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ABSTRACT

While test-time scaling with verification has shown promise in improving the per-
formance of large language models (LLMs), role of the verifier and its imperfec-
tions remain underexplored. The effect of verification manifests through interac-
tions of three quantities: (i) the generator’s coverage, (ii) the verifier’s region of
convergence (ROC), and (iii) the sampling algorithm’s sub-optimality. Though re-
cent studies capture subsets of these factors, a unified framework quantifying the
geometry of their interplay is missing. We frame verifiable test-time scaling as a
transport problem. This characterizes the interaction of coverage, ROC, and sub-
optimality, and uncovers that the sub-optimality–coverage curve exhibits three
regimes. A transport regime – where sub-optimality increases with coverage, a
policy improvement regime – where sub-optimality may decrease with coverage,
depending on the verifier’s ROC, and a saturation regime – where sub-optimality
plateaus, unaffected by coverage. We further propose and analyze two classes of
sampling algorithms – sequential and batched, and examine how their computa-
tional complexities shape these trade-offs. Empirical results with Qwen, Llama,
and Gemma models corroborate our theoretical findings.

1 MOTIVATIONS & CONTRIBUTIONS

Test-time scaling has emerged as a promising axis for improving the performance of large lan-
guage models (LLMs) (Jaech et al., 2024). Existing approaches for test-time scaling fall into two
categories: verifier-free and verifier-based (details in Appendix A). The latter category leverages
verifiers — binary reward mechanisms grounded in de facto correctness criteria (e.g., unit tests,
gold solutions). Verifiers have widely shown potential to improve post-training performance while
used in both training and inference phases (Cobbe et al., 2021; Guo et al., 2025; Luo et al., 2025;
Huang et al., 2025a; Dorner et al., 2025).

A typical test-time pipeline consists of three components: a generator (the reference LLM), a ver-
ifier, and a sampling algorithm (e.g., Best-of-N (BoN) (Aminian et al., 2025)). Performance of
the generated responses (e.g., accuracy for objective tasks) results from the combined attributes of
each of these components. Following rapid empirical progress, efforts have been made to uncover
the theoretical underpinnings of test-time verification, specifically its aggregate scaling laws such as
pass@N performance (Brown et al., 2024) and policy divergence (Beirami et al., 2024). A majority
of these studies assume an accurate verifier, a simplifying assumption which is seldom satisfied in
practice. While recent studies investigate these imperfections (Huang et al., 2025a; Dorner et al.,
2025), a unified perspective that elucidates the interactions between the components’ characteris-
tics and verification inaccuracy is missing. Motivated by this gap, we ask the following overarching
question:

To what extent can verifier-based sampling approximate the induced optimal pol-
icy, and how are the approximations shaped by verification inaccuracies?

Addressing these questions requires moving beyond the asymptotic scaling curves, and towards a
finer-grained analysis that captures the exact dependence of performance on the generator, the ver-
ifier, and the sampling algorithm. In this paper, we study the interplay between the generator’s
coverage, the verifier’s region of convergence (ROC), and the sampling algorithm’s sub-optimality
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through an exact analysis. We formulate test-time verification as a sampling problem. Given gen-
erative access to a proposal distribution µ, we are tasked with sampling from a target distribution
ν⋆. The only access we have to the target distribution is through an approximately correct verifier r̂,
assuming a de facto ground truth r⋆. In this context, we make the following contributions:

I. Framework. By recognizing test-time verification as a sampling problem, we study it through the
lens of optimal transport. Here, the goal is to transport the proposal distribution µ of the reference
LLM to a target distribution ν⋆, defined by the ground-truth verifier r⋆. Since ν⋆ is not directly
accessible, we instead rely on discriminative access via an imperfect verifier r̂ to guide sampling. If
the algorithm accepts proposals too generously, the induced distribution remains close to µ, leading
to high sub-optimality. Conversely, if it applies an overly stringent rejection policy and discards most
proposals, sub-optimality may shrink, albeit at the cost of an excessive compute budget. The key
challenge is to design a transport plan that balances proposal usage against induced sub-optimality.

II. Geometry of sub-optimality vs. coverage. We decompose sub-optimality into two components:
an optimal transport cost, capturing the intrinsic difficulty of transporting the proposal distribution
µ to the target ν⋆, and a policy improvement term, reflecting how the sampling algorithm mitigates
this cost. Sampling directly from ν⋆ achieves policy improvement exactly matching the transport
cost, and yielding an optimal sampling scheme. In practice, however, verifier inaccuracies render
this ideal infeasible, and sub-optimality is governed jointly by the verifier’s ROC, particularly, its
Youden’s index, and the generator’s coverage. Our analysis reveals that as coverage constraints are
relaxed, the sub-optimality−coverage curve exhibits three distinct regimes, as depicted in Figure 1:
(1) a transport regime, where the optimal transport cost dominates policy improvement; (2) a
policy improvement regime, where the optimal transport cost saturates and a sufficiently accurate
verifier enables sub-optimality reduction; and (3) a saturation regime, where both terms plateau,
leaving sub-optimality constant regardless of further coverage.

III. Algorithms and their properties. We study two protocols: a sequential generation protocol,
where responses are generated until acceptance, and a batched generation protocol, where a batch
of responses is drawn and the algorithm distills a winning response. In the sequential protocol, we
revisit the naı̈ve accept-if-correct (AiC) strategy analyzed by Dorner et al. (2025)1 and show that
AiC violates our coverage constraint in the transport regime. To address this limitation, we propose
sequential rejection sampling (SRS), a valid transport plan for which we derive exact sub-optimality.
In addition, to reduce the number of proposals, we introduce sequential maximal coupling (SMC),
which minimizes transport cost and achieves the same sub-optimality as SRS. Surprisingly, despite
being derived from different principles, SRS and SMC require the same expected number of pro-
posals. Table 1 summarizes the properties of AiC, SRS, and SMC. Finally, to account for batched
generation schemes such as BoN sampling, we investigate batched variants of SRS and BoN. Our
analyses and empirical studies reveal that rejection sampling-type algorithms are better suited to
low-coverage regimes, whereas BoN-type algorithms are preferable under relaxed coverage.

2 FORMULATION: TEST-TIME VERIFICATION AS A TRANSPORT PLAN

Let X be the space of prompts.2 Each prompt x ∈ X admits a response y ∈ Y generated by
a reference LLM with conditional kernel πref(· | x). For generality, we assume Y is a Polish

1Dorner et al. (2025) refer to this strategy as rejection sampling. Our analysis, however, distinguishes
rejection sampling from AiC, motivating our separate nomenclature.

2Notations: Z, z, and Z refer to a random vector, its realization, and a set, respectively.
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Metrics Sequential Batched

AiC SRS SMC BoN BRS

Coverage PI, S T, PI, S T, PI, S PI, S T, PI, S

Comp.
complexity

1
sver

(Thm. 3.2)

(1∧m(sver))
sver

(Thm. 3.5)

(1∧m(sver))
sver

(Thm. 3.5)
N+1 N+1

Sub-
optimality

OTC (1 − α̃k J)

(Thm. 3.2)

OTC (1 − αk J)

(Thm. 3.6)

OTC (1 − αk J)

(Thm. 3.6)
(Thm. O.1) (Thm. O.2)

Table 1: Complexity and sub-optimality across algorithms. Here, OTC is the optimal transport cost,
sver is the generator’s mass on the verifier set, m(sver) is the induced optimal policy’s mass on that
set, J is Youden’s index, and k ∈ {T,PI,S}. T = transport, PI = policy improvement, S = saturation.

space equipped with a Borel σ-algebra B(Y). The induced reference distribution over responses
is µ ≜ law(Y | X = x). Test-time verification assumes existence of a ground-truth verifier
r⋆ : X × Y 7→ {0, 1} that assigns a binary reward to each (prompt, response) pair. Specifically, we
model verification as a set-membership problem, i.e., for each prompt x ∈ X , there exists a set of
correct responses S⋆(x) ⊆ Y , and the verifier asserts membership via r⋆(x,y) ≜ 1

{
y ∈ S⋆(x)

}
.

S⋆(x) abstracts different verifier designs depending on the task. For example, in a coding problem,
S⋆(x) corresponds to all programs that pass the unit tests. For a math problem, it represents all
solutions that yield a correct final answer, possibly attained by different reasoning steps or expressed
in different yet mathematically equivalent forms. When using LLM-as-a-judge, S⋆(x) contains the
set of responses with scores exceeding a predetermined threshold characterizing the de facto ground
truth. Since all notations implicitly depend on the prompt x, we omit this dependency for brevity
whenever it is unambiguous from the context.

Coverage and optimal policy. Test-time verification is a sampling problem, where the goal is
to sample from a target distribution that maximizes the average reward obtained from the verifier.
However, it is unrealistic to define an optimal policy that may arbitrarily deviate from the genera-
tor, since responses from such an optimal policy might not be generatable via sampling from the
reference policy. Hence, following the state-of-the-art (Huang et al., 2025a), we adopt an ℓ1-type
coverage constraint on the class of optimal policies. Specifically, we constrain the optimal policy to
belong to a set of policies, which are sufficiently covered by the reference LLM, i.e.

Π(β | x) ≜

{
π(· | x) : X 7→ ∆(Y)

∣∣ EY∼π(· | x)

[
π(Y | x)
πref(Y | x)

]
≤ β

}
, (1)

where ∆(Y) denotes the space of Borel probability measures on Y . Note that (1) implies that
χ2(µ∥ν) ≤ β − 1 for any measure ν (induced by π), where χ2(µ∥ν) ≜

∫
Y(

dν
dµ )

2µ(dy) − 1

denotes the χ2-divergence between measures µ and ν. We overload the notation Π(β | x) to
denote both the set of conditional kernels and the set of induced probability measures satisfy-
ing the constraint. Hence, the optimal conditional kernel, or the optimal policy, is π⋆(· | x) ∈
arg supπ∈Π(β | x) Ey∼π(· | x)

[
r⋆(x,y)

]
, and the corresponding measure is ν⋆ ≜ law(Z | X = x),

where Z ∼ π⋆(· | x). Now, we use the binary structure of the verifier’s reward to obtain the induced
optimal policy in closed-form.
Theorem 2.1 (Analytical Form of Optimal Policy). For any (prompt, response) pair (x,y) ∈
X × Y , let r(x,y) ≜ 1{y ∈ Sr(x)} be a verifier, where Sr(x) ⊆ Y . Further, let νr ≜
arg supν∈Π(β | x)

∫
r(x,y) dν(y|x) denote the induced optimal measure. The Radon-Nikodym

derivative of the target measure νr with respect to the reference µ, denoted by ηr ≜ dνr

dµ , is

ηr(y) ≜


(

1
sr

∧ mβ(sr)
sr

)
, if y ∈ Sr,(

0 ∨ 1−mβ(sr)
1−sr

)
, if y /∈ Sr ,

, (2)

where mβ(s) ≜ s+
√

s(1− s)(β − 1), and sr ≜
∫
Sr

r dµ.

Sampling as a transport problem. Now, we cast sampling as a transport problem. Given gen-
erative access to µ, the goal of a sampling algorithm is to obtain samples from ν⋆ by formalizing
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Figure 3: Sequential (left) and batched (right) sampling protocols of test-time verification with a
generator G and a verifier (light purple box).

a valid transport plan that is a coupling between µ and ν⋆. We define the set of all couplings
M(µ, ν) between the reference µ and any target ν as the set of all joint measures on Y × Y such
that its projections on the first and second coordinates are µ and ν, respectively. For any coupling
ρ(dy,dz) ∈ M(µ, ν), we assign the Hamming distance as the price to be paid for transporting µ to
ν through ρ, i.e., C(ρ) ≜

∫
Y×Y 1{y ̸= z}ρ(dy,dz). The average Hamming cost captures the frac-

tion of rejections required to sample from the target ν, and hence, comes up as a natural candidate
for the transportation cost. A sampling algorithm A is characterized by a coupling ρA(dy,dz) such
that its projection on the first coordinate yields the reference law µ, and we define νA as the pro-
jection of ρ on the second coordinate. In order to capture the efficiency of the sampling algorithm
in generating from the optimal policy ν⋆, we adopt the notion of sub-optimality that assesses the
change in policy performance of RL pre- and post-training (Zhu et al., 2023; Huang et al., 2025a):

SubOpt(A) ≜
∫

r⋆(x,y) dν⋆(y | x)−
∫

r⋆(x,y) dνA(y | x) . (3)

It immediately follows that any transport plan ρ(dy,dz) ∈ M(µ, ν⋆) is optimal. The challenge,
as depicted in Figure 2, is that we do not have access to ν⋆, but only membership access to an
approximately correct verifier r̂ : Y × Y 7→ {0, 1}, such that for any response Y ∼ πref(· | x)
generated for a prompt x ∈ X , an approximately correct reward signal r̂(x,y) = 1{y /∈ Ŝ} is
available to the sampling algorithm for some Ŝ ⊆ Y . The optimal policy, which lies within a χ2-
ball of radius β − 1 from πref , induces the maximal reward on the manifold induced by r⋆. Given
access to r̂, the sampling algorithm’s distribution νA should also satisfy the χ2-constraint. Naturally,
the approximation quality of the verifier should affect the sampling performance. To formalize this,
we define the true positive rate (TPR), false positive rate (FPR), and Youden’s index J (Youden,
1950) of the imperfect verifier as

TPR ≜
1

sr⋆
µ
(
Ŝ ∩ S

)
, FPR ≜

1

1− sr⋆
µ
(
Ŝ \ S

)
, and J ≜ TPR− FPR .

These are the standard quantifiers of the goodness of binary classifiers (Kumari & Srivastava, 2017;
Santos et al., 2019), or equivalently, the power of binary hypothesis tests (Li & Tong, 2020).

3 ALGORITHMS & ANALYSIS: SEQUENTIAL AND BATCHED SAMPLING

Now, we study different test-time verification algorithms as transport plans, and analyze their
achieved sub-optimality and other properties. Depending on how the sampling algorithm interacts
with the generator, we study two protocols: sequential and batched, as illustrated in Figure 3.

• Sequential sampling protocol: Generation is modeled as a sequential decision process. Given a
prompt x ∈ X , at each round n ∈ N, the generator produces a response Yn ∼ πref(· | x). The
sampling algorithm A observes the history Y n ≜ (Y1, . . . ,Yn), and based on verifier feedback,
issues a decision δAn : Y n 7→ {accept, reject}. If a response is accepted, the algorithm stops and
outputs it. Otherwise, it queries the generator for another sample. The instant at which τA stops
sampling is referred as the stopping time, τA ≜ inf

{
n ∈ N : δAn (Y

n) = accept
}

.
• Batched sampling protocol: In the batched setting, following Huang et al. (2025a), the generator

produces N + 1 independent responses in parallel. The sampling algorithm inspects any N of
them, using the verifier to identify a candidate. If none are accepted, the algorithm defaults to
returning any one of the (N + 1) responses.

To evaluate sampling algorithms, we consider two key metrics: the number of proposals (compu-
tational efficiency), and the algorithm’s sub-optimality (performance efficiency). In the sequential
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setting, computational efficiency is measured by the expected number of proposals E[τA], while
sub-optimality is defined as in Equation (3). There is a natural tension between these objectives:
drawing more samples may reduce sub-optimality, albeit, at the expense of larger computation. In
the batched setting, the computational budget is fixed at N+1 samples. Hence, performance is eval-
uated solely through sub-optimality. In what follows, we introduce a range of sampling algorithms
under both protocols and analyze their performance with respect to these metrics.

3.1 SEQUENTIAL SAMPLING ALGORITHMS: AIC, SRS, AND SMC

We present three algorithms for sequential protocol: (1) a naı̈ve AiC algorithm asserting membership
of the generated response through the approximate verifier, (2) an SRS algorithm which has a mech-
anism of accepting a sample even if its set-membership assertion fails, and (3) an SMC algorithm
derived by optimizing the transport cost. For brevity, we defer the pseudo-codes to Appendix B.

Central to analyzing these algorithms is the optimal (Hamming) transport cost (OTC), which is the
minimum probability of rejections required to transport the reference law µ to the target ν⋆, and is
defined as OTC ≜ minρ∈M(µ,ν⋆) C(ρ) . The following lemma provides a closed-form for OTC.

Lemma 3.1 (Optimal Transport Cost (OTC) for Hamming distance). Given Hamming cost
c(y, z) ≜ 1{y ̸= z}, we have OTC(β) =

(
1 ∧mβ(sr⋆)

)
− sr⋆ .

Accept-if-correct (AiC)(Algorithm 1). The AiC algorithm, proposed by (Dorner et al., 2025) is an
extension of the BoN sampling strategy to the sequential setting. Given the (approximate) verifier
through the set-membership oracle Ŝ, at each time n ∈ N, AiC samples a response Yn ∼ µ, asserts
its membership in Ŝ, and resamples if the assertion fails. Noticeably, AiC is not cognizant of the
policy coverage bound β. Hence, as we show subsequently, this results in constraint violation in
certain coverage regimes. In the following theorem, we characterize the two key properties of AiC,
i.e., the average number of proposals, and sub-optimality.

Theorem 3.2 (Computational complexity and sub-optimality of AiC). 1. The computational com-
plexity of AiC is E[τAiC] =

1
sver

.

2. The sub-optimality of AiC is SubOpt(AiC) = OTC(β) ·
(
1− sr⋆

sver
· J
)

, if β > 1
sr⋆

, and

OTC(β) ·
(
1− 1

sver

√
sr⋆ (1−sr⋆ )

β−1 · J
)

, otherwise. Here, sver ≜ sr⋆ · TPR+ (1− sr⋆) · FPR .

Theorem 3.2 shows that AiC’s sub-optimality depends linearly on two quantities: (a) the optimal
transport cost (OTC), and (b) Youden’s index J . A smaller Youden’s index — corresponding to a
verifier closer to random guessing — yields higher sub-optimality. Since AiC ignores the cover-
age constraint, its sub-optimality is not comparable uniformly over all coverage regimes. As evi-
dent from the next theorem, AiC fails to satisfy the coverage requirement in low-coverage regimes,
thereby incurring constraint violations.

Theorem 3.3 (Constraint violation of AiC). Given any prompt x ∈ X , AiC policy πAiC(· | x) does
not satisfy the coverage constraint for β < 1

sver
, i.e., πAiC(· | x) /∈ Π(β | x) for all β < 1

sver
.

Sequential rejection sampling (SRS, Algorithm 2). To circumvent AiC’s lack of coverage, we
propose a rejection sampling (RS)-based algorithm, which is cognizant of the coverage constraint.

Canonical RS (Forsythe, 1972; Neal, 2003) evaluates a scaled likelihood ratio against a uniform ran-
dom variable to determine sample acceptance, essentially flipping a Bernoulli coin where the scaling
factor, known as the envelope, dictates the acceptance probability. However, our context lacks the
target-to-proposal likelihood ratio ηr⋆ , since S⋆ is unknown and the sampling algorithm only has
access to an approximate membership oracle Ŝ . We therefore introduce SRS, which substitutes ηr̂,
obtained by replacing sr⋆ in Equation (2) with sr̂. While sr̂ is computable in principle, it may not
be accessible at test time. In Section 4, we treat s as a tunable hyperparameter with ablations across
multiple models. Our theoretical analyses, however, assumes that the mass sr̂ — the reference
policy’s probability mass on the verifier’s set Ŝ — is available to the sampling algorithm. While
seemingly strong, this assumption enables a fundamental characterization of how the verifier’s ROC
influences sub-optimality. Note that by our construction, SRS always satisfies the coverage con-
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straint. Performance analysis of SRS is presented jointly with our next algorithm, SMC, to facilitate
direct comparison and maintain brevity.

Sequential maximal coupling (SMC, Algorithm 3). Maximal coupling (MC) is a canonical tech-
nique for constructing optimal transport maps (Den Hollander, 2012). The goal is to find a joint
distribution ρ⋆ that minimizes the transport cost, i.e., ρ⋆ ∈ argminρ∈M(µ,ν⋆) C(ρ). Under the
Hamming cost, this amounts to minimizing the rejection probability, suggesting the potential to
improve computational efficiency. The MC algorithm in this setting is well studied: the generator
first produces a sample, which is evaluated by the sampling algorithm. The algorithm compares the
likelihood ratio at this sample against a uniform random draw. If the ratio exceeds the threshold, the
sample is accepted. Otherwise, MC samples from a residual measure as a correction. Consequently,
MC requires at most two proposals to produce a valid sample from the target distribution.

In the test-time setting, however, the sampling algorithm lacks access to samples from the residual
measure, making a direct application of MC infeasible. Nevertheless, we identify an alternative
representation of the residual that is generatable, as formalized in the following lemma.
Lemma 3.4 (Residual measure). Given a proposal measure µ and a target measure ν on Y induced
by a verifiable reward r with a membership oracle S, the residual distribution for MC, defined as
µres ≜ (ν− (µ∧ν))/(1− (µ∧ν)(Y)), can be equivalently characterized as µres = µ(· | S), where
we have defined the conditional measure µ(· | S) ≜ µ(·∩S)

µ(S) .

Leveraging Lemma 3.4, we now extend canonical MC to a sequential protocol, and propose SMC.
We start similarly to MC, i.e., drawing a response and a uniform number, and then comparing the
likelihood ratio of the obtained sample to the uniform random realization. If the ratio exceeds the
uniform number, SMC accepts the sample. Otherwise, SMC keeps drawing samples from µ until
the generated sample asserts the set-membership verification rather than sampling from the residual.
Evidently, not having access to a residual measure imbibes a computational price to mimic sampling
from the target measure. In the following theorem, we characterize the computational complexities
of both SRS and SMC algorithms, and find that they require the same average number of proposals.

Theorem 3.5 (Computational complexity of SRS and SMC). Let M ≜ max
{
( 1
sver

∧ mβ(sver)
sver

) ,

(0 ∨ 1−mβ(sver)
1−sver

)
}

for SRS. For both algorithms A ∈ {SRS,SMC}, the computational complexity
is identical, and given by E[τA] = 1

sver

(
1 ∧mβ(sver)

)
.

Note that the computational complexity of SRS and SMC improves upon AiC by a factor of
mβ(sver). Under liberal coverage constraints, where mβ(sver) = 1, their complexity coincides
with that of AiC. In contrast, under more stringent coverage, SRS and SMC achieve a compu-
tational speed-up over AiC. Next, we provide SRS and SMC sub-optimality, and find that both
sub-optimalities follow a piecewise curve divided into three distinct regimes.
Theorem 3.6 (Sub-optimality of SRS & SMC). Sub-optimalities of SRS and SMC are expressed as

SubOpt(A) = OTC(β) · (1− αJ) ,

where A ∈ {SRS, SMC}, and α varies depending on the coverage constraint β as follows:

1. Transport regime: In the transport regime, characterized by the coverage constraint β ≤(
1

sr⋆
∧ 1

sver

)
, we have α =

√
sr⋆ (1−sr⋆ )
sver(1−sver)

.

2. Policy improvement regime: We have two cases. (a) If sver > sr⋆ , in the policy improvement

regime, characterized by the coverage constraint β ∈
(

1
sver

, 1
sr⋆

]
, we have α = 1

sver
·
√

sr⋆ (1−sr⋆ )
β−1 .

(b) Alternatively, for β ∈
(

1
sr⋆

, 1
sver

]
, we have α =

√
β−1

sver(1−sver)
· sr⋆ .

3. Saturation regime: In the saturation regime, characterized by the coverage constraint β >(
1

sr⋆
∨ 1

sver

)
, we have α = sr⋆

sver
.

Interpreting the results. Theorem 3.6 reveals three distinct regimes. In the transport regime, sub-
optimality grows as O(

√
β) and is fully governed by OTC(β). In the policy improvement regime, if

sver ≤ sr⋆ and Youden’s index is positive, the policy reduces sub-optimality. By contrast, sver ≥ sr⋆
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admits false positives and yields no improvement. In the saturation regime, OTC(β) stabilizes at
1− sr⋆ , and hence, sub-optimality remains constant despite increasing coverage.

Theorems 3.5 and 3.6 collectively establish that SMC, despite its design, is no more computationally
efficient than SRS, as the lack of residual access offsets potential gains. Thus, SRS and SMC ex-
hibit equivalent performance, both in computational complexity and sub-optimality. Theorems 3.2
and 3.3 show that AiC violates constraints in the transport regime, while matches SRS and SMC
in the saturation regime– supporting their use under liberal coverage. Finally, while Huang et al.
(2025a) report sub-optimality scaling with square-root of coverage, our analysis refines this obser-
vation: the coverage–sub-optimality trade-off is not universal but mediated by the verifier’s ROC.

3.2 BATCHED SAMPLING ALGORITHMS: BON AND BRS

Batched sampling methods, such as BoN, are widely adopted in practice. Owing to the efficiency of
parallel sampling on modern GPUs, generating a batch of responses is often preferable to sequential
generation. In this section, we examine two algorithms. We first analyze BoN, characterizing its
sub-optimality and identifying the maximal batch size N + 1 beyond which constraint violations
occur. We then introduce a batched variant of rejection sampling (BRS), and establish that it satisfies
coverage constraints for all batch sizes. For our analysis, we focus on accurate verifiers; extension
to approximately correct verifiers is deferred to Appendix O.

Best-of-N (BoN). Given a prompt x ∈ X , BoN obtains independent and identically distributed (iid)
responses yN+1 ≜ (y1, · · · ,yN+1) from the proposal µ. Subsequently, it returns a response z(N) ∈
K uniformly at random, where we denote K ≜ {y ∈ yN : y ∈ S⋆}, and S⋆ denotes the ground-
truth membership oracle accessible to BoN. In contrast to the sequential protocol, batched sampling
with an accurate verifier does not guarantee zero sub-optimality, as the algorithm is restricted to
selecting from only N+1 samples, which may fail to adequately represent the target distribution.
Therefore, we begin by deriving a sufficient condition on the batch size for BoN sampling under
which the coverage constraint is preserved.
Theorem 3.7 (Maximum admissible batch size of BoN). Let νBoN denote the sampling distribution
induced by BoN with access to the ground-truth membership oracle S⋆. Then νBoN satisfies the
coverage constraint, i.e., νBoN ∈ Π(β | x), only if N ≤ ⌊Nmax⌋, where

Nmax ≜


∞ , if β ≥ (1− sr⋆)/sr⋆ ,

ln
(
1−

√
(β − 1)sr⋆(1− sr⋆)−1

)
ln(1− sr⋆)

, if sr⋆(1− sr⋆) < β ≤ (1− sr⋆)/sr⋆ ,

undetermined, if β < sr⋆(1− sr⋆) .

We observe that for conservative choices of coverage, BoN is not a feasible sampling strategy. On
the other hand, beyond a necessary minimum coverage, the maximum number of samples is an
increasing function of β, and becomes unbounded (as the χ2-divergence saturates) beyond 1−sr⋆

sr⋆
.

Next, we state the sub-optimality of BoN as a function of N .
Theorem 3.8 (Sub-optimality of BoN). The sub-optimality of the BoN algorithm with access to the
ground truth membership oracle S⋆ is SubOpt(BoN) = (1− sr⋆)

N+1 −
(
0 ∨ 1−mβ(sr⋆)

)
.

From Theorem 3.8, as N increases, BoN sub-optimality decreases. However, Theorem 3.7 shows
that N cannot grow arbitrarily without inducing constraint violations. For small β, BoN may even
outperform the skyline — whose mass on S⋆ can be strictly less than 1 — resulting in negative
sub-optimality, albeit at the cost of violating the coverage constraint. More generally, combining
Theorems 3.7 and 3.8, we find that for large β the batch size N can be chosen freely, yielding
vanishing sub-optimality. In contrast, for intermediate β, restricting N to its maximal admissible
value leads to a sub-optimality equal to 1−

√
(β − 1)sr⋆/(1− sr⋆)− (0 ∨ 1−mβ(sr⋆)).

Batched Rejection Sampling (BRS, Algorithm 4). Motivated by the infeasibility and constant sub-
optimality of BoN in low-coverage regimes, we extend our SRS algorithm to the batched setting,
which we call BRS. BRS follows the same principles as SRS, with the key distinction that generation
is truncated after N+1 samples. A batch YN+1 is drawn in parallel, and rejection sampling is applied
to any N of these samples. If none are accepted, the (N + 1)th sample is returned as a fallback.
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Unlike SRS, however, BRS is not a valid transport plan with respect to a target measure defined
by a reward r, and thus, incurs sub-optimality even when the ground-truth membership oracle is
available. Now, we first show that BRS satisfies the coverage constraint for all N , allowing batch
sizes to be chosen freely based on hardware capacity. We then analyze its sub-optimality establishing
that it vanishes as N increases.
Theorem 3.9 (Batch size of BRS). Let us denote the sampling distribution of the BRS algorithm
induced by the ground truth membership oracle S⋆ by νBRS. For any prompt x ∈ X and batch size
N + 1 ∈ N, we have νBRS ∈ Π(β | x).
Theorem 3.10 (Sub-optimality of BRS). The sub-optimality of the BRS algorithm with access to
the ground truth membership oracle S⋆ is given by SubOpt(BRS) = OTC(β) ·

(
1− 1

M

)N
.

We observe that sub-optimality of BRS decays exponentially in the batch size. Furthermore, setting
its envelope to its tightest value M =

(
1

sr⋆
∧ mβ(sr⋆ )

sr⋆

)
, we observe that the sub-optimality is

OTC(β)N+1 ·mβ(sr⋆)
−N , and it scales exponentially in OTC. This provably shows an improvement

in the performance of BRS compared to BoN in the intermediate and low coverage regimes.

4 EXPERIMENTAL ANALYSIS

This section outlines the experimental framework employed to evaluate and corroborate our theo-
retical findings. Our empirical study is guided by two central questions: (1) To what extent do the
empirical sub-optimality curves align with the three-regimes of theoretical predictions? (2) How
sensitive are the algorithms to misspecification of the coverage parameter sver used by the algo-
rithms relative to the (unknown) true mass?

We pivot our empirical results on two key performance metrics, sub-optimality and computational
complexity. For both metrics, we sweep the coverage budget β over a grid spanning the three
regimes highlighted by the theory– (transport, policy improvement, and saturation). Additionally,
for the batched setting, we sweep over the batch size N +1. We summarize the key empirical
findings in this section, while deferring experimental setup details, construction of ground truth and
approximately correct verifiers, and additional results to Appendix P. All curves are averaged over
5,000 episodes, with each algorithm run independently in each episode.

Observations. (1) Sub-optimality. In sequential protocol, the sub–optimality curves for SRS and
SMC in Figure 4 follow the characteristic three–regime geometry predicted by the analysis. In the
small–coverage regime, sub–optimality increases as O(

√
β) and exhibits little policy improvement.

As β grows, the curves bend downward in proportion to the informativeness of the verifier (larger
J), and finally, plateau at a level determined by sr⋆ and J . In contrast, AiC aligns with the other
methods only under the saturation regime, and otherwise, exhibits constraint violations. The three
methods converge in the saturation regimes, achieving the same performance. Varying the model
scale primarily shifts the saturation level. Larger Qwen models yield higher sr⋆ (stronger base ac-
curacy) and therefore lower residual sub–optimality. (2) Computational complexity. The premise
of our experiments in Figure 4 comprises a smaller sver compared to sr⋆ ; consequently, we observe
that the computational complexity with the approximate verifier (saturating at ≈ 8 proposals on
average for Qwen3-1.7B) exceeds the complexity required by the ground truth verifier (saturating
at ≈ 6 proposal on average for Qwen3-1.7B). In general, computational complexity for SRS and
SMC are identical and scale as O(

√
β) before saturating, while AiC has a constant computational

complexity as stated in Theorem 3.2.

In batched protocol, we present a comparison of the sub-optimality of both BRS and BoN under
imperfect verifiers in Figure 5 (left), with additional details provided in Appendix O. The sub-
optimality is evaluated as a function of β across varying batch sizes N ≤ Nmax. Theoretical
predictions closely align with empirical results obtained using Qwen3-14B. As predicted by The-
orems O.1 and O.2, the sub-optimality decreases with increasing N in the presence of imperfect
verifiers, reflecting the expected improvement with larger batches.

(2) Sensitivity to sver. Since sver is typically unavailable in real-world settings, we conduct an ab-
lation study by setting sver = s for various choices of s. The two rightmost plots in Figure 5 show
the reward obtained by the algorithms when a value s selected from the set shown in the legend
is used instead of the one induced by the verifier under examination. Each curve corresponds to a
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lines denote theoretical predictions as stated in Theorem 3.6. Background shading indicates differ-
ent coverage regimes, and confidence intervals are shown as shaded bands.
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Figure 5: Sub-optimality for Qwen3-14B of BRS and BoN with imperfect verifiers (left), and
ablation study in s (sensitivity) for SRS, SMC, and AiC (right).

different assumed value of s, and illustrates how mismatched assumptions about verifier accuracy
affect the reward. Interestingly, when s = 1, all three algorithms reduce to AiC algorithm. This is
because– (i) rejection sampling envelope becomes M = 1. Thus, the first check in SMC becomes
identical to the SRS acceptance condition. (ii) The Radon-Nikodym derivative function becomes
ηr(y) = 1{y ∈ Sr} . Thus, for s = 1, all methods restrict support to Sr, and behave identically,
as reflected in the overlapping curves at that point. Also, an interesting pattern emerges when com-
paring SRS and SMC across different assumed values of s. Specifically, the two methods exhibit
matching performance when s is aligned with the true verifier accuracy, i.e., at s = 0.31 in ground
truth case, and s = 0.27 when using the approximate verifier. Notably, SMC underperforms relative
to SRS when the assumed s is smaller than the true value (s ≤ 0.31 or s ≤ 0.27), and outperforms
SRS when the assumed s is greater (s ≥ 0.31 or s ≥ 0.27). This crossover behavior illustrates the
sensitivity of SMC to over- or under-estimating verifier accuracy, and highlights that SMC may be
advantageous in high-s regimes, whereas SRS is more robust when verifier confidence is low.

5 DISCUSSIONS AND FUTURE WORKS

We cast test-time verification through the lens of optimal transport. By positing it as a sampling
problem, we analyzed how generator’s coverage, verifier’s accuracy, and sampling algorithms jointly
determine sub-optimality and computational complexity. Our analysis, supported by empirical evi-
dence, reveals a three-regime structure in the sub-optimality–coverage tradeoff: a transport regime,
where sub-optimality is dominated by transport cost; a policy-improvement regime, where sampling
can counteract transport cost depending on the verifier’s ROC; and a saturation regime, where sub-
optimality plateaus at a level dictated by the verifier’s Youden’s index. These dynamics are exhibited
by both the sequential and batched algorithms studied. Notably, rejection sampling–type methods
are advantageous under low coverage, while best-of-N approaches excel under liberal coverage.

Our study also raises several open questions. Analytically, extending from ratio-based to difference-
based coverage remains unexplored. More broadly, moving beyond verifiable rewards toward gen-
eral reward models for inference-time alignment is an important next step. Finally, our premise
highlights a fundamental open problem in sampling: how can we sample from a target distribution
given only proposals, when the target-to-proposal likelihood ratio is partially or fully unknown and
must be estimated from samples? We conjecture that any such algorithm must explicitly balance
exploration — estimating the likelihood ratio with sufficient confidence — against exploitation —
using the estimate to make acceptance or stopping decisions.
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A LITERATURE REVIEW

A crucial bottleneck in pre- and post-training pipelines for large language models (LLMs) is the
dwindling supply of high-quality training data, constrained by privacy, security, and cost con-
cerns (Liu et al., 2024; Villalobos et al., 2024). This trend threatens saturation along the train-time
scaling axis. In response to such bottlenecks in scaling laws, OpenAI introduced an alternate axis
– test-time scaling – and showcased its potential through the OpenAI-o1 release. This shift has
delivered substantial gains across diverse benchmarks (Jaech et al., 2024). Ever since, the commu-
nity has witnessed a plethora of investigations into attributes including, but not limited to, scaling
laws, methodologies, trade-offs, and a theoretically-grounded understanding of the new scaling axis.
Test-time scaling is mostly realized through two approaches- verifier-free and verifier-based (Setlur
et al., 2025).

Verifier-free vs. verifier-based methods. Verifier-free methods involve performing supervised
fine-tuning (SFT) on pre-trained LLMs with expert traces, i.e., high-quality step-by-step rationales
that directly supervise the reasoning process. Expert traces can come from diverse sources, such as
human-written or curated solutions (e.g., GSM8K (Cobbe et al., 2021)), distilled chain-of-thought
(CoT) from stronger teacher models (Muennighoff et al., 2025), reasoning trajectories obtained via
search procedures (Gandhi et al., 2024; Moon et al., 2024), self-bootstrapped rationales where only
correct generations are retained (Zelikman et al., 2022), and rationale distillation techniques for
transferring reasoning ability across models (Hsieh et al., 2023). On the other hand, verifier-based
methods deploy a verifier, a reward-signal apparatus, for guiding the response generation. Verifier
assigns a binary (0 / 1) value assessing the generation quality, especially in the objective tasks such
as math and coding. A verifier is construed from a domain-specific de facto ground truth, such as
constructing unit tests for coding and correct solutions for mathematical tasks. Verification has been
leveraged during both training (also known as reinforcement learning with verifiable rewards) (Guo
et al., 2025; Luo et al., 2025; Team et al., 2025), and inference (Cobbe et al., 2021). This approach
has exhibited strong test-time scaling performance. Indeed, Setlur et al. (2025) show that verifier-
based methods provably outperform verifier-free methods in test-time scaling.

Sequential vs. parallel compute. A complementary concern for test-time scaling methods is how
they spend their test-time compute budget. The reasoning models spend their entire budget se-
quentially by refining a single trajectory over multiple steps to curate a longer and more accurate
response. The sequential sampling process may be verifier-based, e.g., through process reward mod-
els (Liao et al., 2025), or verifier-free (Chen et al., 2023). On the other hand, resampling methods
adopt a parallel compute mode by dividing its budget to generate multiple responses, and then,
distilling a winning response. Popular resampling methods are verifier-based, leveraging a verifier
(e.g., unit tests, reward models trained on ground truth responses for objective tasks, etc.) to distill
a winning response from its generations (Huang et al., 2025a; Beirami et al., 2024; Cobbe et al.,
2021). The focus of this investigation is on verifier-based resampling methods.

Best-of-N (BoN) sampling. The most popular verifier-based test-time scaling method is BoN sam-
pling (Brown et al., 2024). BoN generates N independent responses per prompt, and chooses a
winner randomly from the set of correct responses deemed by a verifier. Assuming access to an ac-
curate verifier, Brown et al. (2024) analyze the pass@N metric, i.e., the average fraction of prompts
with at least one correct response, and observe an approximate power-law scaling with N . Extend-
ing this analysis, Schaeffer et al. (2025) establish an exponential per-instance scaling law attributing
the aggregate power law to the heavy-tailed distribution over prompts. On a complementary note,
Beirami et al. (2024); Mroueh (2024) analyze the deviation of the BoN alignment policy from the
reference policy by computing tight upper-bounds on their KL-divergence. Yet another characteris-
tic, the sample complexity of BoN to generate correct responses for objective tasks is investigated
by Huang et al. (2025b). While such scaling laws and divergence bounds are informative, they do not
directly address the central goal of resampling: how well can we approximate the verifier-induced
optimal policy that maximizes expected reward? Variations of BoN, addressing aspects such as N -
estimation and adaptivity, and finding alternate scoring mechanisms have also been explored. For
instance, Wang et al. (2025) truncates BoN generations based on an estimation budget formed by
solving an optimization problem, showcasing computational improvement over BoN. Huang et al.
(2025c) preaches why confidence score is preferable compared to reward scores, and thresholds it
for “confident” test-time scaling. However, the choice of threshold is ad hoc.
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Approximately correct verifiers. Most of the studies on BoN assume access to an accurate ver-
ifier that rarely holds in practice. For example, unit tests can miss the edge cases, and verifiers
for math benchmarks often capture only a subset of valid responses. A relevant case is the de-
fault GSM8K evaluation in lm-evaluation-harness (Gao et al., 2024), which extracts the
first match to the pattern “The answer is (-?[0-9.,]+)”; many correct generations that
deviate from this template are thus marked incorrect. These limitations underscore the need to ex-
plicitly account for verifier imperfections in the design and analysis of test-time scaling methods —
a dimension largely absent from the literature. We are aware of two investigations accounting for
verifier (aka reward model) imperfections in sampling algorithms. Aminian et al. (2025) analyze
BoN under a per-prompt mean squared error (MSE) constraint on the verifier. Huang et al. (2025a)
adopt the same framework to show that BoN’s average reward may fail to scale with N under lim-
ited coverage, motivating a rejection sampling (RS) variant that alleviates this issue. Concurrently,
Dorner et al. (2025) study test-time scaling with approximately correct verifiable rewards, charac-
terizing how a verifier’s region of convergence (ROC) mediates the trade-off between accuracy and
compute. Our investigation complements these perspectives by focusing on generator coverage and
showing how coverage, together with the ROC, determines the exact sub-optimality of a sampling
method, rather than only its asymptotic accuracy-compute profile. Here, sub-optimality is defined as
the difference between the average reward obtained from the verifier while using an optimal policy
and that of the sampling algorithm.
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B ALGORITHM PSEUDO-CODES

Algorithm 1: Accept-if-Correct (AiC)

Input: Prompt x ∈ X , generator πref(· | x), verifier set Ŝ(x)
for n = 1, 2, . . . do

Sample Yn ∼ πref(· | x);
if Yn ∈ Ŝ(x) then

return Yn // accept if correct

else
continue // resample

Algorithm 2: Sequential Rejection Sampling (SRS)

Input: Prompt x ∈ X ; generator πref(· | x); verifier set Ŝ(x); envelope M ; ŝ ≜ µ
(
Ŝ(x)

)
; constraint β

for n = 1, 2, . . . do
Sample Yn ∼ πref(· | x) and u ∼ Unif[0, 1];
Compute η̂(Yn) by plugging ŝ in (2);
if Yn ∈ Ŝ(x) then

return Yn // accept if verified correct

else if 1
M

η̂(Yn) ≥ u then
return Yn // accept (incorrect) via RS to satisfy coverage

else
continue // reject and resample

Algorithm 3: Sequential Maximal Coupling (SMC)

Input: Prompt x ∈ X ; generator πref(· | x); verifier set Ŝ(x); ŝ ≜ µ
(
Ŝ(x)

)
; constraint β

for n = 1, 2, . . . do
Sample Yn ∼ πref(· | x) and u ∼ Unif[0, 1];
Compute η̂(Yn) by plugging ŝ in (2);
if η̂(Yn) ≥ u then

return Yn // accept if coverage is satisfied

else
// do not advance n: keep drawing until verified-correct

while Yn /∈ Ŝ(x) do
Sample Yn ∼ πref(· | x);

return Yn // first verified-correct draw

Algorithm 4: Batched Rejection Sampling (BRS)

Input: Prompt x ∈ X ; generator πref(· | x); verifier set Ŝ(x); envelope M ; ŝ ≜ µ
(
Ŝ(x)

)
; batch size

N + 1; constraint β
Sample YN+1 ≜ (Y1, . . . ,YN+1) i.i.d. from πref(· | x);
Draw u1, . . . , uN+1 ∼ Unif[0, 1];
for i = 1, . . . , N do

Compute η̂(Yi) by plugging ŝ in (2);
if Yi ∈ Ŝ(x) then

return Yi // accept if verified correct

else if 1
M

η̂(Yi) ≥ ui then
return Yi // accept (incorrect) via RS to satisfy coverage

return YN+1 // return the last sample if none accepted
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C TARGET-TO-PROPOSAL RADON-NIKODYM DERIVATIVE (PROOF OF
THEOREM 2.1)

Finding the optimal policy νr is equivalently solving the following constrained optimization prob-
lem.

P(β) ≜ max
η≥0

∫
Sr

η dµ s.t.

∫
η2 dµ ≤ β , and

∫
η dµ = 1 .

Let us denote the value of P(β) by m, i.e., m ≜
∫
Sr

ηr dµ. Using Cauchy-Schwarz inequality, we
have (∫

Sr

ηr dµ

)2

≤
∫
Sr

η2r dµ ·
∫
Sr

dµ ,

which yields: ∫
Sr

η2r dµ ≥ 1

sr
m2 . (4)

Similarly, from the fact that (∫
Sr

ηr dµ

)2

≤
∫
Sr

η2r dµ ·
∫
Sr

dµ ,

we obtain: ∫
Sr

η2r dµ ≥ 1

1− sr
(1−m)2 . (5)

Combining (4) and (5), we have

β ≥
∫
Y
η2 dµ ≥ 1

sr
m2 +

1

1− sr
(1−m)2 . (6)

Rearranging (6), we obtain:

m ≤
√
sr(1− sr)(β − 1) + s .

Furthermore, since m is the mass that the optimal measure puts on the set of correct responses Sr,
we have

m ≤
(
1 ∧

√
sr(1− sr)(β − 1) + sr

)
. (7)

Next, we will show that the upper-bound on m is tight. Specifically, we will construct a valid ηr
such that (7) holds with equality, noting that Cauchy-Schwarz is tight for constant functions. For
some pr ∈ R and qr ∈ R, let us set

ηr(y) =

{
pr , y ∈ S ,

qr , y /∈ S .

Since νr is a probability measure, we have

1 =

∫
ηr dµ =

∫
Sr

ηr dµ+

∫
Sr

ηr dµ = pr · sr︸ ︷︷ ︸
= m

+qr · (1− sr) . (8)

From (8) we have

pr =
m

sr
, and qr =

1−m

1− sr
.

The proof concludes by setting m = (1 ∧
√
sr(1− sr)(β − 1) + sr).
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D AUXILIARY LEMMAS

D.1 OPTIMAL TRANSPORT COST (PROOF OF LEMMA 3.1)

Let us define the total variation (TV) distance between measures µ and ν defined on a common
measurable space (Y,B(Y)) as

DTV(µ∥ν) ≜
1

2
·
∫
Y

∣∣µ(dy)− ν(dy)
∣∣ . (9)

We have

OHC(β) = min
ρ∈M(µ,ν⋆)

∫
1{y ̸= z} dρ(y, z)

= min
ρ∈M(µ,ν⋆)

Py,z∼ρ(y ̸= z)

= DTV(µ∥ν⋆) (10)

(9)
=

1

2

(∫
S⋆

|µ(dy)− ν⋆(dy)|+
∫
S⋆

|µ(dy)− ν⋆(dy)|
)

(2)
=

1

2

(∣∣∣(1 ∧mβ(sr⋆)
)
− sr⋆

∣∣∣+ ∣∣∣(0 ∨ 1−mβ(sr⋆)
)
− (1− sr⋆)

∣∣∣)
=
(
1 ∧mβ(sr⋆)

)
− sr⋆ , (11)

where (10) is a well known result, see, for example, (Villani et al., 2008, page 22), and (11) follows
by noting that mβ(sr⋆) ≥ sr⋆ by definition, since mβ(sr⋆) is the mass that the optimal policy puts
on S⋆, and must be at least equal to sr⋆ .

D.2 BON SAMPLING DISTRIBUTION

In this subsection, we characterize the BoN sampling distribution, where the BoN algorithm has
access to a membership oracle S, such that r(x,y) = 1{y ∈ S} for any prompt x ∈ X and
response y ∈ Y . Note that the analysis for BoN sampling distribution presented in (Beirami et al.,
2024) does not apply to our setting, since it assumes a strictly monotonic reward function. We have
the following result. Let us denote s ≜

∫
S r dµ.

Lemma D.1 (BoN – Radon-Nikodym derivative). Let ν(N)
BoN denote the sampling distribution in-

duced by BoN with batch size N + 1 and access to a membership oracle S. We have

dν
(N)
BoN

dµ
(y) ≜

{
(1− s)N , if y /∈ S,
1
s

(
1− (1− s)N+1

)
, if y ∈ S .

Proof. For any set A ∈ Y , we have

ν
(N)
BoN(A) =

∑
n∈[N+1]

P
(
Yn ∈ A, response n is selected

)
= (N + 1)P

(
Yn ∈ A, response n is selected

)
,

which follows from the independence of the sampled response (Y1, · · · ,YN+1). Next, note that

P
(
Y1 ∈ A, response 1 is selected

)
=

∫
P
(
Y1 ∈ A, response 1 is selected | Y1 = y

)
µ(dy)

=

∫
P
(
Y1 ∈ A | response 1 is selected, Y1 = y

)
· P
(
response 1 is selected | Y1 = y

)
µ(dy)

=

∫
P
(
Y1 ∈ A | Y1 = y

)
· P
(
response 1 is selected | Y! = y

)
µ(dy)
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=

∫
1
{
y ∈ A

}
· P
(
response 1 is selected | Y1 = y

)
µ(dy) ,

which implies that

ν
(N)
BoN(A) = (N + 1)

∫
1
{
y ∈ A

}
· P
(
response 1 is selected | Y1 = y

)
µ(dy) .

Thus, the Radon-Nikodym derivative of ν(N)
BoN with respect to the proposal µ is given by

dν
(N)
BoN

dµ
(y) = (N + 1) · P

(
response 1 is selected | Y1 = y

)
= (N + 1)P

(
response 1 is selected, Y1 /∈ S | Y1 = y

)︸ ︷︷ ︸
≜ T1

+ (N + 1) · P
(
response 1 is selected, Y1 ∈ S | Y1 = y

)︸ ︷︷ ︸
≜ T2

.

Expanding T1, we have
T1 = P

(
Yj /∈ S ∀ j ∈ [N + 1], response 1 is selected | Y1 = y

)
= P

(
response 1 is selected | Y1 = y, Yj /∈ S ∀ j ∈ [N + 1]

)
× P

(
Yj /∈ S ∀ j ∈ [N + 1] | Y1 = y

)
=

1

N + 1

∏
j∈[N+1]

P
(
Yj /∈ S | Y1 = y

)
=

1

N + 1
· (1− s)N1{y /∈ S} . (12)

Furthermore, we have

T2 =
∑

m∈[N+1]

P
(
(Y1, · · · ,Ym) ∈ S⊗m, (Ym+1, · · · ,YN+1) /∈ S⊗N−m,

response 1 is selected | Y1 = y
)

=

N+1∑
m=0

(
N

m−1

)
m

· sm−1 · (1− s)N−m+11{y ∈ S}

=

N∑
m=0

(
N
m

)
m+ 1

· sm · (1− s)N−m1{y ∈ S} . (13)

Combining (12) and (13), we get:

dν
(N)
BoN

dµ
(y) ≜


(1− s)N , if y /∈ S,

(N + 1) ·
N∑

m=0

(Nm)
m+1 · sm · (1− s)N−m, if y ∈ S .

(14)

Furthermore, note that
∫ 1

0
tm dt = 1

m+1 . Hence, we can further simplify (14) as follows.

·
N∑

m=0

(
N
m

)
m+ 1

· sm · (1− s)N−m = ·
N∑

m=0

(
N

m

)
· sm · (1− s)N−m

∫ 1

0

tm dt

=

∫ 1

0

N∑
m=0

(
N

m

)
(st)m · (1− s)N−m dt

=

∫ 1

0

(
1− s+ st

)N
dt

=
1

s
· 1− (1− s)N+1

N + 1
,

which yields the desired result. ■
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D.3 BRS SAMPLING DISTRIBUTION

In this subsection, we characterize the BRS sampling distribution, where we assume BRS’ acces to
a membership oracle S obtainable through a verifier r(x,y) = 1{y ∈ S} for any prompt x ∈ X
and response y ∈ Y . Denoting s ≜

∫
S r dµ, we have the following lemma.

Lemma D.2 (BRS – Radon-Nikodym derivative). Let ν(N)
BRS denote the sampling distribution in-

duced by BRS with batch size N + 1 and access to a membership oracle S. Furthermore, let ν
denote the optimal policy in Π(β | x) induced by S, i.e., ν ≜ argmaxρ∈Π(β | x)

∫
S dρ. We have

dν
(N)
BRS

dµ
(y) =

(
1−

(
1− 1

M

)N
)

dν

dµ
(y) +

(
1− 1

M

)N

.

Proof. Recall that BRS obtains a batch of N + 1 samples, which we denote by yN+1 ≜
(y1, · · · ,YN+1). Denote the target-to-proposal Radon-Nikodym derivative that BRS uses to ac-
cept sample y by η(y). For our analysis, this corresponds to (2) induced by S. The conditional
probability kernel for the BRS sampling strategy, which we denote by K(yN+1,dz), is given by

K
(
yN+1,dz

)
=

∑
n∈[N ]

 1

M
η(yn)

∏
j<n

(
1− 1

M
η(yj)

) · δyn(dz)

+

(∏
n∈N

(
1− 1

M
η(yn)

))
µ(dz) .

The BRS coupling is then obtained as

ρ
(N)
BRS = K

(
yN+1,dz

)
· µ⊗(N+1)(dyN+1) . (15)

Marginalizing (15) with respect to yN+1, we obtain

ν
(N)
BRS(dz) =

∫
ρ(dyN+1,dz)

=

∫ ∑
n∈[N ]

 1

M
η(yn)

∏
j<n

(
1− 1

M
η(yj)

) · δyn(dz)µ
⊗(N+1)(dyN+1)

+

∫ (∏
n∈N

(
1− 1

M
η(yn)

))
µ⊗(N+1)(dyN+1)µ(dz)

=
∑

n∈[N ]

∏
j<n

∫ (
1− 1

M

dν

dµ
(yj)µ(dyj)

) ·
(∫

1

M
dν(yn)δyn(dz)

)

+ µ(dz)
∏

n∈[N ]

∫ (
1− 1

M

dν

dµ
(yn)

)
µ(dyn)

=
1

M
ν(dz) ·

∑
n∈[N ]

(
1− 1

M

)n−1

+

(
1− 1

M

)N

µ(dz)

=

(
1−

(
1− 1

M

)N
)
ν(dz) +

(
1− 1

M

)N

µ(dz) ,

and the lemma readily follows. ■

E PROPERTIES OF ROC

In this section, we briefly review the properties of the ROC for completeness and introduce useful
definitions that will be leveraged in our subsequent analysis. Recall that sr̂ = µ(Ŝ).
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• True positives (TP): samples correctly identified by the verifier, i.e., Ŝ ∩ S⋆. The reference
mass is TP ≜ µ(Ŝ ∩ S⋆). False positives (FP): incorrect responses accepted as correct,
i.e., Ŝ \ S⋆, with mass FP ≜ µ(Ŝ \ S⋆).

• False negatives (FN): correct responses rejected by the verifier, i.e., S⋆\Ŝ, with mass FN ≜
µ(S⋆ \ Ŝ). True negatives (TN): incorrect responses correctly rejected, i.e., Y \ (S⋆ ∪ Ŝ),
with mass TN ≜ µ(Y \ (S⋆ ∪ Ŝ)).

• True positive rate (TPR): the fraction of true positives among all ground-truth correct re-
sponses:

TPR =
TP

TP + FN
=

1

sr⋆
µ(S⋆ ∩ Ŝ).

Thus, TP = sr⋆ · TPR.
• False positive rate (FPR): the fraction of false positives among all ground-truth incorrect

responses:

FPR =
FP

FP + TN
=

1

1− sr⋆
µ(Ŝ \ S⋆).

Thus, FP = (1− sr⋆) · FPR.
• It follows that

sr̂ = µ(S⋆ ∩ Ŝ) + µ(Ŝ \ S⋆) = sr⋆ · TPR+ (1− sr⋆) · FPR = sver. (16)

• Likewise,

FN = sr⋆ · (1− TPR). (17)

F AIC PROPERTIES (PROOF OF THEOREM 3.2)

Computational complexity. For AiC, the acceptance probability is given by

pAiC ≜ P(Z = Y | Y ∼ πref(· | X)) =

∫
Ŝ
µ(dy) = sr̂ .

As shown in Appendix E, since sr̂ = sver, we have pAiC = 1/sver. Finally,

E[τAiC] = pAiC

∑
n∈N

n · (1− pAiC)
n−1 =

1

pAiC
=

1

sver
.

Sub-optimality. The mass that the AiC sampling rule assigns to the ground truth set S⋆ is given
by

νAiC(S⋆) = νAiC(S⋆ ∩ Ŝ) + νAiC(S⋆ \ Ŝ)

=
1

sr⋆
µ(S⋆ ∩ Ŝ)

=
s

sver
· TPR , (18)

where (18) follows from Appendix E. Hence, we have

νAiC(S⋆)− µ(S⋆) =
s

sver
· TPR− sr⋆

=
s

sver
· TPR− 1 + 1− sr⋆

(16)
=

sr⋆ · TPR− (sr⋆ · TPR+ (1− sr⋆) · FPR)
sver

+ (1− sr⋆)

=
1− sr⋆

sver
(sver − FPR)

(16)
=

1− sr⋆

sver

(
(sr⋆ · TPR+ (1− sr⋆) · FPR)− FPR

)
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=
1

sver
· sr⋆(1− sr⋆) · J . (19)

Next, note that

SubOpt(AiC)
(3)
= ν⋆(S⋆)− νAiC(S⋆)

= ν⋆(S⋆)− µ(S⋆) + µ(S⋆)− νAiC(S⋆)

= OHC(β)− 1

sver
· sr⋆(1− sr⋆) · J , (20)

where (20) follows by noting that ν⋆(S⋆) = (1 ∧ mβ(sr⋆)) (using (2)), followed by using Theo-
rem 3.1, and finally combining it with (19).

• Large coverage – β > 1
sr⋆

: In this regime, we have OHC(β) = 1 − sr⋆ , and hence, we
have:

SubOpt(AiC) = OHC(β)

(
1− sr⋆

sver
· J
)

.

• Small coverage – β ≤ 1
sr⋆

: In this regime, the optimal transport cost is increasing in β, and

is given by OHC(β) =
√

sr⋆(1− sr⋆)(β − 1), and hence, we obtain:

SubOpt(AiC) = OHC(β) ·

(
1− 1

sver

√
sr⋆(1− sr⋆)

β − 1
· J

)
.

G AIC CONSTRAINT VIOLATION (PROOF OF THEOREM 3.3)

Note that

νAiC(dz) = µ(dz | Ŝ) (16)
=

1

sver
· µ(dz ∩ Ŝ) =

1{z ∈ Ŝ}
sver

· µ(dz) .

Hence, we have

χ2(µ∥νAiC) =

∫
Y

(
dνAiC

dµ

)2

dµ− 1 =

∫
Ŝ

(
1

sver

)2

− 1 =
1

sver
− 1 ,

which implies that based on our coverage constraint, we must have β ≥ 1
sver

.

H SMC RESIDUAL MEASURE (PROOF OF THEOREM 3.4)

Let us define the minimum measure λ ≜ (µ ∧ ν). Furthermore, let us assume that mβ(sr) ≥ sr;
the complementary case follows analogously. Based on the closed-form expression for the Radon-
Nikodym derivative of the target-to-proposal measures stated in (2), we have

λ =

(
1 ∧ dν

dµ

)
· µ = µ | S +

1−mβ(sr)

1− sr
· µ | S , (21)

which gives

ν − λ = (p− 1) · µ | S + (q − q)µ | S , (22)

where we have set

p ≜

(
1

sr
∧ mβ(sr)

sr

)
, and q ≜

(
1−mβ(sr)

1− sr
∨ 0

)
.

Furthermore,

λ(Y)
(21)
= sr +

1−mβ(sr)

1− sr
· (1− sr)
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= 1− (mβ(sr)− sr)

= 1− sr

((
mβ(sr)

sr
∧ 1

sr

)
− 1

)
= 1− sr(p− 1) . (23)

Finally, we have

µres
(22)−(23)

=
(p− 1)µ(· ∩ S)

sr(p− 1)
= µ(· | S) .

I SRS / SMC COMPUTATIONAL COMPLEXITY (PROOF OF THEOREM 3.5)

Computational complexity of SRS: We have

P
(
Z = Y | Y ∼ πref(· | x)

)
= P

(
Z = Y | Y ∼ πref(· | x) , Y ∈ Ŝ

)
· P
(
Y ∈ Ŝ

)︸ ︷︷ ︸
(16)
= sver

+ P
(
Z = Y | Y ∼ πref(· | x) , Y /∈ Ŝ

)
· P
(
Y /∈ Ŝ

)
= sver + P

(
Z = Y | Y ∼ πref(· | x) , Y /∈ Ŝ ,

1

M
η̂(Y) ≥ U , U ∼ Unif[0, 1]

)
× P

(
1

M
η̂(Y) ≥ U , U ∼ Unif[0, 1] | y ∼ πref(· | x) , Y /∈ Ŝ

)
+ P

(
Z = Y | Y ∼ πref(· | x) , Y /∈ Ŝ ,

1

M
η̂(Y) < U , U ∼ Unif[0, 1]

)
︸ ︷︷ ︸

= 0

× P
(

1

M
η̂(Y) < U , U ∼ Unif[0, 1] | y ∼ πref(· | x) , Y /∈ Ŝ

)
= sver + (1− sver) ·

sver(
1 ∧mβ(sver)

) · (0 ∨ 1−mβ(sver)

1− sver

)
= sver +

sver(
1 ∧mβ(sver)

) − sver

=
sver(

1 ∧mβ(sver)
) .

Finally, denoting pSRS ≜ P
(
Z = Y | Y ∼ πref(· | x)

)
, we have

E[τSRS] = pSRS

∑
n∈N

n · (1− pSRS)
n−1 =

1

pSRS
=

(
1 ∧mβ(sver)

)
sver

.

Computational complexity of SMC: First, note that SMC’s probability of acceptance for the first
proposal is given by

P
(
Z = Y

)
= P

(
η̂(Y) ≥ U | U ∼ Unif[0, 1]

)
= P

(
η̂(Y) ≥ U | U ∼ Unif[0, 1] , Y ∈ Ŝ

)︸ ︷︷ ︸
= 1

·P
(
Y ∈ Ŝ

)
+ P

(
η̂(Y) ≥ U | U ∼ Unif[0, 1] , Y /∈ Ŝ

)
· P
(
Y /∈ Ŝ

)
(16)
= sver +

(
0 ∨ 1−mβ(sver)

1− sver

)
·
(
1− sver

)
= 1−

(
0 ∨ mβ(sver)− sver

)
. (24)
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We have

E[τSMC] = P
(

first proposal accepted
)
· 1

+

(
1 +

∑
n∈N

nP
(
nth proposal is accepted

))
· P
(

first proposal is rejected
)

(24)
=
(
1−

(
0 ∨ mβ(sver)− sver

))
+

(
1 +

∑
n∈N

nsver(1− sver)
n−1

)
·
(
(1 ∧ mβ(sver))− sver

)

=
1

sver
·
(
1 ∧mβ(sver)

)
.

J SRS / SMC SUB-OPTIMALITY (PROOF OF THEOREM 3.6)

SRS is a transport plan in M(µ, ν̂) and SMC is designed from the optimal transport plan from µ to
ν̂, where we denote the optimal distribution induced by the estimated reward, i.e., ν̂ ≜ Law(Z | x)
where Z ∼ π̂(· | x), and we define π̂(· | x) ≜ argmaxπ(· | x)∈Π(β | x) Ey∼π(· | x)[r̂(y,x)]. Con-
sequently, SRS and SMC sample from the same distribution ν̂; our sub-optimality analysis will
quantify the discrepancy induced as a result of sampling from ν̂ instead of ν⋆. The key in our anal-
ysis is to decompose the sub-optimality into two terms: an optimal transport cost (OHC) term, and
a policy improvement (PI) term. This leads to sub-optimality having three distinct regimes, which
we discuss next. Note that for A ∈ SRS,SMC,

SubOpt(A) = ν⋆(S⋆)− νA(S⋆) = ν⋆(S⋆)− ν̂(S⋆) = ν⋆(S⋆)− µ(S⋆)︸ ︷︷ ︸
= OHC

− ν̂(S⋆)− µ(S⋆)︸ ︷︷ ︸
= PI

.

The mass that ν̂ assigns on S⋆ can be expanded using the Radon-Nikodym derivative in (2) as
follows.

ν̂(S⋆) =

(
1

sver
∧ mβ(sver)

sver

)
· µ
(
S⋆ ∩ Ŝ

)
+

(
1−mβ(sver)

1− sver
∨ 0

)
· µ(S⋆ \ Ŝ)

=

(
1

sver
∧ mβ(sver)

sver

)
· TP +

(
1−mβ(sver)

1− sver
∨ 0

)
· FN

(17)
=

(
1

sver
∧ mβ(sver)

sver

)
︸ ︷︷ ︸

≜ pver

·sr⋆ · TPR+

(
1−mβ(sver)

1− sver
∨ 0

)
︸ ︷︷ ︸

≜ qver

·sr⋆ ·
(
1− TPR

)
. (25)

Furthermore, expanding PI, we have

ν̂(S⋆)− µ(S⋆)
(25)
= sr⋆

(
(pver − 1)TPR + (qver − 1)(1− TPR)

)
= sr⋆

((
1− sver
sver

∧ mβ(sver)− sver
sver

)
· TPR

−
(
mβ(sver)− sver

1− sr⋆
∨ −sver

)
·
(
1− TPR

))
= sr⋆ ·

(
mβ(sver)− sver

)
·
(
TPR

sver
− 1− TPR

1− sver

)
= sr⋆ ·

(
mβ(sver)− sver

)
· TPR− sver
sver(1− sver)

(16)
= sr⋆ ·

(
mβ(sver)− sver

)
· TPR− (sr⋆ · TPR+ (1− sr⋆FPR))

sver(1− sver)

=
(
mβ(sver)− sver

)
· sr⋆(1− sr⋆)

sver(1− sver)
· J . (26)
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Next, based on coverage, we have the following fours cases.

Transport regime – β ≤
(

1
sr⋆

∧ 1
sver

)
: In this regime, we have OHC(β) =

√
sr⋆(1− sr⋆)(β − 1),

which combined with (26) gives us

SubOpt(A) = OHC(β)

(
1−

√
sr⋆(1− sr⋆)

sver(1− sver)
· J

)
.

Policy improvement regime – β ∈
(

1
sver

, 1
sr⋆

]
: In this regime, we have OHC(β) =√

sr⋆(1− sr⋆)(β − 1) and mβ(sver)− sver =
√
sver(1− sver)(β − 1), and hence, we have

SubOpt(A) =
√
sr⋆(1− sr⋆)(β − 1)−

√
β − 1

sver(1− sver)
· sr⋆(1− sr⋆) · J

= OHC(β)

(
1− 1

sver

√
sr⋆(1− sr⋆)

β − 1
· J

)
.

Policy improvement regime – β ∈
(

1
sr⋆

, 1
ssver

]
: In this regime, OHC(β) = 1−sr⋆ , and hence, we

have

SubOpt(A) = (1− sr⋆)−

√
β − 1

sver(1− sver)
· sr⋆(1− sr⋆) · J

= OHC(β)

(
1−

√
β − 1

sver(1− sver)
· sr⋆ · J

)
.

Saturation regime – β >
(

1
sr⋆

∧ 1
sver

)
: In this regime, we have OHC(β) = 1−sr⋆ and mβ(sver) =

1, and it can be readily verified that

SubOpt(A) = OHC(β)

(
1− sr⋆

sver
· J
)

.

K BON BATCH SIZE (PROOF OF THEOREM 3.7)

Let us denote a ≜ (1 − sr⋆)
N . Evaluating the χ2-divergence between the measure induced by the

BoN sampling policy νBoN with batch size N + 1, we have∫
Y

(
dνBoN

dµ

)2

dµ− 1 =

∫
S

(
dνBoN

dµ

)2

dµ+

∫
S

(
dνBoN

dµ

)2

dµ− 1

=
1

sr⋆

(
1− (1− sr⋆)a

)2
+ (1− sr⋆)a

2 − 1 (27)

=
1

sr⋆

(
1 + (1− sr⋆)

2a2 − 2(1− sr⋆)a
)
+ (1− sr⋆)a

2 − 1

= a2 · 1− sr⋆

sr⋆
− 2a

1− sr⋆

sr⋆
+

1− sr⋆

sr⋆

=

(
1− sr⋆

sr⋆

)
(a− 1)2 ,

where (27) follows from Lemma D.1. Hence,

χ2
(
νBoN∥µ

)
=

(
1− sr⋆

sr⋆

)
·
(
1− (1− sr⋆)

N
)2

. (28)

Note that χ2
(
νBoN∥µ

)
≤ (1−sr⋆)/sr⋆ , and hence we have Nmax = +∞ for any β > (1−sr⋆)/sr⋆ .

The regime β ∈ (sr⋆(1 − sr⋆),
1−sr⋆
sr⋆

] follows from bounding (28) by β − 1. The proof completes
by noting that χ2

(
νBoN∥µ

)
is lower bounded by sr⋆(1− sr⋆), which is obtained by setting N = 1

in (28).
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L BON SUB-OPTIMALITY (PROOF OF THEOREM 3.8)

From (3), we have

SubOpt(BoN) = ν⋆(S⋆)− νBoN(S⋆)

= ν⋆(S⋆)−
(
1− (1− sr⋆)

N+1
)

(29)

= (1 ∧mβ(sr⋆))− sr⋆ + (1− sr⋆) + (1− sr⋆)
N+1 (30)

= (1− sr⋆)
N+1 − (0 ∨ 1−mβ(s

⋆
r)) ,

where (29) follows from Lemma D.1 and (30) follows from Theorem 2.1.

M BRS BATCH SIZE (PROOF OF THEOREM 3.9)

Let us set a = (1− 1
M )−1. We have

χ2
(
νBRS∥µ

)
=

∫ (
dνBRS

dµ

)2

dµ− 1

=

∫ (
(1− a−N )

dν⋆

dµ
(y) + a−N

)2

µ(dy)− 1 (31)

=

∫
(1− a−N )2

(
dν⋆

dµ

)2

µ(dy) +

∫
a−2Nµ(dy)

+ 2

∫
a−N (1− a−N )

dν⋆

dµ
µ(dy)− 1

=

∫
S⋆

(1− a−N )2
(
dν⋆

dµ

)2

µ(dy) +

∫
S⋆

(1− a−N )2
(
dν⋆

dµ

)2

µ(dy)

+ a−2N + 2a−N (1− a−N )− 1

=

∫
S
(1− a−N )2

(
1

sr⋆
∧ mβ(sr⋆)

sr⋆

)
ν⋆(dy) + a−N

(
a−N + 2− 2a−N

)
− 1 (32)

+

∫
S⋆

(1− a−N )2 ·
(
0 ∨ 1−mβ(sr⋆)

1− sr⋆

)
ν(dy)

= (1− a−N )2 · 1

sr⋆

(
1 ∧mβ(sr⋆)

)
+ (1− s−N )2 · 1

1− sr⋆
·
(
0 ∨ 1−mβ(sr⋆)

)2
+ a−N (2− a−N )− 1

=
(
1− a−N

)2 · ( 1

sr⋆
(1 ∧mβ(sr⋆))

2 +
1

1− sr⋆
(0 ∨ 1−mβ(sr⋆))

2

)
︸ ︷︷ ︸

≜ C

+ a−N︸︷︷︸
≜ t

(2− a−N )− 1

= (1− t)2 · C − (1− 2t+ t2)

= (1− t)·(C − 1) ,

where (31) follows from Lemma D.2 and (32) follows from Theorem 2.1. Next, investigating C, we
have the following two cases.
Case A: (1 ∧mβ(sr⋆)) = mβ(sr⋆): In this case, denoting d ≜

√
sr⋆(1− sr⋆)(β − 1), we have

C =
(sr⋆ + d)2

sr⋆
+

(1− sr⋆ − d)2

1− sr⋆

= 1 + d2
(

1

sr⋆
+

1

1− sr⋆

)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

= 1 + sr⋆(1− sr⋆)(β − 1)

(
1

sr⋆
+

1

1− sr⋆

)
= a+ (β − 1)(1− sr⋆ + sr⋆)

= β .

Case B: (1 ∧mβ(sr⋆)) = 1: In this case, we have C = 1
sr⋆

. Furthermoremore, leveraging the
condition in this case that mβ(sr⋆) ≥ 1, we find that β ≥ 1

sr⋆
, consequently establishing that

C ≤ β. Our proof concludes by noting that (1− a−N )2 ≤ 1 for any N ∈ N.

N BRS SUB-OPTIMALITY (PROOF OF THEOREM 3.10)

From (3) we obtain that

SubOpt(BRS) = ν⋆(S⋆)− νBRS(S⋆)

=
(
1 ∧mβ(sr⋆)

)
− νBRS(S⋆) (33)

=

(
1− 1

M

)N

·
(
1 ∧mβ(sr⋆)

)
−
(
1− 1

M

)N

· sr⋆ (34)

=

(
1− 1

M

)N

·
(
1− sr⋆ ∧mβ(sr⋆)− sr⋆

)
= OTC(β) ·

(
1− 1

M

)N

, (35)

where (33) follows from Theorem 2.1, (34) follows from Lemma D.2, and finally, (35) follows from
Lemma 3.1.

O BATCHED SAMPLING ALGORITHMS WITH APPROXIMATE VERIFIERS

In this section, we extend the sub-optimality analyses for the batched sampling algorithms BoN
and BRS to settings where we only have access to an approximate verifier, captured through the
set membership oracle Ŝ. We begin by analyzing BoN sub-optimality with access to Ŝ, and sub-
sequently state the same for BRS. We conclude the section discussing the different regimes of the
sub-optimality–coverage plot, and which algorithm is preferred in each of these regimes. For our
analyses, we decompose the sub-optimality into two components, a sampling error, and a verifica-
tion error. Specifically, for any algorithm A ∈ {BoN, BRS}, let ν̂A denote the distribution induced
by its sampling mechanism. Accordingly, we have

SubOpt(A)
(3)
= ν⋆(S⋆)− ν̂A(S⋆) = ν⋆(S⋆)− νA(S⋆)︸ ︷︷ ︸

sampling error

+ νA(S⋆)− ν̂A(S⋆)︸ ︷︷ ︸
verification error

. (36)

We have the following theorem for BoN sub-optimality.
Theorem O.1 (BoN – sub-optimality with approximate verifiers). The sub-optimality of the BoN
sampling algorithm with access to an approximate membership oracle Ŝ is given by

SubOpt(BoN) = (1− sr⋆)

(
1− sr⋆

sver

(
1− (1− sver)

N
)
J

)
−
(
0 ∨ 1−mβ(sr⋆)

)
.

Proof. From (36), we observe that it is sufficient to evaluate the verification error, since the sampling
error has already been analyzed in Theorem 3.8. We have

νBoN(S⋆)− ν̂BoN(S⋆)

= νBoN(S⋆)−
(
ν̂BoN(S⋆ ∩ Ŝ) + ν̂BoN(S⋆ \ Ŝ)

)
=
(
1− (1− sr⋆)

N+1
)
−
(

1

sver

(
1− (1− sver)

N+1
)
· µ(S⋆ ∩ Ŝ) (37)
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+ (1− sver)
Nµ(S⋆ \ Ŝ)

)
=
(
1− (1− sr⋆)

N+1
)
−
(
sr⋆

sver

(
1− (1− sver)

N+1
)
· TPR

+ (1− sver)
N · sr⋆ · (1− TPR)

)
=
(
1− (1− sr⋆)

N+1
)
−
(
sr⋆(1− sver)

N

(
(1− TPR)

− (1− sver) · TPR
sver

)
+

sr⋆ · TPR
sver

)
=
(
1− (1− sr⋆)

N+1
)
−
(
sr⋆(1− sver)

N

(
sver − TPR

sver

)
+

sr⋆ · TPR
sver

)
=
(
1− (1− sr⋆)

N+1
)
− sr⋆

sver

(
(1− sver)

N · (sver − TPR) + TPR
)

(16)
=
(
1− (1− sr⋆)

N+1
)
− sr⋆

sver

(
TPR− (1− sr⋆)(1− sver)

N · J
)

(16)
=
(
1− (1− sr⋆)

N+1
)
− sr⋆

sver

(
sver + (1− sr⋆) ·

(
1− (1− sver)

N
)
· J
)

=
(
1− (1− sr⋆)

N+1
)
−
(
sr⋆ +

sr⋆(1− sr⋆)

sver

(
1− (1− sver)

N
)
· J
)
, (38)

where (37) follows from Lemma D.1. The claim readily follows by combining (38) with Theo-
rem 3.8 using (36). ■

Next, we state the sub-optimality of the BRS algorithm with access to an approximate oracle Ŝ.

Theorem O.2. Let us set aN ≜ (1 − (1 − 1
M )N ). The sub-optimality of the BRS algorithm with

access to an approximate membership oracle Ŝ is specified through the following coverage regimes.

1. Transport regime: In the transport regime, characterized by the coverage constraint β ≤
( 1
sr⋆

∧ 1
sver

), we have

SubOpt(BRS) = OHC(β)(1− aN ) + aNsr⋆

(
1

sr⋆
mβ(sr⋆)−

(
mβ(sver)

sver
· TPR

+
1−mβ(sver)

1− sver
(1− TPR)

))
.

2. Policy improvement regime: We have two cases. If sver > sr⋆ , in the policy improvement
regime, characterized by the coverage constraint β ∈ ( 1

sver
, 1
sr⋆

], we have

SubOpt(BRS) = OHC(β)(1− aN ) + aNsr⋆

(
mβ(sr⋆)

sr⋆
− TPR

sver

)
.

Alternatively, for β ∈ ( 1
sr⋆

, 1
sver

], we have

SubOpt(BRS) = OHC(β)(1− aN ) + aNsr⋆

(
1

sr⋆
−
(
mβ(sver)

sver
· TPR

+
1−mβ(sver)

1− sver
(1− TPR)

))
.

3. Saturation regime: In the saturation regime, characterized by the coverage constraint
β > ( 1

sr⋆
∨ 1

sver
), we have

SubOpt(BRS) = OHC(β)(1− aN ) + aNsr⋆

(
1

sr⋆
− TPR

sver

)
.
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Proof. Similarly to Theorem O.1, we will analyze the the verification error for BRS. For clarity in
presentation, let us define

p(s) ≜

(
1

s
∧ mβ(s)

s

)
, and q(s) ≜

(
0 ∨ 1−mβ(s)

1− s

)
. (39)

Note that

ν̂BRS(S⋆)

= ν̂BRS(Ŝ ∩ S⋆) + ν̂BRS(S⋆ \ Ŝ)

=
(
aN · p(sver) + (1− aN )

)
µ(Ŝ ∩ S⋆) +

(
aN · q(sver) + (1− sN )

)
µ(S⋆ \ Ŝ) (40)

=
(
aNp(sver) + (1− aN )

)
· sr⋆ · TPR +

(
aNq(sver) + (1− aN )

)
· sr⋆ · (1− TPR)

= aN · sr⋆
(
p(sver) · TPR+ q(sver) · (1− TPR)

)
+ (1− aN )sr⋆ , (41)

where (40) follows from Lemma D.2. Furthermore, it can be readily verified that

νBRS(S⋆) = aN · sr⋆ · p(sr⋆) + (1− aN )sr⋆ . (42)

Combining (41) and (42), we have

νBRS(S⋆)− ν̂BRS(S⋆)

= aN

(
sr⋆p(sr⋆)− p(sver) · TPR · sr⋆ − q(sver) · (1− TPR) · sr⋆

)
(39)
= aN

(
(1 ∧mβ(sr⋆))−

(
1

sver
∧ mβ(sver)

sver

)
· TPR · sr⋆

−
(
0 ∨ 1−mβ(sver)

1− sver

)
(1− TPR)sr⋆

)
.

Transport regime: In this regime, since both mβ(a
⋆
r) and mβ(sver) are less than 1, we have

νBRS(S⋆)− ν̂BRS(S⋆)

= aN

(
mβ(sr⋆)−

mβ(sver)

sver
· sr⋆ · TPR− 1−mβ(sver)

1− sver
· (1− TPR) · sr⋆

)
= aNsr⋆

(
mβ(sr⋆)

sr⋆
−
(
mβ(sver)

sver
· TPR+

1−mβ(sver)

1− sver
· (1− TPR)

))
. (43)

Finally, the result readily follows by adding the sampling error, OHC(β)(1− aN ) proved in Theo-
rem 3.10.
Policy improvement regime: This regime can be divided into two cases, one in which β ∈
(1/sver, 1/sr⋆ ], and the second in which β ∈ (1/sr⋆ , 1/sver]. In the first regime, the result read-
ily follows by replacing mβ(sver) = 1 in (43), and adding the sampling error OHC(β)(1 − aN ).
In the second regime, the result readily follows by replacing mβ(sr⋆) = 1 in (43), and adding
OHC(β)(1− aN ), the sampling error.
Saturation regime: In this regime, both mβ(sr⋆) = 1 and mβ(sver) = 1, and the result readily
follows by replacing these values in (43) and adding the sampling error OHC(β)(1 − aN ). This
concludes our proof. ■

Interpreting the results. In Theorem O.1, we note that as N goes to +∞, the BoN sampling
error decays to 0 (and potentially becomes negative, depending on whether the mass put on S⋆ by
the skyline policy is less than 1). However, the estimation error saturates at OHC(β)(1 − sr⋆

sver
J),

as we had observed for AiC. This is intuitive, since the verification error is entirely controlled by
verifier inaccuracies, and does not depend on the design of the sampling algorithm. Similarly, from
Theorem O.2, we observe a similar trend — the sampling error is driven down to 0 as the batch
size N → +∞, while the verification error stagnates at OHC(β) · (1− sr⋆

sver
J) under the saturation

regime.
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Figure 6: ROC estimated based on generations from google/gemma-3-4b-it
(left), and meta-llama/Llama-3.1-8B-Instruct (right). We observe that
meta-llama/Llama-3.1-8B-Instruct has a larger area under the curve (AUC) compared
to google/gemma-3-4b-it

P EXTENDED EXPERIMENTS

In this section, we specify our experimental setup: how we construct ground-truth and approxi-
mate verifiers, the models used to evaluate our algorithms, and the hyperparameters employed. All
evaluations are conducted on GSM8K (Cobbe et al., 2021), a benchmark of high-quality grade-
school math word problems requiring multi-step arithmetic reasoning. Following the protocol of
Dorner et al. (2025), we select the earliest test question for which two independent generations from
Llama-3.2-3B are both incorrect — namely, the 2nd sample in GSM8K’s test split. Prompts
are constructed by prefixing each question with five randomly sampled training exemplars. As
in (Dorner et al., 2025; Huang et al., 2025a), we then draw 10,000 responses y ∼ πref(· | x) at tem-
perature 1, using models from the Qwen, Gemma and Llama families. Specifically, we evaluate:
(i) Qwen3-1.7B, (ii) Qwen3-8B, (iii) Qwen3-14B, (iv) google/gemma-3-4b-it, and (v)
meta-llama/Llama-3.1-8B-Instruct, spanning sizes from 1.7B to 14B parameters. Gen-
erations are obtained through the lm-eval-harness framework (Gao et al., 2024). Verifiers are
constructed in two modes: an explicit-construction mode and a reward-guided mode. For sampling,
we bootstrap from the 10,000-response pool with replacement.

Explicit verifier construction. To construct S⋆, we determine the ground-truth correct-
ness of each response by extracting the predicted answer via pattern matching with
(-?[$0-9.,]2,)|(-?[0-9]+), and marking it correct if it matches the GSM8K gold la-
bel. The proposal’s mass on S⋆, denoted sr⋆ , is estimated empirically by summing the normalized
logprobs of correct responses. For the approximate verifier Ŝ, we adopt an explicit construction
designed to validate our theoretical analysis. Specifically, we curate subsets of correct and incorrect
responses into Ŝ such that both the Youden index J and the proposal’s mass sver are controlled,
thereby fixing the verifier’s TPR and FPR. This provides direct and interpretable control over the
verifier’s operating characteristics. To ensure determinism, responses are ranked in descending or-
der of their logprobs. Candidates are then selected from S⋆ and its complement S⋆, starting
with the highest-probability responses in each set, and iteratively added until the cumulative mass
matches the preset values of J and sver.

Reward-guided verifier construction. As a second mode of verification, we employ the re-
ward model Skywork/Skywork-Reward-V2-Llama-3.1-8B, which ranks 1st on the Re-
wardBench leaderboard (Malik et al., 2025), to score the generated responses. We normalize
these scores and derive approximate verifiers by thresholding: for a prompt x ∈ X and re-
sponse y ∈ Y , a response is included in Ŝ if its reward rsr(x,y) exceeds a threshold γ. By
varying γ, we obtain a family of verifiers whose receiver operating characteristics (ROCs) are
plotted in Figure 6. Since the ROCs are estimated from finite samples, we compute them sepa-
rately for the two models considered in this experiment, namely google/gemma-3-4b-it and
meta-llama/Llama-3.1-8B-Instruct. To select two concrete verifiers, we fix the false
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positive rate (FPR) at 0.3 for both models and choose the threshold γ that achieves this constraint,
as shown in Figure 6.

List of plots. In Section 4, we presented results for the Qwen3-1.7B and Qwen3-14B models.
Here, we supplement these with additional plots for Qwen3-8B under the explicit-verifier setting,
along with further analyses illustrating how average reward varies with generator coverage and how
sub-optimality scales with computational complexity. Figure 7 reports these results for the Qwen
model family under the sequential sampling protocol. Figures 9 and 10 provide the corresponding
plots for the batched setting, i.e., BoN and BRS. Finally, Figure 11 reports analogous plots under a
reward-guided verifier constructed with Skywork/Skywork-Reward-V2-Llama-3.1-8B.
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Figure 7: Plots for the Qwen family with an explicit verifier: average reward versus β (first row),
computational complexity versus β (second row), and computational complexity versus reward
(third row). Trends predicted in Theorems 3.2 and 3.5 are observed.

Q COMPUTE AND LLM USAGE

All generations are performed in 8× A6000 Nvidia GPUs with 49 gigabytes of VRAM each. LLMs
have been used for (1) sharpening the write-up, (2) as a coding assistant for the experiments, and (3)
verifying the correctness of some algebra in the proofs of Lemma D.1 and Theorem 3.8.
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Figure 8: Sub-optimality plotted against Youden’s index J for the Qwen model family with
an explicit verifier, using βT, βPI, βS to represent the three distinct coverage regimes. β values
are computed as βT = (0.2 · βsat ∨ 1), βPI = (βT + β̄sat)/2, βS = 1.2 · β̄sat, where βsat =

(1/sr⋆ ∧ 1/sver), and β̄sat = (1/sr⋆ ∨ 1/sver).
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Figure 9: BRS plots for the Qwen family with an explicit verifier: ground truth verifier on the
first row, explicit verifier on the second row. Plots match the theoretical findings in Theorems 3.10
and O.2. Furthermore, as N increases, sub-optimality decreases.
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Figure 10: BoN plots for the Qwen family with an explicit verifier: ground truth verifier on the
first row, explicit verifier on the second row. Plots match the theoretical findings in Theorems 3.8
and O.1. Here, we choose N ∈ [⌊(Nmax ∧ 1

s )⌋] as prescribed in Theorem 3.7 for feasibility.
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Figure 11: Reward-guided verifier: verifiers chosen as indicated in the ROC plot in Figure 6.
We plot reward versus β (first row), computational complexity versus β (second row), reward
versus computational complexity (third row), and sub-optimality versus β (fourth row.)
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Figure 12: BRS plots with a reward-guided verifier: we plot sub-optimality versus β with the
ground truth verifier on the first row, and approximate verifier on the second row.
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Figure 13: BoN plots with a reward-guided verifier: we plot sub-optimality versus β with the
ground truth verifier on the first row, and approximate verifier on the second row.
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