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ABSTRACT

We propose GradPower, a lightweight gradient-transformation technique for
accelerating language model pre-training. Given a gradient vector g = (gi)i,
GradPower first applies the elementwise sign-power transformation:

φp(g) = (sign(gi)|gi|p)i
for a fixed p > 0, and then feeds the transformed gradient into a base optimizer.
Notably, GradPower requires only a single-line code change and no modifications
to the base optimizer’s internal logic, including the hyperparameters. When applied
to Adam (termed AdamPower), GradPower consistently achieves lower terminal
loss across diverse architectures (LLaMA, Qwen2MoE), parameter scales (66M to
2B), datasets (C4, OpenWebText), and learning-rate schedules (cosine, warmup-
stable-decay). The most pronounced gains are observed when training modern
mixture-of-experts models with warmup-stable-decay schedules. GradPower also
integrates seamlessly with other state-of-the-art optimizers, such as Muon, yielding
further improvements. Finally, we provide theoretical analyses that reveal the
underlying mechanism of GradPower and highlights the influence of gradient
noise.

1 INTRODUCTION

Large language models (LLMs) have revolutionized modern artificial intelligence (Brown et al., 2020;
Achiam et al., 2023; Liu et al., 2024a). However, pre-training LLMs is computationally intensive due
to the massive scale of model size and training data. Improving the pre-training efficiency has thus
become a primary objective in the continued scaling of LLMs. Among the factors affecting efficiency,
the choice of optimizer is critical. In practice, the Adam optimizer (Kingma & Ba, 2014; Loshchilov
& Hutter, 2017) has emerged as the de facto choice in most LLM pre-training pipelines, owing to its
adaptive learning rate features (Zhang et al., 2024; Kunstner et al., 2024).

To further accelerate Adam, several approaches have been proposed to refine or simplify its moment
estimation (Xie et al., 2024; Pagliardini et al., 2025; Chen et al., 2024b; Liu et al., 2025b; Zhang
et al., 2025). Other strategies modify the update rule directly, such as direction correction (Wang
et al., 2024; Liang et al., 2024), incorporating curvature information (Liu et al., 2024b; Wang et al.,
2025), or applying matrix-based preconditioning (Keller et al., 2024; Liu et al., 2025a). While these
methods often deliver tangible gains, they typically require substantial modifications to the existing
training pipeline and careful extra hyperparameter tuning, which hinders their practical adoption.

In contrast to these intrusive modifications, we instead propose a lightweight, plug-in approach by
revisiting the core component of optimization: the gradient itself. We apply a simple elementwise
transformation to the gradient vector – enhancing its informativeness while leaving the base optimizer
entirely unchanged. This design preserves compatibility with existing training pipelines and avoids
additional tuning burden. Specifically, our contributions are as follows:

• Our approach. We propose GradPower, a simple but effective approach for boosting the
convergence of general gradient-based optimizers. Specifically, given a raw gradient g =
(gi)i ∈ Rd and a fixed p > 0, we define the powered gradient as

φp(g) := |g|p sign(g) = (|g1|p sign(g1), . . . , |gd|p sign(gd))⊤ . (1)

GradPower applies this powered gradient to the base optimizer, preserving its original structure.
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• Empirical performance. We first evaluate the effectiveness of GradPower by integrating it
into Adam, termed AdamPower. We test its performance across a broad LLM pre-training
landscape: dense models (LLaMA (Touvron et al., 2023)) and mixture-of-experts models
(Qwen2MoE (Yang et al., 2024a)), ranging from 66M to 2B parameters, using the C4 and
OpenWebText corpora, and under both cosine-decay (cos) and warmup-stable-decay (wsd)
learning-rate schedules. Across all settings, AdamPower consistently achieves lower terminal
loss and exhibits more favorable scaling laws compared to vanilla Adam (see Figure 1), demon-
strating its potential for improved scalability to larger models. Notably, the performance gains
are most significant for modern MoE architectures and wsd schedules.
Furthermore, we show that GradPower can be also seamlessly integrated with other state-of-the-
art optimizers, such as Muon (Keller et al., 2024; Liu et al., 2025a) and Blockwise LR (Wang
et al., 2025), yielding additional performance improvements.

• Theorectical analysis. (1) Recent analyses suggest that steady progress along flat “river-like”
directions is crucial for reducing loss in LLM pre-training (Wang et al., 2024; Wen et al.,
2025). We show that AdamPower amplifies these directions, thereby accelerating optimization.
(2) Moreover, for general smooth non-convex objectives, we prove that augmenting adaptive
optimizers (e.g., AdaGrad) with GradPower strictly accelerates their convergence in both low-
and high-noise regimes, supporting the intuitions developed in Section 2.
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Figure 1: Scaling-law comparison of AdamPower and Adam on the C4 dataset for dense LLaMA models and
mixture-of-experts Qwen2MoE models.

Notations. For {as}∞s=1, its β-exponential moving average at time t is denoted as EMAβ({as}t1) :=
(1 − β)∑t

s=1 β
t−sas. For g ∈ R and p ∈ R+, we denote gp := |g|p sign(g); for a vector g, the

notation gp denotes element-wise application of this transformation. For simplicity, we use a.s. to
denote “almost surely”, and use w.r.t. to denote “with respect to”. We use standard big-O notations
O(·),Ω(·),Θ(·) to hide problem-independent constants, and use o(·) to denote the infinitesimal. Let
∥·∥q denote the ℓq norm for vectors for a q > 0. We denote [n] = {1, · · · , n} for an integer n ∈ N+.

2 THE GRADPOWER APPROACH

Let gt ∈ Rd denote the stochastic gradient at step t. A gradient-based optimizer can be expressed as
θt+1 = θt − ηtQ(g1, · · · , gt), where ηt is learning rate and Q denotes update rule.

A unified view of preconditioning. In practice, raw gradients may not be sufficiently informative
or stable, and thus, it is common to transform the gradients before applying the update rule. This
leads to the general form of preconditioned optimizers:

θt+1 = θt − ηtQ (φ(g1), · · · , φ(gt)) (2)

where φ denotes a transformation (or preconditioning) applied to each gradient.
To avoid computational overhead, we restrict attention to elementwise transformations. For a
gradient vector g = (gi)i ∈ Rd, we consider φ(g) := (φ(g1), . . . , φ(gd))

⊤ ∈ Rd, where φ :
R → R is a scalar nonlinearity applied coordinate-wise. The function φ is designed to enhance
the informativeness of the raw gradient. The simplest choice is a linear transformation φ(z) = cz
with c ∈ R. However, as shown in Appendix C, such linear preconditioners may exhibit limited
effectiveness when used in modern optimizers for LLM pre-training. In this work, we explore
nonlinear preconditioning as an alternative.

The GradPower family. Empirically, we find that a simple power transformation already yields non-
trivial improvements in LLM pre-training. Specifically, we define the sign-power transformation

2
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φp : R→ R with exponent p > 0 as
φp(z) = |z|psign(z).

The powered gradient is shown in Equation (1). Incorporating this transformation into Adam
leads to a new optimizer we call AdamPower, detailed in Algorithm 1. Remarkably, AdamPower
introduces only one additional line of code compared to standard Adam.

In the following sections, we first present empirical evidence demonstrating the effectiveness of
AdamPower, followed by a theoretical analysis that sheds light on its underlying mechanisms.

Algorithm 1: AdamPower (with decoupled weight decay)

Given learning rates {ηt}Tt=1; hyperparameters β1, β2, ϵ, λ; power p ∈ R+;
Initialize θ0 ∈ Rd, first momentum vector mt ← 0, second momentum vector vt ← 0;
for t = 1, · · · , T do

compute the mini-batch gradient gt;
GradPower: compute powered gradient gt ← |gt|p sign(gt) using Eq. (1);
mt ← β1mt−1 + (1− β1)gt; m̂t ←mt/(1− βt

1);
vt ← β2vt−1 + (1− β2)g2

t ; v̂t ← vt/(1− βt
2);

θt ← θt−1 − ηt
(
m̂t/

(√
v̂t + ϵ

)
+ λθt−1

)
;

Output: optimized parameters θT .

3 EMPIRICAL EVALUATION

3.1 EXPERIMENTAL SETUP

We evaluate AdamPower for the task of LLM pre-training across a range of model architectures,
parameter scales, datasets, and learning rate (LR) schedulers. The main experimental configurations
are summarized below, while additional implementation details are provided in Appendix B.

• Models. We consider two widely used LLM architectures: LLaMA (dense) models (Touvron
et al., 2023) and Qwen2MoE (MoE) models (Yang et al., 2024a). We experiment with model
sizes ranging from 66M to 2B parameters.

• Datasets. We evaluate our methods on the Colossal Clean Crawled Corpus (C4) dataset (Raffel
et al., 2020)1 and OpenWebText dataset (Gokaslan & Cohen, 2019)2. For pre-training on C4,
we follow the setup of Wortsman et al. (2024); Zhao et al. (2025), using a batch size of 512.
The total number of training tokens is set to be approximately 20 times the number of model
parameters, in accordance with the Chinchilla scaling law (Hoffmann et al., 2022).

• LR schedulers. We evaluate two popular LR scheduling strategies: (i) cos: a linear warm-up to
peak lr_max, followed by cosine decay to a terminal LR lr_min. (ii) wsd (warmup-stable-
decay scheduler) (Zhai et al., 2022; Hu et al., 2024; Hägele et al., 2024): a linear warm-up LR to
peak lr_max, followed by a stable phase where LR remains at lr_max (up to 80% of the total
training steps), and then a linear decay to lr_min. It should be noticed that wsd introduces a
non-traditional loss curve: slowly decrease during the stable phase and suddenly drop during the
final decay phase.

We further evaluate our method on vision tasks, and report detailed implementation settings in
Appendix B.
Adam Baselines. We use the standard Adam optimizer (with decoupled weight decay) as the
baseline in most experiments (expect Section 3.4). The baseline is configured with hyperparameters
β1 = 0.9, β2 = 0.95, weight decay λ = 0.1, and gradient clipping threshold of 1.0, following
protocols used in LLaMA pre-training (Touvron et al., 2023). For each experiment, we first tune
lr_max over {1e-4, 2e-4, 3e-4, 6e-4, 1e-3, 1.5e-3} to be optimal for Adam, and
the baselines are trained using these optimal lr_max’s. Details can be found in Appendix B.

1A large-scale public language datasets, widely used for LLM pre-training such as T5 (Raffel et al., 2020),
and prior pre-training studies (Zhao et al., 2024; 2025).

2An opensource recreation of the WebText corpus, commonly used in pre-training models such as
RoBERTa (Liu et al., 2019), GPT-2, and NanoGPT (Karpathy, 2022).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 7.5k 15k 22.5k 30k

num of steps

2.95

3.00

3.05

3.10

3.15

3.20

3.25

va
lid

at
io

n
lo

ss

LLaMA (0.2B) on C4

p = 1.0 (baseline)

p = 0.6

p = 0.8

p = 1.4

p = 1.2

Figure 2: Pre-training LLaMA (0.2B)
on C4 using AdamPower with different
power p’s. The optimal power is 1.2.

The tuning of power p and its transferability. We only tune
the power p in a single small-scale experiment: pre-training
LLaMA (0.2B) on C4. As shown in Figure 2, the tuned power is
1.2. Interestingly, this aligns with the optimal power observed in
the high-noise regime of our illustrative toy example (Figure 7).
Then, we adopt p = 1.2 as the default in most experiments
(expect Section 3.5). Importantly, the power proves to be highly
robust: AdamPower with p = 1.2 consistently outperforms
Adam and exhibits better scaling laws, across model types,
model sizes, datasets, and LR schedulers.

3.2 RESULTS ON DENSE MODELS

Main findings. Figure 3 compares the performance of AdamPower (with p = 1.2) to that of vanilla
Adam across a range of settings, including LLaMA models of size 66M, 0.2B, 0.4B, 1B and 2B;
both cos and wsd LR schedulers; and the C4 and OpenWebText datasets. Across all experiments,
AdamPower consistently achieves a lower terminal loss than well-tuned Adam baseline. To further
assess its scalability, we visualize the scaling laws of AdamPower versus Adam in Figure 1 (left and
middle). We observe that the performance gain of AdamPower over Adam remains consistent across
a wide range of model scales, highlighting the potential scalability of AdamPower.
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Figure 3: AdamPower (p = 1.2) consistently outperforms Adam in LLaMA pre-training tasks across
a range of model sizes, datasets and LR schedulers.

Evaluation on downstream tasks. Additionally, We also evaluate zero-shot performances of our
method on common benchmarks including ARC (Yadav et al., 2019), PIQA (Bisk et al., 2020),
HellaSwag (Zellers et al., 2019), OBQA (Mihaylov et al., 2018), WinoGrande (Sakaguchi et al.,
2021), using the lm-evaluation-harness codebase (Gao et al., 2024). The results are reported in in
Table 1. The model pre-trained with AdamPower outperforms that trained with AdamW on five out of
six tasks, as well as on the overall average score, demonstrating improved downstream performance
under the same number of pre-training steps.
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METHOD ARC-E ARC-C PIQA HELLASWAG OBQA WINOGRANDE AVG.
AdamW 60.02 26.45 73.56 44.65 24.80 56.83 47.72
AdamPower (1.2) 60.35 26.28 73.61 44.93 25.00 59.43 48.26

Table 1: The evaluation results of LLaMA (2B) models pre-trained using the C4 dataset. The best
scores in each column are bolded.

3.3 RESULTS ON MOE MODELS

Mixture-of-experts (MoE) architectures have emerged as a key design choice in modern LLMs, as
exemplified by Qwen-2.5 (Yang et al., 2024b) and DeepSeek-V3 (Liu et al., 2024a). Compared to
dense models, MoE models often exhibit greater training instability. To assess whether the benefits of
AdamPower extend to MoE models, we conduct experiments on Qwen2MoE (Yang et al., 2024a).
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Figure 4: AdamPower (p = 1.2) consistently outperforms Adam in QwenMoE pre-training tasks on
C4, across varying model sizes. The learning rate schedule is wsd.
Main findings. Figure 4 compares the performance of AdamPower (p = 1.2) and standard Adam for
pre-training QwenMoE models of sizes 0.5B, 1B, and 2B on the C4 dataset, using the wsd scheduler.
Across all settings, AdamPower consistently achieves a lower terminal loss than the well-tuned
Adam baseline. To further examine scaling behavior, Figure 1 (right) visualizes the scaling laws
of AdamPower versus Adam during Qwen2MoE pre-training. The performance gap between the
two optimizers remains stable across model scales, with the corresponding scaling curves remaining
nearly parallel – suggesting that the gains offered by AdamPower may persist at larger model scales.

Special potential for MoE models. Additionally, we observe two surprising phenomena, suggesting
that AdamPower may offer unique advantages for MoE model training:

• Although the power p = 1.2 was originally tuned for LLaMA, it generalizes well to Qwen2MoE
models without further tuning. (it is likely that an even better p exists for MoE-specific training.)
Remarkably, the absolute improvement achieved by AdamPower on Qwen2MoE-2B (0.028)
is more significant than that on LLaMA-2B (0.022). Noteworthily, Qwen2MoE-2B reaches a
much lower loss (1.93) compared to LLaMA-2B (2.43), making further improvements more
challenging – yet AdamPower still yields remarkable gains.

• AdamPower also exhibits improved training stability, reducing the occurrence of loss spikes
seen with Adam. This effect is particularly visible in the 1B and 2B curves in Figure 4 (middle,
right). Based on recent understanding in Section A, the fast vibrations along the sharp (valley)
directions mainly decide the training (in)stability. We hypothesize that the gradient power
transformation in AdamPower may help suppress the vibrations along these directions. We leave
a detailed investigation of this phenomenon to future work.

• The wsd scheduler has become increasingly popular in recent LLM pre-training (Liu et al.,
2024a; Hägele et al., 2024), always taking a long stable phase. We observe that the advan-
tage of AdamPower gradually increases throughout the LR stable phase. This suggests that
AdamPower may be particularly suited for modern training pipelines that adopt wsd schedules.

3.4 COMPATIBILITY WITH OTHER OPTIMIZERS

As discussed in Section A, several optimizers have recently been proposed to enhance LLM pre-
training. While AdamPower has demonstrated superiority over Adam in both dense and MoE models,
we now ask: can GradPower also improve the performance of other state-of-the-art optimizers?

To investigate this, we focus on two representative optimizers: Adam with Blockwise LR (Wang
et al., 2025) and Muon optimizer (Keller et al., 2024; Liu et al., 2025a). Blockwise LR assigns
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separate learning rates to different Transformer blocks and has shown substantial improvements over
standard Adam. Muon, on the other hand, breaks away from the Adam framework entirely and has
recently been shown to achieve better scaling laws than Adam (Liu et al., 2025a). We refer to the
application of GradPower to Muon as MuonPower.
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Figure 5: (left) AdamPower with Blockwise LR outperforms both AdamPower and Adam with
Blockwise LR in LLaMA pre-training. (middle, right) MuonPower (with p = 1.2) outperforms Muon
in LLaMA pre-training.

The results, presented in Figure 5, highlight two key findings. (i) AdamPower with Blockwise LR
achieves a lower terminal loss than both AdamPower and Adam with Blockwise LR individually.
Notably, the observed improvement (0.45) is nearly the sum of the gains from AdamPower alone
(0.15) and Blockwise LR alone (0.3), suggesting that their benefits are largely orthogonal. (ii)
MuonPower (p = 1.2), the GradPower-augmented variant of Muon, also outperforms the well-tuned
Muon baseline. These results demonstrate the versatility of GradPower as a general enhancement
that can be seamlessly integrated into other optimizers.

3.5 INFLUENCE OF BATCH SIZE
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Figure 6: The influence of batch
size for the optimal power p in LLM
tasks.

Finally, we investigate how batch size influence the performance
of GradPower. Batch size plays a critical role in deep learning,
with larger batch sizes producing lower gradient noise and more
accurate gradient (Keskar et al., 2017; McCandlish et al., 2018).

Unlike the previous experimental settings, here we conduct the
experiments on C4 dataset, varying the batch size from the stan-
dard 512 up to 8192. For each batch size, we evaluate AdamPower
with multiple values of p, and record their validation loss of when
the optimal validation loss reaches approximately 3.5. The exper-
imental details are provided in Appendix B.

Main findings. The results, shown in Figure 6, demonstrate a
clear trend: the optimal power p decreases as batch size increases,
i.e., as the gradient noise level decreases. This finding reveals a
strong correlation between batch size and the optimal power p in AdamPower. For standard (small)
batch sizes, the optimal power p tends to be greater than 1; in contrast, for large batch sizes, the
optimal power p might fall below 1.

Vision tasks. We also conduct the experiments using ResNet-34 model (He et al., 2016) on CIFAR-10
dataset (Krizhevsky & Hinton, 2009), varying the batch size from 32 to 128. The results in Table 2
further validates above point. Morever, it demonstrates the generalizability of our method beyond
language model pre-training.

batch size p = 0.8 p = 0.85 p = 0.9 p = 1.0 p = 1.1 p = 1.2 p = 1.4
128 94.35 94.27 94.22 93.98 93.38 93.15 91.66
64 94.22 94.4 94.22 94.1 93.97 93.77 92.61
32 94.04 94.07 94.15 94.3 94.25 93.85 93.71

Table 2: The influence of batch size for the optimal power p in vision tasks.

In the next section, we provide a theoretical explanation for this phenomenon.
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4 THEORETICAL INSIGHTS

4.1 AN ILLUSTRATIVE CASE STUDY

This subsection investigates a phenomenological example, both theoretically and empirically, to
illustrate how varying the power p in AdamPower affects the update magnitude. Motivated by the
empirical findings in Section 3.5, which show that batch size (gradient noise) affects the optimal
value of p, we study our example under varying signal-to-noise regimes.

Slow dynamics along flat directions. As discussed in Section A, recent studies have revealed key
properties of the landscape and training dynamics in LLM training. In particular, the landscape can
be decomposed into flat and sharp directions (also referred to as river and valley components (Wen
et al., 2025)). The loss along river component typically determines the loss at the bottom of the
landscape. Along these flat directions, the optimizer tends to make slow but steady progress, and
appears to remain aligned for a period of time.

Motivated by this picture, we consider a one-dimensional example to study whether varying p in
AdamPower can accelerate these slow dynamics along the flat directions, thereby leading to more
efficient loss descent.
Example 4.1. For simplicity, consider a 1-dimensional flat direction. Let the stochastic gradients at
time t ∈ N follow gt

i.i.d.∼ Unif(µ− σ, µ+ σ), where 0 < µ, σ ≪ 13. Here, µ reflects the full-batch
gradient, and σ captures the stochastic noise level.

1.0 1.5 2.0
p

0.0

0.2

0.4

0.6

0.8

1.0
update ut for t→∞

σ/µ = 0.5

σ/µ = 1

σ/µ = 2

σ/µ = 4

σ/µ = 6

σ/µ = 10

σ/µ = 20

Figure 7: Numerical results for Exam-
ple 4.1. We plot the value of ut at t = 106

for AdamPower across different p’s under
varying noise-to-signal ratios. For each
curve, the optimal and suboptimal p val-
ues are marked with stars. The µ is set to
µ = 10−6. Other hyperparameters follow
standard values: β1 = 0.9, β2 = 0.95,
ϵ = 10−8, and λ = 0. The learning rate
η does not affect the result.

Our goal is to investigate the values of p that maximize the up-
date magnitude ut = mt/(

√
vt + ϵ) in AdamPower (Alg. 1).

For simplicity, we set weight decay to 0. We now present
both empirical and theoretical analysis.

Empirical findings. We begin by numerically simulating
the update ut. The results are presented in Figure 7. Notably,
the optimal value of p varies across noise-to-signal regimes,
exhibiting two distinct behaviors:

• Low-noise regime σ/µ ⩽ 1 (blue and orange curves), it
is clear that the update magnitude decreases monoton-
ically with increasing p, and the optimal power is small,
satisfying p⋆ < 1.

• High-noise regime σ/µ > 1, the update magnitude in-
creases and then decreases with increasing p. Moreover,
for noise-dominant regime, the optimal power satisfies
p⋆ > 1 (red, purple, brown, and pink curves).

These findings closely align with our empirical results in real-
world LLM pre-training tasks in Section 3. As the batch size increases (corresponding to lower
gradient noise), the optimal power p⋆ decreases accordingly, transitioning from p⋆ > 1 to p⋆ < 1, as
observed in Section 3.5. Remarkably, the optimal power p⋆ = 1.2 in the high-noise regime matches
the value used across most LLM pre-training experiments in Section 3.

Theoretical analysis. To better understand these interesting behaviors, we theoretically analyze
this problem. To facilitate analytical derivation, we consider the limiting case where β2 → 1, which
closely approximates typical settings in practice (e.g., 0.95 or 0.999). We define the limiting update
of AdamPower as:

u := lim
t→∞

lim
β2→1

ut, (3)

where ut = mt/(
√
vt + ϵ), with mt = EMAβ1({gps}t1) and vt = EMAβ2({(gps )2}t1). In this limit,

we obtain the closed-form expression: u = E[gp]/(
√
E[(gp)2] + ϵ), a.s., g ∼ Unif(µ− σ, µ+ σ).

This formulation allows explicit computation and facilitates verification of the empirical trends. We
present two propositions corresponding to the low-noise and high-noise regimes.

3Empirical studies suggest that gradient scales in LLM training are often very small (Huang et al., 2025).
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Proposition 4.2 (low-noise regime, σ ≪ µ). It holds that u = 1+o(1)
1+ ϵ

µp
, a.s.. Letting ũ = 1

1+ ϵ
µp

, we
observe that ũ is monotonically decreasing w.r.t. p.

This proposition quantitatively explains the monotonicity observed in the low-noise regime. Further-
more, it shows that the maximum update is approximately 1

1+ϵ ≈ 1, achieved in the limit as p→ 0.
This aligns with Figure 7.

Proposition 4.3 (high-noise regime, µ ≪ σ). It holds that u = µ
σ

1+o(1)
1√

2p+1
+ ϵ

σp
, a.s.. Letting ũ =

µ
σ

1
1√

2p+1
+ ϵ

σp
, we observe the following: If ϵ log(1/σ) < 1, then there exists an optimal power p⋆

such that ũ increases for 0 < p < p⋆ and decreases for p > p⋆. Moreover, we have a tight estimate:
p⋆ = Θ

(
log(ϵ log(1/σ))

log σ

)
.

Notably, in practice, ϵ is typically chosen sufficiently small (e.g., ϵ≪ σ), ensuring log(ϵ log(1/σ))
log σ > 1.

This again aligns with our empirical observation that p⋆ > 1 in the high-noise regime.

The intuition behind Proposition 4.3 is as follows. When p is relatively small, the denominator
is dominated by

√
E[(gp)2]. Since g ≪ 1, increasing p reduces both the numerator E[gp] and

denominator
√
E[(gp)2]. In the high-noise regime, the reduction in the denominator outweighs that

in the numerator, resulting in a larger update. In contrast, when p is relatively large, the denominator
is dominated by ϵ, and AdamPower degenerates to SGDPower, where the update is approximately
E[gp]/ϵ. In this regime, increasing p reduces the update magnitude.

Although the above example is synthetic, it reveals several non-trivial phenomena highly aligned with
LLM pre-training tasks, particularly the existence and behavior of the best p⋆ across noise-to-signal
regimes. These insights deepen our understanding of how GradPower influences the performance of
AdamPower and suggest practical guidance for selecting p.

4.2 CONVERGENCE GUARANTEES

Let L : Rd → R be a non-convex loss function. For any θ ∈ Rd, let g(θ) denote the stochastic
gradient satisfying E[g(θ)] = ∇L(θ).
In this subsection, we consider the classical setting of smooth non-convex optimization and investigate
the theoretical benefits of applying GradPower within adaptive optimizers. Since the analysis of
Adam is technically complex, to gain clear theoretical insights, we instead analyze its predecessor,
Adagrad, a foundational adaptive optimization algorithm (Duchi et al., 2011). The update rule of
AdagradPower (Adagrad using GradPower) is given by:

θt+1 = θt − η
gp
t√

vt + ϵ
, vt =

t∑
s=1

(gp
t )

2, (4)

where the power p > 0, and we gt denotes the stochastic gradient g(θt) for simplicity.

To establish the convergence results, we adopt the following standard assumptions, consistent with
Section 2.3 in Défossez et al. (2022).
Assumption 4.4 (Défossez et al. (2022)). The following conditions hold:

• L is bounded below by L⋆, i.e., for all θ ∈ Rd, L(θ) ⩾ L⋆.

• The loss function is H-smooth, i.e., there exists a constant H > 0 such that for all θ,θ′ ∈ Rd,
∥∇L(θ)−∇L(θ′)∥2 ⩽ H∥θ − θ′∥2.

• The ℓ∞ norm of the stochastic gradients is uniformly almost surely bounded, i.e., there exists a
constant R > 0 such that for all θ ∈ Rd, ∥g(θ)∥∞ + ϵ ⩽ R, a.s..

Under this assumption, the convergence guarantee of Adagrad is well established:
Theorem 4.5 (Adagrad; Theorem 1 in Défossez et al. (2022)). Suppose Assumption 4.4 holds. Let
{θt}Tt=0 are trained by Adagrad (4) with p = 1. Then for any T ∈ N, we have:

min
1⩽t⩽T

E
[
∥∇L(θt)∥22

]
⩽

2R(L(θ0)− L⋆)

η
√
T

+
Rd(4R+ ηH) log(1 +R2T/ϵ)√

T
. (5)

We now study the convergence of AdagradPower in both low-noise and high-noise regimes.
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Low-noise regime. We introduce an additional assumption about the noise scale.

Assumption 4.6 (Low-noise regime). There exist constants p ∈ (0, 1) and c > 0 such that
E[gpi (θ)]∇iL(θ) ⩾ c|∇iL(θ)|p+1 holds for for all θ ∈ Rd and i ∈ [d].

This assumption is satisfied in many low-noise scenarios:

Example 4.7. (I) Deterministic regime (the limit case of low noise): if gi(θ) = ∇iL(θ), then
Assumption 4.6 holds for all p ∈ (0, 1) with c = 1. (II) Uniform distribution: if gi ∼ Unif(∇iL −
σ,∇iL + σ) with σ ≪ |∇iL|, then Assumption 4.6 holds for all p ∈ (0, 1) as E[gpi ]∇iL =
|∇iL|p+1(1 + o(σ/|∇iL|)) ⩾ 0.99|∇iL|p+1.

Theorem 4.8 (AdagradPower, low-noise regime). Suppose Assumption 4.4 and 4.6 hold, as well
as R < 14. Let {θt}Tt=0 are trained by AdagradPower (4), with the power p ∈ (0, 1) as given in
Assumption 4.6. Then for any T ∈ N, we have:

min
1⩽t⩽T

E
[
∥∇L(θt)∥22

]
⩽ O

(
log2/(p+1) T

T 1/(p+1)

)
. (6)

Comparing Theorems 4.5 and 4.8, we observe that AdagradPower achieves a convergence rate
(log2/(p+1) T/T 1/(p+1)) that is 2/(p+1) times faster than Adagrad (log T/

√
T ) in low-noise regime.

For Example 4.7, this yields nearly a 2× acceleration for p → 0. This result is consistent with
observations in Section 4.1 and 3.5 that the optimal power p for adaptive optimizers is less than 1 in
the low-noise regime. The proof is presented in Appendix D.

High-noise regime. We introduce an additional assumption regarding the noise scale:

Assumption 4.9 (High-noise regime). (C1) There exist constants p > 1, σ > 0 such that
E[gpi (θ)]∇iL(θ) ⩾ σ|∇iL(θ)|2 holds for all θ ∈ Rd and i ∈ [d]. (C2). It holds that σ > Rp−1.

The first condition asserts that the gradient noise is non-degenerate. The second condition further
asserts that the gradient noise is in a high level. Noteworthily, These conditions are naturally satisfied
in many high-noise settings:

Example 4.10. Consider gi satisfy binary distribution P(gi = ∇iL−σi) = P(gi = ∇iL+σi) =
1
2 .

Then for any odd number p > 1, E[gpi ]∇iL ⩾ pσp−1
i |∇iL|2. Thus, (C1) in Assumption 4.9 holds with

σ = pσp−1
i . As for (C2), in high-noise regime with |∇iL| ≪ σi, we have Rp−1

σ ⩽ (|∇iL|+σi)
p−1

pσp−1
i

⩽
1.01
p < 1.

Theorem 4.11 (AdagradPower, high-noise regime). Suppose Assumption 4.4 and 4.9 hold, as well
as R < 1. Let {θt}Tt=0 be trained by AdagradPower (4), with the power p > 1 as given in
Assumption 4.9. Then for any T ∈ N, we have:

min
1⩽t⩽T

E
[
∥∇L(θt)∥22

]
⩽
Rp−1

σ
·
(
R.H.S. of (5)

)
, (7)

where Rp−1/σ < 1.

Comparing Theorems 4.5 and 4.11, we observe that AdagradPower accelerates convergence of
Adagrad by a constant factor Rp

σ in high-noise regime. For Example 4.10, the acceleration is
significant, due to Rp−1

σ ⩽ 1.01
p for any positive odd p. This result provides theoretical support for

the empirical superiority of adaptive optimizers using GradPower in LLM pretraining in Section 3
Notably, the theoretical insights are highly aligned with those in Proposition 4.3. In the high-noise
regime, using p > 1 reduces both numerator gt and denominator

√
vt + ϵ. However, reduction in the

denominator outweighs that in the numerator, resulting in a faster convergence speed. The formal
proof refines this argument and is presented in Appendix D.

5 CONCLUSION

We propose GradPower, a simple yet effective method for improving the efficiency of gradient-based
optimizers. Experimentally, AdamPower (Adam using GradPower) consistently achieves lower
terminal loss and improved scaling laws than Adam across various LLM pre-training tasks.

4Empirical studies suggest that gradient scales in LLM training are often very small (Huang et al., 2025).
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For future work, it would be interesting to investigate why AdamPower exhibits particular potential
for MoE models and wsd LR scheduler. Experimentally, exploring the applicability of GradPower
beyond LLMs, as well as its integration with other optimizers, could further extend its impact. In
addition, developing a dynamic schedule for the GradPower exponent p, adapted to the evolving SNR
throughout training, presents both a challenging and a potentially valuable direction.
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A RELATED WORKS

Optimizer disign in LLM pre-training. In LLM pre-training, Adam (Kingma & Ba, 2014) has
become the de facto optimizer. Recent efforts to improve its efficiency focus on two aspects:
accelerating convergence and reducing memory usage. Techniques for accelerating convergence
include introducing curvature information (Liu et al., 2024b; Wang et al., 2024; 2025), mixing
momentum (Xie et al., 2024; Pagliardini et al., 2025), variance reduction (Yuan et al., 2024), cautious
update (Liang et al., 2024), and applying matrix-based preconditioners (Keller et al., 2024; Vyas et al.,
2024). Memory-efficient techniques include reducing the moments usage in Adam (Zhang et al., 2025),
sign-based updates (Chen et al., 2024b; Liu et al., 2025b), low precision optimizer states (Dettmers
et al., 2022; Li et al., 2023), low-rank approximation (Hu et al., 2022; Zhao et al., 2024; Chen et al.,
2024a), and structured learning rates (Zhu et al., 2025). Among these, Muon (Keller et al., 2024)
stands out for improving both convergence and memory usage and showing strong scalability (Liu
et al., 2025a). In contrast, our method, GradPower, improves training efficiency without altering
the base optimizer’s internal updates. Notably, GradPower is orthogonal and complementary to the
methods above: it can serve as a lightweight plug-in that further enhances existing optimizers.

The fast-slow dynamics in neural network training. Recent works (Wu et al., 2018; Jastrzebski
et al., 2020; Cohen et al., 2020; 2022) show that neural network training typically occurs at the
so-called Edge of Stability (EoS) stage. This regime is characterized by the optimizer exhibiting
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oscillatory behavior along sharp directions without divergence, while steadily progressing along flat
directions, leading to loss reduction. Several studies (Wen et al., 2025; Song et al., 2025; Cohen et al.,
2025; Wang et al., 2024) have emphasized the importance of the slow dynamics along flat directions
(referred to as stable direction in Wang et al. (2024), river directions by Wen et al. (2025) and bulk
directions by Song et al. (2025)), in reducing total loss. Moreover, Wen et al. (2025) further showed
that this picture is crucial for understanding the behavior of LLM pre-training. In addition, Fig.3
in (Wen et al., 2025) and Fig.8 (Song et al., 2025) suggest that, the optimizer’s trajectory within flat
directions tends to remain aligned for a period of time.

Powerball method. After completing this work, we found that the Powerball method (Yuan et al.,
2019) shares the similar methodology as our approach. However, prior studies on Powerball method
have been restricted to traditional optimizers–—such as GD (Yuan et al., 2019), SGD (Zhou et al.,
2020; Yang, 2024), and SARAH (Qin et al., 2025)—–and evaluated primarily on relatively small-
scale benchmarks including CIFAR-10, CIFAR-100 and MNIST. Although Baiesi (2019) combined
Powerball with Adam, the experiments were limited to small and illustrative problems. In contract,
our work focuses on modern adaptive optimizers such as Adam and Muon in the context of language
model pre-training, a modern and practically important setting. Moreever, previous Powerball studies
examined only the narrow regime with p < 1, our work studies both p < 1 and p > 1 regimes, and
further develop a comprehensive theoretical study of the relationship between optimal p and batch
size.

Explain the terminology of flat directions. In classical optimization theory, flat directions refer
to Hessian eigenvectors associated with small eigenvalues. However, our usage of flat direction is
approximate and follows a line of prior work showing that the anisotropy of gradient noise closely
reflects the Hessian’s curvature structure. Works (Zhu et al., 2019; Wu et al., 2020; Mori et al., 2022;
Wu et al., 2022) establish that directions with small Hessian curvature exhibit low gradient-noise
variance, while directions with large Hessian curvature exhibit high gradient-noise variance.
Consequently, flat directions approximately correspond to low-noise directions, and sharp directions
to high-noise directions.

B EXPERIMENTAL DETAILS

Models. We utilize two popular classes of LLM models for our pre-training experiments:

• LLaMA. LLaMA (Touvron et al., 2023) is a popular Dense decoder-only Transformer architec-
ture, incorporating Rotary Positional Encoding (RoPE) (Su et al., 2024), Swish-Gated Linear
Unit (SwiGLU), and Root mean square layer normalization (RMSNorm). We pre-train LLaMA
models of sizes ranging from 66M to 2B parameters. Additional model configurations are
detailed in Table 3.

• Qwen2MoE. Qwen2MoE (Yang et al., 2024a) is a popular open-source MoE decoder-only
Transformer architecture. Comparing with Llama, Qwen2MoE utilizes a mix of sliding window
and full attention, as well as mixture-of-experts architecture. We disable sliding window attention
due to relatively small context length in our experiment. We activate 4 experts per token for all
models. For detailed model configurations, refer to Table 4.

Datasets. Models are pre-trained on the following datasets:

• Colossal Clean Crawled Corpus (C4) (Raffel et al., 2020). It is a large-scale public language
dataset, widely used for LLM pre-training such as T5 (Raffel et al., 2020), and prior pre-training
studies (Zhao et al., 2024; 2025). We use the T5 tokenizer, with the vocabulary size 32100.

• OpenWebText (Gokaslan & Cohen, 2019). It is an opensource recreation of the WebText
corpus, is extensively utilized for LLM pre-training such as RoBERTa (Liu et al., 2019) and
nanoGPT (Karpathy, 2022). Following Karpathy (2022); Liu et al. (2024b), we use the GPT-2
tokenizer, with the vocabulary size 50304.

LR schedulers. We evaluate two popular LR scheduling strategies:

• cos (cosine scheduler) (Karpathy, 2022; Touvron et al., 2023): a linear warm-up to peak
lr_max, followed by cosine decay to a terminal LR lr_min.
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• wsd (warmup-stable-decay scheduler) (Zhai et al., 2022; Hu et al., 2024; Hägele et al., 2024): a
linear warm-up LR to peak lr_max, followed by a stable phase where LR remains at lr_max
(up to 80% of the total training steps), and then a linear decay to lr_min.

All experiments are conducted on 8 A100 80G GPUs.

Table 3: Dense model configurations and optimally-tuned peak learning rates for Adam.

Acronym Size dmodel dFF n_head depth lr_max

LLaMA (66M) 66M 512 2048 8 8 1e-3 (on C4)
LLaMA (0.2B) 200M 1024 4096 16 8 1e-3 (on C4)
LLaMA (0.25B) 237M 1024 4096 16 8 8e-4 (on OpenWebText)
LLaMA (0.4B) 400M 1280 5120 16 12 6e-4 (on C4)
LLaMA (1B) 1004M 1600 6400 25 22 3e-4 (on C4)
LLaMA (2B) 1994M 2048 8096 32 28 2e-4 (on C4)

Table 4: MoE model configurations and optimally-tuned peak learning rates for Adam on C4.

Acronym Size Activated Size dmodel dFF n_head depth n_experts lr_max

Qwen2MoE (0.5B) 502M 247M 768 3072 12 12 16 6e-4
Qwen2MoE (1B) 1040M 297M 768 3072 12 15 32 3e-4
Qwen2MoE (2B) 1945M 536M 1024 4096 16 16 32 2e-4

For the vision experiment, we used the standard 34 layer ResNet model (He et al., 2016) on the
CIFAR-10 dataset (Krizhevsky & Hinton, 2009). We use Adam optimizer and the commonly used
cos learning rate scheduler.

B.1 EXPERIMENTAL DETAILS FOR SECTION 3.2 AND 3.3

Adam baselines. We use the standard Adam optimizer (with decoupled weight decay) as the
baseline in most experiments (expect Section 3.4). The baseline is configured with hyperparameters
β1 = 0.9, β2 = 0.95, weight decay λ = 0.1, and gradient clipping threshold of 1.0, following
protocols used in LLaMA pre-training (Touvron et al., 2023). Following Hoffmann et al. (2022), the
final learning rate lr_min is set to 1/10 of the peak learning rate lr_max. Additionally,

• C4 pre-training. We follow the setup of Zhao et al. (2024); Chen et al. (2024a); Zhu et al.
(2025), using a sequence length of 256 and batch size of 512. Following the Chinchilla scaling
law (Hoffmann et al., 2022), the total number of training tokens is set to be approximately 20
times the number of model parameters. The training includes 1,000 warm-up steps. The grid
search for lr_max is performed over {1e-4, 2e-4, 3e-4, 6e-4, 1e-3, 1.5e-3}. Optimal
learning rates for each model are detailed in Tables 3 and 4.

• OpenWebText pre-training. The (max) sequence length is set to 1024, and the batch size is set
to 480, following nanoGPT (Karpathy, 2022) and Liu et al. (2024b). The total training duration
is 50,000 or 100,000 steps, including 1,000 warm-up steps. The grid search for lr_max is
performed over {2e-4, 4e-4, 6e-4, 8e-4, 1e-3}. Optimal learning rates for each model
are detailed in Table 3.

AdamPower experiments. We adopt p = 1.2 as the default in all experiments in Section 3.2
and 3.3. All other optimizer hyperparameters are kept identical to those used for the Adam baselines.
Importantly, the power p = 1.2 proves to be highly robust.

B.2 EXPERIMENTAL DETAILS FOR SECTION 3.4

Adam with Blockwise LR. Following Wang et al. (2025), we adopt the same peak lr_max tuned
for Adam as the lr_max of Adam with Blockwise LR. For the blockwise lr ratios, we adopt the
recommended r(Embed) = 10, r(QK) = 8, r(FFN) = 6, r(VO) = 4 in Wang et al. (2025).
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AdamPower with Blockwise LR. We still adopt p = 1.2 in the AdamPower with Blockwise LR. All
other optimizer hyperparameters are kept identical to those used for the Adam with Blockwise LR.

Muon baseline. We use the same techniques for Muon as Liu et al. (2025a): (1) adding weight decay
(2) adjusting the per-parameter update scale. These techniques allow our Muon experiment to use the
identical learning rate as the Adam baseline without the extra effort of hyper-parameter tuning.

MuonPower. We still adopt p = 1.2 in the MuonPower. All other optimizer hyperparameters are
kept identical to those used for the Muon baseline.

B.3 EXPERIMENTAL DETAILS FOR SECTION 3.5

We conduct experiments using LLaMA (0.2B) on C4 dataset with wsd scheduler. Unlike the previous
experimental settings, here we vary the batch size from the standard 512 up to 8192.

For batch size 512, the tuned max_lr is 1e-3 (Table 3). For larger batch sizes (2048, 4096,
8192), we tune the max_lr over {6r-4, 1e-3, 2e-3, 4e-3, 8e-3} for Adam. We find
that 1e-3 consistently yields the best results across all batch sizes.

For each batch size, we evaluate AdamPower with multiple values of p, and record their validation
loss when the optimal validation loss reaches approximately 3.5.

We also conduct vision experiments using ResNet-34 on CIFAR datset with cos scheduler. We tune
the max_lr over {6.25e-5, 1.25e-4, 2.5e-4, 5e-4, 1e-3}. For batch size 32, 128,
and 512, the tuned max_lr is 1.25e-4, 2.5e-4, 5e-4, respectively.

B.4 ADDITIONAL EXPERIMENTS WITH MULTIPLE RANDOM SEEDS

In this subsection, we reproduce a subset of experiments in Figure 3 with multiple random seeds to
assess statistical robustness. Specifically, we rerun the experiments six times with different random
seeds and report both mean and standard deviation as shown in Figure 8. The shaded regions in the
plots denote the standard deviation, showing the statistical significance of each method. These results
confirm that the observed performance differences are consistent and cannot be explained by random
seed variability.
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Figure 8: AdamPower (p = 1.2) consistently outperforms Adam in LLaMA pre-training tasks. The
shaded regions in the plots denote the standard deviation.

B.5 ADDITIONAL EXPERIMENTS WITH A FINER-GRAINED LEARNING RATE SWEEP

In this subsection, we reproduce a subset of experiments in Figure 1 with a finer-grained learning
rate sweep. Specifically, we use 0.94 × the baseline maximum learning rate in "AdamW (0.94lr)" to
isolate the contribution of GradPower from these two protential effects:

• global damping. As |g| < 1, |g|p(p > 1) induces additional damping of the gradient.

• heavier tails. |g|p(p > 1) suppresses gradients of small magnitude more aggressively than
large ones.
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The 0.94 factor approximates the expected update magnitude ratio between Adam and AdamPower
with p = 1.2 under zero-mean Gaussian gradients. As shown in Figure 9 and Table 5, AdamPower
with p = 1.2 continuously surpasses Adam within this finer-grained learning rate sweep.
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Figure 9: Scaling-law comparison of AdamPower and Adam on the C4 dataset for dense LLaMA
models within a finer-grained learning rate sweep.

setting LLaMA on C4, cos LLaMA on C4, wsd
model size 0.2B 0.4B 1B 0.4B 1B 2B
AdamW 3.0006 2.7889 2.5593 2.7911 2.5645 2.4206

AdamW (0.94lr) 2.9859 2.7957 2.5601 2.7917 2.5649 2.4207
AdamWPower (1.2) 2.9832 2.7705 2.5385 2.7767 2.5472 2.4028

Table 5: Scaling-law comparison of AdamPower and Adam on the C4 dataset for dense LLaMA
models within a finer-grained learning rate sweep.

B.6 INTERACTION BETWEEN GRADPOWER AND GRADIENT CLIPPING

In this subsection, we examine the ordering of gradient clipping and the GradPower transformation.
Gradient clipping is a standard component in LLM pre-training pipelines, and in our default setup,
gradient clipping is applied first, followed by the GradPower transformation. Notably, both orderings
yield bounded gradients, ensuring that the two procedures remain comparable from a stability
standpoint.

To directly evaluate the interaction, we conduct a controlled experiment based on the setting of
Figure 8 on LLaMA-0.2B (dense). In a controlled manner, we switch the order of gradient clipping
and the GradPower transformation. We refer to this variant as AdamWPower-II, in contrast to the
standard AdamWPower implementation. As shown in Figure 10, the training curves are nearly
indistinguishable across the full training trajectory, indicating that the ordering does not materially
affect performance.
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Figure 10: AdamPower (p = 1.2) outperforms Adam in LLaMA pre-training tasks. The shaded
regions in the plots denote the standard deviation.
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C PROOFS IN SECTION 2 AND 4.1

C.1 SUPPORT FOR THE MOTIVATION IN SECTION 2

In this section, we provide a detailed justification for the claim in Section 2 that the linear trans-
formation (φ(z) = cz with c ∈ R) fails to alter the updates of popular optimizers used in LLM
pretraining. Without loss of generality, we analyze the one-dimensional case.

• Adaptive optimizers, including Adagrad, RMSprop, and Adam. These optimizers adjust the
learning rate based on a moving average of gradients. In practice, the term ϵ (used to ensure
numerical stability) is typically set to an extremely small value (e.g., 1e-8, 1e-12), Consider
the update rule of Adam in the limit ϵ→ 0:

θt+1 = (1− ληt)θt − ηt
EMAβ1

({gs}t1)√
EMAβ2

({g2s}t1)
.

Applying a linear transformation φ(z) = cz with c > 0 does not change the ratio:

EMAβ1
({gs}t1)√

EMAβ2({g2s}t1)
=

EMAβ1
({φ(gs)}t1)√

EMAβ2({φ(gs)2}t1)
.

Hence, the dynamics remains unchanged. This argument applies similarly to Adagrad and
RMSprop.

• Sign-based methods, including Sign momentum (Bernstein et al., 2018) and Lion (Chen et al.,
2024b). These methods operate on the sign of the moving average gradients. For instance,
Signed Momentum (with decoupled weight decay) follows:

θt+1 = (1− ληt)θt − ηt sign(EMAβ({gs}t1)).
Again, applying a linear transformation φ(z) = cz with c > 0 does not change the sign of the
averaged gradient, since:

sign(EMAβ({gs}t1)) = sign(EMAβ({φ(gs)}t1)).
Hence, the dynamics remains unchanged. This argument applies similarly to Lion.

In contrast, our proposed (nonlinear) GradPower transformation (φp(z) = zp := |z|p sign(z) with
p > 0) does alter the updates of both adaptive and sign-based optimizers, when the gradients gs are
not all of the same sign.

C.2 PROOF OF PROPOSITIONS 4.2 AND 4.3

E[φp(g)] =
(µ+ σ)p+1 − |µ− σ|p+1

2σ(p+ 1)
,

E[φ2
p(g)] =

(µ+ σ)2p+1 − |µ− σ|2p+1 sign(µ− σ)
2σ(2p+ 1)

.

The low-noise regime. (0≪ σ ≪ µ≪ 1)

It is straightforward that

E[φp(g)] =
µp+1

2σ(p+ 1)

((
1 +

σ

µ

)p+1

−
(
1− σ

µ

)p+1
)

=
µp+1

2σ(p+ 1)

(
2(p+ 1)σ

µ
+ o

(
σ

µ

))
= µp (1 + o(1)) ;

E[φ2
p(g)] =

µ2p+1

2σ(2p+ 1)

((
1 +

σ

µ

)2p+1

−
(
1− σ

µ

)2p+1
)
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=
µ2p+1

2σ(2p+ 1)

(
2(2p+ 1)σ

µ
+ o

(
σ

µ

))
= µ2p (1 + o(1)) .

Therefore, we have

u =
E[φp(g)]√
E[φ2

p(g)] + ϵ
=

µp (1 + o(1))

µp (1 + o(1)) + ϵ
=

1 + o(1)

1 + ϵ
µp

.

The high-noise regime. (0≪ µ≪ σ ≪ 1)

It is straightforward that

E[φp(g)] =
σp+1

2σ(p+ 1)

((
1 +

µ

σ

)p+1

−
(
1− µ

σ

)p+1
)

=
σp

2(p+ 1)

(
2(p+ 1)µ

σ
+ o

(µ
σ

))
= σp−1µ(1 + o(1));

E[φ2
p(g)] =

σ2p+1

2σ(2p+ 1)

((
1 +

µ

σ

)2p+1

+
(
1− µ

σ

)2p+1
)

=
σ2p+1

2σ(2p+ 1)

(
2 + o

(µ
σ

))
=

σ2p

2p+ 1
(1 + o(1)).

Therefore, we have

u =
E[φp(g)]√
E[φ2

p(g)] + ϵ
=

σp−1µ(1 + o(1))
σp√
2p+1

(1 + o(1)) + ϵ
=
µ

σ

1 + o(1)
1+o(1)√
2p+1

+ ϵ
σp

=
µ

σ

1 + o(1)
1√

2p+1
+ ϵ

σp

.

To study the monotonicity of ũ = µ
σ

1
1√

2p+1
+ ϵ

σp
, we only need to study the monotonicity of

ψ(p) =
1√

2p+ 1
+

ϵ

σp
.

It is clear that

ψ′(p) =
ϵ log(1/σ)

σp
− 1

(2p+ 1)3/2
.

Due to σ log(1/σ) < 1, there exists a p⋆, such that ψ′(p) < 0 for all 0 < p < p⋆; ψ′(p) > 0 for all
p > p⋆. Here, p⋆ is the solution of the equation:

σp

(2p+ 1)3/2
= ϵ log(1/σ)

Noticing the relationship between ψ and ũ, we have: ũ increases when 0 < p < p⋆; ũ decreases
when p > p⋆.

Now we estimate p⋆. Due to 1 + x ⩽ ex, we have (2p+ 1)3/2 ⩽ (e2p)3/2 = (e3)p. Then we obtain
the two-sides estimate 1 ⩽ (2p+ 1)3/2 ⩽ (e3)p, implying( σ

e3

)p
⩽

σp

(2p+ 1)3/2
⩽ σp.

Therefore, we have the estimate:
log(ϵ log(1/σ))

log(σ/e3)
⩽ p⋆ ⩽

log(ϵ log(1/σ))

log σ

Noticing σ ≪ 1, we obtain:

p⋆ = Θ

(
log(ϵ log(1/σ))

log σ

)
.
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D PROOFS IN SECTION 4.2

Recall that the udpate rule of AdagradPower (with power p) follows:

θt+1 =θt − ηut,

ut =
φp(gt)√
vt + ϵ

,

vt =

t∑
s=1

φ2
p(gt).

In general, our proof is inspired by the main techniques to prove Adagrad used in Défossez et al.
(2022). The key difference is to establish a similar estimate of the loss descent for Adamgradpower.
This generalize is not trivial, need to use the structure of the high-noise fact.

In the proof, we need an auxiliary sequence, defined as:

ṽt = vt−1 + Et[φ
2
p(gt)].

D.1 KEY LEMMAS

We need two important lemmas in the proof of each Theorem. The first develops the lower bound of
the descent value for the update.
Lemma D.1 (Descent estimate for the update, high-noise regime). Under Assumption 4.4, for all
t ∈ N, and i ∈ [d] and any σ > 0, we have:

Et [∇iL(θ)ut,i] = Et

[∇iL(θ)φp(gt,i)√
vt,i + ϵ

]
⩾

Et [∇iL(θ)φp(gt,i)]√
ṽt,i + ϵ

− σ

2

|∇iL(θ)|2√
ṽt,i + ϵ

− 2Rp

σ
E

[
φ2
p(gt,i)

vt,i + ϵ

]
.

Proof of Lemma D.1.
Let t ∈ N and i ∈ [p]. For simplicity, we use the following notations in the proof:

G = ∇iL(θ), g = gt,i, v = vt,i, ṽ = vt,i.

First, we decouple the descent quantity as:

Et

[
Gφp(g)√
v + ϵ

]
= Et

[
Gφp(g)√
ṽ + ϵ

]
+ Et

[
Gφp(g)

(
1√
v + ϵ

− 1√
ṽ + ϵ

)
︸ ︷︷ ︸

I

]
(8)

Then we bound the term I in the RHS of Equation (8):

|I| =|Gφp(g)|
|ṽ − v|√

v + ϵ
√
ṽ + ϵ(

√
v + ϵ+

√
ṽ + ϵ)

=|Gφp(g)|
|Et[φ

2
p(g)]− φ2

p(g)|√
v + ϵ

√
ṽ + ϵ(

√
v + ϵ+

√
ṽ + ϵ)

⩽|Gφp(g)|
Et[φ

2
p(g)] + φ2

p(g)√
v + ϵ

√
ṽ + ϵ(

√
v + ϵ+

√
ṽ + ϵ)

⩽ |Gφp(g)|
Et[φ

2
p(g)]√

v + ϵ(ṽ + ϵ)︸ ︷︷ ︸
I1

+ |Gφp(g)|
φ2
p(g)

(v + ϵ)
√
ṽ + ϵ︸ ︷︷ ︸

I2

.

Consequently, we will estimate I1 and I2 by the inequality

|xy| ⩽ λx2

2
+
y2

2λ
.
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For I1, by taking

|x| = |G|√
ṽ + ϵ

, |y| = |φp(g)|Et[φ
2
p(g)]√

v + ϵ
√
ṽ + ϵ

, λ =
σ
√
ṽ + ϵ

2
,

we obtain

I1 ⩽
σ

4

|G|2√
ṽ + ϵ

+
1

σ

(φ2
p(g)(Et[φ

2
p(g)])

2

(v + ϵ)(ṽ + ϵ)3/2
,

Et[I1] ⩽
σ

4

|G|2√
ṽ + ϵ

+
1

σ

(Et[φ
2
p(g)])

2

(ṽ + ϵ)3/2
Et

[
φ2
p(g)

v + ϵ

]
.

Given that
√
Et[φ2

p(g)] ⩽
√
ṽ + ϵ and

√
Et[φ2

p(g)] ⩽ Rp, we can simplify the above estimate as:

Et[I1] ⩽
σ

4

|G|2√
ṽ + ϵ

+
Rp

σ
Et

[
φ2
p(g)

v + ϵ

]
.

For I2, by taking

|x| = |G|√
ṽ + ϵ

, |y| = |φp(g)|φ2
p(g)

v + ϵ
, λ =

σφ2
p(g)

2Et[φ2
p(g)]

,

we obtain

I2 ⩽
σ

4

φ2
p(g)

Et[φ2
p(g)]

|G|2√
ṽ + ϵ

+
1

σ

Et[φ
2
p(g)]√
ṽ + ϵ

φ4
p(g)

(v + ϵ)2

Given that φ2
p(g) ⩽ v + ϵ, we can simplify the above estimate as:

I2 ⩽
σ

4

φ2
p(g)

Et[φ2
p(g)]

|G|2√
ṽ + ϵ

+
1

σ

Et[φ
2
p(g)]√
ṽ + ϵ

φ2
p(g)

v + ϵ
.

Using
√
Et[φ2

p(g)] ⩽
√
ṽ + ϵ,

√
Et[φ2

p(g)] ⩽ Rp, and taking the conditional expectation, we obtain:

Et[I2] ⩽
σ

4

|G|2√
ṽ + ϵ

+
Rp

σ
E

[
φ2
p(g)

v + ϵ

]
.

Consequently, combing the two estimates of I1 and I2, we obtain:

Et[|I|] ⩽ Et[I1] + Et[I2] ⩽
σ

2

|G|2√
ṽ + ϵ

+
2Rp

σ
E

[
φ2
p(g)

v + ϵ

]
.

Putting the above estimate into Equation (8), we obtain the lower bound:

Et

[
Gφp(g)√
v + ϵ

]
=Et

[
Gφp(g)√
ṽ + ϵ

]
+ Et [I] ⩾ Et

[
Gφp(g)√
ṽ + ϵ

]
− Et[|I|]

⩾
Et [Gφp(g)]√

ṽ + ϵ
− σ

2

|G|√
ṽ + ϵ

− 2Rp

σ
Et

[
φ2
p(g)

v + ϵ

]
.

The second lemma estimate the sum of the updates in adaptive methods.
Lemma D.2 (Lemma 5.2 in Défossez et al. (2022)). Let {at}t∈N be a non-negative sequence, ϵ > 0.
Then for all T ∈ N, we have:

T∑
t=1

at

ϵ+
∑t

s=1 as
⩽ log

(
1 +

1

ϵ

T∑
t=1

at

)
.
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D.2 PROOF OF THEOREM 4.8

With the help of the above Lemma D.1 and D.2, we can prove Theorem 4.8.

Proof of Theorem 4.8.
Due to the H-smoothness, we have the quadratic upper bound:

L(θt+1) ⩽ L(θt)− η ⟨∇L(θt),ut⟩+
η2H

2
∥ut∥22 .

Taking the expectation at t, we have:

Et [L(θt+1)] ⩽L(θt)− ηEt [⟨∇L(θt),ut⟩] +
η2H

2
Et

[
∥ut∥22

]
=L(θt)− η

d∑
i=1

Et [∇iL(θt)ut,i] +
d∑

i=1

η2H

2
Et

[
u2t,i
]
.

Combine Lemma D.1 with σ = c and Assumption 4.6, we get

Et [∇iL(θ)ut,i] = Et

[∇iL(θ)φp(gt,i)√
vt,i + ϵ

]
⩾ c
|∇iL(θ)|p+1√

ṽt,i + ϵ
− c

2

|∇iL(θ)|2√
ṽt,i + ϵ

− 2Rp

c
E

[
φ2
p(gt,i)

vt,i + ϵ

]

⩾
c

2

|∇iL(θ)|p+1√
ṽt,i + ϵ

− 2Rp

c
E

[
φ2
p(gt,i)

vt,i + ϵ

]
.

Where last inequality comes from R < 1. Using it for each dimension, we have:

Et [L(θt+1)] ⩽L(θt)−
ηc

2

|∇iL(θt)|p+1√
ṽt,i + ϵ

+
2ηRp

c
E

[
φ2
p(gt,i)

vt,i + ϵ

]
+

d∑
i=1

η2H

2
Et

[
u2t,i
]

=L(θt)−
d∑

i=1

ηc

2

|∇iL(θt)|p+1√
ṽt,i + ϵ

+

d∑
i=1

(
2ηRp

c
+
η2H

2

)
Et

[
φ2
p(gt,i)

vt,i + ϵ

]
.

Noticing
√
ṽti + ϵ ⩽ Rp

√
t, we further have:

Et [L(θt+1)] ⩽ L(θt)−
ηc

2

∥∇L(θt)∥p+1
p+1

Rp
√
t

+

d∑
i=1

(
2ηRp

c
+
η2H

2

)
Et

[
φ2
p(gt,i)

vt,i + ϵ

]
.

Summing the previous inequality for all 0 ⩽ t ⩽ T − 1, taking the complete expectation, and using√
t ⩽
√
T , we have:

E [L(θt)] ⩽ L(θ0)−
ηc
∑T

t=1 ∥∇L(θt)∥
p+1
p+1

2ηRp
√
T

+

d∑
i=1

(
2Rp

c
+
η2H

2

)
E

[
T∑

t=1

φ2
p(gt,i)

vt,i + ϵ

]
.

Then for each dimension, using Lemma D.2 for the sequence {(gpt,i)2}1⩽t⩽T , we obtain:

E [L(θt)]

⩽L(θ0)−
ηc
∑T

t=1 E∥∇L(θt)∥
p+1
p+1

2Rp
√
T

+

(
2ηRp

c
+
η2H

2

)
d E

[
log

(
1 +

1

ϵ

T∑
t=1

φ2
p(gt,i)

)]

⩽L(θ0)−
ηc
∑T

t=1 E∥∇L(θt)∥
p+1
p+1

2Rp
√
T

+

(
2ηRp

c
+
η2H

2

)
d log

(
1 +

R2p

ϵ
T

)
.
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This implies:

E min
1⩽t⩽T

∥∇L(θt)∥p+1
p+1 ⩽

1

T

T∑
t=1

E∥∇L(θt)∥p+1
p+1

⩽
2Rp

c
√
T

(L(θ0)− L⋆

η
+

(
2Rp

c
+
ηH

2

)
d log

(
1 +

R2p

ϵ
T

))
= O

(
log T√
T

)
.

Hence

min
1⩽t⩽T

∥∇L(θt)∥22 ⩽ ( min
1⩽t⩽T

∥∇L(θt)∥p+1
p+1)

2/(p+1) = O
(
log2/(p+1) T

T 1/(p+1)

)
.

D.3 PROOF OF THEOREM 4.11

With the help of the above Lemma D.1 and D.2, we can prove Theorem 4.11.

Proof of Theorem 4.11.
Due to the H-smoothness, we have the quadratic upper bound:

L(θt+1) ⩽ L(θt)− η ⟨∇L(θt),ut⟩+
η2H

2
∥ut∥22 .

Taking the expectation at t, we have:

Et [L(θt+1)] ⩽L(θt)− ηEt [⟨∇L(θt),ut⟩] +
η2H

2
Et

[
∥ut∥22

]
=L(θt)− η

d∑
i=1

Et [∇iL(θt)ut,i] +
d∑

i=1

η2H

2
Et

[
u2t,i
]
.

Combine Lemma D.1 with Assumption 4.9, we get

Et [∇iL(θ)ut,i] = Et

[∇iL(θ)φp(gt,i)√
vt,i + ϵ

]
⩾
σ

2

|∇iL(θ)|2√
ṽt,i + ϵ

− 2Rp

σ
E

[
φ2
p(gt,i)

vt,i + ϵ

]
.

Using it for each dimension, we have:

Et [L(θt+1)] ⩽L(θt)−
ησ

2

|∇iL(θt)|2√
ṽt,i + ϵ

+
2ηRp

σ
E

[
φ2
p(gt,i)

vt,i + ϵ

]
+

d∑
i=1

η2H

2
Et

[
u2t,i
]

=L(θt)−
d∑

i=1

ησ

2

|∇iL(θt)|2√
ṽt,i + ϵ

+

d∑
i=1

(
2ηRp

σ
+
η2H

2

)
Et

[
φ2
p(gt,i)

vt,i + ϵ

]
.

Noticing
√
ṽti + ϵ ⩽ Rp

√
t, we further have:

Et [L(θt+1)] ⩽ L(θt)−
ησ

2

∥∇L(θt)∥22
Rp
√
t

+

d∑
i=1

(
2ηRp

σ
+
η2H

2

)
Et

[
φ2
p(gt,i)

vt,i + ϵ

]
.

Summing the previous inequality for all 0 ⩽ t ⩽ T − 1, taking the complete expectation, and using√
t ⩽
√
T , we have:

E [L(θt)] ⩽ L(θ0)−
ησ
∑T

t=1 ∥∇L(θt)∥22
2ηRp

√
T

+

d∑
i=1

(
2Rp

σ
+
η2H

2

)
E

[
T∑

t=1

φ2
p(gt,i)

vt,i + ϵ

]
.
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Then for each dimension, using Lemma D.2 for the sequence {(gpt,i)2}1⩽t⩽T , we obtain:

E [L(θt)]

⩽L(θ0)−
ησ
∑T

t=1 E∥∇L(θt)∥22
2Rp
√
T

+

(
2ηRp

σ
+
η2H

2

)
d E

[
log

(
1 +

1

ϵ

T∑
t=1

φ2
p(gt,i)

)]

⩽L(θ0)−
ησ
∑T

t=1 E∥∇L(θt)∥22
2Rp
√
T

+

(
2ηRp

σ
+
η2H

2

)
d log

(
1 +

R2p

ϵ
T

)
.

This implies:

E min
1⩽t⩽T

∥∇L(θt)∥22 ⩽
1

T

T∑
t=1

E∥∇L(θt)∥22

⩽
2Rp

σ
√
T

(L(θ0)− L⋆

η
+

(
2Rp

σ
+
ηH

2

)
d log

(
1 +

R2p

ϵ
T

))
⩽
Rp−1

σ

2R√
T

(L(θ0)− L⋆

η
+

(
2R+

ηH

2

)
d log

(
1 +

R2

ϵ
T

))
=
Rp−1

σ

(
R.H.S. of (5)

)
.

The last inequality comes from Assumption 4.9 and R < 1.

E STATEMENT

E.1 LLM USAGE STATEMENT

In this paper, we used LLM to help with writing. The model checked and fixed grammar errors in our
text. We also used it to make sentences flow better. The LLM helped improve readability without
changing our ideas. We did not use LLM for any other writing tasks. Our use was only for grammar
and style improvements.

E.2 ETHICS STATEMENT

We confirm that this research has been conducted in accordance with the ICLR Code of Ethics . All
experiments were performed responsibly, with careful consideration of potential impacts, limitations,
and broader societal implications. No part of this work involved practices that violate ethical standards
regarding research integrity, fairness, transparency, or the responsible use of computational resources.

E.3 REPRODUCIBILITY STATEMENT

We believe that all of the experimental results are reproducible in our work. The paper specify
comprehensive training and test details (e.g., hyperparameters, how they were chosen, type of
optimizer, etc.) necessary to understand the results in Section 3 and Appendix B. Besides, we provide
open access to the code in the supplemental material and all data datasets are open-sourced.
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