
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TEST-TIME VERIFICATION VIA OPTIMAL TRANSPORT:
COVERAGE, ROC, & SUB-OPTIMALITY

Anonymous authors
Paper under double-blind review

ABSTRACT

While test-time scaling with verification has shown promise in improving the per-
formance of large language models (LLMs), role of the verifier and its imperfec-
tions remain underexplored. The effect of verification manifests through interac-
tions of three quantities: (i) the generator’s coverage, (ii) the verifier’s region of
convergence (ROC), and (iii) the sampling algorithm’s sub-optimality. Though re-
cent studies capture subsets of these factors, a unified framework quantifying the
geometry of their interplay is missing. We frame verifiable test-time scaling as a
transport problem. This characterizes the interaction of coverage, ROC, and sub-
optimality, and uncovers that the sub-optimality–coverage curve exhibits three
regimes. A transport regime – where sub-optimality increases with coverage, a
policy improvement regime – where sub-optimality may decrease with coverage,
depending on the verifier’s ROC, and a saturation regime – where sub-optimality
plateaus, unaffected by coverage. We further propose and analyze two classes of
sampling algorithms – sequential and batched, and examine how their computa-
tional complexities shape these trade-offs. Empirical results with Qwen, Llama,
and Gemma models corroborate our theoretical findings.

1 MOTIVATIONS & CONTRIBUTIONS

Test-time scaling has emerged as a promising axis for improving the performance of large lan-
guage models (LLMs) (Jaech et al., 2024). Existing approaches for test-time scaling fall into two
categories: verifier-free and verifier-based (details in Appendix A). The latter category leverages
verifiers — binary reward mechanisms grounded in de facto correctness criteria (e.g., unit tests,
gold solutions). Verifiers have widely shown potential to improve post-training performance while
used in both training and inference phases (Cobbe et al., 2021; Guo et al., 2025; Luo et al., 2025;
Huang et al., 2025a; Dorner et al., 2025).

A typical test-time pipeline consists of three components: a generator (the reference LLM), a ver-
ifier, and a sampling algorithm (e.g., Best-of-N (BoN) (Aminian et al., 2025)). Performance of
the generated responses (e.g., accuracy for objective tasks) results from the combined attributes of
each of these components. Following rapid empirical progress, efforts have been made to uncover
the theoretical underpinnings of test-time verification, specifically its aggregate scaling laws such as
pass@N performance (Brown et al., 2024) and policy divergence (Beirami et al., 2024). A majority
of these studies assume an accurate verifier, a simplifying assumption which is seldom satisfied in
practice. While recent studies investigate these imperfections (Huang et al., 2025a; Dorner et al.,
2025), a unified perspective that elucidates the interactions between the components’ characteris-
tics and verification inaccuracy is missing. Motivated by this gap, we ask the following overarching
question:

To what extent can verifier-based sampling approximate the induced optimal pol-
icy, and how are the approximations shaped by verification inaccuracies?

Addressing these questions requires moving beyond the asymptotic scaling curves, and towards a
finer-grained analysis that captures the exact dependence of performance on the generator, the ver-
ifier, and the sampling algorithm. In this paper, we study the interplay between the generator’s
coverage, the verifier’s region of convergence (ROC), and the sampling algorithm’s sub-optimality

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

5 10 15 20 25 30 35
Coverage

0.00

0.25

0.50

0.75

1.00

Su
b-

op
tim

al
ity

T PI S

 decreasing
 Youden's index

Optimal transport cost (OTC)

Figure 1: Regimes of test-time verification.

.
.. ...

OTC

sub-
optimality

Figure 2: Geometry of test-time verification.

through an exact analysis. We formulate test-time verification as a sampling problem. Given gen-
erative access to a proposal distribution µ, we are tasked with sampling from a target distribution
ν⋆. The only access we have to the target distribution is through an approximately correct verifier r̂,
assuming a de facto ground truth r⋆. In this context, we make the following contributions:

I. Framework. By recognizing test-time verification as a sampling problem, we study it through the
lens of optimal transport. Here, the goal is to transport the proposal distribution µ of the reference
LLM to a target distribution ν⋆, defined by the ground-truth verifier r⋆. Since ν⋆ is not directly
accessible, we instead rely on discriminative access via an imperfect verifier r̂ to guide sampling. If
the algorithm accepts proposals too generously, the induced distribution remains close to µ, leading
to high sub-optimality. Conversely, if it applies an overly stringent rejection policy and discards most
proposals, sub-optimality may shrink, albeit at the cost of an excessive compute budget. The key
challenge is to design a transport plan that balances proposal usage against induced sub-optimality.

II. Geometry of sub-optimality vs. coverage. We decompose sub-optimality into two components:
an optimal transport cost, capturing the intrinsic difficulty of transporting the proposal distribution
µ to the target ν⋆, and a policy improvement term, reflecting how the sampling algorithm mitigates
this cost. Sampling directly from ν⋆ achieves policy improvement exactly matching the transport
cost, and yielding an optimal sampling scheme. In practice, however, verifier inaccuracies render
this ideal infeasible, and sub-optimality is governed jointly by the verifier’s ROC, particularly, its
Youden’s index, and the generator’s coverage. Our analysis reveals that as coverage constraints are
relaxed, the sub-optimality−coverage curve exhibits three distinct regimes, as depicted in Figure 1:
(1) a transport regime, where the optimal transport cost dominates policy improvement; (2) a
policy improvement regime, where the optimal transport cost saturates and a sufficiently accurate
verifier enables sub-optimality reduction; and (3) a saturation regime, where both terms plateau,
leaving sub-optimality constant regardless of further coverage.

III. Algorithms and their properties. We study two protocols: a sequential generation protocol,
where responses are generated until acceptance, and a batched generation protocol, where a batch
of responses is drawn and the algorithm distills a winning response. In the sequential protocol, we
revisit the naı̈ve accept-if-correct (AiC) strategy analyzed by Dorner et al. (2025)1 and show that
AiC violates our coverage constraint in the transport regime. To address this limitation, we propose
sequential rejection sampling (SRS), a valid transport plan for which we derive exact sub-optimality.
In addition, to reduce the number of proposals, we introduce sequential maximal coupling (SMC),
which minimizes transport cost and achieves the same sub-optimality as SRS. Surprisingly, despite
being derived from different principles, SRS and SMC require the same expected number of pro-
posals. Table 1 summarizes the properties of AiC, SRS, and SMC. Finally, to account for batched
generation schemes such as BoN sampling, we investigate batched variants of SRS and BoN. Our
analyses and empirical studies reveal that rejection sampling-type algorithms are better suited to
low-coverage regimes, whereas BoN-type algorithms are preferable under relaxed coverage.

2 FORMULATION: TEST-TIME VERIFICATION AS A TRANSPORT PLAN

Let X be the space of prompts.2 Each prompt x ∈ X admits a response y ∈ Y generated by
a reference LLM with conditional kernel πref(· | x). For generality, we assume Y is a Polish

1Dorner et al. (2025) refer to this strategy as rejection sampling. Our analysis, however, distinguishes
rejection sampling from AiC, motivating our separate nomenclature.

2Notations: Z, z, and Z refer to a random vector, its realization, and a set, respectively.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Metrics Sequential Batched

AiC SRS SMC BoN BRS

Coverage PI, S T, PI, S T, PI, S PI, S T, PI, S

Comp.
complexity

1
sver

(Thm. 3.2)

(1∧m(sver))
sver

(Thm. 3.5)

(1∧m(sver))
sver

(Thm. 3.5)
N+1 N+1

Sub-
optimality

OTC (1 − α̃k J)

(Thm. 3.2)

OTC (1 − αk J)

(Thm. 3.6)

OTC (1 − αk J)

(Thm. 3.6)
(Thm. O.1) (Thm. O.2)

Table 1: Complexity and sub-optimality across algorithms. Here, OTC is the optimal transport cost,
sver is the generator’s mass on the verifier set, m(sver) is the induced optimal policy’s mass on that
set, J is Youden’s index, and k ∈ {T,PI,S}. T = transport, PI = policy improvement, S = saturation.

space equipped with a Borel σ-algebra B(Y). The induced reference distribution over responses
is µ ≜ law(Y | X = x). Test-time verification assumes existence of a ground-truth verifier
r⋆ : X × Y 7→ {0, 1} that assigns a binary reward to each (prompt, response) pair. Specifically, we
model verification as a set-membership problem, i.e., for each prompt x ∈ X , there exists a set of
correct responses S⋆(x) ⊆ Y , and the verifier asserts membership via r⋆(x,y) ≜ 1

{
y ∈ S⋆(x)

}
.

S⋆(x) abstracts different verifier designs depending on the task. For example, in a coding problem,
S⋆(x) corresponds to all programs that pass the unit tests. For a math problem, it represents all
solutions that yield a correct final answer, possibly attained by different reasoning steps or expressed
in different yet mathematically equivalent forms. When using LLM-as-a-judge, S⋆(x) contains the
set of responses with scores exceeding a predetermined threshold characterizing the de facto ground
truth. Since all notations implicitly depend on the prompt x, we omit this dependency for brevity
whenever it is unambiguous from the context.

Coverage and optimal policy. Test-time verification is a sampling problem, where the goal is
to sample from a target distribution that maximizes the average reward obtained from the verifier.
However, it is unrealistic to define an optimal policy that may arbitrarily deviate from the genera-
tor, since responses from such an optimal policy might not be generatable via sampling from the
reference policy. Hence, following the state-of-the-art (Huang et al., 2025a), we adopt an ℓ1-type
coverage constraint on the class of optimal policies. Specifically, we constrain the optimal policy to
belong to a set of policies, which are sufficiently covered by the reference LLM, i.e.

Π(β | x) ≜

{
π(· | x) : X 7→ ∆(Y)

∣∣ EY∼π(· | x)

[
π(Y | x)
πref(Y | x)

]
≤ β

}
, (1)

where ∆(Y) denotes the space of Borel probability measures on Y . Note that (1) implies that
χ2(µ∥ν) ≤ β − 1 for any measure ν (induced by π), where χ2(µ∥ν) ≜

∫
Y(

dν
dµ)

2µ(dy) − 1

denotes the χ2-divergence between measures µ and ν. We overload the notation Π(β | x) to
denote both the set of conditional kernels and the set of induced probability measures satisfy-
ing the constraint. Hence, the optimal conditional kernel, or the optimal policy, is π⋆(· | x) ∈
arg supπ∈Π(β | x) Ey∼π(· | x)

[
r⋆(x,y)

]
, and the corresponding measure is ν⋆ ≜ law(Z | X = x),

where Z ∼ π⋆(· | x). Now, we use the binary structure of the verifier’s reward to obtain the induced
optimal policy in closed-form.
Theorem 2.1 (Analytical Form of Optimal Policy). For any (prompt, response) pair (x,y) ∈
X × Y , let r(x,y) ≜ 1{y ∈ Sr(x)} be a verifier, where Sr(x) ⊆ Y . Further, let νr ≜
arg supν∈Π(β | x)

∫
r(x,y) dν(y|x) denote the induced optimal measure. The Radon-Nikodym

derivative of the target measure νr with respect to the reference µ, denoted by ηr ≜ dνr

dµ , is

ηr(y) ≜


(

1
sr

∧ mβ(sr)
sr

)
, if y ∈ Sr,(

0 ∨ 1−mβ(sr)
1−sr

)
, if y /∈ Sr ,

, (2)

where mβ(s) ≜ s+
√

s(1− s)(β − 1), and sr ≜
∫
Sr

r dµ.

Sampling as a transport problem. Now, we cast sampling as a transport problem. Given gen-
erative access to µ, the goal of a sampling algorithm is to obtain samples from ν⋆ by formalizing

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

G

resample

z

response
y

prompt

x G

resample

z

y1

yN+1

...
prompt

x

Figure 3: Sequential (left) and batched (right) sampling protocols of test-time verification with a
generator G and a verifier (light purple box).

a valid transport plan that is a coupling between µ and ν⋆. We define the set of all couplings
M(µ, ν) between the reference µ and any target ν as the set of all joint measures on Y × Y such
that its projections on the first and second coordinates are µ and ν, respectively. For any coupling
ρ(dy,dz) ∈ M(µ, ν), we assign the Hamming distance as the price to be paid for transporting µ to
ν through ρ, i.e., C(ρ) ≜

∫
Y×Y 1{y ̸= z}ρ(dy,dz). The average Hamming cost captures the frac-

tion of rejections required to sample from the target ν, and hence, comes up as a natural candidate
for the transportation cost. A sampling algorithm A is characterized by a coupling ρA(dy,dz) such
that its projection on the first coordinate yields the reference law µ, and we define νA as the pro-
jection of ρ on the second coordinate. In order to capture the efficiency of the sampling algorithm
in generating from the optimal policy ν⋆, we adopt the notion of sub-optimality that assesses the
change in policy performance of RL pre- and post-training (Zhu et al., 2023; Huang et al., 2025a):

SubOpt(A) ≜
∫

r⋆(x,y) dν⋆(y | x)−
∫

r⋆(x,y) dνA(y | x) . (3)

It immediately follows that any transport plan ρ(dy,dz) ∈ M(µ, ν⋆) is optimal. The challenge,
as depicted in Figure 2, is that we do not have access to ν⋆, but only membership access to an
approximately correct verifier r̂ : Y × Y 7→ {0, 1}, such that for any response Y ∼ πref(· | x)
generated for a prompt x ∈ X , an approximately correct reward signal r̂(x,y) = 1{y /∈ Ŝ} is
available to the sampling algorithm for some Ŝ ⊆ Y . The optimal policy, which lies within a χ2-
ball of radius β − 1 from πref , induces the maximal reward on the manifold induced by r⋆. Given
access to r̂, the sampling algorithm’s distribution νA should also satisfy the χ2-constraint. Naturally,
the approximation quality of the verifier should affect the sampling performance. To formalize this,
we define the true positive rate (TPR), false positive rate (FPR), and Youden’s index J (Youden,
1950) of the imperfect verifier as

TPR ≜
1

sr⋆
µ
(
Ŝ ∩ S

)
, FPR ≜

1

1− sr⋆
µ
(
Ŝ \ S

)
, and J ≜ TPR− FPR .

These are the standard quantifiers of the goodness of binary classifiers (Kumari & Srivastava, 2017;
Santos et al., 2019), or equivalently, the power of binary hypothesis tests (Li & Tong, 2020).

3 ALGORITHMS & ANALYSIS: SEQUENTIAL AND BATCHED SAMPLING

Now, we study different test-time verification algorithms as transport plans, and analyze their
achieved sub-optimality and other properties. Depending on how the sampling algorithm interacts
with the generator, we study two protocols: sequential and batched, as illustrated in Figure 3.

• Sequential sampling protocol: Generation is modeled as a sequential decision process. Given a
prompt x ∈ X , at each round n ∈ N, the generator produces a response Yn ∼ πref(· | x). The
sampling algorithm A observes the history Y n ≜ (Y1, . . . ,Yn), and based on verifier feedback,
issues a decision δAn : Y n 7→ {accept, reject}. If a response is accepted, the algorithm stops and
outputs it. Otherwise, it queries the generator for another sample. The instant at which τA stops
sampling is referred as the stopping time, τA ≜ inf

{
n ∈ N : δAn (Y

n) = accept
}

.
• Batched sampling protocol: In the batched setting, following Huang et al. (2025a), the generator

produces N + 1 independent responses in parallel. The sampling algorithm inspects any N of
them, using the verifier to identify a candidate. If none are accepted, the algorithm defaults to
returning any one of the (N + 1) responses.

To evaluate sampling algorithms, we consider two key metrics: the number of proposals (compu-
tational efficiency), and the algorithm’s sub-optimality (performance efficiency). In the sequential

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

setting, computational efficiency is measured by the expected number of proposals E[τA], while
sub-optimality is defined as in Equation (3). There is a natural tension between these objectives:
drawing more samples may reduce sub-optimality, albeit, at the expense of larger computation. In
the batched setting, the computational budget is fixed at N+1 samples. Hence, performance is eval-
uated solely through sub-optimality. In what follows, we introduce a range of sampling algorithms
under both protocols and analyze their performance with respect to these metrics.

3.1 SEQUENTIAL SAMPLING ALGORITHMS: AIC, SRS, AND SMC

We present three algorithms for sequential protocol: (1) a naı̈ve AiC algorithm asserting membership
of the generated response through the approximate verifier, (2) an SRS algorithm which has a mech-
anism of accepting a sample even if its set-membership assertion fails, and (3) an SMC algorithm
derived by optimizing the transport cost. For brevity, we defer the pseudo-codes to Appendix B.

Central to analyzing these algorithms is the optimal (Hamming) transport cost (OTC), which is the
minimum probability of rejections required to transport the reference law µ to the target ν⋆, and is
defined as OTC ≜ minρ∈M(µ,ν⋆) C(ρ) . The following lemma provides a closed-form for OTC.

Lemma 3.1 (Optimal Transport Cost (OTC) for Hamming distance). Given Hamming cost
c(y, z) ≜ 1{y ̸= z}, we have OTC(β) =

(
1 ∧mβ(sr⋆)

)
− sr⋆ .

Accept-if-correct (AiC)(Algorithm 1). The AiC algorithm, proposed by (Dorner et al., 2025) is an
extension of the BoN sampling strategy to the sequential setting. Given the (approximate) verifier
through the set-membership oracle Ŝ, at each time n ∈ N, AiC samples a response Yn ∼ µ, asserts
its membership in Ŝ, and resamples if the assertion fails. Noticeably, AiC is not cognizant of the
policy coverage bound β. Hence, as we show subsequently, this results in constraint violation in
certain coverage regimes. In the following theorem, we characterize the two key properties of AiC,
i.e., the average number of proposals, and sub-optimality.

Theorem 3.2 (Computational complexity and sub-optimality of AiC). 1. The computational com-
plexity of AiC is E[τAiC] =

1
sver

.

2. The sub-optimality of AiC is SubOpt(AiC) = OTC(β) ·
(
1− sr⋆

sver
· J
)

, if β > 1
sr⋆

, and

OTC(β) ·
(
1− 1

sver

√
sr⋆ (1−sr⋆)

β−1 · J
)

, otherwise. Here, sver ≜ sr⋆ · TPR+ (1− sr⋆) · FPR .

Theorem 3.2 shows that AiC’s sub-optimality depends linearly on two quantities: (a) the optimal
transport cost (OTC), and (b) Youden’s index J . A smaller Youden’s index — corresponding to a
verifier closer to random guessing — yields higher sub-optimality. Since AiC ignores the cover-
age constraint, its sub-optimality is not comparable uniformly over all coverage regimes. As evi-
dent from the next theorem, AiC fails to satisfy the coverage requirement in low-coverage regimes,
thereby incurring constraint violations.

Theorem 3.3 (Constraint violation of AiC). Given any prompt x ∈ X , AiC policy πAiC(· | x) does
not satisfy the coverage constraint for β < 1

sver
, i.e., πAiC(· | x) /∈ Π(β | x) for all β < 1

sver
.

Sequential rejection sampling (SRS, Algorithm 2). To circumvent AiC’s lack of coverage, we
propose a rejection sampling (RS)-based algorithm, which is cognizant of the coverage constraint.

Canonical RS (Forsythe, 1972; Neal, 2003) evaluates a scaled likelihood ratio against a uniform ran-
dom variable to determine sample acceptance, essentially flipping a Bernoulli coin where the scaling
factor, known as the envelope, dictates the acceptance probability. However, our context lacks the
target-to-proposal likelihood ratio ηr⋆ , since S⋆ is unknown and the sampling algorithm only has
access to an approximate membership oracle Ŝ . We therefore introduce SRS, which substitutes ηr̂,
obtained by replacing sr⋆ in Equation (2) with sr̂. While sr̂ is computable in principle, it may not
be accessible at test time. In Section 4, we treat s as a tunable hyperparameter with ablations across
multiple models. Our theoretical analyses, however, assumes that the mass sr̂ — the reference
policy’s probability mass on the verifier’s set Ŝ — is available to the sampling algorithm. While
seemingly strong, this assumption enables a fundamental characterization of how the verifier’s ROC
influences sub-optimality. Note that by our construction, SRS always satisfies the coverage con-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

straint. Performance analysis of SRS is presented jointly with our next algorithm, SMC, to facilitate
direct comparison and maintain brevity.

Sequential maximal coupling (SMC, Algorithm 3). Maximal coupling (MC) is a canonical tech-
nique for constructing optimal transport maps (Den Hollander, 2012). The goal is to find a joint
distribution ρ⋆ that minimizes the transport cost, i.e., ρ⋆ ∈ argminρ∈M(µ,ν⋆) C(ρ). Under the
Hamming cost, this amounts to minimizing the rejection probability, suggesting the potential to
improve computational efficiency. The MC algorithm in this setting is well studied: the generator
first produces a sample, which is evaluated by the sampling algorithm. The algorithm compares the
likelihood ratio at this sample against a uniform random draw. If the ratio exceeds the threshold, the
sample is accepted. Otherwise, MC samples from a residual measure as a correction. Consequently,
MC requires at most two proposals to produce a valid sample from the target distribution.

In the test-time setting, however, the sampling algorithm lacks access to samples from the residual
measure, making a direct application of MC infeasible. Nevertheless, we identify an alternative
representation of the residual that is generatable, as formalized in the following lemma.
Lemma 3.4 (Residual measure). Given a proposal measure µ and a target measure ν on Y induced
by a verifiable reward r with a membership oracle S, the residual distribution for MC, defined as
µres ≜ (ν− (µ∧ν))/(1− (µ∧ν)(Y)), can be equivalently characterized as µres = µ(· | S), where
we have defined the conditional measure µ(· | S) ≜ µ(·∩S)

µ(S) .

Leveraging Lemma 3.4, we now extend canonical MC to a sequential protocol, and propose SMC.
We start similarly to MC, i.e., drawing a response and a uniform number, and then comparing the
likelihood ratio of the obtained sample to the uniform random realization. If the ratio exceeds the
uniform number, SMC accepts the sample. Otherwise, SMC keeps drawing samples from µ until
the generated sample asserts the set-membership verification rather than sampling from the residual.
Evidently, not having access to a residual measure imbibes a computational price to mimic sampling
from the target measure. In the following theorem, we characterize the computational complexities
of both SRS and SMC algorithms, and find that they require the same average number of proposals.

Theorem 3.5 (Computational complexity of SRS and SMC). Let M ≜ max
{
(1
sver

∧ mβ(sver)
sver

) ,

(0 ∨ 1−mβ(sver)
1−sver

)
}

for SRS. For both algorithms A ∈ {SRS,SMC}, the computational complexity
is identical, and given by E[τA] = 1

sver

(
1 ∧mβ(sver)

)
.

Note that the computational complexity of SRS and SMC improves upon AiC by a factor of
mβ(sver). Under liberal coverage constraints, where mβ(sver) = 1, their complexity coincides
with that of AiC. In contrast, under more stringent coverage, SRS and SMC achieve a compu-
tational speed-up over AiC. Next, we provide SRS and SMC sub-optimality, and find that both
sub-optimalities follow a piecewise curve divided into three distinct regimes.
Theorem 3.6 (Sub-optimality of SRS & SMC). Sub-optimalities of SRS and SMC are expressed as

SubOpt(A) = OTC(β) · (1− αJ) ,

where A ∈ {SRS, SMC}, and α varies depending on the coverage constraint β as follows:

1. Transport regime: In the transport regime, characterized by the coverage constraint β ≤(
1

sr⋆
∧ 1

sver

)
, we have α =

√
sr⋆ (1−sr⋆)
sver(1−sver)

.

2. Policy improvement regime: We have two cases. (a) If sver > sr⋆ , in the policy improvement

regime, characterized by the coverage constraint β ∈
(

1
sver

, 1
sr⋆

]
, we have α = 1

sver
·
√

sr⋆ (1−sr⋆)
β−1 .

(b) Alternatively, for β ∈
(

1
sr⋆

, 1
sver

]
, we have α =

√
β−1

sver(1−sver)
· sr⋆ .

3. Saturation regime: In the saturation regime, characterized by the coverage constraint β >(
1

sr⋆
∨ 1

sver

)
, we have α = sr⋆

sver
.

Interpreting the results. Theorem 3.6 reveals three distinct regimes. In the transport regime, sub-
optimality grows as O(

√
β) and is fully governed by OTC(β). In the policy improvement regime, if

sver ≤ sr⋆ and Youden’s index is positive, the policy reduces sub-optimality. By contrast, sver ≥ sr⋆

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

admits false positives and yields no improvement. In the saturation regime, OTC(β) stabilizes at
1− sr⋆ , and hence, sub-optimality remains constant despite increasing coverage.

Theorems 3.5 and 3.6 collectively establish that SMC, despite its design, is no more computationally
efficient than SRS, as the lack of residual access offsets potential gains. Thus, SRS and SMC ex-
hibit equivalent performance, both in computational complexity and sub-optimality. Theorems 3.2
and 3.3 show that AiC violates constraints in the transport regime, while matches SRS and SMC
in the saturation regime– supporting their use under liberal coverage. Finally, while Huang et al.
(2025a) report sub-optimality scaling with square-root of coverage, our analysis refines this obser-
vation: the coverage–sub-optimality trade-off is not universal but mediated by the verifier’s ROC.

3.2 BATCHED SAMPLING ALGORITHMS: BON AND BRS

Batched sampling methods, such as BoN, are widely adopted in practice. Owing to the efficiency of
parallel sampling on modern GPUs, generating a batch of responses is often preferable to sequential
generation. In this section, we examine two algorithms. We first analyze BoN, characterizing its
sub-optimality and identifying the maximal batch size N + 1 beyond which constraint violations
occur. We then introduce a batched variant of rejection sampling (BRS), and establish that it satisfies
coverage constraints for all batch sizes. For our analysis, we focus on accurate verifiers; extension
to approximately correct verifiers is deferred to Appendix O.

Best-of-N (BoN). Given a prompt x ∈ X , BoN obtains independent and identically distributed (iid)
responses yN+1 ≜ (y1, · · · ,yN+1) from the proposal µ. Subsequently, it returns a response z(N) ∈
K uniformly at random, where we denote K ≜ {y ∈ yN : y ∈ S⋆}, and S⋆ denotes the ground-
truth membership oracle accessible to BoN. In contrast to the sequential protocol, batched sampling
with an accurate verifier does not guarantee zero sub-optimality, as the algorithm is restricted to
selecting from only N+1 samples, which may fail to adequately represent the target distribution.
Therefore, we begin by deriving a sufficient condition on the batch size for BoN sampling under
which the coverage constraint is preserved.
Theorem 3.7 (Maximum admissible batch size of BoN). Let νBoN denote the sampling distribution
induced by BoN with access to the ground-truth membership oracle S⋆. Then νBoN satisfies the
coverage constraint, i.e., νBoN ∈ Π(β | x), only if N ≤ ⌊Nmax⌋, where

Nmax ≜


∞ , if β ≥ (1− sr⋆)/sr⋆ ,

ln
(
1−

√
(β − 1)sr⋆(1− sr⋆)−1

)
ln(1− sr⋆)

, if sr⋆(1− sr⋆) < β ≤ (1− sr⋆)/sr⋆ ,

undetermined, if β < sr⋆(1− sr⋆) .

We observe that for conservative choices of coverage, BoN is not a feasible sampling strategy. On
the other hand, beyond a necessary minimum coverage, the maximum number of samples is an
increasing function of β, and becomes unbounded (as the χ2-divergence saturates) beyond 1−sr⋆

sr⋆
.

Next, we state the sub-optimality of BoN as a function of N .
Theorem 3.8 (Sub-optimality of BoN). The sub-optimality of the BoN algorithm with access to the
ground truth membership oracle S⋆ is SubOpt(BoN) = (1− sr⋆)

N+1 −
(
0 ∨ 1−mβ(sr⋆)

)
.

From Theorem 3.8, as N increases, BoN sub-optimality decreases. However, Theorem 3.7 shows
that N cannot grow arbitrarily without inducing constraint violations. For small β, BoN may even
outperform the skyline — whose mass on S⋆ can be strictly less than 1 — resulting in negative
sub-optimality, albeit at the cost of violating the coverage constraint. More generally, combining
Theorems 3.7 and 3.8, we find that for large β the batch size N can be chosen freely, yielding
vanishing sub-optimality. In contrast, for intermediate β, restricting N to its maximal admissible
value leads to a sub-optimality equal to 1−

√
(β − 1)sr⋆/(1− sr⋆)− (0 ∨ 1−mβ(sr⋆)).

Batched Rejection Sampling (BRS, Algorithm 4). Motivated by the infeasibility and constant sub-
optimality of BoN in low-coverage regimes, we extend our SRS algorithm to the batched setting,
which we call BRS. BRS follows the same principles as SRS, with the key distinction that generation
is truncated after N+1 samples. A batch YN+1 is drawn in parallel, and rejection sampling is applied
to any N of these samples. If none are accepted, the (N + 1)th sample is returned as a fallback.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Unlike SRS, however, BRS is not a valid transport plan with respect to a target measure defined
by a reward r, and thus, incurs sub-optimality even when the ground-truth membership oracle is
available. Now, we first show that BRS satisfies the coverage constraint for all N , allowing batch
sizes to be chosen freely based on hardware capacity. We then analyze its sub-optimality establishing
that it vanishes as N increases.
Theorem 3.9 (Batch size of BRS). Let us denote the sampling distribution of the BRS algorithm
induced by the ground truth membership oracle S⋆ by νBRS. For any prompt x ∈ X and batch size
N + 1 ∈ N, we have νBRS ∈ Π(β | x).
Theorem 3.10 (Sub-optimality of BRS). The sub-optimality of the BRS algorithm with access to
the ground truth membership oracle S⋆ is given by SubOpt(BRS) = OTC(β) ·

(
1− 1

M

)N
.

We observe that sub-optimality of BRS decays exponentially in the batch size. Furthermore, setting
its envelope to its tightest value M =

(
1

sr⋆
∧ mβ(sr⋆)

sr⋆

)
, we observe that the sub-optimality is

OTC(β)N+1 ·mβ(sr⋆)
−N , and it scales exponentially in OTC. This provably shows an improvement

in the performance of BRS compared to BoN in the intermediate and low coverage regimes.

4 EXPERIMENTAL ANALYSIS

This section outlines the experimental framework employed to evaluate and corroborate our theo-
retical findings. Our empirical study is guided by two central questions: (1) To what extent do the
empirical sub-optimality curves align with the three-regimes of theoretical predictions? (2) How
sensitive are the algorithms to misspecification of the coverage parameter sver used by the algo-
rithms relative to the (unknown) true mass?

We pivot our empirical results on two key performance metrics, sub-optimality and computational
complexity. For both metrics, we sweep the coverage budget β over a grid spanning the three
regimes highlighted by the theory– (transport, policy improvement, and saturation). Additionally,
for the batched setting, we sweep over the batch size N +1. We summarize the key empirical
findings in this section, while deferring experimental setup details, construction of ground truth and
approximately correct verifiers, and additional results to Appendix P. All curves are averaged over
5,000 episodes, with each algorithm run independently in each episode.

Observations. (1) Sub-optimality. In sequential protocol, the sub–optimality curves for SRS and
SMC in Figure 4 follow the characteristic three–regime geometry predicted by the analysis. In the
small–coverage regime, sub–optimality increases as O(

√
β) and exhibits little policy improvement.

As β grows, the curves bend downward in proportion to the informativeness of the verifier (larger
J), and finally, plateau at a level determined by sr⋆ and J . In contrast, AiC aligns with the other
methods only under the saturation regime, and otherwise, exhibits constraint violations. The three
methods converge in the saturation regimes, achieving the same performance. Varying the model
scale primarily shifts the saturation level. Larger Qwen models yield higher sr⋆ (stronger base ac-
curacy) and therefore lower residual sub–optimality. (2) Computational complexity. The premise
of our experiments in Figure 4 comprises a smaller sver compared to sr⋆ ; consequently, we observe
that the computational complexity with the approximate verifier (saturating at ≈ 8 proposals on
average for Qwen3-1.7B) exceeds the complexity required by the ground truth verifier (saturating
at ≈ 6 proposal on average for Qwen3-1.7B). In general, computational complexity for SRS and
SMC are identical and scale as O(

√
β) before saturating, while AiC has a constant computational

complexity as stated in Theorem 3.2.

In batched protocol, we present a comparison of the sub-optimality of both BRS and BoN under
imperfect verifiers in Figure 5 (left), with additional details provided in Appendix O. The sub-
optimality is evaluated as a function of β across varying batch sizes N ≤ Nmax. Theoretical
predictions closely align with empirical results obtained using Qwen3-14B. As predicted by The-
orems O.1 and O.2, the sub-optimality decreases with increasing N in the presence of imperfect
verifiers, reflecting the expected improvement with larger batches.

(2) Sensitivity to sver. Since sver is typically unavailable in real-world settings, we conduct an ab-
lation study by setting sver = s for various choices of s. The two rightmost plots in Figure 5 show
the reward obtained by the algorithms when a value s selected from the set shown in the legend
is used instead of the one induced by the verifier under examination. Each curve corresponds to a

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 10
0.00
0.05
0.10
0.15
0.20
0.25

Su
bO

pt
(

)

Qwen3-1.7B

2 4
0.00
0.05
0.10
0.15
0.20
0.25

Qwen3-14B

2.5 5.0 7.5

2

4

6

Co
m

pu
ta

tio
na

l
Co

m
pl

ex
ity

Qwen3-1.7B

2 4

2

4

6

Qwen3-14B Algorithm
SRS
SMC
AiC
Theory

Verifier
*

Figure 4: Sub-optimality (left) and computational complexity (right) as functions of β for
Qwen3-1.7B and Qwen3-14B. Results are shown for SRS, stochastic SMC, and AiC. Solid green
lines denote theoretical predictions as stated in Theorem 3.6. Background shading indicates differ-
ent coverage regimes, and confidence intervals are shown as shaded bands.

2 4
0.2

0.0

0.2

0.4

0.6

Su
bO

pt
(B

RS
)

Qwen3-14B

2 4

0.2

0.0

0.2

0.4

0.6

Su
bO

pt
(B

oN
)

Qwen3-14B

2 4

0.4

0.6

0.8

1.0

Re
wa

rd

Qwen3-14B - *

2 4

0.4

0.6

0.8

1.0

Re
wa

rd

Qwen3-14B -

N
1
2

3
4

Estimated
Theory SRS

SMC
AiC

s
0.1
0.2
0.3
0.4
0.6

0.7
0.8
0.9
1.0

Figure 5: Sub-optimality for Qwen3-14B of BRS and BoN with imperfect verifiers (left), and
ablation study in s (sensitivity) for SRS, SMC, and AiC (right).

different assumed value of s, and illustrates how mismatched assumptions about verifier accuracy
affect the reward. Interestingly, when s = 1, all three algorithms reduce to AiC algorithm. This is
because– (i) rejection sampling envelope becomes M = 1. Thus, the first check in SMC becomes
identical to the SRS acceptance condition. (ii) The Radon-Nikodym derivative function becomes
ηr(y) = 1{y ∈ Sr} . Thus, for s = 1, all methods restrict support to Sr, and behave identically,
as reflected in the overlapping curves at that point. Also, an interesting pattern emerges when com-
paring SRS and SMC across different assumed values of s. Specifically, the two methods exhibit
matching performance when s is aligned with the true verifier accuracy, i.e., at s = 0.31 in ground
truth case, and s = 0.27 when using the approximate verifier. Notably, SMC underperforms relative
to SRS when the assumed s is smaller than the true value (s ≤ 0.31 or s ≤ 0.27), and outperforms
SRS when the assumed s is greater (s ≥ 0.31 or s ≥ 0.27). This crossover behavior illustrates the
sensitivity of SMC to over- or under-estimating verifier accuracy, and highlights that SMC may be
advantageous in high-s regimes, whereas SRS is more robust when verifier confidence is low.

5 DISCUSSIONS AND FUTURE WORKS

We cast test-time verification through the lens of optimal transport. By positing it as a sampling
problem, we analyzed how generator’s coverage, verifier’s accuracy, and sampling algorithms jointly
determine sub-optimality and computational complexity. Our analysis, supported by empirical evi-
dence, reveals a three-regime structure in the sub-optimality–coverage tradeoff: a transport regime,
where sub-optimality is dominated by transport cost; a policy-improvement regime, where sampling
can counteract transport cost depending on the verifier’s ROC; and a saturation regime, where sub-
optimality plateaus at a level dictated by the verifier’s Youden’s index. These dynamics are exhibited
by both the sequential and batched algorithms studied. Notably, rejection sampling–type methods
are advantageous under low coverage, while best-of-N approaches excel under liberal coverage.

Our study also raises several open questions. Analytically, extending from ratio-based to difference-
based coverage remains unexplored. More broadly, moving beyond verifiable rewards toward gen-
eral reward models for inference-time alignment is an important next step. Finally, our premise
highlights a fundamental open problem in sampling: how can we sample from a target distribution
given only proposals, when the target-to-proposal likelihood ratio is partially or fully unknown and
must be estimated from samples? We conjecture that any such algorithm must explicitly balance
exploration — estimating the likelihood ratio with sufficient confidence — against exploitation —
using the estimate to make acceptance or stopping decisions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Gholamali Aminian, Idan Shenfeld, Amir R Asadi, Ahmad Beirami, and Youssef Mroueh. Best-of-N
through the smoothing lens: KL divergence and regret analysis. arXiv preprint arXiv:2507.05913,
2025.

Ahmad Beirami, Alekh Agarwal, Jonathan Berant, Alexander D’Amour, Jacob Eisenstein, Chirag
Nagpal, and Ananda Theertha Suresh. Theoretical guarantees on the best-of-n alignment policy.
arXiv preprint arXiv:2401.01879, 2024.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Frank Den Hollander. Probability theory: The coupling method. Lecture notes available online
(http://websites. math. leidenuniv. nl/probability/lecturenotes/CouplingLectures. pdf), 3, 2012.

Florian E. Dorner, Yatong Chen, André F. Cruz, and Fanny Yang. Roc-n-reroll: How verifier imper-
fection affects test-time scaling, 2025. URL https://arxiv.org/abs/2507.12399.

George E. Forsythe. Von neumann’s comparison method for random sampling from the normal
and other distributions. Mathematics of Computation, 26(120):817–826, 1972. ISSN 00255718,
10886842. URL http://www.jstor.org/stable/2005864.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and
Noah D Goodman. Stream of search (sos): Learning to search in language. arXiv preprint
arXiv:2404.03683, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-R1: Incentivizing reasoning capability in
LLMs via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alex Ratner,
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperforming larger
language models with less training data and smaller model sizes. In Anna Rogers, Jordan Boyd-
Graber, and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics:
ACL 2023, pp. 8003–8017, Toronto, Canada, July 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.findings-acl.507. URL https://aclanthology.org/2023.
findings-acl.507/.

Audrey Huang, Adam Block, Qinghua Liu, Nan Jiang, Akshay Krishnamurthy, and Dylan J Foster.
Is best-of-n the best of them? coverage, scaling, and optimality in inference-time alignment. arXiv
preprint arXiv:2503.21878, 2025a.

Baihe Huang, Shanda Li, Tianhao Wu, Yiming Yang, Ameet Talwalkar, Kannan Ramchandran,
Michael I Jordan, and Jiantao Jiao. Sample complexity and representation ability of test-time
scaling paradigms. arXiv preprint arXiv:2506.05295, 2025b.

Chengsong Huang, Langlin Huang, Jixuan Leng, Jiacheng Liu, and Jiaxin Huang. Efficient test-time
scaling via self-calibration. arXiv preprint arXiv:2503.00031, 2025c.

10

https://arxiv.org/abs/2507.12399
http://www.jstor.org/stable/2005864
https://zenodo.org/records/12608602
https://aclanthology.org/2023.findings-acl.507/
https://aclanthology.org/2023.findings-acl.507/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

OpenAI: Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low,
Alec Helyar, Aleksander Madry, et al. OpenAI o1 system card, 2024. URL https://arxiv.
org/abs/2412.16720.

Roshan Kumari and Saurabh Kr Srivastava. Machine learning: A review on binary classification.
International Journal of Computer Applications, 160(7), 2017.

Jingyi Jessica Li and Xin Tong. Statistical hypothesis testing versus machine learning binary classi-
fication: Distinctions and guidelines. Patterns, 1(7), 2020.

Baohao Liao, Yuhui Xu, Hanze Dong, Junnan Li, Christof Monz, Silvio Savarese, Doyen Sahoo, and
Caiming Xiong. Reward-guided speculative decoding for efficient llm reasoning. arXiv preprint
arXiv:2501.19324, 2025.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng, Daiyi
Peng, Diyi Yang, Denny Zhou, et al. Best practices and lessons learned on synthetic data for
language models. CoRR, 2024.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing o1-preview with a 1.5 b
model by scaling rl. Notion Blog, 2025.

Saumya Malik, Valentina Pyatkin, Sander Land, Jacob Morrison, Noah A. Smith, Hannaneh Ha-
jishirzi, and Nathan Lambert. Rewardbench 2: Advancing reward model evaluation. https:
//huggingface.co/spaces/allenai/reward-bench, 2025.

Seungyong Moon, Bumsoo Park, and Hyun Oh Song. Guided stream of search: Learning to better
search with language models via optimal path guidance. arXiv preprint arXiv:2410.02992, 2024.

Youssef Mroueh. Information theoretic guarantees for policy alignment in large language models.
arXiv preprint arXiv:2406.05883, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Radford M Neal. Slice sampling. The annals of statistics, 31(3):705–767, 2003.

Rui Santos, Miguel Felgueiras, Joao Paulo Martins, and Liliana Ferreira Liliana Ferreira. Accuracy
measures for binary classification based on a quantitative variable. REVSTAT-Statistical Journal,
17(2):223–244, 2019.

Rylan Schaeffer, Joshua Kazdan, John Hughes, Jordan Juravsky, Sara Price, Aengus Lynch, Erik
Jones, Robert Kirk, Azalia Mirhoseini, and Sanmi Koyejo. How do large language monkeys get
their power (laws)? arXiv preprint arXiv:2502.17578, 2025.

Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
without verification or rl is suboptimal. arXiv preprint arXiv:2502.12118, 2025.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Pablo Villalobos, Anson Ho, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, and Marius Hobbhahn.
Position: Will we run out of data? limits of llm scaling based on human-generated data. In Forty-
first International Conference on Machine Learning, 2024.

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2008.

Yiming Wang, Pei Zhang, Siyuan Huang, Baosong Yang, Zhuosheng Zhang, Fei Huang, and Rui
Wang. Sampling-efficient test-time scaling: Self-estimating the best-of-n sampling in early de-
coding. arXiv preprint arXiv:2503.01422, 2025.

William J Youden. Index for rating diagnostic tests. Cancer, 3(1):32–35, 1950.

11

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.16720
https://huggingface.co/spaces/allenai/reward-bench
https://huggingface.co/spaces/allenai/reward-bench

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: self-taught reasoner bootstrap-
ping reasoning with reasoning. In Proceedings of the 36th International Conference on Neural
Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc.
ISBN 9781713871088.

Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human feed-
back from pairwise or k-wise comparisons. In International Conference on Machine Learning,
pp. 43037–43067. PMLR, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

Table of Contents
A Literature Review 14

B Algorithm Pseudo-codes 16

C Target-to-proposal Radon-Nikodym Derivative (Proof of Theorem 2.1) 17

D Auxiliary Lemmas 18
D.1 Optimal Transport Cost (Proof of Lemma 3.1) 18
D.2 BoN Sampling Distribution . 18
D.3 BRS Sampling Distribution . 20

E Properties of ROC 20

F AiC Properties (Proof of Theorem 3.2) 21

G AiC Constraint Violation (Proof of Theorem 3.3) 22

H SMC Residual Measure (Proof of Theorem 3.4) 22

I SRS / SMC Computational Complexity (Proof of Theorem 3.5) 23

J SRS / SMC Sub-optimality (Proof of Theorem 3.6) 24

K BoN Batch Size (Proof of Theorem 3.7) 25

L BoN Sub-optimality (Proof of Theorem 3.8) 26

M BRS Batch Size (Proof of Theorem 3.9) 26

N BRS Sub-optimality (Proof of Theorem 3.10) 27

O Batched Sampling Algorithms with Approximate Verifiers 27

P Extended Experiments 30

Q Compute and LLM Usage 31

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LITERATURE REVIEW

A crucial bottleneck in pre- and post-training pipelines for large language models (LLMs) is the
dwindling supply of high-quality training data, constrained by privacy, security, and cost con-
cerns (Liu et al., 2024; Villalobos et al., 2024). This trend threatens saturation along the train-time
scaling axis. In response to such bottlenecks in scaling laws, OpenAI introduced an alternate axis
– test-time scaling – and showcased its potential through the OpenAI-o1 release. This shift has
delivered substantial gains across diverse benchmarks (Jaech et al., 2024). Ever since, the commu-
nity has witnessed a plethora of investigations into attributes including, but not limited to, scaling
laws, methodologies, trade-offs, and a theoretically-grounded understanding of the new scaling axis.
Test-time scaling is mostly realized through two approaches- verifier-free and verifier-based (Setlur
et al., 2025).

Verifier-free vs. verifier-based methods. Verifier-free methods involve performing supervised
fine-tuning (SFT) on pre-trained LLMs with expert traces, i.e., high-quality step-by-step rationales
that directly supervise the reasoning process. Expert traces can come from diverse sources, such as
human-written or curated solutions (e.g., GSM8K (Cobbe et al., 2021)), distilled chain-of-thought
(CoT) from stronger teacher models (Muennighoff et al., 2025), reasoning trajectories obtained via
search procedures (Gandhi et al., 2024; Moon et al., 2024), self-bootstrapped rationales where only
correct generations are retained (Zelikman et al., 2022), and rationale distillation techniques for
transferring reasoning ability across models (Hsieh et al., 2023). On the other hand, verifier-based
methods deploy a verifier, a reward-signal apparatus, for guiding the response generation. Verifier
assigns a binary (0 / 1) value assessing the generation quality, especially in the objective tasks such
as math and coding. A verifier is construed from a domain-specific de facto ground truth, such as
constructing unit tests for coding and correct solutions for mathematical tasks. Verification has been
leveraged during both training (also known as reinforcement learning with verifiable rewards) (Guo
et al., 2025; Luo et al., 2025; Team et al., 2025), and inference (Cobbe et al., 2021). This approach
has exhibited strong test-time scaling performance. Indeed, Setlur et al. (2025) show that verifier-
based methods provably outperform verifier-free methods in test-time scaling.

Sequential vs. parallel compute. A complementary concern for test-time scaling methods is how
they spend their test-time compute budget. The reasoning models spend their entire budget se-
quentially by refining a single trajectory over multiple steps to curate a longer and more accurate
response. The sequential sampling process may be verifier-based, e.g., through process reward mod-
els (Liao et al., 2025), or verifier-free (Chen et al., 2023). On the other hand, resampling methods
adopt a parallel compute mode by dividing its budget to generate multiple responses, and then,
distilling a winning response. Popular resampling methods are verifier-based, leveraging a verifier
(e.g., unit tests, reward models trained on ground truth responses for objective tasks, etc.) to distill
a winning response from its generations (Huang et al., 2025a; Beirami et al., 2024; Cobbe et al.,
2021). The focus of this investigation is on verifier-based resampling methods.

Best-of-N (BoN) sampling. The most popular verifier-based test-time scaling method is BoN sam-
pling (Brown et al., 2024). BoN generates N independent responses per prompt, and chooses a
winner randomly from the set of correct responses deemed by a verifier. Assuming access to an ac-
curate verifier, Brown et al. (2024) analyze the pass@N metric, i.e., the average fraction of prompts
with at least one correct response, and observe an approximate power-law scaling with N . Extend-
ing this analysis, Schaeffer et al. (2025) establish an exponential per-instance scaling law attributing
the aggregate power law to the heavy-tailed distribution over prompts. On a complementary note,
Beirami et al. (2024); Mroueh (2024) analyze the deviation of the BoN alignment policy from the
reference policy by computing tight upper-bounds on their KL-divergence. Yet another characteris-
tic, the sample complexity of BoN to generate correct responses for objective tasks is investigated
by Huang et al. (2025b). While such scaling laws and divergence bounds are informative, they do not
directly address the central goal of resampling: how well can we approximate the verifier-induced
optimal policy that maximizes expected reward? Variations of BoN, addressing aspects such as N -
estimation and adaptivity, and finding alternate scoring mechanisms have also been explored. For
instance, Wang et al. (2025) truncates BoN generations based on an estimation budget formed by
solving an optimization problem, showcasing computational improvement over BoN. Huang et al.
(2025c) preaches why confidence score is preferable compared to reward scores, and thresholds it
for “confident” test-time scaling. However, the choice of threshold is ad hoc.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Approximately correct verifiers. Most of the studies on BoN assume access to an accurate ver-
ifier that rarely holds in practice. For example, unit tests can miss the edge cases, and verifiers
for math benchmarks often capture only a subset of valid responses. A relevant case is the de-
fault GSM8K evaluation in lm-evaluation-harness (Gao et al., 2024), which extracts the
first match to the pattern “The answer is (-?[0-9.,]+)”; many correct generations that
deviate from this template are thus marked incorrect. These limitations underscore the need to ex-
plicitly account for verifier imperfections in the design and analysis of test-time scaling methods —
a dimension largely absent from the literature. We are aware of two investigations accounting for
verifier (aka reward model) imperfections in sampling algorithms. Aminian et al. (2025) analyze
BoN under a per-prompt mean squared error (MSE) constraint on the verifier. Huang et al. (2025a)
adopt the same framework to show that BoN’s average reward may fail to scale with N under lim-
ited coverage, motivating a rejection sampling (RS) variant that alleviates this issue. Concurrently,
Dorner et al. (2025) study test-time scaling with approximately correct verifiable rewards, charac-
terizing how a verifier’s region of convergence (ROC) mediates the trade-off between accuracy and
compute. Our investigation complements these perspectives by focusing on generator coverage and
showing how coverage, together with the ROC, determines the exact sub-optimality of a sampling
method, rather than only its asymptotic accuracy-compute profile. Here, sub-optimality is defined as
the difference between the average reward obtained from the verifier while using an optimal policy
and that of the sampling algorithm.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B ALGORITHM PSEUDO-CODES

Algorithm 1: Accept-if-Correct (AiC)

Input: Prompt x ∈ X , generator πref(· | x), verifier set Ŝ(x)
for n = 1, 2, . . . do

Sample Yn ∼ πref(· | x);
if Yn ∈ Ŝ(x) then

return Yn // accept if correct

else
continue // resample

Algorithm 2: Sequential Rejection Sampling (SRS)

Input: Prompt x ∈ X ; generator πref(· | x); verifier set Ŝ(x); envelope M ; ŝ ≜ µ
(
Ŝ(x)

)
; constraint β

for n = 1, 2, . . . do
Sample Yn ∼ πref(· | x) and u ∼ Unif[0, 1];
Compute η̂(Yn) by plugging ŝ in (2);
if Yn ∈ Ŝ(x) then

return Yn // accept if verified correct

else if 1
M

η̂(Yn) ≥ u then
return Yn // accept (incorrect) via RS to satisfy coverage

else
continue // reject and resample

Algorithm 3: Sequential Maximal Coupling (SMC)

Input: Prompt x ∈ X ; generator πref(· | x); verifier set Ŝ(x); ŝ ≜ µ
(
Ŝ(x)

)
; constraint β

for n = 1, 2, . . . do
Sample Yn ∼ πref(· | x) and u ∼ Unif[0, 1];
Compute η̂(Yn) by plugging ŝ in (2);
if η̂(Yn) ≥ u then

return Yn // accept if coverage is satisfied

else
// do not advance n: keep drawing until verified-correct

while Yn /∈ Ŝ(x) do
Sample Yn ∼ πref(· | x);

return Yn // first verified-correct draw

Algorithm 4: Batched Rejection Sampling (BRS)

Input: Prompt x ∈ X ; generator πref(· | x); verifier set Ŝ(x); envelope M ; ŝ ≜ µ
(
Ŝ(x)

)
; batch size

N + 1; constraint β
Sample YN+1 ≜ (Y1, . . . ,YN+1) i.i.d. from πref(· | x);
Draw u1, . . . , uN+1 ∼ Unif[0, 1];
for i = 1, . . . , N do

Compute η̂(Yi) by plugging ŝ in (2);
if Yi ∈ Ŝ(x) then

return Yi // accept if verified correct

else if 1
M

η̂(Yi) ≥ ui then
return Yi // accept (incorrect) via RS to satisfy coverage

return YN+1 // return the last sample if none accepted

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C TARGET-TO-PROPOSAL RADON-NIKODYM DERIVATIVE (PROOF OF
THEOREM 2.1)

Finding the optimal policy νr is equivalently solving the following constrained optimization prob-
lem.

P(β) ≜ max
η≥0

∫
Sr

η dµ s.t.

∫
η2 dµ ≤ β , and

∫
η dµ = 1 .

Let us denote the value of P(β) by m, i.e., m ≜
∫
Sr

ηr dµ. Using Cauchy-Schwarz inequality, we
have (∫

Sr

ηr dµ

)2

≤
∫
Sr

η2r dµ ·
∫
Sr

dµ ,

which yields: ∫
Sr

η2r dµ ≥ 1

sr
m2 . (4)

Similarly, from the fact that (∫
Sr

ηr dµ

)2

≤
∫
Sr

η2r dµ ·
∫
Sr

dµ ,

we obtain: ∫
Sr

η2r dµ ≥ 1

1− sr
(1−m)2 . (5)

Combining (4) and (5), we have

β ≥
∫
Y
η2 dµ ≥ 1

sr
m2 +

1

1− sr
(1−m)2 . (6)

Rearranging (6), we obtain:

m ≤
√
sr(1− sr)(β − 1) + s .

Furthermore, since m is the mass that the optimal measure puts on the set of correct responses Sr,
we have

m ≤
(
1 ∧

√
sr(1− sr)(β − 1) + sr

)
. (7)

Next, we will show that the upper-bound on m is tight. Specifically, we will construct a valid ηr
such that (7) holds with equality, noting that Cauchy-Schwarz is tight for constant functions. For
some pr ∈ R and qr ∈ R, let us set

ηr(y) =

{
pr , y ∈ S ,

qr , y /∈ S .

Since νr is a probability measure, we have

1 =

∫
ηr dµ =

∫
Sr

ηr dµ+

∫
Sr

ηr dµ = pr · sr︸ ︷︷ ︸
= m

+qr · (1− sr) . (8)

From (8) we have

pr =
m

sr
, and qr =

1−m

1− sr
.

The proof concludes by setting m = (1 ∧
√
sr(1− sr)(β − 1) + sr).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D AUXILIARY LEMMAS

D.1 OPTIMAL TRANSPORT COST (PROOF OF LEMMA 3.1)

Let us define the total variation (TV) distance between measures µ and ν defined on a common
measurable space (Y,B(Y)) as

DTV(µ∥ν) ≜
1

2
·
∫
Y

∣∣µ(dy)− ν(dy)
∣∣ . (9)

We have

OHC(β) = min
ρ∈M(µ,ν⋆)

∫
1{y ̸= z} dρ(y, z)

= min
ρ∈M(µ,ν⋆)

Py,z∼ρ(y ̸= z)

= DTV(µ∥ν⋆) (10)

(9)
=

1

2

(∫
S⋆

|µ(dy)− ν⋆(dy)|+
∫
S⋆

|µ(dy)− ν⋆(dy)|
)

(2)
=

1

2

(∣∣∣(1 ∧mβ(sr⋆)
)
− sr⋆

∣∣∣+ ∣∣∣(0 ∨ 1−mβ(sr⋆)
)
− (1− sr⋆)

∣∣∣)
=
(
1 ∧mβ(sr⋆)

)
− sr⋆ , (11)

where (10) is a well known result, see, for example, (Villani et al., 2008, page 22), and (11) follows
by noting that mβ(sr⋆) ≥ sr⋆ by definition, since mβ(sr⋆) is the mass that the optimal policy puts
on S⋆, and must be at least equal to sr⋆ .

D.2 BON SAMPLING DISTRIBUTION

In this subsection, we characterize the BoN sampling distribution, where the BoN algorithm has
access to a membership oracle S, such that r(x,y) = 1{y ∈ S} for any prompt x ∈ X and
response y ∈ Y . Note that the analysis for BoN sampling distribution presented in (Beirami et al.,
2024) does not apply to our setting, since it assumes a strictly monotonic reward function. We have
the following result. Let us denote s ≜

∫
S r dµ.

Lemma D.1 (BoN – Radon-Nikodym derivative). Let ν(N)
BoN denote the sampling distribution in-

duced by BoN with batch size N + 1 and access to a membership oracle S. We have

dν
(N)
BoN

dµ
(y) ≜

{
(1− s)N , if y /∈ S,
1
s

(
1− (1− s)N+1

)
, if y ∈ S .

Proof. For any set A ∈ Y , we have

ν
(N)
BoN(A) =

∑
n∈[N+1]

P
(
Yn ∈ A, response n is selected

)
= (N + 1)P

(
Yn ∈ A, response n is selected

)
,

which follows from the independence of the sampled response (Y1, · · · ,YN+1). Next, note that

P
(
Y1 ∈ A, response 1 is selected

)
=

∫
P
(
Y1 ∈ A, response 1 is selected | Y1 = y

)
µ(dy)

=

∫
P
(
Y1 ∈ A | response 1 is selected, Y1 = y

)
· P
(
response 1 is selected | Y1 = y

)
µ(dy)

=

∫
P
(
Y1 ∈ A | Y1 = y

)
· P
(
response 1 is selected | Y! = y

)
µ(dy)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

=

∫
1
{
y ∈ A

}
· P
(
response 1 is selected | Y1 = y

)
µ(dy) ,

which implies that

ν
(N)
BoN(A) = (N + 1)

∫
1
{
y ∈ A

}
· P
(
response 1 is selected | Y1 = y

)
µ(dy) .

Thus, the Radon-Nikodym derivative of ν(N)
BoN with respect to the proposal µ is given by

dν
(N)
BoN

dµ
(y) = (N + 1) · P

(
response 1 is selected | Y1 = y

)
= (N + 1)P

(
response 1 is selected, Y1 /∈ S | Y1 = y

)︸ ︷︷ ︸
≜ T1

+ (N + 1) · P
(
response 1 is selected, Y1 ∈ S | Y1 = y

)︸ ︷︷ ︸
≜ T2

.

Expanding T1, we have
T1 = P

(
Yj /∈ S ∀ j ∈ [N + 1], response 1 is selected | Y1 = y

)
= P

(
response 1 is selected | Y1 = y, Yj /∈ S ∀ j ∈ [N + 1]

)
× P

(
Yj /∈ S ∀ j ∈ [N + 1] | Y1 = y

)
=

1

N + 1

∏
j∈[N+1]

P
(
Yj /∈ S | Y1 = y

)
=

1

N + 1
· (1− s)N1{y /∈ S} . (12)

Furthermore, we have

T2 =
∑

m∈[N+1]

P
(
(Y1, · · · ,Ym) ∈ S⊗m, (Ym+1, · · · ,YN+1) /∈ S⊗N−m,

response 1 is selected | Y1 = y
)

=

N+1∑
m=0

(
N

m−1

)
m

· sm−1 · (1− s)N−m+11{y ∈ S}

=

N∑
m=0

(
N
m

)
m+ 1

· sm · (1− s)N−m1{y ∈ S} . (13)

Combining (12) and (13), we get:

dν
(N)
BoN

dµ
(y) ≜


(1− s)N , if y /∈ S,

(N + 1) ·
N∑

m=0

(Nm)
m+1 · sm · (1− s)N−m, if y ∈ S .

(14)

Furthermore, note that
∫ 1

0
tm dt = 1

m+1 . Hence, we can further simplify (14) as follows.

·
N∑

m=0

(
N
m

)
m+ 1

· sm · (1− s)N−m = ·
N∑

m=0

(
N

m

)
· sm · (1− s)N−m

∫ 1

0

tm dt

=

∫ 1

0

N∑
m=0

(
N

m

)
(st)m · (1− s)N−m dt

=

∫ 1

0

(
1− s+ st

)N
dt

=
1

s
· 1− (1− s)N+1

N + 1
,

which yields the desired result. ■

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.3 BRS SAMPLING DISTRIBUTION

In this subsection, we characterize the BRS sampling distribution, where we assume BRS’ acces to
a membership oracle S obtainable through a verifier r(x,y) = 1{y ∈ S} for any prompt x ∈ X
and response y ∈ Y . Denoting s ≜

∫
S r dµ, we have the following lemma.

Lemma D.2 (BRS – Radon-Nikodym derivative). Let ν(N)
BRS denote the sampling distribution in-

duced by BRS with batch size N + 1 and access to a membership oracle S. Furthermore, let ν
denote the optimal policy in Π(β | x) induced by S, i.e., ν ≜ argmaxρ∈Π(β | x)

∫
S dρ. We have

dν
(N)
BRS

dµ
(y) =

(
1−

(
1− 1

M

)N
)

dν

dµ
(y) +

(
1− 1

M

)N

.

Proof. Recall that BRS obtains a batch of N + 1 samples, which we denote by yN+1 ≜
(y1, · · · ,YN+1). Denote the target-to-proposal Radon-Nikodym derivative that BRS uses to ac-
cept sample y by η(y). For our analysis, this corresponds to (2) induced by S. The conditional
probability kernel for the BRS sampling strategy, which we denote by K(yN+1,dz), is given by

K
(
yN+1,dz

)
=

∑
n∈[N]

 1

M
η(yn)

∏
j<n

(
1− 1

M
η(yj)

) · δyn(dz)

+

(∏
n∈N

(
1− 1

M
η(yn)

))
µ(dz) .

The BRS coupling is then obtained as

ρ
(N)
BRS = K

(
yN+1,dz

)
· µ⊗(N+1)(dyN+1) . (15)

Marginalizing (15) with respect to yN+1, we obtain

ν
(N)
BRS(dz) =

∫
ρ(dyN+1,dz)

=

∫ ∑
n∈[N]

 1

M
η(yn)

∏
j<n

(
1− 1

M
η(yj)

) · δyn(dz)µ
⊗(N+1)(dyN+1)

+

∫ (∏
n∈N

(
1− 1

M
η(yn)

))
µ⊗(N+1)(dyN+1)µ(dz)

=
∑

n∈[N]

∏
j<n

∫ (
1− 1

M

dν

dµ
(yj)µ(dyj)

) ·
(∫

1

M
dν(yn)δyn(dz)

)

+ µ(dz)
∏

n∈[N]

∫ (
1− 1

M

dν

dµ
(yn)

)
µ(dyn)

=
1

M
ν(dz) ·

∑
n∈[N]

(
1− 1

M

)n−1

+

(
1− 1

M

)N

µ(dz)

=

(
1−

(
1− 1

M

)N
)
ν(dz) +

(
1− 1

M

)N

µ(dz) ,

and the lemma readily follows. ■

E PROPERTIES OF ROC

In this section, we briefly review the properties of the ROC for completeness and introduce useful
definitions that will be leveraged in our subsequent analysis. Recall that sr̂ = µ(Ŝ).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• True positives (TP): samples correctly identified by the verifier, i.e., Ŝ ∩ S⋆. The reference
mass is TP ≜ µ(Ŝ ∩ S⋆). False positives (FP): incorrect responses accepted as correct,
i.e., Ŝ \ S⋆, with mass FP ≜ µ(Ŝ \ S⋆).

• False negatives (FN): correct responses rejected by the verifier, i.e., S⋆\Ŝ, with mass FN ≜
µ(S⋆ \ Ŝ). True negatives (TN): incorrect responses correctly rejected, i.e., Y \ (S⋆ ∪ Ŝ),
with mass TN ≜ µ(Y \ (S⋆ ∪ Ŝ)).

• True positive rate (TPR): the fraction of true positives among all ground-truth correct re-
sponses:

TPR =
TP

TP + FN
=

1

sr⋆
µ(S⋆ ∩ Ŝ).

Thus, TP = sr⋆ · TPR.
• False positive rate (FPR): the fraction of false positives among all ground-truth incorrect

responses:

FPR =
FP

FP + TN
=

1

1− sr⋆
µ(Ŝ \ S⋆).

Thus, FP = (1− sr⋆) · FPR.
• It follows that

sr̂ = µ(S⋆ ∩ Ŝ) + µ(Ŝ \ S⋆) = sr⋆ · TPR+ (1− sr⋆) · FPR = sver. (16)

• Likewise,

FN = sr⋆ · (1− TPR). (17)

F AIC PROPERTIES (PROOF OF THEOREM 3.2)

Computational complexity. For AiC, the acceptance probability is given by

pAiC ≜ P(Z = Y | Y ∼ πref(· | X)) =

∫
Ŝ
µ(dy) = sr̂ .

As shown in Appendix E, since sr̂ = sver, we have pAiC = 1/sver. Finally,

E[τAiC] = pAiC

∑
n∈N

n · (1− pAiC)
n−1 =

1

pAiC
=

1

sver
.

Sub-optimality. The mass that the AiC sampling rule assigns to the ground truth set S⋆ is given
by

νAiC(S⋆) = νAiC(S⋆ ∩ Ŝ) + νAiC(S⋆ \ Ŝ)

=
1

sr⋆
µ(S⋆ ∩ Ŝ)

=
s

sver
· TPR , (18)

where (18) follows from Appendix E. Hence, we have

νAiC(S⋆)− µ(S⋆) =
s

sver
· TPR− sr⋆

=
s

sver
· TPR− 1 + 1− sr⋆

(16)
=

sr⋆ · TPR− (sr⋆ · TPR+ (1− sr⋆) · FPR)
sver

+ (1− sr⋆)

=
1− sr⋆

sver
(sver − FPR)

(16)
=

1− sr⋆

sver

(
(sr⋆ · TPR+ (1− sr⋆) · FPR)− FPR

)
21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

=
1

sver
· sr⋆(1− sr⋆) · J . (19)

Next, note that

SubOpt(AiC)
(3)
= ν⋆(S⋆)− νAiC(S⋆)

= ν⋆(S⋆)− µ(S⋆) + µ(S⋆)− νAiC(S⋆)

= OHC(β)− 1

sver
· sr⋆(1− sr⋆) · J , (20)

where (20) follows by noting that ν⋆(S⋆) = (1 ∧ mβ(sr⋆)) (using (2)), followed by using Theo-
rem 3.1, and finally combining it with (19).

• Large coverage – β > 1
sr⋆

: In this regime, we have OHC(β) = 1 − sr⋆ , and hence, we
have:

SubOpt(AiC) = OHC(β)

(
1− sr⋆

sver
· J
)

.

• Small coverage – β ≤ 1
sr⋆

: In this regime, the optimal transport cost is increasing in β, and

is given by OHC(β) =
√

sr⋆(1− sr⋆)(β − 1), and hence, we obtain:

SubOpt(AiC) = OHC(β) ·

(
1− 1

sver

√
sr⋆(1− sr⋆)

β − 1
· J

)
.

G AIC CONSTRAINT VIOLATION (PROOF OF THEOREM 3.3)

Note that

νAiC(dz) = µ(dz | Ŝ) (16)
=

1

sver
· µ(dz ∩ Ŝ) =

1{z ∈ Ŝ}
sver

· µ(dz) .

Hence, we have

χ2(µ∥νAiC) =

∫
Y

(
dνAiC

dµ

)2

dµ− 1 =

∫
Ŝ

(
1

sver

)2

− 1 =
1

sver
− 1 ,

which implies that based on our coverage constraint, we must have β ≥ 1
sver

.

H SMC RESIDUAL MEASURE (PROOF OF THEOREM 3.4)

Let us define the minimum measure λ ≜ (µ ∧ ν). Furthermore, let us assume that mβ(sr) ≥ sr;
the complementary case follows analogously. Based on the closed-form expression for the Radon-
Nikodym derivative of the target-to-proposal measures stated in (2), we have

λ =

(
1 ∧ dν

dµ

)
· µ = µ | S +

1−mβ(sr)

1− sr
· µ | S , (21)

which gives

ν − λ = (p− 1) · µ | S + (q − q)µ | S , (22)

where we have set

p ≜

(
1

sr
∧ mβ(sr)

sr

)
, and q ≜

(
1−mβ(sr)

1− sr
∨ 0

)
.

Furthermore,

λ(Y)
(21)
= sr +

1−mβ(sr)

1− sr
· (1− sr)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

= 1− (mβ(sr)− sr)

= 1− sr

((
mβ(sr)

sr
∧ 1

sr

)
− 1

)
= 1− sr(p− 1) . (23)

Finally, we have

µres
(22)−(23)

=
(p− 1)µ(· ∩ S)

sr(p− 1)
= µ(· | S) .

I SRS / SMC COMPUTATIONAL COMPLEXITY (PROOF OF THEOREM 3.5)

Computational complexity of SRS: We have

P
(
Z = Y | Y ∼ πref(· | x)

)
= P

(
Z = Y | Y ∼ πref(· | x) , Y ∈ Ŝ

)
· P
(
Y ∈ Ŝ

)︸ ︷︷ ︸
(16)
= sver

+ P
(
Z = Y | Y ∼ πref(· | x) , Y /∈ Ŝ

)
· P
(
Y /∈ Ŝ

)
= sver + P

(
Z = Y | Y ∼ πref(· | x) , Y /∈ Ŝ ,

1

M
η̂(Y) ≥ U , U ∼ Unif[0, 1]

)
× P

(
1

M
η̂(Y) ≥ U , U ∼ Unif[0, 1] | y ∼ πref(· | x) , Y /∈ Ŝ

)
+ P

(
Z = Y | Y ∼ πref(· | x) , Y /∈ Ŝ ,

1

M
η̂(Y) < U , U ∼ Unif[0, 1]

)
︸ ︷︷ ︸

= 0

× P
(

1

M
η̂(Y) < U , U ∼ Unif[0, 1] | y ∼ πref(· | x) , Y /∈ Ŝ

)
= sver + (1− sver) ·

sver(
1 ∧mβ(sver)

) · (0 ∨ 1−mβ(sver)

1− sver

)
= sver +

sver(
1 ∧mβ(sver)

) − sver

=
sver(

1 ∧mβ(sver)
) .

Finally, denoting pSRS ≜ P
(
Z = Y | Y ∼ πref(· | x)

)
, we have

E[τSRS] = pSRS

∑
n∈N

n · (1− pSRS)
n−1 =

1

pSRS
=

(
1 ∧mβ(sver)

)
sver

.

Computational complexity of SMC: First, note that SMC’s probability of acceptance for the first
proposal is given by

P
(
Z = Y

)
= P

(
η̂(Y) ≥ U | U ∼ Unif[0, 1]

)
= P

(
η̂(Y) ≥ U | U ∼ Unif[0, 1] , Y ∈ Ŝ

)︸ ︷︷ ︸
= 1

·P
(
Y ∈ Ŝ

)
+ P

(
η̂(Y) ≥ U | U ∼ Unif[0, 1] , Y /∈ Ŝ

)
· P
(
Y /∈ Ŝ

)
(16)
= sver +

(
0 ∨ 1−mβ(sver)

1− sver

)
·
(
1− sver

)
= 1−

(
0 ∨ mβ(sver)− sver

)
. (24)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

We have

E[τSMC] = P
(

first proposal accepted
)
· 1

+

(
1 +

∑
n∈N

nP
(
nth proposal is accepted

))
· P
(

first proposal is rejected
)

(24)
=
(
1−

(
0 ∨ mβ(sver)− sver

))
+

(
1 +

∑
n∈N

nsver(1− sver)
n−1

)
·
(
(1 ∧ mβ(sver))− sver

)

=
1

sver
·
(
1 ∧mβ(sver)

)
.

J SRS / SMC SUB-OPTIMALITY (PROOF OF THEOREM 3.6)

SRS is a transport plan in M(µ, ν̂) and SMC is designed from the optimal transport plan from µ to
ν̂, where we denote the optimal distribution induced by the estimated reward, i.e., ν̂ ≜ Law(Z | x)
where Z ∼ π̂(· | x), and we define π̂(· | x) ≜ argmaxπ(· | x)∈Π(β | x) Ey∼π(· | x)[r̂(y,x)]. Con-
sequently, SRS and SMC sample from the same distribution ν̂; our sub-optimality analysis will
quantify the discrepancy induced as a result of sampling from ν̂ instead of ν⋆. The key in our anal-
ysis is to decompose the sub-optimality into two terms: an optimal transport cost (OHC) term, and
a policy improvement (PI) term. This leads to sub-optimality having three distinct regimes, which
we discuss next. Note that for A ∈ SRS,SMC,

SubOpt(A) = ν⋆(S⋆)− νA(S⋆) = ν⋆(S⋆)− ν̂(S⋆) = ν⋆(S⋆)− µ(S⋆)︸ ︷︷ ︸
= OHC

− ν̂(S⋆)− µ(S⋆)︸ ︷︷ ︸
= PI

.

The mass that ν̂ assigns on S⋆ can be expanded using the Radon-Nikodym derivative in (2) as
follows.

ν̂(S⋆) =

(
1

sver
∧ mβ(sver)

sver

)
· µ
(
S⋆ ∩ Ŝ

)
+

(
1−mβ(sver)

1− sver
∨ 0

)
· µ(S⋆ \ Ŝ)

=

(
1

sver
∧ mβ(sver)

sver

)
· TP +

(
1−mβ(sver)

1− sver
∨ 0

)
· FN

(17)
=

(
1

sver
∧ mβ(sver)

sver

)
︸ ︷︷ ︸

≜ pver

·sr⋆ · TPR+

(
1−mβ(sver)

1− sver
∨ 0

)
︸ ︷︷ ︸

≜ qver

·sr⋆ ·
(
1− TPR

)
. (25)

Furthermore, expanding PI, we have

ν̂(S⋆)− µ(S⋆)
(25)
= sr⋆

(
(pver − 1)TPR + (qver − 1)(1− TPR)

)
= sr⋆

((
1− sver
sver

∧ mβ(sver)− sver
sver

)
· TPR

−
(
mβ(sver)− sver

1− sr⋆
∨ −sver

)
·
(
1− TPR

))
= sr⋆ ·

(
mβ(sver)− sver

)
·
(
TPR

sver
− 1− TPR

1− sver

)
= sr⋆ ·

(
mβ(sver)− sver

)
· TPR− sver
sver(1− sver)

(16)
= sr⋆ ·

(
mβ(sver)− sver

)
· TPR− (sr⋆ · TPR+ (1− sr⋆FPR))

sver(1− sver)

=
(
mβ(sver)− sver

)
· sr⋆(1− sr⋆)

sver(1− sver)
· J . (26)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Next, based on coverage, we have the following fours cases.

Transport regime – β ≤
(

1
sr⋆

∧ 1
sver

)
: In this regime, we have OHC(β) =

√
sr⋆(1− sr⋆)(β − 1),

which combined with (26) gives us

SubOpt(A) = OHC(β)

(
1−

√
sr⋆(1− sr⋆)

sver(1− sver)
· J

)
.

Policy improvement regime – β ∈
(

1
sver

, 1
sr⋆

]
: In this regime, we have OHC(β) =√

sr⋆(1− sr⋆)(β − 1) and mβ(sver)− sver =
√
sver(1− sver)(β − 1), and hence, we have

SubOpt(A) =
√
sr⋆(1− sr⋆)(β − 1)−

√
β − 1

sver(1− sver)
· sr⋆(1− sr⋆) · J

= OHC(β)

(
1− 1

sver

√
sr⋆(1− sr⋆)

β − 1
· J

)
.

Policy improvement regime – β ∈
(

1
sr⋆

, 1
ssver

]
: In this regime, OHC(β) = 1−sr⋆ , and hence, we

have

SubOpt(A) = (1− sr⋆)−

√
β − 1

sver(1− sver)
· sr⋆(1− sr⋆) · J

= OHC(β)

(
1−

√
β − 1

sver(1− sver)
· sr⋆ · J

)
.

Saturation regime – β >
(

1
sr⋆

∧ 1
sver

)
: In this regime, we have OHC(β) = 1−sr⋆ and mβ(sver) =

1, and it can be readily verified that

SubOpt(A) = OHC(β)

(
1− sr⋆

sver
· J
)

.

K BON BATCH SIZE (PROOF OF THEOREM 3.7)

Let us denote a ≜ (1 − sr⋆)
N . Evaluating the χ2-divergence between the measure induced by the

BoN sampling policy νBoN with batch size N + 1, we have∫
Y

(
dνBoN

dµ

)2

dµ− 1 =

∫
S

(
dνBoN

dµ

)2

dµ+

∫
S

(
dνBoN

dµ

)2

dµ− 1

=
1

sr⋆

(
1− (1− sr⋆)a

)2
+ (1− sr⋆)a

2 − 1 (27)

=
1

sr⋆

(
1 + (1− sr⋆)

2a2 − 2(1− sr⋆)a
)
+ (1− sr⋆)a

2 − 1

= a2 · 1− sr⋆

sr⋆
− 2a

1− sr⋆

sr⋆
+

1− sr⋆

sr⋆

=

(
1− sr⋆

sr⋆

)
(a− 1)2 ,

where (27) follows from Lemma D.1. Hence,

χ2
(
νBoN∥µ

)
=

(
1− sr⋆

sr⋆

)
·
(
1− (1− sr⋆)

N
)2

. (28)

Note that χ2
(
νBoN∥µ

)
≤ (1−sr⋆)/sr⋆ , and hence we have Nmax = +∞ for any β > (1−sr⋆)/sr⋆ .

The regime β ∈ (sr⋆(1 − sr⋆),
1−sr⋆
sr⋆

] follows from bounding (28) by β − 1. The proof completes
by noting that χ2

(
νBoN∥µ

)
is lower bounded by sr⋆(1− sr⋆), which is obtained by setting N = 1

in (28).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

L BON SUB-OPTIMALITY (PROOF OF THEOREM 3.8)

From (3), we have

SubOpt(BoN) = ν⋆(S⋆)− νBoN(S⋆)

= ν⋆(S⋆)−
(
1− (1− sr⋆)

N+1
)

(29)

= (1 ∧mβ(sr⋆))− sr⋆ + (1− sr⋆) + (1− sr⋆)
N+1 (30)

= (1− sr⋆)
N+1 − (0 ∨ 1−mβ(s

⋆
r)) ,

where (29) follows from Lemma D.1 and (30) follows from Theorem 2.1.

M BRS BATCH SIZE (PROOF OF THEOREM 3.9)

Let us set a = (1− 1
M)−1. We have

χ2
(
νBRS∥µ

)
=

∫ (
dνBRS

dµ

)2

dµ− 1

=

∫ (
(1− a−N)

dν⋆

dµ
(y) + a−N

)2

µ(dy)− 1 (31)

=

∫
(1− a−N)2

(
dν⋆

dµ

)2

µ(dy) +

∫
a−2Nµ(dy)

+ 2

∫
a−N (1− a−N)

dν⋆

dµ
µ(dy)− 1

=

∫
S⋆

(1− a−N)2
(
dν⋆

dµ

)2

µ(dy) +

∫
S⋆

(1− a−N)2
(
dν⋆

dµ

)2

µ(dy)

+ a−2N + 2a−N (1− a−N)− 1

=

∫
S
(1− a−N)2

(
1

sr⋆
∧ mβ(sr⋆)

sr⋆

)
ν⋆(dy) + a−N

(
a−N + 2− 2a−N

)
− 1 (32)

+

∫
S⋆

(1− a−N)2 ·
(
0 ∨ 1−mβ(sr⋆)

1− sr⋆

)
ν(dy)

= (1− a−N)2 · 1

sr⋆

(
1 ∧mβ(sr⋆)

)
+ (1− s−N)2 · 1

1− sr⋆
·
(
0 ∨ 1−mβ(sr⋆)

)2
+ a−N (2− a−N)− 1

=
(
1− a−N

)2 · (1

sr⋆
(1 ∧mβ(sr⋆))

2 +
1

1− sr⋆
(0 ∨ 1−mβ(sr⋆))

2

)
︸ ︷︷ ︸

≜ C

+ a−N︸︷︷︸
≜ t

(2− a−N)− 1

= (1− t)2 · C − (1− 2t+ t2)

= (1− t)·(C − 1) ,

where (31) follows from Lemma D.2 and (32) follows from Theorem 2.1. Next, investigating C, we
have the following two cases.
Case A: (1 ∧mβ(sr⋆)) = mβ(sr⋆): In this case, denoting d ≜

√
sr⋆(1− sr⋆)(β − 1), we have

C =
(sr⋆ + d)2

sr⋆
+

(1− sr⋆ − d)2

1− sr⋆

= 1 + d2
(

1

sr⋆
+

1

1− sr⋆

)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

= 1 + sr⋆(1− sr⋆)(β − 1)

(
1

sr⋆
+

1

1− sr⋆

)
= a+ (β − 1)(1− sr⋆ + sr⋆)

= β .

Case B: (1 ∧mβ(sr⋆)) = 1: In this case, we have C = 1
sr⋆

. Furthermoremore, leveraging the
condition in this case that mβ(sr⋆) ≥ 1, we find that β ≥ 1

sr⋆
, consequently establishing that

C ≤ β. Our proof concludes by noting that (1− a−N)2 ≤ 1 for any N ∈ N.

N BRS SUB-OPTIMALITY (PROOF OF THEOREM 3.10)

From (3) we obtain that

SubOpt(BRS) = ν⋆(S⋆)− νBRS(S⋆)

=
(
1 ∧mβ(sr⋆)

)
− νBRS(S⋆) (33)

=

(
1− 1

M

)N

·
(
1 ∧mβ(sr⋆)

)
−
(
1− 1

M

)N

· sr⋆ (34)

=

(
1− 1

M

)N

·
(
1− sr⋆ ∧mβ(sr⋆)− sr⋆

)
= OTC(β) ·

(
1− 1

M

)N

, (35)

where (33) follows from Theorem 2.1, (34) follows from Lemma D.2, and finally, (35) follows from
Lemma 3.1.

O BATCHED SAMPLING ALGORITHMS WITH APPROXIMATE VERIFIERS

In this section, we extend the sub-optimality analyses for the batched sampling algorithms BoN
and BRS to settings where we only have access to an approximate verifier, captured through the
set membership oracle Ŝ. We begin by analyzing BoN sub-optimality with access to Ŝ, and sub-
sequently state the same for BRS. We conclude the section discussing the different regimes of the
sub-optimality–coverage plot, and which algorithm is preferred in each of these regimes. For our
analyses, we decompose the sub-optimality into two components, a sampling error, and a verifica-
tion error. Specifically, for any algorithm A ∈ {BoN, BRS}, let ν̂A denote the distribution induced
by its sampling mechanism. Accordingly, we have

SubOpt(A)
(3)
= ν⋆(S⋆)− ν̂A(S⋆) = ν⋆(S⋆)− νA(S⋆)︸ ︷︷ ︸

sampling error

+ νA(S⋆)− ν̂A(S⋆)︸ ︷︷ ︸
verification error

. (36)

We have the following theorem for BoN sub-optimality.
Theorem O.1 (BoN – sub-optimality with approximate verifiers). The sub-optimality of the BoN
sampling algorithm with access to an approximate membership oracle Ŝ is given by

SubOpt(BoN) = (1− sr⋆)

(
1− sr⋆

sver

(
1− (1− sver)

N
)
J

)
−
(
0 ∨ 1−mβ(sr⋆)

)
.

Proof. From (36), we observe that it is sufficient to evaluate the verification error, since the sampling
error has already been analyzed in Theorem 3.8. We have

νBoN(S⋆)− ν̂BoN(S⋆)

= νBoN(S⋆)−
(
ν̂BoN(S⋆ ∩ Ŝ) + ν̂BoN(S⋆ \ Ŝ)

)
=
(
1− (1− sr⋆)

N+1
)
−
(

1

sver

(
1− (1− sver)

N+1
)
· µ(S⋆ ∩ Ŝ) (37)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

+ (1− sver)
Nµ(S⋆ \ Ŝ)

)
=
(
1− (1− sr⋆)

N+1
)
−
(
sr⋆

sver

(
1− (1− sver)

N+1
)
· TPR

+ (1− sver)
N · sr⋆ · (1− TPR)

)
=
(
1− (1− sr⋆)

N+1
)
−
(
sr⋆(1− sver)

N

(
(1− TPR)

− (1− sver) · TPR
sver

)
+

sr⋆ · TPR
sver

)
=
(
1− (1− sr⋆)

N+1
)
−
(
sr⋆(1− sver)

N

(
sver − TPR

sver

)
+

sr⋆ · TPR
sver

)
=
(
1− (1− sr⋆)

N+1
)
− sr⋆

sver

(
(1− sver)

N · (sver − TPR) + TPR
)

(16)
=
(
1− (1− sr⋆)

N+1
)
− sr⋆

sver

(
TPR− (1− sr⋆)(1− sver)

N · J
)

(16)
=
(
1− (1− sr⋆)

N+1
)
− sr⋆

sver

(
sver + (1− sr⋆) ·

(
1− (1− sver)

N
)
· J
)

=
(
1− (1− sr⋆)

N+1
)
−
(
sr⋆ +

sr⋆(1− sr⋆)

sver

(
1− (1− sver)

N
)
· J
)
, (38)

where (37) follows from Lemma D.1. The claim readily follows by combining (38) with Theo-
rem 3.8 using (36). ■

Next, we state the sub-optimality of the BRS algorithm with access to an approximate oracle Ŝ.

Theorem O.2. Let us set aN ≜ (1 − (1 − 1
M)N). The sub-optimality of the BRS algorithm with

access to an approximate membership oracle Ŝ is specified through the following coverage regimes.

1. Transport regime: In the transport regime, characterized by the coverage constraint β ≤
(1
sr⋆

∧ 1
sver

), we have

SubOpt(BRS) = OHC(β)(1− aN) + aNsr⋆

(
1

sr⋆
mβ(sr⋆)−

(
mβ(sver)

sver
· TPR

+
1−mβ(sver)

1− sver
(1− TPR)

))
.

2. Policy improvement regime: We have two cases. If sver > sr⋆ , in the policy improvement
regime, characterized by the coverage constraint β ∈ (1

sver
, 1
sr⋆

], we have

SubOpt(BRS) = OHC(β)(1− aN) + aNsr⋆

(
mβ(sr⋆)

sr⋆
− TPR

sver

)
.

Alternatively, for β ∈ (1
sr⋆

, 1
sver

], we have

SubOpt(BRS) = OHC(β)(1− aN) + aNsr⋆

(
1

sr⋆
−
(
mβ(sver)

sver
· TPR

+
1−mβ(sver)

1− sver
(1− TPR)

))
.

3. Saturation regime: In the saturation regime, characterized by the coverage constraint
β > (1

sr⋆
∨ 1

sver
), we have

SubOpt(BRS) = OHC(β)(1− aN) + aNsr⋆

(
1

sr⋆
− TPR

sver

)
.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Proof. Similarly to Theorem O.1, we will analyze the the verification error for BRS. For clarity in
presentation, let us define

p(s) ≜

(
1

s
∧ mβ(s)

s

)
, and q(s) ≜

(
0 ∨ 1−mβ(s)

1− s

)
. (39)

Note that

ν̂BRS(S⋆)

= ν̂BRS(Ŝ ∩ S⋆) + ν̂BRS(S⋆ \ Ŝ)

=
(
aN · p(sver) + (1− aN)

)
µ(Ŝ ∩ S⋆) +

(
aN · q(sver) + (1− sN)

)
µ(S⋆ \ Ŝ) (40)

=
(
aNp(sver) + (1− aN)

)
· sr⋆ · TPR +

(
aNq(sver) + (1− aN)

)
· sr⋆ · (1− TPR)

= aN · sr⋆
(
p(sver) · TPR+ q(sver) · (1− TPR)

)
+ (1− aN)sr⋆ , (41)

where (40) follows from Lemma D.2. Furthermore, it can be readily verified that

νBRS(S⋆) = aN · sr⋆ · p(sr⋆) + (1− aN)sr⋆ . (42)

Combining (41) and (42), we have

νBRS(S⋆)− ν̂BRS(S⋆)

= aN

(
sr⋆p(sr⋆)− p(sver) · TPR · sr⋆ − q(sver) · (1− TPR) · sr⋆

)
(39)
= aN

(
(1 ∧mβ(sr⋆))−

(
1

sver
∧ mβ(sver)

sver

)
· TPR · sr⋆

−
(
0 ∨ 1−mβ(sver)

1− sver

)
(1− TPR)sr⋆

)
.

Transport regime: In this regime, since both mβ(a
⋆
r) and mβ(sver) are less than 1, we have

νBRS(S⋆)− ν̂BRS(S⋆)

= aN

(
mβ(sr⋆)−

mβ(sver)

sver
· sr⋆ · TPR− 1−mβ(sver)

1− sver
· (1− TPR) · sr⋆

)
= aNsr⋆

(
mβ(sr⋆)

sr⋆
−
(
mβ(sver)

sver
· TPR+

1−mβ(sver)

1− sver
· (1− TPR)

))
. (43)

Finally, the result readily follows by adding the sampling error, OHC(β)(1− aN) proved in Theo-
rem 3.10.
Policy improvement regime: This regime can be divided into two cases, one in which β ∈
(1/sver, 1/sr⋆], and the second in which β ∈ (1/sr⋆ , 1/sver]. In the first regime, the result read-
ily follows by replacing mβ(sver) = 1 in (43), and adding the sampling error OHC(β)(1 − aN).
In the second regime, the result readily follows by replacing mβ(sr⋆) = 1 in (43), and adding
OHC(β)(1− aN), the sampling error.
Saturation regime: In this regime, both mβ(sr⋆) = 1 and mβ(sver) = 1, and the result readily
follows by replacing these values in (43) and adding the sampling error OHC(β)(1 − aN). This
concludes our proof. ■

Interpreting the results. In Theorem O.1, we note that as N goes to +∞, the BoN sampling
error decays to 0 (and potentially becomes negative, depending on whether the mass put on S⋆ by
the skyline policy is less than 1). However, the estimation error saturates at OHC(β)(1 − sr⋆

sver
J),

as we had observed for AiC. This is intuitive, since the verification error is entirely controlled by
verifier inaccuracies, and does not depend on the design of the sampling algorithm. Similarly, from
Theorem O.2, we observe a similar trend — the sampling error is driven down to 0 as the batch
size N → +∞, while the verification error stagnates at OHC(β) · (1− sr⋆

sver
J) under the saturation

regime.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00
FPR

0.00

0.25

0.50

0.75

1.00

TP
R

ROC
gemma-3-4b-it Llama-3.1-8B-Instruct

0.00 0.25 0.50 0.75 1.00
Threshold

FP
R

FPR ConstraintFPR Constraint

FPR

Figure 6: ROC estimated based on generations from google/gemma-3-4b-it
(left), and meta-llama/Llama-3.1-8B-Instruct (right). We observe that
meta-llama/Llama-3.1-8B-Instruct has a larger area under the curve (AUC) compared
to google/gemma-3-4b-it

P EXTENDED EXPERIMENTS

In this section, we specify our experimental setup: how we construct ground-truth and approxi-
mate verifiers, the models used to evaluate our algorithms, and the hyperparameters employed. All
evaluations are conducted on GSM8K (Cobbe et al., 2021), a benchmark of high-quality grade-
school math word problems requiring multi-step arithmetic reasoning. Following the protocol of
Dorner et al. (2025), we select the earliest test question for which two independent generations from
Llama-3.2-3B are both incorrect — namely, the 2nd sample in GSM8K’s test split. Prompts
are constructed by prefixing each question with five randomly sampled training exemplars. As
in (Dorner et al., 2025; Huang et al., 2025a), we then draw 10,000 responses y ∼ πref(· | x) at tem-
perature 1, using models from the Qwen, Gemma and Llama families. Specifically, we evaluate:
(i) Qwen3-1.7B, (ii) Qwen3-8B, (iii) Qwen3-14B, (iv) google/gemma-3-4b-it, and (v)
meta-llama/Llama-3.1-8B-Instruct, spanning sizes from 1.7B to 14B parameters. Gen-
erations are obtained through the lm-eval-harness framework (Gao et al., 2024). Verifiers are
constructed in two modes: an explicit-construction mode and a reward-guided mode. For sampling,
we bootstrap from the 10,000-response pool with replacement.

Explicit verifier construction. To construct S⋆, we determine the ground-truth correct-
ness of each response by extracting the predicted answer via pattern matching with
(-?[$0-9.,]2,)|(-?[0-9]+), and marking it correct if it matches the GSM8K gold la-
bel. The proposal’s mass on S⋆, denoted sr⋆ , is estimated empirically by summing the normalized
logprobs of correct responses. For the approximate verifier Ŝ, we adopt an explicit construction
designed to validate our theoretical analysis. Specifically, we curate subsets of correct and incorrect
responses into Ŝ such that both the Youden index J and the proposal’s mass sver are controlled,
thereby fixing the verifier’s TPR and FPR. This provides direct and interpretable control over the
verifier’s operating characteristics. To ensure determinism, responses are ranked in descending or-
der of their logprobs. Candidates are then selected from S⋆ and its complement S⋆, starting
with the highest-probability responses in each set, and iteratively added until the cumulative mass
matches the preset values of J and sver.

Reward-guided verifier construction. As a second mode of verification, we employ the re-
ward model Skywork/Skywork-Reward-V2-Llama-3.1-8B, which ranks 1st on the Re-
wardBench leaderboard (Malik et al., 2025), to score the generated responses. We normalize
these scores and derive approximate verifiers by thresholding: for a prompt x ∈ X and re-
sponse y ∈ Y , a response is included in Ŝ if its reward rsr(x,y) exceeds a threshold γ. By
varying γ, we obtain a family of verifiers whose receiver operating characteristics (ROCs) are
plotted in Figure 6. Since the ROCs are estimated from finite samples, we compute them sepa-
rately for the two models considered in this experiment, namely google/gemma-3-4b-it and
meta-llama/Llama-3.1-8B-Instruct. To select two concrete verifiers, we fix the false

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

positive rate (FPR) at 0.3 for both models and choose the threshold γ that achieves this constraint,
as shown in Figure 6.

List of plots. In Section 4, we presented results for the Qwen3-1.7B and Qwen3-14B models.
Here, we supplement these with additional plots for Qwen3-8B under the explicit-verifier setting,
along with further analyses illustrating how average reward varies with generator coverage and how
sub-optimality scales with computational complexity. Figure 7 reports these results for the Qwen
model family under the sequential sampling protocol. Figures 9 and 10 provide the corresponding
plots for the batched setting, i.e., BoN and BRS. Finally, Figure 11 reports analogous plots under a
reward-guided verifier constructed with Skywork/Skywork-Reward-V2-Llama-3.1-8B.

2.5 5.0 7.5

0.25

0.50

0.75

1.00

Re
wa

rd

Qwen3-1.7B

2.5 5.0 7.5

0.25

0.50

0.75

1.00
Qwen3-8B

2 4

0.4

0.6

0.8

1.0
Qwen3-14B

2.5 5.0 7.5

2

4

6

Co
m

pu
ta

tio
na

l C
om

pl
ex

ity

2.5 5.0 7.5

2

4

6

2 4
1

2

3

2.5 5.0 7.5
Reward

0.25

0.50

0.75

1.00

Co
m

pu
ta

tio
na

l C
om

pl
ex

ity

2.5 5.0
Reward

0.25

0.50

0.75

1.00

1 2 3
Reward

0.4

0.6

0.8

1.0

SRS
SMC
AiC

*

Figure 7: Plots for the Qwen family with an explicit verifier: average reward versus β (first row),
computational complexity versus β (second row), and computational complexity versus reward
(third row). Trends predicted in Theorems 3.2 and 3.5 are observed.

Q COMPUTE AND LLM USAGE

All generations are performed in 8× A6000 Nvidia GPUs with 49 gigabytes of VRAM each. LLMs
have been used for (1) sharpening the write-up, (2) as a coding assistant for the experiments, and (3)
verifying the correctness of some algebra in the proofs of Lemma D.1 and Theorem 3.8.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

0.0 0.5
J

0.0

0.5

1.0
Su

bO
pt

(
)

Qwen/Qwen3-1.7B

0.0 0.5
J

0.0

0.5

1.0
Qwen/Qwen3-8B

0.0 0.5
J

0.0

0.5

1.0
Qwen/Qwen3-14B

SRS
SMC
AiC

 = 1.13
 = 6.38
 = 8.5

Figure 8: Sub-optimality plotted against Youden’s index J for the Qwen model family with
an explicit verifier, using βT, βPI, βS to represent the three distinct coverage regimes. β values
are computed as βT = (0.2 · βsat ∨ 1), βPI = (βT + β̄sat)/2, βS = 1.2 · β̄sat, where βsat =

(1/sr⋆ ∧ 1/sver), and β̄sat = (1/sr⋆ ∨ 1/sver).

0.00

0.25

0.50

0.75

Su
bO

pt
(B

RS
)

Qwen3-1.7B Qwen3-8B Qwen3-14B

2.5 5.0 7.5
0.00

0.25

0.50

0.75

Su
bO

pt
(B

RS
)

2.5 5.0 7.5 2.5 5.0 7.5

N
1
2
3
4
5
6
7

Empirical
Theoretical

Figure 9: BRS plots for the Qwen family with an explicit verifier: ground truth verifier on the
first row, explicit verifier on the second row. Plots match the theoretical findings in Theorems 3.10
and O.2. Furthermore, as N increases, sub-optimality decreases.

0.2

0.4

0.6

Su
bO

pt
(B

oN
)

Qwen3-1.7B Qwen3-8B Qwen3-14B

2.5 5.0 7.5

0.2

0.4

0.6

Su
bO

pt
(B

oN
)

2.5 5.0 7.5 2.5 5.0 7.5

N
1.0
2.0
3.0
4.0
5.0
6.0

Empirical
Theoretical

Figure 10: BoN plots for the Qwen family with an explicit verifier: ground truth verifier on the
first row, explicit verifier on the second row. Plots match the theoretical findings in Theorems 3.8
and O.1. Here, we choose N ∈ [⌊(Nmax ∧ 1

s)⌋] as prescribed in Theorem 3.7 for feasibility.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

1 2 3
0.25

0.50

0.75

1.00

Re
wa

rd

gemma-3-4b-it

2 4 6 8
0.25

0.50

0.75

1.00
Llama-3.1-8B-Instruct

1 2 3

2

4

Co
m

pu
ta

tio
na

l C
om

pl
ex

ity

2 4 6 8

2

4

1.0 1.5 2.0
Computational Complexity

0.25

0.50

0.75

1.00

Re
wa

rd

2 4
Computational Complexity

0.25

0.50

0.75

1.00

1 2 3
0.0

0.2

0.4

0.6

Su
bO

pt
(

)

2 4 6 8
0.0

0.2

0.4

0.6

SRS
SMC
AiC

*

Theory

Figure 11: Reward-guided verifier: verifiers chosen as indicated in the ROC plot in Figure 6.
We plot reward versus β (first row), computational complexity versus β (second row), reward
versus computational complexity (third row), and sub-optimality versus β (fourth row.)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

0.0
0.2
0.4
0.6

Su
bO

pt
(B

RS
)

gemma-3-4b-it Llama-3.1-8B-Instruct

2.5 5.0 7.5
0.0
0.2
0.4
0.6

Su
bO

pt
(B

RS
)

2.5 5.0 7.5

N
1.0
2.0
3.0
4.0

Empirical
Theoretical

Figure 12: BRS plots with a reward-guided verifier: we plot sub-optimality versus β with the
ground truth verifier on the first row, and approximate verifier on the second row.

0.00

0.25

0.50

0.75

Su
bO

pt
(B

oN
)

gemma-3-4b-it Llama-3.1-8B-Instruct

2.5 5.0 7.5

0.00

0.25

0.50

0.75

Su
bO

pt
(B

oN
)

2.5 5.0 7.5

N
1.0
2.0
3.0
4.0

Empirical
Theoretical

Figure 13: BoN plots with a reward-guided verifier: we plot sub-optimality versus β with the
ground truth verifier on the first row, and approximate verifier on the second row.

34

	Motivations & Contributions
	Formulation: Test-time Verification as a Transport Plan
	Algorithms & Analysis: Sequential and Batched Sampling
	Sequential Sampling Algorithms: AiC, SRS, and SMC
	Batched Sampling Algorithms: BoN and BRS

	Experimental Analysis
	Discussions and Future Works
	 Appendix
	Literature Review
	Algorithm Pseudo-codes
	Target-to-proposal Radon-Nikodym Derivative (Proof of Theorem 2.1)
	Auxiliary Lemmas
	Optimal Transport Cost (Proof of Lemma 3.1)
	BoN Sampling Distribution
	BRS Sampling Distribution

	Properties of ROC
	AiC Properties (Proof of Theorem 3.2)
	AiC Constraint Violation (Proof of Theorem 3.3)
	SMC Residual Measure (Proof of Theorem 3.4)
	SRS / SMC Computational Complexity (Proof of Theorem 3.5)
	SRS / SMC Sub-optimality (Proof of Theorem 3.6)
	BoN Batch Size (Proof of Theorem 3.7)
	BoN Sub-optimality (Proof of Theorem 3.8)
	BRS Batch Size (Proof of Theorem 3.9)
	BRS Sub-optimality (Proof of Theorem 3.10)
	Batched Sampling Algorithms with Approximate Verifiers
	Extended Experiments
	Compute and LLM Usage

