhibiting two distinct behaviors:

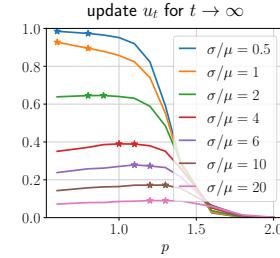
- 354 • *Low-noise regime* $\sigma/\mu \leq 1$ (blue and orange curves), it
 355 is clear that the update magnitude decreases monotonically
 356 with increasing p , and the optimal power is small,
 357 satisfying $p^* < 1$.
- 358 • *High-noise regime* $\sigma/\mu > 1$, the update magnitude in-
 359 creases and then decreases with increasing p . Moreover,
 360 for noise-dominant regime, the optimal power satisfies
 361 $p^* > 1$ (red, purple, brown, and pink curves).

362 These findings closely align with our empirical results in real-
 363 world LLM pre-training tasks in Section 3. As the batch size increases (corresponding to lower
 364 gradient noise), the optimal power p^* decreases accordingly, transitioning from $p^* > 1$ to $p^* < 1$, as
 365 observed in Section 3.5. Remarkably, the optimal power $p^* = 1.2$ in the high-noise regime matches
 366 the value used across most LLM pre-training experiments in Section 3.

367 **Theoretical analysis.** To better understand these interesting behaviors, we theoretically analyze
 368 this problem. To facilitate analytical derivation, we consider the limiting case where $\beta_2 \rightarrow 1$, which
 369 closely approximates typical settings in practice (e.g., 0.95 or 0.999). We define the limiting update
 370 of AdamPower as:

$$372 u := \lim_{t \rightarrow \infty} \lim_{\beta_2 \rightarrow 1} u_t, \quad (3)$$

373 where $u_t = m_t / (\sqrt{v_t} + \epsilon)$, with $m_t = \text{EMA}_{\beta_1}(\{g_s^p\}_1^t)$ and $v_t = \text{EMA}_{\beta_2}(\{(g_s^p)^2\}_1^t)$. In this limit,
 374 we obtain the *closed-form expression*: $u = \mathbb{E}[g^p] / (\sqrt{\mathbb{E}[(g^p)^2]} + \epsilon)$, a.s., $g \sim \text{Unif}(\mu - \sigma, \mu + \sigma)$.
 375 This formulation allows explicit computation and facilitates verification of the empirical trends. We
 376 present two propositions corresponding to the low-noise and high-noise regimes.



377 **Figure 7:** Numerical results for Example 4.1. We plot the value of u_t at $t = 10^6$ for AdamPower across different p 's under varying noise-to-signal ratios. For each curve, the optimal and suboptimal p values are marked with stars. The μ is set to $\mu = 10^{-6}$. Other hyperparameters follow standard values: $\beta_1 = 0.9$, $\beta_2 = 0.95$, $\epsilon = 10^{-8}$, and $\lambda = 0$. The learning rate η does not affect the result.

³Empirical studies suggest that gradient scales in LLM training are often very small (Huang et al., 2025).

378 **Proposition 4.2** (low-noise regime, $\sigma \ll \mu$). *It holds that $u = \frac{1+o(1)}{1+\frac{\epsilon}{\mu^p}}$, a.s.. Letting $\tilde{u} = \frac{1}{1+\frac{\epsilon}{\mu^p}}$, we*
 379 *observe that \tilde{u} is monotonically decreasing w.r.t. p .*
 380

381 This proposition quantitatively explains the monotonicity observed in the low-noise regime. Furthermore,
 382 it shows that the maximum update is approximately $\frac{1}{1+\epsilon} \approx 1$, achieved in the limit as $p \rightarrow 0$.
 383 This aligns with Figure 7.

384 **Proposition 4.3** (high-noise regime, $\mu \ll \sigma$). *It holds that $u = \frac{\mu}{\sigma} \frac{1+o(1)}{\frac{1}{\sqrt{2p+1}} + \frac{\epsilon}{\sigma^p}}$, a.s.. Letting $\tilde{u} =$
 385 $\frac{\mu}{\sigma} \frac{1}{\sqrt{2p+1} + \frac{\epsilon}{\sigma^p}}$, we observe the following: If $\epsilon \log(1/\sigma) < 1$, then there exists an optimal power p^*
 386 such that \tilde{u} increases for $0 < p < p^*$ and decreases for $p > p^*$. Moreover, we have a tight estimate:
 387 $p^* = \Theta\left(\frac{\log(\epsilon \log(1/\sigma))}{\log \sigma}\right)$.*
 388

389 Notably, in practice, ϵ is typically chosen sufficiently small (e.g., $\epsilon \ll \sigma$), ensuring $\frac{\log(\epsilon \log(1/\sigma))}{\log \sigma} > 1$.
 390 This again aligns with our empirical observation that $p^* > 1$ in the high-noise regime.

391 The intuition behind Proposition 4.3 is as follows. When p is relatively small, the denominator
 392 is dominated by $\sqrt{\mathbb{E}[(g^p)^2]}$. Since $g \ll 1$, increasing p reduces both the numerator $\mathbb{E}[g^p]$ and
 393 denominator $\sqrt{\mathbb{E}[(g^p)^2]}$. In the high-noise regime, the reduction in the denominator outweighs that
 394 in the numerator, resulting in a larger update. In contrast, when p is relatively large, the denominator
 395 is dominated by ϵ , and AdamPower degenerates to SGDPower, where the update is approximately
 396 $\mathbb{E}[g^p]/\epsilon$. In this regime, increasing p reduces the update magnitude.

397 Although the above example is synthetic, it reveals several non-trivial phenomena highly aligned with
 398 LLM pre-training tasks, particularly the existence and behavior of the best p^* across noise-to-signal
 399 regimes. These insights deepen our understanding of how GradPower influences the performance of
 400 AdamPower and suggest practical guidance for selecting p .

4.2 CONVERGENCE GUARANTEES

401 Let $\mathcal{L} : \mathbb{R}^d \rightarrow \mathbb{R}$ be a non-convex loss function. For any $\theta \in \mathbb{R}^d$, let $\mathbf{g}(\theta)$ denote the stochastic
 402 gradient satisfying $\mathbb{E}[\mathbf{g}(\theta)] = \nabla \mathcal{L}(\theta)$.

403 In this subsection, we consider the classical setting of smooth non-convex optimization and investigate
 404 the theoretical benefits of applying GradPower within adaptive optimizers. Since the analysis of
 405 Adam is technically complex, to gain clear theoretical insights, we instead analyze its predecessor,
 406 Adagrad, a foundational adaptive optimization algorithm (Duchi et al., 2011). The update rule of
 407 **AdagradPower** (Adagrad using GradPower) is given by:

$$\theta_{t+1} = \theta_t - \eta \frac{\mathbf{g}_t^p}{\sqrt{\mathbf{v}_t + \epsilon}}, \quad \mathbf{v}_t = \sum_{s=1}^t (\mathbf{g}_s^p)^2, \quad (4)$$

408 where the power $p > 0$, and we \mathbf{g}_t denotes the stochastic gradient $\mathbf{g}(\theta_t)$ for simplicity.

409 To establish the convergence results, we adopt the following standard assumptions, consistent with
 410 Section 2.3 in Défossez et al. (2022).

411 **Assumption 4.4** (Défossez et al. (2022)). The following conditions hold:

- 412 \mathcal{L} is bounded below by \mathcal{L}^* , i.e., for all $\theta \in \mathbb{R}^d$, $\mathcal{L}(\theta) \geq \mathcal{L}^*$.
- 413 \mathcal{L} is H -smooth, i.e., there exists a constant $H > 0$ such that for all $\theta, \theta' \in \mathbb{R}^d$,
 $\|\nabla \mathcal{L}(\theta) - \nabla \mathcal{L}(\theta')\|_2 \leq H \|\theta - \theta'\|_2$.
- 414 The ℓ_∞ norm of the stochastic gradients is uniformly almost surely bounded, i.e., there exists a
 \mathcal{L} constant $R > 0$ such that for all $\theta \in \mathbb{R}^d$, $\|\mathbf{g}(\theta)\|_\infty + \epsilon \leq R$, a.s..

415 Under this assumption, the convergence guarantee of Adagrad is well established:

416 **Theorem 4.5** (Adagrad; Theorem 1 in Défossez et al. (2022)). *Suppose Assumption 4.4 holds. Let
 417 $\{\theta_t\}_{t=0}^T$ are trained by **Adagrad** (4) with $p = 1$. Then for any $T \in \mathbb{N}$, we have:*

$$\min_{1 \leq t \leq T} \mathbb{E} [\|\nabla \mathcal{L}(\theta_t)\|_2^2] \leq \frac{2R(\mathcal{L}(\theta_0) - \mathcal{L}^*)}{\eta \sqrt{T}} + \frac{Rd(4R + \eta H) \log(1 + R^2 T / \epsilon)}{\sqrt{T}}. \quad (5)$$

418 We now study the convergence of AdagradPower in both low-noise and high-noise regimes.

432 **Low-noise regime.** We introduce an additional assumption about the noise scale.
 433

434 **Assumption 4.6** (Low-noise regime). There exist constants $p \in (0, 1)$ and $c > 0$ such that
 435 $\mathbb{E}[g_i^p(\boldsymbol{\theta})]\nabla_i \mathcal{L}(\boldsymbol{\theta}) \geq c|\nabla_i \mathcal{L}(\boldsymbol{\theta})|^{p+1}$ holds for all $\boldsymbol{\theta} \in \mathbb{R}^d$ and $i \in [d]$.

436 This assumption is satisfied in many low-noise scenarios:
 437

438 **Example 4.7.** (I) *Deterministic regime (the limit case of low noise):* if $g_i(\boldsymbol{\theta}) = \nabla_i \mathcal{L}(\boldsymbol{\theta})$, then
 439 Assumption 4.6 holds for all $p \in (0, 1)$ with $c = 1$. (II) *Uniform distribution:* if $g_i \sim \text{Unif}(\nabla_i \mathcal{L} - \sigma, \nabla_i \mathcal{L} + \sigma)$ with $\sigma \ll |\nabla_i \mathcal{L}|$, then Assumption 4.6 holds for all $p \in (0, 1)$ as $\mathbb{E}[g_i^p]\nabla_i \mathcal{L} = |\nabla_i \mathcal{L}|^{p+1}(1 + o(\sigma/|\nabla_i \mathcal{L}|)) \geq 0.99|\nabla_i \mathcal{L}|^{p+1}$.

441 **Theorem 4.8** (AdagradPower, low-noise regime). *Suppose Assumption 4.4 and 4.6 hold, as well as $R < 1^4$. Let $\{\boldsymbol{\theta}_t\}_{t=0}^T$ are trained by **AdagradPower** (4), with the power $p \in (0, 1)$ as given in Assumption 4.6. Then for any $T \in \mathbb{N}$, we have:*

$$\min_{1 \leq t \leq T} \mathbb{E} [\|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|_2^2] \leq \mathcal{O} \left(\frac{\log^{2/(p+1)} T}{T^{1/(p+1)}} \right). \quad (6)$$

447 Comparing Theorems 4.5 and 4.8, we observe that AdagradPower achieves a convergence rate
 448 $(\log^{2/(p+1)} T / T^{1/(p+1)})$ that is $2/(p+1)$ times faster than Adagrad ($\log T / \sqrt{T}$) in low-noise regime.
 449 For Example 4.7, this yields nearly a $2 \times$ acceleration for $p \rightarrow 0$. This result is consistent with
 450 observations in Section 4.1 and 3.5 that the optimal power p for adaptive optimizers is less than 1 in
 451 the low-noise regime. The proof is presented in Appendix D.

452 **High-noise regime.** We introduce an additional assumption regarding the noise scale:
 453

454 **Assumption 4.9** (High-noise regime). (C1) There exist constants $p > 1, \sigma > 0$ such that
 455 $\mathbb{E}[g_i^p(\boldsymbol{\theta})]\nabla_i \mathcal{L}(\boldsymbol{\theta}) \geq \sigma|\nabla_i \mathcal{L}(\boldsymbol{\theta})|^2$ holds for all $\boldsymbol{\theta} \in \mathbb{R}^d$ and $i \in [d]$. (C2). It holds that $\sigma > R^{p-1}$.

456 The first condition asserts that the gradient noise is non-degenerate. The second condition further
 457 asserts that the gradient noise is in a high level. Noteworthily, These conditions are naturally satisfied
 458 in many high-noise settings:

459 **Example 4.10.** Consider g_i satisfy binary distribution $\mathbb{P}(g_i = \nabla_i \mathcal{L} - \sigma_i) = \mathbb{P}(g_i = \nabla_i \mathcal{L} + \sigma_i) = \frac{1}{2}$.
 460 Then for any odd number $p > 1$, $\mathbb{E}[g_i^p]\nabla_i \mathcal{L} \geq p\sigma_i^{p-1}|\nabla_i \mathcal{L}|^2$. Thus, (C1) in Assumption 4.9 holds with
 461 $\sigma = p\sigma_i^{p-1}$. As for (C2), in high-noise regime with $|\nabla_i \mathcal{L}| \ll \sigma_i$, we have $\frac{R^{p-1}}{\sigma} \leq \frac{(|\nabla_i \mathcal{L}| + \sigma_i)^{p-1}}{p\sigma_i^{p-1}} \leq \frac{1.01}{p} < 1$.

464 **Theorem 4.11** (AdagradPower, high-noise regime). *Suppose Assumption 4.4 and 4.9 hold, as well as $R < 1$. Let $\{\boldsymbol{\theta}_t\}_{t=0}^T$ be trained by **AdagradPower** (4), with the power $p > 1$ as given in Assumption 4.9. Then for any $T \in \mathbb{N}$, we have:*

$$\min_{1 \leq t \leq T} \mathbb{E} [\|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|_2^2] \leq \frac{R^{p-1}}{\sigma} \cdot \left(\text{R.H.S. of (5)} \right), \quad (7)$$

470 where $R^{p-1}/\sigma < 1$.

471 Comparing Theorems 4.5 and 4.11, we observe that AdagradPower accelerates convergence of
 472 Adagrad by a constant factor $\frac{R^p}{\sigma}$ in high-noise regime. For Example 4.10, the acceleration is
 473 significant, due to $\frac{R^{p-1}}{\sigma} \leq \frac{1.01}{p}$ for any positive odd p . This result provides theoretical support for
 474 the empirical superiority of adaptive optimizers using GradPower in LLM pretraining in Section 3.
 475 Notably, the theoretical insights are highly aligned with those in Proposition 4.3. In the high-noise
 476 regime, using $p > 1$ reduces both numerator \mathbf{g}_t and denominator $\sqrt{\mathbf{v}_t + \epsilon}$. However, reduction in the
 477 denominator outweighs that in the numerator, resulting in a faster convergence speed. The formal
 478 proof refines this argument and is presented in Appendix D.

480 5 CONCLUSION

482 We propose GradPower, a simple yet effective method for improving the efficiency of gradient-based
 483 optimizers. Experimentally, AdamPower (Adam using GradPower) consistently achieves lower
 484 terminal loss and improved scaling laws than Adam across various LLM pre-training tasks.

485 ⁴Empirical studies suggest that gradient scales in LLM training are often very small (Huang et al., 2025).

486 For future work, it would be interesting to investigate why AdamPower exhibits particular potential
 487 for MoE models and wscl LR scheduler. Experimentally, exploring the applicability of GradPower
 488 beyond LLMs, as well as its integration with other optimizers, could further extend its impact. In
 489 addition, developing a dynamic schedule for the GradPower exponent p , adapted to the evolving SNR
 490 throughout training, presents both a challenging and a potentially valuable direction.
 491

492 **REFERENCES**
 493

494 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 495 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
 496 report. *arXiv preprint arXiv:2303.08774*, 2023. 1

497 Marco Baiesi. Power gradient descent. *arXiv preprint arXiv:1906.04787*, 2019. 16

498 Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
 499 Compressed optimisation for non-convex problems. In *International Conference on Machine
 500 Learning*, pp. 560–569. PMLR, 2018. 20

501 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
 502 commonsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
 503 volume 34, pp. 7432–7439, 2020. 4

504 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 505 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 506 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020. 1

507 Xi Chen, Kaituo Feng, Changsheng Li, Xunhao Lai, Xiangyu Yue, Ye Yuan, and Guoren Wang.
 508 Fira: Can we achieve full-rank training of llms under low-rank constraint? *arXiv preprint
 509 arXiv:2410.01623*, 2024a. 15, 17

510 Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
 511 Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
 512 *Advances in Neural Information Processing Systems*, 36, 2024b. 1, 15, 20

513 Jeremy Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
 514 neural networks typically occurs at the edge of stability. In *International Conference on Learning
 515 Representations*, 2020. 15

516 Jeremy M Cohen, Behrooz Ghorbani, Shankar Krishnan, Naman Agarwal, Sourabh Medapati, Michal
 517 Badura, Daniel Suo, David Cardoze, Zachary Nado, George E Dahl, et al. Adaptive gradient
 518 methods at the edge of stability. *arXiv preprint arXiv:2207.14484*, 2022. 15

519 Jeremy M Cohen, Alex Damian, Ameet Talwalkar, Zico Kolter, and Jason D Lee. Understanding
 520 optimization in deep learning with central flows. In *International Conference on Learning
 521 Representations*, 2025. 16

522 Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof
 523 of adam and adagrad. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856. URL
 524 <https://openreview.net/forum?id=ZPQhzTSWA7>. 8, 22, 23

525 Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
 526 quantization. *International Conference on Learning Representations*, 2022. 15

527 John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
 528 stochastic optimization. *Journal of machine learning research*, 12(7), 2011. 8

529 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
 530 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
 531 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
 532 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
 533 harness, 07 2024. URL <https://zenodo.org/records/12608602>. 4

540 Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. [http://Skylion007.github.io/
541 OpenWebTextCorpus](http://Skylion007.github.io/OpenWebTextCorpus), 2019. 3, 16

542

543 Alex Hägele, Elie Bakouch, Atli Kosson, Leandro Von Werra, Martin Jaggi, et al. Scaling laws
544 and compute-optimal training beyond fixed training durations. *Advances in Neural Information
545 Processing Systems*, 37:76232–76264, 2024. 3, 5, 17

546 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
547 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
548 pp. 770–778, 2016. 6, 17

549

550 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
551 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
552 Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022. 3, 17

553 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
554 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *International Conference
555 on Learning Representations*, 1(2):3, 2022. 15

556

557 Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
558 Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
559 with scalable training strategies. *arXiv preprint arXiv:2404.06395*, 2024. 3, 17

560 Tianjin Huang, Ziquan Zhu, Gaojie Jin, Lu Liu, Zhangyang Wang, and Shiwei Liu. Spam: Spike-
561 aware adam with momentum reset for stable llm training. *International Conference on Learning
562 Representations*, 2025. 7, 9

563

564 Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Tabor, Kyunghyun
565 Cho, and Krzysztof Geras. The break-even point on optimization trajectories of deep neural
566 networks. In *International Conference on Learning Representations*, 2020. 15

567 Andrej Karpathy. NanoGPT. <https://github.com/karpathy/nanoGPT>, 2022. 3, 16, 17

568

569 Jordan Keller et al. Muon optimizer. <https://kellerjordan.github.io/posts/muon>,
570 2024. 1, 2, 5, 15

571 N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch training
572 for deep learning: Generalization gap and sharp minima. In *International Conference on Learning
573 Representations*, 2017. 6

574

575 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv preprint
576 arXiv:1412.6980*, 2014. 1, 15

577

578 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images, 2009.
579 URL <https://www.cs.toronto.edu/~kriz/cifar.html>. 6, 17

580

581 Frederik Kunstner, Alan Milligan, Robin Yadav, Mark Schmidt, and Alberto Bietti. Heavy-tailed
582 class imbalance and why Adam outperforms gradient descent on language models. *Advances in
583 Neural Information Processing Systems*, 37:30106–30148, 2024. 1

584

585 Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states. *Advances in
586 Neural Information Processing Systems*, 36:15136–15171, 2023. 15

587

588 Kaizhao Liang, Lizhang Chen, Bo Liu, and Qiang Liu. Cautious optimizers: Improving training with
589 one line of code. *arXiv preprint arXiv:2411.16085*, 2024. 1, 15

590

591 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
592 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint
593 arXiv:2412.19437*, 2024a. 1, 5

594

595 Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
596 second-order optimizer for language model pre-training. *International Conference on Learning
597 Representations*, 2024b. 1, 15, 16, 17

594 Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
 595 Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. *arXiv preprint arXiv:2502.16982*,
 596 2025a. 1, 2, 5, 6, 15, 18

597 Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
 598 Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
 599 approach. *arXiv preprint arXiv:1907.11692*, 2019. 3, 16

600 Yizhou Liu, Ziming Liu, and Jeff Gore. Focus: First order concentrated updating scheme. *arXiv
 601 preprint arXiv:2501.12243*, 2025b. 1, 15

603 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint
 604 arXiv:1711.05101*, 2017. 1

606 Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
 607 large-batch training. *arXiv preprint arXiv:1812.06162*, 2018. 6

608 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 609 electricity? a new dataset for open book question answering. *arXiv preprint arXiv:1809.02789*,
 610 2018. 4

612 Takashi Mori, Liu Ziyin, Kangqiao Liu, and Masahito Ueda. Power-law escape rate of sgd. In
 613 *International Conference on Machine Learning*, pp. 15959–15975. PMLR, 2022. 16

614 Matteo Pagliardini, Pierre Ablin, and David Grangier. The ademamix optimizer: Better, faster, older.
 615 *International Conference on Learning Representations*, 2025. 1, 15

617 Chuandong Qin, Zilin Cai, and Yuhang Guo. A stochastic recursive gradient algorithm integrating
 618 momentum and the powerball function with adaptive step sizes. *International Journal of Machine
 619 Learning and Cybernetics*, pp. 1–21, 2025. 16

620 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 621 Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
 622 transformer. *The Journal of Machine Learning Research*, 21(1):5485–5551, 2020. 3, 16

624 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
 625 adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.
 626 4

627 Minhak Song, Kwangjun Ahn, and Chulhee Yun. Does sgd really happen in tiny subspaces?
 628 *International Conference on Learning Representations*, 2025. 16

630 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
 631 transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024. 16

632 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 633 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 634 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023. 2, 3, 16, 17

636 Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson,
 637 and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. *arXiv preprint
 638 arXiv:2409.11321*, 2024. 15

639 Jinbo Wang, Mingze Wang, Zhanpeng Zhou, Junchi Yan, Lei Wu, et al. The sharpness disparity principle
 640 in transformers for accelerating language model pre-training. *arXiv preprint arXiv:2502.19002*,
 641 2025. 1, 2, 5, 15, 17

642 Mingze Wang, Jinbo Wang, Haotian He, Zilin Wang, Guanhua Huang, Feiyu Xiong, Zhiyu Li,
 643 Lei Wu, et al. Improving generalization and convergence by enhancing implicit regularization.
 644 *Advances in Neural Information Processing Systems*, 2024. 1, 2, 15, 16

646 Kaiyue Wen, Zhiyuan Li, Jason Wang, David Hall, Percy Liang, and Tengyu Ma. Understanding
 647 warmup-stable-decay learning rates: A river valley loss landscape perspective. *International
 648 Conference on Learning Representations*, 2025. 2, 7, 16

648 Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D
 649 Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies for large-scale
 650 transformer training instabilities. *International Conference on Learning Representations*, 2024. 3
 651

652 Jingfeng Wu, Wenqing Hu, Haoyi Xiong, Jun Huan, Vladimir Braverman, and Zhanxing Zhu. On the
 653 noisy gradient descent that generalizes as SGD. In *International Conference on Machine Learning*,
 654 pp. 10367–10376. PMLR, 2020. 16

655 Lei Wu, Chao Ma, and Weinan E. How SGD selects the global minima in over-parameterized
 656 learning: A dynamical stability perspective. *Advances in Neural Information Processing Systems*,
 657 31:8279–8288, 2018. 15

658 Lei Wu, Mingze Wang, and Weijie J Su. The alignment property of SGD noise and how it helps
 659 select flat minima: A stability analysis. *Advances in Neural Information Processing Systems*, 35:
 660 4680–4693, 2022. 16

661 Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adam: Adaptive nesterov
 662 momentum algorithm for faster optimizing deep models. *IEEE Transactions on Pattern Analysis
 663 and Machine Intelligence*, 2024. 1, 15

664

665 Vikas Yadav, Steven Bethard, and Mihai Surdeanu. Quick and (not so) dirty: Unsupervised selection
 666 of justification sentences for multi-hop question answering. *arXiv preprint arXiv:1911.07176*,
 667 2019. 4

668

669 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 670 Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. *arXiv preprint
 671 arXiv:2407.10671*, 2024a. 2, 3, 5, 16

672 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 673 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. *arXiv preprint
 674 arXiv:2412.15115*, 2024b. 5

675 Zhuang Yang. The powerball method with biased stochastic gradient estimation for large-scale
 676 learning systems. *IEEE Transactions on Computational Social Systems*, 11(6):7435–7447, 2024.
 677 16

678

679 Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the power
 680 of variance reduction for training large models. *arXiv preprint arXiv:2411.10438*, 2024. 15

681 Ye Yuan, Mu Li, Jun Liu, and Claire Tomlin. On the powerball method: Variants of descent methods
 682 for accelerated optimization. *IEEE Control Systems Letters*, 3(3):601–606, 2019. 16

683

684 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 685 really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019. 4

686

687 Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
 688 In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 689 12104–12113, 2022. 3, 17

690

691 Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhiqian Luo. Why transform-
 692 ers need Adam: A hessian perspective. *Advances in Neural Information Processing Systems*, 37:
 693 131786–131823, 2024. 1

694

695 Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo, and
 696 Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. *International Conference on
 697 Learning Representations*, 2025. 1, 15

698

699 Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong Tian.
 Galore: Memory-efficient llm training by gradient low-rank projection. *International Conference
 700 on Machine Learning*, 2024. 3, 15, 16, 17

701

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstruct-
 ing what makes a good optimizer for language models. *International Conference on Learning
 702 Representations*, 2025. 3, 16

702 Beitong Zhou, Jun Liu, Weigao Sun, Ruijuan Chen, Claire J Tomlin, and Ye Yuan. pbsgd: Powered
703 stochastic gradient descent methods for accelerated non-convex optimization. In *IJCAI*, pp. 3258–
704 3266, 2020. [16](#)

705
706 Hanqing Zhu, Zhenyu Zhang, Wenyang Cong, Xi Liu, Sem Park, Vikas Chandra, Bo Long, David Z
707 Pan, Zhangyang Wang, and Jinwon Lee. Apollo: Sgd-like memory, adamw-level performance.
708 *Conference on Machine Learning and Systems*, 2025. [15](#), [17](#)

709 Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The anisotropic noise in stochastic
710 gradient descent: Its behavior of escaping from sharp minima and regularization effects. In
711 *International Conference on Machine Learning*, pp. 7654–7663. PMLR, 2019. [16](#)

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

A Related Works**15**

763

B Experimental Details**16**

764

B.1	Experimental details for Section 3.2 and 3.3	17
B.2	Experimental details for Section 3.4	17
B.3	Experimental details for Section 3.5	18
B.4	Additional experiments with multiple random seeds	18
B.5	Additional experiments with a finer-grained learning rate sweep	18
B.6	Interaction between GradPower and gradient clipping	19

774

C Proofs in Section 2 and 4.1**20**

775

C.1	Support for the motivation in Section 2	20
C.2	Proof of Propositions 4.2 and 4.3	20

779

D Proofs in Section 4.2**22**

780

D.1	Key Lemmas	22
D.2	Proof of Theorem 4.8	24
D.3	Proof of Theorem 4.11	25

785

E Statement**26**

786

E.1	LLM usage statement	26
E.2	Ethics statement	26
E.3	Reproducibility statement	26

792

A RELATED WORKS

794

Optimizer design in LLM pre-training. In LLM pre-training, Adam (Kingma & Ba, 2014) has become the de facto optimizer. Recent efforts to improve its efficiency focus on two aspects: accelerating convergence and reducing memory usage. Techniques for *accelerating convergence* include introducing curvature information (Liu et al., 2024b; Wang et al., 2024; 2025), mixing momentum (Xie et al., 2024; Pagliardini et al., 2025), variance reduction (Yuan et al., 2024), cautious update (Liang et al., 2024), and applying matrix-based preconditioners (Keller et al., 2024; Vyas et al., 2024). *Memory-efficient* techniques include reducing the moments usage in Adam (Zhang et al., 2025), sign-based updates (Chen et al., 2024b; Liu et al., 2025b), low precision optimizer states (Dettmers et al., 2022; Li et al., 2023), low-rank approximation (Hu et al., 2022; Zhao et al., 2024; Chen et al., 2024a), and structured learning rates (Zhu et al., 2025). Among these, Muon (Keller et al., 2024) stands out for improving both convergence and memory usage and showing strong scalability (Liu et al., 2025a). **In contrast**, our method, GradPower, improves training efficiency without altering the base optimizer’s internal updates. Notably, GradPower is orthogonal and complementary to the methods above: it can serve as a lightweight plug-in that further enhances existing optimizers.

808

809

The fast-slow dynamics in neural network training. Recent works (Wu et al., 2018; Jastrzebski et al., 2020; Cohen et al., 2020; 2022) show that neural network training typically occurs at the so-called Edge of Stability (EoS) stage. This regime is characterized by the optimizer exhibiting

810 oscillatory behavior along sharp directions without divergence, while steadily progressing along *flat*
 811 *directions*, leading to loss reduction. Several studies (Wen et al., 2025; Song et al., 2025; Cohen et al.,
 812 2025; Wang et al., 2024) have emphasized the importance of the slow dynamics along flat directions
 813 (referred to as stable direction in Wang et al. (2024), river directions by Wen et al. (2025) and bulk
 814 directions by Song et al. (2025)), in *reducing total loss*. Moreover, Wen et al. (2025) further showed
 815 that this picture is crucial for understanding the behavior of LLM pre-training. In addition, Fig.3
 816 in (Wen et al., 2025) and Fig.8 (Song et al., 2025) suggest that, the optimizer’s trajectory within flat
 817 directions tends to *remain aligned* for a period of time.

818 **Powerball method.** After completing this work, we found that the Powerball method (Yuan et al.,
 819 2019) shares the similar methodology as our approach. However, prior studies on Powerball method
 820 have been restricted to traditional optimizers—such as GD (Yuan et al., 2019), SGD (Zhou et al.,
 821 2020; Yang, 2024), and SARAH (Qin et al., 2025)—and evaluated primarily on relatively small-
 822 scale benchmarks including CIFAR-10, CIFAR-100 and MNIST. Although Baiesi (2019) combined
 823 Powerball with Adam, the experiments were limited to small and illustrative problems. In contrast,
 824 our work focuses on modern adaptive optimizers such as Adam and Muon in the context of language
 825 model pre-training, a modern and practically important setting. Moreover, previous Powerball studies
 826 examined only the narrow regime with $p < 1$, our work studies both $p < 1$ and $p > 1$ regimes, and
 827 further develop a comprehensive theoretical study of the relationship between optimal p and batch
 828 size.

829 **Explain the terminology of flat directions.** In classical optimization theory, flat directions refer
 830 to Hessian eigenvectors associated with small eigenvalues. However, our usage of flat direction is
 831 approximate and follows a line of prior work showing that the **anisotropy of gradient noise** closely
 832 reflects the Hessian’s curvature structure. Works (Zhu et al., 2019; Wu et al., 2020; Mori et al., 2022;
 833 Wu et al., 2022) establish that **directions with small Hessian curvature exhibit low gradient-noise**
 834 **variance, while directions with large Hessian curvature exhibit high gradient-noise variance**.
 835 Consequently, flat directions approximately correspond to low-noise directions, and sharp directions
 836 to high-noise directions.

837 B EXPERIMENTAL DETAILS

839 **Models.** We utilize two popular classes of LLM models for our pre-training experiments:

- 841 • **LLaMA.** LLaMA (Touvron et al., 2023) is a popular Dense decoder-only Transformer architec-
 842 ture, incorporating Rotary Positional Encoding (RoPE) (Su et al., 2024), Swish-Gated Linear
 843 Unit (SwiGLU), and Root mean square layer normalization (RMSNorm). We pre-train LLaMA
 844 models of sizes ranging from 66M to 2B parameters. Additional model configurations are
 845 detailed in Table 3.
- 846 • **Qwen2MoE.** Qwen2MoE (Yang et al., 2024a) is a popular open-source MoE decoder-only
 847 Transformer architecture. Comparing with Llama, Qwen2MoE utilizes a mix of sliding window
 848 and full attention, as well as mixture-of-experts architecture. We disable sliding window attention
 849 due to relatively small context length in our experiment. We activate 4 experts per token for all
 850 models. For detailed model configurations, refer to Table 4.

851 **Datasets.** Models are pre-trained on the following datasets:

- 853 • **Colossal Clean Crawled Corpus (C4)** (Raffel et al., 2020). It is a large-scale public language
 854 dataset, widely used for LLM pre-training such as T5 (Raffel et al., 2020), and prior pre-training
 855 studies (Zhao et al., 2024; 2025). We use the T5 tokenizer, with the vocabulary size 32100.
- 856 • **OpenWebText** (Gokaslan & Cohen, 2019). It is an opensource recreation of the WebText
 857 corpus, is extensively utilized for LLM pre-training such as RoBERTa (Liu et al., 2019) and
 858 nanoGPT (Karpathy, 2022). Following Karpathy (2022); Liu et al. (2024b), we use the GPT-2
 859 tokenizer, with the vocabulary size 50304.

861 **LR schedulers.** We evaluate two popular LR scheduling strategies:

- 863 • `cos` (cosine scheduler) (Karpathy, 2022; Touvron et al., 2023): a linear warm-up to peak
 1_{lr_max}, followed by cosine decay to a terminal LR 1_{lr_min}.

864 • `wsd` (warmup-stable-decay scheduler) (Zhai et al., 2022; Hu et al., 2024; Hägele et al., 2024): a
 865 linear warm-up LR to peak `lr_max`, followed by a stable phase where LR remains at `lr_max`
 866 (up to 80% of the total training steps), and then a linear decay to `lr_min`.
 867

868 All experiments are conducted on 8 A100 80G GPUs.
 869

870 Table 3: Dense model configurations and optimally-tuned peak learning rates for Adam.
 871

Acronym	Size	d_{model}	d_{FF}	n_{head}	depth	<code>lr_max</code>
LLaMA (66M)	66M	512	2048	8	8	1e-3 (on C4)
LLaMA (0.2B)	200M	1024	4096	16	8	1e-3 (on C4)
LLaMA (0.25B)	237M	1024	4096	16	8	8e-4 (on OpenWebText)
LLaMA (0.4B)	400M	1280	5120	16	12	6e-4 (on C4)
LLaMA (1B)	1004M	1600	6400	25	22	3e-4 (on C4)
LLaMA (2B)	1994M	2048	8096	32	28	2e-4 (on C4)

880 Table 4: MoE model configurations and optimally-tuned peak learning rates for Adam on C4.
 881

Acronym	Size	Activated Size	d_{model}	d_{FF}	n_{head}	depth	n_{experts}	<code>lr_max</code>
Qwen2MoE (0.5B)	502M	247M	768	3072	12	12	16	6e-4
Qwen2MoE (1B)	1040M	297M	768	3072	12	15	32	3e-4
Qwen2MoE (2B)	1945M	536M	1024	4096	16	16	32	2e-4

882 For the vision experiment, we used the standard 34 layer ResNet model (He et al., 2016) on the
 883 CIFAR-10 dataset (Krizhevsky & Hinton, 2009). We use Adam optimizer and the commonly used
 884 `cos` learning rate scheduler.
 885

886 B.1 EXPERIMENTAL DETAILS FOR SECTION 3.2 AND 3.3

887 **Adam baselines.** We use the standard Adam optimizer (with decoupled weight decay) as the
 888 baseline in most experiments (expect Section 3.4). The baseline is configured with hyperparameters
 889 $\beta_1 = 0.9$, $\beta_2 = 0.95$, weight decay $\lambda = 0.1$, and gradient clipping threshold of 1.0, following
 890 protocols used in LLaMA pre-training (Touvron et al., 2023). Following Hoffmann et al. (2022), the
 891 final learning rate `lr_min` is set to 1/10 of the peak learning rate `lr_max`. Additionally,
 892

- 893 • **C4 pre-training.** We follow the setup of Zhao et al. (2024); Chen et al. (2024a); Zhu et al.
 894 (2025), using a sequence length of 256 and batch size of 512. Following the Chinchilla scaling
 895 law (Hoffmann et al., 2022), the total number of training tokens is set to be approximately 20
 896 times the number of model parameters. The training includes 1,000 warm-up steps. The grid
 897 search for `lr_max` is performed over $\{1e-4, 2e-4, 3e-4, 6e-4, 1e-3, 1.5e-3\}$. Optimal
 898 learning rates for each model are detailed in Tables 3 and 4.
- 899 • **OpenWebText pre-training.** The (max) sequence length is set to 1024, and the batch size is set
 900 to 480, following nanoGPT (Karpathy, 2022) and Liu et al. (2024b). The total training duration
 901 is 50,000 or 100,000 steps, including 1,000 warm-up steps. The grid search for `lr_max` is
 902 performed over $\{2e-4, 4e-4, 6e-4, 8e-4, 1e-3\}$. Optimal learning rates for each model
 903 are detailed in Table 3.

904 **AdamPower experiments.** We adopt $p = 1.2$ as the default in all experiments in Section 3.2
 905 and 3.3. All other optimizer hyperparameters are kept identical to those used for the Adam baselines.
 906 Importantly, the power $p = 1.2$ proves to be **highly robust**.
 907

908 B.2 EXPERIMENTAL DETAILS FOR SECTION 3.4

909 **Adam with Blockwise LR.** Following Wang et al. (2025), we adopt the same peak `lr_max` tuned
 910 for Adam as the `lr_max` of Adam with Blockwise LR. For the blockwise lr ratios, we adopt the
 911 recommended $r(\text{Embed}) = 10$, $r(\text{QK}) = 8$, $r(\text{FFN}) = 6$, $r(\text{VO}) = 4$ in Wang et al. (2025).
 912

918 **AdamPower with Blockwise LR.** We still adopt $p = 1.2$ in the AdamPower with Blockwise LR. All
 919 other optimizer hyperparameters are kept identical to those used for the Adam with Blockwise LR.
 920

921 **Muon baseline.** We use the same techniques for Muon as [Liu et al. \(2025a\)](#): (1) adding weight decay
 922 (2) adjusting the per-parameter update scale. These techniques allow our Muon experiment to use the
 923 identical learning rate as the Adam baseline without the extra effort of hyper-parameter tuning.

924 **MuonPower.** We still adopt $p = 1.2$ in the MuonPower. All other optimizer hyperparameters are
 925 kept identical to those used for the Muon baseline.

927 B.3 EXPERIMENTAL DETAILS FOR SECTION 3.5

929 We conduct experiments using LLaMA (0.2B) on C4 dataset with `wsd` scheduler. Unlike the previous
 930 experimental settings, here we vary the batch size from the standard 512 up to 8192.

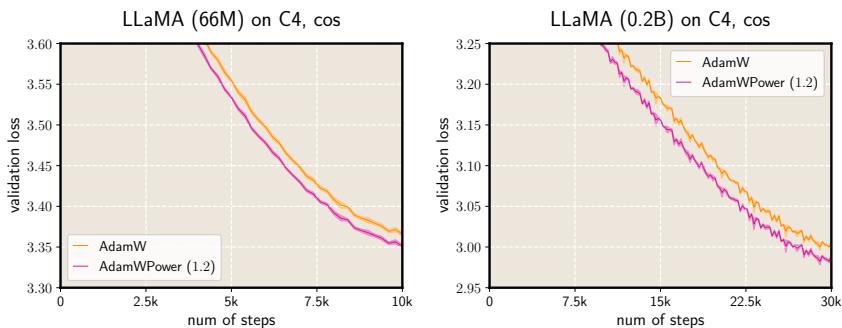
931 For batch size 512, the tuned `max_lr` is $1e-3$ (Table 3). For larger batch sizes (2048, 4096,
 932 8192), we tune the `max_lr` over $\{6e-4, 1e-3, 2e-3, 4e-3, 8e-3\}$ for Adam. We find
 933 that $1e-3$ consistently yields the best results across all batch sizes.

934 For each batch size, we evaluate AdamPower with multiple values of p , and record their validation
 935 loss when the optimal validation loss reaches approximately 3.5.

937 We also conduct vision experiments using ResNet-34 on CIFAR dataset with `cos` scheduler. We tune
 938 the `max_lr` over $\{6.25e-5, 1.25e-4, 2.5e-4, 5e-4, 1e-3\}$. For batch size 32, 128,
 939 and 512, the tuned `max_lr` is $1.25e-4, 2.5e-4, 5e-4$, respectively.

941 B.4 ADDITIONAL EXPERIMENTS WITH MULTIPLE RANDOM SEEDS

943 In this subsection, we reproduce a subset of experiments in Figure 3 with multiple random seeds to
 944 assess statistical robustness. Specifically, we rerun the experiments six times with different random
 945 seeds and report both mean and standard deviation as shown in Figure 8. The shaded regions in the
 946 plots denote the standard deviation, showing the statistical significance of each method. These results
 947 confirm that the observed performance differences are consistent and cannot be explained by random
 948 seed variability.



950 Figure 8: AdamPower ($p = 1.2$) consistently outperforms Adam in LLaMA pre-training tasks. The
 951 shaded regions in the plots denote the standard deviation.
 952

963 B.5 ADDITIONAL EXPERIMENTS WITH A FINER-GRAINED LEARNING RATE SWEEP

965 In this subsection, we reproduce a subset of experiments in Figure 1 with a finer-grained learning
 966 rate sweep. Specifically, we use $0.94 \times$ the baseline maximum learning rate in "AdamW (0.94lr)" to
 967 isolate the contribution of GradPower from these two potential effects:
 968

- 969 **global damping.** As $|g| < 1$, $|g|^p (p > 1)$ induces additional damping of the gradient.
 970
- 971 **heavier tails.** $|g|^p (p > 1)$ suppresses gradients of small magnitude more aggressively than
 large ones.

The 0.94 factor approximates the expected update magnitude ratio between Adam and AdamPower with $p = 1.2$ under zero-mean Gaussian gradients. As shown in Figure 9 and Table 5, AdamPower with $p = 1.2$ continuously surpasses Adam within this finer-grained learning rate sweep.

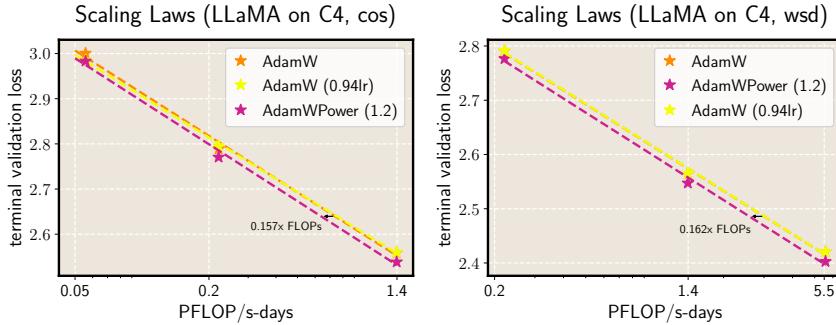


Figure 9: Scaling-law comparison of AdamPower and Adam on the C4 dataset for dense LLaMA models within a finer-grained learning rate sweep.

setting model size	LLaMA on C4, cos			LLaMA on C4, wsd		
	0.2B	0.4B	1B	0.4B	1B	2B
AdamW	3.0006	2.7889	2.5593	2.7911	2.5645	2.4206
AdamW (0.94lr)	2.9859	2.7957	2.5601	2.7917	2.5649	2.4207
AdamWPower (1.2)	2.9832	2.7705	2.5385	2.7767	2.5472	2.4028

Table 5: Scaling-law comparison of AdamPower and Adam on the C4 dataset for dense LLaMA models within a finer-grained learning rate sweep.

B.6 INTERACTION BETWEEN GRADPOWER AND GRADIENT CLIPPING

In this subsection, we examine the ordering of gradient clipping and the GradPower transformation. Gradient clipping is a standard component in LLM pre-training pipelines, and in our default setup, gradient clipping is applied first, followed by the GradPower transformation. Notably, both orderings yield bounded gradients, ensuring that the two procedures remain comparable from a stability standpoint.

To directly evaluate the interaction, we conduct a controlled experiment based on the setting of Figure 8 on LLaMA-0.2B (dense). In a controlled manner, we switch the order of gradient clipping and the GradPower transformation. We refer to this variant as AdamWPower-II, in contrast to the standard AdamWPower implementation. As shown in Figure 10, the training curves are nearly indistinguishable across the full training trajectory, indicating that the ordering does not materially affect performance.

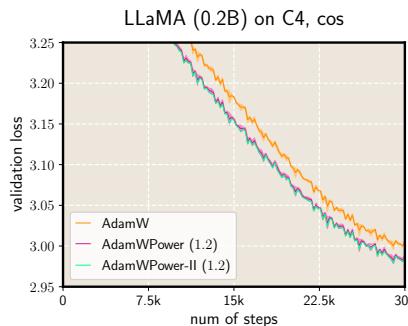


Figure 10: AdamPower ($p = 1.2$) outperforms Adam in LLaMA pre-training tasks. The shaded regions in the plots denote the standard deviation.

1026 **C PROOFS IN SECTION 2 AND 4.1**
 1027

1028 **C.1 SUPPORT FOR THE MOTIVATION IN SECTION 2**
 1029

1030 In this section, we provide a detailed justification for the claim in Section 2 that the **linear trans-**
 1031 **formation** ($\varphi(z) = cz$ with $c \in \mathbb{R}$) **fails** to alter the updates of popular optimizers used in LLM
 1032 pretraining. Without loss of generality, we analyze the one-dimensional case.

1033 • **Adaptive optimizers**, including Adagrad, RMSprop, and Adam. These optimizers adjust the
 1034 learning rate based on a moving average of gradients. In practice, the term ϵ (used to ensure
 1035 numerical stability) is typically set to an extremely small value (e.g., $1e-8$, $1e-12$). Consider
 1036 the update rule of Adam in the limit $\epsilon \rightarrow 0$:

$$\theta_{t+1} = (1 - \lambda\eta_t)\theta_t - \eta_t \frac{\text{EMA}_{\beta_1}(\{g_s\}_1^t)}{\sqrt{\text{EMA}_{\beta_2}(\{g_s^2\}_1^t)}}.$$

1038 Applying a linear transformation $\varphi(z) = cz$ with $c > 0$ does not change the ratio:
 1039

$$\frac{\text{EMA}_{\beta_1}(\{g_s\}_1^t)}{\sqrt{\text{EMA}_{\beta_2}(\{g_s^2\}_1^t)}} = \frac{\text{EMA}_{\beta_1}(\{\varphi(g_s)\}_1^t)}{\sqrt{\text{EMA}_{\beta_2}(\{\varphi(g_s)^2\}_1^t)}}.$$

1040 Hence, the dynamics remains unchanged. This argument applies similarly to Adagrad and
 1041 RMSprop.

1042 • **Sign-based methods**, including Sign momentum (Bernstein et al., 2018) and Lion (Chen et al.,
 1043 2024b). These methods operate on the sign of the moving average gradients. For instance,
 1044 Signed Momentum (with decoupled weight decay) follows:

$$\theta_{t+1} = (1 - \lambda\eta_t)\theta_t - \eta_t \text{sign}(\text{EMA}_{\beta}(\{g_s\}_1^t)).$$

1045 Again, applying a linear transformation $\varphi(z) = cz$ with $c > 0$ does not change the sign of the
 1046 averaged gradient, since:

$$\text{sign}(\text{EMA}_{\beta}(\{g_s\}_1^t)) = \text{sign}(\text{EMA}_{\beta}(\{\varphi(g_s)\}_1^t)).$$

1047 Hence, the dynamics remains unchanged. This argument applies similarly to Lion.

1048 In contrast, our proposed (nonlinear) GradPower transformation ($\varphi_p(z) = z^p := |z|^p \text{sign}(z)$ with
 1049 $p > 0$) *does* alter the updates of both adaptive and sign-based optimizers, when the gradients g_s are
 1050 not all of the same sign.

1051 **C.2 PROOF OF PROPOSITIONS 4.2 AND 4.3**
 1052

$$\begin{aligned} \mathbb{E}[\varphi_p(g)] &= \frac{(\mu + \sigma)^{p+1} - |\mu - \sigma|^{p+1}}{2\sigma(p+1)}, \\ \mathbb{E}[\varphi_p^2(g)] &= \frac{(\mu + \sigma)^{2p+1} - |\mu - \sigma|^{2p+1} \text{sign}(\mu - \sigma)}{2\sigma(2p+1)}. \end{aligned}$$

1053 The low-noise regime. ($0 \ll \sigma \ll \mu \ll 1$)

1054 It is straightforward that

$$\begin{aligned} \mathbb{E}[\varphi_p(g)] &= \frac{\mu^{p+1}}{2\sigma(p+1)} \left(\left(1 + \frac{\sigma}{\mu}\right)^{p+1} - \left(1 - \frac{\sigma}{\mu}\right)^{p+1} \right) \\ &= \frac{\mu^{p+1}}{2\sigma(p+1)} \left(\frac{2(p+1)\sigma}{\mu} + o\left(\frac{\sigma}{\mu}\right) \right) = \mu^p (1 + o(1)); \end{aligned}$$

$$\mathbb{E}[\varphi_p^2(g)] = \frac{\mu^{2p+1}}{2\sigma(2p+1)} \left(\left(1 + \frac{\sigma}{\mu}\right)^{2p+1} - \left(1 - \frac{\sigma}{\mu}\right)^{2p+1} \right)$$

$$= \frac{\mu^{2p+1}}{2\sigma(2p+1)} \left(\frac{2(2p+1)\sigma}{\mu} + o\left(\frac{\sigma}{\mu}\right) \right) = \mu^{2p} (1 + o(1)).$$

Therefore, we have

$$u = \frac{\mathbb{E}[\varphi_p(g)]}{\sqrt{\mathbb{E}[\varphi_p^2(g)] + \epsilon}} = \frac{\mu^p (1 + o(1))}{\mu^p (1 + o(1)) + \epsilon} = \frac{1 + o(1)}{1 + \frac{\epsilon}{\mu^p}}.$$

The high-noise regime. ($0 \ll \mu \ll \sigma \ll 1$)

It is straightforward that

$$\begin{aligned} \mathbb{E}[\varphi_p(g)] &= \frac{\sigma^{p+1}}{2\sigma(p+1)} \left(\left(1 + \frac{\mu}{\sigma}\right)^{p+1} - \left(1 - \frac{\mu}{\sigma}\right)^{p+1} \right) \\ &= \frac{\sigma^p}{2(p+1)} \left(\frac{2(p+1)\mu}{\sigma} + o\left(\frac{\mu}{\sigma}\right) \right) = \sigma^{p-1} \mu (1 + o(1)); \end{aligned}$$

$$\begin{aligned} \mathbb{E}[\varphi_p^2(g)] &= \frac{\sigma^{2p+1}}{2\sigma(2p+1)} \left(\left(1 + \frac{\mu}{\sigma}\right)^{2p+1} + \left(1 - \frac{\mu}{\sigma}\right)^{2p+1} \right) \\ &= \frac{\sigma^{2p+1}}{2\sigma(2p+1)} \left(2 + o\left(\frac{\mu}{\sigma}\right) \right) = \frac{\sigma^{2p}}{2p+1} (1 + o(1)). \end{aligned}$$

Therefore, we have

$$u = \frac{\mathbb{E}[\varphi_p(g)]}{\sqrt{\mathbb{E}[\varphi_p^2(g)] + \epsilon}} = \frac{\sigma^{p-1} \mu (1 + o(1))}{\frac{\sigma^p}{\sqrt{2p+1}} (1 + o(1)) + \epsilon} = \frac{\mu}{\sigma} \frac{1 + o(1)}{\frac{1+o(1)}{\sqrt{2p+1}} + \frac{\epsilon}{\sigma^p}} = \frac{\mu}{\sigma} \frac{1 + o(1)}{\frac{1}{\sqrt{2p+1}} + \frac{\epsilon}{\sigma^p}}.$$

To study the monotonicity of $\tilde{u} = \frac{\mu}{\sigma} \frac{1}{\frac{1}{\sqrt{2p+1}} + \frac{\epsilon}{\sigma^p}}$, we only need to study the monotonicity of

$$\psi(p) = \frac{1}{\sqrt{2p+1}} + \frac{\epsilon}{\sigma^p}.$$

It is clear that

$$\psi'(p) = \frac{\epsilon \log(1/\sigma)}{\sigma^p} - \frac{1}{(2p+1)^{3/2}}.$$

Due to $\sigma \log(1/\sigma) < 1$, there exists a p^* , such that $\psi'(p) < 0$ for all $0 < p < p^*$; $\psi'(p) > 0$ for all $p > p^*$. Here, p^* is the solution of the equation:

$$\frac{\sigma^p}{(2p+1)^{3/2}} = \epsilon \log(1/\sigma)$$

Noticing the relationship between ψ and \tilde{u} , we have: \tilde{u} increases when $0 < p < p^*$; \tilde{u} decreases when $p > p^*$.

Now we estimate p^* . Due to $1 + x \leq e^x$, we have $(2p+1)^{3/2} \leq (e^{2p})^{3/2} = (e^3)^p$. Then we obtain the two-sides estimate $1 \leq (2p+1)^{3/2} \leq (e^3)^p$, implying

$$\left(\frac{\sigma}{e^3}\right)^p \leq \frac{\sigma^p}{(2p+1)^{3/2}} \leq \sigma^p.$$

Therefore, we have the estimate:

$$\frac{\log(\epsilon \log(1/\sigma))}{\log(\sigma/e^3)} \leq p^* \leq \frac{\log(\epsilon \log(1/\sigma))}{\log \sigma}$$

Noticing $\sigma \ll 1$, we obtain:

$$p^* = \Theta\left(\frac{\log(\epsilon \log(1/\sigma))}{\log \sigma}\right).$$

1134 **D PROOFS IN SECTION 4.2**
11351136 Recall that the update rule of AdagradPower (with power p) follows:
1137

1138
$$\theta_{t+1} = \theta_t - \eta \mathbf{u}_t,$$

1139
$$\mathbf{u}_t = \frac{\varphi_p(\mathbf{g}_t)}{\sqrt{\mathbf{v}_t + \epsilon}},$$

1140
1141
1142
$$\mathbf{v}_t = \sum_{s=1}^t \varphi_p^2(\mathbf{g}_s).$$

1143

1144 In general, our proof is inspired by the main techniques to prove Adagrad used in Défossez et al.
1145 (2022). The key difference is to establish a similar estimate of the loss descent for Adamgradpower.
1146 This generalize is not trivial, need to use the structure of the high-noise fact.
11471148 In the proof, we need an auxiliary sequence, defined as:
1149

1150
$$\tilde{\mathbf{v}}_t = \mathbf{v}_{t-1} + \mathbb{E}_t[\varphi_p^2(\mathbf{g}_t)].$$

1151

1152 **D.1 KEY LEMMAS**1153 We need two important lemmas in the proof of each Theorem. The first develops the lower bound of
1154 the descent value for the update.
11551156 **Lemma D.1** (Descent estimate for the update, high-noise regime). *Under Assumption 4.4, for all*
1157 *$t \in \mathbb{N}$, and $i \in [d]$ and any $\sigma > 0$, we have:*

1158
$$\mathbb{E}_t[\nabla_i \mathcal{L}(\boldsymbol{\theta}) u_{t,i}] = \mathbb{E}_t\left[\frac{\nabla_i \mathcal{L}(\boldsymbol{\theta}) \varphi_p(g_{t,i})}{\sqrt{v_{t,i} + \epsilon}}\right] \geq \frac{\mathbb{E}_t[\nabla_i \mathcal{L}(\boldsymbol{\theta}) \varphi_p(g_{t,i})]}{\sqrt{\tilde{v}_{t,i} + \epsilon}} - \frac{\sigma}{2} \frac{|\nabla_i \mathcal{L}(\boldsymbol{\theta})|^2}{\sqrt{\tilde{v}_{t,i} + \epsilon}} - \frac{2R^p}{\sigma} \mathbb{E}\left[\frac{\varphi_p^2(g_{t,i})}{v_{t,i} + \epsilon}\right].$$

1159

1160 *Proof of Lemma D.1.*1161 Let $t \in \mathbb{N}$ and $i \in [p]$. For simplicity, we use the following notations in the proof:
1162

1163
$$G = \nabla_i \mathcal{L}(\boldsymbol{\theta}), g = g_{t,i}, v = v_{t,i}, \tilde{v} = \tilde{v}_{t,i}.$$

1164

1165 First, we decouple the descent quantity as:
1166

1167
$$\mathbb{E}_t\left[\frac{G \varphi_p(g)}{\sqrt{v + \epsilon}}\right] = \mathbb{E}_t\left[\frac{G \varphi_p(g)}{\sqrt{\tilde{v} + \epsilon}}\right] + \mathbb{E}_t\left[\underbrace{G \varphi_p(g) \left(\frac{1}{\sqrt{v + \epsilon}} - \frac{1}{\sqrt{\tilde{v} + \epsilon}}\right)}_I\right] \quad (8)$$

1168

1169 Then we bound the term I in the RHS of Equation (8):
1170

1171
$$\begin{aligned} |I| &= |G \varphi_p(g)| \frac{|\tilde{v} - v|}{\sqrt{v + \epsilon} \sqrt{\tilde{v} + \epsilon} (\sqrt{v + \epsilon} + \sqrt{\tilde{v} + \epsilon})} \\ &= |G \varphi_p(g)| \frac{|\mathbb{E}_t[\varphi_p^2(g)] - \varphi_p^2(g)|}{\sqrt{v + \epsilon} \sqrt{\tilde{v} + \epsilon} (\sqrt{v + \epsilon} + \sqrt{\tilde{v} + \epsilon})} \\ &\leq |G \varphi_p(g)| \frac{\mathbb{E}_t[\varphi_p^2(g)] + \varphi_p^2(g)}{\sqrt{v + \epsilon} \sqrt{\tilde{v} + \epsilon} (\sqrt{v + \epsilon} + \sqrt{\tilde{v} + \epsilon})} \\ &\leq \underbrace{|G \varphi_p(g)| \frac{\mathbb{E}_t[\varphi_p^2(g)]}{\sqrt{v + \epsilon} \sqrt{\tilde{v} + \epsilon} (\tilde{v} + \epsilon)}}_{I_1} + \underbrace{|G \varphi_p(g)| \frac{\varphi_p^2(g)}{(v + \epsilon) \sqrt{\tilde{v} + \epsilon}}}_{I_2}. \end{aligned}$$

1172

1173 Consequently, we will estimate I_1 and I_2 by the inequality
1174

1175
$$|xy| \leq \frac{\lambda x^2}{2} + \frac{y^2}{2\lambda}.$$

1176

1188 For I_1 , by taking

$$1190 |x| = \frac{|G|}{\sqrt{\tilde{v} + \epsilon}}, |y| = \frac{|\varphi_p(g)| \mathbb{E}_t[\varphi_p^2(g)]}{\sqrt{v + \epsilon} \sqrt{\tilde{v} + \epsilon}}, \lambda = \frac{\sigma \sqrt{\tilde{v} + \epsilon}}{2},$$

1192 we obtain

$$1194 I_1 \leq \frac{\sigma}{4} \frac{|G|^2}{\sqrt{\tilde{v} + \epsilon}} + \frac{1}{\sigma} \frac{(\varphi_p^2(g) (\mathbb{E}_t[\varphi_p^2(g)]))^2}{(v + \epsilon) (\tilde{v} + \epsilon)^{3/2}},$$

$$1196 \mathbb{E}_t[I_1] \leq \frac{\sigma}{4} \frac{|G|^2}{\sqrt{\tilde{v} + \epsilon}} + \frac{1}{\sigma} \frac{(\mathbb{E}_t[\varphi_p^2(g)])^2}{(\tilde{v} + \epsilon)^{3/2}} \mathbb{E}_t \left[\frac{\varphi_p^2(g)}{v + \epsilon} \right].$$

1199 Given that $\sqrt{\mathbb{E}_t[\varphi_p^2(g)]} \leq \sqrt{\tilde{v} + \epsilon}$ and $\sqrt{\mathbb{E}_t[\varphi_p^2(g)]} \leq R^p$, we can simplify the above estimate as:

$$1202 \mathbb{E}_t[I_1] \leq \frac{\sigma}{4} \frac{|G|^2}{\sqrt{\tilde{v} + \epsilon}} + \frac{R^p}{\sigma} \mathbb{E}_t \left[\frac{\varphi_p^2(g)}{v + \epsilon} \right].$$

1204 For I_2 , by taking

$$1206 |x| = \frac{|G|}{\sqrt{\tilde{v} + \epsilon}}, |y| = \frac{|\varphi_p(g)| \varphi_p^2(g)}{v + \epsilon}, \lambda = \frac{\sigma \varphi_p^2(g)}{2 \mathbb{E}_t[\varphi_p^2(g)]},$$

1209 we obtain

$$1210 I_2 \leq \frac{\sigma}{4} \frac{\varphi_p^2(g)}{\mathbb{E}_t[\varphi_p^2(g)]} \frac{|G|^2}{\sqrt{\tilde{v} + \epsilon}} + \frac{1}{\sigma} \frac{\mathbb{E}_t[\varphi_p^2(g)]}{\sqrt{\tilde{v} + \epsilon}} \frac{\varphi_p^4(g)}{(v + \epsilon)^2}$$

1213 Given that $\varphi_p^2(g) \leq v + \epsilon$, we can simplify the above estimate as:

$$1215 I_2 \leq \frac{\sigma}{4} \frac{\varphi_p^2(g)}{\mathbb{E}_t[\varphi_p^2(g)]} \frac{|G|^2}{\sqrt{\tilde{v} + \epsilon}} + \frac{1}{\sigma} \frac{\mathbb{E}_t[\varphi_p^2(g)]}{\sqrt{\tilde{v} + \epsilon}} \frac{\varphi_p^2(g)}{v + \epsilon}.$$

1218 Using $\sqrt{\mathbb{E}_t[\varphi_p^2(g)]} \leq \sqrt{\tilde{v} + \epsilon}$, $\sqrt{\mathbb{E}_t[\varphi_p^2(g)]} \leq R^p$, and taking the conditional expectation, we obtain:

$$1220 \mathbb{E}_t[I_2] \leq \frac{\sigma}{4} \frac{|G|^2}{\sqrt{\tilde{v} + \epsilon}} + \frac{R^p}{\sigma} \mathbb{E} \left[\frac{\varphi_p^2(g)}{v + \epsilon} \right].$$

1223 Consequently, combining the two estimates of I_1 and I_2 , we obtain:

$$1225 \mathbb{E}_t[|I|] \leq \mathbb{E}_t[I_1] + \mathbb{E}_t[I_2] \leq \frac{\sigma}{2} \frac{|G|^2}{\sqrt{\tilde{v} + \epsilon}} + \frac{2R^p}{\sigma} \mathbb{E} \left[\frac{\varphi_p^2(g)}{v + \epsilon} \right].$$

1228 Putting the above estimate into Equation (8), we obtain the lower bound:

$$1229 \mathbb{E}_t \left[\frac{G \varphi_p(g)}{\sqrt{v + \epsilon}} \right] = \mathbb{E}_t \left[\frac{G \varphi_p(g)}{\sqrt{\tilde{v} + \epsilon}} \right] + \mathbb{E}_t[I] \geq \mathbb{E}_t \left[\frac{G \varphi_p(g)}{\sqrt{\tilde{v} + \epsilon}} \right] - \mathbb{E}_t[|I|]$$

$$1232 \geq \frac{\mathbb{E}_t[G \varphi_p(g)]}{\sqrt{\tilde{v} + \epsilon}} - \frac{\sigma}{2} \frac{|G|}{\sqrt{\tilde{v} + \epsilon}} - \frac{2R^p}{\sigma} \mathbb{E}_t \left[\frac{\varphi_p^2(g)}{v + \epsilon} \right].$$

1235 \square

1236 The second lemma estimate the sum of the updates in adaptive methods.

1238 **Lemma D.2** (Lemma 5.2 in Défossez et al. (2022)). *Let $\{a_t\}_{t \in \mathbb{N}}$ be a non-negative sequence, $\epsilon > 0$. Then for all $T \in \mathbb{N}$, we have:*

$$1240 \sum_{t=1}^T \frac{a_t}{\epsilon + \sum_{s=1}^t a_s} \leq \log \left(1 + \frac{1}{\epsilon} \sum_{t=1}^T a_t \right).$$

1242 D.2 PROOF OF THEOREM 4.8
12431244 With the help of the above Lemma D.1 and D.2, we can prove Theorem 4.8.
12451246 *Proof of Theorem 4.8.*1247 Due to the H -smoothness, we have the quadratic upper bound:
1248

1249
$$\mathcal{L}(\boldsymbol{\theta}_{t+1}) \leq \mathcal{L}(\boldsymbol{\theta}_t) - \eta \langle \nabla \mathcal{L}(\boldsymbol{\theta}_t), \mathbf{u}_t \rangle + \frac{\eta^2 H}{2} \|\mathbf{u}_t\|_2^2.$$

1250

1251 Taking the expectation at t , we have:
1252

1253
$$\begin{aligned} \mathbb{E}_t [\mathcal{L}(\boldsymbol{\theta}_{t+1})] &\leq \mathcal{L}(\boldsymbol{\theta}_t) - \eta \mathbb{E}_t [\langle \nabla \mathcal{L}(\boldsymbol{\theta}_t), \mathbf{u}_t \rangle] + \frac{\eta^2 H}{2} \mathbb{E}_t [\|\mathbf{u}_t\|_2^2] \\ 1254 &= \mathcal{L}(\boldsymbol{\theta}_t) - \eta \sum_{i=1}^d \mathbb{E}_t [\nabla_i \mathcal{L}(\boldsymbol{\theta}_t) u_{t,i}] + \sum_{i=1}^d \frac{\eta^2 H}{2} \mathbb{E}_t [u_{t,i}^2]. \end{aligned}$$

1255

1256 Combine Lemma D.1 with $\sigma = c$ and Assumption 4.6, we get
1257

1258
$$\begin{aligned} \mathbb{E}_t [\nabla_i \mathcal{L}(\boldsymbol{\theta}) u_{t,i}] &= \mathbb{E}_t \left[\frac{\nabla_i \mathcal{L}(\boldsymbol{\theta}) \varphi_p(g_{t,i})}{\sqrt{v_{t,i} + \epsilon}} \right] \geq c \frac{|\nabla_i \mathcal{L}(\boldsymbol{\theta})|^{p+1}}{\sqrt{\tilde{v}_{t,i} + \epsilon}} - \frac{c}{2} \frac{|\nabla_i \mathcal{L}(\boldsymbol{\theta})|^2}{\sqrt{\tilde{v}_{t,i} + \epsilon}} - \frac{2R^p}{c} \mathbb{E} \left[\frac{\varphi_p^2(g_{t,i})}{v_{t,i} + \epsilon} \right] \\ 1263 &\geq \frac{c}{2} \frac{|\nabla_i \mathcal{L}(\boldsymbol{\theta})|^{p+1}}{\sqrt{\tilde{v}_{t,i} + \epsilon}} - \frac{2R^p}{c} \mathbb{E} \left[\frac{\varphi_p^2(g_{t,i})}{v_{t,i} + \epsilon} \right]. \end{aligned}$$

1264

1265 Where last inequality comes from $R < 1$. Using it for each dimension, we have:
1266

1267
$$\begin{aligned} \mathbb{E}_t [\mathcal{L}(\boldsymbol{\theta}_{t+1})] &\leq \mathcal{L}(\boldsymbol{\theta}_t) - \frac{\eta c}{2} \frac{|\nabla_i \mathcal{L}(\boldsymbol{\theta}_t)|^{p+1}}{\sqrt{\tilde{v}_{t,i} + \epsilon}} + \frac{2\eta R^p}{c} \mathbb{E} \left[\frac{\varphi_p^2(g_{t,i})}{v_{t,i} + \epsilon} \right] + \sum_{i=1}^d \frac{\eta^2 H}{2} \mathbb{E}_t [u_{t,i}^2] \\ 1271 &= \mathcal{L}(\boldsymbol{\theta}_t) - \sum_{i=1}^d \frac{\eta c}{2} \frac{|\nabla_i \mathcal{L}(\boldsymbol{\theta}_t)|^{p+1}}{\sqrt{\tilde{v}_{t,i} + \epsilon}} + \sum_{i=1}^d \left(\frac{2\eta R^p}{c} + \frac{\eta^2 H}{2} \right) \mathbb{E}_t \left[\frac{\varphi_p^2(g_{t,i})}{v_{t,i} + \epsilon} \right]. \end{aligned}$$

1272

1273 Noticing $\sqrt{\tilde{v}_{t,i} + \epsilon} \leq R^p \sqrt{t}$, we further have:
1274

1275
$$\mathbb{E}_t [\mathcal{L}(\boldsymbol{\theta}_{t+1})] \leq \mathcal{L}(\boldsymbol{\theta}_t) - \frac{\eta c}{2} \frac{\|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|_{p+1}^{p+1}}{R^p \sqrt{t}} + \sum_{i=1}^d \left(\frac{2\eta R^p}{c} + \frac{\eta^2 H}{2} \right) \mathbb{E}_t \left[\frac{\varphi_p^2(g_{t,i})}{v_{t,i} + \epsilon} \right].$$

1276

1277 Summing the previous inequality for all $0 \leq t \leq T-1$, taking the complete expectation, and using
1278 $\sqrt{t} \leq \sqrt{T}$, we have:
1279

1280
$$\mathbb{E} [\mathcal{L}(\boldsymbol{\theta}_t)] \leq \mathcal{L}(\boldsymbol{\theta}_0) - \frac{\eta c \sum_{t=1}^T \|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|_{p+1}^{p+1}}{2\eta R^p \sqrt{T}} + \sum_{i=1}^d \left(\frac{2R^p}{c} + \frac{\eta^2 H}{2} \right) \mathbb{E} \left[\sum_{t=1}^T \frac{\varphi_p^2(g_{t,i})}{v_{t,i} + \epsilon} \right].$$

1281

1282 Then for each dimension, using Lemma D.2 for the sequence $\{(g_{t,i}^p)^2\}_{1 \leq t \leq T}$, we obtain:
1283

1284
$$\begin{aligned} \mathbb{E} [\mathcal{L}(\boldsymbol{\theta}_t)] &\leq \mathcal{L}(\boldsymbol{\theta}_0) - \frac{\eta c \sum_{t=1}^T \mathbb{E} \|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|_{p+1}^{p+1}}{2R^p \sqrt{T}} + \left(\frac{2\eta R^p}{c} + \frac{\eta^2 H}{2} \right) d \mathbb{E} \left[\log \left(1 + \frac{1}{\epsilon} \sum_{t=1}^T \varphi_p^2(g_{t,i}) \right) \right] \\ 1291 &\leq \mathcal{L}(\boldsymbol{\theta}_0) - \frac{\eta c \sum_{t=1}^T \mathbb{E} \|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|_{p+1}^{p+1}}{2R^p \sqrt{T}} + \left(\frac{2\eta R^p}{c} + \frac{\eta^2 H}{2} \right) d \log \left(1 + \frac{R^{2p}}{\epsilon} T \right). \end{aligned}$$

1292

1296 This implies:
1297

$$\begin{aligned} \mathbb{E} \min_{1 \leq t \leq T} \|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|_{p+1}^{p+1} &\leq \frac{1}{T} \sum_{t=1}^T \mathbb{E} \|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|_{p+1}^{p+1} \\ &\leq \frac{2R^p}{c\sqrt{T}} \left(\frac{\mathcal{L}(\boldsymbol{\theta}_0) - \mathcal{L}^*}{\eta} + \left(\frac{2R^p}{c} + \frac{\eta H}{2} \right) d \log \left(1 + \frac{R^{2p}}{\epsilon} T \right) \right) = \mathcal{O} \left(\frac{\log T}{\sqrt{T}} \right). \end{aligned}$$

1303 Hence

$$\min_{1 \leq t \leq T} \|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|_2^2 \leq \left(\min_{1 \leq t \leq T} \|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|_{p+1}^{p+1} \right)^{2/(p+1)} = \mathcal{O} \left(\frac{\log^{2/(p+1)} T}{T^{1/(p+1)}} \right).$$

1308 \square

1310 D.3 PROOF OF THEOREM 4.11

1311 With the help of the above Lemma D.1 and D.2, we can prove Theorem 4.11.

1312 *Proof of Theorem 4.11.*

1313 Due to the H -smoothness, we have the quadratic upper bound:

$$\mathcal{L}(\boldsymbol{\theta}_{t+1}) \leq \mathcal{L}(\boldsymbol{\theta}_t) - \eta \langle \nabla \mathcal{L}(\boldsymbol{\theta}_t), \mathbf{u}_t \rangle + \frac{\eta^2 H}{2} \|\mathbf{u}_t\|_2^2.$$

1319 Taking the expectation at t , we have:

$$\begin{aligned} \mathbb{E}_t [\mathcal{L}(\boldsymbol{\theta}_{t+1})] &\leq \mathcal{L}(\boldsymbol{\theta}_t) - \eta \mathbb{E}_t [\langle \nabla \mathcal{L}(\boldsymbol{\theta}_t), \mathbf{u}_t \rangle] + \frac{\eta^2 H}{2} \mathbb{E}_t [\|\mathbf{u}_t\|_2^2] \\ &= \mathcal{L}(\boldsymbol{\theta}_t) - \eta \sum_{i=1}^d \mathbb{E}_t [\nabla_i \mathcal{L}(\boldsymbol{\theta}_t) u_{t,i}] + \sum_{i=1}^d \frac{\eta^2 H}{2} \mathbb{E}_t [u_{t,i}^2]. \end{aligned}$$

1326 Combine Lemma D.1 with Assumption 4.9, we get

$$\mathbb{E}_t [\nabla_i \mathcal{L}(\boldsymbol{\theta}) u_{t,i}] = \mathbb{E}_t \left[\frac{\nabla_i \mathcal{L}(\boldsymbol{\theta}) \varphi_p(g_{t,i})}{\sqrt{v_{t,i} + \epsilon}} \right] \geq \frac{\sigma}{2} \frac{|\nabla_i \mathcal{L}(\boldsymbol{\theta})|^2}{\sqrt{\tilde{v}_{t,i} + \epsilon}} - \frac{2R^p}{\sigma} \mathbb{E} \left[\frac{\varphi_p^2(g_{t,i})}{v_{t,i} + \epsilon} \right].$$

1332 Using it for each dimension, we have:

$$\begin{aligned} \mathbb{E}_t [\mathcal{L}(\boldsymbol{\theta}_{t+1})] &\leq \mathcal{L}(\boldsymbol{\theta}_t) - \frac{\eta \sigma}{2} \frac{|\nabla_i \mathcal{L}(\boldsymbol{\theta}_t)|^2}{\sqrt{\tilde{v}_{t,i} + \epsilon}} + \frac{2\eta R^p}{\sigma} \mathbb{E} \left[\frac{\varphi_p^2(g_{t,i})}{v_{t,i} + \epsilon} \right] + \sum_{i=1}^d \frac{\eta^2 H}{2} \mathbb{E}_t [u_{t,i}^2] \\ &= \mathcal{L}(\boldsymbol{\theta}_t) - \sum_{i=1}^d \frac{\eta \sigma}{2} \frac{|\nabla_i \mathcal{L}(\boldsymbol{\theta}_t)|^2}{\sqrt{\tilde{v}_{t,i} + \epsilon}} + \sum_{i=1}^d \left(\frac{2\eta R^p}{\sigma} + \frac{\eta^2 H}{2} \right) \mathbb{E}_t \left[\frac{\varphi_p^2(g_{t,i})}{v_{t,i} + \epsilon} \right]. \end{aligned}$$

1340 Noticing $\sqrt{\tilde{v}_{t,i} + \epsilon} \leq R^p \sqrt{t}$, we further have:

$$\mathbb{E}_t [\mathcal{L}(\boldsymbol{\theta}_{t+1})] \leq \mathcal{L}(\boldsymbol{\theta}_t) - \frac{\eta \sigma}{2} \frac{\|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|_2^2}{R^p \sqrt{t}} + \sum_{i=1}^d \left(\frac{2\eta R^p}{\sigma} + \frac{\eta^2 H}{2} \right) \mathbb{E}_t \left[\frac{\varphi_p^2(g_{t,i})}{v_{t,i} + \epsilon} \right].$$

1345 Summing the previous inequality for all $0 \leq t \leq T-1$, taking the complete expectation, and using $\sqrt{t} \leq \sqrt{T}$, we have:

$$\mathbb{E} [\mathcal{L}(\boldsymbol{\theta}_t)] \leq \mathcal{L}(\boldsymbol{\theta}_0) - \frac{\eta \sigma \sum_{t=1}^T \|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|_2^2}{2\eta R^p \sqrt{T}} + \sum_{i=1}^d \left(\frac{2R^p}{\sigma} + \frac{\eta^2 H}{2} \right) \mathbb{E} \left[\sum_{t=1}^T \frac{\varphi_p^2(g_{t,i})}{v_{t,i} + \epsilon} \right].$$

1350 Then for each dimension, using Lemma D.2 for the sequence $\{(g_{t,i}^p)^2\}_{1 \leq t \leq T}$, we obtain:
 1351

$$\begin{aligned} 1352 \quad & \mathbb{E}[\mathcal{L}(\boldsymbol{\theta}_t)] \\ 1353 \quad & \leq \mathcal{L}(\boldsymbol{\theta}_0) - \frac{\eta\sigma \sum_{t=1}^T \mathbb{E}\|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|_2^2}{2R^p\sqrt{T}} + \left(\frac{2\eta R^p}{\sigma} + \frac{\eta^2 H}{2}\right) d \mathbb{E} \left[\log \left(1 + \frac{1}{\epsilon} \sum_{t=1}^T \varphi_p^2(g_{t,i}) \right) \right] \\ 1354 \quad & \leq \mathcal{L}(\boldsymbol{\theta}_0) - \frac{\eta\sigma \sum_{t=1}^T \mathbb{E}\|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|_2^2}{2R^p\sqrt{T}} + \left(\frac{2\eta R^p}{\sigma} + \frac{\eta^2 H}{2}\right) d \log \left(1 + \frac{R^{2p}}{\epsilon} T \right). \\ 1355 \quad & \\ 1356 \quad & \\ 1357 \quad & \\ 1358 \quad & \end{aligned}$$

1359 This implies:
 1360

$$\begin{aligned} 1361 \quad & \mathbb{E} \min_{1 \leq t \leq T} \|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|_2^2 \leq \frac{1}{T} \sum_{t=1}^T \mathbb{E} \|\nabla \mathcal{L}(\boldsymbol{\theta}_t)\|_2^2 \\ 1362 \quad & \leq \frac{2R^p}{\sigma\sqrt{T}} \left(\frac{\mathcal{L}(\boldsymbol{\theta}_0) - \mathcal{L}^*}{\eta} + \left(\frac{2R^p}{\sigma} + \frac{\eta H}{2} \right) d \log \left(1 + \frac{R^{2p}}{\epsilon} T \right) \right) \\ 1363 \quad & \leq \frac{R^{p-1}}{\sigma} \frac{2R}{\sqrt{T}} \left(\frac{\mathcal{L}(\boldsymbol{\theta}_0) - \mathcal{L}^*}{\eta} + \left(2R + \frac{\eta H}{2} \right) d \log \left(1 + \frac{R^2}{\epsilon} T \right) \right) \\ 1364 \quad & \\ 1365 \quad & \\ 1366 \quad & \\ 1367 \quad & \\ 1368 \quad & \\ 1369 \quad & = \frac{R^{p-1}}{\sigma} \left(\text{R.H.S. of (5)} \right). \\ 1370 \quad & \end{aligned}$$

1371 The last inequality comes from Assumption 4.9 and $R < 1$.
 1372 \square
 1373

1374 E STATEMENT

1375 E.1 LLM USAGE STATEMENT

1376 In this paper, we used LLM to help with writing. The model checked and fixed grammar errors in our
 1377 text. We also used it to make sentences flow better. The LLM helped improve readability without
 1378 changing our ideas. We did not use LLM for any other writing tasks. Our use was only for grammar
 1379 and style improvements.
 1380

1381 E.2 ETHICS STATEMENT

1382 We confirm that this research has been conducted in accordance with the ICLR Code of Ethics . All
 1383 experiments were performed responsibly, with careful consideration of potential impacts, limitations,
 1384 and broader societal implications. No part of this work involved practices that violate ethical standards
 1385 regarding research integrity, fairness, transparency, or the responsible use of computational resources.
 1386

1387 E.3 REPRODUCIBILITY STATEMENT

1388 We believe that all of the experimental results are reproducible in our work. The paper specify
 1389 comprehensive training and test details (e.g., hyperparameters, how they were chosen, type of
 1390 optimizer, etc.) necessary to understand the results in Section 3 and Appendix B. Besides, we provide
 1391 open access to the code in the supplemental material and all data datasets are open-sourced.
 1392

1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403