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ABSTRACT

Vision foundation models (VFMs) have achieved strong performance across var-
ious vision tasks. However, it still remains challenging to apply VFMs for
cross-domain few-shot segmentation (CD-FSS), which segments objects of novel
classes under domain shifts using only a few labeled exemplars. The challenge
is mainly driven by two factors: (1) limited labeled exemplars per novel class
relative to the scale of VFM pre-training, causing overfitting prone under retrain-
ing, and (2) target-domain shifts underrepresented during pre-training, inducing
cross domain inconsistency and layerwise sensitivity. To address these issues,
we propose Hierarchical Exemplar Representation Adaptation (HERA), a three-
stage select-regularize-calibrate VFM-based segmentation framework that learns
effectively from limited labels and adapts to novel domains without source-data
retraining. We first design Hierarchical Layer Selection (HLS) to adaptively iden-
tify the most informative VFM layer using a data-dependent Exemplar Transfer
Risk (ETR) computed for each candidate layer. Then Prior-Guided Regulariza-
tion (PGR) regularizes interactions on the selected representation, yielding well-
structured local signals for the subsequent stage. Furthermore, Pixelwise Adaptive
Calibration (PAC) combines the selected representation with the refined interac-
tion maps to calibrate pixelwise predictions, producing consistent masks. To-
gether, these stages form a hierarchical select–regularize–calibrate pipeline that
guides frozen VFM features in new domains while fine-tuning less than 2.7% of
parameters at test time. Extensive experiments show that HERA surpasses the
state-of-the-art by more than 6.5 mIoU across multiple CD-FSS benchmarks.

1 INTRODUCTION

Few-shot semantic segmentation (FSS) aims to generate pixel-level predictions for novel classes
using only a few labeled support exemplars. Existing methods (Wang et al., 2019; Min et al., 2021;
Zhang et al., 2021; Fan et al., 2022) learn class-agnostic correspondences from constructed pairs of
support and query images, which transfers knowledge from base to novel classes and yields strong
in-domain generalization. However, when the deployment distribution differs from the training
distribution, the learned correspondences and class prototypes degrade, leading to large performance
drops. This motivates cross-domain few-shot segmentation (CD-FSS), which seeks to generalize to
novel classes in unseen target domains using only a few labeled support exemplars.

Existing CD-FSS methods (Herzog, 2024; Tong et al., 2024; Nie et al., 2024) predominantly rely
on CNN backbones such as ResNet-50, and typically extend in-domain FSS either by retraining
on source data with domain-generalization techniques or by mining cross-image correspondences.
Although effective in controlled settings, these approaches are costly and depend on source data.
Their convolutional inductive biases limit long range reasoning and robustness under distribution
shift, leading to overfitting with sparse labels. Given these limitations, replacing CNN backbones
with vision foundation models (VFMs) yields stronger and more transferable representations.

VFMs are pretrained vision backbones that provide transferable representations across recognition,
segmentation, and multimodal tasks (Oquab et al., 2023; Chen et al., 2024c; Siméoni et al., 2025).
Despite these strengths, applying them to CD-FSS is challenging for two reasons. First, the few-
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Figure 1. Scarce labels and target domain shift co-occur in CD-FSS, making VFMs fragile in deployment.
Retraining overfits, representations misalign, and support to query correspondence becomes unstable. Our
method HERA, a three-stage select-regularize-calibrate framework adapting a frozen VFM at test time with
only limited labeled exemplars and no source data, achieving state-of-the-art performance.

shot regime offers only a handful of labeled exemplars per novel class, so retraining is prone to
overfitting, source dependent, and computationally prohibitive for large models. Second, distribu-
tion shifts place target domains outside pretraining coverage, so using frozen features or adapting all
layers indiscriminately yields cross-domain inconsistency and pronounced layer sensitivity, which
destabilize correspondence and pixel predictions. Empirically, VFM features exhibit sharp layer-
wise variation in transferability under shift (Raghu et al., 2021; Lee et al., 2022; Roh et al., 2024).
Adapting a single stable layer reduces degrees of freedom and curbs overfitting. Therefore, it is
necessary to adopt source-free test-time adaptation (Liang et al., 2025) that first selects the most
informative layer for adaptation and then keeps the remaining backbone frozen while updating only
a small subset of parameters.

To address these issues, we present Hierarchical Exemplar Representation Adaptation(HERA), as
shown in Fig. 1, an efficient VFM-based segmentation framework that learns from limited labels
and adapts to novel domains without source data retraining. We first propose Hierarchical Layer
Selection (HLS) to estimate a per episode Exemplar Transfer Risk (ETR) for each candidate layer
from the few labeled supports and the forward activations, and choose the lowest risk layer as the
working representation. We then confine test time updates to a small subset of parameters at this
layer and keep the rest of the backbone frozen.

Even with a stable representation, token interaction maps, such as the self attention maps used
in ViTs, remain noisy under distribution shift. To mitigate this, Prior Guided Regularization (PGR)
regularizes the attention on the selected representation with a lightweight spatial prior, strengthening
locality and structural consistency while preserving global coverage. Finally, Pixelwise Adaptive
Calibration (PAC) combines the selected representation with these prior guided attention maps and a
query-image prototype-contrast map to calibrate pixel-level predictions, correcting residual artifacts
along thin boundaries and in low-contrast regions. In summary, our key contributions include:

• We present HERA, a source-free test-time adaptation framework for CD-FSS with VFMs
that organizes adaptation as select, regularize, and calibrate, keeps the backbone frozen,
and updates fewer than 2.7% of parameters at inference.

• We introduce Hierarchical Layer Selection (HLS) with a data dependent Exemplar Transfer
Risk (ETR) that selects the lowest risk layer per episode from the few labeled support
images and forward activations, localizing adaptation to a small parameter subset. And
we further couple Prior Guided Regularization (PGR) and Pixelwise Adaptive Calibration
(PAC) to regularize target-side structure and calibrate pixel-wise predictions, forming a
coherent hierarchy from representation to prediction.

• Extensive experiments on multiple CD-FSS benchmarks show consistent gains over prior
methods, improving by more than 6.5 mIoU, with ablations validating each stage and the
layer selection criterion and confirming strong parameter efficiency.

2 RELATED WORK

Few-shot semantic segmentation (FSS) aims to predict pixel-level masks for novel classes using
only a few labeled supports per class. Most existing methods fall into two families. Prototype based
approaches form class prototypes in feature space and classify queries by similarity (Dong & Xing,
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2018; Li et al., 2021; Lang et al., 2022; 2023). Affinity based approaches compute dense correlations
or attention between support and query features to propagate context (Lu et al., 2021; Min et al.,
2021; Fan et al., 2022; Peng et al., 2023). Subsequent works strengthen FSS through multi scale
context aggregation, prototype refinement, and mask-level regularization (Tian et al., 2020; Peng
et al., 2023; Chen et al., 2024b), yet most assume matched training and test distributions, leaving
robustness to domain shift largely unexplored.

Cross-domain few-shot segmentation (CD-FSS) aims to generalize to novel classes in a unseen
target domain using only a few labeled support exemplars. Prior work is largely CNN based and
follows two lines. Source-side training performs meta learning or domain generalization on source
data before deployment (Lei et al., 2022; Su et al., 2024; Chen et al., 2024b; Fan et al., 2025),
which can be effective but requires continued access to source data and repeated retraining. Target
domain supervised adaptation either mines correspondences across images or fine-tunes task heads
and adapter modules using a few labeled supports (Wang et al., 2022b; Herzog, 2024; Tong et al.,
2024; Nie et al., 2024). Despite progress, these pipelines are costly or source dependent, and con-
volutional inductive biases limit long range reasoning and robustness under distribution shift. In
contrast, we adopt effectively VFM-based segmentation framework without source-data retraining.

Vision foundation models (VFMs) are largely ViT-based backbones pre-trained at scale with self,
weakly, or semi supervised objectives (Oquab et al., 2023; Chen et al., 2024c; Siméoni et al., 2025;
Kirillov et al., 2023). Representative models include CLIP (Radford et al., 2021) for image-text
alignment, MAE and EVA02 (He et al., 2022; Fang et al., 2023; 2024) for masked-image modeling,
SAM (Kirillov et al., 2023) for promptable segmentation, and DINO (Oquab et al., 2023; Siméoni
et al., 2025) for self-distillation with strong objectness cues. These models provide transferable
hierarchical features and often yield competitive segmentation with a frozen encoder. Specially in
DINOv3 (Siméoni et al., 2025), intermediate layers present coarse-to-fine semantics and attention
that is locally coherent and globally aware, which suits support–query matching. Under distribution
shift, however, layer utility varies across episodes and correspondence becomes unstable, so fixed
layer choices or uniform fine-tuning are unreliable. We therefore adopt ViT-based VFMs with per-
episode selection of a stable layer, followed by hierarchical regularization and calibration.

Test-time adaptation (TTA) adapts deployed models to target data using unlabeled test sam-
ples (Wang et al., 2020; Jia et al., 2024; Liang et al., 2025). Common routes minimize entropy or
consistency, update statistics, such as BN re-estimation, apply whitening or stylization, and perform
contrastive or clustering-based alignment for segmentation (Wang et al., 2022a; Gong et al., 2022;
Kang et al., 2024). Although deployment friendly, they optimize surrogate losses on queries, require
sizable trainable subsets or lengthy per-image updates, and are weakly coupled to the episodic nature
of CD-FSS. In parallel, parameter-efficient fine-tuning (PEFT) updates a small fraction of weights
via adapters, prompts, or low-rank modules (Han et al., 2024; Hu et al., 2022; Xing et al., 2024;
Chen et al., 2022b;a), but for dense prediction it often targets single-level proxies and lacks episode-
aware alignment. Our approach unifies TTA and PEFT by updating a small parameter subset at test
time on a frozen backbone, guided by stable representation selection.

3 INTRODUCING THE HERA FRAMEWORK

3.1 ARCHITECTURE OVERVIEW

Cross-domain few-shot segmentation (CD-FSS) follows an episodic K-shot protocol: given a
support–query set S = {(Iis,M i

s)}Ki=1 and a query image Iq , models trained on source domains
are evaluated on target domains with disjoint label spaces. Leveraging vision foundation models
(VFMs) is attractive. However, under distribution shift, per episode alignment between support and
query becomes unstable, causing errors to cascade from representation to prediction. In addition,
VFM transferability varies across layers and local interactions remain noisy.

We therefore propose Hierarchical Exemplar Representation Adaptation(HERA), a three-stage
select-regularize-calibrate framework that adapts at test time with a frozen backbone. We first design
Hierarchical Layer Selection (HLS) to select a stable representation layer ℓ∗ by minimizing a data
dependent Exemplar Transfer Risk (ETR) computed per episode. Then Prior Guided Regularization
(PGR) refines the self attention at ℓ∗ with entropy-gated Gaussian priors, strengthening locality and
structural consistency while preserving global coverage. Finally, Pixelwise Adaptive Calibration
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Figure 2. The proposed HERA Architecture. Hierarchical Layer Selection (HLS) estimates the leave-one-out
episode risk Rlayer and routes to ℓ⋆ , chosen from a single layer ℓsingle or a local-fusion set ℓfusion. At ℓ⋆,
Prior Guided Regularization (PGR) calibrates self attention by injecting an entropy-gated Gaussian prior per
head. Finally, Pixelwise Adaptive Calibration (PAC) adds residual logits ℓsim, ℓattn, ℓimg and linearly fuses
them with the base logit, forming a hierarchical select-regularize-calibrate pipeline.

(PAC) calibrates pixel-wise predictions via lightweight residuals to recover thin structures and de-
noise low-contrast regions. Together, these stages form a hierarchical path from representation to
prediction and transfer a few labeled supports into reliable guidance in new domains.

3.2 HIERARCHICAL LAYER SELECTION

Given a frozen ViT backbone f that produces layerwise features F ℓ, we observe pronounced cross
layer transferability variance under distribution shift. We therefore make per-episode layer selection
the primary stage of HERA. HLS minimizes the data dependent episode-level ETR over candidate
layers and outputs the selected representation F ℓ∗ , which conditions downstream modules.

3.2.1 LAYER WISE VARIABILITY UNDER SHIFT

As illustrated in Fig. 3, early to mid layers 0-11 emphasize low-SNR edges and textures, whereas
mid to high layers 12-23 yield class-agnostic objectness with sharper boundaries, with a consistent
semantic shift around layers 11-12. Because the most informative layer varies across episodes and
domains, any fixed choice is brittle. Episode-wise selection is thus crucial for robust support–query
alignment. We therefore restrict routing to layers 12-23, where semantics consolidate while spatial
detail is preserved. Although single-layer routing in this band often performs well but fragile on thin
structures, occlusions, and clutter, as layers exhibit complementary failure modes. The optimal layer
may also fluctuate across episodes within the same domain. To curb this instability, we augment the
single-layer choice with a compact local-fusion candidate set centered at the best single layer and
evaluate all candidates under a unified episode-level risk. This adds negligible cost and yields a
more reliable routed representation for subsequent modules.

3.2.2 PER-EPISODE LAYER SELECTION VIA EXEMPLAR TRANSFER

Following Sec. 3.2.1, we estimate episode-level evidence at test time using leave-one-out and adapt
only a small subset of parameters. Let the support set be S = {(Iis,M i

s)}Ki=1. In the i-th itera-
tion, (Iis,M

i
s) acts as the pseudo-query Si

q and the remaining supports form S(−i). We compute a
prototype P i

s from S(−i) and extract the pseudo-query feature F i
q from Iis at a candidate layer ℓ.

We define Exemplar Transfer Risk (ETR) as one minus the average pseudo-query mIoU:

Rlayer = 1− 1

K

K∑
i=1

mIoU
(
cos(P i

s , F
i
q), M

i
q

)
, ℓ⋆ = argmin

ℓ∈C
Rlayer(ℓ), (1)
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Figure 3. Layerwise variability in DINOv3. Layerwise foreground-logit heatmaps across ViT layers 0-23 for
two episodes from distinct target domains. A clear semantic shift emerges around layers 11-12, yet the optimal
layer for mask prediction differs across episodes, indicating episode and domain dependent variability in the
best layer. This variability motivates routing to an episode-specific layer.

Algorithm 1 Hierarchical Layer Selection (HLS)

1: Require: K-shot support set S, candidate layers L = {12, . . . , 23} and DINOv3 backbone f .
2: Select trainable parameters
3: for n = 1 to K−1 do ♢ Episode-level routing evidence (n-shot): see Sec. 3.2
4: ▷ Stage I: Single-layer evidence
5: Assemble the n-shot episode Sn; extract per-layer features {F ℓ}ℓ∈L with f
6: Compute Rlayer(ℓ) on Sn and obtain ℓsingle single risk, see Eq. (1)
7: ▷ Stage II: Local fusion around ℓsingle
8: Construct a local fusion pool U(ℓsingle)
9: For each U ∈ U , compute fusion weights wℓ and fused feature FU see Eq. (3)

10: Choose l⋆ = argmin{ℓsingle}∪U(ℓsingle) Rlayer(l) and fix F ℓ⋆ unified risk, see Eq. (1)
11: for i = 1 to K do ♢ Pseudo–query cross-evaluation
12: Form ⟨S(−i), (Iis,M

i
s)⟩ at fixed F ⋆

13: Compute L(i,n)
TTA over all n-support combinations see Eq. (2)

14: end for
15: Update ϕ by back-propagating the average loss L(n)

TTA; keep f frozen ♢ Parameter-efficient TTA
16: end for

where C contains both single-layer and local-fusion candidates, and mIoU(·) compares the predicted
mask with the pseudo-query ground truth M i

q , where M i
q=M i

s. The minimizer ℓ⋆ is the routed layer
used in subsequent stages.

With ℓ⋆ fixed, we freeze the backbone and finetune only a small parameter set ϕ using the same
leave-one-out construction, optimizing a binary segmentation loss on probabilities:

LTTA =
1

K

K∑
i=1

BCE
(
cos(P i,ℓ⋆

s , F i,ℓ⋆

q

)
, M i

q

)
, (2)

where P i,ℓ⋆

s and F i,ℓ⋆

q are computed at the routed layer ℓ⋆. To mitigate overfitting (He et al., 2020;
Boudiaf et al., 2021), we fine-tune only the selected layer’s mlp.fc for single-layer routing and
fusion-mlp.fc for local-fusion routing (see Sec. A) and all remaining parameters are frozen.

3.2.3 TWO-STAGE SELECTION AND PARAMETER-EFFICIENT ADAPTATION

Building on the analysis in Sec. 3.2.2, we first determine the best single layer ℓsingle via leave-one-
out evidence, and then form a compact set of local-fusion candidates U ⊆ L = {12, . . . , 23} in
its neighborhood. Because the last layer of DINOv3 exhibits the strongest semantic aggregation in
Fig. 3, every multi-layer candidate includes ℓ23 (see Sec. B) to compensate occlusion or fragmented
shapes. All candidates are evaluated under the same episode-level risk ETR in Eq. (1).

For any candidate U , let rℓ = Rsel(ℓ) denote the single-layer selection risk. Define the distance
d(ℓ, ℓ23) = |ℓ− ℓ23| and compute fusion weights and the fused feature as:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Gaussian prior Regularized attention Regularized attentionSelf attention: Self attention: Gaussian prior

Figure 4. Prior Guided Regularization (PGR). Per-head Gaussian priors, gated by entropy, are injected into
QK⊤ logits to calibrate self attention at ℓ⋆, locality is strengthened, far-field spurious peaks are suppressed,
while preserving the necessary global coverage.

wℓ =
exp

(
− β rℓ − dist(ℓ, ℓ23)/τ

)∑
j∈U exp

(
− β rj − dist(j, ℓ23)/τ

) , F U =
∑
ℓ∈U

wℓ F
ℓ, (3)

where β > 0 controls reliance on the evidence rℓ and τ > 0 is a locality bandwidth that favors
deeper, semantically aggregated layers. As τ → ∞, the locality term vanishes; as β → ∞, the
weights collapse to argminℓ∈U rℓ, approaching the single-layer case. When evidence spreads across
adjacent layers, a moderate τ trades off evidence and aggregation, reducing routing instability.

Fixing the routed layer at ℓ⋆ mitigates the layer-wise component of episode-wise matching risk,
which provides a stable, episode-conditioned representation for downstream adaptation.

3.3 PRIOR GUIDED REGULARIZATION

With the routed layer fixed by HLS, the representation provides stable global semantics, yet head
specific self attention remains noisy under shift. Because DINO features provide mainly layer-
level guidance, head-level maps show spurious long range links, insufficient coverage of nearby
neighborhoods and thin boundaries, and strong cross head heterogeneity. A uniform, head-agnostic
prior is therefore inadequate. We calibrate attention per head using a query-centered Gaussian prior
whose bandwidth is set by an entropy gate derived from head’s attention. Local and confident heads
receive a sharper prior, whereas globally dispersed heads receive a more diffuse prior. This head-
wise, entropy-gated calibration enforces locality while preserving necessary global coverage.

Head-wise Gaussian Prior with Entropy Gating. Attention heads in ViTs exhibit specialization
in spatial scope and semantics (Raghu et al., 2021; Lee et al., 2022; Roh et al., 2024). We therefore
impose a head-wise Gaussian prior and set its bandwidth by an entropy gate, yielding a sharper prior
for local, confident heads and a more diffuse prior for globally dispersed ones:

ϕ(pj ; pi, σ) = exp
(
− ∥pj − pi∥2

2σ2

)
, (4)

with two predefined bandwidths, σloc < σglo, capturing local aggregation and global coverage. Let
H̄

(h)
q denote the mean row entropy of the QK⊤ logits at head h, indicating global dispersion, and

H̄
(h)
k that of KK⊤, indicating local stability. Using a logistic gate g(·) with temperature α > 0:

γh = g
(
α(H̄(h)

q − H̄
(h)
k )

)
, σh = (1− γh)σglo + γh σloc, (5)

where heads with stronger locality, indicating larger H̄(h)
q − H̄

(h)
k , receive a sharper prior, globally

dispersed heads receive a more diffuse prior.

Logit-Level Injection. We modify only the patch-grid submatrix for head h; CLS and register
tokens remain unchanged in DINOv3. Let L(h)

pp denote the QK⊤ logits block and the calibrated
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attention is obtained by adding the log-prior to the logits:

P
(h)
ij =

ϕ(pj ; pi, σh)∑
j′ ϕ(pj′ ; pi, σh)

, Ã(h)
pp = softmax

(
L(h)
pp + logP (h)

)
. (6)

This per-head, entropy-gated calibration enforces data adaptive locality, tightening near-field focus,
damping far-field artifacts, and preparing the attention for subsequent pixelwise refinement.

3.4 PIXELWISE ADAPTIVE CALIBRATION

With the layer and attention stages in place, pixelwise decisions remain unstable under shift, leaving
residual errors along thin boundaries and in low-contrast regions. PAC explicitly performs pixelwise
calibration by fusing three lightweight cues computed from F ℓ∗ and the refined attention, namely
feature similarity, one hop attention propagation, and image appearance. This fusion corrects resid-
ual artifacts and yields consistent masks:

ℓfinal(x) = ℓ0(x) + wsimℓsim(x) + wattnℓattn(x) + wimgℓimg(x), (7)
where ℓ0(x) is the base logit from the selected representation and w· are fixed scalar weights
(see Sec. C ). A single-step refine-vote gate applies residuals only when the estimated gain is posi-
tive, adding negligible overhead (see Sec. D). Taken together, the three stages realize a hierarchical
select-regularize-calibrate pipeline that adapts at test time with a frozen backbone.

4 EXPERIMENTS

Evaluation Datasets and Metrics. We evaluate in a source-free test-time adaptation setting without
access to source data. And we evaluate on four public target datasets: FSS-1000 (Li et al., 2020), a
natural image corpus spanning 1,000 object classes; DeepGlobe (Demir et al., 2018), a satellite land
cover dataset with seven categories and pronounced texture and scale shifts; ISIC2018 (Tschandl
et al., 2018; Codella et al., 2019), a dermoscopic skin lesion dataset with low-contrast and irregular
boundaries; and Chest X-ray (Jaeger et al., 2013; Candemir et al., 2013), a medical radiograph
dataset with substantial grayscale and structural variation. We follow the episodic K-shot protocol
and report mean IoU for 1-shot and 5-shot. All methods use identical episode sampling, a shared
preprocessing pipeline, and a unified input resolution of 400× 400.

Implementation Details. We use SSP (Fan et al., 2022) as the few-shot head and run HERA on
a ViT backbone (default DINOv3 (Siméoni et al., 2025)). Under test-time adaptation (TTA), each
target episode proceeds as follows: (i) HLS selects the routed layer, and (ii) we form leave-one-out
splits of the K-support examples and minimize the loss in equation 2 on these splits, perform-
ing K−1 lightweight updates. Only a small parameter subset is trainable: the single-layer variant
updates that layer’s mlp.fc, and the local-fusion variant updates fusion-mlp.fc. All other weights
remain frozen. We use Adam with a learning rate of 1.3×10−3. In the 1-shot setting, we synthesize
two augmented views of the support for TTA. All experiments run on a single NVIDIA A100. Fewer
than 2.7% of parameters are updated, so compute and memory overheads are negligible.

4.1 COMPARISON EXPERIMENTS

In Table 1, we compare HERA with existing cross-domain few-shot segmentation (CD-FSS) meth-
ods. HERA with DINOv3 achieves 68.3/77.9 mIoU in the 1-shot and 5-shot settings, outperforming
IFA (Nie et al., 2024) by 0.5/6.5 points and the no-retraining baseline SSP by 11.0/14.8 points. With
a smaller backbone, HERA with DINOv2 (Oquab et al., 2023) reaches 62.6/73.4 mIoU and still sur-
passes most retraining-based CD-FSS approaches, indicating that explicit layer selection, attention
regularization, and pixel-level calibration adapt VFMs without retraining on source data.

On DeepGlobe, where clutter and fragmented foregrounds weaken few shot cues, HERA delivers
large improvements in the 5-shot setting. On ISIC and Chest X-ray, which have clean backgrounds
but thin and low contrast boundaries, gains are steady, for example 11.8/13.3 mIoU over IFA on
Chest X-ray in 1-shot and 5-shot. On FSS-1000, despite substantial appearance diversity across
one thousand classes, the same hierarchical procedure supports robust class agnostic matching and
outperforms recent retraining methods while using no source data.

Qualitative results in Fig. 5 show that HERA with a frozen ViT produces cleaner masks, reduced
background leakage, sharper boundaries, and more complete object coverage.
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Table 1. Quantitative comparison on the CD-FSS benchmark. All compared methods, except HERA,
are trained on the Pascal VOC source domain and evaluated on four distinct targets. Best and
second-best results are shown in bold and underline. The † indicates results reproduced by us. The
‡ indicates a ViT-base backbone. In-domain FSS methods are applied to CD-FSS without retraining
(✗), while most CD-FSS methods retrain on the source domain (✓) to enhance generalization.

Methods Publication Retraining DeepGlobe ISIC Chest X-ray FSS-1000 mIoU

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PGNet (Zhang et al., 2019a) ICCV 2019 ✗ 10.7 12.4 21.9 21.3 34.0 23.0 62.4 62.7 32.2 31.1
PANet (Wang et al., 2019) ICCV 2019 ✗ 36.6 45.4 25.3 34.0 57.8 69.3 69.2 71.7 47.2 55.1

CaNet (Zhang et al., 2019b) CVPR 2019 ✗ 22.3 23.1 25.2 28.2 28.4 28.6 70.7 72.0 36.6 38.0
RPMMs (Yang et al., 2020) ECCV 2020 ✗ 13.0 13.5 18.0 20.0 30.1 30.8 65.1 67.1 31.6 32.9
PFENet (Tian et al., 2020) TPAMI 2020 ✗ 16.9 18.0 23.5 23.8 27.2 27.6 70.9 70.5 34.6 35.0

RePRI (Boudiaf et al., 2021) CVPR 2021 ✗ 25.0 27.4 23.3 26.2 65.1 65.5 71.0 74.2 46.1 48.3
HSNet (Min et al., 2021) ICCV 2021 ✗ 29.7 35.1 31.2 35.1 51.9 54.4 77.5 81.0 47.6 51.4
SSP† (Fan et al., 2022) ECCV 2022 ✗ 40.5 49.6 35.5 48.2 74.2 74.5 79.0 80.2 57.3 63.1

PATNet (Lei et al., 2022) ECCV 2022 ✓ 37.9 43.0 41.2 53.6 66.6 70.2 78.6 81.2 56.1 62.0
PMNet (Chen et al., 2024a) WACV 2024 ✓ 37.1 41.6 51.2 54.5 70.4 74.0 84.6 86.3 60.8 64.1
ABCDFSS (Herzog, 2024) CVPR 2024 ✓ 42.6 49.0 45.7 53.3 79.8 81.4 74.6 76.2 60.7 65.0
APSeg‡ (He et al., 2024) CVPR 2024 ✓ 35.9 40.0 45.4 54.0 84.1 84.5 79.7 81.9 61.3 65.1

DR-Adapter (Su et al., 2024) CVPR 2024 ✓ 41.3 50.1 40.8 48.9 82.4 82.3 79.1 80.4 60.9 65.4
APM (Tong et al., 2024) NeurIPS 2024 ✓ 40.9 44.9 41.7 51.2 78.3 82.8 79.3 81.9 60.0 65.2

IFA (Nie et al., 2024) CVPR 2024 ✓ 50.6 58.8 66.3 69.8 74.0 74.6 80.1 82.4 67.8 71.4
LoEC‡ (Liu et al., 2025) CVPR 2025 ✓ 42.1 51.5 52.9 62.4 83.9 84.1 81.1 83.7 65.0 70.4

HERA‡
(DINOv2) – ✗ 41.2 57.8 55.6 68.7 83.2 86.9 70.2 80.3 62.6 73.4

HERA‡
(DINOv3) – ✗ 44.6 63.4 61.2 73.6 85.8 87.9 81.6 86.7 68.3 77.9

Deepglobe ISIC Chest X-ray FSS-1000
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Figure 5. Qualitative results on the Chest X-ray, ISIC, FSS-1000, and Deepglobe datasets under the 1-shot
setting. The prediction and ground truth of query images are in red and green, respectively.

Table 2. Ablation studies for components of our method.

Method DeepGlobe ISIC Chest X-ray FSS-1000 5-shot ∆ Avg.

Baseline 49.6 48.2 74.5 80.2 63.1 0.0
+ HLS 61.7 71.4 87.7 86.0 76.7 +13.6
+ HLS + PGR 62.6 72.0 88.0 86.5 77.3 +14.2
+ HLS + PAC 62.1 71.6 88.3 86.6 77.2 +14.1
+ HLS + PGR + PAC 63.4 73.6 87.9 86.7 77.9 +14.8

Table 3. PAC branch ablation.

Variant 5-shot ∆ Avg.

Baseline + HLS + PGR 77.27 –
+ l-sim 77.57 +0.30
+ l-attn 77.49 +0.22
+ l-img 77.45 +0.18
+ l-sim + l-attn + l-img 77.91 +0.64

4.2 ABLATION STUDIES

Component ablation. We ablate HERA in the 5-shot setting with a frozen VFM backbone as
shown in Table 2. The SSP baseline averages 63.1 mIoU. Adding HLS lifts the mean to 76.7 mIoU,
a gain of 13.6 mIoU and the major source of improvement. Building on HLS, PGR and PAC pro-
vide complementary refinements, reaching 77.3 mIoU and 77.2 mIoU, corresponding to gains of
14.2 mIoU and 14.1 mIoU over the baseline. The full stack attains 77.9 mIoU, a total gain of 14.8
mIoU. The largest per-dataset improvement appears on ISIC, from 48.2 to 73.6 mIoU, a gain of
25.4 mIoU. Overall, per-episode layer selection accounts for most of the benefit, and attention regu-
larization and pixel-level calibration add stable complementary gains, consistent with the top-down
select–regularize–calibrate design.
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Table 4. Layer selection ablation with a frozen backbone (5-shot mIoU↑). Rule lists the per episode
selector and notation includes ℓ layer index; gℓ gradient w.r.t. features of layer ℓ; Ssem, Sstr, C
normalized semantic, structure, and complexity scores; and mIoUsup(ℓ) support only mIoU.

Method Rule DeepGlobe ISIC Chest X-ray FSS-1000 Avg. ∆

Static-Max argmax
ℓ

(
αSsem(ℓ) + β Sstr(ℓ) + γ C(ℓ)

)
58.8 67.2 80.1 81.4 71.9 0.0

Grad-Max argmax
ℓ

∥gℓ∥ 60.2 62.0 85.4 84.7 73.1 +1.2

Grad∆-Max argmax
ℓ

∥∥gℓ − gℓ−1

∥∥ 60.4 61.7 86.0 84.8 73.2 +1.3

HLS (ETR) argmin
ℓ

(
1 − mIoUsup(ℓ)

)
61.7 71.4 87.7 86.0 76.7 +4.8

PGR-PAC interplay and PAC branches. On top of HLS at 76.7 mIoU, adding PGR lifts the
mean to 77.3 mIoU, adding PAC yields 77.2 mIoU, and enabling both reaches 77.9 mIoU; the
corresponding gains over HLS are 0.6, 0.5, and 1.2 mIoU, see Table 2. Starting from HLS + PGR
at 77.27 mIoU, Table 3 further decomposes PAC: the similarity residual ℓsim, the one hop attention
prior ℓattn, and the image cue ℓimg add 0.30, 0.22, and 0.18 mIoU, respectively, and using all three
reaches 77.91 mIoU, an additional 0.64 mIoU over HLS + PGR. Thus, with a frozen backbone,
layer selection, attention regularization, and pixel-level calibration act at complementary levels and
together yield cumulative gains.

Layer selection rationale. We compare per-episode selectors for test-time adaptation with a
frozen backbone, as shown in Table 4. Our criterion based HLS routes each episode to the layer
that maximizes support only mIoU, argminℓ

(
1−mIoUsup(ℓ)

)
, and provides task aligned, episode

aware feedback without extra parameters or surrogate losses. In contrast, Static Max scores feature
quality using semantic, structural, and complexity heuristics rather than task fit. Gradient proxies,
including Grad Max and Grad∆ Max, rank layers by gradient magnitude or change. These proxies
tend to favor the final blocks in ViTs because of residual connections and normalization, and they
correlate weakly with semantic alignment. HLS attains the best average of 76.7 mIoU. This is 4.8
above Static Max and 3.5 above the strongest proxy, which reaches 73.2. On ISIC the gain is large,
from 48.2 to 73.6 mIoU, an improvement of 25.4. These results highlight per-episode layer selec-
tion as the primary driver and justify using HLS as the entry point of HERA (see Sec. E). The gap
is larger on other VFM backbones, for example DINOv2 (Oquab et al., 2023).

Deployment cost in a new target domain. Many retraining and domain generalization methods
require tens to hundreds of GPU hours on source data prior to deployment. Our method requires
no source-data retraining and directly leverages VFMs. For a new target domain, we perform a
single adaptation step using the available supports. In the 1 shot setting, this adaptation takes 0.735
s, including 0.202 s for layer routing and 0.280 s for a lightweight parameter update. Only 2.69%
of parameters are trainable during this step. After adaptation, the same model is used for other
images from that domain with no further training. These measurements show that HERA enables
source-free and parameter-efficient adaptation for CD-FSS, providing high generalization efficiency,
convenient deployment, and low compute cost.

5 CONCLUSION

We first identify the primary bottleneck in applying vision foundation models (VFMs) to cross-
domain few-shot segmentation (CD-FSS) as layer-wise transferability variation, together with noisy
head-level interactions under shift, rather than limited representational capacity. We propose HERA,
a source-free test-time adaptation framework that turns a few labeled supports into reliable guidance
for VFMs in CD-FSS. HERA keeps the ViT backbone frozen and performs a three-stage select-
regularize-calibrate procedure. We design Hierarchical Layer Selection (HLS) to identify a stable
representation using the data-dependent Exemplar Transfer Risk (ETR) over candidate layers, then
Prior Guided Regularization (PGR) regularizes per-head attention on the selected representation
using an entropy-gated Gaussian prior that strengthens locality while preserving global coverage,
and Pixelwise Adaptive Calibration (PAC) finally fuses complementary signals, feature prototype
similarity, one-hop attention propagation, and image appearance to calibrate pixel-level logits, cor-
recting thin-boundary and low-contrast errors. Empirically, HERA surpasses the state-of-the-art by
more than 6.5 mIoU with low overhead and practical deployability across domains and backbones,
providing a lightweight recipe for leveraging VFMs in CD-FSS.
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ETHICS STATEMENT

All authors have read and agree to the ICLR Code of Ethics. This work involves no interventions
with human participants and collects no personally identifiable information. We use only publicly
available datasets under their original licenses and follow the stated terms of use. Potential risks and
mitigations are summarized below.

Privacy and security. No personal data are collected or released. Medical and dermoscopic im-
ages come from public, de identified sources, and any residual metadata are not used. Qualitative
examples are drawn exclusively from public datasets.

Bias and fairness. Benchmarks may contain demographic, geographic, or acquisition biases. We
report results across multiple domains, provide complete configuration details for external auditing,
and encourage further evaluation on broader populations and sensing conditions.

Dual use and misuse. The method could be repurposed for large scale monitoring or clinical triage
without proper oversight. Our artifacts are for research only. We do not release web scraping, re
identification, or deployment tools, and the models are not intended for clinical decision making.

Legal compliance. We comply with the licenses of all third party assets (code, models, datasets)
and cite their sources. Any additional third party terms are respected.

Research integrity and environmental impact. We document preprocessing, adaptation protocols,
and hyperparameters to support reproducibility. Parameter efficient test time adaptation reduces
compute for training relative to end to end retraining. We report hardware and runtime to facilitate
cost estimation. Where applicable, institutional review details are withheld for double blind review
and can be provided upon acceptance.

REPRODUCIBILITY STATEMENT

We provide the details required to reproduce our results: (i) complete hyperparameters, optimizer
settings, and adaptation budgets; (ii) dataset preprocessing, links, and splits, with episode sampling
policies that are seeded, one shot and five shot; (iii) code structure with scripts to reproduce all main
tables and figures, including ablations of HLS, PGR, and PAC, and the layer selection criterion; (iv)
checkpoints, logs, and exact trainable parameter counts; (v) hardware specifications (single NVIDIA
A100), input resolution (400× 400), and per episode runtime. All dependencies are version pinned,
with deterministic flags and seeds provided to enable bitwise stable reruns.
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A MLP ADAPTATION ON THE SELECTED REPRESENTATION LAYER

MLP head variants. With the backbone frozen and the working representation layer chosen by
HLS, we attach a small MLP head at that layer to improve support to query correspondence at test
time. We evaluate three variants: M0, no MLP head (apply fc=False); M1, MLP branch present but
frozen (apply fc=True, zero init=True; parameters fixed); and M2, a trainable MLP fine tuned at test
time on the selected layer (apply fc=True). Only the MLP head is updated, keeping the fraction of
updated parameters below 2.7%.

Table A.1. MLP ablation at the layer selected by HLS with the backbone frozen. ∆
denotes the improvement relative to the row above.

Variant mIoU@1 ∆ mIoU@5 ∆

M0: no MLP 65.66 – 75.20 –
M1: MLP frozen 66.33 +0.67 75.78 +0.58
M2: trainable MLP 68.29 +1.96 77.91 +2.13

Analysis. Starting from M0 at 65.66 mIoU in one shot and 75.20 mIoU in five shot, as shown in
Table A, adding a frozen residual MLP branch (M1) raises the means to 66.33 and 75.78 mIoU,
with gains of 0.67 and 0.58 over M0. This suggests that even a fixed projection stabilizes channel
scales and token mixing at the selected layer. Allowing this compact head to adapt at test time (M2)
further increases accuracy to 68.29 and 77.91 mIoU, adding 1.96 and 2.13 over M1. Cumulatively,
M2 improves over M0 by 2.63 in one shot and 2.71 in five shot, which correspond to relative gains of
about 4.0% and 3.6%, while keeping the fraction of updated parameters under 2.7%. These gains are
consistent with the Select Regularize Calibrate design. HLS provides a stable representation. The
small MLP recenters and rescales features to reduce support to query mismatch, and the resulting
representations interact more reliably with PGR and PAC. In practice, a single compact trainable
MLP on the selected layer delivers most of the benefit with minimal overhead.

B LOCAL FUSION AROUND THE ROUTED LAYER

After HLR selects the best single layer ℓsingle for each episode we form a compact neighborhood U
centered at ℓsingle and we include the last ViT layer L23 to mitigate fragmented shapes. We evaluate
all candidates under the same episodic objective as in Sec. 3.2.1. For any U let rℓ denote the single
layer ETR of layer ℓ. We compute the fusion weights and the fused representation as follows:

wℓ =
exp

(
− β rℓ − dist(ℓ, ℓ23)/τ

)∑
j∈U exp

(
− β rj − dist(j, ℓ23)/τ

) , FU =
∑
ℓ∈U

wℓ F
ℓ, (B.1)

Here β > 0 controls reliance on the data evidence rℓ, and τ > 0 is a locality bandwidth that biases
the fusion toward deeper semantically aggregated layers. As τ →∞ the locality term vanishes and
the solution reduces to single layer routing, that is argminℓ∈U rℓ. When evidence spreads across
adjacent layers a moderate τ balances data evidence and semantic aggregation and stabilizes routing.

Table B.1. Local fusion centered at the routed layer. We report average mIoU for the one shot and
five shot settings, along with the changes relative to using L23 alone and to excluding L23.

Variant mIoU avg. ∆ vs. L23 ∆ vs. no L23

1 shot 5 shot 5 shot 5 shot

F 0+L23, τ=0.0 66.58 75.49 0.00 0.00
F 0+L23, τ=2.0 68.29 77.85 2.36 2.36
F 0+no L23, pivot=last, τ=0.0 66.45 75.29 −0.20 0.00
F 0+no L23, pivot=ℓ⋆, τ=2.0 66.83 76.34 0.85 1.05

Analysis. Table B.1 compares single layer routing with local fusion. Local fusion centered at
L23 with τ=2.0 outperforms using L23 alone on both one shot and five shot averages. Excluding
L23 from the candidate set reduces performance. Redirecting fusion to the routed layer ℓ⋆ recovers
part of the performance drop, yet it remains inferior to configurations that include L23. By dataset,
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Table B.2. By dataset mIoU comparing L23 alone and local fusion. Including L23 in the candidate
pool and setting τ=2.0 yields the highest averages, with the largest gains on DeepGlobe and ISIC.

Backbone (DINOv3) DeepGlobe ISIC Chest X-ray FSS-1000 Average

1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot

F 0+L23, τ=2.0 44.59 63.43 61.17 73.64 85.80 87.88 81.59 86.69 68.29 77.91
F 0+L23, τ=0.0 42.90 61.49 55.17 66.53 87.06 88.29 81.20 85.63 66.58 75.49
F 0+no L23, pivot=last, τ=0.0 42.87 61.43 54.84 66.00 87.01 88.26 81.09 85.47 66.45 75.29
F 0+no L23, pivot=ℓ⋆, τ=2.0 42.32 63.11 56.41 68.25 87.44 88.41 81.16 85.58 66.83 76.34

Table B.2 reports larger gains on DeepGlobe and ISIC, consistent with evidence drift across episodes
and the need for deeper semantic aggregation. Therefore, we adopt local fusion with τ=2.0 and
retain L23 in the candidate pool by default.

C PIXELWISE ADAPTIVE CALIBRATION: DETAILS

Despite HLS and PGR, residual errors persist along thin boundaries, slender structures, and low
contrast regions. With the backbone frozen, PAC adds three lightweight residual branches in the
logit domain, coupled to the routed layer ℓ∗ and to the patch attention calibrated by PGR.

Feature similarity for semantic alignment. Let Fq(x) denote the query feature at ℓ∗. Foreground
and background prototypes, Pfg and Pbg, are computed by masked averaging over support features
at ℓ∗. We define the prototype difference logit as

ℓsim(x) = τsim
[
cos

(
Fq(x),Pfg

)
− cos

(
Fq(x),Pbg

)]
, (C.1)

where τsim is a small temperature. This branch recovers missed regions and sharpens local focus.

One hop attention for spatial consistency. Let Ã denote the row normalized patch to patch atten-
tion at ℓ∗ after PGR. Given the base foreground probability p0(x) = σ(ℓ0(x)), we propagate once
on the patch grid as

ℓattn(x) = τattn
[
(Ã p0)x

]
, (C.2)

This elongates responses along the object extent and suppresses spurious long range peaks, with
limited impact on the global distribution.

Image vector for appearance correction. Let v(x) denote a shallow appearance embedding for
color and texture as

ℓimg(x) = τimg

[
cos

(
v(x),ufg

)
− cos

(
v(x),ubg

)]
, (C.3)

Here ufg and ubg are image level prototypes, and τimg is a small temperature. This branch provides
light global denoising and prevents over shrinking.

The final logit is a linear combination in the logit domain:
ℓfinal(x) = ℓ0(x) + wsim ℓsim(x) + wattn ℓattn(x) + wimg ℓimg(x), (C.4)

where ℓ0(x) is the base logit from the selected representation and w· are fixed scalar weights. A sin-
gle step refine vote gate applies residuals only when the estimated gain is positive, adding negligible
overhead. Together, the three stages realize a hierarchical Select, Regularize, and Calibrate pipeline
that adapts at test time with a frozen backbone.

D ADAPTIVE GATING FOR PIXELWISE ADAPTIVE CALIBRATION

After HLS and PGR, residual errors concentrate along thin boundaries and in low contrast regions.
Pixelwise Adaptive Calibration (PAC) adds three lightweight residual branches in the logit domain,
namely feature similarity, one hop attention propagation, and image appearance, while the backbone
remains frozen.

To avoid negative transfer, we enable PAC only when leave one out voting on the supports predicts
a positive gain. Concretely, we treat each support as a pseudo query, compute the ∆mIoU with and
without PAC, and enable PAC on the true query if at least T votes are positive. In the one shot case,
we synthesize two augmented views of the support to obtain two votes.
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Table D.1. Effect of PAC gating thresholds. We report average mIoU (%) and the trigger rate of
the automatic gate. The best policy is to keep the gate always on for one shot, and to use automatic
gating with threshold 2/5 for five shot.

Policy 1 shot 5 shot Trigger rate (auto)

refine = off 67.54 76.67 -
auto, T=1 68.02 - 56.32
auto, T=2 - 77.91 74.57
auto, T=3 - 77.22 59.44
always on 68.29 77.80 -

Table D.2. By dataset mIoU and gate trigger rates. The recommended setting (one shot always on,
five shot automatic gating with threshold 2/5) yields the highest average mIoU.

DeepGlobe ISIC Chest X-ray FSS-1000 Average Avg. trigger rate (%)

Setting 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot

1 shot auto, 5 shot always 44.35 63.51 60.28 73.72 86.27 87.22 81.19 86.73 68.02 77.80 – –
Trigger rate (%) 55.83 – 50.00 – 19.50 – 99.95 – – 56.32 –

1 shot always, 5 shot auto 2/5 44.59 63.43 61.17 73.64 85.80 87.88 81.59 86.69 68.29 77.91 – –
Trigger rate (%) – 25.67 – 97.83 – 25.67 – 84.46 – – 74.57

1 shot always, 5 shot auto 3/5 44.59 63.41 61.17 73.40 85.80 87.95 81.59 86.63 68.29 77.85 – –
Trigger rate (%) – 5.83 – 69.00 – 5.83 – 74.92 – – 59.44

Analysis. Relative to HLS at 76.7 mIoU, PGR raises the mean to 77.3 (+0.6), PAC to 77.2 (+0.5),
and using PGR together with PAC yields 77.9 (+1.2), confirming complementarity (see Table 2).
For PAC gating, Table D.1 shows that in the one shot setting the best policy is to keep PAC on for
all episodes (68.29 mIoU). In the five shot setting, the automatic gate with threshold T=2 out of
5 achieves the highest mean mIoU (77.91) with a moderate trigger rate (74.6%), whereas T=3 out
of 5 reduces the trigger rate and lowers accuracy to 77.22 to 77.85 mIoU. The per dataset study in
Table D.2 supports the same recommendation: one shot with PAC on for all episodes and five shot
with automatic gating at T=2 out of 5.

Decomposing PAC on top of HLS plus PGR at 77.27 mIoU, the similarity residual ℓsim, the one hop
attention propagation ℓattn, and the image appearance cue ℓimg contribute +0.30, +0.22, and +0.18
mIoU. Using all three reaches 77.91 mIoU, a further +0.64 (see Table 3). Together, HLS stabilizes
the routed layer, PGR sharpens locality, and PAC corrects pixel level logits, yielding a cumulative
gain under a frozen backbone.

E ALTERNATIVE LAYER SELECTION CRITERIA AND DINOV2 RESULTS

E.1 EPISODE NOTATION AND SETTING

Let ℓ ∈ C index a ViT layer, and let Fℓ
q(x) ∈ Rdℓ denote the query feature at pixel x from layer

ℓ. Support features are pooled using masks to form foreground and background prototypes Pℓ
fg and

Pℓ
bg. Given a baseline foreground probability p0(x) ∈ [0, 1] for the query, we build soft masked

query prototypes as

Qℓ
fg =

∑
x p0(x)F

ℓ
q(x)∑

x p0(x)
, Qℓ

bg =

∑
x(1− p0(x))F

ℓ
q(x)∑

x(1− p0(x))
. (E.1)

Unless noted otherwise, all scalar layer scores are range normalized within each episode across C,
so different selectors are comparable:

s̃ℓ =
sℓ −minj∈C sj

maxj∈C sj −minj∈C sj + ε
, ε = 10−8. (E.2)

E.2 SELECTORS OTHER THAN HLS: DEFINITIONS, INTUITION, AND CAVEATS

We group the non episodic selectors in Table 4 into two families: a heuristic static rule built from
prototype and mask scores, and gradient based proxies. Unless noted, all scalar layer scores are
range normalized across the candidate set C within each episode. Prototypes and the baseline mask
p0 follow the definitions in Sec. E.
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Table E.1. Notation for layer selection in the episodic setting. All scalar layer scores are range
normalized across the candidate set C unless noted.

Symbol Description

ℓ ∈ C Candidate ViT layer index
Fℓ

q(x) ∈ Rdℓ Query feature at pixel x from layer ℓ
Pℓ

fg, P
ℓ
bg Support foreground and background prototypes at layer ℓ

Qℓ
fg, Q

ℓ
bg Soft masked query prototypes (see Eq. equation E.1)

p0(x) ∈ [0, 1] Baseline foreground probability on the query
mIoUsup(ℓ) Support only pseudo query mIoU at layer ℓ (risk proxy)

Static heuristic selector (Static-Max). This rule blends three normalized scores, namely seman-
tic agreement, structure separation, and a complexity term combining texture and uncertainty, and
selects the layer with the largest weighted sum:

ℓ⋆static = argmax
ℓ∈C

[
α′Ssem(ℓ) + β′Sstr(ℓ) + γ′C(ℓ)

]
, α′, β′, γ′≥0, α′ + β′ + γ′ = 1. (E.3)

Caveat: weights are domain and task specific, and the objective is a surrogate not directly tied to
episode level mIoU risk.

Component scores of Static-Max.

• Semantic agreement

Ssem(ℓ) = α cos
(
Pℓ

fg,Q
ℓ
fg

)
+ (1− α) cos

(
Pℓ

bg,Q
ℓ
bg

)
, α ∈ [0, 1]. (E.4)

Intuition: encourages higher agreement between support and query prototypes. Caveat:
depends on the baseline mask p0, which can be biased under shift.

• Structure separation

Sstr(ℓ) = 1− 1
2

[
cos

(
Qℓ

fg,Q
ℓ
bg

)
+ cos

(
Pℓ

fg,P
ℓ
bg

)]
. (E.5)

Intuition: encourages foreground and background orthogonality in the query and support
spaces. Caveat: measures feature geometry rather than final mask quality.

• Texture and uncertainty complexity

C(ℓ) = Var
(
Qℓ

fg

)
+ Ent

(
p0
)
, Ent(p0) = − 1

|Ω|

∑
x

[p0 log p0 + (1− p0) log(1− p0)] .

(E.6)
Here Var(·) denotes the per dimension variance of query features relative to the corre-
sponding prototype, weighted by p0. Caveat: an indirect proxy that may penalize layers
that are confident and correct.

Gradient based proxies. These rules favor layers with large loss sensitivity or sharp changes
across adjacent layers.

Gradient magnitude (Grad-Max).

ℓ⋆grad = argmax
ℓ∈C

∥∥∥∇Fℓ
q
Lbase

∥∥∥
2
. (E.7)

Intuition: select the layer to which the base loss is most sensitive. Caveat: residual paths and
normalization in ViTs can amplify gradients in later layers, biasing the choice.

Interlayer gradient change (Grad∆-Max).

ℓ⋆∆grad = argmax
ℓ∈C

∥∥∥∥∥∥∇Fℓ
q
Lbase

∥∥∥
2
−

∥∥∥∇Fℓ−1
q

Lbase

∥∥∥
2

∥∥∥
2
. (E.8)

Intuition: detect transition points across adjacent layers. Caveat: still a gradient scale proxy, only
weakly coupled to episode level decisions.

Implementation notes. All rules reuse a single forward pass of backbone activations. Gradient
based proxies require one backward pass without parameter updates. The per episode cost is domi-
nated by a single backpropagation through the frozen backbone.
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E.3 TASK ALIGNED HLS (ETR)

We select the routed layer by minimizing an episode level selection risk:

Rlayer(ℓ) = 1−miousup(ℓ), ℓ⋆HLS = argmin
ℓ∈C

Rlayer(ℓ) = argmax
ℓ∈C

miousup(ℓ). (E.9)

Here miousup(ℓ) is computed within the episode by a leave one out procedure at layer ℓ. Each sup-
port image is treated as a pseudo query and segmented using prototypes formed from the remaining
supports, and the result is averaged over the K supports.

Rationale. The criterion in equation E.9 directly measures episode level matching risk at the rep-
resentation to be adapted, rather than optimizing a handcrafted surrogate. This makes it robust to
layer level transfer variability and domain shift. In practice, HLS is parameter free, reuses the same
forward features, and adds negligible overhead.

E.4 SELECTOR ANALYSIS AND TAKEAWAY

Why the three non episodic selectors underperform. Table 4 compares per episode layer selectors
with a frozen backbone. The Static Max rule blends three normalized cues and selects the layer with
the largest α′Ssem(ℓ) + β′Sstr(ℓ) + γ′C(ℓ) (see Eqs. equation E.4 to equation E.6). These scores
measure representation quality in feature space, including semantic agreement, structure separation,
and texture or uncertainty, but they do not measure task fit for the episode. They lack episode
level feedback and are therefore unstable across domains. Specifically, Ssem inherits bias from the
baseline mask p0, Sstr rewards orthogonality that does not guarantee correct masks, and C(ℓ) can
penalize layers that are confident and correct. The mixture weights α′, β′, γ′ are domain specific.
Consequently, Static Max averages 71.9 mIoU.

Gradient based proxies capture loss sensitivity rather than alignment. Grad Max selects the layer
with the largest gradient norm (see Eq. (E.7)), and Grad∆ Max looks for sharp inter layer gradient
changes (see Eq. (E.8)). In ViT backbones such as DINOV2 and DINOV3, blocks are architec-
turally homogeneous and connected by residual paths and layer normalization. This can cause gra-
dients to grow toward the last blocks, so both rules tend to collapse to deep layers irrespective of the
episode semantics. This Grad CAM style assumption therefore fails, and the selected layer often has
the largest perturbation rather than being the most suitable for segmentation. These proxies correlate
weakly with support and query matching quality and yield 73.1 and 73.2 mIoU on average.

Why HLS (ETR) is better. Our HLS uses a task aligned criterion that directly minimizes the
episode level selection risk ℓ⋆HLS = argminℓ∈C

(
1 − miousup(ℓ)

)
(see equation E.9). It performs

a self prediction evaluation within the episode. Each support is treated as a pseudo query and is
segmented using prototypes from the remaining supports, and the score is the support only mIoU at
layer ℓ. This provides dynamic, episode aware feedback aligned with the target objective, with low
variance, no extra parameters, and negligible overhead. HLS reaches 76.7 mIoU, which is +4.8 over
Static Max and +3.5 over the best gradient proxy. The gain is especially large on ISIC (from 48.2
to 73.6 mIoU, +25.4), and the gap widens on other VFM backbones such as DINOV2.

E.5 DINOV2: COMPONENT ABLATION (1-/5-SHOT) AND TAKEAWAYS

Table E.2. Component ablation on DINOv2 (average mIoU). ∆V0 denotes the improvement over
the V0 baseline, and ∆prev denotes the improvement relative to the row above. Best scores in bold.

Setting Avg. 1-shot Avg. 5-shot ∆V0 (1s / 5s) ∆prev (1s / 5s)

V0 baseline (fusion=off, refine=off) 57.03 68.49 0.00 / 0.00 0.00 / 0.00
+ HLS (enable fusion and routing) 60.34 72.64 +3.31 / +4.15 +3.31 / +4.15
+ PGR (Gaussian prior for attention) 61.10 73.28 +4.07 / +4.79 +0.76 / +0.64
+ PAC (auto refine) 62.58 73.42 +5.55 / +4.93 +1.48 / +0.14

Analysis. The sequence Select → Regularize → Calibrate yields monotonic improvements. HLS
provides the dominant gain by stabilizing the chosen adaptation layer for each episode. PGR reduces
attention noise, such as spurious far field peaks, while preserving global coverage. PAC then corrects
residual artifacts along thin boundaries and in low contrast regions. Gains are larger in the one shot
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regime, where supervision is scarcer, which is consistent with the design intent. These results show
that the hierarchical refinements generalize from DINOv3 to DINOv2 and to other VFMs, indicating
effectiveness that is agnostic to the backbone.

Practical remarks. All selectors reuse cached features. HLS uses pseudo query scoring on the
support only and therefore adds negligible overhead. PGR has no trainable parameters. PAC op-
erates as a lightweight residual fusion and is gated automatically in five shot episodes. Conse-
quently, the overall parameter and runtime budgets remain low while providing improvements that
are aligned with the task.

F DISCLOSURE OF LARGE LANGUAGE MODEL (LLM) USAGE

We used large language models (LLMs) only to assist with writing. Specifically, LLMs were em-
ployed to polish wording, improve clarity, and refine the presentation (grammar, coherence, and
flow) of certain sections. All scientific ideas, methodology, experiments, analyses, and conclusions
were conceived and executed exclusively by the authors. LLM assistance was limited to language-
related edits and suggestions. All outputs were reviewed and revised by the authors. The use of
LLMs did not contribute to the research design, data collection, data analysis, or the intellectual
content of the findings.
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