
Bridging the Capability Gap: Joint Alignment Tuning for Harmonizing
LLM-based Multi-Agent Systems

Anonymous ACL submission

Abstract001

The advancement of large language models002
(LLMs) has enabled the construction of multi-003
agent systems to solve complex tasks by divid-004
ing responsibilities among specialized agents,005
such as a planning agent for subgoal gener-006
ation and a grounding agent for executing007
tool-use actions. Most existing methods typi-008
cally fine-tune these agents independently, lead-009
ing to capability gaps among them with poor010
coordination. To address this, we propose011
MOAT, a Multi-Agent Joint Alignment Tuning012
framework that improves agents collaboration013
through iterative alignment. MOAT alternates014
between two key stages: (1) Planning Agent015
Alignment, which optimizes the planning agent016
to generate subgoal sequences that better guide017
the grounding agent; and (2) Grounding Agent018
Improving, which fine-tunes the grounding019
agent using diverse subgoal-action pairs gener-020
ated by the agent itself to enhance its general-021
ization capability. Theoretical analysis proves022
that MOAT ensures a non-decreasing and pro-023
gressively convergent training process. Experi-024
ments across six benchmarks demonstrate that025
MOAT outperforms state-of-the-art baselines,026
achieving average improvements of 3.1% on027
held-in tasks and 4.4% on held-out tasks. 1028

1 Introduction029

The rapid advancement of large language models030

(LLMs) has significantly transformed the devel-031

opment of intelligent agents capable of reasoning,032

decision-making, and interacting with complex en-033

vironments (Sumers et al., 2024; Song et al., 2023a;034

Chase, 2022; Song et al., 2023b). Previous work035

typically involves prompting or fine-tuning a single036

foundation model on a specific dataset, training the037

LLMs how to use external search engines for in-038

formation retrieval or call Web APIs for tasks like039

travel planning (Qin et al., 2024; Xie et al., 2024).040

Recently, to enable LLM-based agents to handle041

1Code is available on Anonymous GitHub.

Planning

Agent
User Task

Subgoals Actions
Answer

The Capability Gap Between Agents

(a) Previous Independent Training Method

The planning
agent’s output

distribution

The grounding
agent’s input
distribution

The Multi-Agent Framework

Dataset

Dataset

SFT

SFT

(b) Our Joint Alignment Tuning Method

The planning
agent’s output is

aligned with
grounding’s input

The grounding
agent’s input is

adapted to
planning’s output

Planning Alignment

Grounding Improving

Grounding

Agent

Figure 1: Comparison between (a) previous indepen-
dent training method and (b) our joint alignment tuning
method MOAT. The MOAT performs iterative joint tun-
ing to align agent capabilities and improve coordination.

more real-world and multi-step tasks, more and 042

more research has increasingly focused on multi- 043

agent systems (Yin et al., 2024a; Qiao et al.; Shen 044

et al., 2024; Wang et al., 2024), which aim to syn- 045

ergize functionality-specialized agents. Figure 1 il- 046

lustrates a commonly-used pipeline, where a multi- 047

agent system typically includes a planning agent 048

that decomposes the task into subgoals, followed 049

by a grounding agent that executes these subgoals 050

by invoking appropriate tools, ultimately producing 051

the final solution. 052

Despite the progress made by existing multi- 053

agent systems, effectively aligning different agents 054

toward holistic performance remains an active re- 055

search challenge. Most existing methods construct 056

specific training data for each agent and train each 057

agent independently. While this decomposition can 058

enhance overall performance, it does not guaran- 059

tee effective collaboration among agents. As illus- 060

trated in Figure 1(a), independently trained agents 061

often exhibit varying levels of proficiency, leading 062

to capability mismatches. For example, a planning 063

agent might generate high-level subgoals that are 064

difficult for a weaker grounding agent to under- 065

1

https://anonymous.4open.science/r/multi-agent-alignment-46C0

stand and execute. Conversely, a strong grounding066

agent might struggle with subgoals generated by a067

weaker planning agent, leading to errors or ineffi-068

cient task execution. Without explicit mechanisms069

for adapting to each other’s behaviors, these agents070

struggle to collaborate effectively, resulting in mis-071

aligned interactions and coordination failures.072

To address the above challenges, we propose073

MOAT, a Multi-agent Joint Alignment Tuning074

framework that iteratively alternates between two075

key stages to achieve alignment in a multi-agent076

system: (i) Planning Agent Alignment, and (ii)077

Grounding Agent Improving. Unlike prior works078

that train each agent independently, MOAT per-079

forms multi-agent joint alignment tuning by iter-080

atively and coordinately optimizing the planning081

and grounding agents.082

Specifically, in the Planning Agent Alignment083

stage, MOAT optimizes the planning agent to gener-084

ate subgoals that better guide the grounding agent085

in producing correct tool-calling actions. Given086

an input task, we first sample multiple candidate087

sequences of subgoals from the planning agent.088

For each subgoal sequence, we then evaluate its089

effectiveness by measuring the perplexity of the090

grounding agent in generating correct tool calls091

conditioned on each sequence. Perplexity reflects092

how well the grounding agent can follow a subgoal,093

where lower perplexity indicates higher suitability.094

Using this as a reward signal, we apply the direct095

preference optimization (DPO) algorithm (Rafailov096

et al., 2024) to train the planning agent to align with097

the grounding agent’s preferences. In the Ground-098

ing Agent Improving stage, we aim to enhance the099

grounding agent’s ability to interpret and act upon100

subgoals produced by the planning agent. Specif-101

ically, we reuse the subgoal sequences from plan-102

ning agent in the first stage as training data, expos-103

ing the grounding agent to realistic settings. For104

each input task, we use the ubgoal–action pairs to105

train the grounding agent via standard language106

modeling loss. Comparing with relying on ground107

truth or manually curated subgoal inputs, this al-108

lows the grounding agent to adapt to the distribu-109

tion of subgoals it will receive from the planning110

agent at practical inference time, thereby improv-111

ing its robustness and execution accuracy.112

Through theoretical analysis, we demonstrate113

that the holistic performance of the multi-agent114

system is improved progressively by alternating115

the above two stages. We apply MOAT to several116

open-source model families (Llama, Mistral, and117

Qwen) and evaluate it on three types of tasks, i.e., : 118

Web, Math, and QA, across six benchmarks. The 119

results show that MOAT consistently outperforms 120

existing baselines, on both in-distribution training 121

sets and out-of-distribution test sets. These validate 122

the effectiveness of our joint alignment framework 123

and demonstrate its strong generalization ability. 124

Our main contributions are as follows: (i) We in- 125

troduce MOAT, a Multi-Agent Joint Alignment 126

Tuning framework to jointly optimize intercon- 127

nected agents, bridging the capability gap between 128

them; (ii) We provide formal analysis proving 129

that the alternating optimization of planning and 130

grounding agents guarantees non-decreasing per- 131

formance and convergence; and (iii) Experiments 132

on both held-in and held-out settings across six 133

benchmarks demonstrate that MOAT achieves the 134

best performance with 4.4% improvement. 135

2 Related work 136

LLM-based multi-agent system. Large lan- 137

guage models (LLMs) have enabled the develop- 138

ment of autonomous agents capable of reasoning, 139

planning, tool use, and memory retention to solve 140

specific goals through self-directed interaction and 141

decision-making (Liu et al., 2024; Madaan et al., 142

2024). These agents have demonstrated strong 143

capabilities across various complex tasks, such 144

as web navigation (Yao et al., 2022; Zhou et al., 145

2023), task planning (Zhang et al., 2024b), and 146

tool learning (Shi et al., 2024). While single-agent 147

frameworks like AutoGPT (Yang et al., 2023), XA- 148

gent (Team, 2023), and LangChain (Chase, 2022) 149

address such tasks by equipping a single LLM 150

agent with external tools and functions, recent 151

work has explored multi-agent systems that im- 152

prove problem-solving efficiency through collabo- 153

rative interaction among multiple agents. For ex- 154

ample, CAMEL (Li et al., 2023), AutoGen (Wu 155

et al., 2024), MetaGPT (Hong et al., 2024), and 156

ChatEval (Chan et al., 2024) employ role-playing 157

and structured dialogues to improve task-solving ef- 158

ficiency. However, these systems typically rely on 159

closed-source models, limiting their transparency 160

and practical deployment in privacy scenarios. 161

Agent tuning. Agent tuning improves a model’s 162

ability to perform downstream tasks by fine-tuning 163

open-source LLMs using trajectories distilled from 164

stronger models (Song et al., 2024; Chen et al., 165

2023) For example, approaches such as AgentTun- 166

ing (Zeng et al., 2024), and AgentOhana (Zhang 167

2

et al., 2024a) fine-tune smaller models on datasets168

generated by GPT-series LLMs. While these im-169

prove instruction following and reasoning, single-170

agent tuning remains limited for complex tasks171

requiring long-term planning and execution (Liu172

et al., 2024). To overcome these limitations,173

frameworks like Lumos (Yin et al., 2024a) and174

α-UMi (Shen et al., 2024) propose multi-agent175

training methods that enable collaboration across176

functionality-specialized agents. More recent work177

like AutoACT (Qiao et al.) further advances this di-178

rection by introducing a self-training process where179

each agent is trained on a dataset generated by it-180

self. However, existing methods often train agents181

independently, lacking joint optimization to ensure182

effective coordination. In contrast, our work per-183

forms iterative joint tuning to align agents’ capabil-184

ities for improved cooperation.185

3 Task Preliminary186

A multi-agent system typically consists of three187

components: (1) a planning agent that breaks down188

tasks into subgoals, (2) a grounding agent that con-189

verts subgoals into executable actions, and (3) an190

execution module that carries out the actions to191

get the final answer. Given a complex task x, the192

planning agent, denoted as πp is tasked to decom-193

pose it to a sequence of subgoals, formulated as194

s = πp(x) = {si | i ∈ [|s|]}. Each si represents a195

subgoal like ”Calculate the total number of196

units in the entire building”, contributing197

to solving the overall task x. Next, the grounding198

agent, denoted as πg, takes the task x, the set of199

available tools I as well as the decomposed sub-200

goals s as input to generates a sequence of tool201

calls a = πg(x, I, s) = {ai | i ∈ [|a|]}. Each202

ai ∈ I represents an individual tool invocation203

required to complete the subgoal si, such as ”R1204

= Calculator(15 * 8)”. Finally, the execution205

module is responsible for executing the generated206

tool-call sequence a to accomplish the user task x.207

4 Multi-agent Joint Alignment Tuning208

The proposed multi-agent joint alignment tun-209

ing (MOAT framework aims to iteratively align210

the planning and grounding agents, enhancing the211

overall performance and coordination of the multi-212

agent system. As illustrated in Figure 2, MOAT213

alternates between two stages: (1) Planning Agent214

Alignment, where the planning agent explores di-215

verse subgoal sequences to guide the grounding216

agent more effectively, and (2) Grounding Agent 217

Improving, we reuse the generated sub-goal se- 218

quences, improving the grounding agent to bet- 219

ter understand them and generate correct actions. 220

Through this iterative process, both agents progres- 221

sively adapt to each other, resulting in more coher- 222

ent subgoal generation, more accurate tool calling, 223

and holistic improvement. Before applying our 224

joint alignment strategy, we perform initial tuning 225

to equip both agents with basic task-solving capa- 226

bilities, following previous work (Yuan et al., 2024; 227

Zhu et al., 2024; Su et al., 2025). 228

4.1 Initial Tuning 229

To equip the model with the basic skills to under- 230

stand user instructions and solve tasks, we first 231

conduct an initial tuning using the SFT dataset col- 232

lected in previous work (Yin et al., 2024a). Specifi- 233

cally, the planning agent is trained to generate the 234

correct subgoals s for an input task x, which is 235

formulated as: 236

Lp = −
∑|s|

i=1
logPπp(si | s<i, x), (1) 237

The grounding agent is optimized to ground the 238

subgoals s to the corresponding tool-calling actions 239

a, formulated as: 240

Lg = −
∑|a|

i=1
logPπg(ai | a<i;x, I, s), (2) 241

where I is the list of external tools. The final an- 242

swer is obtained by executing the tool-callings a. 243

4.2 Planning Agent Alignment 244

LLMs encode strong reasoning abilities in their pa- 245

rameter space, enabling them to generate diverse 246

and meaningful subgoal sequences through sam- 247

pling (Hou et al., 2025). However, not all sampled 248

subgoal sequences are equally effective—some bet- 249

ter guide the grounding agent to generate correct 250

tool-use actions. To exploit this potential, we sam- 251

ple multiple subgoal candidates and optimize the 252

planning agent to prefer those that lead to better 253

grounding outcomes. 254

Given a task x, we sample K candidate subgoal 255

sequences from the planning agent as s = πp(x) 256

and obtain a set S = {sj | j ∈ [|K|]}. For each 257

s ∈ S, we calculate its perplexity (PPL) with re- 258

spect to the grounding agent, where a lower per- 259

plexity indicates that the subgoal sequence is more 260

helpful to the grounding agent, facilitating the gen- 261

eration of correct responses. Therefore, the PPL 262

3

Planning
Agent

Grounding
Agent

Ground-truth

Task
Input

Critic
Model

1. Sample K times

6. Training based
on next token

prediction

2. Generate actions

5. Correct actions

Stage 2：Grounding
Agent Improving

Stage 1: Planning Agent Alignment

3. Compute PPL-based rewards

Subgoal sequences Action sequences

4. Training based DPO loss

Corrected action sequences

Figure 2: The proposed MOAT framework iteratively alternates between two stages: (1) Planning Agent Alignment:
The planning agent samples K candidate subgoal sequences, and the grounding agent generates corresponding
tool-calling actions. Subgoal sequences are ranked by PPL, and the planning agent is optimized via DPO. (2)
Grounding Agent Improving: The subgoal-action pairs generated are corrected using a critic model, and the
grounding agent is fine-tuned on the corrected dataset to enhance generalization.

can directly reflect how s is useful to the end-to-end263

task performance, which is formulated as follows:264

PPLπg (a | x, I, s) :=

exp
{
− 1

|a|

|a|∑
i=1

logPπg (s | a<i, x, I, s)
}
.

265

To align the planning agent with holistic task-266

solving performance, we train the planning agent267

to generate subgoal sequences with lower PPL, as268

desirable behaviors, while penalizing undesirable269

ones, i.e., subgoal sequences with high PPL. Specif-270

ically, we adopt the Direct Preference Optimization271

(DPO) algorithm (Rafailov et al., 2024), which al-272

lows us to align the model by learning from pref-273

erence pairs. Specifically, we construct preference274

pairs (sw, sl) from the sampled candidates in S,275

where sw yields the lowest perplexity (strongest276

grounding guidance) and sl the highest. The corre-277

sponding loss function is formulated as follows:278

LDPO = −E(t,(sw,sl))∼D[
log σ

(
β log

πp(sw|x)
πref(sw|x)

− β log
πp(sl|x)
πref(sl|x)

)]
,

279

where πref represents the reference model,280

which is initialized as the original πp before op-281

timization. And σ denotes the sigmoid function, β282

is a hyperparameter.283

4.3 Grounding Agent Improving 284

This stage aims to enhance the generalization ca- 285

pability of the grounding agent and improve its 286

adaptability to the diverse subgoal sequences gen- 287

erated by the planning agent. To achieve this, we 288

reuse the diverse subgoal sequences sampled from 289

the first stage as inputs, and prompt the grounding 290

agent to generate outputs to fine-tune itself. Specif- 291

ically, given a task x, for each subgoal sequence 292

s from the sampled set S = {sj | j ∈ [|K|]}, the 293

grounding agent πg generates the corresponding 294

tool-calling actions as aj = πg(x, I, sj). 295

However, since these action sequences are 296

model-generated, they may contain errors. Directly 297

using such noisy data for fine-tuning can lead to 298

performance degradation or even training collapse, 299

as highlighted in prior work (Dohmatob et al., 2024; 300

Shumailov et al., 2024). To address this issue, we 301

introduce a validation mechanism that filters out 302

incorrect outputs before using them for training. 303

In particular, we employ a more powerful LLM 304

as a critic model to evaluate whether each gener- 305

ated sequence a,successfully solves the task , given 306

the input (x, I, s). If the critic determines that the 307

sequence fails to complete the task, it provides a 308

corrected version â by referencing the ground-truth 309

outcome ã. This filtering and correction process 310

4

Algorithm 1: Dataset Construction

1 Initialize SFT dataset Dg ← ∅;
2 for each task x and s ∈ S do
3 Generate a← πg(x, I, s);
4 if Critic(⟨x, I, s⟩,a, ã) = False then
5 â = Critic(⟨x, I, s⟩,a, ã);
6 Dg ← Dg ∪ {(x, I, s), â};
7 end
8 else
9 Dg ← Dg ∪ {(x, I, s),a};

10 end
11 end
12 return SFT dataset Dg;

ensures that only reliable supervision signals are311

used during grounding agent training. The full pro-312

cedure is summarized in Algorithm 1, and the critic313

prompting strategy is detailed in Appendix A.3.314

The overall MOAT alternates between the first315

and second stages described above. During this316

process, the planning agent gradually adapts to the317

grounding agent by generating subgoal sequences318

that better align with its inference process; the319

grounding agent, in turns, improves its general-320

ization capability to understand the subgoals of the321

planning agent. This formulates a loop for a con-322

sistent improvement. We also provide a detailed323

pseudo algorithm in Algorithm 2 to further clarify324

our joint training process.325

5 Theoretical analysis326

In our framework, the planning agent and ground-327

ing agent are optimized iteratively. In this section,328

we provide a theoretical analysis to demonstrate329

that each optimization step leads to non-decreasing330

improvements and ultimately ensures the conver-331

gence. We start by defining the expected perfor-332

mance of the overall multi-agent system as:333

E[R] = Es∼πp(x)

[
Ea∼πg(s)[R(s,a)]

]
. (3)334

Here the reward function R(s,a) evaluate the qual-335

ity of tool-calling action a given sub-goal sequence336

s. And x indicates the input task. Below, we can337

state the following two lemmas.338

Lemma 5.1. Optimizing the planning agent while339

keeping the grounding agent fixed leads to a non-340

decreasing expected reward.341

The planning agent is optimized using DPO,342

with PPL as the reward signal. The optimization343

objective can be formalized as: 344

maxπp Ea∼πp(x) [−PPL(a;πg)] . (4) 345

Since PPL is negatively correlated with the true 346

reward R(s,a), this is equivalent to maximizing 347

the expected reward: 348

maxπp Es∼πp(x) [R(s,a)] . (5) 349

The DPO algorithm guarantees that updates to 350

πp lead to non-decreasing expected rewards when 351

the grounding agent is fixed. Thus, we have: 352

E[R](t+1) ≥ E[R](t). (6) 353

This inequality holds because the optimization pro- 354

cess aligns the planning agent with sub-goal se- 355

quences that facilitate better performance in the 356

grounding agent. 357

Lemma 5.2. Optimizing the grounding agent while 358

keeping the planning agent fixed leads to a non- 359

decreasing expected reward. 360

The grounding agent is optimized through super- 361

vised fine-tuning using pairs (s,a) generated by 362

the planning agent. The corresponding optimiza- 363

tion objective is: 364

minπg E(s,a)∼S [L(πg(a | s))] , (7) 365

where L denotes the loss function (e.g., cross- 366

entropy loss). Minimizing this loss is equivalent to 367

maximizing the log-likelihood of the correct tool 368

invocation sequences: 369

maxπg E(s,a)∼S [log πg(a|s)] . (8) 370

Since improved log-likelihood corresponds to 371

reduced PPL and, consequently, higher re- 372

ward (Singh et al., 2023), it follows that: 373

E[R](t+1) ≥ E[R](t). (9) 374

Hence, optimizing the grounding agent improves 375

or maintains the expected reward when the plan- 376

ning agent is fixed. 377

From Lemma 5.1 and Lemma 5.2, we establish 378

that both optimization steps ensure non-decreasing 379

expected rewards, i.e., E[R](t+1) ≥ E[R](t). Ad- 380

ditionally, the expected reward E[R] is upper- 381

bounded due to the following reasons: (i) The re- 382

ward function R(s,a) is bounded in practical sce- 383

narios; and (ii) The PPL has a lower bound. Based 384

on the Monotone Convergence Theorem (Bibby, 385

1974), the non-decreasing and upper-bounded na- 386

ture of {E[R](t)}∞t=1 ensures this sequence con- 387

verges to a finite limit. Thus, we derive the conver- 388

gence of overall training process. 389

5

Task Skill Dim. #Inst. Metric

Held-in Tasks

StrategyQA (Yang et al., 2018) QA 300 Exact Match
GSM8K (Cobbe et al., 2021) Math 1300 Accuracy
Mind2Web (Deng et al., 2023) Web 200 Step Success Rate

Held-out Tasks

HotpotQA (Geva et al., 2021) QA 100 Exact Match
SVAMP (Patel et al., 2021) Math 1000 Accuracy
WebShop (Yao et al., 2022) Web 500 Avg. Reward

Table 1: The held-in and held-out tasks used to evaluate
the agent capabilities of different LLMs.

6 Experimental Setup390

6.1 Benchmarks and Evaluation Metrics391

Following prior work (Song et al., 2024; Chen et al.,392

2024), we evaluate MOAT under both held-in and393

held-out settings to evaluate its performance and394

generalization across diverse task types. We con-395

sider a wide range of tasks, including mathematical396

reasoning, web interaction, and question answering.397

As listed in Table 1, the held-in setting includes398

three tasks that are used during training: GSM8K,399

StrategyQA, and Mind2Web; the held-out setting400

evaluates generalization on unseen tasks: SVAMP,401

WebShop, and HotpotQA. Evaluation metrics for402

each task are also reported in Table 1. Following403

the recipe of baselins (Yin et al., 2024a), we define404

a set of action instructions (i.e., tool set I), cover-405

ing common actions required for each task. Details406

are provided in Appendix A.4.407

6.2 Baselines408

We compare our MOAT with widely-used agent409

tuning methods, including: (i) Agent Tun-410

ing (Zeng et al., 2024), a multi-task tuning ap-411

proach training LLMs on synthetic datasets com-412

prising six tasks; (ii) Agent-FLAN (Chen et al.,413

2024) employs a modular architecture that trains414

distinct single-agent capabilities through special-415

ized parameter groups; and (iii) Agent Lumos (Yin416

et al., 2024a), a multi-agent training framework417

that separately fine-tunes models on datasets to ob-418

tain specialized agents. Furthermore, we included419

GPT-3.5-Turbo and GPT-4 (Achiam et al., 2023)420

as strong single-agent baselines for comparison.421

6.3 Implementation Details422

To ensure a fair comparison with prior work,423

we adopt Llama2-7b-hf as the backbone LLM424

for both MOAT and baseline methods, following425

the official implementation of previous methods426

(Zeng et al., 2024; Yin et al., 2024a). To com-427

prehensively evaluate our method across different428

LLMs, we additionally apply MOAT to two differ- 429

ent model series with varying parameter scales: 430

Mistral-7B-Instruct-v0.2 and Qwen2.5-14B. 431

During the alignment process, we set the num- 432

ber of sampled subgoal sequences K to 15 and 433

the number of training iterations to 2. The sam- 434

pling temperature is set to 1.0 to encourage di- 435

versity in the generated subgoals. We employ 436

DeepSeek-R1-Distill-Qwen-32B as the critic 437

model (denoted as DS-Qwen-32B) for verifying and 438

correcting the generated tool-use action sequences. 439

We further analyze the impact of using different 440

critic models in Section 7.4. More implementation 441

details are provided in Appendix A.1. 442

7 Experiment results 443

7.1 Overall Performance 444

Held-in Tasks. Table 2 presents the evaluation 445

results. Compared with single-agent systems and 446

independently trained multi-agent baselines, the 447

MOAT achieves superior performance across three 448

held-in tasks across different base models. The 449

MOAT with Llama-7B demonstrates an average 450

improvement of 15.6% compared to AgentTun- 451

ing with Llama-13B. These improvements validate 452

the effectiveness of our joint training framework, 453

which tightly interconnects specialized agents to 454

enhance overall task-solving performance. 455

Held-out Tasks. We further investigate the general- 456

izability of our method in solving unseen tasks. As 457

illustrated in Table 2, our method achieves the high- 458

est performance compared to open-source base- 459

lines. For example, the MOAT with Mistral-7B 460

outperforms Lumos with an average performance 461

improvement of 4.4%. An explanation for this 462

improvement is that through iterative alignment 463

in MOAT, the subgoals generated by the plan- 464

ning model align better with the preferences of 465

the grounding models, and the grounding models 466

also achieve a more accurate understanding of the 467

generated subgoals. This mutual understanding en- 468

hances the generalizability of the overall system 469

when facing unseen tasks. 470

Comparison with Closed-source Agents. Al- 471

though our method is trained on 7B models like 472

Llama-7B, it achieves about a 50% performance 473

improvement over GPT-4 on the Mind2Web task. 474

This further validates the superiority of the MOAT 475

in synergizing smaller open-source models to 476

achieve competitive performance. 477

6

Method Base Model Held-in Tasks Held-out Tasks

GSK8K Mind2Web StrategyQA Avg. SVAMP WebShop HotpotQA Avg.

API-Based Agents

GPT-4 - 87.0 22.6 71.0 60.2 90.5 58.6 52.1 67.1
GPT-3.5-Turbo - 65.0 21.7 58.0 48.2 81.0 62.4 24.0 55.8

Llama Model Agents

Llama-2-7B-Chat Llama-2-7B 15.0 11.9 5.0 10.6 20.7 15.8 3.0 13.2
Agent Tuning Llama-2-7B 14.0 10.6 49.0 24.5 35.3 59.8 10.0 35.0
Agent Tuning Llama-2-13B 22.3 11.1 52.0 28.5 56.9 65.0 24.0 48.6
Agent-FLAN Llama-2-7B 28.5 16.9 48.0 31.1 39.2 55.9 12.0 35.7
Agent Lumos Llama-2-7B 46.6 29.9 46.7 41.1 65.5 58.3 25.0 49.6

MOAT Llama-2-7B 47.4 33.0 52.0 44.1 69.2 60.6 27.0 52.3

Mistral Model Agents

Agent Lumos Mistral-7B-v0.2 46.4 33.8 49.3 43.2 61.9 58.7 27.0 49.2

MOAT Mistral-7B-v0.2 48.2 34.7 56.0 46.3 73.7 59.0 28.0 53.6

Qwen Model Agents

Agent Lumos Qwen2.5-14B 81.7 31.8 49.3 54.3 85.5 64.7 27.0 59.1

MOAT Qwen2.5-14B 82.4 32.6 55.3 56.8 87.4 65.8 28.0 60.4

Table 2: Evaluation results of MOAT and baselines on both held-in and held-out tasks. The best results in each
group are highlighted in bold.

Method Mind2Web WebShop Avg. ∆

MOAT 35.43 60.63 48.03
-w/o stage 1 31.94↓3.49 58.76↓1.87 45.35↓2.68
-w/o stage 2 34.72↓0.71 60.29↓0.34 47.51 ↓0.52
-w/o critic 33.88↓1.55 59.79↓0.84 46.84 ↓1.19

Table 3: Ablation study on two web datasets.

GSK8K StrategyQA Mind2Web
30

35

40

45

50

55

60 Metric

SFT Baseline
K=5
K=10
K=15

Figure 3: Results of MOAT on three held-in tasks under
different numbers of sampled subgoal sequences.

7.2 Ablation Study478

To further analyze the contribution of each compo-479

nent in MOAT, we conduct an ablation study by re-480

moving individual components, including planning481

alignment (w/o stage 1), grounding improvement482

(w/o stage 2), and the critic model (w/o critic), re-483

spectively. As shown in Table 3, all variants exhibit484

substantial performance degradation, confirming485

the effectiveness of each component in our joint486

alignment framework. Besides, we highlight two487

key points: (1) the largest performance drop oc-488

curs in w/o stage 1, highlighting the critical role489

of aligning the planning agent to generate coherent490

subgoals; and (2) removing the critic model (w/o 491

critic) results in the second-largest performance 492

drop, even lower than that caused by removing the 493

grounding improvement (w/o stage 2). This sug- 494

gests that, without external feedback from the critic 495

model, the system may suffer from significant neg- 496

ative updates, thereby validating the importance 497

and rationality of incorporating a critic model. 498

7.3 Hyperparameter Analysis 499

Analysis of Different Sample Numbers. In our 500

main experiments, we set the number of sampled 501

responses K to 15. To explore the impact of the 502

sampling number K on model performance, we 503

further vary K from 5 to 15 during the training of 504

Mistral-7B at 2th iteration. As shown in Figure 505

3, we observe a positive correlation between the 506

sampling number and the overall performance. We 507

also identify a performance drop on the GSM8K 508

and Mind2Web benchmarks when K=5. An expla- 509

nation is that a smaller number of samples may 510

fail to include high-quality subgoal sequences that 511

align well with the grounding agent. In such cases, 512

even the subgoal sequence with the highest reward 513

may still be suboptimal or incorrect, thus negatively 514

affecting training performance. 515

Analysis of Iteration Count. We further inves- 516

tigate how the iteration count impacts model per- 517

formance using Mistral-7B with set K to 15. As 518

shown in Figure 4, the model’s performance im- 519

proves gradually with the increasing number of 520

iterations. However, by the third iteration, the per- 521

7

SFT Iteration 1 Iteration 2 Iteration 3
0.3

0.4

0.5

0.6 Metric

GSK8K
StrategyQA
Mind2Web

Figure 4: Performance trends of MOAT (K=15) on held-
in tasks as iterations increase.

Model Mind2Web WebShop Avg.

MOAT w/ DS-Qwen-32B 34.03 60.78 47.41
MOAT w/ GPT-4o 35.28↑3.67% 60.57↓0.03% 47.93↑1.08%
MOAT w/ DS-Qwen-14B 33.52↓1.50% 60.63↓0.02% 47.08↓.07%

Table 4: Model Performance on Mind2Web and Web-
Shop benchmarks using different critic models.

formance gains become marginal. We suspect this522

is because, after several iterations, the planning and523

grounding agents gradually converge and reach a524

performance equilibrium, as discussed in Section 5.525

7.4 Impact of Different Critic Model.526

We use DeepSeek-R1-Distill-Qwen-32B as the527

default critic model in our framework to validate528

and refine the tool-use action sequences generated529

by the grounding agent. To investigate the effect530

of the critic model’s capability, we conduct a com-531

parative study using a stronger critic (GPT-4o) and532

a weaker one (DeepSeek-R1-Distill-Qwen-14B).533

As shown in Table 4, the results demonstrate an534

upward trend in task performance as the ability535

of the critic model increases. However, we also536

observe that using a smaller, open-source model537

like Qwen-14B still yields competitive results, sur-538

passing existing baselines by a notable margin. We539

attribute this to the relatively simple nature of the540

critic’s task, i.e., verifying whether the predicted541

action sequence achieves the same effect as the542

ground-truth. Since both the prediction and ref-543

erence are provided to the context of the critic544

model, this task requires less complex reasoning545

with simplified difficulty. Therefore, while stronger546

critic models can further enhance performance, our547

framework remains robust and effective even when548

using smaller, fully open-source critics.549

7.5 Training Iteration Control Analysis550

A potential concern is that the observed perfor-551

mance gains from our iterative training strategy552

may stem merely from additional training epochs,553

rather than from the collaborative optimization of554

Initial Iteration 1 Iteration 2 Iteration 3
54

56

58

60

62 Metric

MOAT
Lumos Agent

Figure 5: Performance comparison on WebShop be-
tween MOAT and Lumos under equal training time.

planning and grounding agents. To investigate this, 555

we compare our approach with a baseline trained 556

independently for the same total number of epochs. 557

Starting from a model trained for 2 epochs, we 558

apply our iterative method for 1, 2, and 3 itera- 559

tions, equivalent to 3, 4, and 5 total epochs. We 560

compare with the Lumos Agent baseline trained 561

independently for the same number of epochs with- 562

out inter-agent interaction. As shown in Figure 5, 563

the baseline struggles to consistently improve and 564

even suffers from degradation due to overfitting. 565

In contrast, our method shows consistent improve- 566

ments, indicating that the gains stem from iterative 567

co-training rather than extended training iterations. 568

7.6 Case Study 569

We manually analyze the outputs of both the plan- 570

ning and grounding agents after training in MOAT. 571

The results show that our MOAT effectively en- 572

hances the specialized expertise of both agents, as 573

well as their adaptability. Concrete examples and 574

detailed analysis are provided in Appendix A.2. 575

8 Conclusion 576

In this work, we present MOAT, a novel Joint 577

Alignment Tuning framework designed to har- 578

monize the collaboration between planning and 579

grounding agents in LLM-based multi-agent sys- 580

tems. By iteratively optimizing the planning agent 581

to generate subgoals that align with the ground- 582

ing agent’s capabilities and enhancing the ground- 583

ing agent’s adaptability to diverse subgoal se- 584

quences, MOAT effectively bridges the capability 585

gap caused by independent training. Both theo- 586

retical analysis and extensive experimental results 587

demonstrate the superiority of MOAT. We suggest 588

that future work can explore the integration of vi- 589

sual models to expand the capability boundary of 590

agents, as well as integrate more specialized agents, 591

such as tool retrieval and reflection modules, to ex- 592

pand the versatility and efficiency of the system. 593

8

Limitations594

Our framework is currently developed and595

evaluated exclusively on text-based scenarios,596

without exploring multimodal learning settings.597

While modern open-source language models (e.g.,598

LLaVA, Qwen-VL) have demonstrated emerging599

capabilities in processing multimodal inputs, our600

current architecture lacks explicit mechanisms for601

cross-modal alignment during collaborative train-602

ing. In future work, we plan to incorporate multi-603

modal information into our framework.604

Ethics Statement605

This research strictly adheres to the ethical princi-606

ples outlined in the ACM Code of Ethics, with rig-607

orous implementation of transparency and account-608

ability measures. All datasets, tools, and language609

models (including Llama-2, Mistral and Qwen) are610

sourced from publicly available platforms under611

compliant licenses, ensuring ethical alignment and612

reproducibility. The complete code and evaluation613

protocols will be open-sourced upon publication.614

References615

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama616
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,617
Diogo Almeida, Janko Altenschmidt, Sam Altman,618
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.619
arXiv preprint arXiv:2303.08774.620

John Bibby. 1974. Axiomatisations of the average and a621
further generalisation of monotonic sequences. Glas-622
gow Mathematical Journal.623

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,624
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu.625
2024. Chateval: Towards better LLM-based eval-626
uators through multi-agent debate. In The Twelfth627
International Conference on Learning Representa-628
tions.629

Harrison Chase. 2022. LangChain.630

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,631
Karthik Narasimhan, and Shunyu Yao. 2023. Fireact:632
Toward language agent fine-tuning. arXiv preprint633
arXiv:2310.05915.634

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming635
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-636
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,637
Greg Brockman, et al. 2021. Evaluating large638
language models trained on code. arXiv preprint639
arXiv:2107.03374.640

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei641
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and642

Feng Zhao. 2024. Agent-FLAN: Designing data and 643
methods of effective agent tuning for large language 644
models. In Findings of the Association for Computa- 645
tional Linguistics: ACL 2024, pages 9354–9366. 646

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 647
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 648
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 649
Nakano, Christopher Hesse, and John Schulman. 650
2021. Training verifiers to solve math word prob- 651
lems. arXiv preprint arXiv:2110.14168. 652

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam 653
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2023. 654
Mind2web: Towards a generalist agent for the web. 655
Advances in Neural Information Processing Systems, 656
36:28091–28114. 657

Elvis Dohmatob, Yunzhen Feng, and Julia Kempe. 2024. 658
Model collapse demystified: The case of regression. 659
In The Thirty-eighth Annual Conference on Neural 660
Information Processing Systems. 661

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, 662
Dan Roth, and Jonathan Berant. 2021. Did Aristo- 663
tle Use a Laptop? A Question Answering Bench- 664
mark with Implicit Reasoning Strategies. Transac- 665
tions of the Association for Computational Linguis- 666
tics (TACL). 667

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu 668
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, 669
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. 670
2024. Metagpt: Meta programming for a multi-agent 671
collaborative framework. In The Twelfth Interna- 672
tional Conference on Learning Representations. 673

Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang 674
Li, Zijun Yao, Juanzi Li, Jie Tang, and Yuxiao Dong. 675
2025. Advancing language model reasoning through 676
reinforcement learning and inference scaling. arXiv 677
preprint arXiv:2501.11651. 678

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick 679
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and 680
Wen-tau Yih. 2020. Dense passage retrieval for open- 681
domain question answering. In Proceedings of the 682
2020 Conference on Empirical Methods in Natural 683
Language Processing (EMNLP), pages 6769–6781, 684
Online. Association for Computational Linguistics. 685

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii 686
Khizbullin, and Bernard Ghanem. 2023. Camel: 687
Communicative agents for" mind" exploration of 688
large language model society. Advances in Neural 689
Information Processing Systems, 36:51991–52008. 690

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu 691
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen 692
Men, Kejuan Yang, et al. 2024. Agentbench: Eval- 693
uating llms as agents. In The Twelfth International 694
Conference on Learning Representations. 695

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 696
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 697
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 698

9

https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://github.com/langchain-ai/langchain
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550

et al. 2024. Self-refine: Iterative refinement with699
self-feedback. Advances in Neural Information Pro-700
cessing Systems, 36.701

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.702
2021. Are nlp models really able to solve simple703
math word problems? In Proceedings of the 2021704
Conference of the North American Chapter of the705
Association for Computational Linguistics: Human706
Language Technologies, pages 2080–2094.707

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,708
Wangchunshu Zhou, Yuchen Eleanor Jiang, Huajun709
Chen, et al. Autoact: Automatic agent learning from710
scratch for qa via self-planning. In ICLR 2024 Work-711
shop on Large Language Model (LLM) Agents.712

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan713
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,714
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,715
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li,716
Zhiyuan Liu, and Maosong Sun. 2024. ToolLLM:717
Facilitating large language models to master 16000+718
real-world APIs. In The Twelfth International Con-719
ference on Learning Representations.720

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-721
pher D Manning, Stefano Ermon, and Chelsea Finn.722
2024. Direct preference optimization: Your language723
model is secretly a reward model. Advances in Neu-724
ral Information Processing Systems, 36.725

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming726
Yan, Xiaojun Quan, Hehong Chen, Ji Zhang, and Fei727
Huang. 2024. Small LLMs are weak tool learners: A728
multi-LLM agent. In Proceedings of the 2024 Con-729
ference on Empirical Methods in Natural Language730
Processing, pages 16658–16680.731

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng,732
Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie Ren,733
Suzan Verberne, and Zhaochun Ren. 2024. Learning734
to use tools via cooperative and interactive agents.735
In Findings of the Association for Computational736
Linguistics: EMNLP 2024.737

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas738
Papernot, Ross Anderson, and Yarin Gal. 2024. Ai739
models collapse when trained on recursively gener-740
ated data. Nature, 631(8022):755–759.741

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh742
Anand, Piyush Patil, Xavier Garcia, Peter J Liu,743
James Harrison, Jaehoon Lee, Kelvin Xu, et al.744
2023. Beyond human data: Scaling self-training745
for problem-solving with language models. arXiv746
preprint arXiv:2312.06585.747

Chan Hee Song, Brian M. Sadler, Jiaman Wu, Wei-Lun748
Chao, Clayton Washington, and Yu Su. 2023a. Llm-749
planner: Few-shot grounded planning for embodied750
agents with large language models. In IEEE/CVF751
International Conference on Computer Vision, ICCV752
2023, Paris, France, October 1-6, 2023, pages 2986–753
2997. IEEE.754

Yifan Song, Weimin Xiong, Xiutian Zhao, Dawei Zhu, 755
Wenhao Wu, Ke Wang, Cheng Li, Wei Peng, and Su- 756
jian Li. 2024. Agentbank: Towards generalized llm 757
agents via fine-tuning on 50000+ interaction trajec- 758
tories. In Findings of the Association for Computa- 759
tional Linguistics: EMNLP 2024, pages 2124–2141. 760

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu, 761
Han Qian, Mingbo Song, Hailiang Huang, Cheng 762
Li, Ke Wang, Rong Yao, et al. 2023b. Restgpt: Con- 763
necting large language models with real-world restful 764
apis. arXiv preprint arXiv:2306.06624. 765

Zhaochen Su, Linjie Li, Mingyang Song, Yunzhuo 766
Hao, Zhengyuan Yang, Jun Zhang, Guanjie Chen, 767
Jiawei Gu, Juntao Li, Xiaoye Qu, et al. 2025. Open- 768
thinkimg: Learning to think with images via vi- 769
sual tool reinforcement learning. arXiv preprint 770
arXiv:2505.08617. 771

Theodore Sumers, Shunyu Yao, Karthik Narasimhan, 772
and Thomas Griffiths. 2024. Cognitive architectures 773
for language agents. Transactions on Machine Learn- 774
ing Research. 775

XAgent Team. 2023. Xagent: An autonomous agent for 776
complex task solving. 777

Yiying Wang, Xiaojing Li, Binzhu Wang, Yueyang 778
Zhou, Yingru Lin, Han Ji, Hong Chen, Jinshi Zhang, 779
Fei Yu, Zewei Zhao, Song Jin, Renji Gong, and Wan- 780
qing Xu. 2024. Peer: Expertizing domain-specific 781
tasks with a multi-agent framework and tuning meth- 782
ods. Preprint, arXiv:2407.06985. 783

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, 784
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang, 785
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, 786
Ryen W White, Doug Burger, and Chi Wang. 2024. 787
Autogen: Enabling next-gen LLM applications via 788
multi-agent conversation. In ICLR 2024 Workshop 789
on Large Language Model (LLM) Agents. 790

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, 791
Renze Lou, Yuandong Tian, Yanghua Xiao, and 792
Yu Su. 2024. Travelplanner: A benchmark for real- 793
world planning with language agents. arXiv preprint 794
arXiv:2402.01622. 795

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata 796
Mukherjee, Yuchen Liu, and Dongkuan Xu. 2023. 797
Rewoo: Decoupling reasoning from observations for 798
efficient augmented language models. arXiv preprint 799
arXiv:2305.18323. 800

Hui Yang, Sifu Yue, and Yunzhong He. 2023. Auto-gpt 801
for online decision making: Benchmarks and addi- 802
tional opinions. arXiv preprint arXiv:2306.02224. 803

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, 804
William Cohen, Ruslan Salakhutdinov, and Christo- 805
pher D Manning. 2018. Hotpotqa: A dataset for 806
diverse, explainable multi-hop question answering. 807
In Proceedings of the 2018 Conference on Empiri- 808
cal Methods in Natural Language Processing, pages 809
2369–2380. 810

10

https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.1109/ICCV51070.2023.00280
https://arxiv.org/abs/2407.06985
https://arxiv.org/abs/2407.06985
https://arxiv.org/abs/2407.06985
https://arxiv.org/abs/2407.06985
https://arxiv.org/abs/2407.06985
https://openreview.net/forum?id=uAjxFFing2
https://openreview.net/forum?id=uAjxFFing2
https://openreview.net/forum?id=uAjxFFing2

Shunyu Yao, Howard Chen, John Yang, and Karthik811
Narasimhan. 2022. Webshop: Towards scalable real-812
world web interaction with grounded language agents.813
Advances in Neural Information Processing Systems,814
35:20744–20757.815

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-816
athi Chandu, Kai-Wei Chang, Yejin Choi, and817
Bill Yuchen Lin. 2024a. Agent lumos: Unified and818
modular training for open-source language agents.819
In Proceedings of the 62nd Annual Meeting of the820
Association for Computational Linguistics (Volume821
1: Long Papers), pages 12380–12403. Association822
for Computational Linguistics.823

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-824
athi Chandu, Kai-Wei Chang, Yejin Choi, and825
Bill Yuchen Lin. 2024b. Agent lumos: Unified and826
modular training for open-source language agents.827
Preprint, arXiv:2311.05657.828

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,829
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Jason830
Weston. 2024. Self-rewarding language models.831

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao832
Liu, Yuxiao Dong, and Jie Tang. 2024. AgentTuning:833
Enabling generalized agent abilities for LLMs. In834
Findings of the Association for Computational Lin-835
guistics: ACL 2024, pages 3053–3077. Association836
for Computational Linguistics.837

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu,838
Weiran Yao, Ming Zhu, Juntao Tan, Thai Hoang,839
Zuxin Liu, Liangwei Yang, et al. 2024a. Agentohana:840
Design unified data and training pipeline for effective841
agent learning. arXiv preprint arXiv:2402.15506.842

Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu,843
Bryan Hooi, and Shumin Deng. 2024b. Exploring844
collaboration mechanisms for LLM agents: A social845
psychology view. In Proceedings of the 62nd An-846
nual Meeting of the Association for Computational847
Linguistics (Volume 1: Long Papers), pages 14544–848
14607.849

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou,850
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue851
Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Gra-852
ham Neubig. 2023. Webarena: A realistic web envi-853
ronment for building autonomous agents. In Second854
Agent Learning in Open-Endedness Workshop.855

Junda Zhu, Lingyong Yan, Haibo Shi, Dawei Yin, and856
Lei Sha. 2024. Atm: Adversarial tuning multi-agent857
system makes a robust retrieval-augmented generator.858
In Proceedings of the 2024 Conference on Empiri-859
cal Methods in Natural Language Processing, pages860
10902–10919.861

11

https://arxiv.org/abs/2311.05657
https://arxiv.org/abs/2311.05657
https://arxiv.org/abs/2311.05657

Algorithm 2: The proposed multi-agent
joint optimization, which iteratively aligns
the planning and grounding agents, improv-
ing the holistic task-solving performance.
Input: The number of iterations Nr, the

number of samples K, the tasks set
D, the set of available tools I , the
critic model CRITIC , planning agent
πp , grounding agent πg.

1 for iteration t = 1... N do
2 # Initialize the training dataset
3 Dp ← ϕ,Dg ← ϕR ← ϕ

4 # Planning Agent Optimization
5 for each task xi ∈ D do
6 # sample K response
7 for j ← 1 to K do
8 si,j ∼ πt−1

p (xi)

9 # ãi,j denotes correct actions
10 ri,j ←

PPLπt−1
g

(ãi,j |xi, I, si,j)
11 Dp,i ← Dp,i ∪ si,j
12 Rp,i ← Rp,i ∪ ri,j
13 end
14 end

15 Swin ← Dp[argmin(R, axis = 1)]
16 Slose ← Dp[argmax(R, axis = 1)]

17 πt
p ← πt−1

p −∇πpLDPO(D,Swin,Sloss)

18 # Grounding Agent Optimization
19 for each task xi ∈ D do
20 for each si,j ∈ Dp do
21 ai,j ∼ πr−1

g (ai,j |xi, I, si,j)
22 âi,j ← Critic(ai,j , ãi,j)
23 Dg ← Dg ∪ (x, I, si,j , âi,j)

24 end
25 end
26 πt

g ← πt−1
g −∇πgLSFT(Dg)

27 end
Output: πN

p , πN
g

A Appendix862

A.1 Implementation Details863

We show more training details about our experi-864

ments. All our experiments are conducted on 6 ×865

NVIDIA A800 (80GB) GPUs.866

For the initial fine-tuning stage, we use the867

public datasets provided by Lumos (Yin et al.,868

2024a) and train two epochs with a learning rate869

of 2× 10−5. And we set the maximum sequence 870

length to 1024 and the batch size to 128. We also 871

apply linear warmup for 3% of the total training 872

steps to adjust the learning rate. 873

For DPO training, we fine-tuned the model using 874

the accelerate framework with DeepSpeed for 875

optimized distributed training. We set batch size 876

to 4 and gradient accumulation to 8. The learning 877

rate is set to 4× 10−7 with a cosine learning rate 878

scheduler. And We set the maximum sequence 879

length to 1024. Additionally, we leveraged the TRL 880

library 2 to facilitate the training of reinforcement 881

learning-based models. Meanwhile, we filter out 882

data samples where the reward difference between 883

sw and sl is less than 0.1 for stability during DPO 884

training. 885

For grounding agent improving training, we im- 886

plement training over two epochs with a learning 887

rate of 2×10−5 and a batch size 128 the same with 888

initial tuning. At the same time, we mix these with 889

the initial data in a 1:1 ratio to prevent the model 890

from forgetting prior knowledge. 891

A.2 Case Study 892

As illustrated in Table A.2, the case studies evalu- 893

ate the responses generated by our MOAT and the 894

independent training method. Our findings show 895

that through joint alignment tuning, the models 896

are able to align their capabilities. Specifically, 897

for the given case, we observe that the indepen- 898

dently trained method struggles with subgoal de- 899

composition in planning agent, making it difficult 900

for grounding agent to resolve, leading to a fail- 901

ure in solving the task. However, after the joint 902

alignment training, the capability gap is addressed, 903

allowing the planning agent to generate subgoals 904

that are easier for the grounding agent to under- 905

stand. Consequently, the grounding agent success- 906

fully produced the correct action sequence. 907

A.3 Prompts 908

We provide our prompts used in the multi-agent 909

system. The prompt of the planning agent to gener- 910

ate the subgoal sequences is in Table 6. The prompt 911

of the grounding agent to generate the action se- 912

quences is in Table 7. The prompt of the critic 913

model to correct the action sequences generated by 914

grounding agents is in Table 8. 915

2https://github.com/huggingface/trl

12

https://github.com/huggingface/trl

Case Study

Question:
Richard lives in an apartment building with 15 floors. Each floor contains 8 units, and 3/4 of the building is occupied. What’s the
total number of unoccupied units In the building?

MOAT:

Subgoals:
Subgoal 1: Calculate the total number of units in the entire building.;
Subgoal 2: Calculate the number of floors that are occupied.;
Subgoal 3: Calculate the total number of units that are occupied.;
Subgoal 4: Calculate the total number of unoccupied units in the building.

Actions:
R1 = Calculator(15 * 8);
R2 = Calculator(15 * 3/4);
R3 = Calculator(R2 * 8);
R4 = Calculator(R1 - R3)

Answer:
30

Independent Training Method:

Subgoals:
Subgoal 1: Calculate the total number of units in the building.;
Subgoal 2: Calculate the number of units that are unoccupied.;
Subgoal 3: Calculate the total number of unoccupied units in the building.

Actions:
R1 = Calculator(15 * 8);
R2 = Calculator(R1 * 3/4);
R3 = Calculator(R2 * 2)

Answer:
30

Table 5: A case study in the GSM8K test dataset.

Prompt to generate subgoal sequences

Please provide a reasonable subgoal-based plan to solve the given task.

Task:{TASK}

Table 6: The prompt of planning agent to generate subgoal sequences.

Prompt to generate action sequences

Please ground the given subgoal to corresponding executable actions for solving the given task. The grounded actions must be
the one in available action list.

The available action list is:{ACTION_LIST}

Task:{TASK}

Subgoals to be grounded:{SUBGOALS}

Table 7: The prompt of grounding agent to generate action sequences.

13

Prompt to correct action sequences

Given a task and a corresponding series of subgoals and their corresponding actions that may be incomplete, your task is to
judge whether the subgoals and actions can reached a final answer or conclusion for the problem.
The grounded actions must be the one in available action list.The available action list is {ACTION_LIST}
If the actions can reached a final answer, you should directly output "Final answer reached". Otherwise, you should give
corrections to the original subgoals and their corresponding actions. It is not necessary to be similar to the original subgoals and
actions.

Task:{TASK}
Reference subgoals: {REF_SUBGOALS}
Reference actions: {REF_ACTIONS}
Judged subgoals: {SUBGOALS}
Judged actions: {ACTIONS}

Your output should follow the format:
If can reached a final answer, directly output "Final answer reached". Else, output corrected subgoals and actions following this
format:
Corrected Subgoals: <series of subgoals to complete the task in one line, Each Subgoal begins with Subgoal idx>
Corrected Actions: <corresponding actions in one line>

Table 8: The prompt of critic model to correct action sequences.

A.4 Action Interfaces and Execution Tools for916

Complex Interactive Tasks917

For each defined action in the action interfaces, a918

corresponding backend execution tool is provided919

to enable the implementation of that action. Our920

setup follows the approach described in Yin et al.921

(2024b). We have adopted the same configura-922

tion to ensure comparability between our work and923

theirs.924

As shown in Table 9a, for QA tasks, we925

use Wikipedia and Google Search APIs to926

find relevant knowledge about entities. Addi-927

tionally, we use a semantic matching model,928

dpr-reader-multiset-base3, employed in929

Dense Passage Retrieval (DPR) (Karpukhin930

et al., 2020), to retrieve paragraphs based on the931

query. Following the approach from ReWOO (Xu932

et al., 2023), we also utilize GPT-series models933

as a straightforward QA tool to respond to934

queries based on the retrieved knowledge or prior935

interactions.936

In Table 9b, web tasks involve real mouse and937

keyboard operations such as typing, clicking, and938

selecting HTML tags. To identify the appropri-939

ate HTML tags to operate on, we use a DeBERTa940

model4 that ranks and retrieves relevant tags based941

on the current action, as seen in the AgentBench942

evaluation.943

3https://huggingface.co/facebook/
dpr-reader-multiset-base.

4https://huggingface.co/osunlp/MindAct_
CandidateGeneration_deberta-v3-base.

As illustrated in Table 9c, WolframAlpha API 5 944

serves as the main tool for mathematical tasks, as 945

it is capable of executing a wide range of math- 946

ematical functions, including formula computa- 947

tion and equation solving. For more advanced 948

math operations like sorting, we leverage OpenAI 949

Codex (Chen et al., 2021) to generate short code 950

snippets for execution. 951

For the unseen task WebShop, the actions 952

include Search, FeatureRetrieve, Pick, and 953

Click. The Search and Click actions are 954

implemented using the embedded features pro- 955

vided in the official WebShop virtual environ- 956

ment6 following (Liu et al., 2024). Mean- 957

while, FeatureRetrieve and Pick rely on the 958

dpr-reader-multiset-base, which helps select 959

the most relevant items and their features based on 960

the query. 961

5https://www.wolframalpha.com/.
6https://github.com/princeton-nlp/WebShop.

14

https://huggingface.co/facebook/dpr-reader-multiset-base
https://huggingface.co/facebook/dpr-reader-multiset-base
https://huggingface.co/osunlp/MindAct_CandidateGeneration_deberta-v3-base
https://huggingface.co/osunlp/MindAct_CandidateGeneration_deberta-v3-base
https://www.wolframalpha.com/
https://github.com/princeton-nlp/WebShop

Task Type Action Types Function Descriptions Tools

QA

KnowledgeQuery(Entity) -> Knowledge Query the entity knowledge Wikipedia, Google Search

ParagraphRetrieval(Knowledge, Query)
-> Paragraphs

Retrieve relevant paragraphs
based on the query

dpr-reader-multiset-base

QA(Context, Query) -> Answer
Answer the query based on

the provided context
GPT-series/open LLMs

Calculator(Expression) -> Value Calculate given mathematical expressions WolframAlpha

(a) Actions used in complex QA tasks.

Task Type Action Types Function Descriptions Implementation

Web

Click(Env, Query) -> Tag Locate the tag to be clicked based on the query

HTML Simulator
Type(Env, Query, Text) -> Tag, Text

Locate the relevant tag based on the query
and output the typed text

Select(Env, Query, Text) -> Tag, Text
Locate the relevant tag based on the query

and output the selected option

(b) Actions used in web tasks.

Task Type Action Types Function Descriptions Implementation

Math

Calculator(Expression) -> Value Calculate mathematical expressions

WolframAlpha
SetEquation(Expression) -> Equation Set equations based on the given expression

SolveEquation(Equation) -> Solutions Solve the system of equations

Define(Variable) -> Variable Define a variable

SolveInequality(Inequality) -> Solutions Solve the inequality

Code(Function_Description) -> Code Generate code for mathematical functions gpt-3.5-turbo

Count(List) -> Number Count the number of elements in a list Python

(c) Actions used in math tasks.

Table 9: Action interfaces and execution module implementations for complex interactive tasks.

15

	Introduction
	Related work
	Task Preliminary
	Multi-agent Joint Alignment Tuning
	Initial Tuning
	Planning Agent Alignment
	Grounding Agent Improving

	Theoretical analysis
	Experimental Setup
	Benchmarks and Evaluation Metrics
	Baselines
	Implementation Details

	Experiment results
	Overall Performance
	Ablation Study
	Hyperparameter Analysis
	Impact of Different Critic Model.
	Training Iteration Control Analysis
	Case Study

	Conclusion
	Appendix
	Implementation Details
	Case Study
	Prompts
	Action Interfaces and Execution Tools for Complex Interactive Tasks

