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Abstract

In a conversational AI system, Natural Lan-001
guage Understanding (NLU) is a key compo-002
nent that produces the semantic interpretations003
for a user request. As one of the most upstream004
components, NLU errors are costly and have005
a wide blast radius to the end-to-end system006
behavior. We propose a model-based gener-007
ative approach for automatic NLU n-best en-008
richment, by leveraging implicit user feedback009
learned from the existing user dissatisfaction010
and rephrase detection techniques. It aims to011
generate reasonable and promising NLU inter-012
pretation candidates that can potentially correct013
NLU errors. We propose three different mod-014
eling designs and compare their performance015
with extensive experiments on live traffic from016
one of today’s state-of-the-art large-scale con-017
versational AI systems.018

1 Introduction019

Natural Language Understanding (NLU) is a core020

component in a conversational AI system (Kepuska021

and Bohouta, 2018), which produces semantic in-022

terpretations of a user request. Typically, NLU023

involves a set of sub-tasks including domain/intent024

classification and slot filling (El-Kahky et al., 2014).025

For instance, given a request “Play a Christmas026

song", NLU can produce an interpretation related027

to Music domain, with an intent to Play Song and028

the Genre slot filled with Christmas for entity reso-029

lution. As one of the most upstream components in030

the conversational AI workflow (Sarikaya, 2017),031

NLU’s outputs are used by a series of subsequent032

downstream components, such as dialog manage-033

ment, routing logic to back-end domain applica-034

tions, and natural language generation.035

Each core component within a conversational AI036

system, including NLU, usually gives its outputs in037

the form of n-best predictions (Hakkani-Tür et al.,038

2006; Williams and Balakrishnan, 2009). The top039

prediction is not always correct and thus outputting040

the n-best predictions increases the chances of prop- 041

agating the correct prediction to downstream. In 042

case the top prediction is unable to deliver satis- 043

factory end-to-end user experience, the n-best can 044

be used by downstream (e.g., domain application) 045

for recovering from errors or selecting the most 046

appropriate prediction in a late-binding fashion if 047

more context is needed to better disambiguate. The 048

n-best can also be used for exploration (Qi et al., 049

2018) and downstream tasks’ quality improvements 050

(Li et al., 2020). 051

In practice, NLU often fails to contain the cor- 052

rect interpretation in the n-best for a variety of rea- 053

sons. First, the training data for NLU largely comes 054

from manual annotations, which can be error-prone. 055

Also, the challenge of multi-label annotation makes 056

it more difficult to comprehensively cover the user 057

context and possible interpretations. Another limi- 058

tation comes from the discrepancy in the data distri- 059

butions compared to real traffic, mainly caused by 060

speech recognition errors and constantly changing 061

user behavior. One way to partially address these 062

challenges is to continuously sample live traffic, 063

manually annotate NLU errors to generate new su- 064

pervision data and update the NLU models, which 065

is still a costly manual effort. 066

We propose a model-based generative solution, 067

Hypothesis Generator (HypGen), for automatic 068

NLU n-best enrichment by leveraging implicit user 069

feedback. By enrichment, we mean generating and 070

then injecting (or identifying if already present) a 071

promising or relevant interpretation in the n-best 072

that can potentially correct the corresponding NLU 073

error or deliver a better end-to-end user experi- 074

ence. We base on a scalable approach using two 075

implicit user feedback signals, dissatisfaction and 076

rephrasing, where the former is for detecting user 077

dissatisfaction and the latter for user’s correcting 078

behavior (Park et al., 2021). For instance, as shown 079

in Figure 1, a dissatisfied user can explicitly ask 080

the system to stop its current response or action, 081
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Intent: Question Answering
Slot: Question = “Bluetooth”Get Bluetooth.

Bluetooth is a wireless 
technology standard used for 
exchanging data between ……

Connect to Bluetooth speaker.

There is one speaker nearby 
for Bluetooth connection. 
Pairing.

Intent: Connect Bluetooth Device
Slot: Device type = “speaker”

ENRICHMENT

REPHRASE

Intent: Search for Shopping
Slot: Category = “Bluetooth”

Conversation NLU n-best Interpretations

…

Top-1

Top-2

Top-1

…

INTERRUPTION
Stop!

Figure 1: An example scenario, on how implicit user feedback can be used to automatically detect user dissatisfaction,
which can be corrected by learning from the user rephrase behavior to generate and enrich the original NLU outputs
with a more relevant interpretation.

and they can rephrase the request with less room082

for ambiguity. We can use the rephrased request’s083

NLU interpretations to learn how to enrich the in-084

terpretations for the original request.085

The contribution of this work is threefold. First,086

to our knowledge, this work is the first in the litera-087

ture introducing the problem of NLU n-best enrich-088

ment in the context of large-scale personal assis-089

tant and conversational AI systems in production.090

Second, we propose an automatic and generative091

approach for enriching NLU n-best by leveraging092

implicit user feedback, without manual annotations.093

Last, we show the performance of our approach094

with extensive experiments on live production traf-095

fic from one of today’s state-of-the-art large-scale096

conversational AI systems.097

2 Background and related work098

Implicit user feedback has been shown to be useful099

for many tasks in recommendation systems (Ren-100

dle et al., 2012; He and McAuley, 2016) and search101

engines (Joachims, 2002; Bi et al., 2019). For ex-102

ample, browsing, viewing, clicking or purchase103

history can be employed to enhance the quality of104

recommendation. There have been a small, similar105

set of pioneering work in the context of conversa-106

tional AI systems on leveraging implicit feedback.107

An early attempt is to detect a user sentiment and108

adjust the AI response in open conversation set-109

ting (Zhang et al., 2018), which did not necessarily110

intend to clarify user intent. In terms of clarify-111

ing or correcting NLU interpretation, request text112

rewrite (Ponnusamy et al., 2019) and music entity113

relabeling (Muralidharan et al., 2019) are a few 114

representative related works. One of the most re- 115

cent effort was to alter the NLU interpretation’s 116

downstream ranking model behavior using implicit 117

feedback (Park et al., 2021). However still, there 118

has been no significant effort directly improving or 119

enriching the NLU outputs in the current literature. 120

This work leverages two specific types of im- 121

plicit user feedback signals, user dissatisfaction 122

and user rephrases. This is based on our insight 123

that it is often times possible to accurately infer 124

user dissatisfaction by analyzing the interaction be- 125

tween the conversational system and the user. For 126

instance, the system response can be generic error 127

handling such as "Sorry, I did not understand," or 128

the user can explicitly interrupt the system by ex- 129

pressing dissatisfaction such as "Stop" (although 130

not always the case, the users are dissatisfied in 131

most of the cases according to our user study). 132

In such cases, users often clarify their request by 133

rephrasing it in clearer terms, and the information 134

can be used to infer their true intention associated 135

with the original request that ended up with dissat- 136

isfaction. The following subsections briefly intro- 137

duce the related enabling techniques to automati- 138

cally (1) infer user dissatisfaction given a request 139

and (2) infer whether there is a follow-up rephrase. 140

2.1 User Dissatisfaction Detection 141

Most user feedback is implicit, unless otherwise 142

specifically solicited. There are many promising 143

implicit user behavior signals that can be employed 144

for the detection of user dissatisfaction during inter- 145
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action with a conversational AI system. To name a146

few, termination (cancelling a conversation or expe-147

rience), abandonment (leaving without completing148

a conversation), interruption (barging in while the149

system is still giving a response), error-correcting150

language (following up with "no, ..." or "I mean,151

..."), negative sentiment language showing frustra-152

tion (Beaver and Mueen, 2020; Sarikaya, 2017) are153

useful signals for user dissatisfaction detection.154

Apart from the implicit user behavior signals,155

there are other useful signals from the system re-156

sponse. They include generic error-handling sys-157

tem responses ("I don’t know that one."), natural158

language error-handling responses (when a me-159

dia entity is not found), and an absence of a re-160

sponse (Beaver and Mueen, 2020; Sarikaya, 2017).161

Component-level signals such as latency or confi-162

dence scores for the underlying models, e.g., ASR163

or NLU, are useful as well. We may also apply ad-164

vanced modeling strategies taking into account user165

interaction patterns and use past interaction history166

for additional context (Bodigutla et al., 2020), or167

contextual metrics relating to usage scenario, e.g.,168

use dwell time in search for listening-to-music con-169

text (Kiseleva et al., 2016).170

2.2 User Rephrase Detection171

The major body of works in this literature has been172

approaching from the perspectives of sentence se-173

mantic similarity and paraphrase detection. The174

representative achievements are made through la-175

tent semantic analysis (Landauer et al., 1998), lexi-176

cal matching (Manning and Schutze, 1999), lever-177

aging meaning or concepts of words with knowl-178

edge bases such as WordNet (Mihalcea et al., 2006),179

and word (Camacho-Collados and Pilehvar, 2018)180

and sentence embeddings (Reimers et al., 2019).181

Regarding model architecture, Siamese network182

has been frequently applied with CNN (Hu et al.,183

2014), LSTM (Mueller and Thyagarajan, 2016),184

and BERT (Reimers et al., 2019). It is also re-185

lated to the community question-answering sys-186

tems in finding semantically similar topics (Srba187

and Bielikova, 2016).188

3 Problem Definition189

The goal is to generate a new, reasonable NLU in-190

terpretation candidate from an existing user request191

and corresponding NLU interpretations, identified192

through the aforementioned implicit user feedback193

detection techniques. Formally, denote a tuple194

fi = (ti, Ci, Hi) representing the features for a 195

user request ri, where ti is the request text of ri, 196

Ci is a set of contextual features (e.g., device has 197

a screen), and Hi = [hi,1, hi,2, . . . , hi,n] is a list of 198

n-best hypotheses produced from the existing NLU. 199

Here, each hi,j = (qi,j , Si,j) is a pair of intent qi,j 200

and a list of slots Si,j = [s1i,j , s
2
i,j , . . . ] with each 201

slot sli,j = (kli,j , v
l
i,j) a pair of slot key and value, 202

respectively. The goal is then to take fi as an in- 203

put and to generate the ground-truth hypothesis 204

gi = (qgi , S
g
i ) as an output. 205

4 Solution Architecture: HypGen 206

We propose HypGen, consisting of two modules 207

: a user request feature encoder menc and a new 208

hypothesis generation decoder mdec, as shown in 209

Figure 2. Note that the decoder can have a few 210

different designs in a way of incorporating the re- 211

lationships between hypothesis elements: domain, 212

intent, and slots, and the figure describes one pos- 213

sible design among them. Formally, given the fea- 214

tures fi for a request, the encoder menc takes fi 215

as input to generate a single vector zi = menc(fi) 216

that summarizes the information in fi. Then, the 217

decoder mdec takes zi as input and aims to generate 218

the ground-truth hypothesis gi = (qgi , S
g
i ). 219

4.1 Encoder 220

The encoder summarizes the three input signal sub- 221

components into one vector in the following ways. 222

Request Text Encoding: Given the text ti, we 223

first tokenize it to get a list of word tokens Wi = 224

[w1, w2, . . . , wm]. Then, for each word wi, we 225

convert it into the corresponding embedding vector 226

to get a list of embeddings Ei = [et1, e
t
2, . . . , e

t
m]. 227

A Bi-LSTM (Hochreiter and Schmidhuber, 1997) 228

is applied to Ei to generate the text encoding zti . 229

Context Encoding: The request context Ci can 230

contain features that are either categorical (e.g., 231

device type) or numerical (e.g., model confidence 232

score). For each context feature cj ∈ Ci, if cj 233

is categorical, we represent it with an embedding 234

vector eCj . Otherwise, we set eCj = cj by directly 235

using the numeric value. We generate the context 236

encoding zCi =
⊕

j e
C
j by concatenating the repre- 237

sentations for all context features. 238

NLU Hypothesis Encoding: Given the NLU n- 239

best hypotheses Hi = [hi,1, hi,2, . . . , hi,n], there 240

are different ways to encode Hi. In this work, we 241

encode Hi by only summarizing the information 242
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Input Signal Category Input Signal
Utterance Utterance Text
Interpretation Intent
Interpretation Slot Keys
Interpretation Slot Values
Context ER confidence
Context Device Type
Context

Summarization 
Vector

Intent

Intent Intent<SOS>

<EOK><EOV>k1 v1 k2 v2

k2 v2k1 v1

Intent kt-1 vt-1

kt

Intent kt vt-1

vt

ht-1 ht
Key
Unit

Value
Unit

Intent kt-1 vt-1

…

(a) Encoder (b) Decoder

BiLSTM

BiLSTM

<SOK><SOV> Intent

Figure 2: The overall HypGen architecture following the encoder-decoder framework - (a) The encoder architecture
is shown on the left and (b) one possible decoder architecture, HIERARCHICAL design, is shown on the right.

Utterance: “Play Christmas Songs”
Ground-truth: {intent: ‘PlayMusic’, slots: [‘Media’: ‘Song’, ‘Genre’: ‘Christmas’]}

Sequential [‘PlayMusic’, ‘<EOI>’, ‘Media’, ‘Genre’, ‘<EOK>’, ‘Song’, ‘Christmas’, ‘<EOV>’]

Parallel

intent: ‘PlayMusic’
slot_keys: [‘Media’, ‘Genre’, ‘<EOK>’]
slot_values: [‘Song’, ‘Christmas’, ‘<EOV>’]

Hierarchical ‘PlayMusic’ [(‘Media’, ‘Song’), (‘Genre’, ‘Christmas’), (‘<EOK>’, ‘<EOV>’)]

(a)

(b)

(c)

Figure 3: Examples for three different HypGen decoding designs: SEQUENTIAL, PARALLEL, and HIERARCHICAL.

in the 1-best hypothesis hi,1, which is the most243

critical, and we leave it as future work on leverag-244

ing the full n-best information for more effective245

encoding. To encode hi,1 = (qi,1, Si,1), we first246

convert the intent qi,1 into an embedding eqi . Then,247

we use a Bi-LSTM to summarize the slot key list248

[k1i,1, k
2
i,1, . . . ] of Si,1 and another to summarize the249

slot value list [v1i,1, v
2
i,1, . . . ] to get the embeddings250

eki and evi . Finally, we concatenate all embeddings251

to get the hypothesis encoding zHi = eqi ⊕ eki ⊕ evi .252

Final summarization: For the encodings zti , z
C
i ,253

and zHi for all three feature parts, the final summa-254

rization encoding zi = zti ⊕ zCi ⊕ zHi is obtained255

by their concatenation.256

4.2 Decoder257

An NLU hypothesis is a complex yet structured258

result, with each element (i.e., intent, slot key, slot259

value) having a clear semantic meaning. Further-260

more, these elements have inherent relationship.261

Certain slot keys may only appear given a specific262

intent, and similarly, certain slot values correspond263

to specific slot keys. Leveraging this insight, we264

describe three different modeling designs for the265

HypGen decoder, namely SEQUENTIAL, PARAL-266

LEL, and HIERARCHICAL. 267

4.2.1 Sequential Decoder 268

Motivated by Seq2seq (Sutskever et al., 2014) de- 269

coding, a sequential decoder, called SEQUENTIAL, 270

generates hypotheses with each hypothesis simply 271

a sequence of tokens (see Figure 3(a)). Specifi- 272

cally, given the summarization vector zi from the 273

encoder, an LSTM uses zi as the initial hidden 274

state and decodes a list of tokens serially where 275

each token can be any element type (intent, slot 276

key, or slot value) comprising a hypothesis. Since 277

a hypothesis is structured, we explicitly have SE- 278

QUENTIAL first generate an intent, followed by a 279

list of slot keys and then a list of slot values. To 280

be able to separate the hypothesis element types, 281

we use special tokens as sentinels for each element 282

type generation, which are <EOI> (i.e., end of in- 283

tent), <EOK> (i.e., end of slot keys), and <EOV> 284

(i.e., end of slot values). 285

In the model training stage, we pre-process the 286

ground-truth hypothesis of each training instance to 287

a list of tokens conforming to the aforementioned 288

format. For inference, we use a standard k-beam 289

search to generate the k-best candidates. SEQUEN- 290

TIAL is a simple and straight-forward baseline de- 291
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sign for HypGen decoding.292

4.2.2 Parallel Decoder293

A parallel decoder, called PARALLEL, generates294

hypotheses with a separate decoder for generating295

each element type of intent, slot key, and slot value296

(see Figure 3(b)). Specifically, given the summa-297

rization vector zi, the intent decoder takes zi as298

input and performs a multi-class classification with299

a 2-layer feed-forward network to generate the in-300

tent. In parallel, two distinct LSTMs also take zi as301

the initial hidden state vector and decode the slot302

keys and values respectively.303

In the model training stage, we pre-process the304

ground-truth hypothesis of each training instance305

by splitting it into each element type. For infer-306

ence, we adopt a modified k-beam search as fol-307

lows. Given the summarization vector zi, we first308

apply the intent decoder to get the top-k intents309

Ti with the highest confidence scores. Then, we310

perform a standard k-beam search on the slot key311

decoder and also on the slot value decoder sepa-312

rately to generate the top-k slot key sequence Li313

and value sequence Vi with the highest confidence314

scores. Finally, we generate the k-best hypothesis315

candidates Gk from all possible combinations of316

Ti × Li × Vi with the highest confidence scores.317

Compared to SEQUENTIAL, PARALLEL is archi-318

tecturally more complex, by modeling the structure319

of a hypothesis with three explicit subsections.320

4.2.3 Hierarchical Decoder321

As shown in Figure 2(b), a hierarchical decoder,322

called HIERARCHICAL, generates hypotheses with323

two decoders: an intent decoder and a slot decoder324

with a key-value (KV) cell (see Figure 3(c)). Given325

the summarization vector zi, an LSTM-based intent326

decoder takes zi as the initial hidden state vector.327

It performs a one-step decoding to generate the328

intent qi and the hidden state vector hqi . The slot329

decoder, which uses hqi as the initial hidden state330

vector, produces a sequence of slot key-value pairs.331

In detail, the slot decoder generates a sequence332

of slot key-value pairs recurrently with the KV-333

cell. As shown in Figure 2(b), the KV-cell extends334

LSTM and has two connected units: a key unit and335

a value unit. For the t-th step, the key unit takes the336

generated intent q and the previously generated key-337

value pair (kt−1, vt−1) as input to predict the slot338

key kt. Specifically, denote xkt to be the embedding339

concatenation of q, kt−1, and vt−1. Also denote340

ht−1 to be the previous hidden state. Then we341

pass xkt and ht−1 to an LSTM to predict the output 342

okt and hidden state hkt , where okt will be used to 343

generate the slot key kt as follows: 344

okt , h
k
t = LSTMk(xk

t , ht−1),

P (kt) = softmax(W kokt + bk),
(1) 345

346Once we have kt, the value unit takes the hidden 347

state hkt , the embedding concatenation xvt of the 348

intent q, the newly generated key kt and the previ- 349

ous value vt−1 as input, and use another LSTM to 350

predict the output ovt and hidden state ht, where ovt 351

is used to generate the slot value vt as follows: 352

ovt , ht = LSTMv(xv
t , h

k
t ),

P (vt) = softmax(W vovt + bv),
(2) 353

354Similarly to PARALLEL, a modified k-beam 355

search is used for inference. Specifically, given 356

the vector zi, we apply the intent decoder to get the 357

top-k intent predictions Ti. For each tj ∈ Ti, we 358

run a standard k-beam search on the slot decoder 359

with input tj and select the 1-best slot sequence Sj 360

with the highest confidence. Finally, we generate 361

the k-best hypothesis candidates Gk = {(tj , Sj) | 362

tj ∈ Ti}. Compared with the other two models, 363

HIERARCHICAL more clearly captures the hypoth- 364

esis structure among the element types (e.g., slot 365

key-value bond) and thus has the most complex 366

architecture. 367

4.3 Supervision Data 368

We leverage the user dissatisfaction and user 369

rephrase signals to prepare the training data for 370

HypGen. Denote S∆ = {s1, s2, . . . , sn} to be the 371

user interaction session data from the production 372

log for a certain period of time ∆. Each session 373

si = {(r1, a1), (r2, a2), . . . , (rq, aq)} is a list of 374

time-consecutive request-action pairs (i.e., rj is 375

a user request, aj is the corresponding conversa- 376

tion system action or response) that are temporally 377

close to each other. Given a session si ∈ S∆, we 378

use the analysis tool fimpl
1 that (1) detects if aj 379

caused end-to-end user dissatisfaction for rj for 380

each (rj , aj) ∈ si, and (2) whether there exists 381

(rk, ak) ∈ si with k > j such that rk is a semantic 382

rephrase of rj with ak not have caused user dissat- 383

isfaction. Based on this, we generate the training 384

data D∆ as follows. 385

First, we apply fimpl to each session si ∈ S∆ 386

to extract all rephrase pairs Rs
i in si with each 387

1In today’s production system, fimpl show F1 scores over
0.70 for detecting user dissatisfaction as well as user rephrase.
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Datasets Size
Train1 > 10MM
Test1 > 800K
Test2 > 350K

Data Properties Size
# of intents > 100

# of slot keys > 100
# of slot values > 100K

Table 1: Data statistics. Train1 and Test1 are a typical
dataset split into training and testing from live traffic
log.Test2 is a subset of Test1, where the original n-best
does not contain the correct interpretation.

Metric
Model

Sequence Parallel Hierarchical
Intent Accuracy 85.84 85.19 85.77

Slot 
keys

Precision 94.85 57.75 94.52
Recall 91.21 66.68 93.33

F1 92.83 61.38 93.82

Slot 
values

Precision 91.16 48.73 83.33
Recall 42.69 53.62 81.99

F1 56.65 50.42 82.55

Hypot
hesis

Accuracy 58.8 34.53 75.27
Hit@k 58.84 34.6 93.75

Table 2: Hypothesis generation result on Test1.

pair (rj , rk) ∈ Rs
i following (1) rk is a semantic388

rephrase of rj with k > j and (2) ak not showing389

user dissatisfaction while aj showing dissatisfac-390

tion. Next, for each (rj , rk) ∈ Rs
i , we extract391

the features fj = (tj , Cj , Hj) for rj . Denote gk392

to be the NLU hypothesis for rk that is selected393

and executed by the conversational system end-394

to-end. We infer that gk could be a correct hy-395

pothesis for rj since gk’s end results do not show396

user dissatisfaction and rk rephrases rj . Based on397

session si, we generate a set of training instances398

Ds
i = {(fj , gk) | (rj , rk) ∈ Rs

i}. We note that it is399

possible for the rephrase interpretation gk to be the400

same as the executed NLU hypothesis for ri. In this401

work, we keep all such instances in our data, to not402

bias our model to learn to generate hypotheses that403

are different from ri’s original NLU selection when404

the original NLU hypothesis is correct. Finally, we405

union the data points from all sessions to construct406

the complete supervision data D∆ =
⋃

iD
s
i .407

5 Experiments408

Datasets and Experiment Settings: We took409

live traffic from a commercial large-scale conversa-410

tional AI system in production, processed the data411

so that users are not identifiable, and generated our412

supervision data. We split the data into the training413

Metric
Model

Sequence Parallel Hierarchical
Intent Accuracy +0.0 -0.4 +0.1

Slot 
keys

Precision +0.0 -38.5 -0.4
Recall +0.0 -24.5 +2.7

F1 +0.0 -32.3 +1.2

Slot 
values

Precision +0.0 -47.9 +1.2
Recall +0.0 +130.4 +292.8

F1 +0.0 +39.2 +156.2

Hypot
hesis

Accuracy +0.0 -54.9 +105.6
Hit@k +0.0 -53.3 +145.3

Table 3: Hypothesis generation performance result on
Test2. It is more challenging task as the input n-best
does not have the correct interpretation.

set Train1 and test set Test1. We also extracted a 414

subset Test2 from Test1, in which each instance in 415

Test2 has the ground-truth (i.e., correct) interpreta- 416

tion that is not in the request’s n-best interpretation 417

hypotheses, which is a more challenging scenario. 418

See Table 1 for the statistics. 419

We used NLTK (Bird et al., 2009) to tokenize 420

the request and used pre-trained GloVe (Penning- 421

ton et al., 2014) for encoder word embeddings. All 422

models were implemented in PyTorch, trained and 423

evaluated on AWS p3.8xlarge instances with Intel 424

E5-2686 CPUs, 244 GB memory, and 4 Nvidia 425

V100 GPUs. We used Adam (Kingma and Ba, 426

2015) with a learning rate of 1e-3 as the optimiza- 427

tion algorithm. The models were trained for 4 428

epochs with a 16 batch size. We used a teacher- 429

forcing rate of 0.5 in training and a beam size of 5 430

for model inference. 431

5.1 Overall Evaluation 432

This section describes the overall generation per- 433

formance of the three proposed model variants. 434

Our evaluation consists of two parts for each vari- 435

ant: component-level and hypothesis-level. The 436

component-level evaluation shows the generation 437

performance for each component in a hypothesis. 438

To this end, we report the accuracy of the gener- 439

ated intent, as well as precision, recall and F1 score 440

for both slot key and slot value generation. The 441

hypothesis-level evaluation shows the full hypoth- 442

esis generation performance. We use two metrics: 443

accuracy of the top-1 generation and hit@k af- 444

ter running a k-beam search (i.e., whether there 445

is a hypothesis in the top-k generations identical 446

to the ground-truth), where k = 5. For all evalu- 447

ations, we use the performance of SEQUENTIAL 448
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as the baseline and show the relative changes for449

all metric scores for PARALLEL and HIERARCHI-450

CAL2. For reference, we show the absolute score451

ranges for SEQUENTIAL on key metrics. On Test1,452

component-wise SEQUENTIAL achieves >80% on453

both intent accuracy and slot key generation F1,454

and >50% on slot value generation F1. Hypothesis-455

wise, it achieves >50% for both hypothesis gener-456

ation accuracy and hit@k. For Test2, it has >70%457

for intent accuracy and slot key F1, and >20% for458

slot value F1, while the hypothesis generation accu-459

racy and hit@k are >20%. Note that in production460

systems, if we have at least the intent generated cor-461

rectly, it is straight-forward to extract the top full462

NLU hypothesis (intent, slot keys, and slot values)463

corresponding to the intent, which can significantly464

complement relatively lower performance on slots.465

Table 2 compares the overall performance of dif-466

ferent modeling variants on Test1. First, for intent467

generation, all model variants achieve comparably468

high accuracy. This is because SEQUENTIAL and469

HIERARCHICAL predict the intent as the first token470

in the output while PARALLEL has a separate classi-471

fier for intents, making it less challenging. Second,472

when generating slot keys, the three models’ scores473

diverge. Specifically, HIERARCHICAL achieves474

the best performance, while PARALLEL shows the475

worst (i.e., 33.8% lower than SEQUENTIAL regard-476

ing F1). This suggests that it is critical to model477

the relationship between intent and slot keys – HI-478

ERARCHICAL and SEQUENTIAL implicitly do so479

by generating slot keys conditioned on the intent480

value while PARALLEL uses a separate decoder for481

slot keys, unconditioned on the intent value. Third,482

slot value generation task is more challenging com-483

pared to slot key, as there are much more variety of484

possible slot values than keys (see Table 1), mak-485

ing it more challenging to generate. However still,486

HIERARCHICAL outperforms the rest by a large487

margin. This is because the key-value cell tightly488

bonds a slot value to its key, narrowing down the489

scope of the problem.Finally, for hypothesis-level490

evaluation, we see that HIERARCHICAL outper-491

forms both SEQUENTIAL (i.e., by 28.0% for top-1492

accuracy and 59.3% for hit@k) and PARALLEL493

(i.e., >60% for both top-1 accuracy and hit@k).494

Also, PARALLELwith the separate decoders shows495

the worst performance even compared to SEQUEN-496

TIAL, indicating the importance of capturing the497

2We will disclose the exact performance metrics once the
internal confidentiality review is complete.

correlation of hypothesis components. 498

Table 3 presents the results on Test2, a more 499

challenging task subset of Test1, where the ground- 500

truth interpretation is not in the request’s n-best 501

interpretation. We see similar trends across the de- 502

coders except HIERARCHICAL outperforming the 503

others variants by a much larger margin - 156.2% 504

better in F1 on slot value, 105.6% better in top-1 505

accuracy and 145.3% better in hit@k on full hy- 506

pothesis generation. This result reaffirms the clear 507

value that HIERARCHICAL brings in to the NLU 508

n-best enrichment task. Again, PARALLEL showed 509

the worst performance overall except the slot val- 510

ues’ recall and F1. We conjecture that this is due to 511

the skewness of the live traffic logs toward popular 512

slot values in our conversational AI usage context, 513

thereby leading to the increased amount of false 514

positives in PARALLEL, specifically when the corre- 515

lation of hypothesis components is not considered. 516

5.2 Qualitative Analysis 517

Table 4 shows three examples for qualitative anal- 518

ysis, with each example showing the generated 519

hypotheses from three different decoder architec- 520

tures. The examples show that both SEQUENTIAL 521

and PARALLEL have the problem of aligning slot 522

keys and values, especially when the sizes of the 523

predicted slot key and slot value are not the same, 524

while HIERARCHICAL handles them better, which 525

is consistent with the overall performance results. 526

For HIERARCHICAL, all slot keys and values are 527

paired and aligned by the key-value cell, and thus 528

no extra filtering or aligning is needed. Even for 529

the first example, which could be considered rela- 530

tively easy for generation since the input utterance 531

and hypothesis features are very similar to the tar- 532

get hypothesis, both SEQUENTIAL and PARALLEL 533

have trouble with slot information. 534

The first example would generate and inject an 535

NLU hypothesis that is semantically opposite of the 536

original request (turn on vs. turn off). This opposite 537

hypothesis can still be valuable to identify and/or 538

recover from ASR errors. If it is undesirable, a 539

post-processing step can prevent opposite-meaning 540

hypotheses injection. The second example shows 541

that it tried executing a completely different third- 542

party intent, but it is most likely to be corrected if 543

the hypothesis from the rephrased utterance was 544

executed in the first place. The third example is 545

similar to the second example but the original and 546

rephrased utterances are very different. 547
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Example 1: the utterance, intent and one slot value are different
Input utterance "turn the bedroom light on"
1-best hypothesis Intent: TurnOn, Slots: [Appliance: "bedroom light", Action: "turn on", DeviceName: "bedroom light"]
Rephrased utterance "turn the bedroom light off"
Executed hypothesis Intent: TurnOff, Slots: [Appliance: "bedroom light", Action: "turn off", DeviceName: "bedroom light"]
SEQUENTIAL TurnOff, ⟨EOI⟩, Appliance, Action, DeviceName, ⟨EOK⟩, "bedroom light", ⟨EOV⟩
PARALLEL Intent: TurnOff, Slot key: [Appliance, DeviceLocation, DeviceType, DeviceName],

Slot value: ["bedroom light", "bedroom", "turn off", "christmas tree", "turn on"]
HIERARCHICAL [TurnOff, [(Appliance, "bedroom light"), (Action, "turn off"), (DeviceName, "bedroom light")]]

Example 2: the utterances are the same but the hypotheses are totally different
Input utterance "play christmas songs by kidz bop kids"
1-best hypothesis Intent: ThirdPartySkill, Slots: []
Rephrased utterance "play christmas songs by kidz bop kids"
Executed hypothesis Intent: PlayMusic, Slots: [MediaType: "SONG", ArtistName: "kidz bop kids", GenreName: "christmas"]
SEQUENTIAL PlayMusic, <EOI>, MediaType, GenreName, <EOK>, "christmas", "SONG", <EOV>
PARALLEL Intent: PlayMusic, Slot key: [MediaType, ThirdPartySlot, SongName, Time, OnType],

Slot value: ["SONG", "christmas music", "christmas", "ALARM"]
HIERARCHICAL [PlayMusic, [(MediaType, "SONG"), (ArtistName, "kidz bop kids"), (GenreName, "christmas")]]

Example 3: the utterances and the hypotheses are different
Input utterance "search for bluetooth"
1-best hypothesis Intent: QA, Slots: [Question: ""]
Rephrased utterance "connect to my bluetooth device"
Executed hypothesis Intent: ConnectBluetoothDevice, Slots: [Device: "device", ContactName: "device"]
SEQUENTIAL ConnectBluetoothDevice, ⟨EOI⟩, ⟨EOK⟩, ⟨EOV⟩
PARALLEL Intent: QA, Slot key: [], Slot value: []
HIERARCHICAL [ConnectBluetoothDevice, [(Device, "device"), (ContactName, "device")]]

Table 4: Examples of qualitative analysis, showing the generated NLU hypotheses from each Hypgen decoder
architecture.

6 Limitations and Future Work548

In this paper, we focus on investigating the value549

of leveraging the inherent structure of a typical550

NLU semantic interpretation for HypGen, not on551

obtaining the best performance. We leave extend-552

ing this work with recent state-of-the-art techniques553

(e.g., based on Transformer and BERT) for future554

work. Still, the proposed approach could either555

inject a new promising interpretations toward more556

diversity, or if not new, indicate that other non-top557

interpretations are very promising based on user558

rephrase behavior. Even with noise, the generated559

interpretations would still be valuable, and how560

best to leverage the additional context can be deter-561

mined and fine-tuned per use case. We also limit562

the evaluation of the proposed system up to the563

NLU n-best enrichment step and leave the poten-564

tial end-to-end production integration impact for565

future work.566

This work can be integrated into the production567

systems in multiple ways. For instance, we can568

use HypGen to automatically assign new labels to569

defective traffic and try to correct them by curat-570

ing new supervision data to directly improve NLU571

models. We can perform online exploration by ex-572

ecuting the generated interpretations and measure573

end-to-end user experience impact to determine574

whether to converge on them. The generated in-575

terpretations can be used in a further re-ranking 576

step in downstream components (such as individ- 577

ual domains that often do their own re-ranking on 578

the received NLU n-best information with domain- 579

specific signals). We can also use the generated 580

interpretations for asking clarification questions for 581

disambiguation. 582

7 Conclusion 583

We proposed HypGen, a novel generative approach 584

for automatic NLU n-best enrichment in the con- 585

text of a conversational AI system. To obviate man- 586

ual annotation needs, we leveraged implicit user 587

feedback for automatic supervision data curation. 588

We designed and compared three different model- 589

ing choices for HypGen. The experiments showed 590

that the hierarchical modeling choice largely out- 591

performs the others, showing 145% improvement 592

in full hypotheses hit@k when ground-truth not 593

in NLU n-best. The experiments are based on a 594

specific subset of traffic with a rephrase, which 595

gives us only a preliminary view of our approach’s 596

promises. To fully assess our method, we will apply 597

it in the broader traffic and quantify opportunities 598

and performance in a more fine-grained way, by 599

integrating it into the runtime system. 600
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