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Abstract

The effectiveness of large-scale language mod-
eling (LLM) in generating data samples has
been widely proven, especially in question an-
swering and textual entailment tasks. However,
these tasks are primarily concerned with sur-
face semantics and usually require the model
to learn only information about lexical and
syntactic structures. In contrast, generating
metaphorical samples requires LLMs to de-
velop a deeper understanding of the implicit
meanings in the text. Therefore, the aim of
this paper is to explore the ability of Chat-
GPT to generate metaphorical samples. First,
we propose two prompt enhancement methods
based on definitions and multiple word mean-
ings. The former introduces a metaphor def-
inition, and the latter requires LLM to gener-
ate the corresponding metaphorical or literal
sample content based on each word sense. Ex-
perimental results show that the SPE method
performs slightly lower than manually labeled
samples in terms of fine-tuning performance
(3.5% lower than the average F1 value for the
three metaphorical datasets), but at 1/250th the
cost of the latter. Since most of work focuses
on zero- or few-shot methods, we use it as a
baseline. We provide an in-depth discussion of
the differences between the four sample genera-
tion methods mentioned above through manual
evaluation, automated evaluation, and example
analysis. To enhance the reliability of the study,
we introduce ChatGPT, LLaMA3, and Mixtral
to further explore the differences in generating
implicit semantic content across LLMs.

1 Introduction

Data annotation is a time-consuming and labor-
intensive task. The average cost of labeling each in-
stance on a crowdsourcing platform is $0.11 (Wang
et al., 2021a). This high cost has become a con-
straint for further development of many studies. In
contrast, generating samples using ChatGPT API
becomes a more cost-effective alternative, with a

cost of $0.05 per 1M tokens input and $0.15 per 1M
tokens output, respectively. Therefore, it is impor-
tant and valuable to understand and guide ChatGPT
to generate high-quality sample data. Specifically,
(1) mitigating the labor and time overhead of man-
ual annotation. (2) improving the performance of
LLM in low-resource scenarios by transferring the
rich world knowledge in LLM. (3) generating high-
quality samples using LLM that can be used for
fine-tuning of the lightweight model. (4) research
on generating metaphorical samples that can allow
LLM to better understand and generate content that
contains complex semantics.

In previous studies, LLMs have been widely
used to construct data for various NLP tasks,
mainly including two categories, sample labeling
and sample generation, each of which can be fur-
ther categorized into zero- and few-shot methods.
For example, sample labeling using simple instruc-
tions (Ollion et al., 2023; Laskar et al., 2023; Gi-
lardi et al., 2023; Koptyra et al., 2023; Belal et al.,
2023). On few-shot methods, Su et al. (2022), Liu
et al. (2021) and Rubin et al. (2021) improve the
quality of the model’s annotation for new samples
by filtering representative or content-diverse exam-
ple samples. In addition, Wang et al. (2021a) and
Alizadeh et al. (2023) explored ways to introduce
LLM labeled data on top of manual labeling to
minimize the manual labeling cost without signifi-
cant performance degradation. For sample genera-
tion, past zero-shot approaches (Saha et al., 2024;
Huang et al., 2023) only provide task descriptions
and sample labels, and LLMs are required to gen-
erate specified sample contents. Few-shot studies
(Li et al., 2024; Hartvigsen et al., 2022) use man-
ually labeled samples as examples to guide LLMs
to generate similar samples.

However, the above studies on LLM generation
samples mainly focus on data generation for sur-
face language tasks, which usually only require
the model to learn information about lexical and
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Figure 1: The four sample generation methods explored in this paper. DG: sample generation based on task
formulation and labeling (metaphorical or not). EPE: metaphorical samples are used as reference examples in the
generation process. DPE (ours): enhancement of sample generation by adding metaphorical definitions. SPE
(ours): sample generation by using multi-word meanings of target words as knowledge.

syntactic structures. Metaphor is a high-level cog-
nitive modality, and as an implicit semantic class
of tasks, metaphor comprehension is very complex
and requires in-depth understanding of the implicit
meanings in the text. Therefore, the aim of this
paper is to explore the performance of LLM in gen-
erating metaphor samples. We design two knowl-
edge injection methods, definition-based prompt
enhancement (DPE) and semantics-based prompt
enhancement (SPE) methods. DPE only needs to
give metaphor definitions, while SPE needs to in-
troduce multi-meaning information from wordnet
or oxford dictionary. We consider the first two
meanings as literal and the rest as metaphorical
(in order of frequency of use), and then ask LLM
to generate corresponding literal and metaphori-
cal samples based on different meanings. In addi-
tion, we introduce LLM direct generation (DG) and
example-based prompt enhancement (EPE) meth-
ods as controls. We use three LLMs, ChatGPT,
LLaMA, and Mixtral, to generate metaphor sam-
ples and verify the performance of our proposed
scheme by fine-tuning the small model. Then, we
analyze in-depth the similarities and differences
between the LLM-generated samples and the man-
ually labeled samples using both manual and auto-
matic evaluation methods with case study. Overall,
our contributions are as follows:

1. To the best of our knowledge, this is the first
study to apply ChatGPT to metaphorical sam-
ple generation. We conducted manual and au-
tomatic evaluation of LLM-generated samples
and manually labeled samples, and provided
an in-depth analysis of the similarities and
differences between the two.

2. We propose definition-based prompt enhance-
ment (DPE) and semantics-based prompt en-
hancement (SPE) methods. Experimental re-
sults show that our proposed methods achieve
the best performance when using different
LLMs as sample generators.

3. We give an example analysis of ChatGPT gen-
erated samples, summarizing the current prob-
lem into three categories: misinterpretation
of conventional meaning (MCM), neglect of
metaphorical evolution (NME), and polysemy
confusion (PC).

2 Related Work
2.1 LLM Sample Generation

The zero-shot sample generation approach only re-
quires the provision of a task description and sam-
ple labels to guide the LLM to generate samples of
the specified type. e.g., "The movie review in posi-
tive sentiment is:" (Ye et al., 2022). Some of these
studies (Ubani et al., 2023; Ye et al., 2022; Gao
et al., 2022; Meng et al., 2022; Wang et al., 2022)
were tested on multiple NLP-based tasks (e.g., SST-
2 (Socher et al., 2013), IMDb (Maas et al., 2011)).
Wang et al. (2022) adds a filtering mechanism to
filter duplicate and low quality samples. Saha et al.
(2024) and Huang et al. (2023) explore hate or
counterfactual speech sample generation.

Another part of the research (Yoo et al., 2021;
Wang et al., 2021b; Hartvigsen et al., 2022; Li et al.,
2024) used an example-based approach, which
takes a small amount of manually labeled data
as an example and directs LLM to generate sim-
ilar samples. Of these, Li et al. (2024) explored
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Figure 2: SPE and DPE methods prompt design. wy, denotes the target word and vy, is the label. In DPE, ny, ; is the
number of samples to be generated for the target word wy, and ¢ = 0 or 1 corresponds to the target word being used
literally, metaphorically, respectively. For SPE, v; denotes the jth lexical sense of the target word wy,. 1 5, ; is the
number of samples to be generated for the jth meaning of the target word wy.

low-resource text generation and Hartvigsen et al.
(2022) used LLM to generate hate speech datasets.
Yoo et al. (2021) and Wang et al. (2021Db) test the
effectiveness of LLM’s generation across multiple
subtasks.

Furthermore, Xu et al. (2023) and Taori et al.
(2023) devised a heuristic Instruction method that
starts reasoning from the initial Instruction and
iteratively generates a wider range of more complex
Instruction. This work names the zero- or few-shot
methods as direct generation (DG) and example-
based prompt enhancement (EPE) methods.

2.2 Metaphor Detection

For the target words and corresponding contexts,
metaphor detection aims to determine whether the
words are used in a metaphorical manner. Com-
pared to tasks such as sentiment labeling and ques-
tion and answer, metaphor detection requires the
model to have a deeper understanding of the im-
plicit meaning of the text, a challenge that has typi-
cally been addressed in prior research by injecting
domain knowledge. In prior work, researchers have
used a variety of knowledge injection strategies.
Among them, Le et al. (2020), Song et al. (2021)
and Feng and Ma (2022) used dependency tree
knowledge to direct the model to focus on specific
syntactic structures. Mao and Li (2021), Choi et al.
(2021) and Su et al. (2020) incorporate Part-Of-
Speech tagging (POS), where Mao and Li (2021)
treats POS as a separate subtask. In addition, Gong

et al. (2020), Klebanov et al. (2016) and Zhang
and Liu (2023) introduced the wordnet database
(Fellbaum, 1998). Gong et al. (2020) and Klebanov
et al. (2016) classified words into fifteen categories
based on semantic features, while Zhang and Liu
(2023) constructed a binary classification subtask
by directly taking the most common definitions of
words in wordnet as literal meanings.

3 Method

This section describes four sample generation meth-
ods: the DG, EPE, DPE, and SPE. prompt designs
for the DG and EPE methods are shown in Ap-
pendix 12.1 and 12.2, respectively. the DPE and
SPE methods will be described next.
Definition-based Prompt Enhancement. The
DPE approach aims at injecting metaphorical def-
initions as knowledge into LLM. This paper uses
the definition given by Lakoff and Johnson (2008):
extracting familiar concepts in the target domain
to understand vague and abstract concepts in the
source domain.

Semantics-based Prompt Enhancement. The
SPE approach aims to inject the lexical knowl-
edge of the target word into the LLM. This paper
use multiple word sense information from wordnet
(Miller, 1995; Fellbaum, 1998) and the oxford dic-
tionary. Among them, wordnet has been shown to
help improve metaphor recognition performance
(Gong et al., 2020; Klebanov et al., 2016; Zhang
and Liu, 2023). For any target word wy, as well as



the verb meaning sets Vj, retrieved from wordnet
(V. is sorted by frequency of use), we consider the
first two common meanings as literal meanings,
and the rest as metaphorical meanings. That is, for
any lexical meaning v; € Vj:

i Ve 0<j<2andy,=0 )
! Vim J>2andy, =1,

where Vj; and V,, denote the literal and
metaphorical lexical sense sets of the target word
wy, respectively. The label y; = 0 indicates that
wy, 1s used non-metaphorically, while y; = 1 indi-
cates that wy, is used metaphorically.

Prompt Construction. The prompt design of
DPE and SPE is shown in Fig.2. For the input
(wg, yx ), we first specify the target word word =
wg. Then, based on the value of ¥, the model is
asked to generate ny ; literal or metaphorical sen-
tences, where ¢ = 0 or 1 corresponds to y; = 0,
yr = 1, respectively. For DPE, we added the
metaphorical definition at the beginning. For SPE,
we consider the literal lexical sense set V), ; and the
metaphorical lexical sense set Vj, ,,, for the target
word wy,. Specifically, we first divide based on the
number of samples to be generated, for y;, = 1
there are:

amy @

Ng1,j = Ceil( ‘Vk |
,m

where ceil is an upward rounding function, |V, |
denotes the number of metaphorical lexical sense,
ng,1,; denotes the target word of the kth metaphor-
ical usage, and the number of samples to be gener-
ated for the jth lexical meaning. For example, for
the first metaphorical lexical meaning vz € Vi p,
and its required number of generated samples ny, ;.
We specify the values of the variables in the prompt:
n = ng1,j, meaning = vs, bootstrap ChatGPT to
generate the metaphor samples. The next metaphor-
ical meaning vy is then given until ny 1 samples
have been generated.

4 Fine-tuning Model Experiments

4.1 Experimental Setup

Experiment 1. The experiment was designed to
fine-tune the mini-model using the LLM-generated
samples as a training set and to test it on three
metaphorical datasets, VUAverb, TroFi, and MOH-
X (see Appendix 11 for a detailed description of
the datasets). The purpose of the experiment was:

(1) verify whether the samples generated by LLM
contain sufficient metaphorical knowledge. Higher
quality samples tend to allow the fine-tuned model
to achieve higher performance on the metaphor
test set. (2) Compare the differences in the sam-
ples generated by different LLMs. (3) Discuss
how different metaphorical knowledge injection
methods affect the quality of sample data gener-
ated by LLM. The experiments include four types
of DG (no external knowledge), EPE (metaphori-
cal example knowledge), DPE (metaphorical defi-
nition knowledge), and SPE (metaphorical knowl-
edge with multiple word meanings). We used three
LLMs for sample generation:

* Mixtral: Mixtral is an open source generative
sparse expert mixture model provided by Mis-
tral AI'. We use Mixtral-8x7B-Instruct-v0.1
version, whose weight parameters are derived
from huggingface?.

* LLaMA3: LLaMA3 is a parametric large lan-
guage model released by Meta Al on April
18, 2024, including 8B and 70B. We use the
version Llama-3-70B-Instruct, its weights can
be obtained from the official website?.

* ChatGPT: ChatGPT is a closed-source model
developed by OpenAl, which is available for
paid use through API*. This paper, the version
gpt-3.5-turbo-0125 is used.

For fine-tuning, we used RoBERTa (Liu et al.,
2019), initialized by the weight parameters of Hug-
gingface (Wolf et al., 2019). The output of the
model adopts part of the model idea devised in
Choi et al. (2021), i.e., the hidden layer output
corresponding to the CLS and the target word is
used for classification. Specifically, we first let
RoBERTa be trained on DG, EPE, DPE, and SPE
samples, respectively, and then validated on the test
set. We perform the test set on the entire VUAverb
test, TroFi and MOH-X with samples 5875, 3739
and 649, respectively.

Experiment 2. Experiment 2 compares the SPE
method for generating samples with manually la-
beled samples (i.e., the VUAverb training set) in
terms of fine-tuning performance and cost. Since

"https://mistral.ai/news/mixtral-of-experts/

Zhttps://huggingface.co/mistralai/Mixtral-8x7B-Instruct-
v0.1/tree/main

*https://llama.meta.com/llama-downloads

*https://platform.openai.com/



Method VUAverb TroFi MOH-X
P R F1 P R F1 P R F1

Mixtral-DG 0.516 0.261 0.347 0.531 0.175 0.263 1.000 0.038 0.073
Mixtral-EPE  0.412 0.039 0.071 0.586 0.036 0.067 0.529 0.057 0.103
Mixtral-DPE  0.448 0.375 0.408 0.538 0.297 0.383 0.813 0.289 0.426
Mixtral-SPE  0.348 0454 0.394 0461 0.342 0392 0551 0.311 0.398
LLaMA3-DG 0.547 0.166 0.254 0.558 0.146 0.231 0900 0.171 0.288
LLaMA3-EPE 0440 0.086 0.144 0.442 0.101 0.164 0.545 0.038 0.071
LLaMA3-DPE 0.552 0.277 0.368 0.565 0.242 0.338 0.858 0.384 0.531
LLaMA3-SPE 0325 0.338 0.332 0420 0.248 0312 0.559 0.359 0.446
ChatGPT-DG  0.541 0.136 0.217 0.506 0.084 0.144 0.870 0.171 0.286
ChatGPT-EPE  0.450 0.294 0.356 0.564 0.266 0.361 0.516 0.316 0.392
ChatGPT-DPE 0.507 0.298 0.376 0.549 0.237 0.330 0.836 0.324 0.467
ChatGPT-SPE 0302 0.794 0.438 0.439 0910 0.593 0.497 0.470 0.483

Table 1: LLM generated samples on three metaphorical datasets to fine-tune performance. Experiments is binary
classification. F1 scores are core metrics indicating the weighted average of precision (P) and recall (R). DG:
LLM direct generation method; EPE: example-based prompt enhancement method; DPE: definition-based prompt
enhancement method; SPE: Lexical semantics-based prompt enhancement method.

Fine-tuning performance

Labeling costs

Method

VUAverb TroFi MOH-X

P R F1 P R F1 P R F1 Input Output Avg

SPE-w 0.302 0.794 0.438 0.439 0.910 0.593 0.497 0.470 0.483 0087$ 0.252% 0.339%
SPE-0 0.356 0.842 0.501 0.453 0.895 0.601 0.609 0.806 0.694 0.068% 0.280$ 0.348%
GT 0479 0.646 0.550 0.509 0.731 0.600 0.738 0.768 0.753 - - 869%

Table 2: Comparison of the SPE method with manually labeled samples in terms of fine-tuning performance (left)
and labeling cost (right). SPE-w and SPE-o use wordnet and oxford dictionary’s multi lexical sense knowledge,
respectively, and both use ChatGPT to generate the samples. Input: cost of input for the prompt design; Output:

cost of ChatGPT output data; Avg: average of inputs and outputs

SPE introduces metaphorical knowledge of multi-
word meanings, in addition to wordnet, oxford dic-
tionary also contains multi-word meanings. We
denote the wordnet- and oxford dictionary-based
SPE methods as SPE-w and SPE-o, respectively.
On fine-tuning, the model fine-tuning method is the
same as that of Experiment 1. For cost analysis, we
use the manual annotation cost recorded in Wang
et al. (2021a) (i.e., $0.11/per sample). For SPE-
generated samples, we tokenize them using the
methods provided by RoBERTa (Liu et al., 2019)
and record the total number of sample tokens for
each method separately. We record the token price
given in the official OpenAl website as the auto-
matic labeling cost. The input is $0.5 per 1M to-
kens and the output is $1.5 per 1M tokens.

4.2 Results

Experiment 1. The experimental results are pre-
sented in Table 1. Our proposed methods achieve
the best F1 performance on all three LLMs and
all three datasets (e.g., on VUAverb, SPE 0.438
vs. EPE 0.356 on ChatGPT and DPE 0.368 vs.
DG 0.254 on LLaMA3 and DPE 0.408 vs. DG
0.347 on Mixtral). This shows that the DPE and
SPE methods somewhat balance the accuracy of
detecting metaphorical and literal samples.

For the EPE method introduced as an example,
while its performance is better for samples gener-
ated using ChatGPT, we observe a larger perfor-
mance degradation when using the open-source
Mixtral and LLaMA3 models (e.g., on F1, Chat-



Method Clarity Relevance Diversity
Literal Metaphor Avg Literal Metaphor Avg Literal Metaphor Avg
GT 4.054 3.828 3941 4.075 3.387 3.731  4.086 3.785 3.935
DG 4.677 4.355 4516 4.151 3.699 3.925 3.753 3.419 3.586
EPE 4.505 4.312 4409 3.430 3.344 3.387  3.796 3.505 3.651
DPE 4.710 4.473 4.591 4.108 3.237 3.672  3.892 3.376 3.634
SPE 4.602 4.333 4468 4.097 3.301 3.699 3.946 3.634 3.790

Table 3: Results of manual evaluation of ChatGPT generated samples and manually labeled samples. Clarity,
relevance, and diversity are formulated in Appendix 13.1. Literal: literal sample scores; Metaphor: metaphorical
sample scores; Avg: average of Literal and Metaphor samples.

GPT 0.356 vs. LLaMA3 0.144 on VUAverb and
ChatGPT 0.361 vs. LLaMA3 0.164 on TroFi and
ChatGPT 0.392 vs. Mixtral 0.103 on MOH-X). On
the one hand, it shows that example knowledge
can be counterproductive if the model is unable to
understand or misinterprets the introduced exam-
ple information. On the other hand, it also shows
that compared to closed-source ChatGPT, current
open-source LLLM models often do not understand
the metaphorical information in the examples well,
which leads to a drastic decrease in the recall of
the EPE method (e.g., on VUAverb, EPE 0.039 on
Mixtral and EPE 0.086 on LLaMA3).

For our proposed DPE method, the low recall
of DG or EPE is improved without decreasing pre-
cision (e.g., on VUAverb, DPE 0.277 vs. EPE
0.086 on LLaMA and DPE 0.375 vs. EPE 0.039 on
Mixtral). This suggests that introducing metaphor
definitions works better than introducing metaphor
examples when modeling capabilities are weak.
For ChatGPT with some degree of metaphor com-
prehension, the difference in recall between the
two is not significant when definitions or examples
are introduced (e.g., DPE 0.298 vs. EPE 0.294 on
VUAverb and DPE 0.237 vs. EPE 0.266 on TroFi
and DPE 0.324 vs. EPE 0.316 on MOH-X).

In addition, DG, EPE and DPE tend to have
higher precision than recall. It shows a stronger
ability to recognize non-metaphorical samples. In
particular, the DG method is the most prominent
among the three (e.g., on MOH-X, DG 1 on Mix-
tral and DG 0.9 on LLaMA3 and DG 0.870 on
ChatGPT). Since DG tend to use simple instruction
descriptions, whereas EPE and DPE methods intro-
duce partial external knowledge. This suggests that
unguided LLM output knowledge tends to be non-
metaphorical. This is manifested in the fine-tuning
model with its low recall (i.e., weak recognition of

metaphorical samples). In contrast, our proposed
alternative SPE approach based on multiple lexical
meanings has a more balanced precision and recall
on all three LLM models, and even higher recall
(e.g., on ChatGPT, precision 0.302 vs. recall 0.794
on VUAverb and precision 0.439 vs. recall 0.910
on TroFi and precision 0.497 vs. recall 0.470 on
MOH-X). This suggests that injecting metaphorical
knowledge in the form of multiple lexical meanings
is superior to introducing metaphorical examples
or definitions directly.

Experiment 2. As can be seen from the results
in Table 2, the SPE-oxford method outperforms
the SPE-wordnet method in fine-tuning on all three
metaphor datasets. Compared to wordnet, oxford
dictionary tend to contain richer and more cur-
rent lexical information. As a result, the SPE-
oxford method produces higher quality, as evi-
denced by further improvements in precision and
recall (e.g., VUAverb SPE-oxford 0.356 vs. SPE-
wordnet 0.302 on precision and SPE-oxford 0.842
vs. SPE-wordnet 0.794 on recall). While SPE-
oxford is lower than GT (manually labeled sam-
ples) on VUAverb and MOH-X (i.e., on F1, -0.049
on VUAverb and -0.059 on MOH-X), it is slightly
higher on TroFi (i.e., on F1, + 0.001 on TroFi).
Overall, although the SPE-oxford method slightly
underperforms the real samples in terms of fine-
tuning performance, it requires only about 1/250th
of the cost of manual labeling. This demonstrates
the superiority of our proposed method.

5 Manual Evaluation

The manual evaluation was designed to compare
the differences between the samples generated us-
ing ChatGPT, and the manually labeled real sam-
ples. The manual evaluation is done on a group
basis. For example, a sample group (target word



"abandon" and label "1"). We invited three vol-
unteers to assess this sample group, using clarity,
relevance, and diversity as the three metrics for
evaluation, and redefining them for the character-
istics of the metaphor task (see Appendix 13.1 for
specific definitions). These metrics were scored on
ascale of 1 to 5, and the final results were averaged
across the three ratings.

Results. The results of the manual evaluation are
shown in Table 3. Compared to the real sample
(GT), the clarity scores of the samples generated us-
ing ChatGPT were higher (e.g., on avg, DG +0.623
and EPE +0.451 and DPE +0.656 and SPE +0.548).
This suggests that the generated samples are eas-
ier to understand. Similarly, DG performs best on
relevance (e.g., +0.194 on GT and +0.226 on SPE).
This suggests that prompt without external knowl-
edge makes LLM less disturbed compared to the
introduction of metaphorical knowledge generation
methods, thus ensuring to some extent that LLM
generates samples with better accuracy.

However, the understandability and accuracy of
the generated samples do not enhance the perfor-
mance of the fine-tuned model (comp. GT, DG
+0.575 on clarity and DG +0.194 on relevance,
but DG -0.333 on VUAverb-F1). Instead, there
was a correlation between diversity and model
fine-tuning performance (e.g., on ChatGPT and
VUAverb, GT-avg 3.935 vs. GT-F1 0.550 and SPE-
avg 3.790 vs. SPE-F1 0.438 and DG-avg 3.586 vs.
DG-F1 0.217). This suggests that the richness of
metaphorical usage can inject more metaphorical
knowledge into the fine-tuned model, thus improv-
ing the quality of the metaphorical samples. In
addition, we notice that EPE scores on relevance
are relatively weak (e.g., on avg, -0.538 on EPE
and -0.285 on DPE). This suggests that LLMs have
difficulty understanding the metaphorical knowl-
edge in the examples. Finally, the overall ratings
of the different method-generated samples on non-
metaphor were always higher than those of the
metaphor samples (e.g., on GT, Literal 4.054 vs.
Metaphor 3.828 on Clarity and Literal 4.075 vs.
Metaphor 3.387 on Relevance). This also reflects
the relative weakness of ChatGPT in its ability to
generate metaphor samples.

6 Automatic Evaluation

This experiment uses automatic evaluation to ex-
plore the similarity between ChatGPT-generated
samples and manually labeled samples. We used

Automatic Evaluation

Method
Bleu Rouge Meteor Avg
DG to GT 0.111 0.149 0305 0.188
EPE to GT 0.194 0.212 0.348 0.251
DPE to GT 0.115 0.156 0.313 0.195
SPE to GT 0.131 0.142 0.275 0.183

Table 4: The result of the automatic evaluation. Bleu
and Rouge are Bleu-1 and Rouge-1, respectively. The
automatic evaluations are all referenced to the manually
labeled samples.

three automatic evaluation metrics, Bleu, Rouge,
and Meteor, to measure the degree of similarity be-
tween LLM-generated and manually labeled sam-
ples (see Appendix 13.2 for a detailed description).
Result. The results of the experiments are pre-
sented in Table 4. The EPE method reached its
maximum values on three metrics (e.g., EPE 0.194
vs. SPE 0.131 on Bleu and EPE 0.212 vs. DPE
0.156 on Rouge and EPE 0.251 vs. DPE 0.195 on
Meteor). This suggests that the method of intro-
ducing the examples was able to guide ChatGPT
to generate samples similar to the examples, but
similarity does not mean that the metaphor was un-
derstood (see the manual evaluation analysis). Ad-
ditionally, we observed that direct generation was
more similar to using the defined DPE approach
on three metrics (i.e., DPE 0.115 vs. DG 0.111
on Bleu and DPE 0.156 vs. DG 0.149 on Rouge
and DPE 0.313 vs. DG 0.305 on Meteor). This
suggests that the direct definition-giving approach
minimizes the disturbance of external knowledge
while improving the metaphor comprehension of
ChatGPT. Comparatively, the EPE and SPE meth-
ods are more variable.

7 Case Study

Based on the above experimental analysis, despite
the huge cost advantage of the ChatGPT method,
there are still some problems with the samples it
generates, which can be summarized into three cate-
gories: the misinterpretation of conventional mean-
ing (MCM), the neglect of metaphorical evolution
(NME) and polysemy confusion (PC). Examples
of problems in these three categories are listed in
Table 5.

MCM states that ChatGPT incorrectly interprets
the conventional meaning as a literal use. For ex-



DPE

SPE

Types DG EPE
The account manager Taking into account
Mcm WS responsible for the increasing num-
maintaining relation- ber of car accidents
ships - - -
The sun rose, paint- The sunflower, reach-
NME ing the sky with yel- ing for the sky, ex-
low, as if expectinga pects a warm em-
glorious day ahead.  brace from the sun.
Being the winner en- as the ancient
PC  titled him to a cash philosophers entitled

prize.

them.

I will need to account
for all the expenses
before submitting the
budget report.

She found that ex-
ceeding expectations
was not as difficult as
she had anticipated.

The painting was en-
titled "Starry Night"
by Vincent - - -

The meticulous ac-
countant carefully ac-
counted for every
penny - - -

It’s natural to expect
professionalism and
competence from our
employees - - -

- entitles you to re-
ceive a certificate of
achievement.

Table 5: Common Errors Showcase. MCM stands for misinterpretation of conventional meaning. NME stands for
neglect of metaphorical evolution. PC stands for polysemy confusion. the example of MCM requires ChatGPT
to generate the literal usage of "account”, and the examples of NWE and PC require the metaphorical usage of

"expect" and the literal usage of "entitle", respectively.

ample, the literal use of "account”, which originally
meant "counting", evolved into "customer or client
having an account" or "statement answering for
conduct". However, due to the customized mean-
ing of "having an account”, ChatGPT misinterprets
it as literal. In the MCM example, the DPE gener-
ated accurately, interpreting it as "counting"; DG
and EPE misinterpreted "having an account" as
literal, and SPE directly generated "accounting".

NME stated that ChatGPT often creates
metaphors by anthropomorphizing elements of na-
ture, while ignoring the evolution of metaphors.
Take the metaphorical usage of "expect" as an
example, its initial meaning is "long for, antici-
pate", which is later extended to mean "the ex-
pected changes in the economy and stock mar-
ket". In the NME example, DG and EPE ignore
the evolution of metaphors and construct inappro-
priate metaphors (e.g., "sun expects”, "sunflower
expects") through anthropomorphism. There are
many such examples generated by the DG method.
Differently, DPE and SPE did not find metaphorical
meanings, and misidentified "long for, anticipate"
as metaphorical.

PC indicated that too many lexical variations led
to confusion in the understanding of metaphors in
ChatGPT. Take the literal usage of "entitle" as an
example, its original meaning is "to give a title to a
chapter, book" or "give a title or name to". which

is later extended to "bestow an office" or "give
(someone) property”. Entitle obviously has more
literal and derived meanings than other words. In
the PC example, DG and SPE generate the wrong
interpretation of "have the right to", while EPE
correctly translates it as "give a title or name to" due
to the use of manually labeled samples as examples.
DPE was also correctly interpreted as ’give a title
or name to’.

8 Conclusion

This work investigate how to generate metaphor
samples using ChatGPT. We propose definition-
based prompt enhancement (DPE) and semantics-
based prompt enhancement (SPE) methods. Ex-
perimental results show that our proposed methods
achieve the best performance when using different
LLMs as sample generators. Moreover, in the case
where we used the oxford dictionary as an informa-
tion source for multi-lexical knowledge, the fine-
tuning performance of the SPE method is close to
the manually labeled sample case at only 1/250th of
the cost of the latter. We then extensively compare
the similarities and differences between the differ-
ent generative methods and the manually labeled
real samples using manual evaluation, automatic
evaluation, and case study.



9 Limitations

This paper investigate the problem of how to gen-
erate a metaphorical dataset using ChatGPT and
propose a semantics-based prompt enhancement
(SPE). The method relies on the knowledge of word
meanings in wordnet, which brings some overhead.
Example analysis reveals that there are still a num-
ber of problems with the current samples generated
using ChatGPT, which are broadly classified into
three categories: the misinterpretation of conven-
tional meaning (MCM), the neglect of metaphor-
ical evolution (NME), and the polysemy confu-
sion (PC). Addressing these issues still requires
improvements in generating sources (ChatGPT) as
well as prompt design methods. In future work,
we will aim to explore ways to minimize the re-
liance on manual annotation or the use of external
databases, and to ensure the quality of metaphorical
sample generation.

10 Ethics Statement

In this paper, we detail how ChatGPT was utilized
to generate the metaphorical dataset. The datasets
used and the research papers cited were obtained
from publicly available sources, and we strictly
adhere to academic and research ethics guidelines
to ensure the legitimacy and transparency of the
research process. We place particular emphasis
on transparency and openness of information, and
are committed to providing clear methodological
descriptions and experimental details so that other
researchers can understand and reproduce our re-
search. We encourage other researchers in our aca-
demic community to conduct responsible research
and adhere to best practices in knowledge sharing
to advance the continued development of the field.
Through open information sharing, we expect to
foster broader collaboration and deeper understand-
ing of the metaphor detection task.
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11 Fine-tuning Datasets

Among the fine-tuning experiments, we use the
metaphor samples generated by LLM as the train-
ing set to fine-tune ROBERTa. and then test them
on three metaphor datasets, VUAverb, TroFi and
MOH-X, respectively.

VUAverb. The VU Amsterdam Metaphor Corpus
(VUAMCO) (Steen et al., 2010) metaphorically an-
notates each lexical unit in a subset of the British
National Corpus (Edition et al.), and the annotation
was done using the MIPVU program. Based on
VUAMC, several different variants of the VUA cor-
pus have emerged, among which VUAverb is the
verb version of the VUA corpus. This paper uses
the VUAverb dataset mentioned in the metaphor
detection shared task (Leong et al., 2018, 2020),
which contains 15516 training samples and 5873
test samples.

VUAverb Cuts. VUAverb has the problem of long-
tailed distribution. for example, the target words
"say" and "go" contain 509 and 506 samples re-
spectively, while the number of most verbs is very
small. According to statistics, among the 1875
verbs in the VUAverb training set, there are only
257 verbs with number greater than 10 (13.7% of
the total), while there are 781 verbs with number
equal to 1 (41.7% of the total). To mitigate the
long-tailed distribution, we trimmed the VUAverb
train. Specifically, we first filtered out the target
word categories with sample sizes larger than 10,
and then randomly selected 10 of them as the final
samples of the category. After such processing, we
finally obtained 7,900 pieces of data, which will
be used as crowdsourced annotations (CA) data for
subsequent experiments.

TroFi. TroFi (Birke and Sarkar, 2006) is a verb-
target focused dataset containing the literal and
metaphorical usage of 50 English verbs from the
1987-1989 Wall Street Journal corpus (Charniak
et al., 2000). We use the same version of TroFi
as Choi et al. (2021) and Zhang and Liu (2023),
which contains a total of 3739 samples. These sam-
ples cover rich verb instances and provide diverse
contextual information.

MOH-X. The MOH dataset was created by Mo-
hammad et al. (2016), and its construction method-
ology involves first extracting polysemous verb
samples from wordnet, and then metaphorically la-
beling the sentences via a crowdsourcing platform.
To ensure the quality of the dataset annotation, Mo-
hammad et al. (2016) adopted a 70% annotation



consistency criterion. A subset of MOH, MOH-X
(Shutova et al., 2016), contains 649 samples and is
a commonly used dataset in mainstream metaphor
detection systems (Choi et al., 2021; Zhang and
Liu, 2023). This subset excludes instances with
pronouns, dependent subjects or objects. There-
fore, we use MOH-X for model evaluation.

12 Prompt Designs
12.1 Direct Generation Method

Prompt:

Generate ny; sentences in different styles
containing the specified verb based on
the explanation, where the verb are used
metaphorically.

word: w

s-1:

Table 6: DG prompt.

The DG approach aims to direct ChatGPT to
generate samples of a specified type without using
external knowledge content. For input, wy, yi, 1 ;
represent the target word, label, and the number of
samples to be generated, respectively. (ny; is the
same as the number of samples in the same group
in VUAverb cut). 7 = 0 or 1 corresponds to yx = 0,
yr = 1, respectively, indicating that the target word
is literal, metaphorical usage. The specific prompt
design is shown in Table 6.

12.2 Example-based Prompt Enhancement
Method

Prompt:

Generate ny; sentences in different styles
containing the specified verb based on
the explanation, where the verb are used
metaphorically.

word: w

example: dy

s-1:

Table 7: EPE prompt.

Example-based prompt enhancement (EPE)
methods are commonly used techniques for prompt
learning. For example, Yoo et al. (2021); Wang
et al. (2021b) provide one or more examples and
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category labels for each category of a particu-
lar task. Inspired by the above, this paper intro-
duces the EPE method and adapts it for metaphor-
ical features. First, we notate the sample set of
all available examples (i.e., the VUAverb cut) as
D= (xi,wi, yi)ll S 1 S N, where T, Wj, and Yi
are the text, the target word, and the corresponding
labels, respectively. In then, we classify D into
subsets Dy; based on the target word wy, and the
corresponding label y;, where ¢ = 0 or 1 denotes
the literal, metaphorical usage, respectively. For
each category Dy, ;, we randomly select a sample
dy ; as an example. Finally, dj, ; will be used as a
prompt message in the prompt.

13 Evaluation Metrics

13.1 Manual Evaluation Metrics

In the manual evaluation experiments on ChatGPT
generated samples, we used clarity, relevance, and
diversity as evaluation metrics, and their specific
meanings are:

* Clarity: the ease with which a metaphor can
be understood. The greater the number of
samples in the same sample set where it is
easier to judge the metaphor, the higher the
clarity.

* Relevance: whether the category (metaphori-
cal or literal) in which the sample is labeled
matches the actual usage of the sample. The
greater the number of matching samples in
the same sample group, the greater the corre-
lation.

* Diversity: whether the usage of the sample
metaphors (often expressed in different word
meanings) is diverse within the same group.
For example, "catch” is "to win someone’s
affection or love" in "catch someone’s heart"
and "to attract someone’s attention" in "catch
someone’s eye".

13.2 Automatic Evaluation Metrics

In the automated evaluation experiments on Chat-
GPT generated samples, we used Bleu, Rouge and
Meteor as evaluation metrics, and their specific
meanings are:

* Bleu: Bleu calculates how well the LLM out-
put matches the real samples on n-grams of
different lengths. We use the nltk (Loper and
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Figure 3: Plot of the results of the sample fusion experiment. The experiment aims to investigate the impact of
the performance of the three methods DG, EPE and SPE on the test set after the gradual introduction of manually
labeled samples. The top, bottom graphs show the relationship between accuracy, F1 score and the percentage of

manually labeled samples, respectively.

Bird, 2002) tool to calculate Bleu-1 for gen-
erated samples and manually labeled samples
separately.

Rouge: Rouge is similar to Bleu and also uses
the n-gram computation method, but turns pre-
cision into recall. In this paper, we use the
ROUGE_score library function in python to
calculate ROUGE-1.

Meteor: Meteor is an improved version of
Bleu, which performs finer-grained matching
by taking into account lexical variations (e.g.,
roots, synonyms) and word order. Again the
nltk (Loper and Bird, 2002) tool was used for
the computation.

14 Sample Fusion Experiment

This experiment explores the effects of three meth-
ods, DG, EPE and SPE, on the performance of
the test set after gradually introducing manually la-
beled samples (GT). We designed six experiments
to examine different combinations of generated and
GT samples with different percentages: 100% gen-
erated samples + 0% GT samples, 80% generated
samples + 20% GT samples, 60% generated sam-
ples + 40% GT samples, 40% generated samples +
60% GT samples, 20% generated samples + 80%
GT samples, and 0% generated samples + 100%
GT samples. In the experiments, we randomly
selected percentages in terms of target word cate-
gories (target word + label), and if the number of
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group samples was less than the number of samples
to be extracted, the method of repeated extraction
was used.

results. On both VUAverb and TroFi (see Figure 3
a,b), the introduction of the original sample at the
beginning leads to a decrease in accuracy. This sug-
gests that the difference in the distribution of the
generated samples and the original samples affects
the model’s ability to learn metaphorical informa-
tion, which leads to the opposite effect. In contrast,
compared to DG and SPE, EPE has an early turn-
ing point in the decline of VUAverb-Acc, and its
performance starts to increase after 20%. This is
due to the fact that the examples of the EPE method
are derived from VUAverb. However, Acc is also
able to improve as the original data share contin-
ues to increase. Moreover, the F1 values of the
three methods in each dataset also show a general
upward trend (see Figure 3 d,e,f). This indicates
that the introduction of the original sample can im-
prove the ability of the model model to capture
metaphorical information.

In addition, since the DG method has a low per-
formance, the introduction of a small number of
proto-samples can achieve a high F1 performance
improvement (e.g., 100% DG + 0% GT 0.299 vs.
80% DG + 20% GT 0.465 on VUAverb and 100%
DG + 0% GT 0.272 vs. 80% DG + 20% GT 0.569
on TroFi). The EPE and SPE originally had not-
so-low F1 values, so the introduction of a small
number of original samples yielded little in terms
of performance improvement.



Overall, the introduction of manually labeled
data on top of the ChatGPT generated data is re-
lated to the performance of the generated data on
the test set. On the one hand, researchers may not
be able to construct prompts that are suitable for
certain general tasks. therefore, they often gener-
ate samples directly using ChatGPT. This situation
makes it possible to introduce partially manually
labeled data, and by paying a small portion of the
cost of manual labeling, the samples can quickly
catch up in performance with the performance of
the samples generated by the customized prompt.
On the other hand, if the researcher is able to de-
sign a reasonable prompt based on a specific task
(e.g., the SPE method proposed in this paper). As
it performs well on the test set. Therefore, the in-
troduction of some of the original sample data may
lead to performance degradation due to factors such
as distribution mismatch, or yield little results. In
this regard, the second case is not used to introduce
manually labeled samples.
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