
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PINNVERSE: ACCURATE PARAMETER ESTIMATION
IN DIFFERENTIAL EQUATIONS FROM NOISY DATA
WITH CONSTRAINED PHYSICS-INFORMED NEURAL
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Estimating unknown parameters in differential equations from noisy, sparse data
is a common inverse problem in science and engineering. While Physics-Informed
Neural Networks (PINNs) have shown promise, their standard training paradigm,
which relies on a weighted-sum loss, often leads to overfitting and fails to en-
force physical laws in the presence of noise. This failure stems from the inability
of gradient-based methods to find balanced solutions on the complex, often non-
convex, Pareto fronts that arise in such multi-objective settings. We introduce
PINNverse, a new training paradigm that overcomes these limitations by refor-
mulating the learning process as a constrained optimization problem. Instead of
balancing competing objectives with ad-hoc weights, PINNverse minimizes the
data-fitting error subject to the explicit constraint that the differential equations
and boundary conditions are satisfied. To solve this, we employ the Modified Dif-
ferential Method of Multipliers (MDMM). By simultaneously updating network
weights and Lagrange multipliers (via gradient ascent) in a single optimization
loop, this method avoids the expensive nested loops required by conventional aug-
mented Lagrangian techniques and seamlessly integrates with standard optimizers
like Adam. This enables convergence to any point on the Pareto front—including
concave regions inaccessible to standard PINNs—while adding negligible compu-
tational overhead. Experiments on four challenging ODE and PDE benchmarks
demonstrate that PINNverse achieves robust and accurate parameter estimation
even with significant data noise and poor initial guesses, successfully preventing
overfitting and ensuring strict adherence to the governing physics. By solving
the forward and inverse problems concurrently, PINNverse enables efficient pa-
rameter inference in systems where repeated forward evaluations with classical
numerical solvers would be computationally prohibitive.

1 INTRODUCTION

Solving inverse problems for differential equations (DEs) is a cornerstone of scientific discovery
and engineering, allowing for the inference of physical parameters from observational data. While
classical frequentist (Fisher, 1922; Aldrich, 1997) and Bayesian (Jeffreys, 1939) methods have been
foundational, they are often hampered by challenges such as non-convex optimization landscapes
(Tu & Mayne, 2002; Villaverde et al., 2019) and significant computational demands (Stuart, 2010;
Luengo et al., 2020).

Recently, Physics-Informed Neural Networks (PINNs) (Raissi et al., 2019; Karniadakis et al., 2021)
have emerged as a powerful, mesh-free paradigm for solving DEs by embedding the governing
physical laws directly into the neural network’s loss function. However, when applied to inverse
problems with noisy data, a fundamental tension arises between fitting the observations (data loss)
and satisfying the physical constraints (physics loss). Simply balancing these terms often leads to
overfitting the noise at the expense of physical accuracy. For many physical systems, the governing
DEs are non-negotiable constraints, not objectives to be traded off for. We therefore reframe the
PINN inverse problem as a constrained optimization task: minimize the data loss subject to strict

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

compliance with the physical laws. To solve this, we introduce the Modified Differential Method of
Multipliers (MDMM) (Platt & Barr, 1987) as a novel training strategy for PINNs. MDMM elegantly
integrates the constraints using Lagrange multipliers that are updated in parallel with the network
and DE parameters. This approach offers four key advantages:

1. It avoids the nested optimization loops of traditional augmented Lagrangian methods (Lu
et al., 2021), imposing little computational overhead compared to standard PINN training
as we will see.

2. It is fully compatible with state-of-the-art, first-order optimizers like Adam (Kingma & Ba,
2014).

3. It robustly infers parameters even with substantial data noise and poor initial guesses, sce-
narios where even robust classical numerical optimizers fail.

4. It provides a straightforward mechanism to enforce practical parameter bounds, a common
requirement in real-world inverse problems.

We demonstrate on four benchmark inverse problems that MDMM-trained PINNs substantially out-
perform standard PINNs and classical optimizers, establishing a more robust and physically princi-
pled framework for parameter inference.

2 RELATED WORK

Challenges and Enhancements in PINN Training. Despite broad adoption, standard
(soft-constraint) PINN training can fail due to ill-conditioned gradients and stiff loss landscapes;
NTK analyses and empirical diagnostics make these pathologies explicit (Wang et al., 2022; Krish-
napriyan et al., 2021). Remedies include causality-aware training for time-dependent systems (Wang
et al., 2024), high-frequency feature embeddings (Fourier features/positional encodings) (Tancik
et al., 2020), adaptive resampling of collocation points (e.g., R3 sampling) (Daw et al., 2023), and
numerous adaptive loss-balancing schemes (D. & Braga-Neto, 2023; Xiang et al., 2022; Bischof &
Kraus, 2025). While effective in practice for forward solves, these techniques retain a penalty-based,
weighted-sum objective that reshapes representation/sampling or rescales terms without an explicit
noise model; consequently, in inverse settings with noisy observations the data and physics losses
are generically incompatible in the zero-residual limit and equal weighting promotes noise-fitting.
Moreover, heuristic or static weighting explores only a fixed weighted-sum compromise and lacks
statistically calibrated data losses or strict physics satisfaction, yielding biased parameter estimates
and persistent residual violations under noise.

Multi-objective formulations and Pareto analysis. To make the data–physics tension explicit,
several works adopt a multi-objective viewpoint. Rohrhofer et al. map the apparent Pareto front
induced by system scalings and loss weights (Rohrhofer et al., 2021), Heldmann et al. treat data and
residual losses as truly biobjective (Heldmann et al., 2023). Evolutionary strategies approximate
or explore the front directly, e.g., NSGA-PINN and related Pareto-inspired algorithms (Lu et al.,
2023; Lazovskaya et al., 2023), with a recent survey reviewing neuro-evolution for PINNs (Wong
et al., 2025). Unlike linear scalarization, dominance-based evolutionary schemes can, in principle,
cover concave and even disconnected Pareto regions, however their common drawback is heavy
computational demands.

Constrained formulations and hard constraints. An alternative line replaces ad-hoc scalariza-
tion by explicit constraints. The following approaches have been applied to inverse problems in
PINNs. hPINNs impose hard boundary/auxiliary constraints and use penalty/augmented-Lagrangian
machinery within PINN training, targeting inverse design tasks (Lu et al., 2021). PECANN
formulates forward/inverse learning as equality-constrained programs and introduces adaptive
per-constraint ALM updates and minibatching (Basir & Senocak, 2022). ADMM-PINNs split PDE
constraints from nonsmooth regularization, enabling proximal handling of sparsity/control objec-
tives (Song et al., 2024). While these methods demonstrate strong empirical performance, their
shared reliance on a nested optimization loop introduces significant computational overhead. This
structure is fundamentally incompatible with the standard, single-loop paradigm of gradient-based
optimizers used in deep learning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

x

t

„
(1)
1

„
(1)
2

„
(1)
3

„
(1)
4

„
(1)
m

...

„
(2)
1

„
(2)
2

„
(2)
3

„
(2)
4

„
(2)
m

...

„
(3)
1

„
(3)
2

„
(3)
3

„
(3)
4

„
(3)
m

...

u„1

u„2

u„k

...

Domain
Variables Hidden layers „

State
Variables

Neural Network

u„

min
„,”

(!dataLdata(„) + !deLde(„,”) + !icLic(„) + !bcLbc(„))

True solution

t

u
„

Noisy data & NN solution

co
n
cave

convex

Ground truth

Lde

L
d
a
ta

Trajectories to Pareto
front

PINN

„

”

min
„
Ldata(„) subject to:Lde(„,”) = 0,Lic(„) = 0,Lbc(„) = 0

True solution

t

u
„

Noisy data & NN solution

co
n
cave

convex

Ground truth

Lde

L
d
a
ta

Trajectories to Pareto
front

PINNverse
„

”

F
„
x , t,u,”,

@u

@t
,
@u

@x
,
@2u

@x2
: : :

«
= 0,

Lde(„,”) =
1

Nc

NcX

i=1

F(xdei , tdei ,” : : :)2

Ldata(„) =
1

Ndata

NdataX

i=1

`
u„(xdatai , tdatai)− udatai

´2
,

Lic(„) =
1

Nic

NicX

i=1

`
u„(x ici , 0)− h(x ici)

´2

Lbc(„) =
1

Nbc

NbcX

i=1

B
`
u„(xbci , tbci), xbci , tbci

´2

DEs with parameters ” & Losses

Figure 1: Schematic comparison of PINN and PINNverse. A neural network (top left) approx-
imates the solution to a set of differential equations with unknown parameters η by minimizing
several loss terms (bottom left). Top Right (Standard PINN): Minimizes a weighted sum of all
losses. This approach struggles to find optimal trade-offs, as it is restricted to the convex regions
of the Pareto front and requires tedious weight tuning. Bottom Right (PINNverse): Reformulates
the problem as a constrained optimization, minimizing data loss subject to the physical constraints.
This allows the optimizer to robustly converge to the ground truth solution by navigating the entire
Pareto front and strictly enforcing physical laws.

3 METHODS

3.1 BACKGROUND: THE PINN MULTI-OBJECTIVE CHALLENGE

A Physics-Informed Neural Network (PINN) approximates the solution uθ(x, t) of a differential
equation system, where θ are the network parameters. For inverse problems with unknown physical
parameters η, the network is trained by minimizing several competing loss functions (Figure 1):

• Data Loss (Ldata): The discrepancy between the network’s predictions and Ndata noisy
observations, typically a root mean squared error.

• Physics Loss (Lde, Lic, Lbc): The residuals of the governing differential equations, initial
conditions, and boundary conditions, evaluated at a set of collocation points.

The standard approach combines these into a single objective via a weighted sum, Lpinn =
∑

i ωiLi,
which is then minimized with respect to both θ and η using gradient descent (Raissi et al., 2019),
as detailed in Appendix A.1. This formulation, however, is fundamentally limited. Training a PINN
with noisy data is an inherent multi-objective optimization problem. The weighted-sum method can
only converge to solutions on the convex hull of the Pareto front (Das & Dennis, 1997), a key concept
we elaborate on in Appendix A.2. Furthermore, there is no principled way to set the weights ωi a
priori to target a specific solution on that convex front; achieving a desired balance between data-fit
and physics-compliance requires extensive and often impractical hyperparameter tuning. Optimal
solutions in non-convex regions remain systematically inaccessible (Figure 1).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 PINNVERSE: A CONSTRAINED OPTIMIZATION FRAMEWORK

To overcome these limitations, we introduce PINNverse, which recasts the inverse problem as a
constrained optimization task, a formulation we detail further in Appendix A.3. We minimize only
the data loss, but subject to physics-based constraints:

minimize
θ,η

Ldata(θ)

subject to Li(θ,η) = 0, i ∈ {de, ic, bc}
and ηlower ≤ η ≤ ηupper.

This formulation is powerful because it removes the ambiguity of weight tuning and naturally in-
tegrates known parameter bounds in the optimization. It precisely defines the target on the Pareto
front: the point that best fits the data while perfectly satisfying the physical laws. This allows con-
vergence to any point on the front, regardless of its geometry.

We solve this problem using the Modified Differential Method of Multipliers (MDMM) (Platt &
Barr, 1987), which optimizes the following augmented Lagrangian loss function

LA(θ,η,λ) = Ldata(θ) +
∑
i

(
λiLi(θ,η) +

ci
2
L2
i (θ,η)

)
,

where λi are Lagrange multipliers and ci > 0 are penalty coefficients.

The key advantage of MDMM is its efficient, simultaneous update of all variables in a single step.
Traditional augmented Lagrangian methods require a computationally expensive nested loop—fully
optimizing primal variables (θ,η) before taking a single update step on the dual variables (λ)—
which is impractical for training neural networks. MDMM elegantly avoids this by updating the
neural network parameters, differential equation parameters, and Lagrange multipliers all at once
within a single backward pass. Appendix A.4 provides a full description of the update rules:

• Primal update (Gradient Descent): Update θ and η to minimize LA.
• Dual update (Gradient Ascent): Update Lagrange multipliers λ to maximize LA.

This formulation allows the use of any gradient based optimizer normally used in neural network
training. The quadratic penalty terms in LA provide stability, acting as dampers that make this
simultaneous update scheme converge robustly (Platt & Barr, 1987). This transforms the saddle-
point problem into a tractable optimization with only a minor computational overhead compared to
an unconstrained standard PINN.

4 EXPERIMENTS

4.1 EXPERIMENTAL DESIGN

To evaluate PINNverse, we benchmark it on a suite of four problems (two ODEs and two PDEs)
against a standard PINN and the widely-used robust Nelder–Mead optimization algorithm (Nelder
& Mead, 1965) from SciPy (Virtanen et al., 2020) to compare against a non PINN method. For a
controlled comparison, PINNverse and the standard PINN share identical neural network architec-
tures, initializations, and learning rate schedules, using the Adam optimizer (Kingma & Ba, 2014)
for training. Complete training specifications are listed in Appendix A.5. This setup ensures that
performance differences are attributable to our proposed training strategy. To isolate the perfor-
mance gains of our method, we benchmark against a standard PINN using a simple weighted-sum
loss where all weights are set to unity (Rohrhofer et al., 2021; Raissi et al., 2019). This ensures
that the sole differentiating factor is the MDMM-based constrained optimization. We do not ex-
plore other weighting schemes for the baseline, as any static weighting would still be fundamentally
restricted to the convex parts of the Pareto front without a principled way to select weights a priori.

We evaluate the performance across all three methods based on the relative error in the parame-
ters β, the absolute and relative error on measured data for the estimated parameters plugged in a
numerical solver µrel/µabs and for PINN and PINNverse the maximum discrepancy of the learned
neural network solution and the corresponding numerical solution γODE/γPDE, see appendix A.6 for

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

more details. Across all benchmarks, PINNverse consistently demonstrates superior performance
in parameter estimation and robustness to data noise and varied initial parameter guesses, as sum-
marized in Figure 6. Moreover, PINNverse’s computational overhead is minimal: while memory
consumption is slightly elevated compared to a standard PINN, the runtime is highly competitive,
falling within a 0.9–1.2× range (Figure 7). We attribute the occasional speedup (runtime ¡ 1.0×)
to the more stable gradient updates inherent to our constrained optimization approach. Notably we
observe that PINN only delivers good results in the case of no noise across all four experiments.
This is expected as the Pareto front in this case collapses to a single point.

4.2 KINETIC REACTION MODEL

10
25
50
75

100
200
300
400
500

In
iti

al
 G

ue
ss

 D
ev

ia
tio

n
ξ

[%
]

PINNverse PINN Nelder-Mead

0.00

0.10

0.20

0.30

0.40

0.50

Re
la

tiv
e

RM
SE

 D
at

a
γ r

el

10
25
50
75

100
200
300
400
500

In
iti

al
 G

ue
ss

 D
ev

ia
tio

n
ξ

[%
]

0 5 10 15 20
22.5 25

27.5 30

Data error ζ [%]

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

RM
SE

 P
ar

am
et

er
s β

0 5 10 15 20
22.5 25

27.5 30

Data error ζ [%]

10
25
50
75

100
200
300
400
500

In
iti

al
 G

ue
ss

 D
ev

ia
tio

n
ξ

[%
]

0 5 10 15 20
22.5 25

27.5 30

Data error ζ [%]

0.00

0.50

1.00

1.50

2.00

2.50

M
ax

im
um

 D
ist

an
ce

 μ
OD

E

0.0

0.2

0.4

0.6

0.8

1.0

So
lu

tio
n

[C
](t

)

PINNverse
True
Estimated
PINNverse
Data

0 1 2 3 4 5
t

0.0

0.2

0.4

0.6

0.8

1.0

So
lu

tio
n

[C
](t

)

PINN
True
Estimated
PINN
Data

100 101 102 103 104 105 106

Epoch

10−1

100

101
Data loss

PINNverse
PINN

100 101 102 103 104 105 106

Epoch

10−9

10−7

10−5

10−3

10−1

101

-1.5

DE loss

PINNverse
PINN

100 101 102 103 104 105 106

Epoch

10−9

10−7

10−5

10−3

10−1

101

-1.6

IC loss
PINNverse
PINN

a b

c

Figure 2: Parameter estimation performance in the kinetic reaction ODE model. a, Heatmaps
depicting performance metrics across varying noise levels in the data, ζ, and deviations in initial
parameter guesses, ξ (Methods). The black square highlights the scenario ζ = 30%, ξ = 50%
analyzed in detail in subsequent panels. b, Comparison of trajectories for species [C](t), generated
using estimated parameters (green curve), true parameters (yellow curve), neural network predic-
tions (blue curve) and the corresponding noisy observational data (brown dots). c, Training loss
evolution for PINNverse and conventional PINN. Data, differential equation (DE) and initial condi-
tion (IC) losses are depicted. For PINNverse, a power law was fitted to the DE and IC losses after
1000 epochs (shifted dashed lines) with indicated exponents.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We first test our method on a nonlinear kinetic reaction model involving four species, previously
used for parameter estimation with PINNs (Bibeau et al., 2024):

A
k1

⇌
k2

B + C, C
k3

⇌
k4

D.

The system is described by four coupled ODEs with initial conditions [A](0) = 1.0, [B](0) =
0, [C](0) = 0.2, [D](0) = 0. We generate synthetic data at ten time points from true parameters
ηtrue = [k1, k2, k3, k4] = [1.5, 0.5, 1, 0.1] and train for 500,000 epochs. As shown in Figure 2a,
while all methods perform similarly on data-fit error, PINNverse excels in parameter estimation
accuracy (β). It achieves a 4.1-fold mean improvement over the standard PINN and remains robust
to poor initial guesses where Nelder–Mead fails (e.g., ξ = 500%). The standard PINN overfits noisy
data, leading to physically inaccurate solutions, whereas PINNverse remains physics-conforming
(Figure 2b). This is reflected in the maximum ODE deviation (µODE), where PINNverse shows a
33-fold improvement over the standard PINN in noisy scenarios (Figure 2a, bottom row). The loss
curves (Figure 2c) confirm that the standard PINN prioritizes the data term at the expense of the
physics and initial condition loss after an initial phase. In contrast, PINNverse does not overfit on
the data loss but rather shows superlinear algebraic convergence (L ∼ epoch−a, a > 1) with the
physics and initial condition loss.

4.3 FITZHUGH–NAGUMO MODEL

Next, we use the FitzHugh–Nagumo (FHN) model (R., 1961; Nagumo et al., 1962), a classic system
exhibiting excitable dynamics often used as a PINN benchmark (Rudi et al., 2021; Bizzi et al., 2025):

du

dt
= u− u3

3
− v,

dv

dt
=

u+ a− bv

r
,

with initial conditions u(0) = 0, v(0) = 0. For a challenging sparse-data scenario, we use only ten
data points generated from ηtrue = [a, b, r] = [0.7, 0.8, 12.5] and train for 500,000 epochs. Figure 3a
shows that PINNverse achieves a 11.6-fold and 13.5-fold mean improvement in data fit (γrel) and
parameter estimation (β), respectively, compared to the standard PINN. Nelder–Mead again fails for
poor initial guesses (ξ = 500%), where PINNverse remains robust. As before, the standard PINN
overfits noisy data, while PINNverse’s solution remains physically consistent (Figure 3b). The loss
curves (Figure 3c) show the standard PINN’s failure to reduce the physics loss after ≈ 1000 epochs,
while PINNverse convergences algebraically for all physical loss terms.

4.4 FISHER–KPP MODEL

Our first PDE benchmark is the Fisher–KPP equation (Fisher, 1937; Kolmogorov et al., 1937), which
models reaction-diffusion phenomena and admits challenging traveling wave solutions:

∂u

∂t
= D

∂2u

∂x2
+ ρu(1− u),

u(x, 0) =
1

10
e−x,

∂u(x, t)

∂x
= 0 at x ∈ {0, 10}.

We use 18 data points generated from ηtrue = [D, ρ] = [0.5, 1] and train for 300,000 epochs.
Figure 4a shows that PINNverse substantially outperforms the standard PINN in noisy settings,
achieving 5-fold and 10-fold mean improvements in data fit (γabs) and parameter accuracy (β),
respectively. The standard PINN’s poor parameter estimates yield numerical solutions that fail to
approximate the data, even as the network itself overfits the noisy measurements (Figure 4b). PIN-
Nverse algebraically minimizes all physical loss components, unlike the standard PINN (Figure 4c).

4.5 BURGERS’ EQUATION

Our final benchmark is the viscous Burgers’ equation (Burgers, 1948), a standard test for PINNs
(Raissi et al., 2019) that models nonlinear advection and diffusion capable of forming sharp shocks:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
,

u(0, x) = − sin(πx), u(t, x) = 0 at x ∈ {−1, 1}.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

10
25
50
75

100
200
300
400
500

In
iti

al
 G

ue
ss

 D
ev

ia
tio

n
ξ

[%
]

PINNverse PINN Nelder-Mead

0.00

0.10

0.20

0.30

0.40

0.50

Re
la

tiv
e

RM
SE

 D
at

a
γ r

el

10
25
50
75

100
200
300
400
500

In
iti

al
 G

ue
ss

 D
ev

ia
tio

n
ξ

[%
]

0 5 10 15 20
22.5 25

27.5 30

Data error ζ [%]

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

RM
SE

 P
ar

am
et

er
s β

0 5 10 15 20
22.5 25

27.5 30

Data error ζ [%]

10
25
50
75

100
200
300
400
500

In
iti

al
 G

ue
ss

 D
ev

ia
tio

n
ξ

[%
]

0 5 10 15 20
22.5 25

27.5 30

Data error ζ [%]

0.00

0.50

1.00

1.50

2.00

2.50

M
ax

im
um

 D
ist

an
ce

 μ
OD

E

−2.00

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

So
lu

tio
n

u(
t)

PINNverse
True
Estimated
PINNverse
Data

0 2 4 6 8 10 12
t

−2.00

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

So
lu

tio
n

u(
t)

PINN
True
Estimated
PINN
Data

100 101 102 103 104 105 106

Epoch

10−2

10−1

100

101
Data loss

PINNverse
PINN

100 101 102 103 104 105 106

Epoch

10−9

10−7

10−5

10−3

10−1

101

-1.5

DE loss
PINNverse
PINN

100 101 102 103 104 105 106

Epoch

10−9

10−7

10−5

10−3

10−1

101

-1.4

IC loss
PINNverse
PINN

a b

c

Figure 3: Parameter estimation performance in the FitzHugh–Nagumo ODE model. a,
Heatmaps depicting performance metrics across varying noise levels in the data, ζ, and deviations in
initial parameter guesses, ξ (Methods). The black square highlights the scenario ζ = 30%, ξ = 25%
analyzed in detail in subsequent panels. b, Comparison of trajectories for the excitable variable u(t),
generated using estimated parameters (green curve), true parameters (yellow curve), neural network
predictions (blue curve), and the corresponding noisy observational data (brown dots). c, Training
loss evolution for PINNverse and conventional PINN. Data, differential equation (DE) and initial
condition (IC) losses are depicted. For PINNverse, a power law was fitted to the DE and IC losses
after 1000 epochs (shifted dashed lines) with indicated exponents.

We set the viscosity ηtrue = ν = 0.01 to operate in the challenging shock wave regime, use 12 data
points, and train for 150,000 epochs. To handle the high-frequency solution, we apply a Fourier
feature mapping to the spatial input (Tancik et al., 2020). While all methods achieve similar data-
fit RMSE (Figure 5a, top row), PINNverse’s parameter estimation is substantially more accurate.
It achieves a 54-fold improvement in β over the standard PINN, which only performs well in the
noise-free case, and a 19-fold improvement over Nelder–Mead. While the standard PINN over-
fits, PINNverse accurately captures the shock structure even with noisy data (Figure 5b) and again
consistently minimizes all physical loss terms with algebraic convergence (Figure 5c).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

10
25
50
75

100
200
300
400
500

In
iti

al
 G

ue
ss

 D
ev

ia
tio

n
ξ

[%
]

PINNverse PINN Nelder-Mead

0.00

0.10

0.20

0.30

0.40

0.50

RM
SE

 D
at

a
γ a

bs

10
25
50
75

100
200
300
400
500

In
iti

al
 G

ue
ss

 D
ev

ia
tio

n
ξ

[%
]

0 5 10 15 20
22.5 25

27.5 30

Data error ζ [%]

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

RM
SE

 P
ar

am
et

er
s β

0 5 10 15 20
22.5 25

27.5 30

Data error ζ [%]

10
25
50
75

100
200
300
400
500

In
iti

al
 G

ue
ss

 D
ev

ia
tio

n
ξ

[%
]

0 5 10 15 20
22.5 25

27.5 30

Data error ζ [%]

0.00

0.50

1.00

1.50

2.00

2.50

M
ax

im
um

 D
ist

an
ce

 μ
OD

E

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

So
lu

tio
n

u(
t=

2.
0,

 x
)

PINNverse
True
Estimated
PINNverse
Data

0 2 4 6 8 10
x

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

So
lu

tio
n

u(
t=

2.
0,

 x
)

PINN
True
Estimated
PINN
Data

100 101 102 103 104 105 106

Epoch

10−5

10−4

10−3

10−2

10−1

100

101
Data loss

PINNverse
PINN

100 102 104 106

Epoch

10−9

10−7

10−5

10−3

10−1

101

-1.7

DE loss
PINNverse
PINN

100 102 104 106

Epoch

10−9

10−7

10−5

10−3

10−1

101

-1.6

IC loss
PINNverse
PINN

100 102 104 106

Epoch

10−10

10−8

10−6

10−4

10−2

100

-1.9

BC loss

PINNverse
PINN

a b

c

Figure 4: Parameter estimation performance in the Fisher–KPP PDE model. a, Heatmaps
depicting performance metrics across varying noise levels in the data, ζ, and deviations in initial
parameter guesses, ξ (Methods). The black square highlights the scenario ζ = 30%, ξ = 400%
analyzed in detail in subsequent panels. b, Comparison of trajectories for the cell concentration
u(x) at time point t = 2, generated using estimated parameters (green curve), true parameters (yel-
low curve), neural network predictions (blue curve), and the corresponding noisy observational data
(brown dots). c, Training loss evolution for PINNverse and conventional PINN. Data, differential
equation (DE), initial condition (IC) and boundary condition (BC) losses are depicted. For PINN-
verse, a power law was fitted to the DE, IC and BC losses after 1000 epochs (shifted dashed lines)
with indicated exponents.

5 DISCUSSION

Standard Physics-Informed Neural Networks often falter in parameter inference from noisy data.
Their reliance on a static, weighted-sum loss function is a brittle approach for navigating the complex
trade-off between data fidelity and physical consistency (Cai et al., 2022; Cuomo et al., 2022). This
can lead to convergence at undesirable points on the Pareto front, where the learned solution overfits
the data or deviates substantially from the governing equations.

We introduce PINNverse, which recasts the PINN inverse problem as a constrained optimization task
solved with the Modified Differential Method of Multipliers (MDMM). This enables convergence
to any point on the Pareto front, overcoming the convex-hull limitation of traditional weighted-sum
methods. Experimentally, while baseline PINNs overfit noisy data and yield nonphysical solutions,
PINNverse accurately recovers the true underlying dynamics. This was particularly stark for Burg-
ers’ equation, where PINNverse captured shock waves and achieved superlinear convergence of the
physics loss, a trait absent in the baseline.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

10
25
50
75

100
200
300
400
500

In
iti

al
 G

ue
ss

 D
ev

ia
tio

n
ξ

[%
]

PINNverse PINN Nelder-Mead

0.00

0.10

0.20

0.30

0.40

0.50

Re
la

tiv
e

RM
SE

 D
at

a
γ r

el

10
25
50
75

100
200
300
400
500

In
iti

al
 G

ue
ss

 D
ev

ia
tio

n
ξ

[%
]

0 5 10 15 20
22.5 25

27.5 30

Data error ζ [%]

0.00

0.25

0.50

0.75

1.00

Re
la

tiv
e

RM
SE

 P
ar

am
et

er
s β

0 5 10 15 20
22.5 25

27.5 30

Data error ζ [%]

10
25
50
75

100
200
300
400
500

In
iti

al
 G

ue
ss

 D
ev

ia
tio

n
ξ

[%
]

0 5 10 15 20
22.5 25

27.5 30

Data error ζ [%]

0.00

0.50

1.00

1.50

2.00

2.50

M
ax

im
um

 D
ist

an
ce

 μ
OD

E

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

So
lu

tio
n

u(
t=

0.
5,

 x
)

PINNverse
True
Estimated
PINNverse
Data

−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

So
lu

tio
n

u(
t=

0.
5,

 x
)

PINN
True
Estimated
PINN
Data

100 101 102 103 104 105 106

Epoch

10−3

10−2

10−1

100

101
Data loss

PINNverse
PINN

100 102 104 106

Epoch

10−5

10−4

10−3

10−2

10−1

100

101

-1.8

DE loss
PINNverse
PINN

100 102 104 106

Epoch

10−5

10−4

10−3

10−2

10−1

100

101

-1.4

IC loss
PINNverse
PINN

100 102 104 106

Epoch

10−10

10−8

10−6

10−4

10−2

100

-2.3

BC loss

PINNverse
PINN

a b

c

Figure 5: Parameter estimation performance in Burgers’ PDE model. a, Heatmaps depicting
performance metrics across varying noise levels in the data, ζ, and deviations in initial parameter
guesses, ξ (Methods). The black square highlights the scenario ζ = 30%, ξ = 25% analyzed in
detail in subsequent panels. b, Comparison of trajectories for the dependent variable u(x) at time
point t = 0.5, generated using estimated parameters (green curve), true parameters (yellow curve),
neural network predictions (blue curve), and the corresponding noisy observational data (brown
dots). c, Training loss evolution for PINNverse and conventional PINN. Data, differential equation
(DE), initial condition (IC) and boundary condition (BC) losses are depicted. For PINNverse, a
power law was fitted after 1000 epochs to the DE, IC and BC losses (shifted dashed lines) with
indicated exponents.

Beyond its theoretical strengths, PINNverse offers significant practical benefits. It is more robust
to initial parameter guesses than classical optimizers like Nelder–Mead and elegantly incorporates
parameter bounds as simple constraints. Remarkably, these advantages are realized with minimal
code modification to an existing PINN framework and only a minor increase in computational cost.

While PINNverse relies on hyperparameter tuning like other deep learning methods, our study found
it to be resilient even without extensive optimization. The modularity of our approach is a key
strength, inviting future work that integrates PINNverse with other state-of-the-art PINN enhance-
ments for forward problems, such as causal training (Wang et al., 2024) or adaptive resampling (Wu
et al., 2022; Daw et al., 2023). Replacing the MLP with Kolmogorov Arnold neural networks (Liu
et al., 2025) could also yield performance increase. Furthermore, a rigorous quantitative analysis
comparing its computational complexity against traditional numerical solvers in high-dimensional
settings presents an exciting research avenue. In conclusion, PINNverse provides a robust and prin-
cipled framework for solving physics-informed inverse problems, eliminating a core limitation of
the standard PINN methodology.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

J. Aldrich. R. A. Fisher and the Making of Maximum Likelihood 1912–1922. Stat. Sci., 12:162–176,
1997. doi: 10.1214/ss/1030037906.

S. Basir and I. Senocak. Physics and equality constrained artificial neural networks: Application
to forward and inverse problems with multi-fidelity data fusion. J. Comput. Phys., 463:111301,
2022. doi: https://doi.org/10.1016/j.jcp.2022.111301.

V. Bibeau, D. M. Boffito, and B. Blais. Physics-informed Neural Network to predict kinetics of
biodiesel production in microwave reactors. Chem. Eng. Process., 196:109652, 2024. doi: 10.
1016/j.cep.2023.109652.

R. Bischof and M. A. Kraus. Multi-Objective Loss Balancing for Physics-Informed Deep Learning.
Comput. Methods Appl. Mech. Eng., 439:117914, 2025. doi: 10.1016/j.cma.2025.117914.

A. Bizzi, L. Nissenbaum, and J. M. Pereira. Neural Conjugate Flows: Physics-informed archi-
tectures with flow structure. In Proceedings of the Thirty-Ninth AAAI Conference on Artificial
Intelligence and Thirty-Seventh Conference on Innovative Applications of Artificial Intelligence
and Fifteenth Symposium on Educational Advances in Artificial Intelligence, number 1737 in
AAAI’25/IAAI’25/EAAI’25, pp. 15576 – 15586, 2025. doi: 10.1609/aaai.v39i15.33710.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

J.M. Burgers. A Mathematical Model Illustrating the Theory of Turbulence. In R. Von Mises and
T. Von Kármán (eds.), Advances in Applied Mechanics, volume 1, pp. 171–199. Elsevier, 1948.
doi: 10.1016/S0065-2156(08)70100-5.

S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis. Physics-informed neural networks (PINNs)
for fluid mechanics: a review. Acta Mech. Solida Sin., 37:1727–1738, 2022. doi: 10.1007/
s10409-021-01148-1.

S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli. Scientific Machine
Learning Through Physics-Informed Neural Networks: Where we are and What’s Next. SIAM J.
Sci. Comput., 92:88, 2022. doi: 10.1007/s10915-022-01939-z.

McClenny L. D. and U. M. Braga-Neto. Self-adaptive physics-informed neural networks. J. Comput.
Phys., 474:111722, 2023. doi: https://doi.org/10.1016/j.jcp.2022.111722.

I. Das and J. E. Dennis. A closer look at drawbacks of minimizing weighted sums of objectives
for Pareto set generation in multicriteria optimization problems. Struct. Multidiscip. Optim., 14:
63–69, 1997. doi: 10.1007/BF01197559.

A. Daw, J. Bu, S. Wang, P. Perdikaris, and A. Karpatne. Mitigating propagation failures in physics-
informed neural networks using retain-resample-release (r3) sampling. In Proceedings of the 40th
International Conference on Machine Learning, number 288 in ICML’23, pp. 7264 – 7302, 2023.

R. A. Fisher. On the Mathematical Foundations of Theoretical Statistics. Philos. Trans. R. Soc.
Lond. A, 222:309–368, 1922. doi: 10.1098/rsta.1922.0009.

R. A. Fisher. The Wave of Advance of Advantageous Genes. Ann. Eugen., 7:355–369, 1937. doi:
10.1111/j.1469-1809.1937.tb02153.x.

F. Heldmann, S. Berkhahn, M. Ehrhardt, and K. Klamroth. PINN training using biobjective opti-
mization: The trade-off between data loss and residual loss. J. Comput. Phys., 488:112211, 2023.
doi: 10.1016/j.jcp.2023.112211.

H. Jeffreys. Theory of Probability. Clarendon Press, 1939.

G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang. Physics-informed
machine learning. Nat. Rev. Phys., 3:422–440, 2021. doi: 10.1038/s42254-021-00314-5.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. arXiv, 2014. doi: 10.48550/
arXiv.1412.6980.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov. Investigation of the Equation of Diffusion
Combined with Increasing of the Substance and Its Application to a Biology Problem. Bull.
Moscow State Univ. Ser. A: Math. Mech., 1:1–25, 1937.

A. Krishnapriyan, A. Gholami, S. Zhe, R. Kirby, and M. W. Mahoney. Characterizing possible
failure modes in physics-informed neural networks. Adv. Neural Inf. Process. Syst., 34, 2021.

T. Lazovskaya, D. Tarkhov, M. Chistyakova, E. Razumov, A. Sergeeva, and T. Shemyakina. Evo-
lutionary PINN Learning Algorithms Inspired by Approximation to Pareto Front for Solving Ill-
Posed Problems. Computation, 11:166, 2023. doi: 10.3390/computation11080166.

Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljačić, T. Y. Hou, and M. Tegmark. KAN:
Kolmogorov-Arnold Networks. arXiv, 2025. doi: 10.48550/arXiv.2404.19756.

B. Lu, C. Moya, and G. Lin. NSGA-PINN: A Multi-Objective Optimization Method for Physics-
Informed Neural Network Training. Algorithms, 16:194, 2023. doi: 10.3390/a16040194.

L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, and S. G. Johnson. Physics-Informed Neural
Networks with Hard Constraints for Inverse Design. SIAM J. Sci. Comput., 43:B1105–B1132,
2021. doi: 10.1137/21M1397908.

D. Luengo, L. Martino, M. Bugallo, V. Elvira, and S. Särkkä. A survey of Monte Carlo
methods for parameter estimation. EURASIP J. Adv. Signal Process., 2020:25, 2020. doi:
10.1186/s13634-020-00675-6.

J. Nagumo, S. Arimoto, and S. Yoshizawa. An Active Pulse Transmission Line Simulating Nerve
Axon. Proc. IEEE, 50:2061–2070, 1962. doi: 10.1109/JRPROC.1962.288235.

J. A. Nelder and R. Mead. A simplex method for function minimization. Comput. J., 7:308–313,
1965. doi: 10.1093/comjnl/8.1.27.

J. Nocedal and S. Wright. Numerical Optimization. Operations Research and Financial Engineering.
Springer, 2 edition, 2006.

V. Pareto. Manual of political economy (manuale di economia politica). Kelley, 1971 (1906).
Translated by Ann S. Schwier and Alfred N. Page.

J. Platt and A. Barr. Constrained Differential Optimization. In Neural Information Processing
Systems, volume 1, pp. 612–621. American Institute of Physics, 1987.

FitzHugh R. Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys.
J., 1:445–466, 1961. doi: 10.1016/S0006-3495(61)86902-6.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. J. Comput. Phys., 378:686–707, 2019. doi: 10.1016/j.jcp.2018.10.045.

F. M. Rohrhofer, S. Posch, and Geiger B. C. Data vs. Physics: The Apparent Pareto Front of
Physics-Informed Neural Networks, 2021.

J. Rudi, J. Bessac, and A. Lenzi. Parameter Estimation with Dense and Convolutional Neural Net-
works Applied to the FitzHugh-Nagumo ODE. In 2nd Annual Conference on Mathematical and
Scientific Machine Learning, volume 145 of Proceedings of Machine Learning Research, pp.
1–28, 2021.

I. M. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals.
USSR Comput. Math. Math. Phys., 7:86–112, 1967. doi: 10.1016/0041-5553(67)90144-9.

Y. Song, X. Yuan, and H. Yue. The ADMM-PINNs Algorithmic Framework for Nonsmooth PDE-
Constrained Optimization: A Deep Learning Approach. SIAM J. Sci. Comput., 46(6):C659–C687,
2024. doi: 10.1137/23M1566935.

A. M. Stuart. Inverse problems: A Bayesian perspective. Acta Numer., 19:451–559, 2010. doi:
10.1017/S0962492910000061.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

M. Tancik, P. P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ra-
mamoorthi, J. T. Barron, and R. Ng. Fourier Features Let Networks Learn High Frequency Func-
tions in Low Dimensional Domains. In Proceedings of the 34th International Conference on
Neural Information Processing Systems, number 632 in NIPS ’20, pp. 7537 – 7547, 2020.

W. Tu and R. W. Mayne. Studies of multi-start clustering for global optimization. Int. J. Numer.
Methods Eng., 53:2239–2252, 2002. doi: 10.1002/nme.400.

A. F. Villaverde, F. Fröhlich, D. Weindl, J. Hasenauer, and J. R. Banga. Benchmarking optimization
methods for parameter estimation in large kinetic models. Bioinformatics, 35:830–838, 2019.
doi: 10.1093/bioinformatics/bty736.

R. Virtanen, P. Gommers, T. E. Oliphant, T. Haberland, M. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R.
Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods, 17:261–
272, 2020. doi: 10.1038/s41592-019-0686-2.

S. Wang, X. Yu, and P. Perdikaris. When and why PINNs fail to train: A neural tangent kernel
perspective. J. Comput. Phys., 449:110768, 2022. doi: 10.1016/j.jcp.2021.110768.

S. Wang, S. Sankaran, and P. Perdikaris. Respecting causality for training physics-informed neural
networks. Comput. Methods Appl. Mech. Eng., 421:116813, 2024. doi: 10.1016/j.cma.2024.
116813.

J. C. Wong, A. Gupta, C. C. Ooi, P.-H. Chiu, J. Liu, and Y.-S. Ong. Evolutionary Optimization of
Physics-Informed Neural Networks: Survey and Prospects. arXiv, 2025. doi: 10.48550/arXiv.
2501.06572.

C. Wu, M. Zhu, Q. Tan, Y. Kartha, and L. Lu. A comprehensive study of non-adaptive and residual-
based adaptive sampling for physics-informed neural networks. Comput. Methods Appl. Mech.
Eng., 403 Part A:115671, 2022. doi: 10.1016/j.cma.2022.115671.

Z. Xiang, W. Peng, X. Liu, and W. Yao. Self-adaptive loss balanced Physics-informed neural net-
works. Neurocomputing, 496:11–34, 2022. doi: 10.1016/j.neucom.2022.05.015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 SOLVING THE INVERSE PROBLEM WITH PHYSICS-INFORMED NEURAL NETWORKS

We consider a general differential equation (DE) system represented in a residual form given by

F(x, t,u,η,ut,∇u, ...) = 0, x ∈ Ω, t ∈ [0, T]

B(u(x, t),x, t) = 0, x ∈ ∂Ω, t ∈ [0, T]

u(x, 0) = h(x), x ∈ Ω

where Ω ⊆ Rn represents the spatial domain with boundary ∂Ω, and u : Ω× [0, T] → Rm denotes
the solution field over the space-time domain. The operator F(·) is a spatio-temporal differential
operator encapsulating the governing physics of the system, which may incorporate multiple pa-
rameters η ∈ Rp and various spatial and temporal derivatives of u. The boundary conditions are
imposed through the spatio-temporal operator B(u,x, t), which acts on the solution at the domain
boundary ∂Ω. The initial solution h(x) prescribes the state of the system at time t = 0 throughout
Ω.

The forward problem consists of determining the solution u(x, t;η), given known parameters η.
The inverse problem regards the parameters η as unknown quantities, requiring inference from ob-
servational data at discrete spatio-temporal locations. To formalize this inverse scenario, we assume
the availability of a dataset comprising Ndata observations:

{(xdata
i , tdata

i ,udata
i)}Ndata

i=1 ,

where each datum consists of a coordinate pair (xdata
i , tdata

i) and the corresponding observed solution
udata
i . The goal is to approximate the solution using a NN model uθ(x, t), parameterized by neuronal

weights and biases collectively denoted by θ. The optimal parameters are determined by minimizing
the discrepancy between the network predictions and observed data in some chosen metric:

θ∗ = argmin
θ

Ldata(θ).

We seek the minimum in a least-squares sense here. The data loss function Ldata(θ) can be formu-
lated as either an absolute loss function

Ldata(θ) =

√√√√ 1

Ndata

Ndata∑
i=1

(
uθ(xi, ti)− udata

i

)2
or, unless the data approaches zero, as a relative loss function

Ldata(θ) =

√√√√ 1

Ndata

Ndata∑
i=1

(
uθ(xi, ti)− udata

i

udata
i

)2

where the vector division is taken element-wise.

To impose conformity with the physical laws described by the DE, a residual loss is introduced as

Lde(θ,η) =
1

Nc

Nc∑
i=1

F(xde
i , t

de
i ,u

θ(xde
i , t

de
i),η, . . .)

2,

where {xde
i , t

de
i }

Nc
i=1 are collocation points sampled within Ω× (0, T).

Additionally, losses for initial and boundary conditions are defined by

Lbc(θ) =
1

Nbc

Nbc∑
i=1

B
(
uθ(xbc

i , tbci),xbc
i , tbci

)2
Lic(θ) =

1

Nic

Nic∑
i=1

(
uθ(xic

i , 0)− h(xic
i)
)2

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where {xbc
i , tbci }Nbc

i=1 are boundary condition points in ∂Ω× [0, T] and {xic
i , 0}

Nic
i=1 are initial condi-

tional points in Ω× {t = 0}.

Traditionally, a composite total loss function is then formulated as Raissi et al. (2019)

Lpinn(θ,η) = ωdataLdata(θ) + ωdeLde(θ,η)

+ ωicLic(θ) + ωbcLbc(θ)

where ωdata, ωde, ωic and ωbc are weights that balance the partial losses. Following common practice
Raissi et al. (2019), all weights were set to one here.

PINNs leverage automatic differentiation to compute derivatives of the output variables u with re-
spect to x and t, enabling evaluation of the differential operators F(·) and boundary operators B(·).
The parameter update using gradient descent is performed as

θ(k+1) = θ(k) − α∇θLpinn(θ
(k),η(k))

η(k+1) = η(k) − α∇ηLpinn(θ
(k),η(k))

where α > 0 is the learning rate and k the iteration index.

A.2 PARETO OPTIMALITY

With noisy experimental data, the composite loss function encompasses multiple competing objec-
tives. This represents a multi-objective optimization problem

min
Ψ

L(Ψ).

where we seek to simultaneously optimize all components of a total loss vector

L(Ψ) = L(θ,η)

= (Ldata(θ), Lde(θ,η), Lic(θ), Lbc(θ))
T.

Finding a single parameter vector Ψ that simultaneously minimizes all loss components is generally
infeasible. To formalize this challenge, we adopt the concept of Pareto optimality. A parameter
vector Ψ is considered (globally) Pareto optimal, if no other parameter vector Ψ exists that achieves
non-increasing values across all loss functions while strictly improving at least one loss component.
The collection of all candidate solutions constitutes the feasible region.

The subset of optimal objective function values represents the Pareto front Pareto (1971 (1906)
(Fig. 1, solid black curve), which manifests in two fundamental geometric configurations: convex
and concave. A convex Pareto front is distinguished by the property that for any two points a and
b on the front and any scalar κ ∈ [0, 1], there exists a point c on the front such that κ||a|| + (1 −
κ)||b|| ≥ ||c||. Conversely, a concave Pareto front satisfies the inequality κ||a||+(1−κ)||b|| ≤ ||c||.
The performance of gradient-based optimization methods is intrinsically linked to the geometry
of the Pareto front. Specifically, when minimizing linearly weighted objectives, gradient descent
converges exclusively to solutions located on the convex regions of the Pareto front Das & Den-
nis (1997). Consequently, regardless of the positive weighting parameters selected, points within
non-convex segments of the front cannot be attained, as they do not correspond to minima of any
weighted sum objective function. In contrast, for purely convex Pareto fronts, gradient-based opti-
mization can theoretically converge to any desired point along the curve through appropriate adjust-
ment of the weighting parameters. However, precisely controlling the final solution point along the
front via weight selection is often non-trivial, as the mapping between weights and Pareto points is
highly sensitive to the front’s local curvature Das & Dennis (1997).

In practical applications with neural networks, Pareto fronts typically have mixed shapes with both
convex and concave regions, making the tuning of PINNs notoriously difficult Wong et al. (2025).

A.3 INVERSE PROBLEM AS CONSTRAINT OPTIMIZATION

To address the limitations of standard gradient-based methods on complex Pareto fronts, we refor-
mulate the PINN training process as a constrained optimization problem. Rather than treating all

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

loss terms equally, we designate the data-fitting term as the primary objective while transforming
the physics-based terms into constraints:

minimize
θ

Ldata(θ)

subject to Li(θ,η) = 0, i ∈ Ie = {de, ic, bc}
ηlower
j ≤ ηj ≤ ηupper

j , j ∈ Ib = {1, . . . , p}
The parameters ηj ∈ represent differential equation parameters constrained within physically plau-
sible bounds [ηlower

j , ηupper
j]. These bounds ensure that the solution remains physically meaningful

and prevent the neural network from exploring invalid regions.

To handle the bound constraints efficiently, we introduce an infeasibility function

Vj(ηj(θ)) = max(ηlower
j ,min(ηj(θ), η

upper
j))− ηj(θ)

that measures constraint violations. This allows us to express the Lagrangian as

L(θ,η,λ,χ) = Ldata(θ) +
∑
i∈Ie

λiLi(θ,η)

+
∑
j∈Ib

χjVj(ηj),

where λi and χj represent the Lagrange multipliers of equality and parameter bound constraints.
The optimal set of neural network parameters is then obtained through a min-max formulation:

(θ,η)∗ = argmin
θ,η

(
max

λ≥0,χ≥0
L(θ,η,λ,χ)

)
.

The target solution for the Lagrangian min-max formulation is inherently a saddle point Boyd &
Vandenberghe (2004). However, such points are generally not attractors for standard gradient-based
optimizers Platt & Barr (1987).

A.4 OPTIMIZATION APPROACH OF PINNVERSE

To ultimately overcome these limitations, we employ the Modified Differential Method of Multipli-
ers (MDMM) Platt & Barr (1987). To the best of our knowledge, this represents the first application
of the MDMM in the context of PINNs. MDMM is an optimization algorithm derived from the
augmented Lagrangian formulation, also known as the Method of Multipliers. This formulation
introduces quadratic penalty terms alongside the standard Lagrange multiplier terms to improve
convergence properties. For the PINNverse problem, the augmented Lagrangian is defined as

LA(θ,η,λ,χ, c) = Ldata(θ)

+
∑
i∈Ie

(
λiLi(θ,η) +

ci
2
L2
i (θ,η)

)
+
∑
j∈Ib

(
χjVj(ηj) +

dj
2
V 2
j (ηj)

)
,

where ci > 0 and dj > 0 are the penalty coefficients for the constraints. Larger values enforce
constraints more strictly. In this study, all penalty parameters were set to unity (ci = dj = 1).

A key distinction of MDMM from standard sequential augmented Lagrangian methods lies in its
update dynamics. MDMM proposes simultaneous updates for both the primal variables (θ, η) and
the Lagrange multipliers (λ, χ). For a gradient descent update this reads

θ(k+1) = θ(k) − α∇θLA(θ
(k),η(k),λ(k),χ(k))

η(k+1) = η(k) − α∇ηLA(θ
(k),η(k),λ(k),χ(k)).

Here α > 0 represents the learning rate that controls the step size during each iteration of the
gradient descent. Crucially, in MDMM the Lagrange multipliers are updated via gradient ascent:

λ
(k+1)
i = λ

(k)
i + αLi(θ

(k),η(k)), i ∈ Ie

χ
(k+1)
j = χ

(k)
j + αVj(η

(k)
j), j ∈ Ib

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The inclusion of the quadratic penalty term, governed by ci, dj , is essential. As established in
optimization theory Nocedal & Wright (2006); Platt & Barr (1987), for sufficiently large penalty
parameters, the Hessian of the augmented Lagrangian with respect to the primal variables (∇2

θ,ξLA)
becomes positive definite in the subspace tangent to the constraints near a constrained minimum sat-
isfying standard second-order sufficiency conditions. This induces local convexity and transforms
the constrained minimum into an attractor for the dynamics, mitigating the saddle-point issues asso-
ciated with the standard Lagrangian that hinder simple gradient descent Platt & Barr (1987). Note
that we still need gradient ascent for the Lagrange multipliers, since the convexity only holds for the
primal variables.

Consequently, MDMM offers robust convergence towards a constrained minimum for sufficiently
large ci and dj , suitable learning rate α, and initialization within the basin of attraction. Notably,
this minimum can be any point on the Pareto front, even in the non-convex region.

In the theoretical derivation presented above, gradient updates were illustrated using stochastic gra-
dient descent for simplicity. However, any gradient-based optimization algorithm is compatible with
the MDMM framework. Motivated by this flexibility, we adopt the established Adam optimizer
Kingma & Ba (2014).

A.5 TRAINING REGIME

For all presented results, both the standard PINN and PINNverse were trained using neural networks
comprising two hidden layers, each consisting of 20 neurons, with hyperbolic tangent activation
functions. We employed a learning rate scheduler characterized by an initial linear decay from
α = 10−2 down to 10−4 until reaching the last 30,000 epochs, after which the learning rate was
kept constant at α = 10−4. An exception is the FitzHugh–Nagumo model, where we started with a
learning rate of α = 5× 10−3. For discretization, Nde = 16, 384 collocation points were uniformly
distributed across the interior of the temporal or spatio-temporal domains using a Sobol sequence
(Sobol, 1967). In the two PDEs, additional collocation points, specifically Nic = Nbc = 1, 024,
were allocated to enforce the initial and boundary conditions, respectively.

For Burgers’ equation, Fourier features (Tancik et al., 2020) were used in the training. This technique
transforms the coordinate into a higher-dimensional feature space using sinusoidal basis functions.
Ten such basis functions corresponding to distinct frequencies were employed in our network. This
augmented spatial representation, concatenated with the temporal coordinate, served as the network
input, thereby enhancing its capability to resolve the sharp gradients of shock wave dynamics.

A.6 EVALUATION OF ACCURACY

We evaluated method performance under realistic conditions by introducing heteroscedastic Gaus-
sian noise to the data,

ŷ ∼ N (y, ζy)

with noise levels ζ up to 30%. Additionally, we used substantially perturbed initial guesses for
parameter initialization,

ηstart = (1 + ξ)ηtrue

with relative deviations ξ up to 500%.

To quantitatively evaluate solution accuracy, we define the maximum distance metric µ. For ODE
problems, this metric is formulated as

µODE = max
t∈[0,T]

i∈{1,...,m}

∣∣uNN
i (t;θ,η)− utrue

i (t;ηtrue)
∣∣

where uNN
i (t;θ) the neural network prediction with parameters θ for the i-th solution component at

time t, and utrue
i (t;ηtrue) denotes the corresponding true solution with parameters ηtrue obtained via

high-precision numerical methods. For PDE problems, we extend this metric to incorporate spatial
dimensions:

µPDE = max
t∈T
x∈Ω

i∈{1,...,m}

∣∣uNN
i (t,x;θ,η)− utrue

i (t,x;ηtrue)
∣∣

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where Ω is the spatial domain and T represents the discrete set of measured time points. Note that
for the PDE case we only consider the discrete time points where we have measurements, not the
whole time domain. A well-trained model that adheres to the underlying physics should yield µ
values approaching zero.

To assess the parameter estimation performance of the three techniques, we computed the relative
root mean squared error between the true parameters and the estimated parameters:

β =

√√√√1

p

p∑
j=1

(
ηtrue
j − ηest

j

ηtrue
j

)2

where p denotes the total number of parameters in the differential equation.

Additionally, we evaluated the model performance by comparing the noisy observed data with the
predictions obtained by solving the differential equations using the estimated parameters in absolute
and relative terms:

γabs =

√√√√ 1

Ndata

Ndata∑
j=1

(
ŷj − upred(tj ,xj ;ηest)

)2
γrel =

√√√√ 1

Ndata

Ndata∑
j=1

(
ŷj − upred(tj ,xj ;ηest)

ŷj

)2

where Ndata represents the total number of data points, ŷj denotes the j-th noisy measurement
vector, and upred(tj ,xj ;η

est) is the predicted vector at the corresponding space-time point using the
estimated parameters ηest.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

8 10 12
Number of data points

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

va
lu

e

Relative RMSE Data γrel

8 10 12
Number of data points

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

va
lu

e

Relative RMSE Parameters β

8 10 12
Number of data points

0.1

0.2

0.3

Av
er

ag
e

va
lu

e

Maximum Distance μODE

FitzHugh-Nagumo

PINNverse
PINN
Nelder-Mead

8 10 12
Number of data points

0.24

0.26

0.28

Av
er

ag
e

va
lu

e

Relative RMSE Data γrel

8 10 12
Number of data points

0.2

0.4

0.6

0.8

Av
er

ag
e

va
lu

e

Relative RMSE Parameters β

8 10 12
Number of data points

0.00

0.05

0.10

0.15

0.20

Av
er

ag
e

va
lu

e

Maximum Distance μODE

Kinetic Reaction

PINNverse
PINN
Nelder-Mead

15 18 21
Number of data points

0.02

0.03

0.04

Av
er

ag
e

va
lu

e

RMSE Data γabs

15 18 21
Number of data points

0.2

0.4

0.6

Av
er

ag
e

va
lu

e

Relative RMSE Parameters β

15 18 21
Number of data points

0.00

0.05

0.10

0.15

0.20

Av
er

ag
e

va
lu

e

Maximum Distance μODE

Fisher-KPP

PINNverse
PINN
Nelder-Mead

12 14 16
Number of data points

0.16

0.18

0.20

0.22

0.24

Av
er

ag
e

va
lu

e

Relative RMSE Data γrel

12 14 16
Number of data points

0.25

0.50

0.75

1.00

1.25

Av
er

ag
e

va
lu

e

Relative RMSE Parameters β

12 14 16
Number of data points

0.00

0.25

0.50

0.75

1.00

1.25

Av
er

ag
e

va
lu

e

Maximum Distance μODE

Burgers

PINNverse
PINN
Nelder-Mead

d)

c)

a)

b)

Figure 6: Comparative performance of PINNverse, PINN, and Nelder–Mead methods across
different numbers of noisy data points. Each case was evaluated using standardized metrics: (i)
Relative/Absolute RMSE Data Error (γrel/γabs), quantifying the deviation between predicted and ob-
served data; (ii) Relative RMSE of Parameters (β), assessing accuracy of parameter estimation; and
(iii) Maximum Distance (µODE), indicating the largest deviation from the true solution. PINNverse
consistently outperforms the other methods across metrics, except for parameter estimation in the
Burgers equation at 16 data points.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Median
Average

Mem.
Consumption

Median
Max

Mem.
Consumption

Median
Computational

Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

In
cr

ea
se

 Fa
ct

or
 P

IN
Nv

er
se

FitzHugh-Nagumo

Median
Average

Mem.
Consumption

Median
Max

Mem.
Consumption

Median
Computational

Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

In
cr

ea
se

 Fa
ct

or
 P

IN
Nv

er
se

Burgers

Median
Average

Mem.
Consumption

Median
Max

Mem.
Consumption

Median
Computational

Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

In
cr

ea
se

 Fa
ct

or
 P

IN
Nv

er
se

Fisher-KPP

Median
Average

Mem.
Consumption

Median
Max

Mem.
Consumption

Median
Computational

Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

In
cr

ea
se

 Fa
ct

or
 P

IN
Nv

er
se

Kinetic Reactiona) b)

c) d)

Figure 7: Computational resource comparison between PINNverse and PINN. Median values
of the ‘Increase Factor’ (PINNverse relative to PINN) for memory consumption and computational
time across four DE parameter estimation problems: Biodiesel (a), FitzHugh–Nagumo (b), Fisher–
KPP (c), and Burgers (d). Results indicate a slight increase in computational time (1.0–1.5-fold)
with PINNverse, while memory consumption remains nearly equal between the two methods across
all test cases.

19

	Introduction
	Related Work
	Methods
	Background: The PINN Multi-Objective Challenge
	PINNverse: A Constrained Optimization Framework

	Experiments
	Experimental Design
	Kinetic reaction model
	FitzHugh–Nagumo model
	Fisher–KPP model
	Burgers' equation

	Discussion
	Appendix
	Solving the inverse problem with Physics-Informed Neural Networks
	Pareto optimality
	Inverse problem as constraint optimization
	Optimization approach of PINNverse
	Training regime
	Evaluation of accuracy

