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Abstract—Recent advancements in large language models
(LLMs) have spurred interest in using them for generating
robot programs from natural language, with promising initial
results. We investigate the use of LLMs to generate programs for
service mobile robots leveraging mobility, perception, and human
interaction skills, and where accurate sequencing and ordering
of actions is crucial for success. We contribute CODEBOTLER,
an open-source robot-agnostic tool to program service mobile
robots from natural language, and ROBOEVAL, a benchmark
for evaluating LLMs’ capabilities of generating programs to
complete service robot tasks. CODEBOTLER performs program
generation via few-shot prompting of LLMs with an embedded
domain-specific language (eDSL) in Python, and leverages skill
abstractions to deploy generated programs on any general-
purpose mobile robot. ROBOEVAL evaluates the correctness of
generated programs by checking execution traces starting with
multiple initial states, and checking whether the traces satisfy
temporal logic properties that encode correctness for each task.
ROBOEVAL also includes multiple prompts per task to test for the
robustness of program generation. We evaluate several popular
state-of-the-art LLMs with the ROBOEVAL benchmark, and
perform a thorough analysis of the modes of failures, resulting
in a taxonomy that highlights common pitfalls of LLMs at
generating robot programs. We release our code and benchmark
at https://amrl.cs.utexas.edu/codebotler/.

I. INTRODUCTION

We are interested in deploying service mobile robots to per-
form arbitrary user tasks from natural language descriptions.
Recent advancements in large language models (LLMs) have
shown promise in related applications involving visuomotor
tasks [1]–[3], planning [4]–[7], and in this work, we investigate
the use of LLMs to generate programs for service mobile
robots leveraging mobility, perception, and human interaction
skills, where accurate sequencing and ordering of actions is
crucial for success. We present CODEBOTLER and ROBOE-
VAL [8]: CODEBOTLER is an open-source robot-agnostic tool
to generate general-purpose service robot programs from nat-
ural language, and ROBOEVAL is a benchmark for evaluating
LLMs’ capabilities of generating programs to complete service
robot tasks.

While the capabilities of LLMs at producing robot programs
are impressive, they are still susceptible to a variety of failures.
To understand the nature of the failures, we need an effective
method to evaluate these programs. Existing benchmarks typi-
cally rely on either simple input-output unit test functions [1],
[9], or they utilize complex high-fidelity 3D simulations [2].
However, checking for input-output pairs is insufficient when it
comes to evaluating service robot programs. Consider the task
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Fig. 1: The system diagram of CODEBOTLER and ROBOE-
VAL. CODEBOTLER receives a task prompt and queries a
large language model (LLM) to generate a robot program.
Then ROBOEVAL evaluates the generated programs using a
symbolic simulator and a temporal trace evaluator to determine
whether each program satisfies the task constraints or not.

“Check how many conference rooms have no markers”. It is
insufficient to just check for the number of conference rooms
stated by the LLM-generated programs. Rather, the correctness
of the program depends on the sequence of robot actions taken.
In this example, the robot must visit each conference room
and check for markers, before arriving at the final answer.
Furthermore, the correct sequence of actions may depend on
the specific world state.

We thus introduce the ROBOEVAL benchmark to address
these challenges in evaluating LLM-generated programs for
service mobile robots. This benchmark integrates three key
components: a symbolic simulator, a trace evaluator, and a
comprehensive suite of 16 tasks. Fig. 1 shows the system
diagram of CODEBOTLER and ROBOEVAL. When a program
created by CODEBOTLER is passed into ROBOEVAL, it un-
dergoes a two-step evaluation process. First, the program is
executed within a symbolic simulator, which produces multiple
program traces corresponding to different initial world states.
Next, these traces are evaluated against a set of temporal
specifications. These specifications are designed to define the
correct behavior for the given task, tailored to each specific
initial world state.

Finally, We use the ROBOEVAL benchmark to evaluate
and analyze the performance of five state-of-the-art Large
Language Models (LLMs) and propose a rejection sampling
strategy based on the ROBOEVAL symbolic simulator to
improve the code generation performance of these LLMs.

https://amrl.cs.utexas.edu/codebotler/
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Trace Elements
e ::= goto(regex)
   |    say(regex)
   |    ask(regex1, regex2)
   |    check(regex)
   |    pick(regex)
   |    place(regex)

Trace
tr ::= [e1,e2,…,en]           
    |     tr.BeforeFirst(e)   
    |     tr.BeforeLast(e)   
    |     tr.AfterFirst(e)     
    |     tr.AfterLast(e)      

# Get the current location of the robot.
def get_current_location() -> str

# Get a list of all rooms.
def get_all_rooms() -> list[str]

# Check if an object is in the current room.
def is_in_room(object : str) -> bool

# Go to a specific named location.
def go_to(location : str) -> None

# Ask a person a question, and offer a set of 
specific options for the person to respond. 
Returns the response selected by the person.
def ask(person : str, question : str, 

 options: list[str]) -> str

# Say the message out loud.
def say(message : str) -> None

# Pick up an object if you are not already holding 
one. You can only hold one object at a time.
def pick(obj: str) -> None

# Place an object down if you are holding one.
def place(obj: str) -> None

RTL Constraint
𝜋 ::= tc | tc and 𝜋 | tc or 𝜋 | not 𝜋

Trace Constraint
tc ::= tr.Exists(e)     

(a) CodeBotler Robot Skills

Task: Tell Alice in her office to meet me in the lobby if she would like to have lunch now.

Atomic 
Proposition
Operator

Constraint

Trace elements

Constraints

    Linear Temporal Logic (LTL)                                                   RoboEval Temporal Logic (RTL)

y = yes  n = no  g = goto(office)  
a = ask(lunch)  s = say(meet)

∧ = And  | ∨ = Or  | ㄱ = Not  
F = Finally | G = Globally | 
U = Until    | N = Next 
𝜋 ⊨ g ∧ N [ F a ∧ (y ∧ N F s 
∨ n ∧ N Gㄱs)]

g = goto(office)   a = ask(lunch)   s = say(meet)

if yes:
    𝜋 ⊨ tr.AfterFirst(g).AfterFirst(a).Exists(s)
if no:
    𝜋 ⊨ not tr.AfterFirst(g).AfterFirst(a).Exists(s)
        and tr.AfterFirst(g).Exists(a)

(b) RoboEval Temporal Logic (RTL) Formula

(c) LTL vs. RTL Example

Trace
List of trace elements
Return the trace before the first matching element
Return the trace after the first matching element
Return the trace before the last matching element
Return the trace after the last matching element

Returns True if the trace contains the trace element

Fig. 2: CODEBOTLER robot skills (a), ROBOEVAL temporal logic (RTL) formula (b), and the LTL specifications vs. the RTL
specifications of an example task (c). In section (c), the terms office, meet, and lunch are used to represent the regex patterns.
The RTL specifications are simpler to express and have improved readability.

II. THE ROBOEVAL BENCHMARK

ROBOEVAL consists of a simulator, an evaluator, and a
benchmark suite of tasks. Given P , the space of natural
language prompts describing service mobile tasks, and Π, the
set of possible LMPs, CODEBOTLER generates LMPs π ∈ Π
given a prompt p ∈ P . The symbolic simulator accepts a world
state w ∈ W and an LMP π ∈ Π, and produces a program
trace r ∈ R. The evaluator accepts a trace and a temporal
constraint c ∈ C, and returns whether the trace satisfies the
constraint or not (SAT/UNSAT).

CODEBOTLER : P → Π

Simulator : Π×W → R

Evaluator : R× C → {SAT,UNSAT}

The results derived from traces over multiple world states and
multiple task prompts yield the success rate for an LLM on
a particular task. The ROBOEVAL benchmark thus consists of
tasks Ti(i ∈ [1, N ]), where each task consists of M prompts,
and K world states. Each world state has a corresponding
temporal check. Each ROBOEVAL task thus consists of a
tuple of prompts and multiple world-states to check against
a constraint (one constraint per world state):

Ti =
〈
{pji |j ∈ [1,M ]}, {⟨wk

i , c
k
i ⟩|k ∈ [1,K]}

〉
We present next 1) the ROBOEVAL simulator, 2) the

ROBOEVAL evaluator, and 3) the tasks in the ROBOEVAL
benchmark.

A. The ROBOEVAL Simulator

For each task Ti, the ROBOEVAL benchmark includes
multiple world states to check against. Each world state
wk

i ∈ W consists of 1) a list of rooms in the world that
GetAllRooms() returns, and which GoTo() is valid for;
2) a list of objects in the world that IsInRoom() returns true
for; 3) a list of objects that can be manipulated using Pick()
and Place(); and 4) a list of responsive humans, their
locations, and regular expressions that define their responses

to Ask(). Thus, a single LMP may produce very different
traces when simulated with different initial world states. The
simulator consists of a Python interpreter and a symbolic
simulation of each robot skill, and the result of running an
LMP π is recorded as a trace r as a sequence of robot
skills that were executed, along with the parameters (e.g., the
location parameter of a GoTo call). All Python errors or robot
execution errors are logged during simulation.

B. The ROBOEVAL Evaluator
Given a trace rki produced by simulating an LMP π with

an initial world state wk
i , the ROBOEVAL evaluator checks

whether rki satisfies the temporal check cki that defines correct
execution of the task for that world state. cki may consist
of multiple conditions, expressed in conjunctive normal form
over multiple temporal constraints. We review Linear Tempo-
ral Logic, which is well-suited to codifying such constraints
in order to check for correctness.

Linear Temporal Logic. An LTL formula follows the
grammar shown in Fig. 2c — it composes atomic propositions
π ∈ Π with logical operators ¬,∧,∨ and temporal operators
F ,G,U ,N . Given LTL formulas ϕ1, ϕ2 defined over a tempo-
ral sequence, Fϕ1 is true iff ϕ1 is true eventually at some point
along the sequence, Gϕ1 is true iff ϕ1 is true over the entire
sequence, and ϕ1Uϕ2 is true iff ϕ1 for a sub-sequence and ϕ2

is true for the remainder of the sequence after that. Nϕ is true
for a sequence iff the next element in the sequence satisfies
ϕ.

ROBOEVAL Temporal Logic While LTL suffices for writ-
ing robot task specifications, these LTL formulas can become
complex as task complexity increases. For example, consider
an example task T1 where a user asks the robot, “tell Alice
in her office to meet me in the lobby if she agrees to lunch”.
To complete this task, the robot 1) first needs to go to Alice’s
office; 2) then ask Alice whether she would like to have lunch;
and 3) finally if she agrees, tell her to meet in the lobby. Fig. 2c
shows the complete LTL specification for this task. Declaring
such specifications is quite tedious and error-prone. To address
this challenge, we observe that 1) specifying temporal logic
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RoboEval Benchmark Tasks

ElevatorTour FindBackpack GetDrink GrilledCheese HalloweenList LunchBreak LunchTime

CountSavory MailDelivery MovieMessenger SayGoodDay SetTemperature StaplerDelivery StaplerSupply WeatherPoll

Task details

Prompt

Paraphrase 1: Go to every office, and if there is someone there, ask them whether they'd like a cupcake, ham sandwich, donut, or beef jerky. Come back and tell 
me how many people chose a savory option. 
Paraphrase 2: Visit all offices. If anyone is present; ask them to choose from the options of cupcake, ham sandwich, donut, or beef jerky. Let me know how many 
people selected a savory option when you return.
Paraphrase 3: …    Paraphrase 4: …    Paraphrase 5: … 

Attributes Navigation, Perception, Commonsense Reasoning, Arithmetic, Conditional Statements Number of Initial World States 4

1. Prompt
○ Paraphrase 1: Go to every office, and if there is someone there, ask them whether they'd like a cupcake, ham sandwich, donut, or beef jerky. Come back 

and tell me how many people chose a savory option. 
○ Paraphrase 2: Visit all offices. If anyone is present; ask them to choose from the options of cupcake, ham sandwich, donut, or beef jerky. Let me know how 

many people selected a savory option when you return.
○ Paraphrase 3: ….

2. Attributes: Commonsense Reasoning, Arithmetic, Conditional Statements
3. Defined Initial World States: 4

Task details

Prompt

Paraphrase 1: Go to every office, and if there is someone there, ask them whether they'd like a cupcake, ham sandwich, donut, or beef jerky. Come back 
and tell me how many people chose a savory option. 
Paraphrase 2: Visit all offices. If anyone is present; ask them to choose from the options of cupcake, ham sandwich, donut, or beef jerky. Let me know how 
many people selected a savory option when you return.
Paraphrase 3: ….

Attributes Commonsense Reasoning, Arithmetic, Conditional Statements

World States 1. 2

Halloween
Shopping

Fig. 3: The ROBOEVAL benchmark includes 16 tasks, each with 5 prompt paraphrases. This figure displays these tasks’ names
and a detailed example of the task CountSavory.

is easier and less error-prone for specific scenarios (e.g., one
scenario for if Alice says yes, and a different scenario for
no), and 2) the temporal formulas for robot tasks necessarily
depend on the robot skills. We thus introduce the ROBOEVAL
Temporal Language (RTL), a language derived from LTL
that is particularly well-suited to specifying temporal logic
formulas for robot tasks. Fig. 2b shows the grammar of RTL,
and Fig. 2c shows the corresponding RTL formula for task T1.
An additional advantage of the condition expressed in RTL vs.
LTL is improved readability.

C. The ROBOEVAL Benchmark Tasks

The ROBOEVAL benchmark contains a suite of 16 tasks.
Fig. 3 shows the names of the these tasks, along with a
detailed example of the task CountSavory 1. These tasks
are designed to check whether an LMP can 1) ground language
instructions to correct function calls to robot primitives; 2) per-
form accurate sequencing of robot actions; 3) handle complex
control flows based on different world configurations; 4) solve
arithmetic problems; 5) comprehend open-world knowledge.
In addition, research has shown [10] that LLMs may not be
as robust as previously thought, and trivial prompt variations
could cause significant performance variations for LLMs [11],
[12]. For this reason, we provide 5 different paraphrases of the
task prompt to evaluate the robustness of an LLM in dealing
with slight prompt variations.

III. ROBOEVAL RESULTS

To gain insights into the capabilities and limitations
of different state-of-the-art LLMs for generating service
mobile robot LMPs, we use the ROBOEVAL benchmark
to evaluate five state-of-the-art models: 1) GPT-4 [13],
2) GPT-3.5 [14] (text-davinci-003), and 3) PaLM2 [15]
(text-bison-001) as state-of-the-art API-only proprietary
models; and 4) CodeLlama [16] (Python-34b-hf) and
5) StarCoder [17] as open-access models.. From the experi-
ments, we hope to empirically answer the following questions:

1) First, how do different LLMs perform in generating
programs for tasks in the RoboEval benchmark?

2) Second, when a generated service robot LMP fails, what
are the causes?

1A comprehensive list of the task descriptions can be found at
https://amrl.cs.utexas.edu/codebotler/
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Fig. 4: Cumulative Distribution Function (CDF) curves depict
the percentage of prompts for which each LLM can generate
correct LMPs at various pass@1 score thresholds. A perfect
LLM would show a horizontal line at 100%, indicating it can
generate correct LMPs for all prompts with a pass@1 score
of 1. To maintain visual clarity, we limit the x-axis to 10−3

since all CDF plots eventually reach 100%.

A. Performance Of LLMs On The RoboEval Benchmark
The ROBOEVAL benchmark consists of 16 tasks, each with

5 prompt paraphrases, totaling 80 different prompts. For each
prompt, we generate 50 program completions and calculate
the pass@1 score [9], a common metric for LMP evaluation.
This score indicates the probability of an LMP being correct
if an LLM generates only one LMP for a given prompt.

We compute the percentage of prompts that have a pass@1
score greater than or equal to a threshold value, which ranges
from 1 to 0. We present this information in Fig. 4 as a
Cumulative Distribution Function (CDF). Although relaxing
the pass@1 score threshold for each LLM increases prompt
coverage, there are still certain prompts (ranging from 48.75%
for StarCoder to 1.25% for GPT-4) where LLMs consistently
fail to generate correct LMPs.

B. Causes of Failures of LMPs
We evaluate the failure modes of the LMPs and classify

these failures into three categories: 1) Python Errors, including
syntax, runtime, and timeout errors; 2) Robot Execution Er-
rors, that occurs when a program attempts to execute an infea-
sible action, such as navigating to a non-existent (hallucinated)

https://amrl.cs.utexas.edu/codebotler/
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Fig. 5: Cumulative Distribution Function (CDF) of the LLMs’
performance across different max retry limits. As the max retry
limit increases, all five LLMs improve in performance.
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Fig. 7: Causes of failures for LMPs on the ROBOEVAL
benchmark.

location; and 3) Task Completion Errors, where the program
runs correctly in the simulator but fails RTL checks for task
completion. We use ROBOEVAL’s symbolic simulator to detect
and classify Python Errors and Robot Execution Errors, and
we use ROBOEVAL’s evaluator to capture the Task Completion
Errors. Fig. 7shows the breakdown of these failure categories
for each LLM.

We observe that despite having fewer parameters, the
CodeLLMs (CodeLlama and StarCoder) generally make fewer
Python errors, which suggests that LLMs trained on a larger
proportion of code may be more adept at generating successful
completions in the DSL defined in the prompt.2

IV. IMPROVING ROBOT PROGRAM GENERATIONS

Based on the analysis of the failures of LMPs using
ROBOEVAL, we are interested in improving service robot
program generation using LLMs. Recognizing the breadth of
potential improvements, this study focuses on an initial step.
We observe that many LMP failures (Python Errors and Robot
Execution Errors) occur before deploying the LMP on the
robot. Hence, we propose a rejection sampling strategy to
identify and reduce these failures.

2For a detailed analysis of our study, please refer to our paper available on
arXiv at https://arxiv.org/pdf/2311.11183.pdf.

To detect errors in an LMP, the ROBOEVAL symbolic
simulator uses the current world state and executes the LMP.
If the execution fails, CODEBOTLER will prompt an LLM for
a new program and then execute it in the symbolic simulator
again. This process repeats until an LMP can successfully pass
in the symbolic simulator for deployment on the robot or until
a predefined maximum retry limit is reached.

This proposed strategy has one limitation: the symbolic
simulator may not know a-priori the true state of the world,
including the current locations of humans and movable objects,
or how humans might respond to the robot’s questions. We
address this limitation by proposing a task-agnostic world
state. This world state contains the permanent entities (e.g.,
known rooms) and employs state sampling to simulate random
potential world states for non-static entities, such as possible
human locations, movable objects, and human responses.
Subsequently, each LMP undergoes multiple simulation runs
(we chose 5 in our experiments) in the symbolic simulator to
ensure statistical reliability when identifying LMP failures.

We evaluate this strategy on all five LLMs with four
different maximum retry limits (2, 4, 8, 100) and compare them
with the baseline (without rejection sampling). Fig. 5 shows
the CDF curves with respect to different maximum retry limits
for each LLM. Each curve indicates the fractions of prompts,
which an LLM can use to generate successful LMPs, given
a threshold of the pass@1 score. We observe that all five
LLMs can improve their code generation performance using
this strategy. In addition, as the maximum retry limit increases,
this improvement becomes more substantial.

We then investigate how effective the rejection sampling
strategy is in eliminating the program execution errors. We
execute every LMP in the symbolic simulator and compute the
percentages of successful executions. Then we plot them over
different maximum retry limits as a CDF in Fig. 6 for each
LLM. Interestingly, we observe that some LLMs (PaLM2,
CodeLlama, and Starcoder) constantly fail to generate suc-
cessful programs for certain tasks. Thus, while the rejection
sampling strategy can improve LLM performance, it does not
eliminate all execution errors. In future work, we would like
to explore more sophisticated strategies to mitigate execution
errors before deploying the LMP on a robot.
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