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Abstract

In a conversational Al system, Natural Lan-
guage Understanding (NLU) is a key compo-
nent that produces the semantic interpretations
for a user request. As one of the most upstream
components, NLU errors are costly and have
a wide blast radius to the end-to-end system
behavior. We propose a model-based gener-
ative approach for automatic NLU n-best en-
richment, by leveraging implicit user feedback
learned from the existing user dissatisfaction
and rephrase detection techniques. It aims to
generate reasonable and promising NLU inter-
pretation candidates that can potentially correct
NLU errors. We propose three different mod-
eling designs and compare their performance
with extensive experiments on live traffic from
one of today’s state-of-the-art large-scale con-
versational Al systems.

1 Introduction

Natural Language Understanding (NLU) is a core
component in a conversational Al system (Kepuska
and Bohouta, 2018), which produces semantic in-
terpretations of a user request. Typically, NLU
involves a set of sub-tasks including domain/intent
classification and slot filling (El-Kahky et al., 2014).
For instance, given a request “Play a Christmas
song", NLU can produce an interpretation related
to Music domain, with an intent to Play Song and
the Genre slot filled with Christmas for entity reso-
lution. As one of the most upstream components in
the conversational Al workflow (Sarikaya, 2017),
NLU’s outputs are used by a series of subsequent
downstream components, such as dialog manage-
ment, routing logic to back-end domain applica-
tions, and natural language generation.

Each core component within a conversational Al
system, including NLU, usually gives its outputs in
the form of n-best predictions (Hakkani-Tiir et al.,
2006; Williams and Balakrishnan, 2009). The top
prediction is not always correct and thus outputting

the n-best predictions increases the chances of prop-
agating the correct prediction to downstream. In
case the top prediction is unable to deliver satis-
factory end-to-end user experience, the n-best can
be used by downstream (e.g., domain application)
for recovering from errors or selecting the most
appropriate prediction in a late-binding fashion if
more context is needed to better disambiguate. The
n-best can also be used for exploration (Qi et al.,
2018) and downstream tasks’ quality improvements
(Li et al., 2020).

In practice, NLU often fails to contain the cor-
rect interpretation in the n-best for a variety of rea-
sons. First, the training data for NLU largely comes
from manual annotations, which can be error-prone.
Also, the challenge of multi-label annotation makes
it more difficult to comprehensively cover the user
context and possible interpretations. Another limi-
tation comes from the discrepancy in the data distri-
butions compared to real traffic, mainly caused by
speech recognition errors and constantly changing
user behavior. One way to partially address these
challenges is to continuously sample live traffic,
manually annotate NLU errors to generate new su-
pervision data and update the NLU models, which
is still a costly manual effort.

We propose a model-based generative solution,
Hypothesis Generator (HypGen), for automatic
NLU n-best enrichment by leveraging implicit user
feedback. By enrichment, we mean generating and
then injecting (or identifying if already present) a
promising or relevant interpretation in the n-best
that can potentially correct the corresponding NLU
error or deliver a better end-to-end user experi-
ence. We base on a scalable approach using two
implicit user feedback signals, dissatisfaction and
rephrasing, where the former is for detecting user
dissatisfaction and the latter for user’s correcting
behavior (Park et al., 2021). For instance, as shown
in Figure 1, a dissatisfied user can explicitly ask
the system to stop its current response or action,
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Figure 1: An example scenario, on how implicit user feedback can be used to automatically detect user dissatisfaction,
which can be corrected by learning from the user rephrase behavior to generate and enrich the original NLU outputs

with a more relevant interpretation.

and they can rephrase the request with less room
for ambiguity. We can use the rephrased request’s
NLU interpretations to learn how to enrich the in-
terpretations for the original request.

The contribution of this work is threefold. First,
to our knowledge, this work is the first in the litera-
ture introducing the problem of NLU n-best enrich-
ment in the context of large-scale personal assis-
tant and conversational Al systems in production.
Second, we propose an automatic and generative
approach for enriching NLU n-best by leveraging
implicit user feedback, without manual annotations.
Last, we show the performance of our approach
with extensive experiments on live production traf-
fic from one of today’s state-of-the-art large-scale
conversational Al systems.

2 Background and related work

Implicit user feedback has been shown to be useful
for many tasks in recommendation systems (Ren-
dle et al., 2012; He and McAuley, 2016) and search
engines (Joachims, 2002; Bi et al., 2019). For ex-
ample, browsing, viewing, clicking or purchase
history can be employed to enhance the quality of
recommendation. There have been a small, similar
set of pioneering work in the context of conversa-
tional Al systems on leveraging implicit feedback.
An early attempt is to detect a user sentiment and
adjust the Al response in open conversation set-
ting (Zhang et al., 2018), which did not necessarily
intend to clarify user intent. In terms of clarify-
ing or correcting NLU interpretation, request text
rewrite (Ponnusamy et al., 2019) and music entity

relabeling (Muralidharan et al., 2019) are a few
representative related works. One of the most re-
cent effort was to alter the NLU interpretation’s
downstream ranking model behavior using implicit
feedback (Park et al., 2021). However still, there
has been no significant effort directly improving or
enriching the NLU outputs in the current literature.

This work leverages two specific types of im-
plicit user feedback signals, user dissatisfaction
and user rephrases. This is based on our insight
that it is often times possible to accurately infer
user dissatisfaction by analyzing the interaction be-
tween the conversational system and the user. For
instance, the system response can be generic error
handling such as "Sorry, I did not understand," or
the user can explicitly interrupt the system by ex-
pressing dissatisfaction such as "Stop" (although
not always the case, the users are dissatisfied in
most of the cases according to our user study).
In such cases, users often clarify their request by
rephrasing it in clearer terms, and the information
can be used to infer their true intention associated
with the original request that ended up with dissat-
isfaction. The following subsections briefly intro-
duce the related enabling techniques to automati-
cally (1) infer user dissatisfaction given a request
and (2) infer whether there is a follow-up rephrase.

2.1 User Dissatisfaction Detection

Most user feedback is implicit, unless otherwise
specifically solicited. There are many promising
implicit user behavior signals that can be employed
for the detection of user dissatisfaction during inter-



action with a conversational Al system. To name a
few, termination (cancelling a conversation or expe-
rience), abandonment (leaving without completing
a conversation), interruption (barging in while the
system is still giving a response), error-correcting
language (following up with "no, ..." or "I mean,
..."), negative sentiment language showing frustra-
tion (Beaver and Mueen, 2020; Sarikaya, 2017) are
useful signals for user dissatisfaction detection.

Apart from the implicit user behavior signals,
there are other useful signals from the system re-
sponse. They include generic error-handling sys-
tem responses ("I don’t know that one."), natural
language error-handling responses (when a me-
dia entity is not found), and an absence of a re-
sponse (Beaver and Mueen, 2020; Sarikaya, 2017).
Component-level signals such as latency or confi-
dence scores for the underlying models, e.g., ASR
or NLU, are useful as well. We may also apply ad-
vanced modeling strategies taking into account user
interaction patterns and use past interaction history
for additional context (Bodigutla et al., 2020), or
contextual metrics relating to usage scenario, e.g.,
use dwell time in search for listening-to-music con-
text (Kiseleva et al., 2016).

2.2 User Rephrase Detection

The major body of works in this literature has been
approaching from the perspectives of sentence se-
mantic similarity and paraphrase detection. The
representative achievements are made through la-
tent semantic analysis (Landauer et al., 1998), lexi-
cal matching (Manning and Schutze, 1999), lever-
aging meaning or concepts of words with knowl-
edge bases such as WordNet (Mihalcea et al., 2006),
and word (Camacho-Collados and Pilehvar, 2018)
and sentence embeddings (Reimers et al., 2019).
Regarding model architecture, Siamese network
has been frequently applied with CNN (Hu et al.,
2014), LSTM (Mueller and Thyagarajan, 2016),
and BERT (Reimers et al., 2019). It is also re-
lated to the community question-answering sys-
tems in finding semantically similar topics (Srba
and Bielikova, 2016).

3 Problem Definition

The goal is to generate a new, reasonable NLU in-
terpretation candidate from an existing user request
and corresponding NLU interpretations, identified
through the aforementioned implicit user feedback
detection techniques. Formally, denote a tuple

fi = (ti, C;, H;) representing the features for a
user request 7;, where ¢; is the request text of r;,
C; is a set of contextual features (e.g., device has
ascreen), and H; = [h; 1, hi2, ..., hiy]is alist of
n-best hypotheses produced from the existing NLU.
Here, each h; j = (gi ;,Si,;) is a pair of intent g; ;
and a list of slots S; ; = [Szl,j’ S%J, ... ] with each
slot séj = (kf’j, UZZ-J) a pair of slot key and value,
respectively. The goal is then to take f; as an in-
put and to generate the ground-truth hypothesis
gi = (¢, 57) as an output.

4 Solution Architecture: HypGen

We propose HypGen, consisting of two modules
: a user request feature encoder m.,. and a new
hypothesis generation decoder mge., as shown in
Figure 2. Note that the decoder can have a few
different designs in a way of incorporating the re-
lationships between hypothesis elements: domain,
intent, and slots, and the figure describes one pos-
sible design among them. Formally, given the fea-
tures f; for a request, the encoder m.,. takes f;
as input to generate a single vector z; = Menc(f;)
that summarizes the information in f;. Then, the
decoder m e takes z; as input and aims to generate
the ground-truth hypothesis g; = (¢7, S7).

4.1 Encoder

The encoder summarizes the three input signal sub-
components into one vector in the following ways.

Request Text Encoding: Given the text ¢;, we
first tokenize it to get a list of word tokens W; =
[wy, w2, ..., wy]. Then, for each word w;, we
convert it into the corresponding embedding vector
to get a list of embeddings E; = [ef,eb, ... el ].
A Bi-LSTM (Hochreiter and Schmidhuber, 1997)

is applied to E; to generate the text encoding z!.

Context Encoding: The request context C; can
contain features that are either categorical (e.g.,
device type) or numerical (e.g., model confidence
score). For each context feature ¢; € Cj, if ¢;
is categorical, we represent it with an embedding
vector ejc. Otherwise, we set e? = ¢; by directly
using the numeric value. We generate the context
encoding ZZ-C =& ; e by concatenating the repre-

J
sentations for all context features.

NLU Hypothesis Encoding: Given the NLU n-
best hypotheses H; = [h; 1, hi2,..., iy, there
are different ways to encode H;. In this work, we
encode H; by only summarizing the information
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Figure 2: The overall HypGen architecture following the encoder-decoder framework - (a) The encoder architecture
is shown on the left and (b) one possible decoder architecture, HIERARCHICAL design, is shown on the right.
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Figure 3: Examples for three different HypGen decoding designs: SEQUENTIAL, PARALLEL, and HIERARCHICAL.

in the 1-best hypothesis h; 1, which is the most
critical, and we leave it as future work on leverag-
ing the full n-best information for more effective
encoding. To encode h; 1 = (gi1,S5:1), we first
convert the intent ¢; ; into an embedding e?. Then,
we use a Bi-LSTM to summarize the slot key list
ki1, k7, .. .] of Si1 and another to summarize the
slot value list [v} 1, v7;, ... ] to get the embeddings
e¥ and e?. Finally, we concatenate all embeddings
to get the hypothesis encoding le =el® ef Dej.
Final summarization: ~For the encodings 2?, z¥,
and zZH for all three feature parts, the final summa-
rization encoding z; = 2! & zl-C &) zZH is obtained
by their concatenation.

4.2 Decoder

An NLU hypothesis is a complex yet structured
result, with each element (i.e., intent, slot key, slot
value) having a clear semantic meaning. Further-
more, these elements have inherent relationship.
Certain slot keys may only appear given a specific
intent, and similarly, certain slot values correspond
to specific slot keys. Leveraging this insight, we
describe three different modeling designs for the
HypGen decoder, namely SEQUENTIAL, PARAL-

LEL, and HIERARCHICAL.

4.2.1 Sequential Decoder

Motivated by Seq2seq (Sutskever et al., 2014) de-
coding, a sequential decoder, called SEQUENTIAL,
generates hypotheses with each hypothesis simply
a sequence of tokens (see Figure 3(a)). Specifi-
cally, given the summarization vector z; from the
encoder, an LSTM uses z; as the initial hidden
state and decodes a list of tokens serially where
each token can be any element type (intent, slot
key, or slot value) comprising a hypothesis. Since
a hypothesis is structured, we explicitly have SE-
QUENTIAL first generate an intent, followed by a
list of slot keys and then a list of slot values. To
be able to separate the hypothesis element types,
we use special tokens as sentinels for each element
type generation, which are <EOI> (i.e., end of in-
tent), <EOK> (i.e., end of slot keys), and <EOV>
(i.e., end of slot values).

In the model training stage, we pre-process the
ground-truth hypothesis of each training instance to
a list of tokens conforming to the aforementioned
format. For inference, we use a standard k-beam
search to generate the k-best candidates. SEQUEN-
TIAL is a simple and straight-forward baseline de-



sign for HypGen decoding.

4.2.2 Parallel Decoder

A parallel decoder, called PARALLEL, generates
hypotheses with a separate decoder for generating
each element type of intent, slot key, and slot value
(see Figure 3(b)). Specifically, given the summa-
rization vector z;, the intent decoder takes z; as
input and performs a multi-class classification with
a 2-layer feed-forward network to generate the in-
tent. In parallel, two distinct LSTMs also take z; as
the initial hidden state vector and decode the slot
keys and values respectively.

In the model training stage, we pre-process the
ground-truth hypothesis of each training instance
by splitting it into each element type. For infer-
ence, we adopt a modified k-beam search as fol-
lows. Given the summarization vector z;, we first
apply the intent decoder to get the top-k intents
T; with the highest confidence scores. Then, we
perform a standard k-beam search on the slot key
decoder and also on the slot value decoder sepa-
rately to generate the top-k slot key sequence L;
and value sequence V; with the highest confidence
scores. Finally, we generate the k-best hypothesis
candidates Gy, from all possible combinations of
T; x L; x V; with the highest confidence scores.
Compared to SEQUENTIAL, PARALLEL is archi-
tecturally more complex, by modeling the structure
of a hypothesis with three explicit subsections.

4.2.3 Hierarchical Decoder

As shown in Figure 2(b), a hierarchical decoder,
called HIERARCHICAL, generates hypotheses with
two decoders: an intent decoder and a slot decoder
with a key-value (KV) cell (see Figure 3(c)). Given
the summarization vector z;, an LSTM-based intent
decoder takes z; as the initial hidden state vector.
It performs a one-step decoding to generate the
intent ¢; and the hidden state vector h]. The slot
decoder, which uses hg as the initial hidden state
vector, produces a sequence of slot key-value pairs.

In detail, the slot decoder generates a sequence
of slot key-value pairs recurrently with the KV-
cell. As shown in Figure 2(b), the KV-cell extends
LSTM and has two connected units: a key unit and
a value unit. For the ¢-th step, the key unit takes the
generated intent ¢ and the previously generated key-
value pair (k¢—1,v¢—1) as input to predict the slot
key k;. Specifically, denote 2} to be the embedding
concatenation of ¢, k;_1, and v;_;. Also denote
h¢—1 to be the previous hidden state. Then we

pass xf and h;_1 to an LSTM to predict the output
of and hidden state hF, where of will be used to
generate the slot key k; as follows:

o hf = LSTM* (2 hi_1),

, M
P(k;) = softmax(W"o; + b*),

Once we have k;, the value unit takes the hidden
state h¥, the embedding concatenation ¥ of the
intent ¢, the newly generated key k; and the previ-
ous value v;_1 as input, and use another LSTM to
predict the output oy and hidden state h;, where oy
is used to generate the slot value v; as follows:

0}, hi = LSTM" (z}, hY),

2
P(v:) = softmax(W"o; + b"), @

Similarly to PARALLEL, a modified k-beam
search is used for inference. Specifically, given
the vector z;, we apply the intent decoder to get the
top-k intent predictions 7;. For each t; € T;, we
run a standard k-beam search on the slot decoder
with input ¢; and select the 1-best slot sequence S
with the highest confidence. Finally, we generate
the k-best hypothesis candidates Gy, = {(¢;,.5;) |
t; € T;}. Compared with the other two models,
HIERARCHICAL more clearly captures the hypoth-
esis structure among the element types (e.g., slot
key-value bond) and thus has the most complex
architecture.

4.3 Supervision Data

We leverage the user dissatisfaction and user
rephrase signals to prepare the training data for
HypGen. Denote Sa = {s1, $2,. .., Sn} to be the
user interaction session data from the production
log for a certain period of time A. Each session
si = {(r1,a1),(r2,a2),...,(rq, aq)} is a list of
time-consecutive request-action pairs (i.e., r; is
a user request, a; is the corresponding conversa-
tion system action or response) that are temporally
close to each other. Given a session s; € Sa, we
use the analysis tool fimpll that (1) detects if a;
caused end-to-end user dissatisfaction for r; for
each (1j,a;) € s;, and (2) whether there exists
(rg, ar) € s; with k > j such that r, is a semantic
rephrase of 7; with aj, not have caused user dissat-
isfaction. Based on this, we generate the training
data D as follows.

First, we apply fi to each session s; € Sa
to extract all rephrase pairs I} in s; with each

'In today’s production system, fimp show Fq scores over
0.70 for detecting user dissatisfaction as well as user rephrase.



Datasets | Size Data Properties | Size
Train, |>10MM # of intents > 100
Test, > 800K # of slot keys > 100
Test, > 350K || # ofslot values | > 100K

Table 1: Data statistics. Train; and Test; are a typical
dataset split into training and testing from live traffic
log.Tests is a subset of Test;, where the original n-best
does not contain the correct interpretation.

. Model
Metric
Sequence | Parallel | Hierarchical
Intent | Accuracy 85.84 85.19 85.77
Precision 94.85 57.75 94.52
E:‘y’ts Recall | 91.21 66.68 93.33
F, 92.83 61.38 93.82
Precision 91.16 48.73 83.33
Slot I pecall | 42.69 53.62 81.99
values
F, 56.65 50.42 82.55
Hypot | Accuracy 58.8 34.53 75.27
hesis Hit@k 58.84 34.6 93.75

Table 2: Hypothesis generation result on Test; .

pair (r;,7;) € R{ following (1) ry is a semantic
rephrase of ; with £ > j and (2) a;, not showing
user dissatisfaction while a; showing dissatisfac-
tion. Next, for each (rj,7;) € RJ, we extract
the features f; = (t;,C;, H;) for ;. Denote gy,
to be the NLU hypothesis for rj that is selected
and executed by the conversational system end-
to-end. We infer that g; could be a correct hy-
pothesis for r; since gi’s end results do not show
user dissatisfaction and ry, rephrases r;. Based on
session s;, we generate a set of training instances
D? ={(fj,9x) | (rj,m) € R;}. We note that it is
possible for the rephrase interpretation g, to be the
same as the executed NLU hypothesis for r;. In this
work, we keep all such instances in our data, to not
bias our model to learn to generate hypotheses that
are different from r;’s original NLU selection when
the original NLU hypothesis is correct. Finally, we
union the data points from all sessions to construct
the complete supervision data Da = | J; D;.

5 Experiments

Datasets and Experiment Settings: We took
live traffic from a commercial large-scale conversa-
tional Al system in production, processed the data
so that users are not identifiable, and generated our
supervision data. We split the data into the training

Model
Metric
Sequence | Parallel | Hierarchical
Intent | Accuracy +0.0 -0.4 +0.1
Precision +0.0 -38.5 -0.4
:“’t Recall +0.0 245 +2.7
eys
y F, +0.0 -32.3 +1.2
Precision +0.0 -47.9 +1.2
Slot ™ g ecall +0.0 +130.4 | +292.8
values
F, +0.0 +39.2 +156.2
Hypot | Accuracy +0.0 -54.9 +105.6
hesis Hit@k +0.0 -53.3 +145.3

Table 3: Hypothesis generation performance result on
Testy. It is more challenging task as the input n-best
does not have the correct interpretation.

set Train; and test set Test;. We also extracted a
subset Testy from Testy, in which each instance in
Tests has the ground-truth (i.e., correct) interpreta-
tion that is not in the request’s n-best interpretation
hypotheses, which is a more challenging scenario.
See Table 1 for the statistics.

We used NLTK (Bird et al., 2009) to tokenize
the request and used pre-trained GloVe (Penning-
ton et al., 2014) for encoder word embeddings. All
models were implemented in PyTorch, trained and
evaluated on AWS p3.8xlarge instances with Intel
E5-2686 CPUs, 244 GB memory, and 4 Nvidia
V100 GPUs. We used Adam (Kingma and Ba,
2015) with a learning rate of 1e-3 as the optimiza-
tion algorithm. The models were trained for 4
epochs with a 16 batch size. We used a teacher-
forcing rate of 0.5 in training and a beam size of 5
for model inference.

5.1 Opverall Evaluation

This section describes the overall generation per-
formance of the three proposed model variants.
Our evaluation consists of two parts for each vari-
ant: component-level and hypothesis-level. The
component-level evaluation shows the generation
performance for each component in a hypothesis.
To this end, we report the accuracy of the gener-
ated intent, as well as precision, recall and F score
for both slot key and slot value generation. The
hypothesis-level evaluation shows the full hypoth-
esis generation performance. We use two metrics:
accuracy of the top-1 generation and hit@k af-
ter running a k-beam search (i.e., whether there
is a hypothesis in the top-k generations identical
to the ground-truth), where k = 5. For all evalu-
ations, we use the performance of SEQUENTIAL



as the baseline and show the relative changes for
all metric scores for PARALLEL and HIERARCHI-
CALZ2. For reference, we show the absolute score
ranges for SEQUENTIAL on key metrics. On Testy,
component-wise SEQUENTIAL achieves >80% on
both intent accuracy and slot key generation Fy,
and >50% on slot value generation F;. Hypothesis-
wise, it achieves >50% for both hypothesis gener-
ation accuracy and hit@k. For Testo, it has >70%
for intent accuracy and slot key F;, and >20% for
slot value F;, while the hypothesis generation accu-
racy and hit@k are >20%. Note that in production
systems, if we have at least the intent generated cor-
rectly, it is straight-forward to extract the top full
NLU hypothesis (intent, slot keys, and slot values)
corresponding to the intent, which can significantly
complement relatively lower performance on slots.

Table 2 compares the overall performance of dif-
ferent modeling variants on Test;. First, for intent
generation, all model variants achieve comparably
high accuracy. This is because SEQUENTIAL and
HIERARCHICAL predict the intent as the first token
in the output while PARALLEL has a separate classi-
fier for intents, making it less challenging. Second,
when generating slot keys, the three models’ scores
diverge. Specifically, HIERARCHICAL achieves
the best performance, while PARALLEL shows the
worst (i.e., 33.8% lower than SEQUENTIAL regard-
ing Fy). This suggests that it is critical to model
the relationship between intent and slot keys — HI-
ERARCHICAL and SEQUENTIAL implicitly do so
by generating slot keys conditioned on the intent
value while PARALLEL uses a separate decoder for
slot keys, unconditioned on the intent value. Third,
slot value generation task is more challenging com-
pared to slot key, as there are much more variety of
possible slot values than keys (see Table 1), mak-
ing it more challenging to generate. However still,
HIERARCHICAL outperforms the rest by a large
margin. This is because the key-value cell tightly
bonds a slot value to its key, narrowing down the
scope of the problem.Finally, for hypothesis-level
evaluation, we see that HIERARCHICAL outper-
forms both SEQUENTIAL (i.e., by 28.0% for top-1
accuracy and 59.3% for hit@k) and PARALLEL
(i.e., >60% for both top-1 accuracy and hit@k).
Also, PARALLELwith the separate decoders shows
the worst performance even compared to SEQUEN-
TIAL, indicating the importance of capturing the

2We will disclose the exact performance metrics once the
internal confidentiality review is complete.

correlation of hypothesis components.

Table 3 presents the results on Testy, a more
challenging task subset of Test;, where the ground-
truth interpretation is not in the request’s n-best
interpretation. We see similar trends across the de-
coders except HIERARCHICAL outperforming the
others variants by a much larger margin - 156.2%
better in F; on slot value, 105.6% better in top-1
accuracy and 145.3% better in hit@k on full hy-
pothesis generation. This result reaffirms the clear
value that HIERARCHICAL brings in to the NLU
n-best enrichment task. Again, PARALLEL showed
the worst performance overall except the slot val-
ues’ recall and F;. We conjecture that this is due to
the skewness of the live traffic logs toward popular
slot values in our conversational Al usage context,
thereby leading to the increased amount of false
positives in PARALLEL, specifically when the corre-
lation of hypothesis components is not considered.

5.2 Qualitative Analysis

Table 4 shows three examples for qualitative anal-
ysis, with each example showing the generated
hypotheses from three different decoder architec-
tures. The examples show that both SEQUENTIAL
and PARALLEL have the problem of aligning slot
keys and values, especially when the sizes of the
predicted slot key and slot value are not the same,
while HIERARCHICAL handles them better, which
is consistent with the overall performance results.
For HIERARCHICAL, all slot keys and values are
paired and aligned by the key-value cell, and thus
no extra filtering or aligning is needed. Even for
the first example, which could be considered rela-
tively easy for generation since the input utterance
and hypothesis features are very similar to the tar-
get hypothesis, both SEQUENTIAL and PARALLEL
have trouble with slot information.

The first example would generate and inject an
NLU hypothesis that is semantically opposite of the
original request (turn on vs. turn off). This opposite
hypothesis can still be valuable to identify and/or
recover from ASR errors. If it is undesirable, a
post-processing step can prevent opposite-meaning
hypotheses injection. The second example shows
that it tried executing a completely different third-
party intent, but it is most likely to be corrected if
the hypothesis from the rephrased utterance was
executed in the first place. The third example is
similar to the second example but the original and
rephrased utterances are very different.



Example 1: the utterance, intent and one slot value are different

Input utterance
1-best hypothesis

"turn the bedroom light on"

Intent: TurnOn, Slots: [Appliance: "bedroom light", Action: "turn on", DeviceName: "bedroom light"]

Rephrased utterance
Executed hypothesis

"turn the bedroom light off"

Intent: TurnOff, Slots: [Appliance: "bedroom light", Action: "turn off", DeviceName: "bedroom light"]

SEQUENTIAL TurnOff, (EOI), Appliance, Action, DeviceName, (EOK), "bedroom light", (EOV)
PARALLEL Intent: TurnOff, Slot key: [Appliance, DeviceLocation, DeviceType, DeviceName],

Slot value: ["bedroom light", "bedroom", "turn off", "christmas tree", "turn on"]
HIERARCHICAL [TurnOff, [(Appliance, "bedroom light"), (Action, "turn off"), (DeviceName, "bedroom light")]]

Example 2: the utterances are the same but the hypotheses are totally different

Input utterance
1-best hypothesis

"play christmas songs by kidz bop kids"
Intent: ThirdPartySkill, Slots: []

Rephrased utterance
Executed hypothesis

"play christmas songs by kidz bop kids"

Intent: PlayMusic, Slots: [MediaType: "SONG", ArtistName: "kidz bop kids", GenreName: "christmas"]

SEQUENTIAL

PlayMusic, <EOI>, MediaType, GenreName, <EOK>, "christmas", "SONG", <EOV>

PARALLEL

Intent: PlayMusic, Slot key: [MediaType, ThirdPartySlot, SongName, Time, OnType],
Slot value: ["SONG", "christmas music", "christmas", "ALARM"]

HIERARCHICAL

[PlayMusic, [(MediaType, "SONG"), (ArtistName, "kidz bop kids"), (GenreName, "christmas")]]

Example 3: the utterances and the hypotheses are different

Input utterance "search for bluetooth”
1-best hypothesis Intent: QA, Slots: [Question: ""]

Rephrased utterance | "connect to my bluetooth device"

Executed hypothesis | Intent: ConnectBluetoothDevice, Slots: [Device: "device", ContactName: "device"]
SEQUENTIAL ConnectBluetoothDevice, (EOI), (EOK), (EOV)
PARALLEL Intent: QA, Slot key: [1, Slot value: []

HIERARCHICAL

[ConnectBluetoothDevice, [(Device, "device"), (ContactName, "device")]]

Table 4: Examples of qualitative analysis, showing the generated NLU hypotheses from each Hypgen decoder

architecture.

6 Limitations and Future Work

In this paper, we focus on investigating the value
of leveraging the inherent structure of a typical
NLU semantic interpretation for HypGen, not on
obtaining the best performance. We leave extend-
ing this work with recent state-of-the-art techniques
(e.g., based on Transformer and BERT) for future
work. Still, the proposed approach could either
inject a new promising interpretations toward more
diversity, or if not new, indicate that other non-top
interpretations are very promising based on user
rephrase behavior. Even with noise, the generated
interpretations would still be valuable, and how
best to leverage the additional context can be deter-
mined and fine-tuned per use case. We also limit
the evaluation of the proposed system up to the
NLU n-best enrichment step and leave the poten-
tial end-to-end production integration impact for
future work.

This work can be integrated into the production
systems in multiple ways. For instance, we can
use HypGen to automatically assign new labels to
defective traffic and try to correct them by curat-
ing new supervision data to directly improve NLU
models. We can perform online exploration by ex-
ecuting the generated interpretations and measure
end-to-end user experience impact to determine
whether to converge on them. The generated in-

terpretations can be used in a further re-ranking
step in downstream components (such as individ-
ual domains that often do their own re-ranking on
the received NLU n-best information with domain-
specific signals). We can also use the generated
interpretations for asking clarification questions for
disambiguation.

7 Conclusion

We proposed HypGen, a novel generative approach
for automatic NLU n-best enrichment in the con-
text of a conversational Al system. To obviate man-
ual annotation needs, we leveraged implicit user
feedback for automatic supervision data curation.
We designed and compared three different model-
ing choices for HypGen. The experiments showed
that the hierarchical modeling choice largely out-
performs the others, showing 145% improvement
in full hypotheses hit@k when ground-truth not
in NLU n-best. The experiments are based on a
specific subset of traffic with a rephrase, which
gives us only a preliminary view of our approach’s
promises. To fully assess our method, we will apply
it in the broader traffic and quantify opportunities
and performance in a more fine-grained way, by
integrating it into the runtime system.
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