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Abstract

With the success of 2D and 3D visual generative models, there is growing inter-1

est in generating 4D content. Existing methods primarily rely on text prompts2

to produce 4D content, but they often fall short of accurately defining complex3

or rare motions. To address this limitation, we propose MagicPose4D, a novel4

framework for refined control over both appearance and motion in 4D generation.5

Unlike traditional methods, MagicPose4D accepts monocular videos as motion6

prompts, enabling precise and customizable motion generation. MagicPose4D7

comprises two key modules: (i) Dual-Phase 4D Reconstruction Module which8

operates in two phases. The first phase focuses on capturing the model’s shape9

using accurate 2D supervision and less accurate but geometrically informative10

3D pseudo-supervision without imposing skeleton constraints. The second phase11

refines the model using more accurate pseudo-3D supervision, obtained in the first12

phase and introduces kinematic chain-based skeleton constraints to ensure physical13

plausibility. Additionally, we propose a Global-local Chamfer loss that aligns the14

overall distribution of predicted mesh vertices with the supervision while maintain-15

ing part-level alignment without extra annotations. (ii) Cross-category Motion16

Transfer Module leverages the predictions from the 4D reconstruction module and17

uses a kinematic-chain-based skeleton to achieve cross-category motion transfer. It18

ensures smooth transitions between frames through dynamic rigidity, facilitating ro-19

bust generalization without additional training. Through extensive experiments, we20

demonstrate that MagicPose4D significantly improves the accuracy and consistency21

of 4D content generation, outperforming existing methods in various benchmarks.22

1 Introduction23

The 4D generation task involves creating a temporal sequence of 3D models of moving objects.24

Given the difficulty of the general problem, recent approaches have made use of pretrained models,25

selected using prompts to convey user’s intentions. Recently, there has been a significant focus26

on the use of text/image-prompts to describe appearance and motion [16, 22, 40]. The general27

pipeline of such existing consists of two steps: (i) acquiring static geometry through a 3D generation28

(e.g., a text/image-to-3D) model [17], which generates 3D representation such as meshes/implicit29

fields according to text/image prompts, and (ii) obtaining motion information via a video generation30

model [7], which generates video according to text/image prompts. This approach has achieved31

impressive 4D content results.32

However, challenges lie in facilitating users to freely and precisely specifyarticulated motion of33

a non-rigid 3D object, and the generation faithfully reflecting the prompts, in terms of accurately34

capturing desired object appearance, geometry and motion. The main issues with current methods are35

the following: (i) Temporal inconsistency in 3D geometry: Most current video generation models36
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fail to ensure temporal consistency of 3D geometry. This involves additional complexity when objects37

are articulated, because the 3D shape and movement must change mutually consistently during38

motion. For instance, while using the existing methods for 4D animal generation, we have observed39

unnatural and implausible configurations, such as the number of limbs of the object changing across40

different frames. (ii) Limited to common motions: Current video generation models perform well41

in generating simple, subtle, and common actions, such as walking or small motions like shaking, but42

they struggle to satisfactorily generate more complex motions, e.g., involving large or uncommon43

movements such as "King Kong dancing Hip-Hop" and "pig running like a rabbit" as shown in Fig.6.44

(iii) Text is inadequate for accurately describing the details of motion: As shown in Tab.4, most45

existing methods use text as prompts to describe the desired motion, with some efforts [3] allowing46

trajectory (root body transformation) control. However, they are unable to specify detailed motions,47

e.g., by showing a real-world animal’s movement (say, via a monocular short video).48

To address these issues, we propose MagicPose4D, which enables detailed control over both ap-49

pearance and motion, and temporal consistency. Unlike existing methods, which rely mostly on text50

descriptions as motion prompts and for which it is difficult to convey complex or rare motions, our51

approach accepts monocular videos or dynamic mesh sequences as motion prompts. This allows for52

more precise supervision and faithful 4D generation. MagicPose4D introduces two key modules:53

Dual-Phase 4D Reconstruction Module and Cross-category Motion Transfer Module. The first54

module estimates a sequence of 3D models of the object while also simultaneously estimating motion55

parameters from the motion prompts, and the second module transfers this motion to the target object,56

which is generated by a 3D generation model controlled by appearance prompts.57

Dual-Phase 4D Reconstruction Module: Given the complexity, particularly due to articulated58

objects, we divide this module into two phases. First, we use image descriptors (e.g., segments,59

flow) as 2D supervision to estimately relatively less accurate but geometrically informative 3D60

models to serve as geometric priors (otherwise absent in the video) for pseudo supervision of 3D61

reconstruction. This phase does not impose constraints emanating from the articulated nature of the62

object, e.g., captured in the underlying skeletal structure and plausible changes in it during motion,63

allowing each part to learn arbitrary rotations (R) and translations (t), while focusing on learning64

the model’s shape. In the second phase, we ensure physical plausibility of the motion by enforcing65

kinematic chain-based skeletal movement constraints. Additionally, we propose a Global-local66

Chamfer loss, which ensures that the overall distribution of predicted mesh vertices aligns with67

the supervision while maintaining part-level alignment, without requiring additional annotations.68

Cross-category Motion Transfer Module: This module achieves cross-species motion transfer69

by mapping the skeleton of one species to another by establishing joint and limb correspondences70

through a kinematic-chain-based representation of the skeleton. Our motion transfer module is71

non-training-based. It helps improve generalization and prevents the poor performance seen in many72

existing methods when tested on data with significant gaps from the training set. Also, we leverage73

dynamic rigidity [38] to guarantee smoothness between frames, unlike the existing approaches which74

perform frame-independent pose transfer.75

The following are the main contributions of this paper: (i) A Novel 4D Generation Framework:76

Our new framework leverages monocular videos as motion prompts, providing more accurate and77

more precisely specifiable 4D action generation. (ii) Skeleton Based 4D Representation: By using78

skeleton-mediated geometric and 3D prior, we achieve more accurate motion estimation and 3D79

reconstruction, improving the physical plausibility of the generation. (iii) Global-local Chamfer80

Loss: We introduce a novel loss function to better align estimated mesh vertices with the supervisory81

3D model overall while maintaining part-level alignment, without additional annotations. (iv)82

Cross-category Motion Transfer: Our cross-category mapping in terms of skeleton based dynamic83

rigidity representation enables smooth transitions between frames and robust generalization without84

additional training. (v) Outperforms SOTA: Through extensive experiments, we demonstrate that85

MagicPose4D provides highly accurate 4D content and significantly outperforms existing methods86

for 4D reconstruction and pose transfer across all three benchmarks that we experiment with.87

2 Related Work and Motivation88

4D/3D Reconstruction. Significant advancements in 4D/3D reconstruction include the development89

of specialized parametric models such as SCAPE [1] and SMPL [18] for human bodies, MANO [23]90

for hand movements, FLAME [14] and EMOCA [9] for facial expressions, and SMAL [42] for91
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Figure 1: Overview of MagicPose4D, which takes motion prompts (monocular video or dynamic
mesh sequence) and appearance prompts (text or image) to control the 4D content generation.

quadruped animals. However, these methods require predefined parametric models that include skele-92

tons and skinning weights, limiting their generalization to uncommon species and out-of-distribution93

data. Recent neural implicit-based methods [20, 34, 11, 38, 31] offer promising alternatives by jointly94

learning static 3D meshes and time-varying parameters without predefined templates. However,95

they often fail with monocular videos containing sparse views, limiting their practical applicability.96

To address this, MagicPose4D introduces an innovative Dual-Phase 4D Reconstruction module,97

which reduces the requirements from multi-view videos to single-view videos and achieves robust98

reconstruction.99

Diffusion-based 4D Generation and Pose Transfer. Recent diffusion-based 4D generation methods100

have shown promising results by leveraging text-to-3D models followed by text-to-video supervision.101

These techniques [24, 22, 16, 4, 41, 10, 36, 12, 40] have improved the geometry and appearance102

of generated models but are generally limited to minor movements within a fixed location and103

rely on text prompts, making precise motion control difficult. Our goal is to create dynamic 4D104

animations that closely transfer the motion of any given reference real-world object. For pose transfer,105

recent skeleton-based frameworks [25, 15] have explored the use of rigging points and key points.106

However, learning-based methods often struggle with in-the-wild data and significant domain gaps107

between identities. MagicPose4D introduces a cross-category motion transfer module that supports108

cross-species transfer while ensuring generalization and maintaining temporal smoothness.109

3 MagicPose4D110

MagicPose4D accepts two distinct types of input prompts: (i) appearance prompts and (ii) motion111

prompts. Consistent with recent methods [8, 27], both images and textual descriptions can function112

as appearance prompts, delineating the desired object and its visual characteristics. In a departure113

from existing approaches, MagicPose4D enables users to specify precise motions and trajectories by114

providing a video/mesh sequence that represents the anticipated movement.115

As illustrated in Fig 1, MagicPose4D comprises three critical components: (i) the 4D Reconstruction116

module (Sec.3.2), (ii) the Cross-Category Motion Transfer module (Sec.3.3), and (iii) the Image-to-117

3D Generation module. Each module is tailored to facilitate distinct aspects of dynamic modeling,118

enabling adaptive 4D reconstructions that align with user-defined specifications.119

3.1 Terminology and Overview120

To represent an animated 3D model, our method learns static representations, such as the visible121

canonical shape S ∈ RN×3, the underlying skeleton Sk = {J ∈ RJ×3,Bs ∈ RB ,Pi ∈ RB}, and122

the skinning weights W ∈ RN×B . Additionally, it captures time-varying parameters, including123

the global-local (root body-bone) transformations τ = {τ t0, τ t1, . . . , τ tB} and the camera parameters124

Pc. Here, B, N , and J represent the number of bones, vertices on the mesh surface, and joints,125

respectively. The transformations τ ti ∈ SE(3) include τ t0 for the root body, with the remaining τ ti126
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for the bones. The skeleton topology is described by J (joint coordinates), Bs (bone scale), and Pi127

(parent indices of joints).128

As illustrated in Fig 1, utilizing a short monocular video as a motion prompt, we introduce a dual-129

phase 4D reconstruction module (Sec.3.2) designed to predict a sequence of 4D meshes as motion130

references. Appearance prompts may consist of text descriptions, images, or a monocular video.131

Depending on the type of input, a corresponding module—text-to-3D, image-to-3D, or dual-phase 4D132

reconstruction is employed to generate the static 3D representation of the desired object. Subsequently,133

this static representation along with the motion reference are fed into the cross-category motion134

transfer module (Sec.3.3). This module adeptly transfers motions from the reference to the target135

object while ensuring temporal smoothness and consistency.136

Figure 2: Overview of Dual-Phase 4D Reconstruction Module.

3.2 Dual-Phase 4D Reconstruction from video137

Reconstructing 4D models from short monocular videos is a challenging task as it requires jointly138

learning numerous parameters, resulting in an extensive optimization space. Erroneous predictions of139

any parameter can trigger cascading failures. To address these challenges, we propose a Dual-Phase140

4D Reconstruction module, which employs differentiated supervision across two distinct phases and141

focuses on learning diverse representations.142

In the first phase, the primary focus is on accurately capturing the external appearance (shape) of the143

model. The underlying skeleton serves merely as an intermediary variable, utilizing non-kinematic144

chains skeleton and learnable skinning weights to afford the skeleton greater deformation freedom.145

This approach accelerates the learning of correct shapes. In contrast, the second phase aims to derive146

a more physically plausible motion reference for effective motion transfer. Therefore, we adopt147

kinematic chain skeletons and heat diffusion-based skinning weights, which narrow the deformation148

space of the skeleton, thereby ensuring the plausibility of the internal structure. (Sec.3.2.1)149

From a supervision perspective, the first phase blends 2D and pseudo-3D supervision, updating the150

pseudo-3D supervision at the end of this phase. In the second phase, the 2D loss is removed, relying151

solely on the updated 3D pseudo-supervision to guide the learning process. (Sec.3.2.2)152

3.2.1 Model Articulation153

Skinning Weights W is designed to represent the probabilities that each vertex corresponds to B154

semi-rigid parts. In the first phase, following [31, 34], the skinning weights are modeled by the155

mixture of B Gaussian ellipsoids as: Wn,b = Fe−
1
2 (Xn−Cb)

TQb(Xn−Cb), where F is the factor156

of normalization and precision matrices Qb = VT
b ΛbVb. In each Gaussian ellipsoid, C ∈ RB×3157

denotes Gaussian centers, V ∈ RB×3×3 defines the orientation and Λ ∈ RB×3×3 denotes the158

diagonal scale matrix. Xn is the 3D location of vertex n. In the second phase, as shown in Fig.3, a159

skeletonization module, is leveraged to obtain a skeleton for the canonical mesh, and following [29, 5],160

skinning weights W are obtained by a heat diffusion process. This approach guarantees a more161

natural assignment of skinning weights to the bones, enhancing the realism of the skeletal animations.162

Blend Skinning. The mapping from surface vertex X0
n in canonical space (time 0 by default) to Xt

n163

at time t in camera space is designed by blend skinning. The forward blend skinning is shown below:164

Xt
n = τ t0(

B∑
b=1

Wn,bτ
t
b)X

0
n, (1)
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including the number of bones B, skinning weights W and the transformation τ t = {τ tb}Bb=0 at time165

t, where τ t0 represents the root body transformation and τ tb>0 describes the bone transformation. Each166

X0
n is first transformed by the weighted sum of each bone transformation Tt

b>0 and then transformed167

by root body transformation Tt
0 to achieve Xt

n.168

Skeleton Articulation. As described above, bone and root body transformations τ are crucial in the169

process of blending skinning. In the first phase, we define these transformations as independently170

learnable SE(3) transformations. Practically, this is implemented by initializing learnable quater-171

nions to compute the rotation matrices, along with defining learnable translations to achieve affine172

transformations. During this phase, we impose no constraints on the skeleton; each bone can rotate173

and translate freely. These bones serve merely as intermediate variables, with the ultimate objective174

of accurately determining the correct shape. In the second phase, we define per-frame joint angles175

Q, each describing the pose between a bone and its parent with three degrees of freedom. Instead of176

directly learning bone transformations, we determine Q and compute the bone transformations τ tb>0177

using forward kinematics. The deformed mesh is then obtained by blend skinning.178

Extendable Bones. It is noteworthy that kinematic-chain-skeleton-based methods rest on a fun-179

damental assumption that the structure of the utilized skeleton closely mirrors the natural skeletal180

architecture of animals. This allows for the desired deformed mesh to be achieved by manipulating181

the skeleton’s pose and employing blend skinning techniques. However, in practice, this assumption182

often does not hold completely. Animal bones are not solely rigid hinge connections; they include183

extendable cartilaginous tissues that lead to non-rigid deformations among joints. To address this,184

we introduce the concept of extendable bones. We allow for slight variations in bone length be-185

tween frames, achieved by learning a time-varying scale parameter for each bone Bs ∈ RB . This186

modification enhances the flexibility and realism of our skeletal model.187

3.2.2 Supervision and Losses188

As shown in Fig. 2, given the input from a monocular video, we utilize segmentation models [13, 37]189

and optical flow prediction models [28] to obtain 2D supervision. Furthermore, we employ an image-190

to-3D model to independently predict meshes for each frame, serving as pseudo-3D supervision. A191

question arises: "Why not directly use an image-to-3D model to independently predict 3D meshes192

for each frame?" As illustrated in Fig.7 (c), objects always exhibit self-occlusion in the video, under193

which circumstances image-to-3D models typically fail to produce accurate results. For instance,194

some frames might only depict a camel with two visible legs, resulting in a 3D mesh sequence that195

does not effectively capture the action information portrayed in the video. Moreover, as demonstrated196

in Video 3 of the supplementary materials, meshes generated directly from the image-to-3D module197

are independent of one another, thus lacking temporal continuity and smoothness. Although the198

initial pseudo-3D supervision may not be very accurate, it still provides valuable geometric priors199

that help address the information loss caused by insufficient perspectives of the object in the video.200

In the first phase, we blend both 2D and 3D supervision to optimize the mesh shape and leverage a201

reconstruction loss, which consists of silhouette loss, optical flow loss, texture loss, perceptual loss,202

smooth, motion, and symmetric regularizations, and global-local chamfer (GLC) Loss. In the second203

phase, we only leverage GLC Loss and regularization terms without 2D losses. The details of the 2D204

loss functions and regularizations will be described in the Appendix.6.5.205

Global-Local Chamfer Loss (GLC). The objective of GLC loss is to ensure that the predicted mesh206

closely resembles the expected mesh in (i) overall shape and in terms of their (ii) respective poses.207

This dual focus helps achieve high fidelity in both the structural and positional accuracy of the meshes.208

The GLC loss is the sum of chamfer distances across two levels. Initially, it involves the computation209

of the chamfer distance for the entire predicted mesh S and Pseudo mesh Ŝ as follows:210

Lglobal(S, Ŝ) =
1

|S|
∑
x∈S

min
y∈Ŝ

∥x− y∥2 + 1

|Ŝ|

∑
y∈Ŝ

min
x∈S

∥x− y∥2. (2)

The second level involves computing the weighted chamfer distances between B parts. First, we211

calculate skinning weights W,Ŵ ∈ RN×B for S and Ŝ via the heat diffusion process [29, 5].212

Then, we perform an argmax across the B dimension to achieve a part-wise decomposition of213

the whole body into K parts, where K is less than or equal to B. In practice, K often equals214

B, but in cases where K is less than B, the loss computation simply omits the non-existent parts.215
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Subsequently, we calculate the part-level Chamfer distances between the K pairs from predicted216

mesh Pk, k ∈ {0, ...,K − 1} and Pseudo mesh P̂k, as shown in the following equation:217

Llocal(S, Ŝ) =
1

|K|

K−1∑
k=0

1

|Pk|
∑
x∈Pk

W min
y∈P̂k

∥x− y∥2 + 1

|P̂k|

∑
y∈P̂k

W min
x∈Pk

∥x− y∥2, (3)

where W = Wx,k × Ŵy,k represents the multiplication of skinning weights between vertices x218

and y for bone k. W serves as a rough key points estimator based on skinning confidence. It219

assigns greater weight to vertices at the central part of a segment and lesser weight to vertices at the220

junctions of multiple parts. This approach effectively addresses inconsistencies at the edges of part221

decompositions when calculating skinning weights using heat diffusion for models in various poses.222

Figure 3: Overview of Cross-Category Motion Transfer Module.

3.3 Cross-Category Motion Transfer223

In the second phase of 4D Reconstruction, as shown in Fig. 3(a), we extract the underlying skeletal224

motion of the reference meshes. Given a sequence of meshes for the reference object, the skeletoniza-225

tion module extracts the skeleton of the canonical shape, which is defined as the shape corresponding226

to time = 0. We fix the canonical skeleton and the skinning weights, thus controlling the skeleton’s227

pose solely by learning the pre-frame angles and bone scales. Subsequently, by employing blend228

skinning, we obtain the deformed mesh.229

The input to the skeletonization module is a mesh, along with an optional skeleton template. When230

the reference object is a commonly recognized form, such as a quadruped or a human, we utilize the231

corresponding skeleton template and embed it into the mesh. Following the methodology described232

in [5], we construct a coarse discrete representation to locate the approximate position of the skeleton233

within the internal space of the mesh. This process involves embedding the skeleton into a graph234

derived from the character’s internal volume and determining an optimal solution using the A*235

algorithm across all possible matches. When a template of the object is not available, we employ236

skeleton extraction methods [2, 38] to extract the canonical skeleton of the reference object. After237

learning the reference motion represented by the pre-frame angles and the bone scale of the skeleton,238

we can readily compute the global-local transformation of the target object using forward kinematics,239

as illustrated in Fig. 3(b). We extract the canonical skeleton for the target object by inputting the240

canonical skeleton of the reference object, adhering to the method previously described following [5].241

Subsequently, blend skinning is employed to generate the deformed meshes.242

4 Experiments243

This section primarily covers the following parts: (i) 4D reconstruction results and comparisons;244

(ii) motion transfer results and comparisons; and (iii) our framework v.s. 4D generation. Detailed245

descriptions of the benchmarks (Sec.6.2), implementation (Sec.6.3), and as shown in Tab.5, more246

than 60 video results (Sec.6.1) are provided in the Appendix.247

4.1 Qualitative and Quantitative Comparison248

4D Reconstruction. As depicted in Fig.5, we first compare the results of MagicPose4D with249

LASR [32] and BANMo [35]. These methods fall short of achieving ideal reconstruction, due to a250

lack of structural information about the objects, since they learn from only a single monocular video,251
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Figure 4: Appearance and Motion Controlled 4D Generation.

which contains sparse views. NeRF-based methods such as BANMo [34] and MagicPony [30] require252

particularly dense views from multiple cameras or long videos to achieve decent results. However,253

MagicPose4D achieves good reconstructions from only sparse views.254

Furthermore, for a comprehensive quantitative comparison, we examine the performance of Magic-255

Pose4D against the best existing methods, LASR [32] and ViSER [33], which perform best (in terms256

of 2D keypoint transfer accuracy) among existing methods using a single monocular video as input.257

As shown in Tab.1, MagicPose4D consistently outperforms both LASR and ViSER for all animal258

subjects with a notable margin. When we run the author-provided codes for LASR, and ViSER on259

DAVIS, and PlanetZoo, we find that their results are highly variable across different runs. The results260

we report for these cases are therefore the mean accuracies we have obtained over multiple runs of all261

three methods.262

Figure 5: 4D Reconstruction Results. We show the mesh reconstruction results of (a) LASR, (b)
BANMo, and (c) Ours in the PlanetZoo’s bear, zebra, elephant, and giraffe.

Cross-Category Motion Transfer. We present motion transfer results from MagicPose4D in Fig. 4.263

The target identities and reference motion sequences can either be humanoid or animal subjects.264

MagicPose4D is able to learn and retarget the motion from dynamic mesh prompts, e.g., Hip-Hop265

Dancing, or monocular video prompts, e.g., Hands Up.266

We further compare the motion transfer ability for mesh generation quality with recent methods267

3D-CoreNet [25] and X-DualNet [26] in Fig. 6 and Tab.2 (c). Both methods use a deep neural network268

to learn latent shape codes to retarget the motions and are trained/evaluated on SMPL [19](humanoid)269

and SMAL [42](animal). Since they do not include disentangled components or shape deformation270
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Figure 6: 4D Generation Comparison of MagicPose4D with Animate124 [40], Motion Transfer
Comparison of MagicPose4D with 3D-CoreNet [25] and X-DualNet [26]. Videos are in Sec.6.1.

Table 1: 2D Keypoint Transfer Accuracy. This table presents the 2D keypoint transfer accuracy on
DAVIS and PlanetZoo datasets. For classes from DAVIS (camel) and PlanetZoo (giraffe, tiger),
we carry out multiple executions and report the mean of the observed accuracy in each case. Note that
the results for LASR and ViSER here are from our executions of the codes provided by the authors.

Method DAVIS PlanetZoo
camel cow dog bear dance-twirl giraffe tiger elephant bear zebra deer Ave.

ViSER 71.7 73.7 65.1 72.7 78.3 51.2 68.4 68.9 60.3 55.7 57.3 65.8
LASR 75.2 80.3 60.3 83.1 55.3 56.3 70.4 69.5 63.1 57.4 60.3 66.5

MagicPose4D 78.9 83.1 67.9 86.2 84.3 62.9 73.3 70.6 67.1 60.2 61.9 72.4

modules to represent the structural information of 3D meshes, these methods rely heavily on pre-271

processed training data with high-quality mesh annotations. Due to these constraints, these baselines272

cannot generalize well to in-the-wild target identities or reference motions. In contrast, MagicPose4D273

generates temporally consistent and smooth motions, while strictly preserving the identity and274

appearance of the target mesh. It is also worth noting that because previous methods focus only275

on pose transfer without considering the motion trajectory (pose sequence), the generated object276

always stays at the same position. This can be observed in side-by-side video comparisons in the277

supplementary materials Sec.6.1.278

Our Framework v.s. Existing 4D Generation. Text/image-prompts-based 4D generation has279

been a popular trend. To compare with a representative recent work Animate124 [40], we feed the280

reference image, which provides the identity, and text prompt, which describes the motion of the281

generated object, into their model and optimize the NeRF with SDS-loss. In our case, we use the282

reference image to generate the target mesh with an Image-to-3D model and transfer the motion283

of the reference mesh sequence. We visualize the rendered video from different viewpoints from284

Animate124 and compare it with MagicPose4D in Fig. 6(a) and Fig. 6(b). More video comparisons285

are in the supplementary material. MagicPose4D provides more temporally consistent and smooth286

generation with the learning of motion deformation. Since there are no ground truth mesh sequences287

to evaluate the generation, we provide a comprehensive user study for Motion Transfering and 4D288

Generation for a qualitative evaluation in Sec. 6.4 and Tab.3 to conclude our findings.289

Figure 7: Ablation Experiments.

4.2 Diagnostic290

Effectiveness of Global-Local Chamfer Loss. Relying solely on the geometric information con-291

tained in a short monocular video often makes it challenging to achieve satisfactory 3D reconstruction292

results. This difficulty arises because most videos typically offer sparse viewpoints and the presence293

of non-rigid object deformations increases the optimization space. Consequently, many methods that294
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Table 2: User study of MagicPose4D on Motion Transfer. We collect the rating results from 50
participants of eleven mesh-sequence comparison experiments. The scale of rating is 0 (low) - 5
(high). The participants found that MagicPose4D generates the best motion transfer results. Criteria
for judgment: 1) The generated motion should match the reference pose mesh sequence. 2) The
identity of the transferred mesh should match the identity reference. 3) The generated mesh sequence
should be consistent and smooth. More details can be found in Appendix Sec.6.4

Method Exp-1 Exp-2 Exp-3 Exp-4 Exp-5 Exp-6 Exp-7 Exp-8 Exp-9 Exp-10 Exp-11 Ave.
3D-CoreNet [25] 1.85 1.73 2.10 2.31 1.90 1.73 2.29 2.73 2.65 1.88 1.79 2.09
X-DualNet [26] 2.88 1.94 1.53 1.88 2.22 2.18 2.14 2.86 2.71 2.22 2.31 2.26
MagicPose4D 4.92 4.47 4.69 4.39 4.45 4.45 3.90 4.12 4.02 4.10 4.20 4.34

Table 3: User study of MagicPose4D on 4D Generation compared to Animate124 [40]. The settings
are the same as the study on Motion Transfer. Criteria for judgment: 1) The generation’s identity
should match the reference image. 2) The video should be temporal-consistent and smooth.

Method Exp-1 Exp-2 Exp-3 Exp-4 Exp-5 Exp-6 Ave.
Animate124 [40] 2.60 1.98 1.90 1.92 2.28 2.24 2.15
MagicPose4D 4.53 4.37 3.91 4.00 4.60 4.62 4.34

rely only on 2D supervision [31, 34, 30] struggle to ensure effectiveness on in-the-wild videos. To295

enhance the generalization capability of the reconstruction module, we utilize existing image-to-3D296

model methods to obtain geometric priors. By using these models, we generate pseudo-3D meshes297

for each frame as 3D supervision. We employ the Chamfer distance as the 3D loss objective to align298

the predicted 3D mesh closely with the pseudo-3D mesh in terms of point distribution. However,299

global Chamfer distance alone can only ensure similar point distributions between the two meshes300

and does not guarantee the correspondence of points as expected. For instance, as shown in Fig.7(a),301

without using the local Chamfer loss, the overall point distribution might be similar, but the mesh302

shape could be entirely incorrect, such as the left and right legs being swapped or vertices originally303

on the right front leg being moved near the left hind leg. By incorporating the local Chamfer loss, we304

enforce consistency between each part of the predicted mesh and the pseudo mesh, thus ensuring305

pose consistency and significantly mitigating the previously mentioned issues.306

Temporal Consistency is crucial for 4D generation. As shown in Fig.7 (b), performing pose transfer307

independently for each frame results in noticeable discontinuities when viewing the entire video.308

To address this, we first define the canonical space using the initial frame, where all frames share309

the same canonical mesh, skeleton, and skinning weights. Each subsequent frame is derived from310

the deformation of the first frame using global-local transformations and blending skinning. This311

approach ensures the consistency of the static model and rigging. Additionally, we introduce a312

dynamic rigidity regularization term between consecutive frames, which minimizes the deformation313

of the object between successive frames. This ensures temporal smoothness of the 4D content.314

5 Conclusion & Limitations315

We introduce MagicPose4D, a novel framework for 4D generation providing more accurate and316

customizable 4D motion transfer. We propose a dual-phase reconstruction process that initially uses317

accurate 2D and pseudo 3D supervision without skeleton constraints and subsequently refines the318

model with skeleton constraints to ensure physical plausibility. We incorporate a novel loss function319

that aligns the overall distribution of mesh vertices with the supervision and maintains part-level320

alignment without additional annotations. MagicPose4D enables cross-category motion transfer using321

a kinematic-chain-based skeleton, ensuring smooth transitions between frames through dynamic322

rigidity and achieving robust generalization without the need for additional training.323

The main limitations of our method and existing works are: (i) Deformation based on blend skinning324

relies on accurate and robust skeletons and skinning weights predictions, facing a trade-off between325

generalization and accuracy. Learning-based methods have limited generalization due to restricted326

training datasets, while non-learning methods suffer from inductive bias, leading to suboptimal results.327

(ii) MagicPose4D can infer poses quickly for pose transfer without training, but 4D reconstruction328

requires significant training (10 hours on an L40S). (iii) Our method struggles with detailed motion329

control, such as fingers and facial features, due to the challenge of capturing fine-grain details during330

4D reconstruction. These issues represent future research directions.331
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Table 4: Support Prompts Comparison. Random represents no control of motion.

Method Appearance Motion
Text Image Text Video Trajectory Random

Animate123 [40] ✓ ✓ ✓
4D-fy [4] ✓ ✓

DreamGaussian4D [22] ✓ ✓ ✓
AYG [16] ✓ ✓

Dream-in-4D [41] ✓ ✓ ✓
TC4D [3] ✓ ✓ ✓ ✓

MagicPose4D ✓ ✓ ✓ ✓ ✓

Figure 8: 4D Generation Comparison with Animate124

6 Appendix453

In this section, we aim to provide additional information not included in the main text due to length454

constraints. This supplemental content includes:455

1. Support prompts comparison with existing 4D generation methods in Tab.4.456

2. Video results (Sec.6.1)457

3. Implementation details (Sec.6.3)458

4. Information about the dataset used for evaluation (Sec.6.2)459

5. In-depth explanation of loss and regularization terms (Sec.6.5)460

6. Further experimental results: (i) comparison with existing 4D generation method in Fig.8,461

(ii) comparison with existing pose transfer methods in Fig.9, (iii) skeleton and skinning462

weights results in Fig.10463

7. User study (Sec.6.4)464

8. Broader social impacts (Sec.7)465
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Figure 9: Motion Transfer Comparison with 3D-CoreNet [25] and X-DualNet [26]

6.1 Video Results466

As shown in Tab.5, we include an extensive set of 4D generation results in467

video format in Google Drive: https://drive.google.com/drive/folders/123zX75-468

mRM4Yi49Nw8AlPpoiWXlC18pE?usp=sharing. There, we demonstrate 4D generation469

results across different species with diverse motions and compare the performance of pose transfer470

with 3D-CoreNet [25], X-DualNet [26], and Animate124 [40]. Since the video files exceed 500 MB,471

we are unable to upload them directly as a zip file. Therefore, we have used an anonymous Google472

Drive link.473

6.2 Dataset474

6.2.1 Animal475

Davis-Camel provides a real animal video in BADJA [6] with 2D keypoints and mask annotations,476

derived from the DAVIS video segmentation dataset [21] and online stock footage. We extract477

reference motion from the reconstructed mesh sequence and transfer it to other identities.478

PlanetZoo includes RGB synthetic videos of different animals with around 100 frames each. Plan-479

etZoo covers a 180-degree visual field captured by a moving camera to allow better evaluation of480

3D reconstruction when imaging parameters must also be dynamically estimated due to the moving481

camera, and over a large visual field. In addition, following BADJA [6], we also provide 2D key482

point annotations.483

DeformingThings4D is a synthetic dataset containing 1,972 animation sequences containing 31484

categories of both humanoids and animals. Each sequence consists of 40 to 120 frames of motion485

animation. In this dataset, the first frame is the canonical frame, and its triangle mesh is given. From486

the 2nd to the last frame, the 3D offsets of the mesh vertices are provided, and we export the triangle487

meshes for all these frames. We use the motions of these animal mesh sequences as pose references488

and transfer the pose to different identities.489

6.2.2 Human490

EverybodyDanceNow consists of full-body videos of five human subjects. We use these monocular491

videos to generate human motions and transfer them to other identities.492

DeformingThings4D also contains humanoid examples of dynamic mesh, as mentioned before. We493

use the motions of these sequences as pose references and transfer the pose to different identities.494
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Figure 10: Skinning Weights and Skeleton Results from Our Method.
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Table 5: List of Video Results.
reference motion target object our result 3D-CoreNet X-DualNet Animate124

1 bear_death horse ✓ ✓ ✓
2 bear_death pig ✓ ✓ ✓
3 canie_jump horse ✓ ✓ ✓
4 canie_jump pig ✓ ✓ ✓
5 cattle_walkback horse ✓ ✓ ✓
6 cattle_walkback pig ✓ ✓ ✓
7 deer_attack1 horse ✓ ✓ ✓
8 deer_attack1 pig ✓ ✓ ✓ ✓
9 deer_attack2 horse ✓ ✓ ✓
10 deer_attack2 pig ✓ ✓ ✓
11 deer_attack3 horse ✓ ✓ ✓
12 deer_attack3 pig ✓ ✓ ✓
13 deer_jumptort horse ✓ ✓ ✓
14 deer_jumptort pig ✓ ✓ ✓
15 drunkwalk panda ✓ ✓ ✓
16 drunkwalk kingkong ✓ ✓ ✓
17 drunkwalk penguin ✓ ✓ ✓
18 drunkwalk smpl ✓ ✓ ✓
19 hiphop panda ✓ ✓ ✓
20 hiphop kingkong ✓ ✓ ✓ ✓
21 hiphop penguin ✓ ✓ ✓
22 rabbit_run horse ✓ ✓ ✓
23 rabbit_run pig ✓ ✓ ✓ ✓
24 bear_attack horse ✓
25 bear_attack pig ✓
26 bear_drink horse ✓
27 bear_drink pig ✓
28 bear_run horse ✓
29 bear_run pig ✓
30 cattle_attack2 horse ✓
31 cattle_attack2 pig ✓
32 deer_jump horse ✓
33 deer_jump pig ✓
34 deerFEL_tort horse ✓
35 deerFEL_tort pig ✓
36 dog_jumpup horse ✓
37 dog_jumpup pig ✓
38 tiger_run horse ✓
39 tiger_run pig ✓
40 hands_up panda ✓
41 hands_up kingkong ✓
42 hands_up penguin ✓
43 hiphop kingkong_superman ✓
44 hiphop Chinese pot ✓
45 drunkwalk Chinese pot ✓
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Figure 11: Post Texture Editing.

6.2.3 Self-collected in-the-wild data495

These in-the-wild data are collected from online resources. We use unique objects such as Chinese496

pot, and others as appearance identities to demonstrate the generalization ability of our method.497

6.3 Implementation Details498

For Davis-Camel, PlanetZoo, EverybodyDanceNow and those self-collected data without ground499

truth mesh, we first train the Dual-Phase 4D Reconstruction Module on 2 NVIDIA L40S GPUs with500

batch size 16 for 10 epochs with a learning rate of 0.0001. We then transfer the per-frame motion501

from Phase 2 of 4D Reconstruction to the target object with the Cross-Category Motion Transfer502

Module. The motion transfer is not learning-based and does not require any trainable parameters,503

which makes MagicPose4D generalize well to unseen identities and reference motions. For all other504

data with ground truth mesh available, we directly train the second phase of the 4D Reconstruction505

Module and then transfer the motions.506

6.4 User Study507

We provide a user study for comparison between MagicPose4D and previous works [25, 26] on508

motion transfer. We asked 50 lay participants from Prolific, an online platform for user studies, to rate509

the quality of eleven in-the-wild retargeted mesh sequences from 3D-CoreNet [25], X-DualNet [26]510

and MagicPose4D on a scale of 0(low) to 5(high). The participants are paid with an hourly rate511

of 16 USD. In each mesh sequence comparison, we collect target identity mesh, reference motion512

mesh sequence, and retargeting results. We visualize them side-by-side. The retargeting results513

from different methods are anonymized as A, B, C, and the order is randomized. We provide514

video visualization of these comparisons (For each video, from left to right: Reference Motion;515

MagicPose4D; 3D-CoreNet; X-DualNet) in the Google Drive. Criteria for judgment: 1) The516

generated motion should match the reference pose mesh sequence. 2) The identity of the transferred517

mesh should match the identity reference. 3) The generated mesh sequence should be consistent518

and smooth. From the results presented in Tab. 2, we conclude that MagicPose4D provides the most519

satisfying generation of mesh sequences.520

Similarly, we provide a user study for comparison with Animate124 [40], a representative work using521

the diffusion model and SDS-loss to optimize a neural representation. The settings for participants522

are the same. In each comparison experiment, we collect reference images, text descriptions of523

motion, mesh reference motion sequences, and generated videos from both methods. We feed the524

reference image, which provides the identity, and text prompt, which describes the motion of the525

generated object, into Animate124 and optimize the NeRF with SDS-loss. For MagicPose4D, we use526

the reference image to generate the target mesh with an Image-to-3D model and transfer the motion527

of the reference mesh sequence. We compared the rendered videos from Animate124 to videos of528

generated mesh from MagicPose4D in different viewpoints. We provide video visualization of these529

comparisons (Method 1: Animate124; Method 2: MagicPose4D) in the Google Drive. Criteria for530

judgment: 1) The generation’s identity should match the reference image. 2) The generated mesh531

sequence should be consistent and smooth. From the results presented in Tab. 3, we conclude that532

MagicPose4D provides the most satisfying visualizations.533
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6.5 2D Losses and Regularization534

The 3D loss is described in the main article. Here we introduce the 2D losses and regularization535

terms. The 2D losses are similar to those in existing differentiable rendering pipelines [31, 34, 38].536

We define St,It, F2D,t as the silhouette, input image, and optical flow of the input image, and their537

corresponding rendered counterparts as S̃t ,̃It, F̃2D,t. The following losses ensure the fitting between538

rendered and original:539

Lsilhouette =
∑
xt

∥∥∥s(xt
)− ŝ(x

t
)
∥∥∥
2
, (4)

540

Loptical flow = σ
∥∥∥(F̃2D,t)− (F2D,t)

∥∥∥2
2
, (5)

541

Ltexture =
∥∥∥Ĩt − It

∥∥∥
1
, (6)

542

Lperceptual = pdist(̃It, It), (7)

where pdist(,) is the perceptual distance [39]. Also, we leverage three regularization terms: (1)543

Dynamic Rigidity term, which is introduced in paper.[38]. (2) Symmetry term, which encourages the544

canonical mesh to be symmetric.545

Lsymm =
∑
i

min
j

∥vj − ϕ (vi
symm)∥2 , (8)

where, vj is the vertex j in the one side of the symmetry plane, and vi
symm is the vertex from the546

other side. ϕ is the reflection operation w.r.t to the symmetry plane. (3) Laplacian smoothing: We547

apply laplacian smoothing to generate smooth mesh surfaces.548

Lshape =

∥∥∥∥∥∥X0
i −

1

|Ni|
∑
j∈Ni

X0
j

∥∥∥∥∥∥
2

, (9)

where, X0
i is coordinates of vertex i in canonical space. And N is the number of vertices549

550

7 Broader Social Impacts551

The proposed MagicPose4D for motion transfer offers extensive applications, enhancing communi-552

cation in digital environments by enabling more effective self-expression through avatars or digital553

characters. Additionally, MagicPose4D has the potential to revolutionize the entertainment and media554

production industries by facilitating the creation of more lifelike and expressive characters in movies,555

video games, and animations.556

However, this technology also presents potential negative social impacts. Privacy concerns arise from557

the unauthorized creation of realistic animations of individuals, and the technology could facilitate558

the spread of misinformation through deepfakes. Risks include job displacement in fields like acting559

and modeling, psychological effects from the blurring of reality and virtual experiences, and the560

exploitation of the technology for unethical purposes. Furthermore, cultural insensitivity, security561

threats, and the misuse of realistic animal animations could have broader societal implications.562

Addressing these issues requires robust ethical guidelines, legal frameworks, and technological563

safeguards to ensure responsible use and mitigate harm.564
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NeurIPS Paper Checklist565

The checklist is designed to encourage best practices for responsible machine learning research,566

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove567

the checklist: The papers not including the checklist will be desk rejected. The checklist should568

follow the references and precede the (optional) supplemental material. The checklist does NOT569

count towards the page limit.570

Please read the checklist guidelines carefully for information on how to answer these questions. For571

each question in the checklist:572

• You should answer [Yes] , [No] , or [NA] .573

• [NA] means either that the question is Not Applicable for that particular paper or the574

relevant information is Not Available.575

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).576

The checklist answers are an integral part of your paper submission. They are visible to the577

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it578

(after eventual revisions) with the final version of your paper, and its final version will be published579

with the paper.580

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.581

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a582

proper justification is given (e.g., "error bars are not reported because it would be too computationally583

expensive" or "we were unable to find the license for the dataset we used"). In general, answering584

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we585

acknowledge that the true answer is often more nuanced, so please just use your best judgment and586

write a justification to elaborate. All supporting evidence can appear either in the main paper or the587

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification588

please point to the section(s) where related material for the question can be found.589

IMPORTANT, please:590

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",591

• Keep the checklist subsection headings, questions/answers and guidelines below.592

• Do not modify the questions and only use the provided macros for your answers.593

1. Claims594

Question: Do the main claims made in the abstract and introduction accurately reflect the595

paper’s contributions and scope?596

Answer: [Yes]597

Justification: In the Abstract section, we briefly illustrate our contributions at a high level.598

At the end of the Introduction section, we claim our contributions in detail.599

Guidelines:600

• The answer NA means that the abstract and introduction do not include the claims601

made in the paper.602

• The abstract and/or introduction should clearly state the claims made, including the603

contributions made in the paper and important assumptions and limitations. A No or604

NA answer to this question will not be perceived well by the reviewers.605

• The claims made should match theoretical and experimental results, and reflect how606

much the results can be expected to generalize to other settings.607

• It is fine to include aspirational goals as motivation as long as it is clear that these goals608

are not attained by the paper.609

2. Limitations610

Question: Does the paper discuss the limitations of the work performed by the authors?611

Answer: [Yes]612
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Justification: In the Contribution & Limitation section of the main paper, we discuss613

the limitations of our proposed approach. We take these constraints as promising directions614

for subsequent research endeavors.615

Guidelines:616

• The answer NA means that the paper has no limitation while the answer No means that617

the paper has limitations, but those are not discussed in the paper.618

• The authors are encouraged to create a separate "Limitations" section in their paper.619

• The paper should point out any strong assumptions and how robust the results are to620

violations of these assumptions (e.g., independence assumptions, noiseless settings,621

model well-specification, asymptotic approximations only holding locally). The authors622

should reflect on how these assumptions might be violated in practice and what the623

implications would be.624

• The authors should reflect on the scope of the claims made, e.g., if the approach was625

only tested on a few datasets or with a few runs. In general, empirical results often626

depend on implicit assumptions, which should be articulated.627

• The authors should reflect on the factors that influence the performance of the approach.628

For example, a facial recognition algorithm may perform poorly when image resolution629

is low or images are taken in low lighting. Or a speech-to-text system might not be630

used reliably to provide closed captions for online lectures because it fails to handle631

technical jargon.632

• The authors should discuss the computational efficiency of the proposed algorithms633

and how they scale with dataset size.634

• If applicable, the authors should discuss possible limitations of their approach to635

address problems of privacy and fairness.636

• While the authors might fear that complete honesty about limitations might be used by637

reviewers as grounds for rejection, a worse outcome might be that reviewers discover638

limitations that aren’t acknowledged in the paper. The authors should use their best639

judgment and recognize that individual actions in favor of transparency play an impor-640

tant role in developing norms that preserve the integrity of the community. Reviewers641

will be specifically instructed to not penalize honesty concerning limitations.642

3. Theory Assumptions and Proofs643

Question: For each theoretical result, does the paper provide the full set of assumptions and644

a complete (and correct) proof?645

Answer: [NA]646

Justification: We do not have any theory results in our paper.647

Guidelines:648

• The answer NA means that the paper does not include theoretical results.649

• All the theorems, formulas, and proofs in the paper should be numbered and cross-650

referenced.651

• All assumptions should be clearly stated or referenced in the statement of any theorems.652

• The proofs can either appear in the main paper or the supplemental material, but if653

they appear in the supplemental material, the authors are encouraged to provide a short654

proof sketch to provide intuition.655

• Inversely, any informal proof provided in the core of the paper should be complemented656

by formal proofs provided in appendix or supplemental material.657

• Theorems and Lemmas that the proof relies upon should be properly referenced.658

4. Experimental Result Reproducibility659

Question: Does the paper fully disclose all the information needed to reproduce the main ex-660

perimental results of the paper to the extent that it affects the main claims and/or conclusions661

of the paper (regardless of whether the code and data are provided or not)?662

Answer: [Yes]663

Justification: In the Experiments section in the main paper and the Implementation664

Details section in the appendix, we illustrate all the details required to reproduce the main665

experimental results of our paper.666
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Guidelines:667

• The answer NA means that the paper does not include experiments.668

• If the paper includes experiments, a No answer to this question will not be perceived669

well by the reviewers: Making the paper reproducible is important, regardless of670

whether the code and data are provided or not.671

• If the contribution is a dataset and/or model, the authors should describe the steps taken672

to make their results reproducible or verifiable.673

• Depending on the contribution, reproducibility can be accomplished in various ways.674

For example, if the contribution is a novel architecture, describing the architecture fully675

might suffice, or if the contribution is a specific model and empirical evaluation, it may676

be necessary to either make it possible for others to replicate the model with the same677

dataset, or provide access to the model. In general. releasing code and data is often678

one good way to accomplish this, but reproducibility can also be provided via detailed679

instructions for how to replicate the results, access to a hosted model (e.g., in the case680

of a large language model), releasing of a model checkpoint, or other means that are681

appropriate to the research performed.682

• While NeurIPS does not require releasing code, the conference does require all submis-683

sions to provide some reasonable avenue for reproducibility, which may depend on the684

nature of the contribution. For example685

(a) If the contribution is primarily a new algorithm, the paper should make it clear how686

to reproduce that algorithm.687

(b) If the contribution is primarily a new model architecture, the paper should describe688

the architecture clearly and fully.689

(c) If the contribution is a new model (e.g., a large language model), then there should690

either be a way to access this model for reproducing the results or a way to reproduce691

the model (e.g., with an open-source dataset or instructions for how to construct692

the dataset).693

(d) We recognize that reproducibility may be tricky in some cases, in which case694

authors are welcome to describe the particular way they provide for reproducibility.695

In the case of closed-source models, it may be that access to the model is limited in696

some way (e.g., to registered users), but it should be possible for other researchers697

to have some path to reproducing or verifying the results.698

5. Open access to data and code699

Question: Does the paper provide open access to the data and code, with sufficient instruc-700

tions to faithfully reproduce the main experimental results, as described in supplemental701

material?702

Answer: [No]703

Justification: We did not release the code of our method till now, because the codes are not704

well packaged. However, we plan to release our code in the future, e.g. upon acceptance, to705

let other researchers implement our methods into their research.706

Guidelines:707

• The answer NA means that paper does not include experiments requiring code.708

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/709

public/guides/CodeSubmissionPolicy) for more details.710

• While we encourage the release of code and data, we understand that this might not be711

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not712

including code, unless this is central to the contribution (e.g., for a new open-source713

benchmark).714

• The instructions should contain the exact command and environment needed to run to715

reproduce the results. See the NeurIPS code and data submission guidelines (https:716

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.717

• The authors should provide instructions on data access and preparation, including how718

to access the raw data, preprocessed data, intermediate data, and generated data, etc.719

• The authors should provide scripts to reproduce all experimental results for the new720

proposed method and baselines. If only a subset of experiments are reproducible, they721

should state which ones are omitted from the script and why.722
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• At submission time, to preserve anonymity, the authors should release anonymized723

versions (if applicable).724

• Providing as much information as possible in supplemental material (appended to the725

paper) is recommended, but including URLs to data and code is permitted.726

6. Experimental Setting/Details727

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-728

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the729

results?730

Answer: [Yes]731

Justification: In the Datasets section and the Implementation Details section of the732

appendix, we show all the experimental settings and details.733

Guidelines:734

• The answer NA means that the paper does not include experiments.735

• The experimental setting should be presented in the core of the paper to a level of detail736

that is necessary to appreciate the results and make sense of them.737

• The full details can be provided either with the code, in appendix, or as supplemental738

material.739

7. Experiment Statistical Significance740

Question: Does the paper report error bars suitably and correctly defined or other appropriate741

information about the statistical significance of the experiments?742

Answer: [Yes]743

Justification: In the Experiments section of the main paper and the Evaluation Metrics744

section of the appendix, we discuss the error bars and the meanings of each evaluation745

metric in great detail.746

Guidelines:747

• The answer NA means that the paper does not include experiments.748

• The authors should answer "Yes" if the results are accompanied by error bars, confi-749

dence intervals, or statistical significance tests, at least for the experiments that support750

the main claims of the paper.751

• The factors of variability that the error bars are capturing should be clearly stated (for752

example, train/test split, initialization, random drawing of some parameter, or overall753

run with given experimental conditions).754

• The method for calculating the error bars should be explained (closed form formula,755

call to a library function, bootstrap, etc.)756

• The assumptions made should be given (e.g., Normally distributed errors).757

• It should be clear whether the error bar is the standard deviation or the standard error758

of the mean.759

• It is OK to report 1-sigma error bars, but one should state it. The authors should760

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis761

of Normality of errors is not verified.762

• For asymmetric distributions, the authors should be careful not to show in tables or763

figures symmetric error bars that would yield results that are out of range (e.g. negative764

error rates).765

• If error bars are reported in tables or plots, The authors should explain in the text how766

they were calculated and reference the corresponding figures or tables in the text.767

8. Experiments Compute Resources768

Question: For each experiment, does the paper provide sufficient information on the com-769

puter resources (type of compute workers, memory, time of execution) needed to reproduce770

the experiments?771

Answer: [Yes]772

Justification: In the Implementation Details section of the appendix, we provide infor-773

mation on the computation resource we used in all experiments.774
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Guidelines:775

• The answer NA means that the paper does not include experiments.776

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,777

or cloud provider, including relevant memory and storage.778

• The paper should provide the amount of compute required for each of the individual779

experimental runs as well as estimate the total compute.780

• The paper should disclose whether the full research project required more compute781

than the experiments reported in the paper (e.g., preliminary or failed experiments that782

didn’t make it into the paper).783

9. Code Of Ethics784

Question: Does the research conducted in the paper conform, in every respect, with the785

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?786

Answer: [Yes]787

Justification: We read the NeurIPS Code of Ethics, and believe our research is conducted in788

the paper conform.789

Guidelines:790

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.791

• If the authors answer No, they should explain the special circumstances that require a792

deviation from the Code of Ethics.793

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-794

eration due to laws or regulations in their jurisdiction).795

10. Broader Impacts796

Question: Does the paper discuss both potential positive societal impacts and negative797

societal impacts of the work performed?798

Answer: [Yes]799

Justification: We discuss all the potential impacts in the Contribution & Limitation800

section at the end of the main paper.801

Guidelines:802

• The answer NA means that there is no societal impact of the work performed.803

• If the authors answer NA or No, they should explain why their work has no societal804

impact or why the paper does not address societal impact.805

• Examples of negative societal impacts include potential malicious or unintended uses806

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations807

(e.g., deployment of technologies that could make decisions that unfairly impact specific808

groups), privacy considerations, and security considerations.809

• The conference expects that many papers will be foundational research and not tied810

to particular applications, let alone deployments. However, if there is a direct path to811

any negative applications, the authors should point it out. For example, it is legitimate812

to point out that an improvement in the quality of generative models could be used to813

generate deepfakes for disinformation. On the other hand, it is not needed to point out814

that a generic algorithm for optimizing neural networks could enable people to train815

models that generate Deepfakes faster.816

• The authors should consider possible harms that could arise when the technology is817

being used as intended and functioning correctly, harms that could arise when the818

technology is being used as intended but gives incorrect results, and harms following819

from (intentional or unintentional) misuse of the technology.820

• If there are negative societal impacts, the authors could also discuss possible mitigation821

strategies (e.g., gated release of models, providing defenses in addition to attacks,822

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from823

feedback over time, improving the efficiency and accessibility of ML).824

11. Safeguards825
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Question: Does the paper describe safeguards that have been put in place for responsible826

release of data or models that have a high risk for misuse (e.g., pretrained language models,827

image generators, or scraped datasets)?828

Answer: [NA]829

Justification: Our paper presents no such risks.830

Guidelines:831

• The answer NA means that the paper poses no such risks.832

• Released models that have a high risk for misuse or dual-use should be released with833

necessary safeguards to allow for controlled use of the model, for example by requiring834

that users adhere to usage guidelines or restrictions to access the model or implementing835

safety filters.836

• Datasets that have been scraped from the Internet could pose safety risks. The authors837

should describe how they avoided releasing unsafe images.838

• We recognize that providing effective safeguards is challenging, and many papers do839

not require this, but we encourage authors to take this into account and make a best840

faith effort.841

12. Licenses for existing assets842

Question: Are the creators or original owners of assets (e.g., code, data, models), used in843

the paper, properly credited and are the license and terms of use explicitly mentioned and844

properly respected?845

Answer: [Yes]846

Justification: We cite the original owners of all assets while mentioning them in the paper.847

Guidelines:848

• The answer NA means that the paper does not use existing assets.849

• The authors should cite the original paper that produced the code package or dataset.850

• The authors should state which version of the asset is used and, if possible, include a851

URL.852

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.853

• For scraped data from a particular source (e.g., website), the copyright and terms of854

service of that source should be provided.855

• If assets are released, the license, copyright information, and terms of use in the856

package should be provided. For popular datasets, paperswithcode.com/datasets857

has curated licenses for some datasets. Their licensing guide can help determine the858

license of a dataset.859

• For existing datasets that are re-packaged, both the original license and the license of860

the derived asset (if it has changed) should be provided.861

• If this information is not available online, the authors are encouraged to reach out to862

the asset’s creators.863

13. New Assets864

Question: Are new assets introduced in the paper well documented and is the documentation865

provided alongside the assets?866

Answer: [Yes]867

Justification: We document all references in the Reference section.868

Guidelines:869

• The answer NA means that the paper does not release new assets.870

• Researchers should communicate the details of the dataset/code/model as part of their871

submissions via structured templates. This includes details about training, license,872

limitations, etc.873

• The paper should discuss whether and how consent was obtained from people whose874

asset is used.875

• At submission time, remember to anonymize your assets (if applicable). You can either876

create an anonymized URL or include an anonymized zip file.877
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14. Crowdsourcing and Research with Human Subjects878

Question: For crowdsourcing experiments and research with human subjects, does the paper879

include the full text of instructions given to participants and screenshots, if applicable, as880

well as details about compensation (if any)?881

Answer: [NA]882

Justification: Our paper does not involve crowdsourcing nor research with human subjects.883

Guidelines:884

• The answer NA means that the paper does not involve crowdsourcing nor research with885

human subjects.886

• Including this information in the supplemental material is fine, but if the main contribu-887

tion of the paper involves human subjects, then as much detail as possible should be888

included in the main paper.889

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,890

or other labor should be paid at least the minimum wage in the country of the data891

collector.892

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human893

Subjects894

Question: Does the paper describe potential risks incurred by study participants, whether895

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)896

approvals (or an equivalent approval/review based on the requirements of your country or897

institution) were obtained?898

Answer: [NA]899

Justification: Our paper does not involve crowdsourcing nor research with human subjects.900

Guidelines:901

• The answer NA means that the paper does not involve crowdsourcing nor research with902

human subjects.903

• Depending on the country in which research is conducted, IRB approval (or equivalent)904

may be required for any human subjects research. If you obtained IRB approval, you905

should clearly state this in the paper.906

• We recognize that the procedures for this may vary significantly between institutions907

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the908

guidelines for their institution.909

• For initial submissions, do not include any information that would break anonymity (if910

applicable), such as the institution conducting the review.911
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