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ABSTRACT

Understanding complex animal behaviors hinges on deciphering the neural activity
patterns within brain circuits, making the ability to forecast neural activity cru-
cial for developing predictive models of brain dynamics. This capability holds
immense value for neuroscience, particularly in applications such as real-time
optogenetic interventions. While traditional encoding and decoding methods have
been used to map external variables to neural activity and vice versa, they focus
on interpreting past data. In contrast, neural forecasting aims to predict future
neural activity, presenting a unique and challenging task due to the spatiotemporal
sparsity and complex dependencies of neural signals. Existing transformer-based
forecasting methods, while effective in many domains, struggle to capture the
distinctiveness of neural signals characterized by spatiotemporal sparsity and in-
tricate dependencies. To address this challenge, we here introduce QuantFormer,
a transformer-based model specifically designed for forecasting neural activity
from two-photon calcium imaging data. Unlike conventional regression-based
approaches, QuantFormer reframes the forecasting task as a classification problem
via dynamic signal quantization, enabling more effective learning of sparse neural
activation patterns. Additionally, QuantFormer tackles the challenge of analyzing
multivariate signals from an arbitrary number of neurons by incorporating neuron-
specific tokens, allowing scalability across diverse neuronal populations.
Trained with unsupervised quantization on the Allen dataset, QuantFormer sets a
new benchmark in forecasting mouse visual cortex activity. It demonstrates robust
performance and generalization across various stimuli and individuals, paving the
way for a foundational model in neural signal prediction.
Source code available at https://anonymous.4open.science/r/iclr2025_quantformer-
E568.

1 INTRODUCTION

Complex animal behavior is believed to stem from the electrical activity of coordinated ensembles
of neurons within specific brain circuits (Yuste, 2015; Yuste et al., 2024). For example, during
sensory perception (Ohki et al., 2005; 2006) and motor coordination (Harpaz et al., 2014; Omlor
et al., 2019; Santos et al., 2015), correlated patterns of electrical activity in groups of neurons are
observed in the primary sensory and motor cortices (Chen et al., 2024; Inagaki et al., 2022; Panzeri
et al., 2022). These activity patterns are structured both spatially and temporally, meaning different
subsets of neurons are activated at distinct times. The patterns are further distinguished based on the
sensory stimuli or motor outputs they represent (Kondapavulur et al., 2022; Miller et al., 2014; Rule
& O’Leary, 2022). Importantly, the activity at any given moment is influenced by the recent history
of the neuronal circuit (Boly et al., 2007; Leinweber et al., 2017; Luczak et al., 2022).

Neuronal activity patterns can be recorded in the intact brain using various methods, including
electrophysiological recordings (Jun et al., 2017; Steinmetz et al., 2019) and optical techniques such
as two-photon microscopy (Denk et al., 1990; Helmchen & Denk, 2005) combined with fluorescent
activity reporters (Chen et al., 2013; Dana et al., 2019). These methods enable high-resolution, in
vivo imaging of brain cell activity, allowing researchers to observe coordinated neuronal responses
during sensory stimulation and motor execution. For instance, studies have shown specific neuronal
ensembles encoding stimulus features and behavior in the sensory cortex (Buetfering et al., 2022;
Carrillo-Reid et al., 2019), and in the motor cortex during motor programs (Serradj et al., 2023).
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A key challenge in neuroscience is developing predictive models that can forecast neuronal activity
in a given brain network based on past observations. This task holds significant scientific value,
particularly for online closed-loop experiments, such as optogenetics, where real-time adjustments to
experimental conditions can enhance intervention effectiveness. Our approach to forecasting neural
activity differs fundamentally from traditional encoding and decoding methods. Decoding methods,
such as those detailed in Azabou et al. (2023); Ye et al. (2023); Antoniades et al. (2023), focus
on mapping internal neural variables (e.g., neural activity) to external variables, such as behavior
occurring simultaneously with the neural response or the stimulus that elicited it. On the other hand,
encoding methods Turishcheva et al. (2024a;b); Li et al. (2023); Xu et al. (2023a); Sinz et al., aim
to map external variables to internal neural activity. In contrast, our goal is to model future neural
activity without relying on synchronous data, emphasizing the unique challenge of forecasting rather
than decoding past stimuli/behaviors or encoding past activity.

The motivation for predicting neuronal activity stems from its demonstrated effectiveness in investi-
gating the sensorimotor cortex of humans and nonhuman primates (Truccolo et al., 2010). However,
the application of neural activity forecasting to guide online optogenetic manipulation represents
a novel and original advancement in this field. A key element in achieving this goal is leveraging
data that is accessible in real-time scenarios. Traditional methods often employ spiking activity
data (Schrimpf et al., 2018; Pei et al., 2021; Turishcheva et al., 2024a), which presents challenges
due to limited accuracy of real-time spike inference. We thus shift the focus on raw fluorescence
traces that provide a direct measure of neuronal activity, improving the precision of predictions and
enabling effective manipulation in real-time experimental settings.

In this paper, we propose QuantFormer, a transformer-based model for two-photon calcium imaging
forecasting using latent space vector quantization. Our approach reframes the forecasting problem as
a classification task through vector quantization, enabling the learning of sparse activation spikes.
Posing a regression problem as a classification task, even when the data is implicitly continuous,
facilitates sparse coding (as already demonstrated in pixel (Van Den Oord et al., 2016b) and audio
(Van Den Oord et al., 2016a) spaces), which is crucial given the relative rarity of neuronal activations.

QuantFormer first learns, in a masked auto-encoding fashion (Devlin et al., 2018; He et al., 2022),
to compress input neural signals into a sequence of quantized codes, thus allowing self-supervised
training by predicting masked items in the sequence. This strategy facilitates the pre-training of the
model for downstream tasks by quantization learning while providing a natural way to approach
forecasting as the prediction of masked future codes.

Scalability to an arbitrary number of neurons is achieved by learning and prepending a set of neuron-
specific tokens to the input. These tokens empower the model to process data from all available
neurons without the need to create one model for each neuron or to increase its complexity through
multivariate analysis, thus facilitating the effective learning of neural dynamics.

QuantFormer was extensively evaluated on the publicly available Allen dataset (de Vries et al., 2020),
the only existing benchmark - to our knowledge - providing raw fluorescence traces, and significantly
surpassed other state-of-the-art forecasting methods in predicting both short- and long-term neural
activity. Ablation studies also confirm the design choices underlying QuantFormer.

In summary, the key contributions of this work include:

• Forecasting neural responses for optogenetic manipulation: We propose a novel approach
that leverages neural activity predictions to guide optogenetic interventions, a completely original
concept in the literature.

• Reframing forecasting as a classification problem: By employing vector quantization, Quant-
Former learns a discrete representation of neural signals, enabling the use of classification tech-
niques to predict sparse neuronal activations effectively.

• Handling arbitrary neural populations: Our model uses neuron-specific tokens to facilitate the
analysis of multivariate signals from any number of neurons, ensuring scalability and generalization
across individuals and sessions.

• Establishing a foundation model for mouse visual cortex: Leveraging unsupervised learning on
the Allen dataset, QuantFormer demonstrates robust forecasting across different stimuli, individuals,
and experimental conditions, laying the groundwork for future research in neural signal prediction.
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Figure 1: Comparison of encoding, decoding, and forecasting tasks. Encoding methods take
a stimulus and behavioral variables at time t to predict neural spikes at the same time point. In
contrast, decoding methods work do the opposite, using spike responses at time t to predict behavioral
variables for that time step. Neural forecasting differs from both, as it uses the stimulus at time t and
raw fluorescence traces at time t− 1 to predict neural responses at time t.

2 RELATED WORK

This paper introduces QuantFormer, a transformer-based method trained using self-supervision for
neural forecasting on two-photon calcium imaging data.

In deep learning for two-photon calcium imaging, existing methods have predominantly focused
on neuron segmentation (Soltanian-Zadeh et al., 2019; Sità et al., 2022; Bao et al., 2021; Xu et al.,
2023b), as well as encoding and decoding tasks.
In particular, decoding methods map neural activity (internal variables) to external outcomes like
behavior Azabou et al. (2023); Ye et al. (2023); Antoniades et al. (2023). These methods, which
use neural activity as input, focus on decoding synchronous patterns, such as behaviors occurring
alongside neural responses. However, their goal is not to predict future neural dynamics but to link
current neural signals to external events.
Encoding methods do the opposite, mapping external variables (e.g., stimuli) to neural activity.
Approaches such as Turishcheva et al. (2024a;b); Li et al. (2023); Xu et al. (2023a); Sinz et al.
predict neural responses based on stimuli, but often rely on trial-averaged data and are not designed
to forecast future neural activity on a single-trial basis without the use of synchronous behaviour
variables, which are not accessible in online settings.
In contrast, the task we present in this work, neural forecasting, aims to predict future neural activity
triggered by external inputs (e.g., visual stimuli) based on the neuron states, i.e., on its past neural data.
This is essential for online, closed-loop experiments where forecasting future activity is required to
manipulate neurons in real time. The difference between encoding, decoding and neural forecasting
tasks is clarified in Fig. 1.

In terms of model architecture, QuantFormer is aligned with the recent trend in modeling univariate
and multivariate single-dimensional time-series signals through transformers. LogTrans (Li et al.,
2019) pioneered the use of transformers in univariate forecasting, utilizing causal convolutions
to enhance attention locality. Informer (Zhou et al., 2021) improves efficiency in long-sequence
forecasting with sparse attention. PatchTST (Nie et al., 2023) handles multichannel data by processing
univariate signals in patches, limiting its ability to capture inter-variable correlations. Crossformer
(Zhang & Yan, 2022) applies attention across both time and variable dimensions to exploit multivariate
dependencies, with cross-window self-attention capturing long-range relationships. Pyraformer (Liu
et al., 2021a) introduces pyramidal attention to represent multiresolution features. FEDformer (Zhou
et al., 2022) replaces self-attention with Fourier decomposition and wavelet transforms for handling
seasonal data patterns.
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QuantFormer employs transformers where multivariate signals are handled through prepending
tokens that encode specific neurons as well as tokens for stimulus encoding. It employs a pre-training
procedure based on reconstructing masked input, in an autoencoder configuration, thus leveraging
the extensive volumes of unlabeled neural signals from two-photon calcium imaging data in a
self-supervised learning setting. This strategy has already demonstrated remarkable results in various
research areas, including language modeling (Devlin et al., 2018), audio (Huang et al., 2022), and
vision (He et al., 2022; Tong et al., 2022). Additionally, during pre-training, we also learn to quantize
in a manner similar to image generation (Esser et al., 2021). However, this quantization approach has
not been applied to pose forecasting as a code classification task in the neural signal data domain.
Though not directly applied to two-photon calcium imaging, methodologies like BrainLM
(Ortega Caro et al., 2023), based on the vanilla transformer, and SwiFT (Kim et al., 2023), which
leverages Swin transformers (Liu et al., 2021b) trained on fMRI data, are more closely aligned with
our approach, as they perform pre-training through self-learning. Both models are then tuned on
downstream tasks, though only BrainLM includes brain state forecasting.

Finally, regarding the data, all the encoding and decoding methods discussed above rely on spiking
data (as illustrated in Fig. 1). While spiking data reflects a more processed stage of neural signals, its
practical application in online settings is limited due to the challenges of real-time spike inference,
which often misses a significant portion of spikes (Huang et al., 2021). Given these limitations, we
opted for raw fluorescence traces, which can be captured in real-time and circumvent the pitfalls
of spike inference, making them more suitable for online neural forecasting. This decision inher-
ently guided us towards the Allen Visual Coding dataset (de Vries et al., 2020), which provides a
comprehensive large-scale benchmark for the mouse visual cortex, encompassing both raw fluores-
cence traces (unlike other existing benchmarks such as BrainScore (Schrimpf et al., 2018), Neural
Latents’21 (Pei et al., 2021), and SENSORIUM (Wang et al., 2023)) and spiking activity.

3 METHOD

3.1 OVERVIEW

Our approach consists of two distinct training phases: pre-training through masked auto-encoding
and downstream training addressing neural activity classification and forecasting. In the pre-training
phase, we train a vector-quantized auto-encoder to reconstruct a sequence of non-overlapping neuronal
signal patches - following similar procedures from computer vision (Dosovitskiy et al., 2020; He
et al., 2022) - a fraction of which is replaced with a [MASK] token. The objective of this task is
twofold: first, it encourages the model to learn an expressive and reusable feature representation of
neuronal signal for downstream tasks; second, it lays the foundation for its use as a forecasting tool,
by using [MASK] tokens as placeholders for future signal.

In the downstream phase, we employ the pre-trained encoder to predict neuron activations in response
to visual stimuli. As mentioned above, this prediction task can be framed as a time series forecasting
task, with the objective of predicting the temporal development of a neuronal response. Alternatively,
it can be seen as a classification problem, where an active (i.e., neuron activation) or inactive (i.e.,
normal neuron activity) label is associated to the neural signal recorded after stimulus visualization.

3.2 PROBLEM FORMULATION

Let S = {s1, . . . , sS} be the set of stimuli to which subjects can be exposed, and let N =
{n1, . . . , nN} be the set of neurons under analysis. We define an observation o = (xb,xf , n, s, a) to
be the set of signals associated to neuron n ∈ N when presenting stimulus s ∈ S: xb ∈ RLb is the
baseline activity, i.e., the neuronal activity before the stimulus onset, while xf ∈ RLf is the response
activity, i.e., the neuronal activity after the stimulus onset; a ∈ {0, 1} denotes whether neuron n is
active after the presentation of stimulus s, and Lb and Lf denote the temporal length of the different
portions in the recorded signals, for a given sample rate r. According to Chen et al. (2013), a neuron
is marked as active (a = 1) if the response window has an average gain of 10% over the average
baseline luminescence.
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Figure 2: QuantFormer architecture. During pre-training we employ a self-supervision quantiza-
tion strategy that learns to reconstruct the randomly-masked patches along a quantization scheme.
For response forecasting, [NEURON] and [STIM] tokens are prepended to the input, and neuronal
response patches are masked; the model predicts for the masked patches quantized codes that are
converted, through the quantization decoder learned during self-training, to a continuous signal. For
activation classification, an additional [CLS] token is included in the sequence, and its output
embedding is fed to the activation classifier.

The ultimate goal of the proposed approach is to predict neuronal activity in response to a stimulus,
by modeling either p(xf |xb, n, s) (when posing the task as time series forecasting) or p(a|xb, n, s)
(when posing the task as a classification problem).

3.3 PRE-TRAINING STAGE

We pose our self-supervised pre-training as a masked auto-encoding task, with the objective of
learning a general representation that models neuronal activity patterns with a view towards response
forecasting. In order to make the representation as general as possible (as downstream training
will be responsible for specialization), in this stage we aim to reconstruct the entire signal for
an observation o, i.e., the concatenation of xb and xf , while ignoring both the neuron identity
and the presented stimulus. Formally, let p(x) be the distribution of concatenated baseline and
response neuronal signals, with x ∈ RLb+Lf , and let p(m|x) be a masking function that removes
a random portion from x. We want to learn a latent representation z, from which an estimate of
the unmasked signal x can be reconstructed as p(x|z). Following common practices, we model
p(z|m) and p(x|z) as an encoder-decoder network sharing the latent representation. Additionally,
we introduce a quantization layer (Huh et al., 2023) on the latent representation, in order to enforce
that the latent representations are mapped to a predefined set of embeddings. While not strictly
necessary for pre-training, quantization yields a twofold usefulness for our purposes. First, it enables
a categorical representation of neuronal signal components, allowing downstream tasks to pose
forecasting as a classification problem rather than a regression one, which has been shown to be easier
to optimize (Van Den Oord et al., 2016a). Second, quantization addresses the sparsity of neuronal
activations as it forces the model to focus on a limited number of prototypes, encouraging reuse of
codes corresponding to common patterns and potentially reducing the impact of over-represented
components. We thus define a set of embeddings E = {e1, . . . , eK}, with ei ∈ Rd and K being the
codebook dimension. In this setting, we distinguish between the continuous distribution p(ze|m)
produced by the encoder network and the categorical distribution p(zq|m) obtained after quantization,
defined as:

p(zq = k|m) =

{
1 with k = argmini ∥ze(m)− ei∥2
0 otherwise

(1)

The decoder is then supposed to learn the distribution of p(x|zq). In order to train the entire
model, due to impossibility of backpropagating through the quantization operator, a straight-through
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estimator (Yin et al., 2019) is employed, directly copying the gradient of the reconstruction loss Lrec
with respect to the quantized representation, ∇zqLrec, to the output of the encoder. We implement
Lrec as the weighted mean squared error between the original unmasked signal x and the decoder’s
output, separately taking into account the masked portion xm and the unmasked portion xu:

Lrec (x, x̂, a) = (1 + aβ)
[
αLMSE(xm, x̂m) + LMSE(xu, x̂u)

]
, (2)

where α = 2 emphasizes the importance of predicting masked elements, and β is chosen to com-
pensate for the sparsity of neuron activations, by setting its value depending on the ratio between
inactive and active neuron observations. Note that this kind of compensation is possible because
the model receives an input sequence for a single neuron at a time: multivariate approaches (e.g.,
Crossformer (Zhang & Yan, 2022)) are unable to balance active and inactive neurons, since a single
input packs multiple neurons together. We complement the reconstruction loss with quantization and
commitment losses from (Huh et al., 2023), in order to simultaneously train the encoder and learn the
codebook.

From an implementation perspective, we employ transformer architectures to model both the encoder
and the decoder. Similarly to common approaches in computer vision, we segment the input signal
x into a set of patches {x1, . . . ,xP }, with xi ∈ R(Lb+Lf )/P (padding can be applied to make the
dimensionality an integer value). A linear projection transforms each patch xi into a token ti ∈ Rd,
which includes positional encoding. The masking function m replaces a fraction Pm of tokens with
a learnable [MASK] token with the same dimensionality as each ti, producing a masked sequence
m = {m1, . . . ,mP }. Following the above formulation:

p(m|x) = p(m1, . . . ,mP |t1, . . . , tP ) =
∏

bi, (3)

where each bi is a Bernoulli random variable with probability Pm, such that mi = [MASK] if bi = 1,
and mi = ti otherwise. A masked input m is then fed to the transformer encoder ze and quantized
into zq, keeping the same dimensionality as the masked input, i.e., zq ∈ RP×d. The transformer
decoder models p(x|zq) and includes a final projection layer that restores the patch dimensionality
from the token representation; merging the resulting patches yields the reconstructed neuronal signal.

3.4 DOWNSTREAM TASKS

After pre-training the encoder-decoder network, we employ it for adaptation to specific downstream
tasks, namely, neuron activation prediction and response forecasting.

3.4.1 NEURONAL ACTIVATION PREDICTION

Given an observation o = (xb,xs, n, s, a), our goal is to predict whether the target neuron responds
to the stimulus or not, by modeling p(a|xb, n, s). We adapt the pre-trained encoder to this task, with
some modifications designed to inject neuron-specific and stimulus-specific knowledge, which was
ignored during the self-supervised training. We first introduce a learnable [CLS] token (Devlin
et al., 2018; Dosovitskiy et al., 2020), whose representation at the output of the encoder is fed
to a linear binary classifier, marking the neuron as active or inactive. We then define a set of
stimulus-specific learnable tokens {[STIM]1, . . . ,[STIM]S}, one for each possible stimulus, and
a set of neuron-specific learnable tokens {[NEURON]1, . . . ,[NEURON]N}, one for each neuron
under analysis; all [STIM]i and [NEURON]j tokens are d-dimensional vectors, i.e., with the same
dimension as the encoder input tokens. Given the observation o = (xb,xs, n, s, a), we segment
and project the baseline signal xb into tokens {t1, . . . , tP }, and then feed the encoder network with
{[CLS],[NEURON]n,[STIM]s, t1, . . . , tP }.

Feeding neuron and stimulus identifiers to the encoder is a key aspect of the approach: since our
backbone does not inherently handle multivariate data, we compensate for this lack by providing
learnable neuron identifiers, making the model able to learn distinct activation patterns for each
neuron; similarly, stimuli identifiers provide a means for the model to discover the specific stimuli a
neuron responds to. Also, we only feed the baseline signal xb to the encoder, since the response xf

likely contains neuron activation information, which would defeat the purpose of the classifier.

The transformer-based architecture also allows us to tackle this task in two different training settings:
prompt-tuning and fine-tuning. With prompt-tuning, only soft prompts (i.e., [CLS], all [STIM]i

and all [NEURON]j) can be optimized, while the encoder remains frozen. With fine-tuning, all
encoder parameters can be updates. In this task, neither the quantizer nor the decoder are used.
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3.4.2 NEURONAL RESPONSE FORECASTING

The objective of this task is to model p(xf |xb, n, s), in order to predict the response time series
xf from the baseline signal xb, preceding the stimulus onset. A possible approach to this problem
consists in using the pre-trained encoder-decoder network, by masking all input tokens related to
the portion of signals to be predicted, and read the forecast signal as the encoder output. However,
as mentioned above, the pre-trained model lacks neuron/stimulus specialization, which is needed
to handle different neuronal activity dynamics. Moreover, while the pre-trained encoder is trained
to capture the underlying patterns of the input data for filling in missing information, this does not
necessarily imply the capability to directly predict future values of a time series. To address these
issues, we act in two ways: similarly to the previous task, [STIM]i and [NEURON]j tokens are
added to the beginning of the sequence, to provide the model with specific information; second,
rather than fine-tuning the entire model, we append a classification network after the encoder for
predicting the codebook indices corresponding to masked tokens only. This approach, besides
simplifying the architecture, can be specifically tailored to understand the dynamics of neuronal
activity post-stimulus.

Given an input observation o = (xb,xs, n, s, a), we convert the base-
line signal xb into tokens {t1, . . . , tP }, and construct the encoder input as
{[NEURON]n,[STIM]s, t1, . . . , tP ,[MASK], . . . ,[MASK]}: the number of [MASK] to-
kens, M , depends on the length Lf of the response signal. [STIM]i and [NEURON]j tokens are
learned separately from their counterparts in the activation classification downstream task. We
denote the output of the encoder corresponding to masked tokens as {h1, . . . ,hM}, and feed it
to a classification network ϕ, implemented as a multi-layer perceptron. We compute the set of
targets {y1, . . . , yM}, with yi ∈ {1, . . . ,K}, by feeding the full signal, i.e., the concatenation of
xb and xf to the original pre-trained encoder, reading out the quantization indeces into which the
response portion is encoded. We then train the classifier and learn the soft prompts by optimizing the
cumulative cross-entropy loss over masked tokens:

Lrf = −
M∑
i=1

log ϕ (hi)yi
(4)

with ϕ (hi)c being the c-th component of the predicted class distribution for the i-th masked token.
At inference time, the predicted codebook indeces replace the masked tokens and the entire sequence
is fed to the pre-trained decoder for reconstructing the forecast response. Note that both the codebook
and the decoder are frozen at this stage, while the encoder can be frozen too (thus learning soft
prompts only during training) or optionally fine-tuned.

4 EXPERIMENTAL RESULTS

4.1 DATASET

The Allen Brain Observatory Dataset comprises over 1,300 two-photon calcium imaging experiments,
organized into more than 400 containers. Each container, representing all the experimental data from
a single mouse, consists of three 90-minute sessions foreseeing the administration of multiple stimuli.
We selected 11 containers (i.e., mice) previously used in Sità et al. (2022). Each container has at least
three complete sessions available. The original dataset includes various types of stimuli: drifting
gratings, static gratings, natural scenes, natural movies, locally sparse noise and spontaneous activity
(Observatory, 2017). However, we excluded natural movies, as isolating individual neuron responses
is challenging, and spontaneous activity, as it is not stimulus-related. Within each session, every
stimulus type is presented across three distinct sub-sessions. Each stimulus may be shown once or
multiple times. The presentation of a single stimulus, along with its corresponding neural response,
is referred to as a trial. In total, we used 236,808 multivariate signals representing neuron responses
from the selected mice (additional details in Table A-1).
Moreover, in our classification downstream task, we examine whether there is a response to a given
stimulus within a defined response window. Across all mice and their neurons, we identify a total
of 2,287,735 positive (active) responses, while normal activity (non-responsive, inactive) samples
amount to approximately 40 million.
To mitigate temporal correlations and prevent overlap between training and test sets, we partition
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the data on a per-subsession basis. Specifically, we allocate two subsessions for training and one for
testing, with each subsession separated by 10-15 minutes. Furthermore, we ensure that training and
testing data are distinctly separated by exposing the mouse to other stimuli during the interim period,
thus eliminating potential temporal correlations between signals.

4.2 TRAINING PROCEDURE AND METRICS

QuantFormer is pre-trained in self-supervision as a masked auto-encoding task through quantization,
using data from all subjects. The full model consists of 6 layers and 8 attention heads for both the
encoder and the decoder, with a hidden size d of 128 and a mask ratio Pm of 0.2. We train with
Adam (Kingma & Ba, 2014) for 50 epochs, a learning rate of 10−4 and a batch size of 32. In both
downstream tasks, we fine-tune the encoder for 100 epochs with a learning rate of 10−3. The length
of baseline and response signals in each observation is respectively 3 seconds and 2 seconds at sample
rate r = 30, resulting in padded sequence lengths Lb = 96 and Lf = 64. The number of quantized
codes K is set to 32. As we diverge from these values we note that performance decreases in both
tasks (see Tables A-2 and A-3 in the Appendix). This confirms the sparsity of crucial information in
brain signals, which can be encoded with as few as 32 indices (the performance decrease was less
sensitive to the dimensionality d).
Downstream tasks were conducted separately for each subject and stimulus category, with results
reported as mean and standard deviation across all runs. We also evaluate generalization using the
leave-one-category-out strategy, excluding specific stimulus categories or mice from pre-training and
using the excluded data for downstream training. As metrics, we use balanced accuracy, precision,
recall, and F1 for classification, and MSE, SMAPE, Pearson correlation and structural similarity
index (SSIM) for forecasting.
The selected competitors for our approach, based on code availability and adaptability to the tasks,
are Autoformer (Wu et al., 2021), Informer (Zhou et al., 2021), Cross-Former (Zhang & Yan, 2022),
and BrainLM (Ortega Caro et al., 2023). We use BrainLM pre-trained on large fMRI data (due
to observed similarities between mice and humans (Eppig et al., 2015)), fine-tuned on our data
(BrainLMft), and trained from scratch. Additionally, we include a simple LSTM-based baseline,
that we empirically found to mostly predict the signal’s mean. All experiments are conducted on a
workstation with an 8-core CPU, 64GB RAM, and an NVIDIA A6000 GPU (48GB VRAM).

4.3 RESULTS

We initially focus on assessing model performance in stimuli response classification; results are
shown in Table 1.

Table 1: Performance on stimuli response classification. All metrics marked with * have p ≪ 0.01,
while metrics with ** have p < 0.05 using one-sided Wilcoxon test.

Method Acc (↑) F1 (↑) Prec (↑) Rec (↑)

LSTM 61.53 ± 12.75* 31.00 ± 27.71* 40.07 ± 39.42* 35.08 ± 22.91*

Autoformer 58.50 ± 06.11* 26.21 ± 17.06* 65.67 ± 27.18* 17.36 ± 12.47*

Informer 60.77 ± 07.13* 28.69 ± 15.53* 55.59 ± 24.82* 23.11 ± 15.69*

BrainLM 59.66 ± 13.97* 22.71 ± 32.79* 27.25 ± 39.39* 19.56 ± 02.83*

BrainLMft 62.31 ± 14.67* 29.33 ± 03.48* 36.58 ± 42.11* 24.91 ± 29.69*

Cross-former 75.51 ± 04.45** 63.89 ± 07.59** 85.71 ± 03.73 51.49 ± 09.03**

QuantFormer 77.39 ± 03.88 66.94 ± 06.51 85.89 ± 00.04 55.27 ± 07.82

QuantFormer and Cross-former showcase superior performance compared to other methods, with
ours yielding slightly better performance. However, as we discussed earlier, the primary advantage
of the quantization strategy lies in its ability to frame a regression task as a classification task for
better modeling outliers such as neuron activation. This is demonstrated in Table 2, where we
report forecasting metrics, computed on a gradient-based normalization process that scales each
signal by dividing it by its accumulated gradient, ensuring that the signals are on a comparable
scale based on their overall rate of change (see Sect. III in the Appendix for more details). Figure 3
presents qualitative examples of forecast activation predicted by QuantFormer and its competitors.
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Figure 3: Qualitative analysis of stimuli response forecasting performance by QuantFormer
and its competitors: forecasting examples for each type of stimuli: drifting gratings (top-left),
static gratings (top-right), natural scenes (bottom-left) and locally sparse noise (bottom-right). More
examples can be found in Section IV of the Appendix.

Both quantitative and qualitative results highlight that QuantFormer models sparse nature of neural
responses better than competitors that predominantly model signals’ mean.

Table 2: Performance on stimuli response forecasting of QuantFormer compared to existing
forecasting methods. All metrics marked with * have p ≪ 0.01, while metrics with ** have p < 0.05
using one-sided Wilcoxon test.

Method MSE (↓) SMAPE (↓) Corr (↑) SSIM (↑)

LSTM 60349.339 ± -* 0.943 ± 0.037* 0.273 ± 0.129* 0.003 ± 0.004*

AutoFormer 19.828 ± 11.728* 0.800 ± 0.033* 0.312 ± 0.085* 0.011 ± 0.005*

Informer 0.285 ± 0.376** 0.707 ± 0.051* 0.302 ± 0.033* 0.022 ± 0.017*

BrainLM 0.605 ± 2.852 0.701 ± 0.158* 0.253 ± 0.125* 0.008 ± 0.034*

BrainLMft 0.457 ± 0.825 0.697 ± 0.183* 0.337 ± 0.112** 0.001 ± 0.035*

Cross-former 2.011 ± 2.749* 0.723 ± 0.062* 0.292 ± 0.087* 0.036 ± 0.020*

QuantFormer 0.247 ± 0.078 0.656 ± 0.137 0.338 ± 0.075 0.069 ± 0.062

Cross-referencing classification (Table 1) and forecasting performance (Table 2), it becomes
apparent that QuantFormer excels in both tasks, unlike other methods such as Informer (Zhou et al.,
2021) and Cross-former (Zhang & Yan, 2022), which specialize in only one. For instance, while
Informer exhibits good forecasting metrics, its classification metrics, especially recall, fall short.
This may stem from Informer generating responses with activations surpassing the mean signal,
but not reaching the threshold for positive classification. Conversely, Cross-former achieves good
classification accuracy but struggles with forecasting, likely due to its tendency to predict constant
responses that lead to positive classifications while diverging from actual response patterns.
To substantiate the design choices behind QuantFormer, we conduct an ablation study to analyze the
importance of different components in the model architectures for classification and forecasting tasks,
focusing only on “drifting gratings” stimuli for simplicity. We start by evaluating the performance of
our encoder backbone when trained from scratch, using cross-entropy for classification and MSE for
forecasting (referred to as Baseline in Table 3). The model is provided with pre-stimulus neuronal
activity together with the [STIM] token. We then extend this by prepending the sequence with
the [NEURON] token (indicated as Learnable tokens in Table 3). Additionally, we evaluate the
effects of quantization pre-training on model performance compared to pre-training using a standard
auto-encoder scheme without quantization (indicated as AE in Table 31). The results demonstrate
that forecasting mostly benefits from embedding quantization.

We also explore pre-training benefits for Informer (Zhou et al., 2021), Autoformer (Wu et al., 2021),
and Cross-former (Zhang & Yan, 2022) using quantization and standard auto-encoding. However,

1Due to space limits, we report only two metrics for classification and two for forecasting.
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Table 3: Ablation study for learnable tokens and quantization on “drifting gratings” stimuli
Classification Forecasting

Method Acc (↑) F1 (↑) MSE (↓) Corr (↑)

Baseline 75.88 ± 4.08 64.32 ± 6.62 0.021 ± 0.015 0.147 ± 0.077

↪→Learnable tokens 77.53 ± 3.89 67.29 ± 6.39 0.023 ± 0.018 0.147 ± 0.055

↪→AE 77.22 ± 4.25 66.10 ± 7.41 0.019 ± 0.014 0.207 ± 0.082

↪→Quantization 77.66 ± 3.78 67.42 ± 6.35 0.016 ± 0.009 0.252 ± 0.095

their architectures face two challenges (details in Sect. V of the Appendix): 1) combining channel and
time information in embeddings creates an information bottleneck, making quantization impractical
for temporal patterns; 2) the imbalance between sparse activations and normal signals requires a
training strategy targeting individual neurons. Unlike methods that process all neurons simultaneously,
QuantFormer uses [NEURON] tokens to capture individual neuron dynamics.
We then assess the generalization performance of QuantFormer on different subjects and stimuli
with a leave-one-out strategy. Table 4 shows that QuantFormer generalizes effectively across various
scenarios, with performance metrics similar to those in Table 2, underscoring its potential as a
foundational model for large-scale studies of the mouse visual cortex.

Table 4: Generalization performance of QuantFormer across subjects and stimuli.
Classification Forecasting

Acc (↑) F1 (↑) MSE (↓) Corr (↑)

Subjects 77.32 ± 4.04 67.18 ± 6.58 0.367 ± 0.558 0.344 ± 0.154

Stimuli 76.78 ± 3.88 67.45 ± 6.26 0.411 ± 0.578 0.392 ± 0.142

In an additional analysis (detailed in the appendix), we examined attention score maps and the latent
space of discrete codes and neuron embeddings to understand activation predictions and model
interpretability. Attention rollout (Fig. A-8) showed neuron activation predictions are mainly driven
by [NEURON] token activity, with pre-stimulus patches and the stimulus token adapting to the
specific stimuli. 2D t-SNE on neuron embeddings (Fig. A-10) revealed that the [NEURON] token
encodes neuron-specific statistics like activation probability, while 2D t-SNE on the codebook (Fig. A-
9) showed discrete codes capture distinct patterns, but their reconstruction is context-dependent,
highlighting sequence context in predictions.

5 CONCLUSION

We presented QuantFormer, a transformer-based model using latent space vector quantization to
capture sparse neural activity patterns in two-photon calcium imaging. By framing the regression
problem as classification and leveraging unsupervised vector quantization, QuantFormer outperforms
state-of-the-art methods in response classification and forecasting. Trained and tested on a subset of
the Allen dataset, it excels in learning sparse activation spikes and capturing long-term dependencies,
making it a versatile and robust tool for understanding neural dynamics.
A possible limitation of QuantFormer includes the lack of an inhibition mechanism may lead to
sequences of high activation responses, contrary to the typical single activation observed in biological
neurons. As future work, QuantFormer will be trained on the entire Allen dataset, as well as adapted
to spiking neural data (in order to use other existing benchmarks), to enhance generalization capability
for creating a foundation model for the mouse visual cortex.
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integrated silicon probes for high-density recording of neural activity. Nature, 551(7679):232–236,
2017. 1

Peter Yongho Kim, Junbeom Kwon, Sunghwan Joo, Sangyoon Bae, Donggyu Lee, Yoonho Jung,
Shinjae Yoo, Jiook Cha, and Taesup Moon. Swift: Swin 4d fmri transformer. arXiv preprint
arXiv:2307.05916, 2023. 4

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. 8

Sravani Kondapavulur, Stefan M Lemke, David Darevsky, Ling Guo, Preeya Khanna, and Karunesh
Ganguly. Transition from predictable to variable motor cortex and striatal ensemble patterning
during behavioral exploration. Nature communications, 13(1):2450, 2022. 1

Marcus Leinweber, Daniel R Ward, Jan M Sobczak, Alexander Attinger, and Georg B Keller. A
sensorimotor circuit in mouse cortex for visual flow predictions. Neuron, 95(6):1420–1432, 2017.
1

Bryan M. Li, Isabel Maria Cornacchia, Nathalie Rochefort, and Arno Onken. V1t: large-scale mouse
v1 response prediction using a vision transformer. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. URL https://openreview.net/forum?id=qHZs2p4ZD4. 2,
3

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019. 3

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dust-
dar. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International conference on learning representations, 2021a. 3

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021b. 4

12

https://doi.org/10.7554/eLife.51675
https://openreview.net/forum?id=qHZs2p4ZD4


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Artur Luczak, Bruce L McNaughton, and Yoshimasa Kubo. Neurons learn by predicting future
activity. Nature machine intelligence, 4(1):62–72, 2022. 1

Jae-eun Kang Miller, Inbal Ayzenshtat, Luis Carrillo-Reid, and Rafael Yuste. Visual stimuli recruit
intrinsically generated cortical ensembles. Proceedings of the National Academy of Sciences, 111
(38):E4053–E4061, 2014. 1

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In International Conference on Learning
Representations, 2023. 3

Allen Brain Observatory. Technical whitepaper: Stimulus set and response analy-
sis. 2017. URL https://community.brain-map.org/uploads/short-url/
uOe7nlLdLLIIivh5PeL8a0g7gV7.pdf. 7

Kenichi Ohki, Sooyoung Chung, Yeang H Ch’ng, Prakash Kara, and R Clay Reid. Functional imaging
with cellular resolution reveals precise micro-architecture in visual cortex. Nature, 433(7026):
597–603, 2005. 1

Kenichi Ohki, Sooyoung Chung, Prakash Kara, Mark Hübener, Tobias Bonhoeffer, and R Clay
Reid. Highly ordered arrangement of single neurons in orientation pinwheels. Nature, 442(7105):
925–928, 2006. 1

Wolfgang Omlor, Anna-Sophia Wahl, Pia Sipilä, Henry Lütcke, Balazs Laurenczy, I-Wen Chen,
Lazar T Sumanovski, Marcel van’t Hoff, Philipp Bethge, Fabian F Voigt, et al. Context-dependent
limb movement encoding in neuronal populations of motor cortex. Nature communications, 10(1):
4812, 2019. 1

Josue Ortega Caro, Antonio Henrique Oliveira Fonseca, Christopher Averill, Syed A Rizvi, Matteo
Rosati, James L Cross, Prateek Mittal, Emanuele Zappala, Daniel Levine, Rahul M Dhodapkar,
et al. Brainlm: A foundation model for brain activity recordings. bioRxiv, pp. 2023–09, 2023. 4, 8

Stefano Panzeri, Monica Moroni, Houman Safaai, and Christopher D Harvey. The structures and
functions of correlations in neural population codes. Nature Reviews Neuroscience, 23(9):551–567,
2022. 1

Felix Pei, Joel Ye, David M. Zoltowski, Anqi Wu, Raeed H. Chowdhury, Hansem Sohn, Joseph E.
O’Doherty, Krishna V. Shenoy, Matthew T. Kaufman, Mark Churchland, Mehrdad Jazayeri, Lee E.
Miller, Jonathan Pillow, Il Memming Park, Eva L. Dyer, and Chethan Pandarinath. Neural latents
benchmark ’21: Evaluating latent variable models of neural population activity. In Advances in
Neural Information Processing Systems (NeurIPS), Track on Datasets and Benchmarks, 2021.
URL https://arxiv.org/abs/2109.04463. 2, 4

Michael E Rule and Timothy O’Leary. Self-healing codes: How stable neural populations can track
continually reconfiguring neural representations. Proceedings of the National Academy of Sciences,
119(7):e2106692119, 2022. 1

Fernando J Santos, Rodrigo F Oliveira, Xin Jin, and Rui M Costa. Corticostriatal dynamics encode
the refinement of specific behavioral variability during skill learning. Elife, 4:e09423, 2015. 1

Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J. Majaj, Rishi Rajalingham, Elias B. Issa, Kohitij
Kar, Pouya Bashivan, Jonathan Prescott-Roy, Franziska Geiger, Kailyn Schmidt, Daniel L. K.
Yamins, and James J. DiCarlo. Brain-score: Which artificial neural network for object recognition
is most brain-like? bioRxiv preprint, 2018. URL https://www.biorxiv.org/content/
10.1101/407007v2. 2, 4

Najet Serradj, Francesca Marino, Yunuen Moreno-López, Amanda Bernstein, Sydney Agger, Marwa
Soliman, Andrew Sloan, and Edmund Hollis. Task-specific modulation of corticospinal neuron
activity during motor learning in mice. Nature Communications, 14(1):2708, 2023. 1

13

https://community.brain-map.org/uploads/short-url/uOe7nlLdLLIIivh5PeL8a0g7gV7.pdf
https://community.brain-map.org/uploads/short-url/uOe7nlLdLLIIivh5PeL8a0g7gV7.pdf
https://arxiv.org/abs/2109.04463
https://www.biorxiv.org/content/10.1101/407007v2
https://www.biorxiv.org/content/10.1101/407007v2


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Fabian Sinz, Alexander S Ecker, Paul Fahey, Edgar Walker, Erick Cobos, Emmanouil
Froudarakis, Dimitri Yatsenko, Zachary Pitkow, Jacob Reimer, and Andreas Tolias. Stim-
ulus domain transfer in recurrent models for large scale cortical population prediction on
video. In Advances in Neural Information Processing Systems, volume 31. Curran As-
sociates, Inc. URL https://proceedings.neurips.cc/paper_files/paper/
2018/hash/9d684c589d67031a627ad33d59db65e5-Abstract.html. 2, 3

Luca Sità, Marco Brondi, Pedro Lagomarsino de Leon Roig, Sebastiano Curreli, Mariangela Panniello,
Dania Vecchia, and Tommaso Fellin. A deep-learning approach for online cell identification and
trace extraction in functional two-photon calcium imaging. Nature Communications, 13(1):1529,
2022. 3, 7

Somayyeh Soltanian-Zadeh, Kaan Sahingur, Sarah Blau, Yiyang Gong, and Sina Farsiu. Fast and
robust active neuron segmentation in two-photon calcium imaging using spatiotemporal deep
learning. Proceedings of the National Academy of Sciences, 116(17):8554–8563, 2019. 3

Nicholas A Steinmetz, Peter Zatka-Haas, Matteo Carandini, and Kenneth D Harris. Distributed
coding of choice, action and engagement across the mouse brain. Nature, 576(7786):266–273,
2019. 1

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-
efficient learners for self-supervised video pre-training. Advances in neural information processing
systems, 35:10078–10093, 2022. 4

W. Truccolo, L. Hochberg, and J. Donoghue. Collective dynamics in human and monkey sensorimotor
cortex: predicting single neuron spikes. Nature Neuroscience, 13(1):105–111, 2010. doi: 10.1038/
nn.2455. URL https://doi.org/10.1038/nn.2455. 2

Polina Turishcheva, Paul G. Fahey, Laura Hansel, Rachel Froebe, Kayla Ponder, Michaela Vystrčilová,
Konstantin F. Willeke, Mohammad Bashiri, Eric Wang, Zhiwei Ding, Andreas S. Tolias, Fabian H.
Sinz, and Alexander S. Ecker. The dynamic sensorium competition for predicting large-scale mouse
visual cortex activity from videos, 2024a. URL https://arxiv.org/abs/2305.19654.
2, 3

Polina Turishcheva, Paul G. Fahey, Michaela Vystrčilová, Laura Hansel, Rachel Froebe, Kayla
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A APPENDIX

I DATASET DETAILED INFORMATION

The Allen Brain Data Observatory is a resource from the Allen Institute for Brain Science that
provides a comprehensive collection of data on the mouse visual cortex. This resource is designed to
facilitate research and understanding of brain function, particularly in the context of how sensory
information is processed. It contains various types of data regarding the mouse visual cortex ranging
from cell connectivity to spontaneous neuronal activity and to stimulus-response data.

For the experiments conducted in this work, as explained in the dataset description subsection, we
used the responses to the following four types of stimuli:

• Drifting gratings: A full field drifting sinusoidal grating at a spatial frequency of 0.04
cycles/degree was presented at 8 different directions (from 0° to 315°, separated by 45°), at
5 temporal frequencies (1, 2, 4, 8, 15 Hz). Each pattern was shown for 2 seconds, followed
by 1 second of a uniform gray background before the next pattern appeared. Also blank
sweeps (shown every 20 gratings) are included in this type of stimulus. Each condition
(combination of temporal frequency and direction) was presented 15 times across session A.
The response time was evaluated on a window of 2 seconds after the stimulus onset.

• Static gratings: A full field static sinusoidal grating was presented at 6 different orientations
(separated by 30°), 5 spatial frequencies (0.02, 0.04, 0.08, 0.16, 0.32 cycles/degree), and 4
phases (0, 0.25, 0.5, 0.75). Each stimulus was presented for 0.25 seconds, without intergray
period. Also, blank sweeps were shown every 25 gratings are included in this type of
stimulus. Each condition (combination of spatial frequency, orientation and phase) was
presented 50 times across session B. The response time was evaluated on a window of 0.5
seconds after the stimulus onset.

• Locally Sparse Noise: This type of stimulus consisted of a 16 x 28 array of pixels, each
4.65 degrees on a side. In each medium gray frame of the stimulus (presented for 0.25
seconds) a small number (11) of pixels were randomly changed to be white or black. 9000
different frames was presented once across session C. The response time was evaluated on a
window of 0.5 seconds after the stimulus onset.

• Natural Scenes: 118 natural images selected from Berkeley Segmentation Dataset (Martin
et al., 2001), van Hateren Natural Image Dataset (van Hateren and van der Schaaf, 1998),
McGill Calibrated Colour Image Database (Olmos and Kingdom, 2004) were presented in
grayscale for 0.25 seconds each, with no inter-image gray period. Each image was presented
50 times, in random order, and the response period was evaluated in 0.5 seconds after the
stimulus onset.

The experimental settings is depicted in Fig. A-1.

Table A-1: Stimuli administration protocol, dataset information and experiment durations.
Window refers to the length of data (seconds after the administration of the corresponding stimulus)
considered for response forecasting. Duration is the time in minutes needed for executing a down-
stream training epoch for the corresponding stimulus type. The average number of neurons per mouse
is 241, with a standard deviation of 63.

Acquisition protocol Dataset information Duration

Stimuli type # instances # trials window (s) # mice # signals # time (m)

Drifting gratings 41 628 2 11 6.908 0.43
Static gratings 120 6000 0.5 11 66.000 2.4
Locally sparse noise 9000 9000 0.5 11 99.000 2.04
Natural scenes 118 5900 0.5 11 64.900 1.2

Total 9.279 21.528 – 11 236.808 6.07
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Figure A-1: The Allen dataset. Fluorescence time series are extracted from the two-photon calcium
images (Left). Examples of the stimuli used (Right).

The 11 container ids used for the experiments in this work are: 511507650, 511510667,
511510675, 511510699, 511510718, 511510779, 511510855, 511510989, 526481129, 536323956
and 543677425.
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II HYPERPARAMETER SEARCH FOR QUANTIZATION AND EMBEDDING DIMENSIONALITY

In order to determine the optimal values for the number of quantization indices (K) and embedding
dimensionality (d), shared by both the quantized codes and the transformer models, we conduct an
exploratory hyperparameter tuning on the responses to “drifting gratings” stimuli only. Such choice
was made because this stimuli category needs less time for complete training sessions. First, we fix
the value of d to 128 and perform classification and forecasting experiments varying the value of K.
Our model achieved the best correlation score for a value of K equal to 32. Afterwards, we repeated
the same experiments using that number of quantized vectors and we varied the value of parameter d
instead.

Table A-2: K and d parameter value search for forecasting.
Forecasting

Value MSE (↓) MAE (↓) SMAPE (↓) Corr (↑) SSIM (↑)

Quantization indexes K with d = 128

K = 4 0.028 ± 0.014 0.132 ± 0.032 0.744 ± 0.049 0.161 ± 0.050 0.010 ± 0.028

K = 8 0.033 ± 0.006 0.161 ± 0.019 0.673 ± 0.174 0.201 ± 0.065 0.060 ± 0.0730

K = 16 0.015 ± 0.008 0.081 ± 0.024 0.647 ± 0.063 0.219 ± 0.072 0.091 ± 0.058

K = 32 0.026 ± 0.005 0.128 ± 0.015 0.641 ± 0.154 0.257 ± 0.077 0.090 ± 0.086

K = 64 0.032 ± 0.071 0.136 ± 0.035 0.637 ± 0.105 0.218 ± 0.081 0.077 ± 0.073

K = 128 0.040 ± 0.040 0.141 ± 0.076 0.631 ± 0.108 0.221 ± 0.074 0.076 ± 0.072

K = 256 0.028 ± 0.015 0.118 ± 0.041 0.712 ± 0.103 0.149 ± 0.043 0.035 ± 0.051

K = 512 0.027 ± 0.016 0.115 ± 0.043 0.769 ± 0.105 0.168 ± 0.077 0.014 ± 0.053

Embedding dimensionality d with K = 32

d = 64 0.031 ± 0.01 0.152 ± 0.028 0.662 ± 0.18 0.157 ± 0.01 0.061 ± 0.06

d = 128 0.026 ± 0.005 0.128 ± 0.015 0.641 ± 0.154 0.257 ± 0.077 0.090 ± 0.086

d = 256 0.051 ± 0.008 0.179 ± 0.016 0.764 ± 0.062 0.234 ± 0.080 0.016 ± 0.029

d = 512 0.027 ± 0.028 0.113 ± 0.064 0.751 ± 0.111 0.134 ± 0.020 0.015 ± 0.052

Table A-3: Classification performance for varying values of K and d.
Classification

Value Acc (↑) F1 (↑)

Quantization indexes K with d = 128

K = 4 76.76 ± 4.83 66.54 ± 8.80

K = 8 76.80 ± 4.34 66.57 ± 8.04

K = 16 77.24 ± 4.72 67.04 ± 8.37

K = 32 77.96 ± 4.33 66.06 ± 8.32

K = 64 77.45 ± 4.62 65.70 ± 7.32

K = 128 77.17 ± 4.92 66.74 ± 8.31

K = 256 77.04 ± 4.76 66.80 ± 7.67

K = 512 76.90 ± 4.99 66.63 ± 8.08

Embedding dimensionality d with K = 32

d = 64 76.86 ± 4.40 66.63 ± 7.91

d = 128 77.96 ± 4.33 66.06 ± 8.32

d = 256 77.19 ± 4.66 66.67 ± 7.99

d = 512 64.70 ± 14.06 37.02 ± 34.74
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The optimal values for K and d were decided by the highest value of Pearson correlation obtained in
the downstream task of forecasting (Table A-2, best correlation obtained for values K = 32 and d =
128). Table A-3, instead, shows the performance obtained in the classification downstream task for
varying values of K and d.

III FORECASTING METRICS FOR UN-NORMALIZED SIGNALS

Table A-4 presents forecasting metrics without normalization, where a basic mean signal baseline
yields among the highest performance. However, regression metrics on un-normalized signals, given
their sparse nature, does not accurately reflect the true forecasting capabilities of tested models.
This motivates our normalization method, which normalizes signals dividing them by the sum of
their absolute derivatives, emphasizing the rate of change. This approach highlights true forecasting
capabilities and ensures that mean-baseline performance sets the lowest boundary (e.g., inf for MSE,
MAE), penalizing models that predict around the average.

Table A-4: Regression metrics on stimuli response forecasting using un-normalized responses.
Method MSE (↓) MAE (↓) SMAPE (↓) Corr (↑) SSIM (↑)

Baseline 0.095 ± 0.341 0.058 ± 0.008 0.829 ± 0.009 0.335 ± 0.002 0.122 ± 0.031

LSTM 0.093 ± 0.395 0.505 ± 0.007 0.883 ± 0.062 0.252 ± 0.322 0.246 ± 0.026

Autoformer 0.098 ± 0.123 0.074 ± 0.022 0.062 ± 0.025 0.118 ± 0.011 0.077 ± 0.037

Informer 0.097 ± 0.379 0.062 ± 0.010 0.857 ± 0.049 0.118 ± 0.011 0.098 ± 0.032

BrainLM 0.103 ± 0.388 0.057 ± 0.008 0.902 ± 0.049 0.106 ± 0.006 0.111 ± 0.031

BrainLMft 0.132 ± 0.451 0.057 ± 0.008 0.858 ± 0.057 0.107 ± 0.073 0.098 ± 0.042

Cross-former 0.301 ± 1.210 0.060 ± 0.009 0.771 ± 0.039 0.138 ± 0.032 0.096 ± 0.032

QuantFormer 0.445 ± 1.230 0.236 ± 0.106 1.55 ± 0.082 0.138 ± 0.017 0.015 ± 0.022

IV RESPONSE FORECASTING EXAMPLES

Due to space limitations in the main paper here we report more examples of response forecasts of
the tested models to all four categories of stimuli (Natural scenes in Figure A-2, Drifting gratings
in Figure A-3, Static gratings in Figure A-4 and Locally sparse noise in Figure A-5). All examples
showcase the superior capability of QuantFormer to model neuron activation w.r.t. competitors.

Figure A-2: Examples of response forecasting by QuantFormer and its competitors on natural
scenes.
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Figure A-3: Examples of response forecasting by QuantFormer and its competitors on drifting
gratings.

Figure A-4: Examples of response forecasting by QuantFormer and its competitors on static
gratings.

V APPLICATION OF SELF-SUPERVISED QUANTIZATION ON COMPETITORS

One might question why our pre-training and quantization strategy was not applied to other methods,
especially those based on transformer architectures. The primary reason lies in the substantial
modifications required to integrate auto-encoding pre-training and quantization into these approaches.

Firstly, quantization is infeasible for Informer (Zhou et al., 2021) and Autoformer (Wu et al., 2021),
due to their reliance on embedding layers along the channel dimension, whereas our method embeds
temporally patched data. The goal of quantization is to derive robust temporal representations and
patterns. Encoding channel combinations with single codes would create an information bottleneck,
emphasizing channel patterns over temporal ones.

Secondly, quantization cannot be directly applied to Crossformer (Zhang & Yan, 2022). Although
Crossformer performs patching and embedding both channel-wise and temporally, it introduces
a two-stage attention mechanism across time and channels. Theoretically, quantization could be
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Figure A-5: Examples of response forecasting by QuantFormer and its competitors on locally
sparse noise.

implemented; however, pre-training constraints prevent shuffling, altering, or discarding channels.
With only 10% of neurons active per trial, this causes an imbalance during pre-training, leading
the quantizer to optimize losses using a limited number of samples for the actual activation. This
results in limited number of quantization codes (3) that mostly describe normal activity signals (the
majority in the training data), thus leading to a high quantization error, as shown in Fig. A-6. Our
approach mitigates this by allowing the exclusion of non-active neurons to maintain data balance
during pre-training, thus obtaining a much lower quantization error, as shown in Fig. A-7.

Figure A-6: Cross-former quantization failure. In blue, the target signals, while in orange the
predicted responses when using quantization.

Furthermore, pretraining itself is problematic for similar reasons. Different containers possess unique
channels, necessitating significant alterations to existing methods for effective pretraining. For
Autoformer and Informer, each container and experiment would require a dedicated embedding
layer to map input channel dimensions into a unified latent space. For Crossformer, introducing a
pad token and padding mask might make pretraining feasible, but there would be no consistency in
channel order across different containers and experiments. This inconsistency would result in channel
attention learning non-generalizable dependencies. Even within a single container, such as a mouse,
the number of channels and their order vary across experiments.
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Figure A-7: QuantFormer quantization performance. In blue, the target signals, while in orange
the predicted responses when using quantization.

Thus, our strategy is more appropriate for pretraining, given the inherent challenges and limitations
of adapting other methods for this purpose.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

VI ATTENTION MAPS

We here present in Fig. A-8 attention score maps computed through attention-rollout on QuantFormer
for neuron activation prediction for all the four types of stimuli: drifting gratings, static gratings,
natural scenes, and locally-sparse noise. These maps reveal that [NEURON] token activity predomi-
nantly influences predictions, followed by pre-stimulus patches and stimulus token, with the model
adapting pre-stimulus information based on the specific stimuli delivered. These attention maps show
distinct activation patterns requiring further investigation by neuroscientists.

Figure A-8: Attention maps for all stimuli type.

VII INTERPRETABILITY OF LEARNED CODES

Fig. A-9 shows the latent space structure of discrete codes learned by vector quantization. We
performed 2D t-SNE on a learned codebook to observe sequence patterns. Subfigure (a) shows that
amplitude increases along the x-axis when plotting codes on the same scale. Subfigure (b) reveals
pattern variability after normalizing the scale. Interestingly, despite having a relatively small number
of codes, the reconstructed representation heavily depends on the sequence, as shown in Subfigure
(c): we generated sequences with bursts of the same code, except for one typically representing a
peak (e.g., code 19), highlighted between red dashed lines. The replaced code’s amplitude and shape
vary based on context, indicating that while codes represent patterns, the reconstruction depends on
the whole sequence.

VIII INTERPRETABILITY OF NEURON EMBEDDINGS

To undestrand what is encoded into neuron embeddings, we visualized through t-SNE neuron
embeddings from a downstream task. We find that neuron embeddings encode information such
as activation frequency and response statistics. Colors in Fig. A-10 denote whether the measured
quantity is above or below a threshold.
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Figure A-9: Interpretability of codes. (a) t-SNE of a codebook, with patterns representation in the
same scale. We can appreciate along the first axis the amplitude variation. (b) Same as before, but
with normalization to appreciate differences in patterns. (c) Effect of sequence.

Figure A-10: Interpretability of neuron embeddings. We show t-SNE examples of neuron embeddings.
We found that similar neurons in the latent space have also similar statistics like the median, the
number of activations or the standard deviation.
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