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ABSTRACT

COVID-19 affects individuals differently, with some experiencing severe symp-
toms while others remain asymptomatic. Identifying genetic determinants behind
this variability can improve disease management, resource allocation, and public
health decisions. Traditional approaches like genome-wide association studies and
polygenic risk scores offer limited interpretability and predictive accuracy. In this
study, we developed an computational framework that involves deep generative
model and xAI to predict COVID-19 severity based on whole-genome data. Our
framework identified 72 significant genetic markers and achieved an improved
prediction performance (ROC-AUC = 0.64) using whole-genome data from 6752
samples in Canada’s CGEn HostSeq project. Among these markers, 50 are novel,
linked to hematopoietic stem cell differentiation, lung fibrosis, and SARS-CoV-
2 mitochondrial interactions. This study introduces an interpretable AI tool for
personalized COVID-19 severity prediction.

1 INTRODUCTION

The COVID-19 pandemic placed immense strain on healthcare systems. In response, the Canadian
government allocated $40 million on April 23, 2020, to support the Canadian COVID-19 Genomics
Network (CanCOGeN) led by Genome Canada. As part of this initiative, Canada’s national genome
sequencing platform (CGEn) launched the HostSeq project, sequencing the genomes of over 10,000
individuals affected by COVID-19 across 14 research studies in Canada (Yoo et al., 2023). This
resource provides researchers with extensive genomic data to investigate genetic determinants of
COVID-19 severity, aiding diagnostics, treatment strategies, and vaccine development. COVID-19
severity varies widely among individuals, necessitating genetic biomarker discovery for predicting
critical outcomes such as Intensive care unit (ICU) admission, ventilation use, and vital use (Pun
& et al., 2021). However, large-scale genome-wide association studies (GWAS) focusing on the
Canadian population remain scarce. To address this gap, systematic GWAS incorporating advanced
models and extensive Canadian COVID-19 data are essential. The HostSeq project presents a unique
opportunity for such investigations(Yoo et al., 2023).

This study introduces a Knockoff statistics-driven deep learning (DL) framework for predicting
COVID-19 severity using whole-genome sequence data from HostSeq. By identifying key genetic
biomarkers, this approach enhances our understanding of COVID-19 severity’s genetic architecture.
Additionally, it provides an interpretable and automated DL tool for precise severity prediction,
offering genetic insights to inform public health decisions and individualized patient care.

∗https://www.cgen.ca/hostseq-contributing-studies-implementation-committee
†Corresponding author: phu49@uwo.ca
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2 RELATED WORK

Previous GWAS have identified several risk loci associated with COVID-19 severity. For instance,
the Severe COVID-19 GWAS Group discovered significant associations at loci 3p21.31 and 9q34.2,
implicating genes such as SLC6A20, LZTFL1, and others, and highlighting the influence of the
ABO blood group on disease severity (of Severe Covid-19 with Respiratory Failure, 2020). Simi-
larly, Pairo-Castineira et al. identified variants in genes like TYK2, DPP9, and IFNAR2 linked to
critical COVID-19 cases (Pairo-Castineira et al., 2020). Leveraging these genetic insights can en-
hance patient care through risk stratification. For example, Toh et al. developed a polygenic risk
score (PRS) using an XGBoost model to predict severe COVID-19 cases, achieving modest per-
formance (Toh & et al., 2020). More recently, Farooqi et al. utilized a larger cohort from the UK
Biobank, achieving improved prediction accuracy (Farooqi et al., 2023). However, traditional PRS-
based predictions often rely on simple regression models that may overlook complex interactions
among genetic variants, limiting predictive performance. DL models offer improved estimation of
SNP effect sizes through nonlinear approaches, though their application in genetics has been limited
by interpretability challenges. To address this, integrating DL with knockoff inference—a statistical
method providing rigorous false discovery rate control—holds promise for identifying interpretable
biomarkers (He & et al., 2021).

3 MATERIALS AND METHODS

The overall workflow of this study could be found in Figure 1.
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Figure 1: The overall workflow of the study. SNPs were encoded using a numerical scheme (0, 1,
2, 3) to represent missing data (0), no alternative alleles (1), one alternative allele (2), and two al-
ternative alleles (3). One-percent randomly selected SNPs were employed to train a deep generative
model, enabling the generation of knockoffs for the entire chromosome. This process was repeated
for all 22 chromosomes. The generated knockoff data, alongside the original SNP codes, were then
input into chromosome-specific 1DCNN for COVID-19 severity prediction. Subsequently, Shapley
values were calculated for each SNP, serving as feature importance scores for knockoff selection.
The selected SNPs from each chromosome were combined and utilized as the final predictors in the
COVID-19 severity prediction model.

The joint calls of whole genome sequence raw VCF data for 6,752 (4,474 mild cases and 2,278
severe cases) Canadian COVID-19 samples with World Health Organization (WHO) severity clas-
sification information were downloaded from the HostSeq project (Yoo et al., 2023). After standard
preprocessing and filtering, there were 3,724,619 SNPs left. We coded then code the data as: miss-
ing data (0), no alternative alleles (1), one alternative allele (2), and two alternative alleles (3). This
study’s Research Ethics Board (REB) has been approved by University of Manitoba and Western
University.
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We first employed a 1-percent random subset of SNPs to train (90%) and test (10%) the deep genera-
tive model developed by Romano et al. (Romano et al., 2020). Their model was a moment-matching
network that was equipped with a specially designed loss objective which was approved to have the
ability to generate robust knockoffs for genetics data. In our application, we tested different hyper-
parameters until the loss was stabilized and the performance is the best. Then the well-trained model
was applied to generate knockoffs for the entire chromosome. This process was repeated for all 22
chromosomes.

The generated knockoffs and the original SNPs for each chromosome were then input into 1DC-
NNs for feature importance estimation. The primary advantage of a 1DCNN lies in its ability to
efficiently capture sequential patterns and dependencies within one-dimensional data. Unlike tradi-
tional feedforward neural networks, which treat data as flat input vectors, 1DCNNs are specifically
designed to recognize patterns in sequences, making them well-suited for tasks like genomic data
analysis. This specialization allows 1DCNNs to effectively extract relevant features from the se-
quential data, resulting in improved performance and reduced computational complexity compared
to more generic neural network architectures. The training/testing split ratio is 80%: 20%. Per node
feature importance was estimated using an enhanced version of the DeepLIFT algorithm (Shriku-
mar et al., 2017), where the conditional expectations of Shapley values were approximated using a
selection of background samples (Lundberg & Lee, 2017).

The estimated importance of the original features (Z) and the estimated importance of their knock-
offs (Z̃) were then used to calculate the knockoff statistics W = (Z − Z̃) for further FDR estima-
tion. SNPs passed a predefined threshold were identified as significant loci and were kept for the
final COVID-19 severity prediction.

SNPs with the knockoff statistics (W ) passed the adaptive threshold (T ) were selected and input
into another 1DCNN model for final COVID-19 severity prediction. Since the SNP size was much
smaller after feature selection. The final 1DCNN has six convolutional layers with short kernel
lengths (4 and 3), other hyperparameters were set as below: learning rate was 0.0001, batch size was
16, and iteration was 70.

4 RESULTS

The severity prediction performance of the chromosome-specific 1DCNN models is shown in Table
1. After extracting the SHAP values from these well-trained 1DCNNs, the knockoff statistics (W)
were calculated and visualized using the Manhattan plot in Figure 2. There were 72 genetic factors
that passed the knockoff adaptive threshold (T) and these 72 genetic factors were input into the
final 1DCNN for COVID-19 severity prediction. The performance was listed in the last row of
Table 1. These 72 genetic factors were mapped to 49 genes. Among them, DPP9 and SLC6A20
have been previously linked to COVID-19 severity, aligning with findings from GWAS studies that
implicated loci 3p21.31 and 9q34.2 in disease progression. Gene set enrichment analysis further
highlighted pathways such as Hematopoietic Stem Cell Differentiation, Lung fibrosis, and SARS-
CoV-2 mitochondrial interactions, which are the most enriched terms in WikiPathways (Martens
et al., 2020) database, providing insights into the genetic basis of COVID-19 severity.
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Figure 2: The Manhattan plot of the knockoff statistics. X-axis are the chromosome positions while
the y-axis is showing the knockoff statistics.
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Table 1: The performance of the chromosome-specific 1DCNNs and the final 1DCNN

Chr1 F1 Precision Recall ROC-AUC Chr F1 Precision Recall ROC-AUC

1 0.22 0.14 0.74 0.69 12 0.71 0.63 0.69 0.68
2 0.21 0.13 0.57 0.68 13 0.72 0.66 0.64 0.68
3 0.34 0.48 0.63 0.67 14 0.66 0.27 0.83 0.69
4 0.23 0.13 0.81 0.72 15 0.36 0.50 0.63 0.67
5 0.21 0.45 0.65 0.71 16 0.46 0.46 0.78 0.72
6 0.70 0.64 0.74 0.69 17 0.36 0.51 0.64 0.68
7 0.34 0.48 0.64 0.67 18 0.72 0.64 0.73 0.69
8 0.56 0.34 0.73 0.69 19 0.70 0.67 0.70 0.71
9 0.22 0.14 0.72 0.68 20 0.66 0.54 0.73 0.69
10 0.34 0.46 0.64 0.67 21 0.56 0.50 0.65 0.67
11 0.32 0.47 0.64 0.67 22 0.56 0.46 0.78 0.65
Final 0.42 0.26 0.70 0.64

5 DISCUSSION

The proposed framework incorporates DL for knockoff generation, optimizing computational costs
effectively. The deep knockoff generation model utilized in this research was adopted from (Romano
et al., 2020). Its ultimate loss function was intricately structured with three weighted components
regulated by corresponding hyperparameters, rendering manual fine-tuning intricate. To stream-
line our framework and ensure full automation, we set these hyperparameters to a fixed value of 1.
This choice led to a scenario where the MMD decreased while the covariance difference increased
during training. While the model still produced satisfactory knockoffs, performance could poten-
tially improve with additional tuning efforts. Alternatively, in the future, we could simplify the loss
and involve novel generative models such as the probabilistic diffusion model (Ho et al., 2020) for
knockoff creation. The proposed framework could also potentially incorporate rare variants with
a MAF below 0.05. This addition might enhance the final predictions and contribute additional
information to the genetic architecture of the COVID-19 host.

Among the 72 knockoff selected SNPs, 22 had been previously identified in studies by Pairo-
Castineira et al.(Pairo-Castineira et al., 2023). These 72 SNPs were subsequently mapped to 49
genes, and within this set of genes, 18 had already been reported in relation to COVID-19 severity
(Pairo-Castineira et al., 2023). The enriched WikiPathways by these genes include Hematopoi-
etic Stem Cell Differentiation, Lung fibrosis, and SARS-CoV-2 mitochondrial interactions, suggest-
ing a potential connection between these functional abnormalities and the manifestation of severe
COVID-19 symptoms.

The final COVID-19 severity prediction performance was slightly worse than that of the
chromosome-specific 1DCNNs, because only 72 important genetic factors were involved in the
final 1DCNN. Our ultimate goal is to create an easy-to-use prediction tool that takes a reasonable
number of genetic factors as predictors. Consequently, a gene signature panel might be designed in
the future for quick measurements of these genetic factors for clinical applications.

6 CONCLUSION AND IMPACT

This study explores deep generative model-based knockoff generation for large-scale genetic risk
identification and introduces a more efficient genetic filtering framework for whole genome se-
quencing. The resulting COVID-19 predictive tool and identified SNPs, genes, and pathways en-
hance understanding of disease severity and inform management strategies. As the first DL-based
prediction tool for COVID-19 host genetics in the Canadian population, it contributes to diagnos-
tics, treatment, drug development, and public health. The CGEn HostSeq project, Canada’s largest
COVID-19 cohort study, advances research on genetic factors in disease severity, supporting efforts
to combat COVID-19 and future health threats.

1Chromsome-specific 1DCNN is based on all variants in the chromosome while the final 1DCNN is based
only on the knockoff selected variants.
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