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ABSTRACT

Autonomous driving requires a robust and reliable 3D perception system that in-
cludes 3D object detection, tracking, and segmentation. Although recent low-
cost camera-based approaches have shown promising results, they are susceptible
to poor illumination or bad weather conditions and have a large localization er-
ror. Hence, fusing camera with low-cost radar, which provides precise long-range
measurement and operates reliably in all environments, is promising but has not
yet been thoroughly investigated. In this paper, we propose Camera Radar Net
(CRN), a novel camera-radar fusion framework that generates a semantically rich
and spatially accurate bird’s-eye-view (BEV) feature map for various tasks. To
overcome the lack of spatial information in an image, we transform perspective
view image features to BEV with the help of sparse but accurate radar points.
We further aggregate camera and radar feature maps in BEV using multi-modal
deformable attention designed for adaptive fusion given spatially misaligned and
ambiguous multi-modal inputs. CRN with a real-time setting operates at 20 FPS
while achieving comparable performance to LiDAR detectors on nuScenes, and
even outperforms at a 100m perception range. Moreover, CRN with offline setting
yields 58.3% NDS, 51.5% mAP at 7 FPS and is ranked first among all camera and
camera-radar 3D object detectors. The code will be made publicly available soon.

1 INTRODUCTION
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Figure 1: FPS vs. accuracy on nuScenes val set. We
show that fusing radar can significantly boost camera-
only method with marginal computational cost. CRN
outperforms all methods with much faster speed. See
Table 1 and Fig. 5 for more details.

Accurate and robust 3D perception system
is crucial for many applications such as au-
tonomous driving and mobile robot. For effi-
cient 3D perception, obtaining a reliable bird’s
eye view (BEV) feature map from sensor inputs
is necessary since various downstream tasks
can be operated on BEV space (e.g., object de-
tection & tracking (Yin et al., 2021), map seg-
mentation (Zhou & Krähenbühl, 2022), trajec-
tory prediction (Hu et al., 2021), and motion
planning (Philion & Fidler, 2020)). Another
important ingredient for deploying 3D percep-
tion to the real world is to build a system that
relies less on high-cost, high-maintenance, and
low-reliable LiDAR sensors. Apart from the
drawbacks of LiDAR, 3D perception system is
required to identify semantic information on the
road (e.g., traffic lights, road sign) that can be easily leveraged by camera. In addition to the need
for rich semantic information, detecting distant objects is essential, and this can be advantaged from
radar.

Recently, camera-based 3D perception in BEV (Philion & Fidler, 2020; Reading et al., 2021; Huang
et al., 2021) has drawn great attention. Thanks to rich semantic information in dense image pixels,
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camera approaches can distinguish objects even at a far distance. Despite the advantage of cameras
in cost, localizing accurate position of objects from a monocular image is naturally a challenging
ill-posed problem. Moreover, cameras can be significantly affected by illumination conditions (e.g.,
glare, low-contrast, or low-lighting) due to the nature of the passive sensor. To address this, we aim
to generate a BEV feature map using a camera with the help of a cost-effective range sensor, radar.

Radar has advantages not only in cost but high-reliability, long-range perception (up to 200m for
typical automotive radar (ars)), robustness in various conditions (e.g., snow, fog, or rain), and provid-
ing velocity estimation from a single measurement. However, radar also brings its challenges such
as sparsity (typically 180× fewer than LiDAR points per single frame in nuScenes (Caesar et al.,
2020)), noisy and ambiguous measurements (false negatives by low resolution, accuracy, or low
radar cross-section and false positives by multi-path or clutters). As a result, previous camera-radar
fusion methods using late fusion strategies that fuse detection-level results (Göhring et al., 2011;
Cho et al., 2014) fail to fully exploit the complementary information of sensors, thus having limited
performance and operating environment. Despite the huge potential of learning-based fusion, only
a few studies (Kim et al., 2023; Nabati & Qi, 2021; Kim et al., 2020b) explore camera-radar fusion
in autonomous driving scenarios.

To put the aforementioned advantages and disadvantages of camera and radar in perspective, camera-
radar fusion should be capable of following properties to fully exploit the complementary charac-
teristics of each sensor. First, camera features should be accurately transformed into BEV space
in terms of spatial position. Second, the fusion method should be able to handle the spatial mis-
alignment between feature maps when aggregating two modalities. Last but not least, all mentioned
above should be adaptive in order to tackle noisy and ambiguous radar measurements.

To this end, we design a novel two-stage fusion method for BEV feature encoding, Camera Radar
Net (CRN). The key idea of the proposed method is to generate semantically rich and spatially
accurate BEV feature map by fusing complementary characteristics of camera and radar sensors. In
particular, we first transform camera image features in perspective view into BEV, not solely relying
on estimated depth information but using radar, named radar-assisted view transformation (RVT).
Since transformed image features in BEV is not completely accurate, following multi-modal feature
aggregation (MFA) consecutively encodes the multi-modal feature maps into a unified feature map
using an attention mechanism. We conduct extensive experiments on nuScenes and demonstrate that
our proposed method can generate a fine-grained BEV feature map to set the new state-of-the-art
while maintaining high efficiency, as shown in Fig 1.

The main contribution of our works are three-fold:

• Accurate. CRN achieves LiDAR-level performance on 3D object detection task only using
cost-effective camera and radar.

• Robust. CRN maintains robust performance even if one of the single sensor inputs is
entirely off, which allows the fault-tolerant system.

• Efficient. CRN requires marginal extra cost for significant performance improvement,
which enables long-range perception in real-time.

2 RELATED WORK

Camera-based 3D Perception. Thanks to well-established 2D object detection methods (Ren
et al., 2015; Zhou et al., 2019; Tian et al., 2019) on perspective view images, early approaches extend
2D detector to 3D detector by additionally estimating object’s depth (Simonelli et al., 2019; Wang
et al., 2021b;a; 2022), then transforming object center. DD3D (Park et al., 2021) improves detection
performance by pre-training depth estimation task on depth dataset (Guizilini et al., 2020). Although
a simple and intuitive approach, the view discrepancy between input feature space (perspective view,
PV) and output space (bird’s-eye-view, BEV) restricts the network from extending to other tasks.

Recent advances in camera-based perception exploit view transformation. Geometry-based meth-
ods (Philion & Fidler, 2020; Reading et al., 2021; Li et al., 2023b; Park et al., 2022) explicitly esti-
mate the depth distribution of each image feature and transform it by outer product. BEVDepth (Li
et al., 2023b) empirically shows that training depth distribution with auxiliary pixel-wise depth
supervision improves the performance, which corresponds to the results of DD3D (Park et al.,
2021). Learning-based methods (Li et al., 2022c; Zhou & Krähenbühl, 2022; Jiang et al., 2023;
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Figure 2: The overall architecture of the proposed Camera Radar Net. Given multi-view images and radar
points, modality-specific backbones extract features in each view. First, image context features in perspec-
tive view are transformed into a bird’s-eye-view with the help of radar measurements by Radar-assisted View
Transformation (RVT). After, Multi-modal Feature Aggregation (MFA) adaptively aggregates image and radar
feature maps to generate semantically rich and spatially accurate bird’s-eye-view representation.

Lu et al., 2022) implicitly model the mapping function from PV to BEV using multi-layer percep-
tron (MLP) (Roddick & Cipolla, 2020; Saha et al., 2022) or cross-attention (Li et al., 2022c).

Obtaining a BEV feature map allows the framework to be easily extended to various downstream
tasks performed on BEV space, such as 3D detection and tracking (Li et al., 2023b), segmenta-
tion (Zhou & Krähenbühl, 2022), and prediction (Philion & Fidler, 2020). However, camera-only
methods have low localization accuracy due to the absence of distance information in image and are
sensitive to lighting or weather conditions. Moreover, achieving LiDAR-level performance using
camera-only methods requires large image input and backbone, which is slow and not applicable for
real-time application.

Camera-Point 3D Perception. Fusing complementary information of camera image and range
measurement is a promising and active research topic, and the view discrepancy between sensors
is regarded as a bottleneck for multi-modal fusion. A line of approaches handles discrepancy by
projecting 3D information to a 2D image (e.g., points (Vora et al., 2020; Li et al., 2022b), propos-
als (Kim et al., 2020b; Bai et al., 2022), or prediction results (Pang et al., 2020)) and gathering
information around the projected region. Some camera-radar fusion methods (Lin et al., 2020; Long
et al., 2021) attempt to improve depth estimation by projecting radar points to the image.

On the other hand, another line of work lift 2D image information into 3D. Early studies in 3D
detection (Qi et al., 2018; Kim et al., 2023) detect 2D or 2.5D object proposals and then lift them
into 3D space to fuse with point data; however, this object-level fusion is difficult to be generalized
to other tasks in BEV. Thanks to advances in monocular BEV approaches, recent fusion approaches
extract image and point feature maps in unified BEV space and then fuse feature maps by element-
wise summation or concatenation, assuming multi-modal feature maps are spatially well aligned.
After, the fused BEV feature map is used in various perception tasks such as 3D detection (Yoo
et al., 2020; Liang et al., 2022; Li et al., 2022a), BEV segmentation (Harley et al., 2022), or multi-
task (Liu et al., 2022b; Zhou et al., 2023). However, although unique characteristics of a camera
(e.g., inaccurate BEV transformation) and radar (e.g., sparsity and ambiguity), previous camera-
radar fusion less considers them. Our proposed CRN focuses on fusing multi-modal feature maps
considering the characteristics of each sensor thoroughly to have the best of both worlds.

3 CAMERA RADAR NET

In this paper, we propose a camera radar fusion framework to produce a unified BEV representation
given multi-view images and radar points, as illustrated in Fig 2. In Sec. 3.2, we introduce a method
to transform image features with radar, then a multi-modal feature aggregation method in Sec. 3.3.
Finally, generated BEV feature map is used for downstream tasks in Sec. 3.4.

3.1 PRELIMINARY

Monocular 3D Approaches. The crux of monocular 3D perception is how to construct accurate
3D (or BEV) information from 2D features, which can be categorized into two groups. Geometry-
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based approaches (Philion & Fidler, 2020; Reading et al., 2021; Huang et al., 2021; Li et al., 2023b)
predict depth D as an explicit intermediate representation and transform features F in perspective
view (u, v) into frustum view (d, u, v) then 3D (x, y, z) by:

F3D(x, y, z) = M(F2D(u, v)⊗D(u, v)), (1)
where M denotes view transformation module (e.g., Voxel Pooling (Liu et al., 2022b; Li et al.,
2023b)) and ⊗ denotes outer product. Meanwhile, learning-based approaches (Li et al., 2022c; Liu
et al., 2022a; Wang et al., 2022; Zhou & Krähenbühl, 2022) implicitly model 3D to 2D projection
utilizing mapping networks as:

F3D(x, y, z) = f(Pxyz,F2D(u, v)), (2)
where f denotes mapping function between perspective view and BEV (e.g., multi-layer perceptron
(MLP) (Saha et al., 2022) or cross-attention (Li et al., 2022c)), and Pxyz is voxels in 3D space. Al-
though the approaches are different, the key is to obtain spatially accurate 3D features F3D(x, y, z)
through implicit or explicit transformation. In this paper, we aim to improve transformation using
radar measurement explicitly.

Radar Characteristics. Radar data can have various representations (e.g., 2-D FFT (Lin et al.,
2018), 3D Tensor (Major et al., 2019; Kim et al., 2020a), point cloud (Caesar et al., 2020; Meyer &
Kuschk, 2019)). Radar point cloud has a similar representation to LiDAR, but their sensor charac-
teristics are different in terms of resolution and accuracy (ars). Moreover, due to the nature of the
operating mechanism of radar (Johnson & Dudgeon, 1992; Li & Stoica, 2008) and its millimeter
scale wavelength, radar measurements are noisy, ambiguous, and do not provide elevation. There-
fore, radar measurements are often not returned when objects exist or returned when objects do not
exist; hence, naively adopting LiDAR methods to radar shows very limited performance on complex
scenarios, as in Tables 4 and 5 (CenterPoint (Yin et al., 2021) with radar input). In this paper, we
exploit radar data in an adaptive manner to handle its sparsity and ambiguity.

3.2 RADAR-ASSISTED VIEW TRANSFORMATION (RVT)

Image Feature Encoding and Depth Distribution. Given a set of N surrounding images, we use
an image backbone (e.g., ResNet (He et al., 2016)) with a feature pyramid network (FPN) (Lin et al.,
2017) and obtain 16× downsampled feature map FI for each image view. Then, additional convo-
lutional layers further extract image context features CPV

I ∈ RN×C×H×W and depth distribution
of each pixel DI ∈ RN×D×H×W in perspective view, following LSS (Philion & Fidler, 2020):

CPV
I = Conv(FI), DI(u, v) = Softmax(Conv(FI)(u, v)), (3)

where (u, v) indicates coordinate in the image plane, and D is the number of depth bins.

Radar Feature Encoding and Radar Occupancy. Unlike previous methods (Philion & Fidler,
2020; Reading et al., 2021; Li et al., 2023b) that directly “lift” image features into BEV using
estimated depth distribution as Eq. 1, we exploit noisy yet accurate radar measurements for view
transformation. Radar points are first projected into each N camera view to find corresponding
image pixels while preserving its depth, then voxelized (Lang et al., 2019) into camera frustum
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Figure 3: Radar-assisted View Transformation (RVT). The
proposed RVT can benefit from dense but less accurate depth
distribution and sparse but accurate radar occupancy to obtain
spatially accurate image context features.

view voxels VFV
P (d, u, v). Note that u, v

is pixel unit in the image width and height
directions, d is a metric unit in a depth di-
rection. We set v = 1 to use pillar-style
since radars do not provide reliable eleva-
tion measurements. The non-empty radar
pillars are encoded into features FP ∈
RN×C×D×W with PointNet (Qi et al.,
2017) and sparse convolution (Yan et al.,
2018). Similar to Eq. 3, we extract radar
context feature CFV

P ∈ RN×C×D×W

and radar occupancy OP ∈ RN×1×D×W

in frustum view. Here, convolution is
applied to top-view (d, u) coordinate in-
stead of (u, v):

CFV
P = Conv(FP ), OP (d, u) = σ(Conv(FP )(d, u)). (4)
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Here, a sigmoid is used instead of softmax since radar occupancy is not necessarily one-hot encoded
as a depth distribution.

Frustum View Transformation. Given depth distribution DI and radar occupancy OP , the image
context feature map CPV

I is transformed into a camera frustum view CFV
I ∈ RN×C×D×H×W by

the outer product as:
CFV

I = Conv[CPV
I ⊗DI ;C

PV
I ⊗OP ], (5)

where [·; ·] denotes the concatenation operating along the channel dimension. Due to the absence
of height dimension in radar and for saving memory, we collapse the image context feature by
summation along the height axis, as illustrated in Fig. 3.

Bird’s-Eye-View Transformation. Finally, camera and radar context feature maps in N cam-
era frustum views F = {CI ,CP ∈ RN×C×D×H×W } are transformed into a single BEV space
RC×1×X×Y by view transformation module M:

FBEV = M({FFV
i }Ni=1). (6)

Specifically, we adopt CUDA-enabled Voxel Pooling (Li et al., 2023a) implementation and modify it
to aggregate features within each BEV grid using average pooling instead of summation. It helps the
network to predict a more consistent BEV feature map regardless of the distance to the ego vehicle
since a closer BEV grid is associated with a more frustum grid due to the perspective projection.

3.3 MULTI-MODAL FEATURE AGGREGATION (MFA)

Motivation. Combining complementary multi-modal information while avoiding the drawbacks
of each is especially crucial in camera radar fusion, as claimed in Sec. 3.1. Image feature has rich
semantic cues but is inherently spatially inaccurate; on the other hand, radar feature is spatially
accurate, but contextual information is very limited and noisy. Naive approaches are channel-wise
concatenation (Liu et al., 2022b) or summation (Li et al., 2022a), but these cannot handle neither
spatial misalignment nor ambiguity between two modalities, thus less effective, as can be seen in
Table 3. To have the best of both worlds, the key motivation of our fusion is to leverage multi-modal
features in an adaptive manner, using an attention mechanism (Vaswani et al., 2017).

Multi-modal Deformable Cross Attention. Cross attention (Vaswani et al., 2017) is inherently
suitable for multi-modal fusion, but the computation cost is quadratic to input sequence length
O(N2), where N = HW and H,W denote the height and width of the BEV feature map.

(a) Fusion (b) Image (c) Radar
Figure 4: In image (b), a vehicle heavily occluded (white) or
hardly visible at a long distance (blue) is not detected. In radar
(c), clutters from the wall (black) or pedestrian with row RCS
(red) lead to failure. Our MFA (a) generates a more reliable BEV
feature map by fusion. Note that BEV feature maps are cropped
for better visualization.

If we assume perception range R =
H/2 = W/2, computation complexity
becomes biquadratic O(16R4) to per-
ception range, which is not scalable for
a long-range perception; Thus we de-
velop the fusion method based on de-
formable attention (Zhu et al., 2021),
which is of linear complexity with the
input size O(2N + NK), where K is
the total number of the sampled key
(K ≪ N = HW ).

Given BEV context feature maps
xm = {CI ,CP }, we project
xm into C dimensional query
feature after concatenation as
zq = Wz[LN(CI);LN(CP )], where
Wz ∈ R2C×C is a linear projection
and LN is layer norm. After, the fea-
ture map is aggregated by multi-modal
deformable cross attention as

MDCA(zq, pq, xm) =

H∑
h

Wh

[
M∑
m

K∑
k

Ahmqk ·W ′
hmxm(ϕm(pq +∆phmqk))

]
, (7)
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where h,m, k indexes the attention head, modality, and sampling point. To better exploit multi-
modal information, we separately apply attention weights Ahmqk and sampling offset ∆phmqk to
multi-modal feature maps xm. By doing so, the feature aggregation module can adaptively benefit
from image and radar as shown in Fig. 4. We refer the reader to Appendix for details of the notation.

Sparse Aggregation. Although MDCA has linear complexity with respect to BEV size, it still
can be a bottleneck when the perception range becomes large. Inspired by (Yao et al., 2021; Roh
et al., 2022), we propose a method to further reduce the number of input queries from N = HW
to N = Nk ≪ HW by using features with top-k confidence.4 Given BEV depth distribution DI

and radar occupancy OP , Nk features zNk
q ∈ RC×Nk are selected from input queries zq ∈ RC×HW

using a probability of max(DI ,OP ). The complexity of the proposed sparse aggregation is now
independent of perception range, which is more efficient for long-range perception.

3.4 TRAINING OBJECTIVES AND TASK HEADS

We train the depth distribution network with a depth map obtained by projecting LiDAR points into
the image view, following BEVDepth (Li et al., 2023b). We follow CenterPoint (Yin et al., 2021)
to predict the center heatmap with anchor-free and multi-group head (Zhu et al., 2019). For training
sparse aggregation, we filter LiDAR points outside of 3D bounding box when obtaining a ground
truth depth map and replace the softmax to sigmoid in Eq. 3; thereby, only feature grids containing
foreground objects can have a high probability.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset and Metrics. We conduct experiments on 3D object detection task on nuScenes (Cae-
sar et al., 2020), which is the only dataset providing radar point cloud at scale. We use official
metrics: mAP (Everingham et al., 2010) and NDS (Caesar et al., 2020) and we refer the reader to
nuScenes (Caesar et al., 2020) for details of metrics.

Implementation Details. For the camera stream, we adopt BEVDepth (Li et al., 2023b) as a
baseline with several modifications. We reduce the number of depth estimation layers and eliminate
the depth refinement module, which increases the inference speed without a significant performance
drop. For radar, we accumulate six previous radar sweeps and use normalized RCS and Doppler
speed as features following GRIF Net (Kim et al., 2020b). Unless otherwise specified, we follow
standard practices (Huang et al., 2021; Li et al., 2023b) for implementation and training details. We
accumulate four BEV feature maps with an interval of 1 second, similar to BEVFormer (Li et al.,
2022c). The full experimental settings are provided in Appendix.

4.2 MAIN RESULTS

For a comparison with previous state-of-the-art methods, we train and evaluate our model on 3D
detection task and report val set results in Table 1. Under various input sizes and backbone settings,
our CRN achieves first place among all camera-only and camera-radar methods with much faster
FPS (Sec. 4.4 for inference time analysis). We emphasize that CRN with a small input size and
backbone (256 × 704 and R50) already achieves a competitive performance with a large input size
and backbone (BEVDepth (Li et al., 2023b) and SOLOFusion (Park et al., 2022) with 512 × 1408
and R101) in terms of mAP while running an order of magnitude faster, showing the effectiveness
of using radar over camera-only methods. Ours also outperforms the LiDAR method CenterPoint-
P (Yin et al., 2021), demonstrating the potential of cost-effective camera and radar to replace LiDAR
for autonomous driving. Qualitative results are provided in Appendix.

4.3 ABLATION STUDIES

We conduct ablation studies on val set with 3D detection task. Unless otherwise specified, mod-
els use two frames of 256 × 704 image, R50 backbone, and are trained for 24 epochs without
CBGS (Zhu et al., 2019). For thorough comparison, we additionally build three baseline detectors
for camera – BEVDepth (Li et al., 2023b), point – CenterPoint (Yin et al., 2021), and camera-point
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Table 1: 3D Object Detection on nuScenes val set. ‘L’, ‘C’, and ‘R’ represent LiDAR, camera, and radar,
respectively. ∗: results from MMDetection3D (Chen et al., 2019). †: trained with CBGS.

Input Backbone Image Size NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓ FPS
CenterPoint-P†∗ (Yin et al., 2021) L Pillars - 59.8 49.4 0.320 0.262 0.377 0.334 0.198 -
CenterPoint-V†∗ (Yin et al., 2021) L Voxel - 65.3 56.9 0.285 0.253 0.323 0.272 0.186 -
BEVDet† (Huang et al., 2021) C R50 256× 704 39.2 31.2 0.691 0.272 0.523 0.909 0.247 15.6
CenterFusion† (Nabati & Qi, 2021) C+R DLA34 448× 800 45.3 33.2 0.649 0.263 0.535 0.540 0.142 -
BEVDepth† (Li et al., 2023b) C R50 256× 704 47.5 35.1 0.639 0.267 0.479 0.428 0.198 11.6
RCBEV4d† (Zhou et al., 2023) C+R Swin-T 256× 704 49.7 38.1 0.526 0.272 0.445 0.465 0.185 -
CRAFT† (Kim et al., 2023) C+R DLA34 448× 800 51.7 41.1 0.494 0.276 0.454 0.486 0.176 4.1
SOLOFusion† (Park et al., 2022) C R50 256× 704 53.4 42.7 0.567 0.274 0.411 0.252 0.188 11.4
CRN C+R R50 256× 704 56.0 48.1 0.474 0.271 0.541 0.328 0.188 20.4
FCOS3D (Wang et al., 2021b) C R101 900× 1600 41.5 34.3 0.725 0.263 0.422 1.292 0.153 1.7
DETR3D† (Wang et al., 2022) C R101 900× 1600 43.4 34.9 0.716 0.268 0.379 0.842 0.200 -
PETR† (Liu et al., 2022a) C R101 900× 1600 44.2 37.0 0.711 0.267 0.383 0.865 0.201 1.7
BEVFormer (Li et al., 2022c) C R101 900× 1600 51.7 41.6 0.673 0.274 0.372 0.394 0.198 1.7
PolarFormer-T (Jiang et al., 2023) C R101 900× 1600 52.8 43.2 0.648 0.270 0.348 0.409 0.201 1.7
BEVDepth† (Li et al., 2023b) C R101 512× 1408 53.5 41.2 0.565 0.266 0.358 0.331 0.190 5.0
SOLOFusion (Park et al., 2022) C R101 512× 1408 54.4 47.2 0.518 0.275 0.604 0.310 0.210 -
SOLOFusion† (Park et al., 2022) C R101 512× 1408 58.2 48.3 0.503 0.264 0.381 0.246 0.207 -
CRN C+R R101 512× 1408 58.3 51.5 0.463 0.268 0.447 0.370 0.192 7.2

Table 2: Ablation of view transformation methods.
LiDAR and radar are used only for transformation and
not used for feature aggregation.

Input RVT All Car
NDS mAP mATE mAP

Depth ✗ 43.9 33.2 0.716 50.4
Radar ✗ 33.6 24.3 0.706 44.7

Depth+Radar ✓ 52.1 44.8 0.521 70.5
Depth+LiDAR ✓ 57.0 51.6 0.419 76.2

Table 3: Ablation of feature aggregation methods.
Note that MFA with RVT is our full model.

Input All Car
NDS mAP mATE mAP

CenterPoint L 52.8 41.2 0.406 73.9
BEVFusion C+R 51.9 42.4 0.536 68.4

+ deeper conv C+R 51.9 42.8 0.532 69.0
+ RVT C+R 52.7 44.3 0.517 70.6
MFA C+R 53.4 44.5 0.507 70.3

+ RVT C+R 53.9 45.2 0.501 71.6

– BEVFusion (Liu et al., 2022b). Details of baselines and additional ablation studies are provided
in Appendix.

View Transformation. In Table 2, we study how the radar-assisted feature transformation af-
fects performance. View transformation solely relying on estimated depth suffers from inaccurate
localization due to the inherent low accuracy of depth distribution. If we naively replace depth dis-
tribution to radar (1 if radar point exists inside the voxel, 0 else), performance is severely degraded.
This is because image features in perspective view cannot be properly transformed due to the am-
biguity and sparsity of radar. With the proposed RVT, the model can benefit from both dense depth
and sparse range measurement to significantly improve performance (+8.2% NDS, +11.6% mAP)
over depth-only transformation. Moreover, we find consistent performance improvement on LiDAR
input, showing the effectiveness of RVT.

Feature Aggregation. Table 3 shows the comparison between different feature aggregation meth-
ods. BEVFusion (Liu et al., 2022b) fuses multi-modal feature maps in BEV using a single con-
volutional layer, which is not adaptive and has a small receptive field (3 × 3). Simply adding two
additional convolutional layers for fusion, which provides a larger receptive field (7× 7) and bigger
capacity, does not improve the performance much. On the other hand, using only MFA already
outperforms deeper BEVFusion with RVT, showing the effectiveness of the proposed multi-modal
deformable cross attention. We find that the performance gain of RVT is less significant on MFA
than BEVFusion since MFA is already capable of handling spatial misalignment between multi-
modal features without RVT.

4.4 ANALYSIS

Scaling Up Perception Range. In Table 4, we increase the perception range of BEV grids from
51.2m to 102.4m and also increase the evaluation range twice correspondingly (see Appendix for
details). Although CenterPoint (Yin et al., 2021) uses 10 LiDAR sweeps, points become extremely
sparse as the range increases, and thus performance is significantly degraded at far distances. On
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Table 4: Analysis over various perception range. Suffix
-S denotes sparse aggregation and we use 256×704 and
R50 for all camera streams.

Input
Car mAP

FPS
[0,100) [0,30) [30,60) [60,100)

CenterPoint L 54.2 84.3 35.8 4.8 6.3
BEVDepth C 34.1 65.4 13.7 0.2 13.0
CenterPoint R 20.3 36.6 11.6 2.9 30.7

CRN C+R 56.9 82.6 42.6 7.0 11.5
CRN-S C+R 54.0 79.2 39.8 6.2 14.0

Table 5: Analysis of robustness using Car class mAP. Six
view drops denote the single modality is entirely off.

Input Drop # of view drops
0 1 3 6

BEVDepth C C 49.4 41.1 24.2 0
CenterPoint R R 30.6 25.3 14.9 0

BEVFusion C+R
C 63.9 58.5 45.7 14.3
R 59.9 50.9 34.4

CRN C+R
C 68.8

(+4.9)
62.4(+3.9) 48.9(+3.2) 12.8(-1.5)

R 64.3(+4.4) 57.0(+6.1) 43.8(+9.4)

the other hand, CRN outperforms LiDAR especially at farther than 30m range with a much faster
FPS, showing the effectiveness of camera and radar for a long range perception. Moreover, CRN
with sparse aggregation further improves the inference speed while preserving the comparable per-
formance.

Robustness. To systematically analyze the robustness of sensor failure cases, we randomly drop
image and radar inputs in Table 5. For fair comparisons, we use single frame input and fix the
seed to ensure the same views can be dropped over experiments. We also train both fusion methods
with data-level augmentation (Chen et al., 2022). CRN not only outperforms BEVFusion when all
modalities are available but maintains higher mAP on sensor failure cases. Considering that ours
uses radar points at multiple stages (RVT and MFA), each proposed module is trained to be robust to
sparse and ambiguous radar points. Especially when radar input is entirely off, BEVFusion suffers
from a performance drop over BEVDepth (-15.0%), while CRN still keeps the competitive perfor-
mance (-5.6%). This advantage comes from our attention module, which can adaptively choose
modalities to use.
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Figure 5: Inference time analysis of proposed components. All models
are trained without CBGS (Zhu et al., 2019) and latency numbers are
measured with batch size 1 and GPU warm-up.

Inference Time. We analyze
the inference time of each pro-
posed component in Fig. 5. For
all analyses, we assume that the
BEV feature map of the previous
frame T − 1 can be stored and
accessed at the current frame T
since ours does not use tempo-
ral information (e.g., (Li et al.,
2023a; Park et al., 2022)) when
obtaining the BEV feature map.
It means that using a multi-frame
only increases the latency of the
BEV head. Ours requires negli-
gible additional computation for
point encoder and fusion modules, but the performance gain over additional latency is substantial
(+14.9ms for +12.4 NDS in 256x704 and R50 setting). Moreover, ours with small input can out-
perform camera-only with larger input in terms of both latency and performance. We expect that
inference optimization methods (e.g., TensorRT) can further reduce the latency of large model for
long perception range setting to match the real-time.

5 CONCLUSION

We present CRN, a novel camera-radar fusion method for accurate, robust, and efficient 3D per-
ception. Our method effectively overcomes the limitation of each modality and efficiently fuses
multi-modal information to generate contextually rich and spatially accurate BEV features. CRN
is also suitable for long-range perception in real-time and achieves state-of-the-art performance on
nuScenes benchmarks. We hope that CRN will inspire future research on camera-radar fusion for
3D perception.
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Appendix
A OVERVIEW

This supplementary material provides additional details of architecture, qualitative and quantita-
tive experimental results. We describe the notation of MDCA (Sec. B) and implementation details
(Sec. C) for experiments in the main paper. We further provide additional experimental results
(Sec. D) and qualitative results (Sec. E).

B MULTI-MODAL DEFORMABLE CROSS ATTENTION

We adapt the deformable attention (Zhu et al., 2021) and extend it for multi-modal feature maps,
denoted as multi-modal deformable cross attention.

Given an input queries zq and multi-modal feature maps xm = {CI ,CP ∈ RC×H×W }, let q index
a query element and pq ∈ [0, 1]2 be the normalized coordinates of the reference point for each query
element q. The multi-modal deformable cross attention (MDCA) is defined as

MDCA(zq, pq, xm) =

H∑
h

Wh

[
M∑
m

K∑
k

Ahmqk ·W ′
hmxm(ϕm(pq +∆phmqk))

]
. (8)

h,m, k index the attention head H , multiple modalities {CI ,CP }, and the number of sampling
points K. Wh ∈ RC×Cv is the output projection matrix at hth head, and W ′

hm ∈ RCv×C is the
input value projection matrix at hth head and modality m. We use Cv = C/H following multi-
head attention in Transformers (Vaswani et al., 2017). Note that separated input value projection
matrices W ′

hm are used for each modality to make MDCA modality-specific and achieve robust
fusion (e.g., sensor failure case). Both Ahmqk and ∆phmqk are obtained by linear projection over
the input queries zq , and the attention weight Ahmqk is normalized to modalities and sampling
points as

∑M
m

∑K
k Ahmqk = 1. Function ϕm(pq) scales the normalized coordinates pq in case two

modalities have different shapes.

The proposed multi-modal deformable attention module is designed to look over multi-modal feature
maps and multiple sampling points. This can overcome spatial misalignment around reference points
and enable adaptive fusion over modalities.

C IMPLEMENTATION DETAILS

In this section, we provide the experimental settings for main results and ablation studies.

C.1 PRE-PROCESSING AND HYPER-PARAMETERS

For the camera stream, the image backbone yields 4 levels of feature maps of stride 4, 8, 16, and 32,
and we employ SECONDFPN (Yan et al., 2018), which concatenates output feature maps at stride
16. nn.Conv2d and nn.ConvTranspose2d are used for downsampling and upsampling in
SECONDFPN. Given FPN feature maps, the depth distribution network outputs D size depth bins.
We use uniform discretization with a depth range of [2.0, 58.0]m and bin size of 0.5m, resulting in
D = 112.
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Table 6: Training settings for the main results.

configs ResNet-50 ResNet-101
optimizer AdamW
weight decay 1e-4
base lr 2e-4 1e-4
backbone lr 2e-4 5e-5
batch size 64 32
training epochs 24
lr schedule step decay
gradient clip 5

As stated in the main paper, we first project point cloud into an image coordinate system while
preserving its depth and features for radar stream. Note that the projection matrix for radar point
projection corresponds to the image stream. After, we voxelize radar points in the frustum coordinate
system (d, u, v) to have the same size with an image frustum feature. Taking into account the sparsity
and accuracy of radar, we use 8× downsampled pillar canvas and further extract pillar features
using SECOND backbone, which yields 3 levels of feature maps of stride of 1, 2, and 4. Finally,
SECONDFPN is employed to pillar feature maps to output 16× downsampled size in the image
width direction and to have D = 112 in a depth direction.

We use MMCV (Contributors, 2018) multi scale deform attn implementation for de-
formable cross attention in Multi-modal Feature Aggregation (MFA). Specifically, we use 6 layers
of MFA, 8 attention head, and 4 sampling points for MFA in our experiments.

Following standard practices in monocular 3D object detection (Huang et al., 2021; Li et al., 2023b),
we set perception range [−51.2, 51.2]m with a pillar size of (0.2, 0.2)m and a downsampling factor
of 4. As a result, the BEV feature map has 128× 128 size.

C.2 TRAINING SETTINGS

All models are trained for 24 epochs with AdamW (Loshchilov & Hutter, 2019) optimizer in an
end-to-end manner. Image backbones are pre-trained on ImageNet (Deng et al., 2009). We provide
ResNet (He et al., 2016) 50 and 101 training settings used for our main results in Table 6.

For image and radar data augmentation (in perspective view), we use resize, crop, and horizontal
flipping augmentation following standard practices (Huang et al., 2021; Li et al., 2023b). We dis-
card rotation augmentation since the rotation can have an adverse effect when collapsing the height
dimension in radar-assisted view transformation (RVT). Note that the same data augmentation is
applied to the image and radar in the perspective view.

For BEV augmentation, we use random flipping along X and Y axis, global rotation between
[−π/8, π/8], and global scale between [0.95, 1.05]. BEV data augmentation is applied to the BEV
feature map and ground truth boxes correspondingly. Note that ground-truth sampling augmen-
tation (GT-AUG) (Yan et al., 2018) is not used in our experiments, and we leave GT-AUG for a
multi-modal setting (Chen et al., 2022; Zhang et al., 2020) as future work.

C.3 BASELINES FOR ABLATION STUDIES

We conduct three baselines BEVDepth (Li et al., 2023b), CenterPoint (Yin et al., 2021), and BEV-
Fusion (Liu et al., 2022b) for camera-only, point-only, and camera-point fusion detectors. For
BEVDepth, we use the official code1 without class-balanced grouping and sampling (CBGS) (Zhu
et al., 2019) and exponential moving average (EMA). For CenterPoint, we use MMDetection2 im-
plementation using PointPillar (Lang et al., 2019) backbone with (0.2, 0.2, 8)m pillar size. Unlike
the official implementation, CBGS (Zhu et al., 2019) and ground-truth sampling augmentation (Yan
et al., 2018) are discarded for fair comparisons. For BEVFusion, we use BEVDepth for obtaining
the camera BEV feature map and CenterPoint-Pillar for point BEV feature maps and fuse them by
a single 3 × 3 convolution layer following official implementation. Note that our BEVFusion may

1 https://github.com/Megvii-BaseDetection/BEVDepth 2 https://github.com/open-mmlab/mmdetection3d
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yield better performance since our implementation uses BEVDepth for the camera stream, while the
original BEVFusion uses LSS (Philion & Fidler, 2020).

C.4 DETAILS OF LONG RANGE PERCEPTION

To analyze the performance of CRN over long perception ranges, we increase the perception range of
baselines to [−102.4, 102.4]m. For camera streams, we increase the range of depth distribution from
[2.0, 58.0]m to [2.0, 116.0]m, and the number of depth bin becomes D = 224. For point streams,
the range of point cloud and pillars are increased to correspond to the perception range. Note that
we use the same pillar size (0.2, 0.2)m and downsampling factor 4, resulting in a 256 × 256 BEV
feature map for all baselines.

For training and evaluating long range models, we increase the ‘class range’ in nuScenes (Caesar
et al., 2020) twice to filter the ground truth and predictions. Particularly, the class range of car, truck,
bus, trailer, and construction vehicle are 100m, pedestrian, motorcycle, and bicycle are 80m, traffic
cone and barrier are 60m. Moreover, nuScenes filters annotation that does not contain at least single
LiDAR or radar point inside the 3D bounding box for training and evaluation, but we disable this
filtering for thorough analysis. Thus, some moving objects are visible on the image but cannot have
annotations (due to not enough points to label), and some static objects can have annotations but are
not visible on the image (labeled on the previous timestamp but occluded on the current timestamp)
in our setting. Although disabling point filtering may cause inconsistency between input data and
annotation and harm performance during training, all methods are trained and evaluated using the
same setting for a fair comparison. We find that the inference speed of CenterPoint (Yin et al., 2021)
with radar input is much faster than LiDAR input, assuming that the sparsity of radar points can
highly benefit from voxelization and sparse convolution (Yan et al., 2018).

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 DESIGN DECISIONS

We study architecture parameter decisions that affect the performance of CRN to provide insights
on the proposed sensor fusion framework. All experiments are conducted on nuScenes val set.

Temporal Frames. We accumulate multiple BEV feature maps on channel dimension by concate-
nation and aggregate them by a few convolutional layers before feeding them to the BEV backbone.
We find that the time interval of 1 second yields a better performance than 0.5 second proposed
in previous approaches (Li et al., 2022c; 2023b). Compared to temporal stereo methods (Li et al.,
2023a; Park et al., 2022), ours does not require sequential data input for obtaining the BEV feature
map; thus, using an arbitrary number of BEV feature maps does not increase latency. We note that
BEV feature maps on previous timestamps are obtained without gradients during training following
standard practices.

As shown in Table 7, using multiple temporal frames significantly improves mAP, mATE, and
mAVE. Corresponding to results on recent approaches using temporal BEV feature maps (Park
et al., 2022), a larger number of frames consistently yields better performance. However, we ob-
serve the unstable orientation error (mAOE), suggesting room for improvement in utilizing BEV
feature maps, and we leave this as future work. As the performance gain is saturated on four frames,
we decide to use four frames considering computation time and memory during training.

Sparse Aggregation. In Table 8, we ablate the number of Nk feature grids on sparse aggregation
settings. Note that the total number of BEV feature grids is N = 256 × 256 = 65536 in our

Table 7: Ablation of temporal frames.

# Frames NDS mAP mATE mAOE mAVE
1 50.3 42.9 0.519 0.577 0.520
2 54.5 46.0 0.495 0.538 0.350
3 55.7 47.3 0.480 0.507 0.342
4 56.0 48.1 0.474 0.541 0.328

Table 8: Ablation of sparse aggregation.

# Top-K AP ATE AOE AVE FPS
1024 49.8 0.399 0.216 0.371 14.1
2048 52.4 0.382 0.202 0.352 14.0
4096 54.0 0.367 0.194 0.340 14.0
8192 54.6 0.362 0.191 0.352 13.8
All 56.9 0.325 0.158 0.298 11.5
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long-range setting and we report the performance on Car class at 100m perception range. Since the
computational complexity of sparse aggregation O(2Nk + NkK) is linear to sparse input queries
Nk, using a small set of features for MFA significantly reduces the computation of Multi-modal
Deformable Cross Attention (MDCA). More specifically, using 4096 size queries reduce the latency
of MFA by 76.4% (21.01ms to 4.96ms) on 256× 256 size BEV grid. However, as the BEV feature
map becomes sparse and discretized after top-k sampling, the performance is degraded. We find
that the performance drops on True Positive metrics are more significant than AP, assuming that the
classification network can maintain its performance but the regression network suffers from sparsely
spread BEV features to regress objects’ attributes.

D.2 WEATHER AND LIGHTING ANALYSIS

Table 9: Analysis over different lighting and weather conditions using
mAP metric. CenterPoint (Yin et al., 2021) results are from BEVFu-
sion (Liu et al., 2022b), and BEVDepth results are reproduced by us.

Input Sunny Rainy Day Night
CenterPoint (Yin et al., 2021) L 62.9 59.2 62.8 35.4
RCBEV (Zhou et al., 2023) C+R 36.1 38.5 37.1 15.5
BEVDepth (Li et al., 2023b) C 39.0 39.0 39.3 16.8
CRN C+R 51.6(+12.6) 54.3(+15.3) 52.0(+12.7) 28.3(+11.5)

We analyze the performance un-
der different weather and light-
ning conditions in Table 9. Note
that R101 backbone with 512 ×
1408 input is used for BEVDepth
and ours for comparable compar-
isons with LiDAR methods. Sen-
sor noises of LiDAR in rainy con-
ditions or poor illumination of
camera at night make object detection challenging for LiDAR-only or camera-only methods. Thanks
to fusion with radar, ours shows consistent performance improvement of more than 10 mAP over the
camera-only method, demonstrating the effectiveness and robustness of camera and radar sensors in
all weather conditions.

D.3 PER-CLASS ANALYSIS

In Table 10, we compare the performance improvement of camera-radar methods over camera-only
baselines. For fair comparisons, all models are trained with CBGS (Zhu et al., 2019), and we report
256× 704 and R50 models for BEVDepth and CRN. Corresponds to results on CRAFT (Kim et al.,
2023), metallic and frequently appeared on road classes (car, truck, bus, and motorcycle) gain signif-
icant improvements. Different from CRAFT, ours also shows a huge improvement in non-metallic
classes (pedestrian, bicycle, traffic cone, and barrier). Moreover, we find that the performance gain
of using radar on ours is much more significant than other fusion methods. Considering the per-
formance of camera baselines are similar, it demonstrates that the design of fusion methods greatly
affects the performance.

E QUALITATIVE RESULTS

We visualize the 3D detection results of 256×704 and R50 model in Fig. 6. As can be seen, CRN is
capable of detecting objects even at a very far distance under various and complex driving scenarios.
Thanks to radar fusion, objects strongly occluded by other objects or hardly visible by low lighting
are succesfully detected by ours. Moreover, even if some objects do not have radar point returns,
CRN can still detect them by image only. Failure cases of CRN are likely caused when objects are

Table 10: ‘C.V.’, ‘Ped.’, ‘M.C.’, and ‘T.C.’ denote construction vehicle, pedestrian, motorcycle, and traffic
cone, respectively. CenterNet (Zhou et al., 2019), CRAFT-I (Kim et al., 2023), and BEVDepth (Li et al.,
2023b) are camera baselines of CenterFusion (Nabati & Qi, 2021), CRAFT (Kim et al., 2023), and CRN.
CenterPoint and BEVDepth results are from MMDetection3D and their official code.

Method Input Car Truck Bus Trailer C.V. Ped. M.C. Bicycle T.C. Barrier mAP
CenterPoint-P L 83.9 49.5 61.9 34.1 12.3 76.9 44.1 18.0 54.0 59.1 49.4
CenterNet C 48.4 23.1 34.0 13.1 3.5 37.7 24.9 23.4 55.0 45.6 30.6
CenterFusion C+R 52.4(+4.0) 26.5(+3.4) 36.2(+2.2) 15.4(+2.3) 5.5(+2.0) 38.9(+1.2) 30.5(+5.6) 22.9(-0.5) 56.3(+1.3) 47.0(+1.4) 33.2(+2.6)

CRAFT-I C 52.4 25.7 30.0 15.8 5.4 39.3 28.6 29.8 57.5 47.8 33.2
CRAFT C+R 69.6(+17.2) 37.6(+11.9) 47.3(+17.3) 20.1(+4.3) 10.7(+5.3) 46.2(+6.9) 39.5(+10.9) 31.0(+1.2) 57.1(-0.4) 51.1(+3.3) 41.1(+7.9)

BEVDepth C 55.3 25.2 37.8 16.3 7.6 36.1 31.9 28.6 53.6 55.9 34.8
CRN C+R 74.7(+19.4) 42.8(+17.6) 50.3(+12.5) 22.2(+5.9) 12.6(+5.0) 53.9(+17.8) 48.5(+16.6) 41.5(+12.9) 61.7(+8.1) 63.4(+7.5) 47.2(+12.4)
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Figure 6: Qualitative results on nuScenes val set: from left to right, Day, Rainy, and Night scenarios. We
show the failure cases and highlight them with red circles on the bottom row. Green boxes are ground truths,
blue boxes are our prediction results, and black dots are radar points. The perception range is set to 100m ×
100m and best viewed in color with zoom in.

rare classes and do not without radar points (e.g., construction vehicles behind wire mesh or trailers
heavily occluded).
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