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ABSTRACT

Quantile regression has a natural extension to generative modelling by leveraging
a stronger pointwise convergence than in distribution. While the pinball quantile
loss works well in the scalar case, it cannot be readily extended to the vector case.
In this work, we propose a multivariate quantile approach for generative modelling
using optimal transport with provable guarantees. Specifically, we suggest that by
optimizing smooth functions parameterized by neural networks with respect to the
dual of the correlation maximization problem, the function uniformly converges to
the optimal convex potential. Thus, we construct a Brenier map as our generative
quantile network. Furthermore, we introduce conditioning by approximating the
convex potential using a first-order approximation with respect to the covariates.
Through extensive experiments on synthetic and real datasets for conditional gen-
erative and probabilistic time-series forecasting tasks, we demonstrate the efficacy
and versatility of our theoretically motivated model as a distribution estimator and
probabilistic forecaster.

1 INTRODUCTION

A rudimentary result in probability theory states that passing a uniformly random sample from the
unit interval through the univariate quantile function results in a random sample from a desired
cumulative distribution function (CDF). Quantile functions have been widely explored in real ap-
plications, e.g. measuring financial risks (Riischendorf, 2013), building regression functions at var-
ious levels (Koenker & Gilbert, 1978), robust statistical estimators under model mis-specification
(Koenker, 2005). The pin-ball loss in quantile regression has also been used in training supervised
classifiers (Huang et al., 2014) and building unsupervised generative models (Ostrovski et al., 2018).

The quantile function estimator is a generative model when it learns the entire target distribution by
varying different quantile levels. There are a few major challenges for quantile regression: (1) While
traditional quantile regressors tend to be trained at fixed quantile levels, the entire quantile function
normally obtained through interpolation or smoothing suffers from the quantile crossing problem,
i.e. the monotonicity property of the quantile function is violated. (2) Although the pin-ball loss
works well for the univariate case, its extension to multivariate setting, i.e. a setting of paramount
practical importance and is our focus in this work, remains a challenge. While in principle one
can apply quantile regression to each dimension, as in Ostrovski et al. (2018), this naive approach
ignores the high-order correlations between components and can lead to incorrectly learned models.

Interestingly, Carlier et al. (2016) suggests that multivariate quantile functions can be characterized
as solutions to an optimal transport problem under mild assumptions, via the gradients of a convex
function (Brenier, 1991; McCann, 1995). Note that gradients of convex functions are monotone
operators, and hence coincide with the non-crossing property of quantile functions.

In this work, we seek to generalize univariate generative quantile modelling to the multivariate
setting by extending the vector quantile regression of Carlier et al. (2016; 2017) that constitute
building blocks of our work. Our primary focus is on multivariate time-series data forecasting, i.e.
treating prediction at a time point conditioned on history data as a probability distribution rather
than an exact value. A probabilistic approach to time-series forecasting is of great prominence
as risk and confidence levels are automatically captured leading to better-informed decisions by
decision-makers that analyze and act on these predictions. In addition to time-series forecasting,
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we also test our generality on image generation tasks, i.e. treating the learned multivariate quantile
function as a map from uniform distribution to the target distribution. Our contributions can be
summarized as follows: (1) We adopt the dual formulation of correlation maximization in Carlier
et al. (2016; 2017), and extend it to conditional generative modelling in both time-series forecasting
and image generation to demonstrate its effectiveness and versatility. (2) In contrast to the linear
parameterization in Carlier et al. (2016; 2017), we propose to significantly increase model capacity
by parameterizing the model as input convex neural networks, which can now be optimized using
large-scale optimization algorithms and allow for broader applicability across a wider range of tasks.
(3) While Carlier et al. (2016; 2017) condition on raw covariates, we propose to condition on features
of covariates encoded by LSTM layers, which is more scalable and can be jointly trained. We defer
some background material on quantile networks and optimal transport to Appendix A.

2 METHOD: BRENIER MAPS AS GENERATIVE QUANTILE NETWORKS

We propose a novel method for multivariate density estimation using a quantile approach that allows
for flexible task-dependent conditioning. To extend to conditioning, a first-order approximation of
the convex potential is made with respect to the covariate embeddings.

2.1 MULTIVARIATE QUANTILES AS BRENIER MAPS

Suppose v and p are two distributions. Let Q, (u) : [0,1] — R be defined as a univariate quantile
function of Y ~ v. By definition, quantile functions are monotonically increasing so @, (u) will be
maximally correlated with u. A quantile function is thus a solution to the correlation maximization
problem (Galichon & Henry, 2012):

1
/ u@y(u)du = max Ey(UY). (1)
0

 U~Unif([0,1])

Now, we are interested in generalizing this equality to the multivariate setting for U, Y € R¢ where
U ~ Unif([0, 1]%). For the remainder of this paper,  and v are d-dimensional distributions.

Let L' denote the LP space with range space R,

Definition 1 (Maximal Correlation Functionals, Galichon & Henry 2012). A functional p,, : L% —
R is called a maximal correlation functional with respect to distribution 1 if for all W € L2,

pu(W) = sup {Ey[UTW],U ~ p} . )

The distribution p should be absolutely continuous with respect to the Lebesgue measure, then there
exists a closed convex semi-continuous function g : R? — R such that Y = Vg(U) pu—almost
surely (Villani, 2008), which motivates us to establish a multivariate extension of (1) using the
gradient of convex g that is maximally monotonic. Furthermore, V¢ achieves an optimal coupling
between 4 and v (Huang et al., 2021) such that p,(X) = {E[U"Vg(U)],U ~ p}. By Brenier’s
theorem:

Theorem 1 (Brenier 1991). If Y is a squared-integrable random vector in RY, there is a unique map
of the form T' = V g for some convex function g such that Vgup = v.

We call Vg a Brenier mapping between p and v. Now, we are ready to define:

Definition 2 (Convex Potential Quantile (CPQ), Chernozhukov et al. 2017; Hallin et al. 2021). Let
g : RY = R be a closed convex function. Assume ju is absolutely continuous on R® with respect
to the Lebesgue measure. Then, the Convex Potential Quantile of Y ~ v is defined as Y = Vg(U)
where U ~ i := Unif([0, 1]%), i.e. Vggpu = v.

We defer the estimation of CPQ to Appendix B.

2.2 CONDITIONAL GENERATIVE QUANTILE NETWORK

Modelling time-series trajectories can be viewed as a conditional generaive task, since the outcome
often depends on the history and other covariates. Let X € R™ be a random vector to be conditioned
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Figure 1: Qualitative results on 2D density estimation (left) and estimated quantile levels of
the trajectory on univariate time-series (right). Left: The first column shows target distributions,
while the following three columns show the generation by three different methods. It can be ob-
served that our proposed method (CPQ) is able to capture the inter-dimensional correlation, whereas
the other two baselines cannot. Right: the distribution of the trajectory is inferred which can be
used to measure the uncertainty and risk of the trajectory prediction.

on, now we are interested in generating samples Y given X and learning the conditional convex
potential ¢ x (U). Fixing U, we take the first-order approximation about X,

ex(U)=¢U)+bU)"X. 3)

where p(U) : R? — R and b(U) : R — R™ are smooth functions. However, Carlier et al. (2016)
only set  and b as linear functions. To allow for greater expressivity in less trivial tasks such as time-
series forecasting, we propose ¢ and b could be parameterized as input convex neural networks or
smooth neural networks. We direct the reader to Appendix E.4 for more details on implementation.
While our assumption of X as a random vector can certainly hold for time-series forecasting by
constructing a Markov model such that X;; := Vx,(U), going beyond the Markov assumption,
we propose a model that capitalizes on the advances of deep sequence models,

px(U) = o(U) +b(U) " f(X). )
Under this formulation, f is any task-specific mapping to yield latent embedding vector f(X). In our
application, X; := [1;_p41,..., 2] € R™*" is a sequence of vectors where h is the length of our

history, and f is any deep auto-regressive sequence model. By learning a non-linear transformation
of X, high-order moments between components of X can be modelled, thereby leading to a more
expressive conditional generative quantile model.

With the parameterization in Eq. (4) and introducing mini-batches, problem (12) now becomes:

N

min o(U;) + max UY; — o(U;) = b(U;) T f(X3), (5)
J

subject to zero-mean decorrelation constraints in Eq. (13). The constraint can be enforced by
applying batch normalization to the f(X') vector without the translation term such that the empirical
batch mean of f(X) is zero-centered. We also find that enforcing this constraint is necessary for
numerical stability and theoretical guarantees. The problem now becomes unconstrained, so gradient
descent optimizers can be directly used. For theoretical analysis of our model specification and
estimation, we refer the reader to Appendix C.

3 EXPERIMENTS

In this section, we evaluate our proposed approach to conditional generative modelling on a variety
of experiments ranging from (conditional) distribution estimation of synthetic 2D data to proba-
bilistic time-series forecasting on UCI Appliances Energy and Google Stocks data. Full details on
implementation details can be found in Appendix E.4. For evaluation, we compute the max and
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Table 1: Performance evaluation on the multivariate time-series datasets Energy and Stocks. Re-
sults are averaged over 5 runs. Lower score is better. We use boldface for the lowest score.

Dataset Model MaxAE MeanAE QL50 QL90 RMSE sMAPE
DeepAR 1.033 0.049 — - 0.103 0.203
TimeGAN  0.970 0.129 — — 0.172 0.378

Energy TempFlow 1.236 0.052 — — 0.110 0.198
IQON 0.980 0.050 0.025 0.015 0.094 0.212
CPQ (Ours) 0.624 0.051 0.026  0.038  0.091 0.210
DeepAR 0.791 0.067 - - 0.092 0.408
TimeGAN 1.379 0.092 — — 0.181 0.256

Stocks TempFlow  0.670 0.040 — — 0.063 0.213
IQN 0.740 0.026 0.013 0.007 0.041 0.220
CPQ (Ours) 0.660 0.024 0.012 0.014 0.036 0.220

mean absolute errors (MaxAE and MeanAE), the 50" and 90" quantile loss (QL50 and QL90),
the root mean squared error (RMSE), and the symmetric mean absolute percentage error (SMAPE).
Descriptions of competitor algorithms are given in Appendix E.2.

3.1 SYNTHETIC 2D EXPERIMENT

To demonstrate the shortcoming of previous quantile methods in learning joint distributions, we test
our method against IQN and Spline Quantiles in modelling highly-correlated 2D distributions. The
experimental details are deferred to Appendix E.5. Indeed, this experiment provides evidence for
our suspicion that prior quantile methods cannot readily be extended to the multivariate case, i.e.
minimizing the sum of marginals of these respective losses is insufficient to modelling higher-order
dynamics between variates.

3.2 PROBABILISTIC TIME-SERIES FORECASTING

We consider both univariate and multivariate cases. The univariate experiment is given in Ap-
pendix F.1. We evaluate our method on multivariate probabilistic forecasting using the full UCI Ap-
pliances Energy dataset and Google Stocks data. The experimental details are given in Appendix E.6.
Comparisons are summarized in Table 1, where our CPQ yields comparable or superior performance
and indicates more robustness across datasets and metrics than baselines.

The advantage of a quantile approach to distribution estimation as the exact point-wise quantile level
can be extracted in a single forward-pass by exploiting a monotonic parameterization of the density
estimator which cannot be done so using traditional generative models. Another hidden advantage
of our quantile approach in the multivariate setting is that individual quantile levels can be computed
for each feature. For instance, one may be interested in the trajectory of two distinct features at the
0.1 and 0.9 quantile levels, respectively, as well as their joint relations, which can be advantageous
in many real-world applications (Carlier et al., 2017).

4 CONCLUSION

In this work, we have proposed a novel method for conditional generative quantile modelling ap-
plied to probabilistic time-series forecasting. While quantile functions offer a unique perspective to
generative modelling which may be advantageous in many applications like probabilistic forecast-
ing, extending quantile functions to the multivariate setting is not immediately obvious. Extending
existing work on vector quantile regression, we learn a Brenier mapping as our multivariate quan-
tile function where we learn the convex potential by constructing a first-order approximation of the
potential w.r.t. our covariate embeddings. Our method is then thoroughly tested on a wide variety of
density estimation and time-series forecasting benchmarks and demonstrates strong performance.
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A PRELIMINARY

In this section, we recall some background on generative quantile functions and optimal transport. In
the univariate case, given a cumulative distribution function (CDF) F'(z) = Pr(X < z) of random
variable X, the corresponding quantile function @ is defined as: Vu € (0, 1),

Q(u) = F~Y(u) := inf{x : F(x) > u}. (6)

While the CDF can be straightforwardly extended to the multivariate case, the quantile function, its
inverse, is less obvious as the loss of the total ordering on the real line made it impossible to “just
invert” F'. Instead, we can think of the quantile function ) as a mapping that transforms a uniformly
random variable U to a sample from the CDF F' of interest, be univariate or not. This generative
view of the quantile function turns out to be quite fruitful and allows us to learn distributions via
quantile regression, through for instance the pinball loss ¢,, at a fixed quantile level v € (0,1):

b(;Y) =ulY —q)4 + (u—1)(Y —q), (7)

where (¢)4 := max{¢,0} and (¢)_ := min{¢, 0}. Indeed, for fixed u, minimizing the expected loss
E[¢.(q;Y)] yields exactly ¢ = @Q(u) for the quantile function @) of Y (Koenker & Gilbert, 1978).

Generative Quantile Networks. Now, to estimate the entire quantile function ), we can simply
replace the fixed quantile level « with a univariate random variable U ~ Unif([0, 1]). We can now
minimize the expected loss E4yy(Q(U);Y) with respect to @ to learn the entire quantile function.
The univariate quantile loss has been applied successfully recently in probabilistic time-series fore-
casting. For instance, Gouttes et al. (2021) proposed stacking an implicit quantile network on top of
a recurrent neural network (RNN) to model the temporal dynamics of the covariates. By minimizing
the quantile loss, exact point-wise quantiles can be inferred when forecasting.

However, when we transition to the multivariate setting where U is uniform over the hypercube
[0,1]¢, we can no longer directly minimize the expected loss Ef;. A natural alternative is to min-
imize the LP norm of the vector quantity in Equation (7). For instance, the autoregressive implicit
quantile networks (AIQN) of Ostrovski et al. (2018) amounts to adopting the L' norm. Wen &
Torkkola (2019) proposed to train a Gaussian-copula model jointly on top of a generative multivari-
ate quantile model with the L'-norm quantile loss and account for higher-order correlations in a
two-step procedure. Normalizing flows are a popular class of generative models that allow explicit
evaluation of the likelihood and the inverse of Jacobian. In particular, Wang et al. (2019) parame-
terized their quantile function with an increasing triangular map and applied it to novelty detection.
However, an extension to conditional quantile estimation was not considered.

Optimal Transport. Consider two probability measures 4 and v on X C R% and ) C R™,
respectively, and ¢ : X x Y — [0, +00] a (closed) cost function. The Monge problem refers to
finding a transport map G : X — ) that minimizes the total transport cost:

Cluv)i=gipt { [ ela. G Gpu=r}. ®)
where G denotes the push-forward measure by G, ie., if X ~ pthen G(X) ~ Gup. An
ubiquitous transport cost is the squared Euclidean distance c(x, y) = ||z—y||3, yielding the (squared)
2-Wasserstein distance, i.e. W?(u,v). A common issue with optimal transport in practice is its
computation in high dimensions. Kolouri et al. (2019), among many others, propose to employ
random projections and to reduce to the univariate setting with provable convergence guarantees.
However, the number of projections sampled from the unit hypersphere necessarily scales with the
dimensions of the distribution. Alternatively, Kantorovich’s duality offers an objective that can be
conveniently approximated by restricting the structure of dual potentials. Formally, the Kantorovich
dual problem is given by

sup / edu(r) + / Ydu(y) ©)
(pp)eL(p)x L (v) JX Y
st. Ve e X,Vy e, p(x) +¢(y) < c(z,y), (10)

where ¢ € L(p), % € L*(v) can be chosen to be bounded and continuous (Villani, 2008). In fact,
the dual should admit a solution, 3| - |3 — ¢ and || - ||3 — ¢ are closed convex functions and are



Published as a workshop paper at ICLR 2022: Deep Generative Models for Highly Structured Data

Fenchel conjugates of each other, provided that c is the squared Euclidean distance. A byproduct of
this is that the gradient map Id — Oy is an optimal coupling between x4 and v (Villani, 2008).

Makkuva et al. (2020) proposed parameterizing 1| - |3 — ¢ as an Input Convex Neural Network
(ICNN) (Amos et al., 2017) and optimize the Kantorovich dual for generative modelling tasks.
Huang et al. (2021) utilized Brenier’s theorem to introduce Convex-Potential Flows (CP-Flows) in
which they restrict their flow model with strong convexity. Thus, the flow is the convex gradient that
is invertible numerically using a convex solver and they use Hutchinson’s trace estimator to estimate
the logarithmic Jacobian. Although similar to ours, both works are not conditional and neither are
the generative quantile networks since the underlying distribution is not learned through all quantiles
jointly.

B ESTIMATION OF CPQ

We now turn to the estimation of CPQ. It turns out that directly addressing the maximal correlation
functional is a bit challenging. Instead, we resort to its dual problem to learn the Brenier mapping
Vg. Revisiting the primal where we have also introduced a covariate X:

sup{E(U"Y) : U ~ u, E(X|U) = E(X) = 0}. (11)

Here the mean-independence constraint is added to decorrelate U with the covariate X. The dual is
derived as the following:

min / odu(U) + / DAv(Y) st o(U)+ (V) > UTY (12)
(ps:b)  Ji0,1)¢ R
E(X]U) = E(X) =0, (13)
where ¢ is smooth. We define 1) as the Legendre transformation of ¢,
Y) = UTY —p(U)}, 14
P(Y) Uéﬁé‘fﬁd{ e(U)} (14)

to reduce the problem down to optimizing only ¢ and b as we expect the optimum ¢ to satisfy
p* = 1. By complementary slackness, the inequality in Equation (12) becomes equality for optimal
U:

e(U)+y(Y)=U"Y. (15)

By differentiating Equation (15) w.r.t U, we arrive at Y = Vp(U). However, this alone is not
sufficient for characterizing the existence and convergence of smooth function ¢ to the optimal
convex potential gradient that couples p and v. In Appendix C, we provide theoretical justification
and necessary conditions for existence, convergence, and duality.

C THEORETICAL ANALYSIS

First, we make a remark on the convergence of gradient descent on objective (5).

Remark. Under the Lipschitz-smoothness assumption of ¢,b, and boundedness of spt(U) and
spt(X), the gradient of objective (5) is bounded. Assuming N is sufficiently large, and random
vectors U and Y have finite first moment, then objective (5) is bounded from below (see Proposition
1). Thus, gradient descent converges for objective (5) almost-surely Polyak (1963).

A necessary assumption is the objective must be bounded from below Polyak (1963). Under some
very mild assumptions, we can establish convergence almost surely.

Proposition 1. Assume N to be sufficiently large, random vectors U and 'Y have finite first moment
(IE[U]|, |[E[Y]| < 00), and E [f(X)] = 0. Then, objective (5) is bounded from below.

Indeed, with further smoothing of objective (5), accelerated gradient methods could be used instead
with strong convergence guarantees An et al. (2021). Despite linear parameterizations of ¢ and b by
Carlier et al. (2017), the authors established the following three theorems that generalize to smooth
©, b. These theorems establish the duality between the dual solution and the optimal solution to the
correlation maximization primal. First, we are curious if the coupling (U, Y) where Y := Vpx (U)
solves the correlation maximization problem in equation 11.
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Theorem 2 (Carlier et al. 2017). Assume U € R? is random vector with distribution 11, (X,Y) €
R™ x R% is random vector with joint distribution 7, where Y ~ v. Furthermore, assume E(X|U) =
E(X) = 0. If there exists smooth function ¢ : R® — R and smooth function b : R¢ — R™
such that ox (U) = @(U) + b(U)T X is convex almost everywhere on the support of X such that
Y =Vo(U) + VbU) ' X, then U solves the correlation maximization problem (Eq. (11)).

For the purpose of our work, 7 will be the joint distribution of v and the distribution of the latent
embedding space, Law(f(X)). As a consequence of Theorem 2, learning the corresponding Brenier
map from p to v is a surrogate objective for solving the correlation maximization problem. The
following theorem suggests the existence of a solution to the dual problem (Eq. (5)) under mild
assumptions on the joint distribution 7.

Theorem 3 (Carlier et al. 2017). Let m be an absolutely continuous probability measure over R™ x
R with density g. Assume the support of 7 is ) where Q is an open bounded convex subset of
R™ x RY, and g is bounded on Q) and bounded away from zero on compact subsets of ). Then, the
dual problem admits at least one solution.

So far, we have established the existence of a solution to the dual problem (under mild assumptions)
and that if ¢ x (U) is convex almost everywhere on spt(X') with respect to U, then the correspond-
ing Brenier map coupling solves the correlation maximization problem. The remaining theorem
establishes the convexity of the solution to the dual problem (5) with respect to U.

Theorem 4 (Carlier et al. (2017)). Let U € R¢ be a solution to (Eq. (11)) and let p : R* — R, b :
R? — R™ be solutions to the corresponding dual problem (Eq. (5)). Let @ (u) = o(u) + b(u) "z
V(u, ) € [0,1]¢ x support(Law(X)). Then, px (U) = @3 (U) and U € 0% (Y') almost surely.

By the Fenchel-Moreau theorem (Rockafellar, 1970) and Theorem 4, ¢x (U) is convex almost
surely. Hence, the transported mass u € R? conditioned on f(z) € R™ to y € R? is given by
y = Vi (u) = Vp(u) + Vb(u) ® f(z) where ® denotes the Hadamard product. A property of
univariate quantile functions is that they satisfy the non-crossing property. In short, if u; < u;, then
Q(u;) < Q(uy) for any quantile function (. In the multivariate case, the same must hold for each
component.

Proposition 2. If ox(U) : R — R is convex with respect to U € RY for each X, then each
component of the Vo x (U) is monotonically increasing.

Therefore, convex potential gradients serve as a natural parameterization of quantile networks as
additional constraints to enforce the non-crossing property of quantile functions are not needed.
Finally, we prove that any conditional quantile function @Q,.(u) can be reasonably approximated by
the first-order parameterization in Eq. (4).

Proposition 3. For any continuous conditional quantile function Q,(u) we can find large n and
functions f(z) : R™ — R", p(u) : RY — R and b(u) : RY — R™ such that the gradient of
o (u) := @(u) + b(u) " f(x) approximates Q. (u) uniformly over any compact region of (u, x).

In our experiments, we find that setting n = m suffices to obtain reasonable results. It would be
interesting to explore in future work when and how the approximation can be substantially tightened
for certain classes of conditional quantiles and network architectures for parameterizing b and f.

D PROOFS

Proposition 1. Assume N to be sufficiently large, random vectors U and Y have finite first moment
(|E[U]], |E[Y]| < 00), and E[f(X)] = 0. Then, objective (5) is bounded from below.

Proof.
N
¥ DU+ 3 max {U[Yi = o (Us) = b(Uy) /(X)) (16)
=1 i=1
N N
> N Y eU) + % Y UTY; = o(U) = b(U:) " f(X5) (17
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By the strong law of large numbers,

= EUTY]-EpU) T f(X)]. (20)

As U are Y are sampled independently (and so are U and X), and E[f(X)] = 0 by assumption,
=E[U]"E[Y] > —c0 Q1)

as desired. Another perspective which we can view this is we can define sequence (s, ) where
Sn i= = >, U]'Y;. Since by SLLN, s,, — s := E[U"Y], then (s,) is Cauchy = for each

i > —Sm|| < € = |sp| < 00, ¥n > N. The
same can be done for 2 3" | b(U;) " f(X;). Thus, combining this result with the boundedness of
the gradient, we guarantee convergence of gradient descent Polyak (1963) for IV large enough. [

Proposition 2. If px(U) : R? — R is convex with respect to U € RY for each X, then each
component of the Vo x (U) is monotonically increasing.

Proof. Let H,_ denote the Hessian of ¢,. By convexity of ¢,, H,_ = 0 so the diagonal entries of
H,_ are non-negative. Otherwise if the it" diagonal entry is negative, let e; be the standard basis
at the i*" coordinate, then e, H, v.€i < 0, arriving at a contradiction. Consider the k" component

of Voo, (Vi) = 552, since H,, = 0 then %g; diag(Hy,)r, > 0. Thus, (Vi) is

monotonically increasing with respect to the k" coordinate. As k is arbitrary, the proposition holds
forall k € [n]. O

Proposition 3. For any continuous conditional quantile function Q. (u) we can find large n and
functions f(z) : R™ — R, p(u) : RY — R and b(u) : R* — R™ such that the gradient of
o (u) := @(u) + b(u) T f(x) approximates Q. (u) uniformly over any compact region of (u, x).

Proof. Fixing x, the function u — @ (u) is the gradient of some convex function g, (u) =: g(x, u).
Thus, using results in Chen et al. (2019), we may approximate ¢, (u) with a Relu network g(z, u).
Using the standard compactness argument, we may approximate ¢(x, u) over any compact convex
region K by Y | gi(x;,u). Now we use the results of Chen et al. (2019) to approximate each
qi(z;, u) with a convex Relu network g;(u). Define f(z) = 1 and b(u) = [g1(u),. .., gn(u)] we
then have b(u) " f(z) = 3, g:(u) which approximates g(x, u) uniformly over the compact region
K. Finally, we note that uniform approximation of a convex function also leads to approximation of
its gradient (Rockafellar, 1970).

We note that we can also modify the arguments of Chen et al. (2019) to provide a more direct and
possibly tighter proof. O

10
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E EXPERIMENTAL DETAILS

E.1 SAMPLING FROM GAUSSIAN vs. UNIFORM

Practically, we found sampling from the unit hypercube sometimes leads to instability in training
deep architectures. A similar phenomenon was observed by Wang et al. (2019). Empirically, the
model also produced lackluster samples in some applications. Instead, we pre-process the uniform
samples using a bijection @1 : [0,1] — R? where ®~1 := (&1 ... &), notably the inverse
CDF of a standard normal applied component-wise. Now, the support of the model is unbounded,
which is easier to handle computationally as it leads to improved stability in training. Since ®~!
is monotonically increasing, the solution to the maximal correlation problem is equivalent up to the
bijection @1 due to the rearrangement inequality.

Remark. Alternatively, sampling directly from a standard Gaussian is equivalent as ®~ pushes
Unif ([0, 1]) forward onto Gaussian(0,1). During inference, ® can be applied to the Gaussian
samples to deduce the corresponding quantile level of each estimate. The support is no longer
bounded, however, we perform clipping by sampling from Unif ([e, 1 — €]) for small € > 0 such that
after pushing onto the standard Gaussian, the support is compact in practice. Thus, the theoretical
results that follow which assume compactness of spt(U) hold in practice.

E.2 COMPETITOR ALGORITHMS
We compare our method against the following deep quantile networks on synthetic data:

* Spline Quantile Functions (Gasthaus et al., 2019). Monotonic splines are used to fit the
quantile function and are optimized by minimizing the continuous ranked probability score.

o Implicit Quantile Networks (Gouttes et al., 2021). A neural network is stacked on top
of a backbone encoder (i.e. RNN, LSTM) and is optimized by minimizing the (Huber)
quantile loss.

Then, we compare our method against the following additional models on multivariate forecasting
tasks on real data:

* DeepAR (Salinas et al., 2019). Baseline auto-regressive model for probabilistic forecast-
ing. The model is trained through maximizing the log-likelihood.

* TimeGAN (Yoon et al., 2019). Composed of an auto-encoder trained in parallel with a
generator and discriminator. Trained using a reconstruction loss that learns latent embed-
dings of a sequence, a supervised loss that learns the conditional distribution of the current
iterate given past iterates, and an unsupervised loss that learns the joint distribution between
the static features and the sequence.

* TempFlow (Rasul et al., 2021). A flow-based model (i.e. RealNVP) is trained jointly
with an auto-regressive encoder backbone (i.e. RNN, LSTM). The RealNVP conditioned
on the latent embeddings of the sequential covariates predicts the following time-point by
maximizing the log-likelihood.

E.3 PSEUDO-CODE OF DUAL OBJECTIVE

We present the pseudo-code for the correlation maximization dual objective below. Each tensor is
assumed to be two-dimensional; the first dimension is the batch axis and the second dimension is
the feature axis. Flatten all dimensions except the batch dimension to allow for vector dot product
otherwise.

E.4 MODEL ARCHITECTURE

In our experiments, we test both smooth and input convex neural networks. Empirically, we find that
using smooth neural networks, a feasible transport map is learned, however it may not be maximally
monotone upon convergence of gradient descent. We can guarantee the mapping is a monotone
operator by using input convex neural networks, although expressivity is limited compared to its
smooth counterpart.

11
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Algorithm 1: PyTorch-style code for computing the correlation maximization dual objective.

Input: U,Y,Y, X
p.b=Y
Y = Y.permute(l, 0)
X = X.permute(l, 0)
BX =torch.mm(b, X)
loss =torch.mean(y)
UY =torch.mm(U, Y)
Yv=UY —¢p—BX
sup, - = torch.max(y, dim=0)
loss +=torch.mean(sup)
return loss

Smooth Neural Networks. ¢ and b can be parameterized using smooth neural networks. The
activation of choice must be smooth, so we choose to use CELU activation,

CELU(z) = max(0, z) + min(0, a(exp (£) — 1)) (22)

z
[e3
for some o > 0.
Input Convex Neural Networks. We also experiment with input convex neural networks. Here, the

activation function is monotonically increasing, and the weights are constrained to be non-negative.
Indeed, expressivity may be limited under such constraint.

We implement f as an LSTM unless explicitly stated. We find that setting batch-size N = 128 leads
to stable convergence on all of our tasks. Full details on implementation details can be found in the
following.

Table 2: Summary of quantile network architecture used for each experiment. The number of units
in the hidden dimension of the LSTMs is 512.

Experiment Input Dims # Layers  # Units f
%) b ® b
2D density estimation 2 3 3 512 512 Identity
Energy 28 3 3 128 128 2 Layer LSTM
Stocks 6 3 3 128 128 2 Layer LSTM

E.5 SYNTHETIC 2D EXPERIMENT

The three densities we use are Eight Gaussians, Half Moons. and Spirals. The
Eight Gaussians dataset does not distinguish points based on label, thus we use this dataset to
evaluate the efficacy of our method first as an unconditional density estimator. For conditional den-
sity estimation, we turn to Half Moons and Spirals. Each point in the Half Moons dataset is
assigned to one of two classes, while each point in the Spirals dataset is assigned to one of three
classes. As such, ¢ : R? — R? for both datasets, but b maps to R? for Half Moons and R? for
Spirals with spt(b) = R? for both. Figure 1 shows the generated distributions qualitatively. Here,
we set f(X) = X. For consistency, we also replace the backbone temporal encoder in SQ-RNN
and IQN with the identity mapping. The covariates we pass in for the conditional examples are the
one-hot encodings of the corresponding classes. Moreover, for SQ-RNN and IQN, we minimize
the CRPS and Huber quantile loss summed across the marginals respectively. For the SQ-RNN
implementation, we fit a monotonic spline to each component.

E.6 MULTIVARIATE PROBABILISTIC FORECASTING
The UCI Appliances Energy dataset contains 28 temporal continuous-valued attributes. The Google

Stocks dataset contains 6 temporal features gathered from 2004 to 2019. For each dataset, we gen-
erate time-series samples of 23 contiguous time points with a prediction window of 1. We compare

12
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our method against other competitive probabilistic time-series prediction methods. We use a 2-layer
LSTM as the temporal feature extractor, f, that yields latent embeddings of the temporal covariates.
For consistency, DeepAR, TempFlow, IQN, and CPQ all utilize the same backbone LSTM with the
same hyper-parameters. The IQN model is trained by summing across the marginal Huber quantile
loss. TimeGAN and ReaNVP-+RNN cannot be probed to extract the 50*" and 90*" quantile levels
without empirical estimation which is computationally infeasible.

13



Published as a workshop paper at ICLR 2022: Deep Generative Models for Highly Structured Data

0.1 quantile level
0.25 quantile level

0.5 quantile level
— target

50% confidence interval

0.5 quantile level
95% confidence interval

0.75 quantile level
0.9 quantile level
\ —— target

\ ‘
|
b h | I
141 |
1A W VNS [on
‘ AR N

Figure 2: Estimated test set trajectory of the univariate time-series with prediction window of
100 steps. Left: The trajectory at varying quantile levels are plotted. Right: The corresponding
interquartile range and [0.025, 0.975] quantile range computed.

F ADDITIONAL EXPERIMENTS AND RESULTS

F.1 UNIVARIATE TIME-SERIES FORECASTING METRICS

Leveraging a quantile approach to training forecasting models can be quite appealing. Often, pre-
dicting a point-wise trajectory is insufficient in modelling risk in fields such as stock analysis for
example (Wen & Torkkola, 2019). A naive solution would be to sample the model multiple times
to draw an empirical distribution estimation over the trajectory, however, this is computationally
expensive and simply does not work for deterministic models. Using a quantile approach, the model
only needs to be trained once and any quantile level can be efficiently inferred through one forward
pass.

Here, we evaluate if our proposed methodology can be applied to time-series forecasting. Moreover,
we demonstrate the main advantage of our quantile approach on forecasting time-series trajectories
in a probabilistic flavor. We consider the baseline task of time-series prediction of a univariate
response by training and generating trajectories of a single continuous-valued feature from the UCI
Appliances Energy dataset. In particular, we train our model on samples of 30 contiguous time
points to predict the following time point.

Figure 2 presents the trajectory prediction over a 100 time-step interval from the test set. One
noticeable difference in our quantile approach to classic forecasting models is that we can precisely
and efficiently generate the trajectories associated with a certain quantile risk level (figure 2, top).
Naturally, quantile ranges can also be deduced (figure 2, bottom) without the need for empirical
estimation.

Quantitatively, we compare our model along with SQ-RNN and IQN (all evaluated at the 0.5 quantile
level) against a baseline LSTM trained by minimizing the mean squared error (MSE). According
to Table 3, certainly the baseline LSTM performs the best when evaluated using MSE as it was
trained by optimizing the MSE. However, comparable performance is observed for our method even
when evaluated with MSE. Thus, training using our quantile approach results in a minimal drop
in regression performance, while gaining the added advantage of modelling the entire distribution
rather than just a point-wise estimate. We note that all the backbone LSTMs in the quantile networks
and the baseline LSTM we compare against are consistent.

F.2 INPUT CONVEX VS. SMOOTH NEURAL NETWORKS
Previous works (Makkuva et al., 2020; Huang et al., 2021) that construct a Brenier map between two

distributions parameterize their function as an ICNN. Doing so guarantees that the trained model
is convex with respect to the input data. Contrary to these works, our work demonstrates an [CNN
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Table 3: Test set mean squared error for univariate forecasting. * indicates prediction was
computed at the 0.5 quantile level. As expected, LSTM has the lowest MSE as the MSE was directly
minimized during training. However, CPQ yields comparable results on MSE and has stronger
performance than the other quantile networks.

LSTM SQ-RNN* IQN* CPQ*
0.0036 0.0136 0.0084 0.0083

Table 4: Performance evaluation on the multivariate time-series datasets Energy and Stocks. Re-
sults are averaged over 5 runs. Lower score is better. We use boldface for the lowest score.

Dataset Model MaxAE MeanAE QLS50 QL90 RMSE sMAPE

Eres ICNN  0.863 0.063 0.030 0.018 0.100  0.246
9Y" Smooth 0.624 0.051 0.026 0.038 0.091  0.210
stocks ICNN - 0.739 0.024 0.014 0.009 0.040  0.205
©C%S  Smooth  0.660 0.024 0.012 0.014 0.036  0.220

parameterization is not necessary and that the trained model is still convex with respect to the input as
expected from optimal transport theory. Here, we study the effect of restricting the model to be input
convex a priori against relaxing this assumption by using smooth neural networks to approximate
convex functions. Table 4 displays the results of the two time-series datasets Energy and Stocks
averaged over 5 runs 10 epochs each.

We notice slight improvements of a smooth parameterization compared to the convex parameteriza-
tion. We suspect this is due to the greater flexibility of smooth neural networks as the weights are
not constrained to be non-negative, thus enabling better fitting the optimal convex potential.

F.3 ABLATIONS
F.3.1 EFFECT OF WIDTH AND DEPTH

Optimal transport approaches can suffer in high dimensional settings. Here, we study the effect of
high dimensions on our dual objective and suggest a way we empirically found to mitigate the curse
of dimensionality. We set the target distribution as a 2048 —dimensional isotropic standard Gaussian.
The baseline network is 3-layer ¢ : R?%4® — R with a 2048-dimensional hidden layer.

We use the Kolmogorov-Smirnov test to compare the closeness of the generated distribution against
the target distribution. The statistic is given by,

D,, = sup |F,(x) — F(z)| (23)

where F' is the cumulative distribution function of the distribution of X (where X; assumed iid). In
essence, this statistic measures the largest variation of the empirical against the target distribution.

In particular, we find that scaling up the depth of the network leads to no improvements in learning
the high dimensional target distribution, but scaling up the width leads to improvements. Figure 3
shows the effect of scaling width and scaling depth independently on fitting the high dimensional
Gaussian. A theoretical justification is left for future work.

F.4 ADDITIONAL APPLICATION: IMAGE GENERATION
An interesting area of application for conditional generative quantile models is in the domain of

image generation. More specifically, learning the exact quantile levels of certain features could be
beneficial in not only image generation, but also image editing and novelty detection. We conduct
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Figure 3: Kolmogorov-Smirnov Test Ablation on High Dimensional Data. The target distribution
is a 2048-dimensional isotropic standard Gaussian. (a.) The KS statistic with respect to number of
hidden units per layer. (b.) The KS statistic with respect to the number of layers. Both ¢ and b are
scaled evenly. Lower KS statistic value is better.

some preliminary experiments to demonstrate that our approach can be applied in the image domain.
Further applications of replacing our latent embedding encoder f with CNNs are not considered and
left for future work.

First, we test our conditional quantile network to generate handwritten digits conditionally. We con-
sider two scenarios; (1) use a variational auto-encoder (Kingma & Welling, 2014) for dimensionality
reduction and generate on a latent space (Figure 4.b), and (2) directly generate on the image space
(Figure 4.a). The first scenario maps U € R” to Y € R” where D is the dimension of the latent
space while the second scenario involves mapping U € R™* to Y € [0,1]74. The second case is
a greater challenge than the first as often we set D << 784 and the encoder and decoder can be
trained to implicitly filter out noise. However, we show that by directly generating on the image
space, high-quality images of the corresponding digit conditioned can be obtained, albeit slightly
noisier than the auto-encoder counterpart. Nevertheless, we show that our proposed method can
generate high-quality samples in strongly correlated high-dimensional spaces. Moreover, using a
dimensionality reduction algorithm such as VAE can improve the visual quality of the generated
images by implicitly learning to filter out noise.

Unlike MNIST, CelebA samples have multiple attribute labels rather than a single class label. We
consider the model’s ability to learn multi-attribute combinations and furthermore generate novel
combinations of attributes. The CelebA dataset contains 202,599 RGB images of celebrity portraits
aligned and cropped to 64 x 64px2. Each image corresponds with a 40—dimensional multi-hot
vector that summarizes features of the celebrity portrait such as gender, hair color, and whether the
entity is wearing eyeglasses to name a few. A VAE was employed for dimensionality reduction thus
our conditional quantile network maps to the latent space. Figure 4.c shows the results of novel
attribute combination generation qualitatively.
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Figure 4: Qualitative results of generated images. For the MNIST samples, we conditionally
generate the handwritten digits by conditioning on a digit for each row. (a.) Directly learning a
mapping onto the image space of MNIST. (b.) Using a VAE, the quantile network maps to the latent
space. (c.) Novel combination of attribute generation on CelebA.
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Figure 5: Left. Unconditioned. Right. Conditioned on Blond, Young, Smiling, Female,
Mouth_Slightly_Open.
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