Bridging the Capability Gap: Joint Alignment Tuning for Harmonizing
LLM-based Multi-Agent Systems

Anonymous ACL submission

Abstract

The advancement of large language models
(LLMSs) has enabled the construction of multi-
agent systems to solve complex tasks by divid-
ing responsibilities among specialized agents,
such as a planning agent for subgoal gener-
ation and a grounding agent for executing
tool-use actions. Most existing methods typi-
cally fine-tune these agents independently, lead-
ing to capability gaps among them with poor
coordination. To address this, we propose
MOAT, a Multi-Agent Joint Alignment Tuning
framework that improves agents collaboration
through iterative alignment. MOAT alternates
between two key stages: (1) Planning Agent
Alignment, which optimizes the planning agent
to generate subgoal sequences that better guide
the grounding agent; and (2) Grounding Agent
Improving, which fine-tunes the grounding
agent using diverse subgoal-action pairs gener-
ated by the agent itself to enhance its general-
ization capability. Theoretical analysis proves
that MOAT ensures a non-decreasing and pro-
gressively convergent training process. Experi-
ments across six benchmarks demonstrate that
MOAT outperforms state-of-the-art baselines,
achieving average improvements of 3.1% on
held-in tasks and 4.4% on held-out tasks. !

1 Introduction

The rapid advancement of large language models
(LLMs) has significantly transformed the devel-
opment of intelligent agents capable of reasoning,
decision-making, and interacting with complex en-
vironments (Sumers et al., 2024; Song et al., 2023a;
Chase, 2022; Song et al., 2023b). Previous work
typically involves prompting or fine-tuning a single
foundation model on a specific dataset, training the
LLMs how to use external search engines for in-
formation retrieval or call Web APIs for tasks like
travel planning (Qin et al., 2024; Xie et al., 2024).
Recently, to enable LLLM-based agents to handle

!Code is available on Anonymous GitHub.

Answer

= _Planning | Subgoals Grounding _ Actions
User Task —> _—

iryAgent

The Multi-Agent Framework

ST, kg
Dataset | Emm=) :=,
SFT
Dataset -
ning

Agent

Grounding Improving

& @
~_ 7

Planning Alignment

ager

AN

The Capability Gap Betweer

(a) Previous Independent Training Method (b) Our Joint Alignment Tuning Method

Figure 1: Comparison between (a) previous indepen-
dent training method and (b) our joint alignment tuning
method MOAT. The MOAT performs iterative joint tun-
ing to align agent capabilities and improve coordination.

more real-world and multi-step tasks, more and
more research has increasingly focused on multi-
agent systems (Yin et al., 2024a; Qiao et al.; Shen
et al., 2024; Wang et al., 2024), which aim to syn-
ergize functionality-specialized agents. Figure 1 il-
lustrates a commonly-used pipeline, where a multi-
agent system typically includes a planning agent
that decomposes the task into subgoals, followed
by a grounding agent that executes these subgoals
by invoking appropriate tools, ultimately producing
the final solution.

Despite the progress made by existing multi-
agent systems, effectively aligning different agents
toward holistic performance remains an active re-
search challenge. Most existing methods construct
specific training data for each agent and train each
agent independently. While this decomposition can
enhance overall performance, it does not guaran-
tee effective collaboration among agents. As illus-
trated in Figure 1(a), independently trained agents
often exhibit varying levels of proficiency, leading
to capability mismatches. For example, a planning
agent might generate high-level subgoals that are
difficult for a weaker grounding agent to under-

https://anonymous.4open.science/r/multi-agent-alignment-46C0

stand and execute. Conversely, a strong grounding
agent might struggle with subgoals generated by a
weaker planning agent, leading to errors or ineffi-
cient task execution. Without explicit mechanisms
for adapting to each other’s behaviors, these agents
struggle to collaborate effectively, resulting in mis-
aligned interactions and coordination failures.

To address the above challenges, we propose
MOAT, a Multi-agent Joint Alignment Tuning
framework that iteratively alternates between two
key stages to achieve alignment in a multi-agent
system: (i) Planning Agent Alignment, and (ii)
Grounding Agent Improving. Unlike prior works
that train each agent independently, MOAT per-
forms multi-agent joint alignment tuning by iter-
atively and coordinately optimizing the planning
and grounding agents.

Specifically, in the Planning Agent Alignment
stage, MOAT optimizes the planning agent to gener-
ate subgoals that better guide the grounding agent
in producing correct tool-calling actions. Given
an input task, we first sample multiple candidate
sequences of subgoals from the planning agent.
For each subgoal sequence, we then evaluate its
effectiveness by measuring the perplexity of the
grounding agent in generating correct tool calls
conditioned on each sequence. Perplexity reflects
how well the grounding agent can follow a subgoal,
where lower perplexity indicates higher suitability.
Using this as a reward signal, we apply the direct
preference optimization (DPO) algorithm (Rafailov
etal., 2024) to train the planning agent to align with
the grounding agent’s preferences. In the Ground-
ing Agent Improving stage, we aim to enhance the
grounding agent’s ability to interpret and act upon
subgoals produced by the planning agent. Specif-
ically, we reuse the subgoal sequences from plan-
ning agent in the first stage as training data, expos-
ing the grounding agent to realistic settings. For
each input task, we use the ubgoal—action pairs to
train the grounding agent via standard language
modeling loss. Comparing with relying on ground
truth or manually curated subgoal inputs, this al-
lows the grounding agent to adapt to the distribu-
tion of subgoals it will receive from the planning
agent at practical inference time, thereby improv-
ing its robustness and execution accuracy.

Through theoretical analysis, we demonstrate
that the holistic performance of the multi-agent
system is improved progressively by alternating
the above two stages. We apply MOAT to several
open-source model families (Llama, Mistral, and

Qwen) and evaluate it on three types of tasks, i.e., :
Web, Math, and QA, across six benchmarks. The
results show that MOAT consistently outperforms
existing baselines, on both in-distribution training
sets and out-of-distribution test sets. These validate
the effectiveness of our joint alignment framework
and demonstrate its strong generalization ability.

Our main contributions are as follows: (i) We in-
troduce MOAT, a Multi-Agent Joint Alignment
Tuning framework to jointly optimize intercon-
nected agents, bridging the capability gap between
them; (ii) We provide formal analysis proving
that the alternating optimization of planning and
grounding agents guarantees non-decreasing per-
formance and convergence; and (iii) Experiments
on both held-in and held-out settings across six
benchmarks demonstrate that MOAT achieves the
best performance with 4.4% improvement.

2 Related work

LLM-based multi-agent system. Large lan-
guage models (LLMs) have enabled the develop-
ment of autonomous agents capable of reasoning,
planning, tool use, and memory retention to solve
specific goals through self-directed interaction and
decision-making (Liu et al., 2024; Madaan et al.,
2024). These agents have demonstrated strong
capabilities across various complex tasks, such
as web navigation (Yao et al., 2022; Zhou et al.,
2023), task planning (Zhang et al., 2024b), and
tool learning (Shi et al., 2024). While single-agent
frameworks like AutoGPT (Yang et al., 2023), XA-
gent (Team, 2023), and LangChain (Chase, 2022)
address such tasks by equipping a single LLM
agent with external tools and functions, recent
work has explored multi-agent systems that im-
prove problem-solving efficiency through collabo-
rative interaction among multiple agents. For ex-
ample, CAMEL (Li et al., 2023), AutoGen (Wu
et al., 2024), MetaGPT (Hong et al., 2024), and
ChatEval (Chan et al., 2024) employ role-playing
and structured dialogues to improve task-solving ef-
ficiency. However, these systems typically rely on
closed-source models, limiting their transparency
and practical deployment in privacy scenarios.

Agent tuning. Agent tuning improves a model’s
ability to perform downstream tasks by fine-tuning
open-source LLMs using trajectories distilled from
stronger models (Song et al., 2024; Chen et al.,
2023) For example, approaches such as AgentTun-
ing (Zeng et al., 2024), and AgentOhana (Zhang

et al., 2024a) fine-tune smaller models on datasets
generated by GPT-series LLMs. While these im-
prove instruction following and reasoning, single-
agent tuning remains limited for complex tasks
requiring long-term planning and execution (Liu
et al.,, 2024). To overcome these limitations,
frameworks like Lumos (Yin et al., 2024a) and
a-UMi (Shen et al., 2024) propose multi-agent
training methods that enable collaboration across
functionality-specialized agents. More recent work
like AutoACT (Qiao et al.) further advances this di-
rection by introducing a self-training process where
each agent is trained on a dataset generated by it-
self. However, existing methods often train agents
independently, lacking joint optimization to ensure
effective coordination. In contrast, our work per-
forms iterative joint tuning to align agents’ capabil-
ities for improved cooperation.

3 Task Preliminary

A multi-agent system typically consists of three
components: (1) a planning agent that breaks down
tasks into subgoals, (2) a grounding agent that con-
verts subgoals into executable actions, and (3) an
execution module that carries out the actions to
get the final answer. Given a complex task z, the
planning agent, denoted as m, is tasked to decom-
pose it to a sequence of subgoals, formulated as
s =mp(x) = {s; | i € [|s]]}. Each s; represents a
subgoal like ”Calculate the total number of
units in the entire building”, contributing
to solving the overall task z. Next, the grounding
agent, denoted as 7, takes the task x, the set of
available tools I as well as the decomposed sub-
goals s as input to generates a sequence of tool
calls @ = mg(x,1,8) = {a; | i € [|al]}. Each
a; € I represents an individual tool invocation
required to complete the subgoal s;, such as ”R1
= Calculator(15 = 8)”. Finally, the execution
module is responsible for executing the generated
tool-call sequence a to accomplish the user task x.

4 Multi-agent Joint Alignment Tuning

The proposed multi-agent joint alignment tun-
ing (MOAT framework aims to iteratively align
the planning and grounding agents, enhancing the
overall performance and coordination of the multi-
agent system. As illustrated in Figure 2, MOAT
alternates between two stages: (1) Planning Agent
Alignment, where the planning agent explores di-
verse subgoal sequences to guide the grounding

agent more effectively, and (2) Grounding Agent
Improving, we reuse the generated sub-goal se-
quences, improving the grounding agent to bet-
ter understand them and generate correct actions.
Through this iterative process, both agents progres-
sively adapt to each other, resulting in more coher-
ent subgoal generation, more accurate tool calling,
and holistic improvement. Before applying our
joint alignment strategy, we perform initial tuning
to equip both agents with basic task-solving capa-
bilities, following previous work (Yuan et al., 2024;
Zhu et al., 2024; Su et al., 2025).

4.1 Initial Tuning

To equip the model with the basic skills to under-
stand user instructions and solve tasks, we first
conduct an initial tuning using the SFT dataset col-
lected in previous work (Yin et al., 2024a). Specifi-
cally, the planning agent is trained to generate the
correct subgoals s for an input task z, which is
formulated as:

|s]
Ep - Zi:l log Pﬂ'p(s’i | S<iy ‘T)a (1)

The grounding agent is optimized to ground the
subgoals s to the corresponding tool-calling actions
a, formulated as:

|a]
Eg - _Zizl logpﬂg(ai ‘ a<i;xﬁlv 3)7 (2)

where [is the list of external tools. The final an-
swer is obtained by executing the tool-callings a.

4.2 Planning Agent Alignment

LLMs encode strong reasoning abilities in their pa-
rameter space, enabling them to generate diverse
and meaningful subgoal sequences through sam-
pling (Hou et al., 2025). However, not all sampled
subgoal sequences are equally effective—some bet-
ter guide the grounding agent to generate correct
tool-use actions. To exploit this potential, we sam-
ple multiple subgoal candidates and optimize the
planning agent to prefer those that lead to better
grounding outcomes.

Given a task z, we sample K candidate subgoal
sequences from the planning agent as s = m,(x)
and obtain a set S = {s; | j € [|K]|]}. For each
s € S, we calculate its perplexity (PPL) with re-
spect to the grounding agent, where a lower per-
plexity indicates that the subgoal sequence is more
helpful to the grounding agent, facilitating the gen-
eration of correct responses. Therefore, the PPL

Stage 1: Planning Agent Alignment

[71 Ground-truth a
4. Training based DPO loss | T2 7 3. Compute PPL-based rewards |
______ «
I
L7k |
I 744
V / ¢ / a
_ : Planning 1. Sample K times | ¢ 3 Grounding 2. Generate actions e
g; Agent 0007 _)'{:_@:} Agent 7
LSk ay
Subgoal sequences A Action sequences

Stage 2: Grounding

Agent Improving
¢ @ Task
&8s Input

I 6. Training based
| onnext token

!

rediction ..
ai 7 Critic
as Model
5. Correct actions |
. <
ay

Corrected action sequences

Figure 2: The proposed MOAT framework iteratively alternates between two stages: (1) Planning Agent Alignment:
The planning agent samples K candidate subgoal sequences, and the grounding agent generates corresponding
tool-calling actions. Subgoal sequences are ranked by PPL, and the planning agent is optimized via DPO. (2)
Grounding Agent Improving: The subgoal-action pairs generated are corrected using a critic model, and the
grounding agent is fine-tuned on the corrected dataset to enhance generalization.

can directly reflect how s is useful to the end-to-end
task performance, which is formulated as follows:

PPL. (a]|x,1,s) :=
la|

exp{ — %' glogPﬂg(s | a<i,x,I,s)}.

To align the planning agent with holistic task-
solving performance, we train the planning agent
to generate subgoal sequences with lower PPL, as
desirable behaviors, while penalizing undesirable
ones, i.e., subgoal sequences with high PPL. Specif-
ically, we adopt the Direct Preference Optimization
(DPO) algorithm (Rafailov et al., 2024), which al-
lows us to align the model by learning from pref-
erence pairs. Specifically, we construct preference
pairs (sy, s;) from the sampled candidates in S,
where s,, yields the lowest perplexity (strongest
grounding guidance) and s; the highest. The corre-
sponding loss function is formulated as follows:

)]

where . represents the reference model,
which is initialized as the original 7, before op-
timization. And o denotes the sigmoid function,
is a hyperparameter.

Lpro = —E(,(sy,8,))~D

{logg (5 log T2(8w[?)

7Tref(3w ‘13)

mp(81|7)
Tref (81]2)

— Blog

4.3 Grounding Agent Improving

This stage aims to enhance the generalization ca-
pability of the grounding agent and improve its
adaptability to the diverse subgoal sequences gen-
erated by the planning agent. To achieve this, we
reuse the diverse subgoal sequences sampled from
the first stage as inputs, and prompt the grounding
agent to generate outputs to fine-tune itself. Specif-
ically, given a task x, for each subgoal sequence
s from the sampled set S = {s; | j € [|K]]}, the
grounding agent 7, generates the corresponding
tool-calling actions as a; = 7, (z, I, s;).

However, since these action sequences are
model-generated, they may contain errors. Directly
using such noisy data for fine-tuning can lead to
performance degradation or even training collapse,
as highlighted in prior work (Dohmatob et al., 2024;
Shumailov et al., 2024). To address this issue, we
introduce a validation mechanism that filters out
incorrect outputs before using them for training.
In particular, we employ a more powerful LLM
as a critic model to evaluate whether each gener-
ated sequence a,successfully solves the task , given
the input (x, I, s). If the critic determines that the
sequence fails to complete the task, it provides a
corrected version a by referencing the ground-truth
outcome a. This filtering and correction process

Algorithm 1: Dataset Construction

1 Initialize SFT dataset Dy < (;
2 for each task x and s € S do

3 Generate a < 7y(z, I, 5);

4 if Critic((x, I, s), a,a) = False then
5 a = Critic((z, I, s),a,a);

6 Dy < Dy U{(z,1,s),a};

7 end

8 else

9 ‘ Dy < Dy U{(x,1,5),a};

10 end

1 end

12 return SFT dataset Dg;

ensures that only reliable supervision signals are
used during grounding agent training. The full pro-
cedure is summarized in Algorithm 1, and the critic
prompting strategy is detailed in Appendix A.3.

The overall MOAT alternates between the first
and second stages described above. During this
process, the planning agent gradually adapts to the
grounding agent by generating subgoal sequences
that better align with its inference process; the
grounding agent, in turns, improves its general-
ization capability to understand the subgoals of the
planning agent. This formulates a loop for a con-
sistent improvement. We also provide a detailed
pseudo algorithm in Algorithm 2 to further clarify
our joint training process.

5 Theoretical analysis

In our framework, the planning agent and ground-
ing agent are optimized iteratively. In this section,
we provide a theoretical analysis to demonstrate
that each optimization step leads to non-decreasing
improvements and ultimately ensures the conver-
gence. We start by defining the expected perfor-
mance of the overall multi-agent system as:

E[R] = Egor,(2) [Eanmy(s)[R(s,a)]] . (3)

Here the reward function R(s, a) evaluate the qual-
ity of tool-calling action a given sub-goal sequence
s. And z indicates the input task. Below, we can
state the following two lemmas.

Lemma 5.1. Optimizing the planning agent while
keeping the grounding agent fixed leads to a non-
decreasing expected reward.

The planning agent is optimized using DPO,
with PPL as the reward signal. The optimization

objective can be formalized as:
maXq, Eqor (2) [-PPL(a;mg)] . ()

Since PPL is negatively correlated with the true
reward R(s, a), this is equivalent to maximizing
the expected reward:

maXqy, Egor (2) [R(s,a)]. (5)

The DPO algorithm guarantees that updates to
mp lead to non-decreasing expected rewards when
the grounding agent is fixed. Thus, we have:

E[R]**) > E[R]®. ©6)

This inequality holds because the optimization pro-
cess aligns the planning agent with sub-goal se-
quences that facilitate better performance in the
grounding agent.

Lemma 5.2. Optimizing the grounding agent while
keeping the planning agent fixed leads to a non-
decreasing expected reward.

The grounding agent is optimized through super-
vised fine-tuning using pairs (s, a) generated by
the planning agent. The corresponding optimiza-
tion objective is:

ming, B q)~s [L(mg(a | s))], (7

where £ denotes the loss function (e.g., cross-
entropy loss). Minimizing this loss is equivalent to
maximizing the log-likelihood of the correct tool
invocation sequences:

maXg, E(s,a)ws [log Wg(a‘s)] . ()

Since improved log-likelihood corresponds to
reduced PPL and, consequently, higher re-
ward (Singh et al., 2023), it follows that:

E[R**) > E[R]®. ©)

Hence, optimizing the grounding agent improves
or maintains the expected reward when the plan-
ning agent is fixed.

From Lemma 5.1 and Lemma 5.2, we establish
that both optimization steps ensure non-decreasing
expected rewards, i.e., E[R]+1) > E[R]®. Ad-
ditionally, the expected reward E[R] is upper-
bounded due to the following reasons: (i) The re-
ward function R(s, a) is bounded in practical sce-
narios; and (ii) The PPL has a lower bound. Based
on the Monotone Convergence Theorem (Bibby,
1974), the non-decreasing and upper-bounded na-
ture of {E[R]®)}22, ensures this sequence con-
verges to a finite limit. Thus, we derive the conver-
gence of overall training process.

Task Skill Dim. #Inst. Metric
Held-in Tasks

StrategyQA (Yang et al., 2018) QA 300 Exact Match

GSMSK (Cobbe et al., 2021) Math 1300 Accuracy

Mind2Web (Deng et al., 2023) ‘Web 200 Step Success Rate
Held-out Tasks

HotpotQA (Geva et al., 2021) QA 100 Exact Match

SVAMP (Patel et al., 2021) Math 1000 Accuracy

WebShop (Yao et al., 2022) Web 500 Avg. Reward

Table 1: The held-in and held-out tasks used to evaluate
the agent capabilities of different LLM:s.

6 Experimental Setup

6.1 Benchmarks and Evaluation Metrics

Following prior work (Song et al., 2024; Chen et al.,
2024), we evaluate MOAT under both held-in and
held-out settings to evaluate its performance and
generalization across diverse task types. We con-
sider a wide range of tasks, including mathematical
reasoning, web interaction, and question answering.
As listed in Table 1, the held-in setting includes
three tasks that are used during training: GSM8K,
StrategyQA, and Mind2Web; the held-out setting
evaluates generalization on unseen tasks: SVAMP,
WebShop, and HotpotQA. Evaluation metrics for
each task are also reported in Table 1. Following
the recipe of baselins (Yin et al., 2024a), we define
a set of action instructions (i.e., tool set I), cover-
ing common actions required for each task. Details
are provided in Appendix A.4.

6.2 Baselines

We compare our MOAT with widely-used agent
tuning methods, including: (i) Agent Tun-
ing (Zeng et al., 2024), a multi-task tuning ap-
proach training LLMs on synthetic datasets com-
prising six tasks; (ii) Agent-FLAN (Chen et al.,
2024) employs a modular architecture that trains
distinct single-agent capabilities through special-
ized parameter groups; and (iii) Agent Lumos (Yin
et al., 2024a), a multi-agent training framework
that separately fine-tunes models on datasets to ob-
tain specialized agents. Furthermore, we included
GPT-3.5-Turbo and GPT-4 (Achiam et al., 2023)
as strong single-agent baselines for comparison.

6.3 Implementation Details

To ensure a fair comparison with prior work,
we adopt Llama2-7b-hf as the backbone LLM
for both MOAT and baseline methods, following
the official implementation of previous methods
(Zeng et al., 2024; Yin et al., 2024a). To com-
prehensively evaluate our method across different

LLMs, we additionally apply MOAT to two differ-
ent model series with varying parameter scales:
Mistral-7B-Instruct-v0.2 and Qwen2.5-14B.
During the alignment process, we set the num-
ber of sampled subgoal sequences K to 15 and
the number of training iterations to 2. The sam-
pling temperature is set to 1.0 to encourage di-
versity in the generated subgoals. We employ
DeepSeek-R1-Distill-Qwen-32B as the critic
model (denoted as DS-Qwen-32B) for verifying and
correcting the generated tool-use action sequences.
We further analyze the impact of using different
critic models in Section 7.4. More implementation
details are provided in Appendix A.1.

7 Experiment results

7.1 Overall Performance

Held-in Tasks. Table 2 presents the evaluation
results. Compared with single-agent systems and
independently trained multi-agent baselines, the
MOAT achieves superior performance across three
held-in tasks across different base models. The
MOAT with Llama-7B demonstrates an average
improvement of 15.6% compared to AgentTun-
ing with L1ama-13B. These improvements validate
the effectiveness of our joint training framework,
which tightly interconnects specialized agents to
enhance overall task-solving performance.

Held-out Tasks. We further investigate the general-
izability of our method in solving unseen tasks. As
illustrated in Table 2, our method achieves the high-
est performance compared to open-source base-
lines. For example, the MOAT with Mistral-7B
outperforms Lumos with an average performance
improvement of 4.4%. An explanation for this
improvement is that through iterative alignment
in MOAT, the subgoals generated by the plan-
ning model align better with the preferences of
the grounding models, and the grounding models
also achieve a more accurate understanding of the
generated subgoals. This mutual understanding en-
hances the generalizability of the overall system
when facing unseen tasks.

Comparison with Closed-source Agents. Al-
though our method is trained on 7B models like
Llama-7B, it achieves about a 50% performance
improvement over GPT-4 on the Mind2Web task.
This further validates the superiority of the MOAT
in synergizing smaller open-source models to
achieve competitive performance.

Method ‘ Base Model ‘

Held-in Tasks

‘ Held-out Tasks

| | GSK8K Mind2Web StrategyQA | Avg. | SVAMP WebShop HotpotQA | Avg.
API-Based Agents
GPT-4 - 87.0 226 710 [602] 905 58.6 521|671
GPT-3.5-Turbo - 65.0 21.7 580 482 810 62.4 240 | 558
Llama Model Agents
Llama-2-7B-Chat | Llama-2-7B 15.0 11.9 5.0 106 | 207 15.8 3.0 132
Agent Tuning Llama-2-7B 14.0 10.6 49.0 24.5 353 59.8 10.0 35.0
Agent Tuning Llama-2-13B 223 11.1 52.0 28.5 56.9 65.0 24.0 48.6
Agent-FLAN Llama-2-7B | 285 16.9 480 | 3L1| 392 55.9 120 | 357
Agent Lumos Llama-2-7B 46.6 29.9 46.7 41.1 65.5 583 25.0 49.6
MOAT | Llama-2-7B | 47.4 33.0 520 |441] 692 60.6 270 | 523
Mistral Model Agents
Agent Lumos | Mistral-7B-v0.2 | 46.4 33.8 493|432 619 58.7 270 | 492
MOAT | Mistral-7B-v0.2 | 48.2 347 560 | 463 | 737 59.0 280 | 536
Qwen Model Agents
AgentLumos | Qwen25-14B | 817 31.8 493 | 543 855 64.7 270 | 59.1
MOAT | Qwen2.5-14B | 82.4 326 553 | 568 | 874 65.8 280 | 60.4

Table 2: Evaluation results of MOAT and baselines on both held-in and held-out tasks. The best results in each

group are highlighted in bold.

Method | Mind2Web WebShop ~ Avg. A
MOAT 35.43 60.63 48.03
-w/o stage 1 31 .94¢3'49 58.76¢1<87 45-35¢2.68
-w/o stage 2 34'72i0»71 6029i034 47.51 10.52
-w/o critic 33.88¢1'55 59'79‘L0484 46.84 11.19

Table 3: Ablation study on two web datasets.

801 Metric

55 A

50 - []SFT Baseline
[CTK=5

45 - I K=10
[K=15

40 |

35 1

. Tl

GSK8K StrategyQA Mind2Web

Figure 3: Results of MOAT on three held-in tasks under
different numbers of sampled subgoal sequences.

7.2 Ablation Study

To further analyze the contribution of each compo-
nent in MOAT, we conduct an ablation study by re-
moving individual components, including planning
alignment (w/o stage 1), grounding improvement
(W/o stage 2), and the critic model (w/o critic), re-
spectively. As shown in Table 3, all variants exhibit
substantial performance degradation, confirming
the effectiveness of each component in our joint
alignment framework. Besides, we highlight two
key points: (1) the largest performance drop oc-
curs in w/o stage 1, highlighting the critical role
of aligning the planning agent to generate coherent

subgoals; and (2) removing the critic model (w/o
critic) results in the second-largest performance
drop, even lower than that caused by removing the
grounding improvement (w/o stage 2). This sug-
gests that, without external feedback from the critic
model, the system may suffer from significant neg-
ative updates, thereby validating the importance
and rationality of incorporating a critic model.

7.3 Hyperparameter Analysis

Analysis of Different Sample Numbers. In our
main experiments, we set the number of sampled
responses K to 15. To explore the impact of the
sampling number K on model performance, we
further vary K from 5 to 15 during the training of
Mistral-7B at 2th iteration. As shown in Figure
3, we observe a positive correlation between the
sampling number and the overall performance. We
also identify a performance drop on the GSM8K
and Mind2Web benchmarks when K=5. An expla-
nation is that a smaller number of samples may
fail to include high-quality subgoal sequences that
align well with the grounding agent. In such cases,
even the subgoal sequence with the highest reward
may still be suboptimal or incorrect, thus negatively
affecting training performance.

Analysis of Iteration Count. We further inves-
tigate how the iteration count impacts model per-
formance using Mistral-7B with set K to 15. As
shown in Figure 4, the model’s performance im-
proves gradually with the increasing number of
iterations. However, by the third iteration, the per-

0671 Metric

05| //

0.4 —&— StrategyQA
— A —Mind2Web
A ————— A————- A ————— A
0.3

SFT Iteration 1 lteration 2 Iteration 3

Figure 4: Performance trends of MOAT (K=15) on held-
in tasks as iterations increase.

Model | Mind2Web WebShop ~ Avg.
MOAT w/ DS-Qwen-32B |~ 34.03 60.78 47.41
MOAT w/ GPT-40 352815679 60.57)0.03% 47-931108%

MOAT w/ DS-Qwen-14B | 33.52)1 500, 60.63,0.00%, 47.08 7%

Table 4: Model Performance on Mind2Web and Web-
Shop benchmarks using different critic models.

formance gains become marginal. We suspect this
is because, after several iterations, the planning and
grounding agents gradually converge and reach a
performance equilibrium, as discussed in Section 5.

7.4 Impact of Different Critic Model.

We use DeepSeek-R1-Distill-Qwen-32B as the
default critic model in our framework to validate
and refine the tool-use action sequences generated
by the grounding agent. To investigate the effect
of the critic model’s capability, we conduct a com-
parative study using a stronger critic (GPT-40) and
a weaker one (DeepSeek-R1-Distill-Qwen-14B).
As shown in Table 4, the results demonstrate an
upward trend in task performance as the ability
of the critic model increases. However, we also
observe that using a smaller, open-source model
like Qwen-14B still yields competitive results, sur-
passing existing baselines by a notable margin. We
attribute this to the relatively simple nature of the
critic’s task, i.e., verifying whether the predicted
action sequence achieves the same effect as the
ground-truth. Since both the prediction and ref-
erence are provided to the context of the critic
model, this task requires less complex reasoning
with simplified difficulty. Therefore, while stronger
critic models can further enhance performance, our
framework remains robust and effective even when
using smaller, fully open-source critics.

7.5 Training Iteration Control Analysis

A potential concern is that the observed perfor-
mance gains from our iterative training strategy
may stem merely from additional training epochs,
rather than from the collaborative optimization of

627 Metric
60
58 1
56 ——MOAT
—e— L umos Agent
54 ! ! ! !
Initial Iteration 1 Iteration2 Iteration 3

Figure 5: Performance comparison on WebShop be-
tween MOAT and Lumos under equal training time.

planning and grounding agents. To investigate this,
we compare our approach with a baseline trained
independently for the same total number of epochs.
Starting from a model trained for 2 epochs, we
apply our iterative method for 1, 2, and 3 itera-
tions, equivalent to 3, 4, and 5 total epochs. We
compare with the Lumos Agent baseline trained
independently for the same number of epochs with-
out inter-agent interaction. As shown in Figure 5,
the baseline struggles to consistently improve and
even suffers from degradation due to overfitting.
In contrast, our method shows consistent improve-
ments, indicating that the gains stem from iterative
co-training rather than extended training iterations.

7.6 Case Study

We manually analyze the outputs of both the plan-
ning and grounding agents after training in MOAT.
The results show that our MOAT effectively en-
hances the specialized expertise of both agents, as
well as their adaptability. Concrete examples and
detailed analysis are provided in Appendix A.2.

8 Conclusion

In this work, we present MOAT, a novel Joint
Alignment Tuning framework designed to har-
monize the collaboration between planning and
grounding agents in LLM-based multi-agent sys-
tems. By iteratively optimizing the planning agent
to generate subgoals that align with the ground-
ing agent’s capabilities and enhancing the ground-
ing agent’s adaptability to diverse subgoal se-
quences, MOAT effectively bridges the capability
gap caused by independent training. Both theo-
retical analysis and extensive experimental results
demonstrate the superiority of MOAT. We suggest
that future work can explore the integration of vi-
sual models to expand the capability boundary of
agents, as well as integrate more specialized agents,
such as tool retrieval and reflection modules, to ex-
pand the versatility and efficiency of the system.

Limitations

Our framework is currently developed and
evaluated exclusively on text-based scenarios,
without exploring multimodal learning settings.
While modern open-source language models (e.g.,
LLaVA, Qwen-VL) have demonstrated emerging
capabilities in processing multimodal inputs, our
current architecture lacks explicit mechanisms for
cross-modal alignment during collaborative train-
ing. In future work, we plan to incorporate multi-
modal information into our framework.

Ethics Statement

This research strictly adheres to the ethical princi-
ples outlined in the ACM Code of Ethics, with rig-
orous implementation of transparency and account-
ability measures. All datasets, tools, and language
models (including Llama-2, Mistral and Qwen) are
sourced from publicly available platforms under
compliant licenses, ensuring ethical alignment and
reproducibility. The complete code and evaluation
protocols will be open-sourced upon publication.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

John Bibby. 1974. Axiomatisations of the average and a
further generalisation of monotonic sequences. Glas-
gow Mathematical Journal.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu.
2024. Chateval: Towards better LLM-based eval-
uators through multi-agent debate. In The Twelfth
International Conference on Learning Representa-
tions.

Harrison Chase. 2022. LangChain.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,
Karthik Narasimhan, and Shunyu Yao. 2023. Fireact:
Toward language agent fine-tuning. arXiv preprint
arXiv:2310.05915.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and

Feng Zhao. 2024. Agent-FLAN: Designing data and
methods of effective agent tuning for large language
models. In Findings of the Association for Computa-
tional Linguistics: ACL 2024, pages 9354-9366.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2023.
Mind2web: Towards a generalist agent for the web.

Advances in Neural Information Processing Systems,
36:28091-28114.

Elvis Dohmatob, Yunzhen Feng, and Julia Kempe. 2024.
Model collapse demystified: The case of regression.
In The Thirty-eighth Annual Conference on Neural
Information Processing Systems.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did Aristo-
tle Use a Laptop? A Question Answering Bench-
mark with Implicit Reasoning Strategies. Transac-

tions of the Association for Computational Linguis-
tics (TACL).

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al.
2024. Metagpt: Meta programming for a multi-agent
collaborative framework. In The Twelfth Interna-
tional Conference on Learning Representations.

Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang
Li, Zijun Yao, Juanzi Li, Jie Tang, and Yuxiao Dong.
2025. Advancing language model reasoning through
reinforcement learning and inference scaling. arXiv
preprint arXiv:2501.11651.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqgi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769-6781,
Online. Association for Computational Linguistics.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023. Camel:
Communicative agents for" mind" exploration of
large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, et al. 2024. Agentbench: Eval-
vating llms as agents. In The Twelfth International
Conference on Learning Representations.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,

https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://github.com/langchain-ai/langchain
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550

et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080-2094.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Eleanor Jiang, Huajun
Chen, et al. Autoact: Automatic agent learning from
scratch for qa via self-planning. In /CLR 2024 Work-
shop on Large Language Model (LLM) Agents.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li,
Zhiyuan Liu, and Maosong Sun. 2024. ToolLLM:
Facilitating large language models to master 16000+
real-world APIs. In The Twelfth International Con-
ference on Learning Representations.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming
Yan, Xiaojun Quan, Hehong Chen, Ji Zhang, and Fei
Huang. 2024. Small LLMs are weak tool learners: A
multi-LLM agent. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 16658—16680.

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng,
Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie Ren,
Suzan Verberne, and Zhaochun Ren. 2024. Learning
to use tools via cooperative and interactive agents.
In Findings of the Association for Computational
Linguistics: EMNLP 2024.

[lia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas
Papernot, Ross Anderson, and Yarin Gal. 2024. Ai
models collapse when trained on recursively gener-
ated data. Nature, 631(8022):755-759.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh
Anand, Piyush Patil, Xavier Garcia, Peter J Liu,
James Harrison, Jachoon Lee, Kelvin Xu, et al.
2023. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv
preprint arXiv:2312.06585.

Chan Hee Song, Brian M. Sadler, Jiaman Wu, Wei-Lun
Chao, Clayton Washington, and Yu Su. 2023a. Llm-
planner: Few-shot grounded planning for embodied
agents with large language models. In IEEE/CVF
International Conference on Computer Vision, ICCV
2023, Paris, France, October 1-6, 2023, pages 2986—
2997. IEEE.

10

Yifan Song, Weimin Xiong, Xiutian Zhao, Dawei Zhu,
Wenhao Wu, Ke Wang, Cheng Li, Wei Peng, and Su-
jian Li. 2024. Agentbank: Towards generalized 1lm
agents via fine-tuning on 50000+ interaction trajec-
tories. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2024, pages 2124-2141.

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,
Han Qian, Mingbo Song, Hailiang Huang, Cheng
Li, Ke Wang, Rong Yao, et al. 2023b. Restgpt: Con-
necting large language models with real-world restful
apis. arXiv preprint arXiv:2306.06624.

Zhaochen Su, Linjie Li, Mingyang Song, Yunzhuo
Hao, Zhengyuan Yang, Jun Zhang, Guanjie Chen,
Jiawei Gu, Juntao Li, Xiaoye Qu, et al. 2025. Open-
thinkimg: Learning to think with images via vi-
sual tool reinforcement learning. arXiv preprint
arXiv:2505.08617.

Theodore Sumers, Shunyu Yao, Karthik Narasimhan,
and Thomas Griffiths. 2024. Cognitive architectures
for language agents. Transactions on Machine Learn-
ing Research.

XAgent Team. 2023. Xagent: An autonomous agent for
complex task solving.

Yiying Wang, Xiaojing Li, Binzhu Wang, Yueyang
Zhou, Yingru Lin, Han Ji, Hong Chen, Jinshi Zhang,
Fei Yu, Zewei Zhao, Song Jin, Renji Gong, and Wan-
qing Xu. 2024. Peer: Expertizing domain-specific
tasks with a multi-agent framework and tuning meth-
ods. Preprint, arXiv:2407.06985.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah,
Ryen W White, Doug Burger, and Chi Wang. 2024.
Autogen: Enabling next-gen LLM applications via
multi-agent conversation. In ICLR 2024 Workshop
on Large Language Model (LLM) Agents.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu,
Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. 2024. Travelplanner: A benchmark for real-
world planning with language agents. arXiv preprint
arXiv:2402.01622.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata
Mukherjee, Yuchen Liu, and Dongkuan Xu. 2023.
Rewoo: Decoupling reasoning from observations for
efficient augmented language models. arXiv preprint
arXiv:2305.18323.

Hui Yang, Sifu Yue, and Yunzhong He. 2023. Auto-gpt
for online decision making: Benchmarks and addi-
tional opinions. arXiv preprint arXiv:2306.02224.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369-2380.

https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.1109/ICCV51070.2023.00280
https://arxiv.org/abs/2407.06985
https://arxiv.org/abs/2407.06985
https://arxiv.org/abs/2407.06985
https://arxiv.org/abs/2407.06985
https://arxiv.org/abs/2407.06985
https://openreview.net/forum?id=uAjxFFing2
https://openreview.net/forum?id=uAjxFFing2
https://openreview.net/forum?id=uAjxFFing2

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
Advances in Neural Information Processing Systems,

35:20744-20757.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2024a. Agent lumos: Unified and
modular training for open-source language agents.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 12380-12403. Association
for Computational Linguistics.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2024b. Agent lumos: Unified and
modular training for open-source language agents.
Preprint, arXiv:2311.05657.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. 2024. Self-rewarding language models.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2024. AgentTuning:
Enabling generalized agent abilities for LLMs. In
Findings of the Association for Computational Lin-
guistics: ACL 2024, pages 3053-3077. Association
for Computational Linguistics.

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu,
Weiran Yao, Ming Zhu, Juntao Tan, Thai Hoang,
Zuxin Liu, Liangwei Yang, et al. 2024a. Agentohana:
Design unified data and training pipeline for effective
agent learning. arXiv preprint arXiv:2402.15506.

Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu,
Bryan Hooi, and Shumin Deng. 2024b. Exploring
collaboration mechanisms for LLM agents: A social
psychology view. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 14544—
14607.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Gra-
ham Neubig. 2023. Webarena: A realistic web envi-
ronment for building autonomous agents. In Second
Agent Learning in Open-Endedness Workshop.

Junda Zhu, Lingyong Yan, Haibo Shi, Dawei Yin, and
Lei Sha. 2024. Atm: Adversarial tuning multi-agent
system makes a robust retrieval-augmented generator.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
10902-10919.

11

https://arxiv.org/abs/2311.05657
https://arxiv.org/abs/2311.05657
https://arxiv.org/abs/2311.05657

Algorithm 2: The proposed multi-agent
joint optimization, which iteratively aligns
the planning and grounding agents, improv-
ing the holistic task-solving performance.

Input: The number of iterations /N, the
number of samples K, the tasks set
D, the set of available tools I, the
critic model CRITIC , planning agent
Ty » grounding agent 7.

1 for iterationt = 1... N do
2 # Initialize the training dataset
Dy, ¢, Dy R <+ ¢

3

Planning Agent Optimization
for each task x; € D do
sample K response
for j < 1to K do
()
a; ; denotes correct actions
Tij <
PPLﬂ,z—l (CNLZ',]' |SUZ', I, S@j)
Dpﬂ' — 'Dpﬂ' Us;
Rp,i — Rp,i Ur;;

4
5
6
7
8 S5 ™~

9
10

11

12

13 end

14 end

15 | Swin < Dplargmin(R, axis = 1)]

Siose < Dplargmax(R, axis = 1)]

Wf, — 71';,_1 —Va,Loro (D, Swin, Stoss)

16
17

18 # Grounding Agent Optimization
for each task x; € D do
for each s; ; € D), do
aijlzi 1, 8i5)
CALZ‘J' — Critic(am, &m‘)
Dg — Dg U (ZE, I, Si g, CALiJ')
end
end

7'('; — 7'('5;1 — vﬂgﬁspT('Dg)

19
20
21 Qi ~ T
22
23
24

25

26
27 end

Output: 7V, 7V

’ﬂ-g

A Appendix

A.1 Implementation Details

We show more training details about our experi-
ments. All our experiments are conducted on 6 x
NVIDIA A800 (80GB) GPUs.

For the initial fine-tuning stage, we use the
public datasets provided by Lumos (Yin et al.,
2024a) and train two epochs with a learning rate

12

of 2 x 107°. And we set the maximum sequence
length to 1024 and the batch size to 128. We also
apply linear warmup for 3% of the total training
steps to adjust the learning rate.

For DPO training, we fine-tuned the model using
the accelerate framework with DeepSpeed for
optimized distributed training. We set batch size
to 4 and gradient accumulation to 8. The learning
rate is set to 4 x 10~ with a cosine learning rate
scheduler. And We set the maximum sequence
length to 1024. Additionally, we leveraged the TRL
library ? to facilitate the training of reinforcement
learning-based models. Meanwhile, we filter out
data samples where the reward difference between
S and s; is less than 0.1 for stability during DPO
training.

For grounding agent improving training, we im-
plement training over two epochs with a learning
rate of 2 x 1075 and a batch size 128 the same with
initial tuning. At the same time, we mix these with
the initial data in a 1:1 ratio to prevent the model
from forgetting prior knowledge.

A.2 Case Study

As illustrated in Table A.2, the case studies evalu-
ate the responses generated by our MOAT and the
independent training method. Our findings show
that through joint alignment tuning, the models
are able to align their capabilities. Specifically,
for the given case, we observe that the indepen-
dently trained method struggles with subgoal de-
composition in planning agent, making it difficult
for grounding agent to resolve, leading to a fail-
ure in solving the task. However, after the joint
alignment training, the capability gap is addressed,
allowing the planning agent to generate subgoals
that are easier for the grounding agent to under-
stand. Consequently, the grounding agent success-
fully produced the correct action sequence.

A.3 Prompts

We provide our prompts used in the multi-agent
system. The prompt of the planning agent to gener-
ate the subgoal sequences is in Table 6. The prompt
of the grounding agent to generate the action se-
quences is in Table 7. The prompt of the critic
model to correct the action sequences generated by
grounding agents is in Table 8.

2https://github.com/huggingface/trl

https://github.com/huggingface/trl

Case Study

Question:
Richard lives in an apartment building with 15 floors. Each floor contains 8 units, and 3/4 of the building is occupied. What’s the
total number of unoccupied units In the building?

MOAT:

Subgoals:

Subgoal 1: Calculate the total number of units in the entire building.;
Subgoal 2: Calculate the number of floors that are occupied.;

Subgoal 3: Calculate the total number of units that are occupied.;
Subgoal 4: Calculate the total number of unoccupied units in the building.

Actions:

R1 = Calculator(15 * 8);
R2 = Calculator(15 * 3/4);,
R3 = Calculator(R2 * 8);
R4 = Calculator(R1 - R3)

Answer:
30

Independent Training Method:

Subgoals:

Subgoal 1: Calculate the total number of units in the building.;

Subgoal 2: Calculate the number of units that are unoccupied.;

Subgoal 3: Calculate the total number of unoccupied units in the building.

Actions:

R1 = Calculator(15 * 8);
R2 = Calculator(R1 * 3/4);
R3 = Calculator(R2 * 2)

Answer:
30

Table 5: A case study in the GSMS8K test dataset.

Prompt to generate subgoal sequences

Please provide a reasonable subgoal-based plan to solve the given task.

Task:{TASK}

Table 6: The prompt of planning agent to generate subgoal sequences.

Prompt to generate action sequences

Please ground the given subgoal to corresponding executable actions for solving the given task. The grounded actions must be
the one in available action list.

The available action list is:{ ACTION_LIST}
Task:{TASK}

Subgoals to be grounded: {SUBGOALS}

Table 7: The prompt of grounding agent to generate action sequences.

13

Prompt to correct action sequences

Given a task and a corresponding series of subgoals and their corresponding actions that may be incomplete, your task is to
judge whether the subgoals and actions can reached a final answer or conclusion for the problem.

The grounded actions must be the one in available action list.The available action list is { ACTION_LIST}

If the actions can reached a final answer, you should directly output "Final answer reached". Otherwise, you should give
corrections to the original subgoals and their corresponding actions. It is not necessary to be similar to the original subgoals and

actions.

Task:{ TASK}

Reference subgoals: {REF_SUBGOALS}
Reference actions: {REF_ACTIONS}
Judged subgoals: {SUBGOALS}

Judged actions: { ACTIONS}

Your output should follow the format:

If can reached a final answer, directly output "Final answer reached". Else, output corrected subgoals and actions following this

format:

Corrected Subgoals: <series of subgoals to complete the task in one line, Each Subgoal begins with Subgoal idx>

Corrected Actions: <corresponding actions in one line>

Table 8: The prompt of critic model to correct action sequences.

A.4 Action Interfaces and Execution Tools for
Complex Interactive Tasks

For each defined action in the action interfaces, a
corresponding backend execution tool is provided
to enable the implementation of that action. Our
setup follows the approach described in Yin et al.
(2024b). We have adopted the same configura-
tion to ensure comparability between our work and
theirs.

As shown in Table 9a, for QA tasks, we
use Wikipedia and Google Search APIs to
find relevant knowledge about entities. Addi-
tionally, we use a semantic matching model,
dpr-reader-multiset-base®, employed in
Dense Passage Retrieval (DPR) (Karpukhin
et al., 2020), to retrieve paragraphs based on the
query. Following the approach from ReWOO (Xu
et al., 2023), we also utilize GPT-series models
as a straightforward QA tool to respond to
queries based on the retrieved knowledge or prior
interactions.

In Table 9b, web tasks involve real mouse and
keyboard operations such as typing, clicking, and
selecting HTML tags. To identify the appropri-
ate HTML tags to operate on, we use a DeBERTa
model* that ranks and retrieves relevant tags based
on the current action, as seen in the AgentBench
evaluation.

3https ://huggingface.co/facebook/
dpr-reader-multiset-base.

4https ://huggingface.co/osunlp/MindAct_
CandidateGeneration_deberta-v3-base.

14

As illustrated in Table 9c, WolframAlpha API °
serves as the main tool for mathematical tasks, as
it is capable of executing a wide range of math-
ematical functions, including formula computa-
tion and equation solving. For more advanced
math operations like sorting, we leverage OpenAl
Codex (Chen et al., 2021) to generate short code
snippets for execution.

For the unseen task WebShop, the actions
include Search, FeatureRetrieve, Pick, and
Click. The Search and Click actions are
implemented using the embedded features pro-
vided in the official WebShop virtual environ-
ment® following (Liu et al., 2024). Mean-
while, FeatureRetrieve and Pick rely on the
dpr-reader-multiset-base, which helps select
the most relevant items and their features based on
the query.

5https: //www.wolframalpha.com/.
6ht’cps: //github.com/princeton-nlp/WebShop.

https://huggingface.co/facebook/dpr-reader-multiset-base
https://huggingface.co/facebook/dpr-reader-multiset-base
https://huggingface.co/osunlp/MindAct_CandidateGeneration_deberta-v3-base
https://huggingface.co/osunlp/MindAct_CandidateGeneration_deberta-v3-base
https://www.wolframalpha.com/
https://github.com/princeton-nlp/WebShop

Task Type Action Types Function Descriptions Tools

KnowledgeQuery(Entity) -> Knowledge Query the entity knowledge Wikipedia, Google Search
ParagraphRetrieval (Knowledge, Query) Retrieve relevant paragraphs dpr-reader-multiset-base
0A -> Paragraphs based on the query
Answer the query based on .
A(Context -> Al R PT-series LLMs
QA(Context, Query) nswer the provided context GPT-series/open s
Calculator(Expression) -> Value Calculate given mathematical expressions WolframAlpha
(a) Actions used in complex QA tasks.
Task Type Action Types Function Descriptions Implementation
Click(Env, Query) -> Tag Locate the tag to be clicked based on the query
Locate the relevant tag based on the query
Type(Env, Query, Text) -> Tag, Text .
Web ype(Query) e and output the typed text HTML Simulator
Locate the relevant tag based on the query
->
Select(Env, Query, Text) Tag, Text and output the selected option
(b) Actions used in web tasks.
Task Type Action Types Function Descriptions Implementation
Calculator(Expression) -> Value Calculate mathematical expressions
SetEquation(Expression) -> Equation Set equations based on the given expression
SolveEquation(Equation) -> Solutions Solve the system of equations WolframAlpha
Math
Define(Variable) -> Variable Define a variable
SolveInequality(Inequality) -> Solutions Solve the inequality
Code(Function_Description) -> Code Generate code for mathematical functions gpt-3.5-turbo
Count(List) -> Number Count the number of elements in a list Python

(c) Actions used in math tasks.

Table 9: Action interfaces and execution module implementations for complex interactive tasks.

15

	Introduction
	Related work
	Task Preliminary
	Multi-agent Joint Alignment Tuning
	Initial Tuning
	Planning Agent Alignment
	Grounding Agent Improving

	Theoretical analysis
	Experimental Setup
	Benchmarks and Evaluation Metrics
	Baselines
	Implementation Details

	Experiment results
	Overall Performance
	Ablation Study
	Hyperparameter Analysis
	Impact of Different Critic Model.
	Training Iteration Control Analysis
	Case Study

	Conclusion
	Appendix
	Implementation Details
	Case Study
	Prompts
	Action Interfaces and Execution Tools for Complex Interactive Tasks

