Published as a conference paper at ICLR 2022

NEURAL INSTRUCTION COMBINER

Sandya Mannarswamy & Dibyendu Das
Intel India, Bangalore, india
{sandyasm, dibyendu.das0708}@gmail.com

ABSTRACT

Instruction combiner (IC) is a critical compiler optimization pass, which replaces a
sequence of instructions with an equivalent and optimized instruction sequence at
basic block level. There can be thousands of instruction-combining patterns which
need to be frequently updated as new coding styles/idioms/applications and novel
hardware evolve over time. This results in frequent updates to the IC optimization
pass thereby incurring considerable human effort and high software maintenance
costs. To mitigate these challenges associated with the traditional IC, we design
and implement a Neural Instruction Combiner (NIC) and demonstrate its feasi-
bility by integrating it into the standard LLVM compiler optimization pipeline.
NIC leverages neural Seq2Seq model techniques for generating optimized en-
coded Intermediate Representation (IR) sequence from the unoptimized encoded
IR sequence. To the best of our knowledge, ours is the first work demonstrating
the feasibility of a neural instruction combiner built into a full-fledged compiler
pipeline. Given the novelty of this task, we built a new dataset for training our
NIC neural model. We show that NIC achieves exact match results percentage
of 72% for optimized sequences as compared to traditional IC and Bleu precision
score of 0.94, demonstrating its feasibility in a production compiler pipeline.

1 INTRODUCTION

Of late, considerable strides have been made in applying deep learning (DL) techniques to soft-
ware engineering it-self, including source code assistance, automatic source code generation and
in building software tools |Le et al|(2020). The emergence of open-source community software
development and large code repositories such as GitHub have accelerated interest in applying DL
techniques to programming, compiler optimizations, code generation etc. Neural models have been
developed for source code |Alon et al|(2019) and intermediate code representations |VenkataKeerthy
et al.| (2020). ML models have been used for cost prediction and heuristics selection in compiler op-
timizations |Leather & Cummins| (2020).

Instruction Combining pass is a basic compiler optimization pass present in all compilers. In-
struction Combiner [IC] does local instruction level optimizations on basic blocks (BB) which are
jump-free sequential lists of instructions. IC operates on the compiler’s Intermediate Represen-
tation (IR) and replaces a sequence of one or more instructions with an optimized and semanti-
cally equivalent instruction sequence. ICs are typically developed with considerable human effort.
There are thousands of patterns that are considered for replacement and these patterns continu-
ally need to be added/updated/removed as new coding styles/idioms/applications/hardware evolve
over time. A typical IC pass often spans several thousand lines of code making it complex to main-
tain/debug/enhance. Empirical studies show that IC is the most frequently updated pass in the LLVM
compiler|Zhou et al.| (2021)).

Given the code complexity, software maintenance effort and its wide usage, IC is an ideal target
for improvement with machine learnt models. However, there also exist considerable challenges
in replacing a deterministic and human-written IC with a probabilistic machine learnt NIC. These
challenges include representation of the input instruction sequence to the neural model, ensuring
correctness of the probabilistic generated code by the neural model, integration of the neural model
into a standard compiler optimization pipeline etc. This brings up the question of whether it is
feasible to replace traditional IC by a neural model.

Published as a conference paper at ICLR 2022

In this paper, we design and implement a Neural Instruction Combiner (NIC) and demonstrate its
feasibility by integrating it into the standard LLVM compiler optimization pipeline which can gen-
erate executable machine code. NIC leverages neural Seq2Seq model techniques for generating
optimized encoded IR sequence from the unoptimized encoded IR sequence at the basic block level,
modelling it as monolingual machine translation task. We improve the standard attention mechanism
with a compiler guided attention approach. NIC consists of three major components:

* NIC Inputter - This is a compiler module (not an ML model) which creates a distilled
representation of the IR instruction sequence corresponding to each BB.

* NIC Converter - This is a machine learnt model which takes as input, an encoded represen-
tation of IR instruction sequence corresponding to each BB of a function and converts it to
an equivalent optimized sequence. This model is trained offline and employed in inference
mode in LLVM optimizer.

e NIC Outputter - This is a compiler module which takes as input the optimized sequence
generated by NIC converter module and the original list of instruction corresponding to
that BB and recreates the standard LLVM IR optimized instruction sequence for that BB.
The output of NIC Outputter is then passed to the other downstream optimization passes. It
also performs a set of IR verification checks and translation validity checking using Alive2
tool [Lopes et al.[(2021)) to ensure semantic correctness of the NIC generated optimized IR
sequence.

Given the novelty of this task, we create a new dataset for training our NIC neural model. We show
that NIC can achieve exact match of 72% on optimized sequences as compared to traditional IC and
a Bleu precision score of 0.94. To the best of our knowledge, ours is the first work demonstrating
the feasibility of a neural instruction combiner built into a full-fledged compiler. We also outline the
open challenges that need to be addressed.

Similar in spirit and complementary to our work is the work on building super optimizers from
program binaries [Bansal & Aiken| (2006). They work by harvesting instruction sequences from
binaries, enumerating their equivalent efficient target sequences by exhaustive search techniques,
and creating an offline database of optimized instruction sequences. This work is limited to X86
instruction set. We also note that NIC can in fact leverage the binary instruction sequences harvested
through super optimizers as training data by lifting up the binary instructions to LLVM IR using
existing decompilation tools |Cloutier,Next, we briefly discuss the background for our work.

2 BACKGROUND

The heart of any compiler is the optimizer which works on the compiler Intermediate Represen-
tation (IR) of the input program. A function in compiler’s IR is split up into basic blocks (BB).
Each BB is a sequence of IR instructions which do not modify the control flow and ends with a
branch to another BB or a return instruction. IC attempts to replace a source sequence of one or
more instructions by an equivalent and optimized sequence of instructions (IC can also replace sin-
gle instructions with equivalent but optimized instructions). IC transformations typically include
algebraic simplifications, instruction canonicalization, local constant propagation, constant folding
etc.

In the IC pass the instruction sequence is scanned against multiple pattern-matching rules and once
a sequence which matches the pattern is found, an equivalent and efficient transformed sequence of
the identified pattern is applied to generate the new instruction sequence that replaces the original
sequence. Appendix shows an example instruction sequence optimized by IC. Huge software code
costs associated with IC and the fact that it is ubiquitous in all compilers opens the possibility of
replacing the hand-coded rule driven pattern matching IC pass with a machine learnable IC pass.

3 DESCRIPTION

NIC consists of three major components namely NIC Inputter, NIC Converter and NIC Output-
ter. We briefly discuss each of these components next.

Published as a conference paper at ICLR 2022

NIC Training Path

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, T I T Tr T T T T Ty
LLVM Optimization Pipeline : ‘
LLVM . Traditional .. LLVM
i i i | Optimizer . Optimizer
‘ 1| -
i | Optimizer | Optimizer | In:‘[:Jcr(aiLn | ___| Optimizer | | Front End i Passes] Instrugtlon Passes i Back End
Pass #1 Pass #2 N Pass #N Combiner
Combiner i T | |
: | i Unoptimized IR l lOptimized IR i
*L';gnzl';‘;e' LM ‘ | LM Hiah level : noptimize i e
— Front [— NIC L Back 1gh level Traini !
souree End ! nic —1{ Converter [— nic i End Language ! NIC Inputter Source sentence faining {-——»| Converter
File i Inputter Inf Outputter > i Data i L
,,,,,,,,, nference i Source File Target sentence : Training
oo TR T
Figure 1: NIC Converter Inference Path Figure 2: NIC Converter Training path

3.1 NIC INPUTTER

The input to the NIC Inputter is a regular full-fledged LLVM IR instruction stream corresponding
to each BB of a function. NIC Inputter then creates a compressed encoded representation of the
full LLVM IR instruction stream for that BB. An LLVM IR instruction contains information such as
debug information, named variables, initializers, instruction level completers and metadata, which
is not needed by IC itself. This leads us to create an encoded distilled representation of the full-
fledged LLVM IR instruction sequence as input to the NIC Converter module. Using the distilled
representation of the LLVM IR enables our NIC Converter to deal with a smaller vocabulary and
makes it more efficient. Appendix-1 contains an example instruction sequence and its encoding. For
each LLVM IR instruction, the distilled representation contains the target opcode, its type, each of
the source operands and their types. In case a source operand is being produced by an instruction,
the source operand is represented by its opcode. We concatenate the distilled encoded instructions
for the BB and this becomes the input to NIC Converter.

3.2 NIC CONVERTER

NIC Converter is a Sequence-to-Sequence (Seq2Seq) model which is modelled like a monolingual
neural machine translator and is invoked in inference mode, during the LLVM optimizer pipeline
by NIC pass as shown in Figure[I] This takes as test input, the encoded BB instruction sequence
from NIC Inputter, and predicts an optimized encoded instruction sequence corresponding to it.
The predicted encoded instruction sequence is then fed to the NIC Outputter.The source sentence
is the encoded instruction sequence corresponding to a BB and the target sentence is the optimized
sequence for that BB.

As is typical practice, our Seq2Seq models are based on the standard encoder-decoder framework
with attention |[Sutskever et al.| (2014). We consider two design choices for the encoder-decoder
network, one based on recurrent neural network with a single head attention |[Bahdanau et al.|(2014),
and another based on standard transformer model with multi-head attention |Vaswani et al.| (2017).
The input sentence is converted into a fixed length representation using the encoder from which the
decoder emits the target sentence, one token at a time. Attention mechanism is employed to improve
the ability of the Seq2Seq model to attend to the most relevant encoder outputs, when decoding each
respective token.

3.3 TRAINING OF NIC CONVERTER

For the current work, we train NIC Converter using data obtained from traditional IC similar to
behavior cloning [Bain & Sammut| (1999). As shown in Figure 2] training data is generated in an
offline phase by the compiler using the NIC Inputter module. Given a source file in high level
language supported by the compiler, the compiler takes the input one function at a time and generates
the BB level IR instruction sequences corresponding to each BB in the function. The compiler
invokes the NIC Inputter on these unoptimized instruction sequences to obtain the encoded source
sequences and then passes the original (unencoded) instruction sequences through the traditional
(non-neural) IC phase. The optimized instruction sequences at the output of the traditional IC phase
are then passed through NIC Inputter and encoded target sequences are obtained. The compiler
maintains the BB level mapping between the unoptimized and optimized encoded sentence pairs and
creates the list of sentence pair <unoptimized encoded instruction sequence, IC optimized encoded
instruction sequence> corresponding to each BB. This is done at each function level. Given a set

Published as a conference paper at ICLR 2022

of source files in a high-level language, this process is repeated for all source files, and a list of
sentence pairs are generated as training data for the NIC Converter by the compiler. We then train
the Seq2Seq model to create the machine learnt NIC converter model, using the standard cross-
entropy loss objective at each token level. We also consider a variant of standard Seq2Seq model,
wherein we use compiler knowledge to guide the attention process, which we describe next.

3.4 COMPILER GUIDED ATTENTION TRAINING

Attention enables the decoder to selectively consider relevant words of the source sentence when
emitting each token in the target sentence. Standard attention is learnt with the indirect objective of
improving the translation quality and is not learnt in a supervised manner with respect to word/phrase
alignment between source/target sentence since direct word alignment information is not typically
available for the training data in general. Hence it may not always correlate well with the alignment
between source and target sentences. However, in case of NIC Converter, since the compiler has
exact knowledge of which source instructions are responsible for generating the corresponding target
instructions at each constituent token level, we leverage the compiler knowledge in improving the
soft alignments learnt by the attention network.

During training data generation, a compiler guided attention matrix CA is created by the compiler
for each BB. CA matrix terms are fixed attention scores provided by the compiler and are not learnt
during training. For each source sentence, compiler has information of which source instruction
tokens map to corresponding optimized target instruction tokens and uses this to set each element
of the CA matrix. Each element CA[i, j] corresponds to the probability of whether the ith token in
target sentence (of length T) is mapped to jth token in the source sentence and the total probability
of one is distributed among the relevant mapped tokens while the non-relevant mapped tokens are
set to zero. This is like hard attention with CA[i, j] being non-zero if target token ‘i’ is mapped to
source instruction token ‘j’ by the compiler and else zero. We smooth this hard attention matrix with
a small correction term delta, adding it to all zero terms and adjusting non-zero terms accordingly
to maintain the row sum as 1. CA matrix has similar semantics and same dimension as the learnt
attention matrix ‘A’ with standard attention. In case of single head attention, A is the single head
cross attention weights, and in MHA, we use the decoder cross-attention weights of last layer’s head
0 as the learnt attention matrix ‘A’.

We use CA matrix to force the learnt attention weights ‘A’ to be closer to it during the training pro-
cess by adding an additional loss term to the training objective. This is compiler attention mismatch
loss term which is the divergence of the learnt attention weights in each training step from the com-
piler guided attention matrix CA. We model the Compiler Attention Mismatch (CAM) loss between
CA and A matrices using the standard cross entropy loss function as below:

CAM Loss(CA, A) = —(1/T) S 3" C AL log(ATi]) M)
i g
Total Loss = Decoder Cross Entropy Loss + CAM Loss)

Compiler guided attention is not used during inference, as we hypothesize that compiler guided
attention will enable the model to learn the appropriate attention weights during training itself.

3.5 NIC OUTPUTTER

The NIC Outputter takes two inputs, (i) the predicted instruction sequence from the NIC Converter
and (ii) the original unmodified full-fledged LLVM IR instruction stream corresponding to that BB.
Given that NIC Converter predicts the most probable target instruction sequence, we also enforce
specific checks in the NIC Outputter to ensure that the generated target sequence does not violate the
compiler integrity checks. NIC Outputter performs a verification check first on the generated target
sequence. It checks that for each instruction in the generated sequence, the number of operands
corresponding to that opcode are correct, and that each operand has previously been defined in
the generated instruction sequence, and that the last instruction in the sequence is a branch/return
instruction. In case any of these conditions are violated, it discards the generated target instruction
sequence and outputs the source instruction stream corresponding to that BB as is.

If the verification checks on the generated sequence are satisfied, then NIC Outputter takes the
generated instruction sequence and applies it on the source instruction stream corresponding to that

Published as a conference paper at ICLR 2022

BB to produce the transformed full LLVM IR instruction stream. If NIC Converter predicted output
is the same as its input, (the NIC Converter has not found any suitable transformation for the given
input sequence) NIC Outputter just reproduces the unmodified source IR sequence as is without any
checks. NIC Outputter also invokes the LLVM function level verification. This checks that the CFG
(Control Flow Graph) is valid, all instructions are associated with a BB and specific instruction level
checking based on the instruction type (the types of operands of binary operator are of the same
type, the Static Single Assignment |Cytron et al.| (1989) form is valid, shifts and logicals happen
only on integral types etc). We then check for translation validity of the generated sequence by
passing it through a well-known LLVM IR translation validity checker ALIVE2 [Lopes et al.| (2021)).
Translation validity checking ensures the semantic correctness and equivalence of the generated
sequence to the original unoptimized sequence. ALIVE2 is a fully automatic bounded translation
validation tool for LLVM that supports all of its forms of undefined behavior. ALIVE2 checks pairs
of instruction sequences in LLVM IR for refinement using an SMT solver. Instruction sequences
rejected by ALIVE2 as non-valid are rejected at the NIC Outputter.

4 EXPERIMENTAL EVALUATION

4.1 DATASET DESCRIPTION

Given the novelty of our task, there are no readily available datasets which can be used to train the
NIC Converter model. Hence, we build a new dataset for this task and plan to make it available pub-
licly. The dataset consists of sentence pairs both from the same language of LLVM IR. The source
sentence is the encoded distilled sequence of the LLVM IR instruction sequence of a BB at the input
of traditional IC Pass. The target sentence is the encoded distilled sequence of that instruction se-
quence at the output of the traditional IC Pass. Training data is generated by invoking our modified
version of LLVM compiler pipeline on the C/C++ application source files. For generating the train-
ing data, we used a collection of C/C++ source files from LLVM Application Test Suite and from
Angha Bench Test Suite |da Silva et al.[(2021). The dataset size is 367K and contains 66% of unop-
timized sequences (where source and target sentences are identical) and 34% optimized sequences
(where source and target sentences are different).

4.2 EXPERIMENTAL RESULTS

We evaluate several Seq2Seq models for NIC Converter as shown in Table [I] The two main network
choices are RNN (Recurrent Neural Network) and the standard transformer models with Multi Head
Attention(MHA) and greedy decoder (we did not see any significant change with beam decoder).
We implemented various models in TensorFlow Python framework for evaluation. All parameters
are initialized by uniform distribution over [-0:1; 0:1]. The mini-batch stochastic gradient descent
algorithm is employed to train the model with batch size of 64 and number of training epochs being
10. Hyper-parameters were chosen based on experimentation with validation set. In addition, we
use Adam optimizer with custom rate scheduler [Vaswani et al.|(2017). We do a train/validation/test
data split of 90%, 5% and 5% respectively.

For NIC Converter inference performance, we report the metrics of Bleu precision [Papineni et al.
(2002) and Rouge scores |Lin & Och|(2004)) in Table|l} However, our task being code optimization,
requires generation of exact encoded representation (even a single wrong token will lead to incorrect
code). Hence our task specific metric is comparison of Exact Match (EM) results for the entire
instruction sequence for each BB between the predicted sequence and the ground truth. We show
the EM results separately in last columns of Table [I] respectively for (a) EM(un-opt) where the
ground truth is same as the input sequence (cases where IC performs no rewriting) and (b) EM (opt)
where the ground truth is an optimized translation of the input sequence (optimized cases where IC
performs rewrites).

Across all models, Bleu and Rouge scores are not significantly different, indicating their general
translation capability (there were differences only beyond last 2 digits). As is expected, the EM
percentage is much higher for the unoptimized sequences and is an indicator of model ability to re-
produce the exact input sequence correctly. In case of optimized sequences, model’s Exact Match is
around 69%-73% indicating considerable room for further improvements. We find that transformer

Published as a conference paper at ICLR 2022

Table 1: NIC Experimental Results

Model | Bleu | Rouge-11 | Rouge-1p | Rouge-2r | Rouge-2p | Rouge-lr | Rouge-1p | EM(unopt) | EM(opt) |
Bidirectional LSTM: 3 layer
encoder, unidirectional greedy | 0.93 0.98 0.90 0.96 0.91 0.97 0.93 0.93 0.68
decoder

Transformer with layers=4,
dmodel=128, dff=512, 0.94 0.98 0.90 0.96 0.91 0.97 0.94 0.94 0.72
heads=8

Transformer with layers=6,
dmodel=512, dff=2048, 0.91 0.98 0.90 0.96 0.91 0.96 0.93 0.93 0.71
heads=8

Transformer with layers=2,
dmodel=512, dff=2048, 0.93 0.98 0.90 0.96 0.91 0.97 0.94 0.93 0.70
heads=8

Transformer layers=4,
dmodel=128, dff=512, 0.94 0.98 0.90 0.96 0.92 0.97 0.94 0.94 0.70
heads=8 and no POS Emb

Transformer with layers=4,

dmodel=512, dff=2048, 0.93 0.98 0.90 0.96 0.91 0.97 0.93 0.94 0.71
heads=16
Bi-directional LSTM (3 layer
encoder, 1 layer decoder) with | 0.93 0.98 0.89 0.96 0.91 0.96 0.94 0.93 0.70

guided compiler attention

Transformer with layers=4,
dmodel=128, dff=512,
heads=8 with compiler guided
attention

0.94 0.98 0.90 0.96 0.92 0.97 0.93 0.94 0.72

model with 8 attention heads, 4 layers, and embedding dimension 128 has the best Exact Match
results in our experiments.

We find in general that transformer models are better than RNN models by 2-3% of EM percent-
age. While compiler guided attention improved EM percentage for RNN model by 2%, it is still
lower than that of MHA transformer models. Compiler guided attention had negligible impact on
transformer models. We hypothesize that this may be due to MHA’s ability to better capture word
alignment information in multiple head attention weights compared to single head attention. We
find that removing transformer positional encodings did not have any impact on model performance,
similar to earlier works |Clouatre et al.[(2021). We did not see any improvement in performance by
increasing the number of layers and feed forward layer dimensions in our transformer models.

Table 2: Exact Match Error Analysis

| Type of Error | Occurrence |
Incorrect Constant 42.3%
Opcode Mismatch 34.9%
Type Issue (Sext/Zext) 6.7%
Operand Mismatch 1.4%
Others 14.7%

4.3 EXACT MATCH ERROR ANALYSIS

We analyzed NIC Converter outputs to understand the model shortcomings. In case of optimized
sequences, we find that NIC not only generates the optimized opcode, but also correctly fixes up the

Published as a conference paper at ICLR 2022

uses of the replaced opcode with the newly generated opcode, allowing us to hypothesize that the
model has learnt the implicit use-def chains |Cytron et al.|(1989) in the encoded representation.

Table [2] shows the major reasons for exact match errors by NIC. One of the common mistakes the
model exhibited was in generating correct values for synthesized constants for certain operations. A
frequent LLVM IR instruction is the GetElementPtr (GEP) instruction used to get the address of a
sub element of an aggregate data structure such as a ‘struct’ or ‘array’. For nested aggregate data
structures, a sequence of GEP operations is emitted with appropriate constants from base address.
One of the IC optimization sequences is coalescing multiple GEP operations into a single GEP with
modified constant indices as operands. We find that NIC had issues in synthesizing the GEP indices
correctly. We reason that NIC is not able to learn the rules to compute the GEP offsets correctly
based on individual GEP operations. It ends up reproducing the memorized frequent constant values
as GEP indices generating erroneous sequence.

A similar problem was noticed in the case of ‘Alloca’ instruction sequence optimization where
stack offsets constant values were generated incorrectly by NIC. These errors are caught during the
verification of the generated code sequence in the NIC Outputter, dropping the suggested replace-
ment from NIC from being applied. For frequently occurring/unique constants such as powers of
two occurring in Shift instructions, the model outputs the correct constants both in optimized and
unoptimized sequences. However, for arbitrary constants such as those occurring in GEP/Alloca
operands, models end up making mistakes. The error analysis indicates that our current model does
not handle synthesized constants in the instruction sequence well. This needs to be addressed in
future work.

5 RELATED WORK

Of late, there has been considerable interest in applying deep learning techniques to compilers in the
areas of phase ordering [Huang et al.,| (2019), selection of optimization heuristics |(Cummins et al.
(2017)) and as part of optimization itself in register allocation |Das et al.|(2019) and inlining |{Trofin
et al.| (2021). Machine learnt models have been used in optimization heuristics selection such as
prediction of unroll factors |Stephenson & Amarasinghe| (2005)), inlining decisions |Simon et al.
(2013)), vectorization Mendis et al.|(2019)),|Haj-Ali et al.| (2020) etc.

Our work falls under the category of deploying ML models directly in compiler optimizations. Sim-
ilar in spirit and complementary to our work, there has been work on building super optimizers
by creating a database of possible optimized sequences from the binaries [Bansal & Aiken|(2006).
These techniques work by harvesting instruction sequences from binaries, enumerating their equiv-
alent efficient target sequences by exhaustive search techniques, and creating an offline database of
optimized instruction sequences which can then be looked up for a given sequence of instructions.
This line of work is limited to X86 instructions. There has been work on improving the brute force
search for optimization sequences [Schkufza et al.[| (2012) using random search and RL methods
Bunel et al.| (2016). NIC can leverage the optimized instruction sequences generated by super op-
timizers by lifting them to LLVM IR using decompilation techniques |Cloutier; (We plan to explore
this in future work) and then using them for training the NIC Converter making them complemen-
tary to our work. Since our neural model operates on an encoded condensed IR representation, it
is possible to port our NIC to any compiler if we can provide the NIC Inputter/Outputter modules
which can convert from compiler’s IR to NIC’s encoded representation and vice versa. Unlike super
optimizers which work on specific binary instruction sets, this allows wider portability.

6 OPEN ISSUES AND CONCLUSION

In this paper, we explored the feasibility of replacing the traditional Instruction Combiner with a
neural instruction combiner in a widely used production level compiler. We find that we were able
to train a neural instruction combiner module and integrate it with LLVM compiler’s optimizer
pipeline.

There remain a number of challenges and open issues to be addressed in future work. 72% of opti-
mization opportunities of traditional IC is currently realized by NIC. Hence this gap in performance
between NIC and traditional IC needs to be addressed by adding more relevant training samples.

Published as a conference paper at ICLR 2022

In addition to training data generated from traditional IC, we also plan to expand NIC training data
with IR instruction sequences that can be leveraged from existing super-optimizer databases. NIC
does behavioral cloning of traditional IC currently. Another possibility is to use NIC to explore the
optimized translation subspace by generating multiple translations and ranking the sequences based
on their optimization potential and choosing the highest ranked one as the output translation. In
this way, NIC can be integrated into super optimizers to effectively explore the optimized output
sequence subspace.

Validity checks of generated sequence currently include compiler driven IR Validity checks and
translation validity checking using ALIVE2 external tool [Lopes et al.| (2021)). Leveraging scalable
automatic post-editing (Chollampatt et al.| (2020) and program repair techniques |Gupta et al.[(2020)
can help improve validity checks in NIC. These need to be addressed further for a robust NIC
deployment in production compilers.

REFERENCES

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. Code2vec: Learning distributed repre-
sentations of code. Proc. ACM Program. Lang., 3(POPL), January 2019.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence
15, Intelligent Agents [St. Catherine’s College, Oxford, July 1995], pp. 103—129, GBR, 1999.
Oxford University. ISBN 0198538677.

Sorav Bansal and Alex Aiken. Automatic generation of peephole superoptimizers. SIGPLAN Not.,
40(5):394-403, October 2006. ISSN 0163-5980.

Rudy Bunel, Alban Desmaison, M. Pawan Kumar, Philip H. S. Torr, and Pushmeet Kohli. Learning
to superoptimize programs. CoRR, abs/1611.01787, 2016.

Shamil Chollampatt, Raymond Hendy Susanto, Liling Tan, and Ewa Szymanska. Can automatic
post-editing improve nmt? arXiv preprint arXiv:2009.14395, 2020.

Louis Clouatre, Prasanna Parthasarathi, Amal Zouaq, and Sarath Chandar. Demystifying neural
language models’ insensitivity to word-order. CoRR, abs/2107.13955, 2021.

Felix Cloutier. Fcd an optimizing decompiler for x86. URL https://github.com/zneak/
fcd

Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather. End-to-end deep learning of
optimization heuristics. In Proceedings - 26th International Conference on Parallel Architectures
and Compilation Techniques, PACT 2017, Parallel Architectures and Compilation Techniques -
Conference Proceedings, PACT, pp. 219-232. IEEE, October 2017.

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An efficient method of
computing static single assignment form. In Proceedings of the 16th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL *89, pp. 25-35, New York, NY,
USA, 1989. Association for Computing Machinery.

A. da Silva, B. Kind, J. de Souza Magalhaes, J. Rocha, B. Ferreira Guimaraes, and F. Quinao Pereira.
ANGHABENCH: A Suite with One Million Compilable C Benchmarks for Code-Size Reduction.
In 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), pp.
378-390. IEEE Computer Society, 2021.

Dibyendu Das, Shahid Asghar Ahmad, and Kumar Venkataramanan. Deep learning-based hybrid
graph-coloring algorithm for register allocation. CoRR, abs/1912.03700, 2019.

Kavi Gupta, Peter Ebert Christensen, Xinyun Chen, and Dawn Song. Synthesize, execute and debug:
Learning to repair for neural program synthesis. arXiv preprint arXiv:2007.08095, 2020.

https://github.com/zneak/fcd
https://github.com/zneak/fcd

Published as a conference paper at ICLR 2022

Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste Asanovic, and Ion Sto-
ica. Neurovectorizer: End-to-end vectorization with deep reinforcement learning. In Proceedings
of the 18th ACM/IEEE International Symposium on Code Generation and Optimization, CGO
2020, pp. 242-255, New York, NY, USA, 2020. Association for Computing Machinery. ISBN
9781450370479.

Qijing Huang, Ameer Haj-Ali, William Moses, John Xiang, Ion Stoica, Krste Asanovic, and John
Wawrzynek. Autophase: Compiler phase-ordering for hls with deep reinforcement learning. In
2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pp. 308-308, 2019.

Triet H. M. Le, Hao Chen, and Muhammad Ali Babar. Deep learning for source code modeling and
generation: Models, applications, and challenges. ACM Comput. Surv., 53(3), June 2020.

Hugh Leather and Chris Cummins. Machine learning in compilers: Past, present and future. In 2020
Forum for Specification and Design Languages (FDL), pp. 1-8, 2020.

Chin-Yew Lin and Franz Josef Och. Automatic evaluation of machine translation quality using
longest common subsequence and skip-bigram statistics. In Proceedings of the 42nd Annual
Meeting of the Association for Computational Linguistics (ACL-04), pp. 605-612, Barcelona,
Spain, July 2004.

Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr. Alive2: Bounded
translation validation for llvm. In Proceedings of the 42nd ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementation, PLDI 2021, pp. 65-79, New York,
NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383912.

Charith Mendis, Cambridge Yang, Yewen Pu, Saman Amarasinghe, and Michael Carbin. Compiler
Auto-Vectorization with Imitation Learning. Curran Associates Inc., Red Hook, NY, USA, 2019.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, pp. 311-318, Philadelphia, Pennsylvania, USA, 2002. Association
for Computational Linguistics.

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. CoRR, abs/1211.0557,
2012.

Douglas Simon, John Cavazos, Christian Wimmer, and Sameer Kulkarni. Automatic construction of
inlining heuristics using machine learning. In Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), CGO ’13, pp. 1-12, USA, 2013. IEEE
Computer Society.

M. Stephenson and S. Amarasinghe. Predicting unroll factors using supervised classification. In
International Symposium on Code Generation and Optimization, pp. 123—134, 2005.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger (eds.), Advances
in Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014.

Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choromanski, and David Li.
MLGO: a machine learning guided compiler optimizations framework. CoRR, abs/2101.04808,
2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

S. VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra Sankar Desarkar, Ramakrishna
Upadrasta, and Y. N. Srikant. Ir2vec - llvm ir based scalable program embeddings. ACM Trans.
Archit. Code Optim., 17(4), December 2020. ISSN 1544-3566.

Zhide Zhou, Zhilei Ren, Guojun Gao, and He Jiang. An empirical study of optimization bugs in gcc
and llvm. Journal of Systems and Software, 174:110884, 2021. ISSN 0164-1212.

	Introduction
	Background
	Description
	NIC Inputter
	NIC Converter
	Training of NIC Converter
	Compiler Guided Attention Training
	NIC Outputter

	Experimental Evaluation
	Dataset Description
	Experimental Results
	Exact Match Error Analysis

	Related Work
	Open Issues and Conclusion

