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Abstract
Hierarchical structures play a vital role in nu-
merous fields, from linguistics, biology, and net-
work science to computer vision, as they represent
asymmetric dependencies that are crucial for ac-
quiring high-quality representations and inductive
bias. The hyperbolic entailment cone is an ef-
fective geometric approach for preserving these
relationships by optimizing child nodes to reside
within their parent’s hyperbolic entailment cone.
However, this method necessitates prior informa-
tion on superior-subordinate hierarchical relation-
ships, which significantly restricts its generality in
most real-world data where such prior is implicit
and unknown. To address this limitation, we pro-
pose the universal hyperbolic cone (UHCone), an
effective algorithm designed to capture implicit
hierarchical structures in data, making it suitable
for a wide range of real-world scenarios. Our ap-
proach utilizes the hyperbolic embedding to infer
hierarchical relationships first and then reinforce
them with cone constraints. This method elimi-
nates the need for prior information on superior-
subordinate hierarchies, enabling broader appli-
cation scenarios. We evaluated the UHCone al-
gorithm on various applications and consistently
observed an improvement over baseline methods
and the largest improvement up to 4.71%, demon-
strating its effectiveness and versatility in captur-
ing implicit hierarchical relationships.

1. Introduction
Hierarchical relationships, including forms of general-
specific, class-subclass, group-member, and whole-part, are
common types of asymmetric structure found in various ap-
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plications (Nickel & Kiela, 2017; 2018; Sha et al., 2016; dos
Santos & Gonçalves, 2019; Berman, 2019; Nurek & Michal-
ski, 2020; Khrulkov et al., 2020; Li et al., 2019a; Ma et al.,
2023) such as textual entailment, biological taxonomies, or-
ganizational structures grouping, and image understanding.
Accurately modeling these relationships is essential for ob-
taining high-quality representations and further improving
downstream tasks.

In modeling the hierarchical relationships, previous stud-
ies have demonstrated the effectiveness of geometric tech-
niques (Xiong et al., 2023). Their success is primarily at-
tributed to the inherent biases in these geometric methods.
For example, region-based geometric methods (Abboud
et al., 2020; Boratko et al., 2021; Zhang et al., 2022; Vilnis
et al., 2018; Ganea et al., 2018b; Bai et al., 2021; Dhall
et al., 2020; Özçep et al., 2020; Suzuki et al., 2019), like
cones, boxes and discs, model hierarchical linkage via rep-
resenting the object as a geometric element in embedding
space and impose containment constraints, resulting in in-
herent biases that reflect human intuitions about hierarchies.
However, they assume the prior knowledge of the direction
or entailment of the hierarchy is known or given.

Implicit hierarchical structures, characterized by structural
asymmetries like popularity, relevance, evolution, influence,
adaptation, or distribution, frequently occur in real-world
data such as social networks, flight networks, recommen-
dation systems, images, etc. Figure 1 demonstrates the net-
work structures in different domains. The flight network, de-
picted in the left subfigure, exhibits a hub-and-spoke topol-
ogy where the central airport connects multiple destinations,
indicating its pivotal role. Similarly, in the WordNet of
food, depicted in the middle subfigure, the abstract word
“food” is associated with multiple specific words, exhibiting
a clear entailment relationship. Moreover, the right subfig-
ure shows that some noisy images contain more patterns
than clear ones, as observed in various generative models
such as the diffusion model (Croitoru et al., 2023), where
high-dimensional data is refined from Gaussian noise to
clear images. In image understanding, noisy images are
more likely to convey higher-level semantics since they can
contain patterns from multiple specific images (Khrulkov
et al., 2020). Capturing implicit hierarchical structures is
crucial for achieving high-quality representations and per-
formance in downstream tasks.
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Figure 1: Illustration data structures in different domains. The flight network (left) displays a hub-and-spoke topology
with a central airport connecting multiple destinations, indicating its crucial role. The WordNet of food (middle) shows
how the abstract concept of “food” is linked to several specific words, exhibiting a clear entailment relationship. The right
subfigure demonstrates that noisy images can contain more patterns than clear ones, as observed in various generative
models, including the diffusion model, where high-dimensional data is refined from Gaussian noise to clear images.

Challenges However, in the absence of explicitly defined
hierarchical relationships, previous methods are inadequate
and inapplicable. The direct utilization of these methods
in such scenarios often results in suboptimal or even worse
performance. Consequently, there is a pressing need for
a novel approach that can effectively model hierarchical
relationships within the context of general data.

Proposed Work In this work, we present the universal
hyperbolic cone (UHCone), an effective algorithm crafted to
capture implicit hierarchical structures. Our approach stems
from the observation that hyperbolic embedding (Nickel
& Kiela, 2017; 2018) intrinsically induce a norm on each
node, which is defined as the distance between the node
and the origin point. We exploit the fact that nodes higher
up in the hierarchy possess smaller hyperbolic norms than
their offspring. Based on this property, we obtain underly-
ing hierarchical relationships between pairs of nodes and
impose cone constraints on these relationships, which in
turn promotes more accurate hierarchical bias.

Contributions In summary, the main contributions of the
study are two-fold: First, we introduce a novel algorithm,
UHCone, which can effectively model implicit hierarchical
structures in more general data without explicit hierarchical
annotations. Second, we evaluated the UHCone on bench-
marks, WordNet, and images. The performance consistently
improved over baselines, up to 4.71%. Besides, the exper-
imental findings show that directly adding the hyperbolic
cone method to non-directional datasets led to a significant
drop in performance.

2. Limitation of HCone
In this section, we point out that HCone is unable to model
any undirected relationship, as demonstrated in Proposi-
tion 2.11, which demonstrates that two entities in a pair

1Due to page limit, the HCone method (Equation (10)) is intro-
duced in Appendix B.

mutually point to each other in an undirected graph or in
non-graph datasets like two images, where there is no clear
entailment information that indicates which entity entails
the other, as illustrated in Figure 1.

Proposition 2.1. Let G = (V, E) be an undirected acyclic
graph, where V is the set of vertices and E is the set of edges
such that E ⊆ V × V . Let Etrain be a symmetric and non-
empty subset of E . Specifically, since Etrain is symmetric,
for any pair (u, v) ∈ Etrain, it follows that (v, u) ∈ Etrain.
Assume that LHCone is a loss function defined in Equation
(10). Then, LHCone cannot yield non-zero values defined in
Equation (10). In other words, HCone is incapable of mod-
eling the symmetric relationship {(u, v), (v, u)} in Etrain.

3. UHCone: Universal Hyperbolic Entailment
Cones

The hyperbolic entailment cone is a useful technique for
encoding hierarchical relationships, but it has a fundamen-
tal limitation in that it requires prior knowledge of the en-
tailment relationship. Although hierarchical structures are
present in many real-world datasets, the relationships be-
tween entities are always unknown. To address this limita-
tion, we propose UHCone, a novel method that enhances
the generalizability of the hyperbolic entailment cone to
a wider range of scenarios. Our approach is based on the
idea of leveraging the hierarchical inductive bias produced
by hyperbolic embedding to infer implicit hierarchical re-
lationships at first. Then this inferred information guides
the hyperbolic cone containment, which in turn boosts the
hierarchical inductive bias.

Supposing we have data X and data split Xtrain, Xval, Xtest.
We begin by training a model fθ for k epochs in hyperbolic
space to obtain the embedding x. For the following training,
we first compute the hyperbolic norm ℓx of the data point x
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for all x ∈ Xtrain:

ℓx = dH(x,o). (1)

Then, to stabilize the training, we define the following nor-
malization factor:

ℓ̃x =
ℓx − ℓmin

ℓmin − ℓmax
, (2)

where ℓmin, ℓmax denote the minimal and maximal values
of the hyperbolic norm, respectively. We use the normalized
norm ℓ̃x to infer the hierarchical relationship between pairs
of data points. The relationship score sxy between points x
and y is calculated as:

sxy = sign


∣∣∣ℓ̃x − ℓ̃y

∣∣∣
ℓ̃y − ℓ̃x + ϵ

·max
(∣∣∣ℓ̃x − ℓ̃y

∣∣∣− α, 0
) ,

(3)
where | · | represents abs function, ϵ is a tiny positive con-
stant, e.g., 10−6, in our implementation. α is a hyperparam-
eter indicates the difference margin and sxy ∈ {−1, 0, 1}.
A score of 1 indicates that x is a higher-level node, −1 de-
notes that y is the higher-level node, and 0 implies that the
nodes are close to each other and considered to be at the
same hierarchical level. Based on the inferred hierarchi-
cal relationships, we reorder each pair of nodes (x, y) as
follows:

r(x, y) =


(x, y), sxy > 0

None, sxy = 0

(y, x), sxy < 0

. (4)

Incorporating this information into our algorithm, we refine
the loss function in Equation (10) as

LUHCone =
∑

(x,y)∈P

E(r(x, y))−
∑

(x′,y′)∈N

E(r(x′, y′)).

(5)

This optimization serves as an auxiliary task and optimizes
downstream tasks, aiding the model in acquiring accurate
local hierarchical relationships. The optimization objectives
enable us to establish a more precise entailment relationship,
creating a positive feedback loop that enhances hierarchical
inference in the subsequent training. As the proposed ap-
proach focuses on the embedding level and does not involve
models or downstream tasks, it can be applied in diverse
application scenarios. Moreover, the computational require-
ments are minimal, with the primary complexity resulting
from the norm calculation, which has a time complexity
of O(N) (assuming we have N data points). With paral-
lel computation, this can be reduced to O(1) if our GPU
resources scale linearly with the number of nodes.

Corollary 3.1. Let G = (V, E) be an undirected acyclic
graph as outlined in Proposition 2.1, and consider LUHCone

as the designated loss function with its associated energy
function E(u, v). Given any vertex pair {u, v} in E ex-
hibiting an implicit asymmetric relationship, where either
u entails v or v entails u, the proposed UHCone approach
ensures that if (u, v) ∈ Etrain, the energy function will
satisfy the criterion: E(u,v) ̸= E(v,u). This criterion
highlights an inherent asymmetry in representing hierarchi-
cal relationships between any vertex pair {(u, v), (v, u)}.
Consequently, UHCone possesses the capability to learn
and represent implicit entailment relationships.

4. Experiments
We evaluate the effectiveness of our proposed method in
domains with no explicit hierarchies, including undirected
WordNet and images.

Experiments on undirected WordNet. We first make a
comparison on the undirected WordNet - Mammal and Noun
datasets. Note that the undirected WordNet - Mammal is dif-
ferent from the dataset used in (Ganea et al., 2018b) where
there are no given entailment relationships for model to
learn. For detailed data processing and training processing,
please refer to the Appendix E.

For comparison, we select two types of base models, the
first one is the the Euclidean and hyperbolic shallow models
used in (Chami et al., 2019). Besides, we select a graph
base model (He et al., 2020) since the dataset can be viewed
as a graph. For the implicit hierarchical learning method,
we compare with the HCone method (Ganea et al., 2018b),
where we apply this cone function directly without addi-
tional operations. The other is the gating HCone (GHCone),
where we set a trainable MLP on paired nodes to infer their
hierarchies.

The experimental results are presented in Table 1, which
shows the comparison of AUC scores on the Mammal and
Noun datasets in WordNet for different dimensions (2, 5,
and 10). From Table 1, we can observe that the proposed
UHCone consistently outperforms the Euclidean and
hyperbolic baselines across all dataset settings. It has also
been discovered that the introduction of HCone and GH-
Cone resulted in a significant reduction in performance.
This is because HCone is a directional method, and without
any direction information, it can lead to an inaccurate entail-
ment relationship. Additionally, the trainable gating method
is not efficient in learning hierarchical information. To fa-
cilitate a better understanding of the effectiveness of the
proposed method, we presented the entire test performance
on the WordNet Mammal dataset in Figure 2. It is clear
that adding different cones after 100 epochs results in an
immediate difference. This demonstrates the effectiveness
of our model in learning implicit hierarchical relationships
in the absence of explicit entailment information.
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Figure 2: AUC score changes on the undirected WordNet Mammal test dataset along with epochs. The first, second, and
third subfigure denotes performance on Mammal with dimensions 2, 5 and 10, respectively. The vertical dash line at the
100th epoch denotes we started adding UHCone, HCone, and Gating methods where we use the hyperbolic shallow model
as the base model.

Table 1: Comparison of AUC scores on the Mammal and
Noun datasets in WordNet. The highest-performing model
is highlighted in bold.

Shallow-based Model

Mammal Noun

Dimension 2 5 10 2 5 10

Euclidean 56.45 63.76 65.81 54.08 54.82 59.17
Hyperbolic 60.67 72.45 72.71 62.16 68.19 71.98
HCone 58.21 70.07 70.08 58.80 62.64 66.62
GHCone 60.04 70.97 70.02 60.01 64.54 68.11
UHCone 61.93 74.49 75.84 63.08 69.02 72.52
Improvement +2.08% +2.82% +4.30% +1.48% +1.22% +0.75%

Graph-based Model

Euclidean 62.31 69.29 75.61 62.66 66.81 71.31
Hyperbolic 67.33 75.61 81.54 66.29 71.25 78.12
DHCone 62.62 72.75 78.42 64.91 69.62 78.12
GHCone 63.63 74.13 79.65 64.87 69.82 76.87
UHCone 68.15 79.17 84.51 67.53 73.09 80.31
Improvement +1.22% +4.71% +3.64% +1.87% +2.58% +2.80%

Experiments on Image dataset. In the image domain,
we follow the methods and experimental settings presented
in (Khrulkov et al., 2020) and evaluate the proposed models
in the few-shot image classification task on the Caltech-
UCSD Birds (CUB) dataset (Wah et al., 2011), which in-
volves classifying new data with limited labeled samples.
The few-shot learning task is formulated as N -way K-shot,
withN representing the number of classes to classify andK
the number of available samples per class. The 1-shot 5-way
and 5-shot 5-way tasks were considered in our experiments,
keeping the same with settings in (Khrulkov et al., 2020).
The detailed data processing and training process are given
in Appendix E.

We report the average performance and the 95% confidence
interval in Table 2, and for baseline results, we take them
from (Khrulkov et al., 2020). The results show that the
proposed method outperforms the existing baselines on both
1-shot and 5-shot 5-way tasks. In particular, the proposed

Table 2: Accuracy of different models on few-shot image
classification tasks with 1-shot 5-way task, 5-shot 5-way
task on Caltech-UCSD Birds (CUB) dataset. The results
are reported with 95% confidence intervals. For each task,
the best-performing method is highlighted, and the perfor-
mances of baselines are taken from (Khrulkov et al., 2020).
The results in grey are reproduced by us.

Baselines Embedding Net 1-Shot 5-Way 5-Shot 5-Way

MatchingNet (Vinyals et al., 2016) 4 Conv 61.16± 0.89 72.86± 0.70
MAML (Finn et al., 2017) 4 Conv 55.92± 0.95 72.09± 0.76
ProtoNet (Snell et al., 2017) 4 Conv 51.31± 0.91 70.77± 0.69
MACO (Hilliard et al., 2018) 4 Conv 60.76 74.96
RelationNet (Sung et al., 2018) 4 Conv 62.45± 0.98 76.11± 0.69
Baseline++ (Chen et al., 2019) 4 Conv 60.53± 0.83 79.34± 0.61
DN4-DA (Li et al., 2019b) 4 Conv 53.15± 0.84 81.90± 0.60
Hyperbolic ProtoNet (Khrulkov et al., 2020) 4 Conv 64.02± 0.24 82.53± 0.14
Hyperbolic ProtoNet* 4 Conv 65.01± 0.24 81.94± 0.15

UHCone (Hyperbolic ProtoNet) 4 Conv 65.60 ± 0.24 82.61 ± 0.14

method achieved an average accuracy of 65.60± 0.24 for
the 1-shot 5-way task and 82.61 ± 0.14 for the 5-shot 5-
way task. These results demonstrate the effectiveness of
integrating UHCone into image embedding for few-shot
learning.

5. Conclusion
In this work, we proposed UHCone, a novel approach to
capture implicit hierarchical structures in data by leveraging
the hyperbolic norm of nodes. Our method infers hierar-
chical relationships from the hyperbolic norm and imposes
cone constraints based on the inferred relationships, which
in turn promotes more accurate hierarchical bias through
a positive feedback loop. UHCone is simple yet effective
and can be employed as a plug-in to facilitate learning of
hierarchical structures independent of the hyperbolic model
or task.
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A. Related Work
Geometric Embedding Recent advances in the field of geometric embeddings (Xiong et al., 2023) have been largely
focused on the representation of intricate data structures, especially those that involve asymmetric relationships. Geometric
embeddings utilize geometric objects with intricate structures to represent data elements, including boxes (Abboud et al.,
2020; Boratko et al., 2021; Zhang et al., 2022), entailment cones (Ganea et al., 2018b; Bai et al., 2021; Dhall et al., 2020;
Özçep et al., 2020; Tseng et al., 2023), discs (Suzuki et al., 2019), densities (Athiwaratkun & Wilson, 2018; Vilnis &
McCallum, 2014), and elements of hyperbolic geometry (Nickel & Kiela, 2017; 2018; Ganea et al., 2018a), etc. By leveraging
the rich geometric structure of embedding objects, these methods can provide more expressive and effective representations
of data elements in various contexts, including but not limited to graph representation learning, recommendation systems,
and natural language processing.

Hyperbolic Embedding Hyperbolic embedding is one of the geometric embeddings, which embeds objects in a continuous,
low-dimensional hyperbolic space, showing impressive performance (Nickel & Kiela, 2017; 2018; Chami et al., 2019; Liu
et al., 2019; Yang et al., 2023), less distortion (Sarkar, 2011; Sala et al., 2018) and smaller generalization error (Suzuki
et al., 2021a;b) in hierarchical and scale-free structured data. Hyperbolic space can be regarded as a continuous tree
structure (Krioukov et al., 2010; Sarkar, 2011), implicitly capturing the hierarchical relationships. In recent years, the field
of hyperbolic learning has seen a growing interest in various areas, particularly in the areas of lexical entailment (Nickel &
Kiela, 2017; Gulcehre et al., 2019; Sala et al., 2018), image embedding (Khrulkov et al., 2020; Zhang et al., 2020; Desai
et al., 2023), graph embedding (Gulcehre et al., 2019; Chami et al., 2019; Liu et al., 2019; Yang et al., 2021; 2022c; Liu
et al., 2022) and recommender systems (Sun et al., 2021; Yang et al., 2022b;a; Chen et al., 2022).

Cone Embedding Cone embedding builds upon the idea of order embedding (Vendrov et al., 2015), which represents
a partially ordered set. Ganea et al. (Ganea et al., 2018b) extend this idea to hyperbolic space, where nodes are modeled
as cones. By leveraging the increased expressive power of hyperbolic space for tree-like graphs and the asymmetry and
inductive bias of region-based representations, this approach offers superior performance over traditional methods. To
capture multiple heterogeneous hierarchies, Bai et al. (Bai et al., 2021) introduced ConeE, which employs cone containment
constraints in different subspaces of the hyperbolic embedding space. Tseng et al. (Tseng et al., 2023) proposed a new
attention in the Transformer which is defined by hyperbolic entailment cones. Cone embedding and its extensions represent
a promising avenue for hierarchical learning (Desai et al., 2023). However, current methods are designed specifically for
directed graphs or explicitly hierarchical relationships and lack generality. In this work, we address this limitation, enabling
its applicability to a wider range of real-world scenarios.

B. Preliminaries
Hyperbolic Embedding Hyperbolic geometry is a non-Euclidean geometry characterized by a constant negative curvature,
whereby the curvature describes the degree of deviation of a geometric manifold from Euclidean space. The hyperbolic
space comprises multiple different models, and these models are mutually isometric. In our work, we utilize the Poincaré
ball model to develop our approach. However, it is noteworthy that our methodology is not bound by any specific model and
can be readily applied to other models. An n-dimensional Poincaré ball model centered at origin with negative curvature
κ(κ < 0) is defined as Hn = {x ∈ Rn : ∥x∥ < −1/κ}, where ∥ · ∥ is L2 norm. For any point pair (x,y) ∈ Hn,x ̸= y,
the distance on this manifold is defined as:

dH(x,y) =
2√
|κ|

tanh−1
(√

|κ| ∥−x⊕κ y∥
)
, (6)

where ⊕κ is Möbiuous addition, and it is defined as:

x⊕κ y =

(
1− 2κ⟨x,y⟩2 − κ∥y∥22

)
x+

(
1 + κ∥x∥22

)
y

1− 2κ⟨x,y⟩2 + κ2∥x∥22∥y∥22
. (7)

In particular, for each point x ∈ Hn, its distance to origin o, dH(x,o) = 2 tanh−1(∥x∥) is the induced hyperbolic norm.
For each point x ∈ Hn, the tangent space TxH provides a local linear approximation of Hn at x. Besides, the exponential
map expx : TxHn → Hn help project the embedding from tangent space to hyperbolic space and logarithmic map
logx : Hn → TxH do the inverse. The tangent space enables direct vector operations, like addition and scalar multiplication.
Conversely, the logarithmic map logx : Hn → TxH maps vectors in Hn to vectors in TxHn.
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Figure 3: Overview of the UHCone framework. Input data in various formats (i.e., graphs, text, or images) is processed by
suitable neural network models, such as GNNs, transformers, or CNNs, to obtain an effective object representation. The
UHCone approach extracts the hierarchical information from the embedding norm and applies the cone energy function.

Hyperbolic space exhibits a fundamental characteristic that distinguishes it from Euclidean space: the volume of space
expands exponentially rather than polynomially. This remarkable property endows hyperbolic space with a natural geometric
prior for representing hierarchical structures and power-law distributed data (Krioukov et al., 2010). Specifically, this prior
is leveraged by embedding high-level nodes with small norms, resulting in their proximity to the origin, while low-level
nodes are optimized with large norms and positioned relatively further away from the origin.

Hyperbolic Entailment Cone (HCone) By leveraging the hyperbolic space, we can represent nodes as cones (Ganea
et al., 2018b), which enables us to capture partial ordering induced by hierarchical relations. This approach combines the
advantages of hyperbolic space in representing tree-like structures with the asymmetry and inductive bias of region-based
cone representations.

The cone at the apex x is denoted by S
ψ(x)
x where ψ(x) specific the half-aperture of cone at x. The ψ(x) remain

unchanged irrespective of the angular coordinate of its apex x, and are solely determined by the norm of x, i.e., ψ(x) =
ψ (y) (∀x,y ∈ Hn\{0}, s.t. ∥x∥ = ∥y∥). The objective is to model partial order using the containment relationship
between cones. Specifically, the entailment cones adhere to transitivity, which can be expressed as: ∀x,y ∈ Hd\{0} : y ∈
S
ψ(x)
x ⇒ S

ψ(y)
y ⊆ S

ψ(x)
x . Given a dataset X and an hierarchical entailment pairs (x, y) ∈ X , supposing x entails y or

y is a subclass of x, to encourage y being in the cone of x in the embedding space, we define the angle θxy between the
half-lines −→xy and −→ox, that is:

θxy = cos−1

(
⟨x,y⟩

(
1 + ∥x∥2

)
− ∥x∥2

(
1 + ∥y∥2

)
∥x∥∥x− y∥

√
1 + ∥x∥2∥y∥2 − 2⟨xy⟩

)
, (8)

where x and y are the hyperbolic embeddings of point x and y respectively. Then, to satisfy the transitivity of nested
angular cones and symmetric conditions, we have the following expression of hyperbolic entailment cone at apex x ∈ Hn :

Sψ(x)
x = {y ∈ Hn | θxy ≤ ψ(x)} . (9)

To achieve the above goal, the model can be trained with max-margin loss function (Ganea et al., 2018b; Bai et al., 2021):

LHCone =
∑

(x,y)∈P

E(x,y) +
∑

(x′,y′)∈N

max (0, γ − E (x′,y′)) , (10)
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where P and N denote sets of positive and negative edge samples, respectively. The function E(x,y) is given by:
E(x,y) = max(0, θxy − ψ(x)), which measures the penalty of a wrongly classified pair (x,y).

C. Proof of Proposition 2.1
Proof. We aim to show that the HCone model, using the LHCone loss function, cannot simultaneously optimize a symmetric
relationship. To demonstrate this, we consider the optimization of positive samples, meaning we need to simultaneously
minimize E(u,v) and E(v,u).

Given the definitions of E(u,v) and E(v,u), this optimization problem is equivalent to minimizing both θuv − ψ(u) and
θvu − ψ(v). In order to achieve this minimization, we must satisfy the following conditions:

• θuv − ψ(u) ≤ 0, which implies ∥u∥ ≤ ∥v∥

• θvu − ψ(v) ≤ 0, which implies ∥v∥ ≤ ∥u∥.

Combining conditions (1) and (2), we obtain ∥u∥ = ∥v∥. This means that, under the minimization constraint, in the optimal
state, vertices u and v coincide at the same point. However, this result contradicts the assumption that u and v are distinct
vertices with a symmetric relationship in Etrain. Thus, we conclude that the HCone model is unable to optimize a symmetric
relationship simultaneously.

D. Proof of Corollary
Proof. Given the implicit hierarchical relationship between the vertex pair u, v, where either u entails v or v entails u, there
arises a norm disparity such that either ∥u∥ > ∥v∥ or ∥v∥ > ∥u∥. Referring to Equation (4), this disparity introduces
an asymmetric bias. Consequently, when applied to Equation (5), this bias ensures distinct energy scores, leading to the
conclusion that E(u,v) ̸= E(v,u).

E. Experimental Settings
In this work, we use different datasets for evaluations. In the following, we give more details about dataset description and
data split.

In WordNet Embedding, we use the subset mammal and noun for evaluation. WordNet is a lexical database for the English
language that organizes words into sets of synonyms called sunsets. The mammal subset in WordNet is a collection of
synsets that encompasses words related to mammals, which are a class of warm-blooded vertebrates typically characterized
by the presence of hair or fur, a four-chambered heart, and the production of milk to nourish their young. The noun hierarchy
in WordNet is organized around the concept of hypernymy, which refers to a type-of or is-a relationship between two
synsets. Based on previous research (Ganea et al., 2018b), we eliminate the root of the tree as it doesn’t provide significant
information and only has trivial edges to predict. The remaining set is divided into validation (5%), test (5%), and train
(90%). To remove existing entailment relationships in the dataset, we reverse all edges and add them to the training set,
ensuring it is symmetric. To enhance the validation and test parts, we include additional negative pairs. For every true edge
(u, v), we randomly select five negative corrupted pairs: five pairs (u′, v) and five pairs (u, v′) that are not connected in the
complete transitive closure. These negative pairs are then added to the respective negative set. We also use k times negative
pairs and k ∈ {1, 5, 10}. For link prediction in WordNet, we adopt a Fermi-Dirac decoder, aligning with the methodology
presented in (Ganea et al., 2018b).

To obtain the embedding for each word in WordNet, we also used a graph-based encoder with residual connection, which is
similar to the encoder (Sun et al., 2021). We searched for the cone weight in the scope of {0.01, 0.1, 0.2, 0.5} and set the
level margin and score margin to 0.1 and 0.5, respectively. We also found that their values didn’t have a significant impact
on the results. For baselines and our proposed methods, we used the same training and evaluation protocol. In particular,
HCone, GHCone used the same training dataset as UHCone, i.e., applying the bidirectional edge for training. In the first
phase of hyperbolic embedding, the training objective is

Llp =
1

|E|
∑

(i,j)∈E

−log p(zi, zj) +
1

|E|
∑

(i,j)/∈E′

log p(zi, z
′
j), (11)
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where E is the edge set and p(·) is the Fermi-Dirac function, indicating the probability of two hyperbolic nodes u,v have a
link or not, which is defined as:

p(u,v) =
[
exp (dH(u,v)2 − r)/t+ 1

]−1
, (12)

The loss function is to maximize the probability of two nodes if they are linked in the training set while minimizing the
probability of two nodes if they are not linked in the training set.

In the domain of image embedding, our evaluation is applied on the Caltech-UCSD Birds (CUB) dataset. This dataset,
specifically curated for fine-grained classification tasks, comprises 11,788 images distributed across 200 distinct bird species.
In alignment with the methodology adopted in prior studies (Khrulkov et al., 2020), we partition the dataset such that half of
the classes (100 out of 200) are designated for training. The remaining classes are evenly divided between validation and
testing, each receiving 50 classes. Considering the relative simplicity of the dataset, we employ a 4-Convolutional (4-Conv)
backbone, as previously utilized in the work of Khrulkov et al. (Khrulkov et al., 2020). This choice of architecture is deemed
sufficient for the task at hand without introducing unnecessary complexity.

Unlike graphs, there are no links between images. To apply UHCone in image Embedding, within each training batch, we
randomly select 2k samples from the same class as k positive pairs and 2k samples from different classes as k negative
pairs, resulting in a total of 2k pairs per batch. This integration enables us to insert UHCone into various image embedding
tasks. We show that the proposed method can also improve the performance of hyperbolic ProtoNet (Khrulkov et al., 2020)
for few-shot learning. Different from the standard ProtoNet (Snell et al., 2017), which computes the prototype of each class
in Euclidean space, hyperbolic ProtoNet (Khrulkov et al., 2020) computes the class prototype in hyperbolic space using
hyperbolic midpoint. We followed previous work (Khrulkov et al., 2020) for the experimental settings on image embedding
and searched for the cone weight in the scope of {0.01, 0.1, 0.2, 0.5}. We set the level margin and score margin to 0.1 and
0.5, respectively.
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