
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERATIVE REPRESENTATIONAL INSTRUCTION
TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

All text-based language problems can be reduced to either generation or embedding.
Current models only perform well at one or the other. We introduce generative
representational instruction tuning (GRIT) whereby a large language model is
trained to handle both generative and embedding tasks by distinguishing between
them through instructions. Compared to other open models, our resulting GRITLM
7B is among the top models on the Massive Text Embedding Benchmark (MTEB)
and outperforms various models up to its size on a range of generative tasks. By
scaling up further, GRITLM 8X7B achieves even stronger generative performance
while still being among the best embedding models. Notably, we find that GRIT
matches training on only generative or embedding data, thus we can unify both
at no performance loss. Among other benefits, the unification via GRIT speeds
up Retrieval-Augmented Generation (RAG) by >60% for long documents, by no
longer requiring separate retrieval and generation models. Models, code, etc. will
be made freely available.

GritLM
7B GritLM

8x7B

Embedding
Models

Generative
Models

Figure 1: Performance of various models on text representation (embedding) and generation
tasks. GRITLM is the first model to perform strongly at both types of tasks simultaneously.

1 INTRODUCTION

Creating a single general model that performs well at a wide range of tasks has been a long-standing
goal of the field of artificial intelligence (Kaiser et al., 2017; Jaegle et al., 2021; Cho et al., 2021;
Reed et al., 2022; Singh et al., 2022). Recently, large language models (LLMs) have emerged as a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Generative
Representational

Instruction
Tuning

If an obscure legal term is given as the
query, fetch text from law books or legal
databases that can help explain the term.

celestial res nullius

Please write me a blog post about my
recent hike of Mt. Fuji at midnight.

GRIT

0.42, 1.52, -0.01…

0.01, -1.01, 0.45…

You start by…

Sure, here is the
blog post.

It was August the
10th when I

arrived at Lake
Kawaguchi from…

Given a scientific paper title, retrieve the
paper's abstract

Bitcoin: A Peer-to-Peer Electronic Cash System

You have two ropes, each takes exactly 1
hour to burn. How would you use them to

time exactly 15 minutes? The ropes are of
uneven densities, so half the rope does not

necessarily take half the time.

Representational
Instruction Tuning

Generative
Instruction Tuning

Figure 2: GRIT. The same model handles both text representation and generation tasks based on a
given instruction. For representation tasks, instructions ideally contain target domain , intent , and
unit (Asai et al., 2022). The representation is a numeric tensor, while the generative output is text.

promising direction for a single multi-task model (Radford et al., 2019; Brown et al., 2020). Prior
work has argued that all text-based language problems can be reduced to generation and thus handled
by a single LLM (Raffel et al., 2023; Du et al., 2021).

However, tasks that use embeddings, such as clustering or retrieval (Muennighoff et al., 2023c),
have largely been ignored from this perspective. Today, text embeddings power many real-world
applications ranging from search engines to user-facing chatbots (Huang et al., 2020; Su et al., 2017).
While integrating text embeddings into the generative paradigm is possible by generating a sequence
of numbers to form the embedding tensor, it becomes impractical due to the high dimensionality and
precision requirements of embeddings. Thus, it is more common and much easier to use the hidden
state of the model as the embedding representation, which is already a numeric tensor (Muennighoff,
2022; Wang & Kuo, 2020; Morris et al., 2023). However, for current generative models this leads to
poor performance. For example, while the T5 model (Raffel et al., 2023; Sanh et al., 2022) can handle
any generative task in a sequence-to-sequence fashion, it requires finetuning to make its hidden state
useful for text embedding (Ni et al., 2021a;b) during which it loses its generative capabilities.

We introduce GRIT (generative representational instruction tuning) which unifies embedding and
generative tasks, leading to a model that excels at both tasks as shown in Figure 1. Figure 2 depicts
how GRIT combines two previously disjoint training paradigms: (1) Generative instruction tuning,
whereby the model is trained to respond to instructions by generating an answer (Wei et al., 2022;
Sanh et al., 2022); and (2) Representational instruction tuning, whereby the model is trained to
represent a provided input according to an instruction (Su et al., 2023; Asai et al., 2022). Via the
instructions and separate loss functions the model learns to differentiate the two streams. We test our
approach on models with up to 47B parameters. This unification via GRIT leads to three advantages:
a) Performance: Our unified model matches the performance of embedding-only and generative-only
variants, even outperforming them on some tasks. At 7B parameters, GRITLM is among the best
models on the Massive Text Embedding Benchmark (Muennighoff et al., 2023c) and at the same
time outperforms some larger models on generative tasks, such as Llama 2 70B. By scaling further,
GRITLM 8X7B achieves even stronger generative performance, while only using 13B parameters at
inference due to its MoE architecture (Jiang et al., 2024). Further, as our models use sliding window
attention (Child et al., 2019; Beltagy et al., 2020) they can handle generative and embedding inputs
of arbitrary length.
b) Efficiency: Generative and embedding models are commonly used together to make up for each
other’s deficiencies (Guu et al., 2020; Lewis et al., 2021a). One such scenario is Retrieval-Augmented
Generation (RAG) (Lewis et al., 2021a), where an embedding model is used to retrieve context that is
provided to the generative model to answer a user query. This requires passing the user query and the
context into both the generative and the embedding model for a total of four forward passes. With

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

GRITLM, the embedding and generative model are equivalent, allowing us to cache computations
and halve the necessary number of forward passes. We find that this can lead to > 60% faster RAG at
inference with long documents.
c) Simplicity: Currently, API providers such as OpenAI provide separate generative and embedding
endpoints. This requires separate load balancing, additional storage, and more complex serving
software. A single model that handles both use cases significantly simplifies infrastructure needs.

Compared to generative instruction tuning, the main downside of GRIT is that it requires more
finetuning compute due to training with two objectives. However, finetuning is generally cheap
compared to pretraining, thus we think the benefits vastly outstrip this problem. Further, when
considering training a separate generative and embedding model from scratch (e.g. for RAG), GritLM
is generally cheaper when incorporating the pretraining compute, as there is only one pretraining and
finetuning for GritLM, not separate ones for both a generative and an embedding model. Thus we
recommend practitioners building instruction-following language models to adopt GRIT.

Alongside GRIT, we introduce novel performance improvements for embedding models including
the use of bidirectional attention with mean pooling for LLM embeddings and ensuring that in-batch
negatives stem from the same dataset rather than any dataset, as well as novelties for generative models
including mixing sample- and token-level loss aggregation. We ablate these in detail in Appendix A.
We also put forth new ways to reduce memory requirements during training of embedding models,
which we elaborate in Appendix K.

2 GRIT

<s><|user|>
{instruction}
<|assistant|>
{response}</s>

<|user|>…

Representation Generation

<s><|user|>
{instruction}
<|embed|>

{sample to represent}

Mean Pooling Language Modeling Head

Figure 3: GRITLM architecture and format. Left: GRITLM uses bidirectional attention over the
input for embedding tasks. Mean pooling is applied over the final hidden state to yield the final
representation. Right: GRITLM uses causal attention over the input for generative tasks. A language
modeling head on top of the hidden states predicts the next tokens. The format supports conversations
with multiple turns (indicated with “...”).

GRIT unifies representational instruction tuning (Su et al., 2023; Asai et al., 2022; Wang et al., 2024)
and generative instruction tuning (Wei et al., 2022; Sanh et al., 2022; Muennighoff et al., 2023d) into
a single model. We finetune a pretrained LLM (Brown et al., 2020) with embedding and generative
instruction data in a consistent format (Figure 3). For embedding data, we follow prior work and use
a contrastive objective with in-batch negatives (Chen et al., 2020; Gao et al., 2022):

LRep = − 1

M

M∑
i=1

log
exp(τ · σ(fθ(q(i)), fθ(d(i))))∑M
j=1 exp(τ · σ(fθ(q(i)), fθ(d(j))))

(1)

where f is GRITLM parametrized by the model θ, τ is a temperature hyperparameter and σ cor-
responds to pooling applied to each output followed by cosine similarity. q and d are query and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

document samples. As depicted in Figure 3, we use bidirectional attention followed by mean pooling,
which corresponds to averaging the hidden states across the sequence length. During pooling, we only
average the final hidden states of the input sample, ignoring the instruction and format tokens. How-
ever, the instruction and format tokens still influence the final representation through the self-attention
mechanism (Vaswani et al., 2023).

To compute the loss on generative data, we use the language modeling objective whereby the model
needs to predict the next token (Radford et al., 2018; 2019):

LGen = − 1

N

N∑
i=1

logP (fθ,η(x
(i))|fθ,η(x(<i))) (2)

where f is GRITLM with parameters θ and language modeling head η, which is only used for
generation. x are generative training samples. We only compute loss over predicted tokens i.e.
“{response}</s>” in Figure 3. A key consideration is how to aggregate the generative loss.
Aggregating at the sample level corresponds to giving each sample the same weight within a batch
regardless of its token count. Such aggregation is commonly used for instruction tuning, as it can
boost performance on discriminative tasks (Muennighoff et al., 2023d). However, Muennighoff et al.
(2023d) also show how this in turn can lead to a model biased toward short generations. Meanwhile,
aggregation at the token level corresponds to giving each token the same weight, thus samples with
many tokens become more important. This leads to a model producing longer generations, which
can be important for performance on generative tasks. Especially, human or machine-evaluated
generative tasks, such as AlpacaEval (Li et al., 2023b), are known to be biased toward preferring
longer generations (Wang et al., 2023). Note that when every sample has the same sequence length
such as during pretraining or when the batch size is 1, token and sample level generative loss are equal
to each other. One can mix the two to balance their trade-offs, for example doing token level loss
across a subset of the batch and then giving each subset the same weight. We explore the trade-offs
in our ablations in Appendix A. We sum the objectives with optional loss weights λRep and λGen:

LGRIT = λRepLRep + λGenLGen (3)

Notably, our formulation supports differing numbers of embedding samples (M) and generative
samples/tokens (N). This allows for significantly increasing the embedding batch size while keeping
the generative batch size fixed. A large embedding batch size is often key to well-performing text
embedding models (Xiao et al., 2023) at the cost of requiring more compute at each step.

3 EXPERIMENTS

In this section, we first outline our experimental setup in §3.1. In §3.2, we discuss and benchmark the
embedding and generative performance of our models. In Appendix A, we ablate the settings that led
to our final models, including training data, precision, pooling, sequence length, and loss weights.

3.1 SETUP

We finetune our final models from Mistral 7B (Jiang et al., 2023) and Mixtral 8x7B (Jiang et al., 2024)
using adaptations of E5 (Wang et al., 2024) and the Tülu 2 data (Ivison et al., 2023). For E5, we adapt
it by adding S2ORC (Lo et al., 2020) to increase its scientific data (“E5S”), while for Tülu 2 we filter
out their custom prompts that contain answers related to the origin of their model. For GRITLM 7B,
we use a batch size of 2048 for embedding data and 256 for generative data and we train the model
for a total of 1253 steps corresponding to one epoch on the generative data and 1.36 epochs on the
embedding data. For GRITLM 8X7B, the embedding batch size is 256 due to compute limitations.
We use several strategies to reduce the memory required during training including a novel technique
to split the embedding triplet into separate forward and backward passes detailed in Appendix K.
Other hyperparameters are detailed in the ablation experiments in Appendix A and Appendix L. For
embedding performance we evaluate using the 56 main datasets from MTEB (Muennighoff et al.,
2023c). For generative performance, we largely follow the evaluation setup of Ivison et al. (2023)
except that we use the HumanEvalSynthesize (Muennighoff et al., 2023a) variant of HumanEval, as
it is more adequate for instruction-following models. We explain each task in detail in Appendix H.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Embedding performance of GRITLM and others. We indicate parameter counts where
available (B=billions). See Appendix H for task, metric, and dataset details. Appendix J contains
per-dataset results of GRITLM models. LLMs not finetuned for embedding (Llama 2 70B, Mistral
7B (Instruct), GPT-J 6B, Gen.-only) are evaluated with weighted-mean pooling (Muennighoff, 2022).
♥Results from the MTEB leaderboard (https://hf.co/spaces/mteb/leaderboard)

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

Proprietary models♥

OpenAI v3 75.5 49.0 85.7 59.2 55.4 81.7 29.9 64.6

Other Open Models♥

Llama 2 70B 60.4 29.0 47.1 38.5 9.0 49.1 26.1 35.6
Mistral 7B 63.5 34.6 53.5 43.2 13.2 57.4 19.7 40.5
Mistral 7B Instruct 67.1 34.6 59.6 44.8 16.3 63.4 25.9 43.7
GPT-J 6B 66.2 39.0 60.6 48.9 19.8 60.9 26.3 45.2
SGPT BE 5.8B 68.1 40.3 82.0 56.6 50.3 78.1 31.5 58.9
Instructor XL 1.5B 73.1 44.7 86.6 57.3 49.3 83.1 32.3 61.8
BGE Large 0.34B 76.0 46.1 87.1 60.0 54.3 83.1 31.6 64.2
E5 Mistral 7B 78.5 50.3 88.3 60.2 56.9 84.6 31.4 66.6

GRITLM
Gen.-only 7B 65.4 32.7 54.2 43.0 13.7 60.2 21.1 41.2
Emb.-only 7B 78.8 51.1 87.1 60.7 57.5 83.8 30.2 66.8
GRITLM 7B 79.5 50.6 87.2 60.5 57.4 83.4 30.4 66.8
GRITLM 8X7B 78.5 50.1 85.0 59.8 55.1 83.3 29.8 65.7

Table 2: Generative performance of GRITLM and others. We indicate parameter counts where
available (B=billions). See Appendix H for dataset, setup, and metric details. ♥Results from Ivison
et al. (2023) except for numbers marked with ♦ which are from Touvron et al. (2023) and † which are
from us. For models that cannot be easily used as chat models, we set Alpaca to 0.

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

Proprietary models♥

GPT-4-0613 81.4 95.0 89.1 65.2 86.6† 91.2 84.8

Other Open Models♥

GPT-J 6B 27.7 2.5 30.2 9.4 9.8 0.0 13.3
SGPT BE 5.8B 24.4 1.0 0.0 22.8 0.0 0.0 8.0
Zephyr 7B β 58.6 28.0 44.9 23.7 28.5 85.8 44.9
Llama 2 70B 64.5 55.5 66.0 62.6 29.9♦ 0.0 46.4
Llama 2 Chat 13B 53.2 9.0 40.3 32.1 19.6† 91.4 40.9
Llama 2 Chat 70B 60.9 59.0 49.0 44.4 34.3† 94.5 57.0
Tülu 2 7B 50.4 34.0 48.5 46.4 24.5† 73.9 46.3
Tülu 2 13B 55.4 46.0 49.5 53.2 31.4 78.9 52.4
Tülu 2 70B 67.3 73.0 68.4 53.6 41.6 86.6 65.1
Mistral 7B 60.1 44.5 55.6 55.8 30.5 0.0 41.1
Mistral 7B Instruct 53.0 36.0 38.5 27.8 34.0 75.3 44.1
Mixtral 8x7B Instruct 68.4 65.0 55.9 24.3 53.5 94.8 60.3

GRITLM
Emb.-only 7B 23.5 1.0 0.0 21.0 0.0 0.0 7.6
Gen.-only 7B 57.5 52.0 55.4 56.6 34.5 75.4 55.2
GRITLM 7B 57.6 57.5 54.8 55.4 32.8 74.8 55.5
GRITLM 8X7B 66.7 61.5 70.2 58.2 53.4 84.0 65.7

5

https://hf.co/spaces/mteb/leaderboard

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 MAIN RESULTS

GRIT leads to a strong embedding and generative model We benchmark GRITLM 7B,
GRITLM 8X7B and generative- and embedding-only variants with other models in Table 1 and
Table 2. We find that GRITLM 7B outperforms various prior open models on the Massive Text
Embedding Benchmark (Muennighoff et al., 2023c) while still outperforming a range of generative
models up to its size of 7 billion parameters. For our comparisons we focus on models that are similar
to GritLM (e.g. E5 Mistral (Wang et al., 2024) uses the same base model, Instructor (Su et al., 2023)
uses a similar dataset, etc.), but we note that there have been various recent embedding and generative
models with stronger performance, such as Llama3 (Dubey et al., 2024), NV-Embed (Lee et al., 2024)
and others (Li et al., 2024; 2023c; Meng et al., 2024; Chen et al., 2024b; Kim et al., 2024). However,
GRIT models are the only ones that can handle both embedding and generation at strong performance
(Figure 1). For example, using Llama 70B (Touvron et al., 2023) for embedding leads to a score of
only 35.6 on MTEB as depicted in Table 1. GRITLM almost doubles that performance on MTEB,
while still outperforming Llama 70B on generative tasks by more than 20% (Table 2). For GRITLM
8X7B, the embedding performance slightly decreases from GRITLM 7B, which is likely because we
had to decrease its embedding batch size from 2048 for GRITLM 7B to only 256 for GRITLM 8X7B
due to compute limitations (§3.1). We also train embedding-only and generative-only variants of
GRITLM that only use representational or generative instruction tuning but are otherwise equivalent.
Benchmarking the embedding-only variant (or models like SGPT BE 5.8B (Muennighoff, 2022))
on generative tasks in Table 2 by simply re-adding the language modeling head that was dropped
during embedding finetuning leads to around random performance (25.0 is the random baseline on
MMLU). Similarly, benchmarking the embedding performance of the generative-only model only
leads to a score of 41.2 in Table 1. Thus, joint optimization via the GRIT approach is critical to
achieve strong performance for both embedding and generation. We note, however, that with 7 billion
parameters GRITLM 7B is significantly more costly to run than many other embedding models
in Table 1, such as BGE Large with only 335 million parameters (Xiao et al., 2023). In addition,
GRITLM 7B produces representations of 4096 dimensions, which require 4× more storage than the
1024-dimensional embeddings of BGE Large.

GRITLM matches embedding-only and generative-only variants We find that unifying the two
objectives via GRITLM matches both the generative-only and the embedding-only variants. This is
similar to observations made for visual models (Yu et al., 2022). However, while GRITLM is trained
for the same number of steps as the embedding- and generative-only models, it needs more compute
per training step as it does a forward and backward pass on both embedding and generative data.

4 RERANKING WITH GRIT
Table 3: Reranking (Rerank) using GRITLM as
both Bi- and Cross-Encoder.

MTEB DS (↓) No Rerank Rerank top 10

ArguAna 63.24 64.39
ClimateFEVER 30.91 31.85
CQADupstack 49.42 50.05
DBPedia 46.60 47.82
FiQA2018 59.95 60.39
FEVER 82.74 82.85
HotpotQA 79.40 80.46
NFCorpus 40.89 41.23
NQ 70.30 71.49
MSMARCO 41.96 42.47
QuoraRetrieval 89.47 88.67
SCIDOCS 24.41 24.54
SciFact 79.17 79.28
TRECCOVID 74.80 75.24
Touche2020 27.93 28.41
Average 57.4 57.9

For retrieval tasks, it is common to follow the
embedding-based retrieval stage by a reranking
stage (Nogueira & Cho, 2020). In the reranking
stage, for each query, the top-k chosen docu-
ments are reranked based on a usually more
expensive but more performant method. For
LLMs, prior work has shown that this can be
done by passing each of the k documents to-
gether with the query to the model and scoring
the pair with log probabilities (Muennighoff,
2022). Note that this scales quadratically with
the number of documents and queries and is thus
usually too expensive for the first stage (“Cross-
Encoder”). Meanwhile, using embeddings for
the first stage is much cheaper as it only requires
passing each query and each document once and
thus scales linearly (“Bi-Encoder”). More re-
cent work relies on instructions to use LLMs for
reranking (Sun et al., 2023; Ma et al., 2023b;
Pradeep et al., 2023a;b). While prior work uses
separate models for the embedding and rerank-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

ing stages, GRITLM can be used for both stages
due to its unified capabilities. In Table 3, we display the embedding performance of GRITLM 7B
when additionally allowing it to rerank the top 10 documents selected via its embedding capabilities
for each query. For reranking, we use the model’s generative capabilities following the permutation
generation approach from Sun et al. (2023) and reusing their prompt. We find that reranking via the
generative capabilities of GRITLM 7B allows it to improve on its own embedding performance on
almost every retrieval dataset. Increasing the top-k documents beyond ten is likely to further improve
results, however, at the cost of more compute (Muennighoff, 2022).

5 RAG WITH GRIT

Embedding Model

To slow down your speed
of aging, you can…

Technological and lifestyle factors
may influence an individual’s

longevity. Cellular reprogramming…

GritLMGenerative Model

How to prevent aging?

Index

How to prevent aging?

Traditional RAG

Index

Query Caching

How to prevent aging?

1st Cache:
Reuse query

representation
for retrieval

To slow down your speed
of aging, you can…

Technological and lifestyle factors
may influence an individual’s

longevity. Cellular reprogramming…

Query-Doc Caching

GritLM

Index

How to prevent aging?

1st Cache:
Reuse query

representation
for retrieval

To slow down your speed
of aging, you can…

2nd Cache: Reuse document
key-value states for generation

Figure 4: RAG with GRIT. Left: Traditional Retrieval-Augmented Generation (RAG) relies on
a separate embedding model and generative model. Right: GRITLM simplifies RAG as it handles
both embedding and generation. Query Caching removes the duplicate forward pass of the query
by reusing its representation. Query-Doc Caching also removes the forward pass on the document
during inference, as the cached index also stores the document key-value states.

Method By unifying embedding and generation, GRITLM simplifies Retrieval-Augmented Gener-
ation (RAG). Figure 4 displays how caching can reduce forward passes. Specifically, we introduce:
(a) Query Caching: In traditional RAG, the query needs to be passed both through the embedding
model and later through the generative model. In Query Caching, we cache the key-value states
from the embedding forward pass and reuse them for the generative pass, exploiting the property that
both are the same model: GRITLM. Thus, we save compute equivalent to one forward pass of the
query. Equivalently, we can also perform the generative forward pass over the query first and use its
representation to retrieve the document on the fly (depicted in Figure 4). To make the generations
with Query Caching completely equivalent to RAG, we place the query at the beginning of the prompt
such that it only attends to itself through causal attention.
(b) Doc Caching: Here we cache the documents, D. When the index is created, we also save the
key-value states of every document and add them to the index. Thus, the index consists of the
document embeddings and key-value states. Note that the computational cost of creating the index
remains the same as the key-value states have to be computed even if only embeddings are desired.
At inference, we still retrieve based on embedding similarity but the index returns the key-value states
instead of the text passage. These key-value states are then provided to the model to avoid having to

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

250 500 1000 2000 4000
Query length (tokens)

0.20

0.25

0.30

0.35

0.40
Se

co
nd

s p
er

 e
xa

m
pl

e GPU

250 500 1000 2000 4000
Document length (tokens)

GPU

No Retrieval
Traditional RAG

Query Caching
Doc Caching

Query-Doc Caching
Doc-Query Caching

Figure 5: Inference latency of RAG with GRITLM 7B. When benchmarking scaling query length
(left), document length is fixed at 1, whereas query length is fixed at 1 when scaling document length
(right). In addition to the query/doc lengths, the formatting and prompt take up around 40 tokens. We
visualize the standard deviation across 100 runs as the shaded area. For each approach, we generate
16 tokens. See Figure 6 for CPU latency.

recompute them. This effectively saves a forward pass for every in-context document at inference.
However, this method increases the necessary storage. While the text passages no longer need to be
stored, the key-value states now need to be stored and they usually require more storage depending
on the model. We note that Document Caching also works for models other than GRITLM. However,
for such models, one needs to pass all documents through the generation model ahead of time, thus
increasing the cost of creating the index. To maintain equivalence with RAG, the document should be
at the beginning of the prompt for Document Caching (opposite of Query Caching).
(b) Query-Doc Caching / Doc-Query Caching: We can also combine Query Caching and Doc
Caching to save even more inference costs. However, combining them inevitably leads to discrep-
ancies compared to RAG, as in traditional RAG either the query or the document is conditioned on
the other one. Meanwhile, if both are cached then they are not conditioned on one another via the
self-attention mechanism. We refer to Query-Doc Caching if the query is followed by the document
in the prompt and to Doc-Query Caching if the document comes first.

Setup We benchmark the caching variants on Natural Questions (Kwiatkowski et al., 2019) using
2,681,468 documents from BEIR NQ (Thakur et al., 2021) as our index. We score models by
checking if any correct answer is anywhere in the generation (“match”). Prior work often checks
if the generation exactly matches the answer (“exact match”) (Izacard et al., 2022). However, due
to the chat data our model answers in few sentences, thus exact match fails to credit many correct
answers. In the first 20 samples of the “No RAG” baseline, “exact match” leads to 4 false negatives
that “match” credits correctly without any false positives. We do not use instructions for embedding
here, only the format in Figure 3.

Performance As depicted in Table 4, RAG performs better than the “No RAG” baseline where
the model is not provided any context. This validates that despite its small size compared to prior
work (Lin et al., 2023), our index is still valuable. While Query and Doc Caching can theoretically
lead to the exact same performance as RAG, we experience differences for two reasons: 1) Attention:
Our model is trained to embed with bidirectional attention (§2) and thus we use bidirectional attention
when embedding query or document. Meanwhile, the generative model expects causal key-value
states. In the Query-Doc/Doc-Query setup, there is an additional mismatch in either the documents or
the queries not having attended to the other one, as both need to be embedded and cached separately.
2) Formatting: The query is formatted in the embedding format as depicted in Figure 3, which the
model has never seen during generative training. This could further lead to a performance drop. Due
to 1) and 2), Query Caching leads to a performance drop compared to traditional RAG. However,
the Query Caching performance of 25.46 is still better than not using RAG, thus it comes down to a
speed-performance trade-off. Formatting the RAG baseline using the embedding format (Figure 3)
reduces its score from 30.50 to 29.36 (not depicted), thus the additional four-point discrepancy
of Query Caching and the majority of the damage is because of the attention issue. Meanwhile,
Doc Caching slightly improves performance resulting in the best match score among all methods

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: RAG benchmarking on Natural Questions with GRITLM 7B. For RAG, the retrieved
context is simply placed in the context of the language model in contrast to our caching alternatives
(Figure 4). CPU and GPU latencies are measured on an “Intel(R) Xeon(R) Platinum 8481C CPU @
2.70GHz” and one “NVIDIA H100 80GB HBM3”, respectively. Sample A has a query of 1 token and
a document of 4000 tokens, and sample B is the inverse. For each approach, we generate 16 tokens.
Storage consists of the index and passages, except for Doc Caching variants where it is the index and
key-value states. The index is stored in float32, while key-value states are stored in bfloat16. See
Appendix F for experiments on TriviaQA and MMLU.

Match CPU Latency (s, ↓) GPU Latency (s, ↓) Storage (↓)
(0-shot, ↑) Sample A Sample B Sample A Sample B

No RAG 21.00 4.3 ± 0.36 13.69 ± 1.0 0.24 ± 0.04 0.38 ± 0.04 0GB
Query then document prompt

RAG 30.50 11.64 ± 0.74 14.88 ± 0.87 0.39 ± 0.02 0.40 ± 0.02 43GB
Query Caching 25.46 18.30 ± 0.76 6.87 ± 0.89 0.44 ± 0.03 0.27 ± 0.02 43GB
Query-Doc Caching 21.63 5.12 ± 0.23 6.62 ± 0.97 0.27 ± 0.03 0.29 ± 0.01 30TB

Document then query prompt

RAG 30.47 14.18 ± 1.01 15.33 ± 0.87 0.39 ± 0.01 0.4 ± 0.01 43GB
Doc Caching 33.38 5.25 ± 0.34 23.23 ± 1.05 0.27 ± 0.03 0.45 ± 0.02 30TB
Doc-Query Caching 18.39 5.23 ± 0.37 6.41 ± 0.96 0.26 ± 0.03 0.27 ± 0.02 30TB

considered. This is possibly because, unlike the query, the document does not need to be as thoroughly
understood, and skimming it may suffice. Thus, the slightly corrupted key-value states do not result in
a performance drop. Query-Doc and Doc-Query Caching only perform near the “No RAG” baseline in
our experiments, which may limit their usefulness in practice. This is likely caused by the additional
attention mismatch that they introduce. This issue as well as the formatting issue could likely be
solved by an additional RAG finetuning stage on top of GRITLM, which we leave to future work.

Latency Caching is much faster than RAG on both CPUs and GPUs, especially for long sequences
(Figure 5). In Table 4, we display that for 4000 tokens, Query Caching is 54% and 33% faster on
CPUs and GPUs, respectively (Sample B). For Doc Caching it is 63% and 31% (Sample A). If
going beyond 4000 tokens the speed-ups will be even larger. However, for the opposite samples in
Table 4 speed remains around the same. This is because while for Sample A, Doc Caching caches
4000 tokens, for Sample B it caches only 1 token, which does not provide any speed-up. Thus, Doc
Caching should be used when documents are expected to be very long, while Query Caching should
be used when queries are expected to be very long. In a production setting, a simple input length
check could switch from one caching mode to the other. As is the case in Table 4, caching can match
or even be faster than not using retrieval at all (“No RAG”). This could be due to the embedding
forward pass not using the language modeling head. For Query Caching, the language modeling head
is only used for the tokens that are generated, while for “RAG” and “No RAG” it is used for the entire
input. The matrix multiplication with the language modeling head is computationally expensive due
to its high dimensionality, which could cause the slower speed of the no retrieval baseline. Query-Doc
Caching and Doc-Query Caching cache both documents and queries and thus lead to major speed-ups
for both Sample A and Sample B in Table 4. Overall, speed-ups are larger on CPUs, as GPUs can
process the entire sequence in parallel, thus the advantage of caching parts of it is smaller. We also
note that our RAG baseline uses our 7B parameter model for both the embedding and generative
model but without caching. In practice, it is often common to have an embedding model that is
much smaller and cheaper than the generative model. Nonetheless, as caching with GRITLM-7B
approaches the No RAG latency in Table 4, we still expect it to be faster than setups with smaller
embedding models for long sequences. In addition, it would lead to significantly better performance
in that case due to the state-of-the-art retrieval performance of GRITLM.

Storage In most RAG setups the embeddings of all documents are precomputed and stored to be
later used at inference. This is referred to as the index. In traditional RAG, the documents themselves
still need to be stored, as the index is only used to find the document ID, which is then used to fetch
the document text and pass it to the generative model. For Doc Caching variants documents no
longer need to be stored, however, the key-value states need to be stored. The key-value states take

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

up a lot of storage, as they consist of two tensors of shape (batch size, number of heads, sequence
length, dimension per head) for each batch. For our 2,681,468 documents and the 7-billion parameter
GRITLM model, this leads to 30TB of key-value states. However, unlike the index, the key-value
states can be fully offloaded to disk and do not need to be kept in memory. Once the document ID
has been determined via the index, the corresponding key-value state can be simply loaded from disk.
For a single sample, this corresponds to loading 12.5MB of key-value states into memory.

6 RELATED WORK

The story of text embedding and text generation has been a story of unification.

Embedding Models used to focus on word representations (Pennington et al., 2014; Mikolov
et al., 2013) that struggled generalizing to entire sentences or passages (Conneau & Kiela, 2018).
InferSent (Conneau et al., 2018), SBERT (Reimers & Gurevych, 2019) and similar models (Ni
et al., 2021b;a) emerged that handle both the embedding of words and sentences at good quality by
considering context when present. However, for strong performance, they require separate models for
symmetric and asymmetric tasks (Muennighoff et al., 2023c; Neelakantan et al., 2022). Symmetric
embedding tasks are ones where the query and document are expected to come from the same
distribution, such as STS. Meanwhile, for asymmetric tasks, they come from different distributions
and as such could have very different sequence lengths like in retrieval. For example, the MTEB
benchmark (Muennighoff et al., 2023c) revealed that SentT5 (Ni et al., 2021b) only performs well at
symmetric tasks, while GTR (Ni et al., 2021a) only at asymmetric tasks despite both using T5 (Raffel
et al., 2023) as their base model. Recent embedding models have been able to unify symmetric and
asymmetric tasks into a single model by differentiating them in the prompt (Xiao et al., 2023; Wang
et al., 2022a). Further, including detailed instructions in the prompt has allowed unifying practically
any embedding task into a single model (Su et al., 2023).

Generative Models used to be tailored to a single task, such as translation (Sutskever et al., 2014) or
question answering (Yin et al., 2016). McCann et al. (2018) cast multiple generative tasks as question
answering to unify them within a single model, however, performance was still limited and it did not
generalize to arbitrary tasks. Large-scale self-supervised pretraining has enabled the use of a single
large language model (LLM) for practically any generative task (Brown et al., 2020; Chowdhery
et al., 2022; Rae et al., 2022; BigScience Workshop et al., 2023; Scao et al., 2022; Groeneveld et al.,
2024; Li et al., 2023a). However, using an LLM without careful prompting often leads to poor
performance (Rubin et al., 2022; Min et al., 2022b). Finetuning LLMs on instructions has emerged
as a method to significantly ease the usage of the models to apply them to any generative task with
strong results (Wei et al., 2022; Sanh et al., 2022; Min et al., 2022a; Wang et al., 2022c; Mishra et al.,
2022; Iyer et al., 2023; Üstün et al., 2024; Singh et al., 2024; Zhou et al., 2023).

The two streams of embedding and generative models have each been unified into a single model that
handles any task within its stream. Unifying the two streams into a single model that handles any
task both for embedding and generation is the natural next step toward a general multi-task model.

7 CONCLUSION

We present GRIT to unify text embedding and generation, and thus all text-based language prob-
lems, into one model: GRITLM. GRITLM 7B performs strongly on the Massive Text Embedding
Benchmark, while simultaneously possessing generative capabilities that exceed some larger models.
Notably, its performance matches otherwise equivalent embedding-only and generative-only variants
allowing us to unify them at no performance loss. We show that GRIT simplifies the field using the
examples of reranking and RAG. For reranking, we are able to improve retrieval performance by
around 10% by reusing GRITLM as reranker instead of having to rely on a separate model. For RAG,
we unify the retriever and reader into a single model, GRITLM, speeding up inference by >60%
for long texts at no performance loss via GRIT Doc Caching. We believe GRIT paves the way for
a paradigm shift in language modeling, where embedding and generation seamlessly coexist in a
single model. As such, we highlight the various limitations of this work and point the community to
potential future research in Appendix Q.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report, 2023.

Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and Angela Y
Wu. An optimal algorithm for approximate nearest neighbor searching fixed dimen-
sions, 1998. URL https://graphics.stanford.edu/courses/cs468-06-fall/
Papers/03%20AMNSW%20-%20JACM.pdf.

Akari Asai, Timo Schick, Patrick Lewis, Xilun Chen, Gautier Izacard, Sebastian Riedel, Hannaneh
Hajishirzi, and Wen tau Yih. Task-aware retrieval with instructions, 2022.

Akari Asai, Sewon Min, Zexuan Zhong, and Danqi Chen. Retrieval-based language models and
applications, 2023a. URL https://aclanthology.org/2023.acl-tutorials.6/.

Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. Self-rag: Learning to
retrieve, generate, and critique through self-reflection, 2023b.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica,
Saurabh Tiwary, and Tong Wang. Ms marco: A human generated machine reading comprehension
dataset, 2018.

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados,
and Siva Reddy. Llm2vec: Large language models are secretly powerful text encoders. arXiv
preprint arXiv:2404.05961, 2024.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer,
2020.

Loubna Ben Allal, Niklas Muennighoff, Logesh Kumar Umapathi, Ben Lipkin, and Leandro von
Werra. A framework for the evaluation of code generation models, 2022. URL https://
github.com/bigcode-project/bigcode-evaluation-harness.

Teven Le Scao BigScience Workshop, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić,
Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé,
Jonathan Tow, Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammana-
manchi, Thomas Wang, Benoı̂t Sagot, Niklas Muennighoff, et al. Bloom: A 176b-parameter
open-access multilingual language model, 2023.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al. Improving
language models by retrieving from trillions of tokens, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners, 2020.

Isabel Cachola, Kyle Lo, Arman Cohan, and Daniel S. Weld. Tldr: Extreme summarization of
scientific documents, 2020.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge
distillation, 2024a.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge
distillation, 2024b. URL https://arxiv.org/abs/2402.03216.

Lingjiao Chen, Matei Zaharia, and James Zou. How is chatgpt’s behavior changing over time?, 2023.

11

https://graphics.stanford.edu/courses/cs468-06-fall/Papers/03%20AMNSW%20-%20JACM.pdf
https://graphics.stanford.edu/courses/cs468-06-fall/Papers/03%20AMNSW%20-%20JACM.pdf
https://aclanthology.org/2023.acl-tutorials.6/
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://arxiv.org/abs/2402.03216

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, et al. Evaluating large language models trained on code, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations, 2020.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollar, and
C. Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server, 2015.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers, 2019.

Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. Unifying vision-and-language tasks via text
generation, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways, 2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, et al. Scaling instruction-finetuned language models, 2022.

Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev,
and Jennimaria Palomaki. Tydi qa: A benchmark for information-seeking question answering in
typologically diverse languages, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

Arman Cohan, Sergey Feldman, Iz Beltagy, Doug Downey, and Daniel S. Weld. Specter: Document-
level representation learning using citation-informed transformers, 2020.

Alexis Conneau and Douwe Kiela. Senteval: An evaluation toolkit for universal sentence representa-
tions, 2018.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes. Supervised
learning of universal sentence representations from natural language inference data, 2018.

William Coster and David Kauchak. Simple english wikipedia: A new text simplification task, 2011.
URL https://api.semanticscholar.org/CorpusID:9128245.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness, 2022.

DataCanary, hilfialkaff, Meg Risdal Lili Jiang, Nikhil Dandekar, and tomtung. Quora question pairs,
2017. URL https://kaggle.com/competitions/quora-question-pairs.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019.

Kaustubh D. Dhole, Varun Gangal, Sebastian Gehrmann, Aadesh Gupta, Zhenhao Li, Saad Ma-
hamood, Abinaya Mahendiran, Simon Mille, Ashish Shrivastava, Samson Tan, et al. Nl-augmenter:
A framework for task-sensitive natural language augmentation, 2022.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu, Maosong
Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality instructional
conversations, 2023.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library, 2024.

12

https://api.semanticscholar.org/CorpusID:9128245
https://kaggle.com/competitions/quora-question-pairs

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, Jiezhong Qiu, Zhilin Yang, and Jie Tang. All
nlp tasks are generation tasks: A general pretraining framework, 2021. URL https://arxiv.
org/abs/2103.10360v1.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah,
Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu
Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis,
Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov,
Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy,
Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohit Girdhar, Rohit
Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou,
Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia
Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan,
Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla,
Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao,
Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu,
Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaoqing Ellen Tan, Xinfeng Xie, Xuchao Jia,
Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen
Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alex
Vaughan, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Anam Yunus, Andrei
Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew
Ryan, Ankit Ramchandani, Annie Franco, Aparajita Saraf, Arkabandhu Chowdhury, Ashley
Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin
Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu,
Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt
Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Changhan Wang, Changkyu Kim, Chao
Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Damon
Civin, Dana Beaty, Daniel Kreymer, Daniel Li, Danny Wyatt, David Adkins, David Xu, Davide
Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix
Kreuk, Feng Tian, Firat Ozgenel, Francesco Caggioni, Francisco Guzmán, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern,
Govind Thattai, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hamid
Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen

13

https://arxiv.org/abs/2103.10360v1
https://arxiv.org/abs/2103.10360v1

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Suk, Henry Aspegren, Hunter Goldman, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Irina-
Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Japhet Asher, Jean-Baptiste
Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul,
Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie,
Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Karthik
Prasad, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly
Michelena, Keqian Li, Kun Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang, Lailin Chen,
Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu,
Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Maria
Tsimpoukelli, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev,
Maxim Naumov, Maya Lathi, Meghan Keneally, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikolay Pavlovich Laptev, Ning Dong, Ning Zhang, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Rohan
Maheswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara
Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma, Seiji Yamamoto, Sharadh
Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe,
Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan
Govindaprasad, Sumit Gupta, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Kohler, Thomas Robinson, Tianhe
Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi,
Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vı́tor Albiero, Vlad Ionescu,
Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang,
Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaofang Wang, Xiaojian Wu, Xiaolan Wang,
Xide Xia, Xilun Wu, Xinbo Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang,
Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, and Zhiwei Zhao. The llama 3 herd
of models, 2024. URL https://arxiv.org/abs/2407.21783.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Alpacafarm: A simulation framework for methods that
learn from human feedback, 2023.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Matthew Dunn, Levent Sagun, Mike Higgins, V. Ugur G”uney, Volkan Cirik, and Kyunghyun
Cho. Searchqa: A new q&a dataset augmented with context from a search engine, 2017. URL
http://arxiv.org/abs/1704.05179.

Paul-Ambroise Duquenne, Holger Schwenk, and Benoı̂t Sagot. Sonar: Sentence-level multimodal
and language-agnostic representations, 2023.

Hady ElSahar, Pavlos Vougiouklis, Arslen Remaci, Christophe Gravier, Jonathon S. Hare, Frédérique
Laforest, and Elena Paslaru Bontas Simperl. T-rex: A large scale alignment of natural language with
knowledge base triples, 2018. URL https://api.semanticscholar.org/CorpusID:
4612975.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization, 2024.

Alexander R. Fabbri, Wojciech Kryściński, Bryan McCann, Caiming Xiong, Richard Socher, and
Dragomir Radev. Summeval: Re-evaluating summarization evaluation, 2021.

14

https://arxiv.org/abs/2407.21783
http://arxiv.org/abs/1704.05179
https://api.semanticscholar.org/CorpusID:4612975
https://api.semanticscholar.org/CorpusID:4612975

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. Open question answering over curated
and extracted knowledge bases, 2014. URL https://api.semanticscholar.org/
CorpusID:207214527.

Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. Eli5:
Long form question answering, 2019.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, and Wei Wang. Language-agnostic
bert sentence embedding, 2022.

Katja Filippova and Yasemin Altun. Overcoming the lack of parallel data in sentence compression,
2013. URL https://api.semanticscholar.org/CorpusID:9751546.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Gold-
ing, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric Tang,
Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model
evaluation, September 2021a. URL https://doi.org/10.5281/zenodo.5371628.

Luyu Gao, Yunyi Zhang, Jiawei Han, and Jamie Callan. Scaling deep contrastive learning batch size
under memory limited setup, 2021b.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings, 2022.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Qianyu
Guo, Meng Wang, and Haofen Wang. Retrieval-augmented generation for large language models:
A survey, 2024.

David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. English gigaword, 2003. URL https:
//catalog.ldc.upenn.edu/LDC2011T07.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson,
Russell Authur, Khyathi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu,
Jack Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik,
Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk,
Saurabh Shah, Will Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep
Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Sol-
daini, Noah A. Smith, and Hannaneh Hajishirzi. Olmo: Accelerating the science of language
models, 2024.

Mansi Gupta, Nitish Kulkarni, Raghuveer Chanda, Anirudha Rayasam, and Zachary C Lipton.
Amazonqa: A review-based question answering task, 2019.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Realm: Retrieval-
augmented language model pre-training, 2020.

Michael Günther, Louis Milliken, Jonathan Geuter, Georgios Mastrapas, Bo Wang, and Han Xiao.
Jina embeddings: A novel set of high-performance sentence embedding models, 2023.

Michael Günther, Jackmin Ong, Isabelle Mohr, Alaeddine Abdessalem, Tanguy Abel, Moham-
mad Kalim Akram, Susana Guzman, Georgios Mastrapas, Saba Sturua, Bo Wang, Maximilian
Werk, Nan Wang, and Han Xiao. Jina embeddings 2: 8192-token general-purpose text embeddings
for long documents, 2024.

Felix Hamborg, Norman Meuschke, Corinna Breitinger, and Bela Gipp. news-please - a generic news
crawler and extractor, 2017. URL https://api.semanticscholar.org/CorpusID:
5830937.

Dan Hendrycks, Nicholas Carlini, John Schulman, and Jacob Steinhardt. Unsolved problems in ml
safety, 2022.

Christopher Hidey and Kathy McKeown. Identifying causal relations using parallel Wikipedia
articles, August 2016. URL https://aclanthology.org/P16-1135.

15

https://api.semanticscholar.org/CorpusID:207214527
https://api.semanticscholar.org/CorpusID:207214527
https://api.semanticscholar.org/CorpusID:9751546
https://doi.org/10.5281/zenodo.5371628
https://catalog.ldc.upenn.edu/LDC2011T07
https://catalog.ldc.upenn.edu/LDC2011T07
https://api.semanticscholar.org/CorpusID:5830937
https://api.semanticscholar.org/CorpusID:5830937
https://aclanthology.org/P16-1135

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Md. Zakir Hossain, Ferdous Sohel, Mohd Fairuz Shiratuddin, and Hamid Laga. A comprehensive
survey of deep learning for image captioning, 2018.

Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin, Janani Padman-
abhan, Giuseppe Ottaviano, and Linjun Yang. Embedding-based retrieval in facebook search, 2020.
URL https://arxiv.org/abs/2006.11632.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin, Nathan Lambert, Matthew Peters, Pradeep Dasigi,
Joel Jang, David Wadden, Noah A. Smith, Iz Beltagy, and Hannaneh Hajishirzi. Camels in a
changing climate: Enhancing lm adaptation with tulu 2, 2023.

Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru, Todor Mihaylov, Daniel Simig, Ping Yu, Kurt
Shuster, Tianlu Wang, Qing Liu, Punit Singh Koura, Xian Li, Brian O’Horo, Gabriel Pereyra,
Jeff Wang, Christopher Dewan, Asli Celikyilmaz, Luke Zettlemoyer, and Ves Stoyanov. Opt-iml:
Scaling language model instruction meta learning through the lens of generalization, 2023.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning with
retrieval augmented language models, 2022.

Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals, and Joao Carreira.
Perceiver: General perception with iterative attention, 2021.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W. Cohen, and Xinghua Lu. Pubmedqa: A
dataset for biomedical research question answering, 2019.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus, 2017.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension, 2017. URL https://arxiv.org/
abs/1705.03551.

Lukasz Kaiser, Aidan N. Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar, Llion Jones, and
Jakob Uszkoreit. One model to learn them all, 2017.

Uday Kamath, John Liu, and James Whitaker. Deep learning for nlp and speech recognition, 2019.
URL https://link.springer.com/book/10.1007/978-3-030-14596-5.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen tau Yih. Dense passage retrieval for open-domain question answering, 2020.

Phillip Keung, Yichao Lu, György Szarvas, and Noah A. Smith. The multilingual amazon reviews
corpus, 2020.

Daniel Khashabi, Amos Ng, Tushar Khot, Ashish Sabharwal, Hannaneh Hajishirzi, and Chris
Callison-Burch. Gooaq: Open question answering with diverse answer types, 2021.

Douwe Kiela, Hamed Firooz, Aravind Mohan, Vedanuj Goswami, Amanpreet Singh, Casey A
Fitzpatrick, Peter Bull, Greg Lipstein, Tony Nelli, Ron Zhu, et al. The hateful memes challenge:
Competition report, 2021. URL https://proceedings.mlr.press/v133/kiela21a.
html.

16

https://arxiv.org/abs/2006.11632
https://arxiv.org/abs/1705.03551
https://arxiv.org/abs/1705.03551
https://link.springer.com/book/10.1007/978-3-030-14596-5
https://proceedings.mlr.press/v133/kiela21a.html
https://proceedings.mlr.press/v133/kiela21a.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Junseong Kim, Seolhwa Lee, Jihoon Kwon, Sangmo Gu, Yejin Kim, Minkyung Cho, Jy yong
Sohn, and Chanyeol Choi. Linq-embed-mistral:elevating text retrieval with improved gpt data
through task-specific control and quality refinement. Linq AI Research Blog, 2024. URL https:
//getlinq.com/blog/linq-embed-mistral/.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Mahnaz Koupaee and William Yang Wang. Wikihow: A large scale text summarization dataset, 2018.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions:
a benchmark for question answering research, 2019. URL https://aclanthology.org/
Q19-1026/.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens,
Abdullah Barhoum, Nguyen Minh Duc, Oliver Stanley, Richárd Nagyfi, Shahul ES, Sameer Suri,
David Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen, and
Alexander Mattick. Openassistant conversations – democratizing large language model alignment,
2023.

Chankyu Lee, Rajarshi Roy, Mengyao Xu, Jonathan Raiman, Mohammad Shoeybi, Bryan Catanzaro,
and Wei Ping. Nv-embed: Improved techniques for training llms as generalist embedding models,
2024. URL https://arxiv.org/abs/2405.17428.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
reading comprehension, 2017.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.
Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021a.

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Minervini, Heinrich Küttler, Aleksandra Piktus,
Pontus Stenetorp, and Sebastian Riedel. Paq: 65 million probably-asked questions and what you
can do with them, 2021b.

Chaofan Li, MingHao Qin, Shitao Xiao, Jianlyu Chen, Kun Luo, Yingxia Shao, Defu Lian, and
Zheng Liu. Making text embedders few-shot learners, 2024. URL https://arxiv.org/
abs/2409.15700.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you!, 2023a.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models, 2023b. URL https://github.com/tatsu-lab/alpaca_eval.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards
general text embeddings with multi-stage contrastive learning, 2023c. URL https://arxiv.
org/abs/2308.03281.

Xi Victoria Lin, Xilun Chen, Mingda Chen, Weijia Shi, Maria Lomeli, Rich James, Pedro Rodriguez,
Jacob Kahn, Gergely Szilvasy, Mike Lewis, Luke Zettlemoyer, and Scott Yih. Ra-dit: Retrieval-
augmented dual instruction tuning, 2023.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kinney, and Dan S. Weld. S2orc: The semantic
scholar open research corpus, 2020.

Shayne Longpre, Robert Mahari, Anthony Chen, Naana Obeng-Marnu, Damien Sileo, William
Brannon, Niklas Muennighoff, Nathan Khazam, Jad Kabbara, Kartik Perisetla, Xinyi Wu, Enrico
Shippole, Kurt Bollacker, Tongshuang Wu, Luis Villa, Sandy Pentland, Deb Roy, and Sara Hooker.
The data provenance initiative: A large scale audit of dataset licensing & attribution in ai, 2023.

17

https://getlinq.com/blog/linq-embed-mistral/
https://getlinq.com/blog/linq-embed-mistral/
https://aclanthology.org/Q19-1026/
https://aclanthology.org/Q19-1026/
https://arxiv.org/abs/2405.17428
https://arxiv.org/abs/2409.15700
https://arxiv.org/abs/2409.15700
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2308.03281
https://arxiv.org/abs/2308.03281

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Hongyin Luo, Yung-Sung Chuang, Yuan Gong, Tianhua Zhang, Yoon Kim, Xixin Wu, Danny Fox,
Helen Meng, and James Glass. Sail: Search-augmented instruction learning, 2023.

Risto Luukkonen, Ville Komulainen, Jouni Luoma, Anni Eskelinen, Jenna Kanerva, Hanna-Mari
Kupari, Filip Ginter, Veronika Laippala, Niklas Muennighoff, Aleksandra Piktus, Thomas Wang,
Nouamane Tazi, Teven Le Scao, Thomas Wolf, Osma Suominen, Samuli Sairanen, Mikko Merioksa,
Jyrki Heinonen, Aija Vahtola, Samuel Antao, and Sampo Pyysalo. Fingpt: Large generative models
for a small language, 2023.

Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for multi-stage
text retrieval, 2023a.

Xueguang Ma, Xinyu Zhang, Ronak Pradeep, and Jimmy Lin. Zero-shot listwise document reranking
with a large language model, 2023b.

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language
decathlon: Multitask learning as question answering, 2018.

Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, and Semih Yavuz. Sfr-
embedding-mistral:enhance text retrieval with transfer learning. Salesforce AI Research Blog, 2024.
URL https://blog.salesforceairesearch.com/sfr-embedded-mistral/.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed representa-
tions of words and phrases and their compositionality, 2013.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn in
context, 2022a.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work?,
2022b.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
via natural language crowdsourcing instructions, 2022.

John X. Morris, Volodymyr Kuleshov, Vitaly Shmatikov, and Alexander M. Rush. Text embeddings
reveal (almost) as much as text, 2023.

Niklas Muennighoff. Vilio: State-of-the-art visio-linguistic models applied to hateful memes, 2020.

Niklas Muennighoff. Sgpt: Gpt sentence embeddings for semantic search, 2022.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack: Instruction tuning code
large language models, 2023a.

Niklas Muennighoff, Alexander M. Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Nouamane
Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language models,
2023b.

Niklas Muennighoff, Nouamane Tazi, Loı̈c Magne, and Nils Reimers. Mteb: Massive text embedding
benchmark, 2023c.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman, Teven Le
Scao, M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey Schoelkopf, Xiangru Tang, Dragomir
Radev, Alham Fikri Aji, Khalid Almubarak, Samuel Albanie, Zaid Alyafeai, Albert Webson,
Edward Raff, and Colin Raffel. Crosslingual generalization through multitask finetuning, 2023d.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for extreme summarization, 2018.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qiming
Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, Johannes Heidecke, Pranav Shyam, Boris
Power, Tyna Eloundou Nekoul, Girish Sastry, Gretchen Krueger, David Schnurr, Felipe Petroski
Such, Kenny Hsu, Madeleine Thompson, Tabarak Khan, Toki Sherbakov, Joanne Jang, Peter
Welinder, and Lilian Weng. Text and code embeddings by contrastive pre-training, 2022.

18

https://blog.salesforceairesearch.com/sfr-embedded-mistral/

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernández Ábrego, Ji Ma, Vincent Y. Zhao,
Yi Luan, Keith B. Hall, Ming-Wei Chang, and Yinfei Yang. Large dual encoders are generalizable
retrievers, 2021a.

Jianmo Ni, Gustavo Hernández Ábrego, Noah Constant, Ji Ma, Keith B. Hall, Daniel Cer, and Yinfei
Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models, 2021b.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert, 2020.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, et al. Gpt-4 technical report, 2023.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa : A large-scale
multi-subject multi-choice dataset for medical domain question answering, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning
library, 2019.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word
representation, 2014. URL https://aclanthology.org/D14-1162/.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani, Nicola De Cao, James
Thorne, Yacine Jernite, Vladimir Karpukhin, Jean Maillard, Vassilis Plachouras, Tim Rocktäschel,
and Sebastian Riedel. Kilt: a benchmark for knowledge intensive language tasks, 2021.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. Rankvicuna: Zero-shot listwise document
reranking with open-source large language models, 2023a.

Ronak Pradeep, Sahel Sharifymoghaddam, and Jimmy Lin. Rankzephyr: Effective and robust
zero-shot listwise reranking is a breeze!, 2023b.

Yifu Qiu, Hongyu Li, Yingqi Qu, Ying Chen, Qiaoqiao She, Jing Liu, Hua Wu, and Haifeng Wang.
Dureader retrieval: A large-scale chinese benchmark for passage retrieval from web search engine,
2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training, 2018. URL https://cdn.openai.com/
research-covers/language-unsupervised/language_understanding_
paper.pdf.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners, 2019. URL https:
//d4mucfpksywv.cloudfront.net/better-language-models/language_
models_are_unsupervised_multitask_learners.pdf.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023.

19

https://aclanthology.org/D14-1162/
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text, 2016.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Eccles, Jake
Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals,
Mahyar Bordbar, and Nando de Freitas. A generalist agent, 2022.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks,
2019.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning, 2022.

Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive
sentence summarization, 2015.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training
enables zero-shot task generalization, 2022.

Teven Le Scao, Thomas Wang, Daniel Hesslow, Lucile Saulnier, Stas Bekman, M Saiful Bari, Stella
Biderman, Hady Elsahar, Niklas Muennighoff, Jason Phang, Ofir Press, Colin Raffel, Victor Sanh,
Sheng Shen, Lintang Sutawika, Jaesung Tae, Zheng Xin Yong, Julien Launay, and Iz Beltagy.
What language model to train if you have one million gpu hours?, 2022.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zejiang Shen, Kyle Lo, Lauren Yu, Nathan Dahlberg, Margo Schlanger, and Doug Downey. Multi-
lexsum: Real-world summaries of civil rights lawsuits at multiple granularities, 2022.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen tau Yih. Replug: Retrieval-augmented black-box language models, 2023.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. Flava: A foundational language and vision alignment model, 2022.

Shivalika Singh, Freddie Vargus, Daniel Dsouza, Börje F. Karlsson, Abinaya Mahendiran, Wei-
Yin Ko, Herumb Shandilya, Jay Patel, Deividas Mataciunas, Laura OMahony, Mike Zhang,
Ramith Hettiarachchi, Joseph Wilson, Marina Machado, Luisa Souza Moura, Dominik Krzemiński,
Hakimeh Fadaei, Irem Ergün, Ifeoma Okoh, Aisha Alaagib, Oshan Mudannayake, Zaid Alyafeai,
Vu Minh Chien, Sebastian Ruder, Surya Guthikonda, Emad A. Alghamdi, Sebastian Gehrmann,
Niklas Muennighoff, Max Bartolo, Julia Kreutzer, Ahmet Üstün, Marzieh Fadaee, and Sara Hooker.
Aya dataset: An open-access collection for multilingual instruction tuning, 2024.

Jacob Mitchell Springer, Suhas Kotha, Daniel Fried, Graham Neubig, and Aditi Raghunathan.
Repetition improves language model embeddings. arXiv preprint arXiv:2402.15449, 2024.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models, 2023.

Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen tau Yih,
Noah A. Smith, Luke Zettlemoyer, and Tao Yu. One embedder, any task: Instruction-finetuned
text embeddings, 2023.

Ming-Hsiang Su, Chung-Hsien Wu, Kun-Yi Huang, Qian-Bei Hong, and Hsin-Min Wang. A chatbot
using lstm-based multi-layer embedding for elderly care, 2017. URL https://ieeexplore.
ieee.org/document/8336091.

20

https://ieeexplore.ieee.org/document/8336091
https://ieeexplore.ieee.org/document/8336091

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Weiwei Sun, Lingyong Yan, Xinyu Ma, Shuaiqiang Wang, Pengjie Ren, Zhumin Chen, Dawei Yin,
and Zhaochun Ren. Is chatgpt good at search? investigating large language models as re-ranking
agents, 2023.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks,
2014.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging
big-bench tasks and whether chain-of-thought can solve them, 2022.

Flax Sentence Embeddings Team. Stack exchange question pairs, 2021a. URL https://hf.co/
datasets/flax-sentence-embeddings/.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M. Dai, Anja Hauth, et al. Gemini: A family of highly capable
multimodal models, 2023.

Sentence Transformers Team. (title, body) pairs from the npr.org website, 2021b. URL https:
//hf.co/datasets/sentence-transformers/embedding-training-data.

Sentence Transformers Team. Reddit title body, 2021c. URL https://hf.co/datasets/
sentence-transformers/reddit-title-body.

Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. Beir: A
heterogenous benchmark for zero-shot evaluation of information retrieval models, 2021.

James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. Fever: a large-scale
dataset for fact extraction and verification, 2018.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, Nathan Sarrazin, Omar
Sanseviero, Alexander M. Rush, and Thomas Wolf. Zephyr: Direct distillation of lm alignment,
2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

Ben Wang and Aran Komatsuzaki. Gpt-j-6b: A 6 billion parameter autoregressive language model,
2021. URL https://github.com/kingoflolz/mesh-transformer-jax.

Bin Wang and C. C. Jay Kuo. Sbert-wk: A sentence embedding method by dissecting bert-based
word models, 2020.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,
and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training, 2022a.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improving
text embeddings with large language models, 2024.

Thomas Wang, Adam Roberts, Daniel Hesslow, Teven Le Scao, Hyung Won Chung, Iz Beltagy,
Julien Launay, and Colin Raffel. What language model architecture and pretraining objective work
best for zero-shot generalization?, 2022b.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Anjana Arunkumar, Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, et al.
Super-naturalinstructions: Generalization via declarative instructions on 1600+ nlp tasks, 2022c.

21

https://hf.co/datasets/flax-sentence-embeddings/
https://hf.co/datasets/flax-sentence-embeddings/
https://hf.co/datasets/sentence-transformers/embedding-training-data
https://hf.co/datasets/sentence-transformers/embedding-training-data
https://hf.co/datasets/sentence-transformers/reddit-title-body
https://hf.co/datasets/sentence-transformers/reddit-title-body
https://github.com/kingoflolz/mesh-transformer-jax

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A. Smith, Iz Beltagy, and Hannaneh Hajishirzi. How far
can camels go? exploring the state of instruction tuning on open resources, 2023.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning, 2023.

Shitao Xiao and Zheng Liu. Retromae v2: Duplex masked auto-encoder for pre-training retrieval-
oriented language models, 2022.

Shitao Xiao, Zheng Liu, Yingxia Shao, and Zhao Cao. Retromae: Pre-training retrieval-oriented
language models via masked auto-encoder, 2022.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
advance general chinese embedding, 2023.

Xiaohui Xie, Qian Dong, Bingning Wang, Feiyang Lv, Ting Yao, Weinan Gan, Zhijing Wu, Xiang-
sheng Li, Haitao Li, Yiqun Liu, and Jin Ma. T2ranking: A large-scale chinese benchmark for
passage ranking, 2023.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering, 2018.

Michihiro Yasunaga, Armen Aghajanyan, Weijia Shi, Rich James, Jure Leskovec, Percy Liang, Mike
Lewis, Luke Zettlemoyer, and Wen tau Yih. Retrieval-augmented multimodal language modeling,
2023.

Jun Yin, Xin Jiang, Zhengdong Lu, Lifeng Shang, Hang Li, and Xiaoming Li. Neural generative
question answering, 2016.

Zheng-Xin Yong, Hailey Schoelkopf, Niklas Muennighoff, Alham Fikri Aji, David Ifeoluwa Adelani,
Khalid Almubarak, M Saiful Bari, Lintang Sutawika, Jungo Kasai, Ahmed Baruwa, Genta Indra
Winata, Stella Biderman, Edward Raff, Dragomir Radev, and Vassilina Nikoulina. Bloom+1:
Adding language support to bloom for zero-shot prompting, 2023.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual
denotations: New similarity metrics for semantic inference over event descriptions, 2014. URL
https://aclanthology.org/Q14-1006.

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu.
Coca: Contrastive captioners are image-text foundation models, 2022.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification, 2016.

Xin Zhang, Zehan Li, Yanzhao Zhang, Dingkun Long, Pengjun Xie, Meishan Zhang, and Min Zhang.
Language models are universal embedders, 2023.

Xinyu Zhang, Xueguang Ma, Peng Shi, and Jimmy Lin. Mr. tydi: A multi-lingual benchmark for
dense retrieval, 2021.

Xinyu Zhang, Nandan Thakur, Odunayo Ogundepo, Ehsan Kamalloo, David Alfonso-Hermelo,
Xiaoguang Li, Qun Liu, Mehdi Rezagholizadeh, and Jimmy Lin. Making a miracl: Multilingual
information retrieval across a continuum of languages, 2022.

22

https://aclanthology.org/Q14-1006

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania, Bernard
Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. Pytorch fsdp: Experiences on
scaling fully sharded data parallel, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat,
Ping Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy.
Lima: Less is more for alignment, 2023.

Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu, Wenhan Liu, Chenlong Deng, Haonan Chen,
Zhicheng Dou, and Ji-Rong Wen. Large language models for information retrieval: A survey,
2024.

Terry Yue Zhuo, Armel Zebaze, Nitchakarn Suppattarachai, Leandro von Werra, Harm de Vries, Qian
Liu, and Niklas Muennighoff. Astraios: Parameter-efficient instruction tuning code large language
models, 2024.

Ahmet Üstün, Viraat Aryabumi, Zheng-Xin Yong, Wei-Yin Ko, Daniel D’souza, Gbemileke Onilude,
Neel Bhandari, Shivalika Singh, Hui-Lee Ooi, Amr Kayid, Freddie Vargus, Phil Blunsom, Shayne
Longpre, Niklas Muennighoff, Marzieh Fadaee, Julia Kreutzer, and Sara Hooker. Aya model: An
instruction finetuned open-access multilingual language model, 2024.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

APPENDIX

Contents
A Ablations 25

B Discussion 28

C Aligning GRITLM 29

D Few-shot embedding does not work 30

E RAG Caching CPU Latency 30

F Additional RAG results 31

G Loss Curves 31

H Evaluation 32

I Ablations Detailed Results 33

J GRITLM MTEB Full Results 38

K Reducing Embedding Training Memory 39

L Hyperparameters 40

M Embedding Instruction for Generative Models 40

N HumanEval Format 41

O Embedding in FP32 vs BF16 41

P Unreliability of MT-Bench 42

Q Limitations and Future Work 42

R Dataset Composition 43

S Dataset Samples 45

T Evaluation Prompts 48
T.1 Embedding Prompts . 48
T.2 Embedding Few-Shot Prompts . 54
T.3 Generative Prompts . 58
T.4 RAG Prompts . 64

U Hardware 67

V Artifacts 67

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

A ABLATIONS

Attention and pooling We train GRITLM starting from a pretrained decoder language model
which has been trained with causal attention. Prior work has shown that while embeddings of causal
LLMs are competitive, they are outperformed by BERT-like encoders with bidirectional attention at
the same number of parameters (Muennighoff, 2022; Devlin et al., 2019). This lines up with intuition,
as bidirectional attention allows the model to adjust the representation of the first tokens based on
information obtained from future tokens. Meanwhile, causal attention only allows information to
propagate one way. Thus, for causal attention early tokens may yield poor representations due to a lack
of understanding of the entire sample. To counter this issue, we experiment with adapting the model
during finetuning to learn to use bidirectional attention. In Table 5 we find that adapting the causally
pretrained LLM with bidirectional attention provides the best embedding performance. For
fully causal embeddings, we confirm findings from Muennighoff (2022) that position-weighted mean
pooling (“Wmean”) leads to better embedding performance than taking the embedding of the last
token despite recent work finding the opposite (Zhang et al., 2023; Ma et al., 2023a). For last token
pooling, we follow Zhang et al. (2023) and use a special token. We find that adapting the model to be
a PrefixLM (Raffel et al., 2023), whereby the attention over the generative instruction is bidirectional
but still causal for the response (“Sample”) worsens performance in contrast to prior work (Wang et al.,
2022b). Thus, we stick with fully causal generation. The unified variant significantly outperforms the
embedding-only variants, while underperforming the best generative-only variant. However, once
we switched from MEDI to the E5 dataset in later ablations the embedding-only variant matched
the unified variant. Meanwhile, the worse generative performance of the unified model was due to a
suboptimal loss setting that we fixed in the loss ablations. Several papers after the initial preprint
release of this work have confirmed the benefit of bidirectional attention (BehnamGhader et al., 2024;
Springer et al., 2024).

Base model The GRITLM approach generalizes to any generative language model, thus we ablate
initializing from GPT-J 6B (Wang & Komatsuzaki, 2021), Llama 2 7B or Mistral 7B (Jiang et al.,
2023). Using Mistral 7B leads to the best performance for both embedding and generative tasks.
For generative tasks, this is expected as the pretrained Mistral 7B performs the best among the
three (Table 2). However, for embedding tasks, GPT-J outperforms Mistral 7B (Table 1). Thus, the
embedding performance of a pretrained model is not predictive of its embedding performance
after finetuning. Rather, its generative performance appears to be a more reliable indicator of its
embedding performance after finetuning.

Generative dataset We benchmark our filtered Tülu 2 introduced in §3.1 (Ivison et al., 2023)
with UltraChat (Ding et al., 2023; Tunstall et al., 2023) and the OpenAssistant version from Oc-
toPack (Muennighoff et al., 2023a; Köpf et al., 2023; Longpre et al., 2023). Using Tülu 2 leads to
better performance on every generative task considered (see Appendix I for per-task results). This
is likely due to Tülu 2 containing a larger diversity of tasks (Ivison et al., 2023). Another possible
reason is that Tülu 2 may have been carefully tuned on the generative evaluation datasets, as we use
largely the same evaluation setup as the creators of Tülu 2 (Ivison et al., 2023).

Embedding dataset We benchmark MEDI (Su et al., 2023), a new version of MEDI with better
negatives which we build and call MEDI2, and the E5 dataset (Wang et al., 2024). While MEDI
and MEDI2 always preface instructions with “Represent” (see e.g. Figure 11), the E5 dataset places
no constraint on the instruction prefix (see e.g. Figure 12). Thus, when using the E5 dataset the
“<|embed|>” formatting is critical to tell the model that it will be subject to the representation loss,
not the generative loss (Figure 3). Further, MEDI and MEDI2 always contain instructions for both
queries and documents, which we refer to as two-sided instructions. Meanwhile, the E5 dataset
uses one-sided instructions for asymmetric datasets (Muennighoff, 2022), whereby the documents
receive no instructions, only the queries. The advantage of not using document instructions is that
the document corpus can be encoded once and then cached and reused across a variety of tasks.
During training on E5, symmetric tasks are also in a one-sided setting, but we still evaluate them in
the two-sided format. This should not be a problem as the cosine similarity function we use during
training is transitive: if sentence A with instruction is similar to sentence B without instruction, and
sentence B without instruction is similar to sentence C with instruction, then we can confidently say
that sentence A with instruction is also similar to sentence C with instruction. As depicted in Table 5,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Attention Emb Attention Gen Pooling Emb GenInstruction Sample Instruction Sample

Embedding Only

Causal Wmean 60.0 -
Causal Bidirectional Mean 61.0 -

Bidirectional Mean 61.8 -

Generative Only

Causal - 55.2
Bidirectional Causal - 50.7

Unified

Causal Causal Last token 61.2 53.0
Causal Causal Wmean 62.8 52.8

Bidirectional Causal Mean 64.0 52.9

(a) Attention and pooling ablations. Wmean is position-weighted mean pooling (Muennighoff, 2022).

Variant Emb Gen

Mistral 7B 54.6 22.4
Llama 2 7B 48.2 20.8
GPT-J 6B 51.9 14.0

(b) Base model

Dataset Emb

MEDI 64.0
MEDI2 64.7

E5 66.0

(c) Embedding dataset

Dataset Gen

Tülu 2 55.2
OASST 37.7

UltraChat 47.4

(d) Generative dataset

Variant Emb Gen

No head 62.7 49.2
→ 1024 62.1 48.0

(e) Embedding head

BS Emb:Gen Emb Gen

256:256 63.2 53.4
4096:256 64.2 53.3

(f) Batch size (BS)

Precision Emb Gen

FP32 66.3 52.4
BF16∗ 66.5 55.0

(g) Precision

IBN origin Emb Gen

Any dataset 66.0 50.9
Same dataset 66.0 51.1

(h) In-batch negatives (IBN)

Format Gen

Tülu 2 55.2
Zephyr β 49.0

(i) Format

Tokens Emb Gen

512 64.1 52.2
2048 64.7 53.8

(j) Emb training max tokens

Gen loss type LRep/LGen Emb Gen

Token 2.4 66.1 54.4
Token 6.0 66.5 55.0

Mix (32 → 8) 4.1 66.7 55.4

Gen loss type AlpacaEval

Mix (4 → 64) 67.6
Mix (32 → 8) 74.7

(k) Loss ablations. LRep/LGen is the loss ratio of the 1st step adjusted via λRep and λGen. Mix refers
to mixing sample and token level loss, e.g. (32 → 8) is token level loss across 32 samples and then
sample level loss across 8 sub-batches for a total batch size of 256.

Table 5: GRIT ablations. Emb corresponds to the MTEB average, while Gen corresponds to the
average across generative tasks (Appendix H). The embedding head variant “→ 1024” corresponds
to down-projecting the final hidden state with a linear layer from 4096 to 1024 dimensions, only for
embedding tasks. BF16∗ means that some computations are still in FP32 as explained in Appendix A.
The setting chosen for GRITLM is bold. Once an ablation was successful, we adopted its setting, thus
the bold performance slightly varies from one table to the next. For example, the base model ablation
(b) is done for just 100 hundred steps with sub-optimal formatting. Full results are in Appendix I.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

using the E5 dataset performs best by a wide margin. An inspection of samples, suggests that this is
likely due to its superior hard negatives and diversity of tasks generated by GPT-4 (Appendix S). For
our final runs with the E5 dataset, we additionally add scientific data (§3.1).

Embedding head The cost of caching the embeddings of a large document corpus is directly
proportional to the embedding dimensionality. To minimize such costs, we experiment with adding
an embedding head consisting of a linear layer with activation that down-projects the embedding (Ni
et al., 2021a; Muennighoff, 2022). This layer is only used for embedding tasks. Down-projecting
the embeddings four-fold (from 4096 to 1024) leads to an embedding performance decrease of
around 1%. This may be acceptable for certain use cases where the saved storage is more important.
However, for our final model, we do not use such a head to keep it simple and achieve maximum
performance. Search techniques (Arya et al., 1998; Johnson et al., 2017; Douze et al., 2024) or
dimensionality reduction techniques such as Principal Component Analysis still allow for reducing
the embedding dimension of our final model post-training while maintaining most of the performance.
Similar to the storage cost-performance trade-off we explore here, we hypothesize that there is a
speed/cost-performance trade-off with taking the embedding from different layers of our model. For
example, we could train using the embedding after half the layers of the model, thus speeding up the
embedding model by 50% while likely only incurring a small drop in embedding performance

Batch size Due to the utilization of in-batch negatives for contrastive training (§2), a larger batch
size provides a more accurate gradient. Thus, scaling up the batch size is a key ingredient in most
well-performing embedding models (Xiao et al., 2023; Wang et al., 2022a). We experiment with
scaling up the embedding batch size to 4096 while keeping it at 256 for generative data. This leads to
a 1.0 gain on the embedding average while generative performance remains stable. Especially the 15
retrieval datasets that are part of the embedding average benefit from the increase in batch size (see
Table 18). For our final model, we use a batch size of 2048 for embedding and 256 for generative
data.

Precision The parameters of the Mistral 7B model are in bfloat16 (BF16) precision as it was
pretrained in this format. We experiment with finetuning it with float32 (FP32) precision versus
keeping the BF16 format and training with mixed precision. FP32 training is more costly, however,
the additional precision may result in a better model. Our intuition is that more precision is important
for embedding but not as much for generation. This is because while for generative tasks evaluated
greedily, the model output is a discretionary argmax over the predictions of the language modeling
head, for embedding tasks it is a continuous representation. Thus, small differences due to a lack
of precision may not change the model’s generation but will affect its representation. Hence, for
embedding tasks, we always cast the hidden states to FP32 during the pooling operation and keep
them this way for the similarity computation. Not keeping them in FP32 after pooling worsens
performance slightly, but may be necessary for cheap storage (see Appendix O). In addition, some
operations such as layer normalization (Ba et al., 2016) are also performed in FP32 even for BF16
training due to PyTorch autocast (Zhao et al., 2023). In Table 5, we find that there is no benefit from
doing even more computations in FP32 besides the ones listed above. Thus, we train and evaluate all
our other models in BF16 mixed precision to speed up training and inference.

In-batch negatives We always use in-batch negatives for embedding training (§2), however, we
ablate whether or not they come from the same dataset. We hypothesize that making them all come
from the same dataset leads to better negatives as the model needs to distinguish them based on more
nuanced differences. In practice, we find that the average embedding performance remains around
the same. However, we notice a 1.3 jump on the 15-dataset Retrieval average (Table 20). Thus, we
stick with the variant where in-batch negatives stem from the same dataset.

Format Our chosen format is depicted in Figure 3, which is equivalent to Tülu 2 (Ivison et al., 2023)
for generative tasks. We also benchmark the Zephyr β format (Tunstall et al., 2023), which has an
additional end-of-sequence token (“</s>”) after each user utterance. We find that it performs worse
on generative tasks. The additional end-of-sequence after the user utterance increases the likelihood
of the model generating another end-of-sequence token earlier than necessary. This significantly
harms HumanEvalSynthesize performance and slightly reduces AlpacaEval, where long generations
can be critical (see Appendix I for task-specific performance).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Max tokens Our base model, Mistral 7B, can handle sequences of arbitrary length due to its sliding
window attention (Jiang et al., 2023). As finetuning with longer sequences is more expensive we ablate
its benefits. We compare training with a maximum token limit of 512 versus 2048 for embedding
documents. For embedding queries, we always use 256, and for generative data, we always use 2048.
We find that increasing the embedding document sequence length during training slightly boosts
performance on both embedding and generation even though we still evaluate embedding tasks with
512. This boost likely comes from our training data containing many documents beyond 512 tokens,
which need to be truncated if the maximum sequence length is 512. Such truncation may remove the
critical parts that make two texts a positive or a negative contrastive pair and thus hinder learning.
As our embedding evaluation (MTEB) contains few documents longer than 512 tokens there is little
truncation happening at evaluation (Muennighoff et al., 2023c; Günther et al., 2024; 2023). Note
that just like their base models, our final models GRITLM 7B and GRITLM 8X7B can produce
embeddings for sequences of arbitrary length. However, due to a lack of benchmarks, we do not
know how well the embeddings of our models perform for input sequences longer than 512 tokens.

Loss ablations As detailed in §2, we experiment with both token and sample level generative loss.
Further, we ablate the representation and generative loss weights, λRep and λGen. For the unified
visual model CoCa, the authors find that giving a weight of 2 to generation and 1 to embedding
boosts performance on both streams (Yu et al., 2022). However, rather than the weights, we argue
that the loss ratio, LRep/LGen, is of more interest as it reveals which objective has a larger impact on
the optimization of the model. We maintain a ratio of LRep/LGen ¿ 1 i.e. giving more weight to the
representation loss. This is because the model has already been pretrained with the generative loss,
thus we expect less additional generative training to be necessary. Meanwhile, the contrastive loss for
embedding data is new to the model, thus we expect more learning to be needed on the embedding
side. Further, the embedding loss drops off extremely quickly as can be seen in the loss graphs in
Appendix G. Thus, even though the representation loss has a higher weight at the start, throughout
training they have very similar weights with both hovering around a loss of 1.0. We find that mixing
sample and token level generative loss leads to the best performance by a small margin. As expected
in §2, token level loss to some degree is critical for good performance on AlpacaEval. For “Mix
(4 -> 64)” token level loss is applied across only 4 samples and then sample level loss across 64
sub-batches, which leads to a 7-point drop in AlpacaEval performance. This drop is accompanied by
a decrease in median AlpacaEval generation length from 941 to 865. Thus, token level loss across
many samples is critical to maintaining long generations, which directly impacts the AlpacaEval
score.

B DISCUSSION

Further unification To the best of our knowledge, GRITLM is the first model to unify text em-
bedding and generation, and thus all text-based language problems, into a single model at strong
performance. However, many adjacent directions remain to be improved or unified. (a) Multilin-
guality: Our model is also capable of embedding and generation in non-English languages as seen in
its TyDi QA performance (Table 2). However, major performance gains on non-English tasks are
likely possible through both data (Muennighoff et al., 2023d; Yong et al., 2023) and architecture
changes (Chen et al., 2024a; Feng et al., 2022; Duquenne et al., 2023) targeting multilinguality. (b)
Multimodality: Many embedding and generative problems are not purely text-based, such as joint
embedding of images and text (Radford et al., 2021), generative image captioning (Hossain et al.,
2018), image-text pair classification (Muennighoff, 2020; Kiela et al., 2021) or speech versions of
every text problem (Kamath et al., 2019). It remains to be explored whether they can be as easily
unified as text embedding and generation in this work.

Why does GRIT work? GRIT unifies embedding and generative tasks into a single model at
no performance loss on either one, which may seem surprising. When the embedding dataset is
MEDI2, we show that embedding performance even improves once the generative objective is added
compared to an otherwise equivalent embedding-only model (Appendix A). We think that our results
confirm that generative language modeling and text embeddings are two sides of the same coin. Both
tasks require a model to have a deep understanding of natural language and only differ in the way
that understanding is expressed. Possibly, our unified model contains a small number of parameters
that act as a switch to make the final representations either useful for mean pooling and subsequent

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

embedding tasks or primed for the language modeling head and subsequent generative tasks. We are
excited about future work exploring what is happening inside of GRITLM. To support such research,
we release all our work freely.

Optimizing RAG with GRITLM RAG and the caching variants we have presented in this work
operate on a frozen language model. Meanwhile, there has been extensive work on optimizing a
generative model specifically for interaction with a retrieval system (Gao et al., 2024; Zhu et al., 2024;
Asai et al., 2023a). These works commonly optimize only the retriever (Shi et al., 2023) or only the
reader (Borgeaud et al., 2022; Yasunaga et al., 2023; Asai et al., 2023b; Luo et al., 2023). However,
recent work has shown that jointly optimizing both models leads to the best performance (Lin et al.,
2023). With its state-of-the-art retrieval and generative performance, GRITLM can act as both the
retriever and reader in a single model. Thus, optimizing either one also changes the parameters of
the other. This has the potential to significantly simplify the joint optimization of the retriever and
reader. For example, it may suffice to only use the next-token objective (Equation 2) to penalize the
retriever for providing irrelevant context and at the same time the reader for poor use of the given
context. This is in contrast to separate models and objective functions used in Lin et al. (2023).

C ALIGNING GRITLM

Table 6: Aligning GRITLM with KTO after GRIT. The upper table depicts embedding performance
while the lower depicts generative performance.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

GRITLM 7B 79.5 50.6 87.2 60.5 57.4 83.4 30.4 66.8
GRITLM 7B KTO 79.6 50.1 87.1 60.5 57.1 83.5 30.5 66.7
GRITLM 8X7B 78.5 50.1 85.0 59.8 55.1 83.3 29.8 65.7
GRITLM 8X7B KTO 78.7 50.0 84.4 59.4 54.1 82.5 30.8 65.2

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

GRITLM 7B 57.6 57.5 54.8 55.4 32.8 74.8 55.5
GRITLM 7B KTO 57.6 57.5 55.4 55.8 31.5 86.7 57.4
GRITLM 8X7B 66.7 61.5 70.2 58.2 53.4 84.0 65.7
GRITLM 8X7B KTO 66.8 79.5 67.1 31.4 56.8 95.3 66.2

It is common to follow the instruction finetuning stage of generative language models by an alignment
tuning stage using methods like PPO (Schulman et al., 2017), DPO (Rafailov et al., 2023), or
KTO (Ethayarajh et al., 2024) (“HALOs” (Ethayarajh et al., 2024)). We experiment with further
finetuning GRITLM using KTO and benchmark the resulting models in Table 6. During this KTO
stage, no further embedding training is performed, thus it leads to a slight performance drop on the
MTEB average (66.8 to 66.7 and 65.7 to 65.2). However, the average generative performance of the
KTO-tuned models is stronger. Notably, AlpacaEval jumps by ¿10 points for both models. On the
more recent Alpaca 2.0 (Dubois et al., 2024), GritLM-8x7B-KTO has a length-controlled win rate of
18.5 with an average length of 1662 (not depicted). Thus, the KTO-finetuned models may be more
useful for use cases where the generative performance is more important. Future work may consider
continuing the embedding training during the alignment tuning stage. It may also be possible to
develop an alignment tuning method specifically for embedding performance and combine it with
generative alignment via KTO.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

D FEW-SHOT EMBEDDING DOES NOT WORK

Table 7: Few-shot embedding. The 12 MTEB
datasets (“DS”) are grouped by the 7 main MTEB
tasks in the same order as in Table 1.

Train DS (→) E5S MEDI2
MTEB DS (↓) 0 FS 1 FS 0 FS 1 FS

Banking77 88.5 88.3 88.1 87.9
Emotion 52.8 51.0 52.5 51.9
IMDB 95.0 93.9 94.3 92.2

BiorxivS2S 39.8 39.4 37.6 37.4

SprintDup. 93.0 94.9 95.2 95.7
TwitterSem 81.1 77.9 76.8 73.9
TwitterURL 87.4 87.1 85.9 86.1

ArguAna 63.2 51.7 53.5 53.2
SCIDOCS 24.4 19.7 25.5 25.5

AskUbuntu 67.3 64.7 66.6 66.0

STS12 77.3 78.0 76.6 73.5

SummEval 30.4 29.5 29.1 31.5

For generative models it has been well-
established that providing in-context exam-
ples (“few-shots”, FS) improves performance
(Brown et al., 2020). However, to the best of
our knowledge, there has been no work on in-
context learning with embedding models. In Ta-
ble 7, we benchmark the default 0-shot format
with providing a single few-shot example follow-
ing the task instruction. We take the few-shot
example from the respective evaluation dataset
(see §T.2 for the prompts). We find that pro-
viding few-shot examples overall worsens per-
formance. While there are small gains among
PairClassification tasks (SprintDup. and Twit-
terURL), these are marginal and inconsistent.
For the model trained on MEDI2, we even in-
clude few-shot embedding samples in the train-
ing data for around 5% of training samples.
However, the model seems not to have learned
to make good use of the few-shot examples.

E RAG CACHING CPU LATENCY

250 500 1000 2000 4000
Query length (tokens)

4

6

8

10

12

14

16

Se
co

nd
s p

er
 e

xa
m

pl
e

CPU

250 500 1000 2000 4000
Document length (tokens)

4

6

8

10

12 CPU

No Retrieval
Traditional RAG

Query Caching
Doc Caching

Query-Doc Caching
Doc-Query Caching

Figure 6: Inference latency of RAG with GRITLM 7B on CPUs. When benchmarking scaling
query length (left), document length is fixed at 1, whereas query length is fixed at 1 when scaling
document length (right). In addition to the query/doc lengths, the formatting and prompt take up
around 40 tokens. We visualize the standard deviation across 100 runs as the shaded area. For each
approach, we generate 16 tokens. See Figure 5 for GPU latency.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

F ADDITIONAL RAG RESULTS

Table 8: Additional doc caching results.
We use the same setup as in Table 4 to
benchmark doc caching on two additional
datasets: TriviaQA (Joshi et al., 2017) and
MMLU (Hendrycks et al., 2022).

Dataset (→) TriviaQA MMLU
Metric (→) Match (0-shot, ↑)

RAG 52.12 51.10
Doc Caching 57.93 53.46

In §5, we find that doc caching is the most promising
caching variant out of the ones we propose. This is
because (a) documents are usually significantly longer
than queries, thus caching documents has the highest
potential to reduce latency, (b) it maintains performance
of regular RAG (Table 4, and (c) it even works for non-
GRIT models though it requires more time to construct
the cache for non-GRIT models (§5). Thus we further
experiment with doc caching in Table 8 to verify its
performance on other datasets. Similar to Natural Ques-
tions in Table 4, we observe that doc caching maintains
performance of regular RAG (even slightly improves)
for TriviaQA and MMLU despite the attention mis-
match. Note that the attention mismatch problem can
always be resolved by simply not using bidirectional attention for the embedding part and thereby
guarantee the same performance as not using RAG, however, not using bidirectional attention comes
at a slight reduction in embedding performance according to our ablation experiments (Appendix A).

Table 9: Additional RAG results with
BGE. We use the same setup as in Table 4
to benchmark BGE embedding models with
the “Query then document” prompt. The
generative model is still GRITLM 7B.

Dataset (→) NQ
Metric (→) Match (0-shot, ↑)

BGE Large 0.34B 10.39
BGE Base 0.11B 10.31
BGE Small 0.03B 10.17

We also benchmark the BGE series of embedding mod-
els (Xiao et al., 2023) in Table 9 for RAG. We find per-
formance to be significantly worse than with GRITLM
in Table 4. Based on a manual inspection of samples, it
appears that the embedding models commonly retrieve
irrelevant passages that confuse the generative model.
There may be other smaller embedding models or other
generative models that may perform better, but over-
all we expect the RAG performance to be a function
of the embedding and generative performance of the
individual components (e.g. if an embedding model
performs better than GRITLM, we would expect it to
lead to better RAG performance; BGE generally does
not perform better on embedding as shown in Table 1).

G LOSS CURVES

0 250 500 750 1000 1250
Steps

0

1

2

3

4

5

Tr
ai

ni
ng

 L
os

s

Representation Loss

0 250 500 750 1000 1250
Steps

1.00

1.25

1.50

1.75

2.00

2.25

2.50
Generative Loss

Figure 7: GRITLM 7B training loss smoothed with exponential moving average smoothing and
a weight of 0.9.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0 250 500 750 1000 1250
Steps

0

1

2

3

4

5

6

7
Tr

ai
ni

ng
 L

os
s

Representation Loss

0 250 500 750 1000 1250
Steps

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Generative Loss

Figure 8: GRITLM 8X7B training loss smoothed with exponential moving average smoothing
and a weight of 0.9.

H EVALUATION

For evaluating GRITLM, we select the most commonly used embedding and generative benchmarks:

Embedding To evaluate embedding performance we use the 7 main tasks from MTEB (Muen-
nighoff et al., 2023c).
(1) Classification (CLF): A logistic regression classifier is trained on embeddings from texts with
different labels. The classifier is scored with F1.
(2) Clustering (Clust.): K-means clustering is performed on embeddings from different sources.
The agreement of the clusters with respect to the source labels is scored with V-measure.
(3) Pair Classification (PairCLF): The cosine similarity of two embeddings with a binary label is
computed. The optimal similarity threshold across all samples is found and scored with AP (average
precision).
(4) Reranking (Rerank) A query embedding and reference embeddings are compared with cosine
similarity. The similarities are scored versus the ground truth ranking of the references via MAP
(mean AP).
(5) Retrieval: A query embedding and embeddings of references are compared with cosine similarity.
The position of the correct reference(s) in the top ten with the highest cosine similarity is scored with
nDCG@10 (normalized discounted cumulative gain).
(6) STS: The cosine similarity of two embeddings is compared with a ground truth continuous score
of their similarity and scored with Spearman correlation.
(7) Summarization (Summ.) Human-written and machine-written summaries of the same text are
embedded. The cosine similarity of the embeddings is compared to human ratings of the machine
summaries and scored with Spearman correlation.
Among the tasks, Reranking, Retrieval, and Summarization are asymmetric i.e. there are two different
kinds of embeddings: queries and documents. Others are symmetric i.e. there is only one kind.
We use instructions for every dataset specified in §T.1. Notably, for some models, we use different
instructions for query and document embeddings when dealing with asymmetric tasks. The datasets
within each task cover diverse domains ranging from scientific papers to casual conversations.

Generation For evaluating the generative performance of GRITLM, we largely follow the evalua-
tion setup of Tülu (Wang et al., 2023; Ivison et al., 2023) using open-source frameworks (Gao et al.,
2021a; Ben Allal et al., 2022).
(1) Multiple-Choice Question Answering via MMLU (Hendrycks et al., 2022): Models are tasked
to answer knowledge-intensive questions from different fields, such as humanities, social sciences,
and hard sciences. No few-shots are provided and answers are evaluated with exact match.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

(2) Problem solving via GSM (Cobbe et al., 2021): Models are tasked to solve a math problem
requiring multi-step reasoning. 8 few-shot (FS) examples with chain-of-thought reasoning (CoT) (Wei
et al., 2023) are provided and exact match is measured.
(3) Multilingual Closed-book Question Answering via TyDi QA (Clark et al., 2020): Models are
tasked to answer a question in one of six languages. We evaluate in the Gold Passage and no-context
setting following Anil et al. (2023).
(4) Code Generation via HumanEvalSynthesize (Muennighoff et al., 2023a; Chen et al., 2021):
We use the HumanEvalSynthesize Python dataset (Muennighoff et al., 2023a), which is adapted
from HumanEval (Chen et al., 2021) for easy evaluation of instruction-following models. Using the
instruction format is different from Ivison et al. (2023) who use HumanEval without an instruction
format which is not how the model is used in practice. Following Muennighoff et al. (2023a), we
score pass@1 using 20 samples and a temperature of 0.2.
(5) Boolean Expressions, Causal Judgement, etc. via BBH (Srivastava et al., 2023; Suzgun et al.,
2022) We evaluate a variety of reasoning tasks using BIG-Bench Hard (BBH) (Srivastava et al., 2023;
Suzgun et al., 2022). Similar to GSM8K, 3 FS CoT examples are provided and exact match is
measured.
(6) Open-ended writing, Summarization, Role-playing, etc. via AlpacaEval (Alpaca) (Li et al.,
2023b; Dubois et al., 2023) We evaluate a variety of open-ended generation tasks via the original 1.0
version of AlpacaEval (Li et al., 2023b; Dubois et al., 2023). GPT-4 (OpenAI et al., 2023) is used to
determine the win rate of generations compared to provided GPT-3 (Brown et al., 2020) answers. We
differ from Ivison et al. (2023) in that we reduce the maximum token length to 6144 from 8192. We
do not use MT-Bench due to its limitations pointed out in Appendix P. To ensure reproducibility, we
use greedy evaluation throughout.

I ABLATIONS DETAILED RESULTS

We display a breakdown of the results from Table 5 in Table 10 to Table 21. For MTEB per-
dataset results, we refer to Appendix J, the MTEB leaderboard (https://huggingface.co/
spaces/mteb/leaderboard) and our released result files (https://huggingface.co/
datasets/ANONYMIZED).

Table 10: Unified models attention and pooling ablations. The sequence of Cs and Bs refers to the
attention mechanism for (from left to right): Emb instruction, Emb sample, Gen instruction, Gen
sample, where C=Causal, B=Bidirectional, Emb=Embedding and Gen=Generative. WM, LT and M
refer to position-weighted mean, last token and mean pooling, respectively.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

CCCC WM 77.9 47.9 81.5 59.0 49.4 80.3 29.4 62.8
CCCC LT 78.8 46.9 84.5 59.6 43.9 78.7 29.3 61.2
BBCC M 79.0 48.6 86.3 59.5 49.9 81.7 30.1 63.8

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

CCCC WM 57.5 45.0 53.1 56.0 32.3 72.9 52.8
CCCC LT 57.2 45.5 54.7 54.0 31.1 75.7 53.0
BBCC M 57.0 46.5 54.5 55.0 30.4 73.8 52.9

33

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/datasets/ANONYMIZED
https://huggingface.co/datasets/ANONYMIZED

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 11: Embedding-only models attention and pooling ablations. The sequence of Cs and
Bs refers to the attention mechanism for (from left to right): Emb instruction, Emb sample, where
C=Causal, B=Bidirectional and Emb=Embedding. WM and M refer to position-weighted mean and
mean pooling, respectively.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

CC WM 77.1 44.0 83.3 57.0 43.2 79.6 29.4 60.0
CB M 76.4 45.5 83.1 56.8 45.7 80.6 30.4 61.0
BB M 77.3 46.0 83.8 58.2 46.8 81.0 32.3 61.8

Table 12: Generative-only models attention ablations. The sequence of Cs and Bs refers to
the attention mechanism for (from left to right): Gen instruction, Gen sample, where C=Causal
and B=Bidirectional. IL=interleaved, whereby the bidirectional attention is interleaved with causal
attention in multi-turn samples (bidirectional for instructions, causal for answers). This allows for
faster generation in multi-turn settings as the kv-cache of the answer can be reused.

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

CC 57.5 52.0 55.4 56.6 34.5 75.4 55.2
BC 57.2 50.0 49.3 52.0 30.6 64.8 50.7
BC IL 52.6 41.0 46.9 45.4 - - -

Table 13: Base model ablations. Models are only trained for 100 steps and with other sub-optimal
settings, such as the Zephyr format, that were rectified through later ablations.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

Mistral 7B 70.6 43.7 74.0 54.8 35.3 72.9 31.2 54.6
Llama 2 7B 68.1 38.0 64.1 50.2 24.2 67.7 30.5 48.2
GPT-J 6B 70.7 41.4 69.6 53.9 29.7 70.4 29.8 51.9

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS
Metric (→) EM EM EM F1 pass@1

Mistral 7B 35.0 11.0 31.6 20.5 13.8 22.4
Llama 2 7B 35.8 7.0 27.2 21.0 12.9 20.8
GPT-J 6B 27.5 3.5 22.2 8.7 8.0 14.0

Table 14: Embedding-only models embedding dataset ablations. NNI = No Natural Instructions,
corresponding to not including natural instructions in the data. II = evaluating with the Instructor-XL
instructions (Su et al., 2023). Other models use our new structure with domain, intent, and unit
depicted in Figure 3. Thus, MEDI2 NNI II and MEDI2 NNI are the same model and only differ in
the evaluation instruction set.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

MEDI II 77.1 44.0 83.3 57.0 43.2 79.6 29.4 60.0
MEDI2 NNI II 74.0 43.5 80.5 56.6 46.1 78.4 29.5 59.6
MEDI2 NNI 74.2 44.5 80.7 57.3 49.5 79.6 30.8 61.1
MEDI2 75.1 43.8 80.6 57.5 50.2 81.7 31.9 61.7
MEDI2 + Weights 74.4 42.7 78.4 57.7 50.2 81.4 30.5 61.2

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 15: Unified models embedding dataset ablations. The sequence of Cs and Bs refers to
the attention mechanism for (from left to right): Emb instruction, Emb sample, where C=Causal,
B=Bidirectional, and Emb=Embedding. WM and M refer to position-weighted mean and mean
pooling, respectively. MEDI2BGE corresponds to our MEDI2 dataset with negatives coming from
the BGE training dataset MTP (Xiao et al., 2023).

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

CCCC WM MEDI 77.9 47.9 81.5 59.0 49.4 80.3 29.4 62.8
CCCC WM MEDI2 76.5 47.0 82.5 59.4 51.4 81.9 30.2 63.2

BBCC M MEDI 79.1 48.8 86.4 59.6 50.3 81.3 31.0 64.0
BBCC M MEDI2 77.0 48.7 86.0 61.0 53.6 83.0 29.1 64.7
BBCC M MEDI2BGE 77.0 48.9 86.9 61.3 53.1 82.8 29.4 64.7
BBCC M E5 79.7 49.5 86.2 59.6 55.3 83.6 29.9 66.0

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

CCCC WM MEDI 57.5 45.0 53.1 56.0 32.3 72.9 52.8
CCCC WM MEDI2 57.1 49.0 53.3 55.3 32.3 73.6 53.4

BBCC M MEDI 57.0 46.5 54.5 55.0 30.4 73.8 52.9
BBCC M MEDI2 57.0 50.5 53.8 54.7 32.3 74.7 53.8
BBCC M MEDI2BGE 57.4 48.0 54.7 55.1 32.0 74.7 53.7
BBCC M E5 57.3 47.5 54.2 54.6 33.6 75.4 53.8

Table 16: Generative dataset ablations. EP = number of epochs.

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

Tülu 2 1 EP 57.5 52.0 55.4 56.6 34.5 75.4 55.2
Tülu 2 2 EP 58.2 53.0 51.9 54.1 37.4 80.5 55.9
OASST 1 EP 53.8 24.0 41.1 28.2 27.4 51.7 37.7
OASST 2 EP 52.4 17.5 45.7 29.2 19.8 61.3 37.7
UltraChat 56.1 43.0 53.8 35.0 25.9 70.3 47.4

Table 17: Embedding Head. “→ 1024” refers to down-projecting the final hidden state with a linear
layer from 4096 to 1024 dimensions only for embedding tasks.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

No head 77.7 47.9 81.3 58.6 49.2 80.4 29.5 62.7
→ 1024 76.9 47.6 82.1 58.6 48.0 80.1 29.8 62.1

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

No head 54.2 42.5 50.6 53.9 28.4 65.5 49.2
→ 1024 53.6 37.0 48.8 54.4 26.6 67.3 48.0

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 18: Embedding batch size ablations. 256 and 4096 indicate the respective embedding batch
size. The generative batch size is always 256.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

MEDI2 256 76.5 47.0 82.5 59.4 51.4 81.9 30.2 63.2
MEDI2 4096 77.1 48.0 84.1 60.2 52.8 82.8 30.5 64.2

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

MEDI2 256 57.1 49.0 53.3 55.3 32.3 73.6 53.4
MEDI2 4096 57.7 48.0 53.2 54.5 32.0 74.3 53.3

Table 19: Precision ablations. BF16 refers to bfloat16 mixed precision and FP32 to float32 precision.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

BF16 79.7 50.2 87.6 60.2 56.5 83.4 30.8 66.5
FP32 79.6 50.3 87.2 59.9 56.1 83.3 30.9 66.3

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

BF16 58.2 51.5 52.8 55.9 37.3 74.4 55.0
FP32 55.9 52.0 49.9 53.9 31.2 71.3 52.4

Table 20: In-batch negatives ablations.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

Any dataset 79.7 49.8 85.5 59.8 54.9 83.9 30.5 66.0
Same dataset 79.5 48.9 87.4 59.0 56.2 83.0 30.5 66.0

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

Any dataset 56.1 43.5 53.1 46.6 33.5 72.3 50.9
Same dataset 55.0 45.0 54.4 49.3 29.6 73.4 51.1

Table 21: Generative format ablations.

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

Tülu 2 format 57.5 52.0 55.4 56.6 34.5 75.4 55.2
Zephyr β format 57.3 53.5 52.7 59.1 0.0 71.2 49.0

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Table 22: Unified models max tokens ablations. X:Y refers to “maximum tokens allowed for
embedding documents during training”:“maximum tokens allowed for queries and documents during
embedding evaluation”. The sequence of Cs and Bs refers to the attention mechanism for (from left
to right): Emb instruction, Emb sample, where C=Causal, B=Bidirectional, and Emb=Embedding.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

MEDI 2048:512 77.9 47.9 81.5 59.0 49.4 80.3 29.4 62.8
MEDI 2048:4096 77.9 47.9 81.5 59.0 49.4 80.2 31.3 62.8
MEDI 4096:512 76.7 47.3 79.8 58.8 47.0 78.5 30.0 61.3
MEDI 4096:4096 76.8 47.2 79.8 58.8 46.9 78.2 29.9 61.3

MEDI2 BBCC 2048:512 77.0 48.7 86.0 61.0 53.6 83.0 29.1 64.7
MEDI2 BBCC 512:512 76.9 47.6 85.5 61.0 52.8 82.3 28.8 64.1

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

MEDI 2048:512/4096 57.4 45.0 53.1 56.0 32.3 72.9 52.8
MEDI 4096:512/4096 53.8 43.0 52.7 54.8 30.1 - -

MEDI2 BBCC 2048:512 57.0 50.5 53.8 54.7 32.3 74.7 53.8
MEDI2 BBCC 512:512 56.9 46.5 53.1 52.6 31.2 72.8 52.2

Table 23: Loss ablations. E.g. Mix (32 → 8) corresponds to token level loss across 32 samples and
then sample level loss across 8 sub-batches for a total batch size of 256. E.g. 2.4 refers to the loss
ratio of the 1st step: LEmb/LGen.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

E5S Token 2.4 79.5 50.1 86.5 60.0 55.6 83.2 30.3 66.1
E5S Token 6.0 79.7 50.2 87.6 60.2 56.5 83.4 30.8 66.5
E5S Mix (32 → 8) 4.1 79.4 50.5 87.2 60.5 57.4 83.4 30.4 66.7

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

E5S Token 2.4 57.9 48.5 53.5 56.5 35.2 75.0 54.4
E5S Token 6.0 58.2 51.5 52.8 55.9 37.3 74.4 55.0
E5S Mix (32 → 8) 4.1 57.6 57.0 54.8 55.4 32.8 74.8 55.4

MEDI2 Mix (4 → 64) 11.7 57.0 48.0 53.7 55.0 35.8 67.6 52.9
MEDI2 Mix (32 → 8) 10.2 57.0 50.5 53.8 54.7 32.3 74.7 53.8

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

J GRITLM MTEB FULL RESULTS

Table 24: MTEB full results from Table 1.

Dataset Gen-only Emb-only GRITLM
7B 8X7B

AmazonCounterfactualClassification 70.06 82.55 81.18 80.48
AmazonPolarityClassification 74.74 96.19 96.52 96.32
AmazonReviewsClassification 38.63 57.28 57.81 57.18
Banking77Classification 71.25 88.73 88.47 87.46
EmotionClassification 36.61 51.83 52.81 50.06
ImdbClassification 73.94 94.58 95.00 94.32
MassiveIntentClassification 66.82 79.37 80.78 79.72
MassiveScenarioClassification 71.27 81.20 82.09 81.09
MTOPDomainClassification 85.40 96.72 96.16 95.29
MTOPIntentClassification 75.60 87.19 87.13 87.08
ToxicConversationsClassification 66.36 68.37 70.80 70.89
TweetSentimentExtractionClassification 54.61 61.91 64.78 62.48

ArxivClusteringP2P 45.40 50.87 51.67 50.72
ArxivClusteringS2S 29.86 47.35 48.11 48.01
BiorxivClusteringP2P 33.45 40.18 40.87 41.41
BiorxivClusteringS2S 23.02 39.60 39.80 38.67
MedrxivClusteringP2P 27.49 36.61 36.52 36.54
MedrxivClusteringS2S 23.17 37.28 36.80 37.24
RedditClustering 23.28 63.52 61.30 63.01
RedditClusteringP2P 55.00 67.81 67.26 65.86
StackExchangeClustering 47.14 75.53 77.33 74.41
StackExchangeClusteringP2P 33.95 46.22 41.33 38.52
TwentyNewsgroupsClustering 18.15 56.8 55.70 57.16

SprintDuplicateQuestions 51.57 93.37 93.00 91.24
TwitterSemEval2015 50.60 80.61 81.08 77.21
TwitterURLCorpus 60.36 87.20 87.40 86.45

AskUbuntuDupQuestions 49.02 68.13 67.34 65.60
MindSmallReranking 27.83 32.19 31.81 32.84
SciDocsRR 56.65 87.00 86.84 86.43
StackOverflowDupQuestions 38.42 55.48 55.96 54.33

ArguAna 35.96 62.95 63.24 59.49
ClimateFEVER 8.96 31.09 30.91 28.69
CQADupstackRetrieval 7.20 50.83 49.42 47.63
DBPedia 2.15 47.06 46.60 46.54
FEVER 5.02 85.41 82.74 85.02
FiQA2018 6.27 60.22 59.95 49.89
HotpotQA 6.67 79.15 79.40 73.83
MSMARCO 0.66 41.55 41.96 35.55
NFCorpus 3.74 41.69 40.89 39.05
NQ 2.14 69.46 70.30 63.87
QuoraRetrieval 64.42 89.08 89.47 87.70
SCIDOCS 2.32 24.86 24.41 23.06
SciFact 35.58 78.92 79.17 77.02
Touche2020 3.06 24.30 27.93 27.97
TRECCOVID 20.92 75.29 74.8 81.07

BIOSSES 70.87 86.20 86.35 87.34
SICK-R 58.95 83.03 83.13 80.56
STS12 44.25 78.07 77.34 73.69
STS13 64.22 85.98 85.04 85.82

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

STS14 52.24 83.92 82.91 82.05
STS15 64.53 89.18 88.13 88.8
STS16 65.89 86.83 86.24 86.2
STS17 69.64 89.7 90.13 91.46
STS22 57.29 68.41 68.63 69.21
STSBenchmark 53.89 86.74 85.64 87.43

SummEval 21.14 30.18 30.37 29.82

Average 41.21 66.82 66.76 65.66

K REDUCING EMBEDDING TRAINING MEMORY

0 200 400 600 800 1000 1200
Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

ni
ng

 L
os

s Backpropagate only passage embeddings
Backpropagate only query embeddings
Backpropagate both but separately
Backpropagate both

Figure 9: Embedding memory ablations. Passage corresponds to both positive and document
embeddings. Loss is smoothed with exponential moving average smoothing and a weight of 0.99.

Generative training only requires sufficient memory to perform a forward and backward pass on
a single training sample of a given sequence length. Meanwhile, naive embedding training with
in-batch negatives requires sufficient memory to accommodate a forward and a backward pass on
3∗bs samples. The 3 corresponds to the need for passing a triplet of a query, a positive, and a negative
document (Equation 1). The batch size (bs) factor corresponds to the need for forwarding all samples
together as regular gradient accumulation does not work with in-batch negatives. Below we outline
the strategies we employ to reduce these memory needs.

Triplet As the full triplet is only required for loss calculation (Equation 1), it can be split across
separate forward and backward passes. To avoid the memory requirements of gradients in PyTorch
Autograd (Paszke et al., 2019), this requires two additional forward passes without gradients. Simpli-
fied code representing this procedure is depicted in Listing 1. In our training, it was sufficient to only
split the triplet into two parts: query and passages, where passages consist of both a positive and a
negative document. Thus, we only incur the cost of one additional forward pass without gradients on
the query. Alternatively, one could only backpropagate on a subset of the embeddings, however, we
show in Figure 9 that this leads to worse performance.

In-batch negatives There are two strategies to reduce the batch size memory requirement to that
of a single batch while using nearly unlimited in-batch negatives. (1) Distributed Training: The
best strategy is to distribute the training across up to bs GPUs. The representations can then be
gathered across GPUs to compute the contrastive loss with in-batch negatives. (2) GradCache: If
enough GPUs are not available, GradCache (Gao et al., 2021b) can be used. GradCache maintains

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Listing 1: Splitting of the embedding pass to save memory, simplified.

def distributed_contrastive_loss(q, p, n):
Gather in-batch negatives across devices...
Compute contrastive loss...

Split triplet into three forward passes
pos_rep = model(pos)
with torch.no_grad():

q_rep = model(query)
neg_rep = model(neg)

Only perform backward pass on positive documents
loss = distributed_contrastive_loss(q_rep, pos_rep, neg_rep)
loss.backward()

pos_rep = pos_rep.detach()
Perform forward + backward on negatives & reuse rest
neg_rep = model(neg)
loss = distributed_contrastive_loss(q_rep, pos_rep, neg_rep)
loss.backward()

Perform forward + backward on queries & reuse rest
neg_rep = neg_rep.detach()
q_rep = model(query)
loss = distributed_contrastive_loss(q_rep, pos_rep, neg_rep)
loss.backward()

in-batch negatives while allowing computation of gradients for each triplet at a time, thus effectively
corresponding to gradient accumulation for contrastive loss. However, it comes at the cost of
additional forward passes.

Across training runs, we make use of all three strategies (splitting, distributed training, GradCache).

L HYPERPARAMETERS

We finetune all parameters of our models for up to 1253 steps. Our learning rate is 2e-5, we use
3% of steps for linear warm-up of the learning rate and decay it linearly to 0 over training. To save
memory, we use PyTorch FSDP (Zhao et al., 2023), gradient checkpointing, BF16 mixed precision
training, and strategies outlined in Appendix K. During training, we use a sequence length of 2048
for generative samples, 256 for embedding queries, and 2048 for embedding documents unless
otherwise specified. We finetune using the Adam optimizer (Kingma & Ba, 2017) with beta1=0.9
and beta2=0.999 and no weight decay. We also use Flash-Attention 2 (Dao et al., 2022; Dao, 2023)
via PyTorch SDPA.

We evaluate models using the settings put forth by the creators of MTEB (Muennighoff et al., 2023c),
Tülu (Ivison et al., 2023; Wang et al., 2024) and HumanEvalSynthesize (Muennighoff et al., 2023a;
Zhuo et al., 2024). For MTEB, we evaluate using a maximum sequence length of 512 unless otherwise
specified.

M EMBEDDING INSTRUCTION FOR GENERATIVE MODELS

As prior instruction-tuned models have been trained without an embedding objective, it is unclear
whether one should add an instruction when evaluating them on embedding tasks. We benchmark
the Mistral 7B instruct model on MTEB with and without instruction in Table 25. We find that
performance is around the same, however, adding instructions performs slightly better. Thus, we add
an instruction for all instruction-tuned models when benchmarking their embedding performance.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Table 25: Benchmarking the benefit of an embedding instruction for generative instruction-
tuned models. When an instruction is used (”Mistral Instruct w/”), we use the default instructions
from Instructor XL with the prompt template of the Mistral Instruct model. For no instruction
(”Mistral Instruct w/o”), the procedure is the same as for the base model (”Mistral”)

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

Mistral 63.5 34.6 53.5 43.2 13.2 57.4 19.7 40.5
Mistral Instruct w/o 65.4 35.6 60.2 44.6 16.8 61.1 25.9 43.3
Mistral Instruct w/ 67.1 34.6 59.6 44.8 16.3 63.4 25.9 43.7

N HUMANEVAL FORMAT Table 26: HumanEvalSynthesize with dif-
ferent formats using Tülu 2 7B.

Tülu 2 7B
Format No Chat Chat

Pass@1 23.4 24.5
Pass@10 32.4 31.3

In Tülu 2 (Ivison et al., 2023), models are evaluated
on HumanEval (Chen et al., 2021) without the model’s
chat format. As this does not reflect the intended usage
of the models, we instead use the appropriate chat for-
mat for evaluating HumanEval. To do so, we use the
instructions and evaluation procedure from HumanEval-
Synthesize (Muennighoff et al., 2023a). In Table 26 we benchmark the impact this has on performance
for the Tülu 2 7B model (Ivison et al., 2023). We find that the performance is around equivalent and
thus use the chat format for all evaluations of chat models. For non-chat models, we use the original
HumanEval continuation format as proposed by Chen et al. (2021)

O EMBEDDING IN FP32 VS BF16

We perform all training and evaluations in BF16 (bfloat16) mixed precision to speed up computations.
We verified that it performs comparably to FP32 (float32) on MTEB in Table 27. Note that pooling
and subsequent similarity computations are still in FP32.

Table 27: Embeddings in FP32 vs BF16. Benchmarking of the raw Mistral 7B model. “FP32”
corresponds to doing all computations in float32 precision. “BF16” and “BF16 Cache” corresponds
to doing most operations in bfloat16 except for operations that PyTorch auto casts to float32 (e.g.
normalization), pooling and similarity computations. For “BF16 Cache”, we cast the embeddings
after pooling to BF16 and then back to FP32 before similarity computations. This corresponds to
locally caching the embeddings in BF16 to save storage and then casting them to FP32 at inference.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

FP32 63.46 34.62 53.56 43.24 13.26 57.38 19.87 40.51
BF16 63.47 34.60 53.52 43.24 13.24 57.38 19.68 40.50
BF16 Cache 63.47 34.56 53.52 43.25 13.11 57.38 19.71 40.46

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

P UNRELIABILITY OF MT-BENCH

Table 28: Using GPT-4 vs GPT-4 Turbo as
a judge for MT-Bench. Each evaluator is
provided with the same generations of the
same instruction-tuned model.

GPT-4 GPT-4 Turbo Drop

Turn 1 4.08 3.05 25%
Turn 2 2.64 1.88 29%

Avg. 3.36 2.48 26%

We experiment with using MT-Bench with its rec-
ommended absolute scores for our generative eval-
uation (Zheng et al., 2023). However, we find that as
soon as we switch the LLM Evaluator from GPT-4
to GPT-4 Turbo, the scores change significantly (Ta-
ble 28). GPT-4 is a closed-source model with changes
happening behind the scenes that users may not know
about (Chen et al., 2023). Thus, if OpenAI decides to
change GPT-4, all existing MT-Bench absolute scores
would essentially become obsolete. The same applies
if the API is retired. To alleviate this, we also exper-
iment with using Zephyr 7B β (Tunstall et al., 2023)
and Llama 2 70B Chat (Touvron et al., 2023) as eval-
uators, however, we find them to often not provide any rating as they struggle to understand the
prompt. While AlpacaEval (Dubois et al., 2023; Li et al., 2023b), which we use, shares some of
these problems, its comparison-based evaluation is more stable. This is because comparing if one
generation is better than another generally has an objective ground truth solution. Meanwhile, there
is no objective solution as to whether an absolute score of a given generation should be 3 or 4
(MT-Bench has eleven levels from 0-10). This is up to the subjective value system of the evaluator.

Q LIMITATIONS AND FUTURE WORK

Efficiency As mentioned in §1, training using GRIT requires more compute than only embedding or
only generative training as two forward and backward passes are required. As finetuning is generally
cheaper than pretraining, this is not a major problem, but efficiency improvements would nonetheless
be worthwhile. One potential way to improve efficiency would be to extract the embedding and
generative signal from the same samples, rather than separate samples. This could halve the number
of forward passes required, yet due to the different loss functions, it may not make the backward
passes significantly faster.

Performance improvements While we find that GRITLM performs strongly on embedding and
generative tasks (§3.2), there have been many recent models with even stronger performance in
either embedding or generative tasks; yet not the combination of both. A natural future work would
therefore be extending the GRIT approach to more recent models, such as the Llama-3 series of
models (Dubey et al., 2024) to build stronger models that can handle both embedding and generation.

Caching improvements As we outline in §5, the caching variants with GRITLM suffer from
attention mismatch problems. Further, doc caching requires a significant amount of extra storage.
While storage is usually cheap, it may nonetheless be prohibitively expensive for very large indices.
One promising avenue for future work is improving caching with GRITLM, such as via finetuning
with caching, such that it learns to deal with the mismatch problem.

GRITLM Agents Future work may consider using the embedding capability to let the generative
model initiate a search over an index when it deems necessary. Currently, this is often accomplished
via external retrieval plugins. Such plugins are no longer necessary if the model can retrieve on
its own. Teaching the model to invoke its own embedding capability likely requires additional
finetuning (just like teaching it to invoke an external plugin (Schick et al., 2023)). A sample could
look something like:
“<|user|>\nWhat is the capital of Japan?\n<|internal|>\nI am not
sure I know this. Let me produce an embedding for it and search
for the answer. Retrieve answers for this query.\n<|embed|>\nWhat
is the capital of Japan?\n<|output|>\nTokyo, Japan’s busy capital,
mixes the ultramodern and the traditional..\n<|assistant|>\n
The capital of Japan is Tokyo.\n</s>”

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Pretraining For our experiments we take an off-the-shelf pretrained language model. However, it
should also be possible to use the GRIT approach to pretrain from scratch. As labeled embedding
data is likely too scarce for pretraining, one could either rely on unsupervised approaches for the
embedding objective, such as RetroMAE (Xiao et al., 2022; Xiao & Liu, 2022), or use methods like
data augmentation (Dhole et al., 2022), pruning (Xia et al., 2023) or multi-epoch training to deal with
the data constraint (Muennighoff et al., 2023b; Luukkonen et al., 2023).

Format Efficiency Our format in Figure 3 is inefficient, as encoding the embedding for-
mat, <s><|user|>\n<|embed|>\n, requires 13 tokens and encoding the generative format,
<s><|user|>\n<|assistant|>\n</s>, requires 15 tokens. Using special tokens could
simplify this and thus make training and inference slightly cheaper.

Training efficiency: Packing and Reusing It is common to pack samples during generative
instruction tuning to maximize efficiency (Chung et al., 2022; Muennighoff et al., 2023d). Packing
embedding samples during training should also be possible by ensuring attention is only paid to
each respective sample. Going even further is it possible to pack generative and embedding training
data into the same sample and reuse the same sample for both tasks? This could look similar to the
example provided in “GRITLM Agents” with the generative loss applied over the assistant response
and the contrastive loss applied to the representation of the text following “<|embed|>”. By reusing
samples it may be possible to significantly decrease the resources needed for GRIT.

R DATASET COMPOSITION

Table 29: E5S dataset composition.

Dataset (↓) Num samples

DuReader (Qiu et al., 2022) 86,395
ELI5 (Fan et al., 2019) 50293
FEVER (Thorne et al., 2018) 71,257
GPT4 Bitext (Wang et al., 2024) 89,324
GPT4 P2P (Wang et al., 2024) 16,842
GPT4 P2S (Wang et al., 2024) 121,878
GPT4 Retrieval (Wang et al., 2024) 166,602
GPT4 S2S (Wang et al., 2024) 13,481
GPT4 STS (Wang et al., 2024) 98,626
HotpotQA (Yang et al., 2018) 68,659
NLI (Gao et al., 2022) 275,601
MIRACL (Zhang et al., 2022) 40,203
MSMARCO (Bajaj et al., 2018) 244,582
MSMARCO Doc (Bajaj et al., 2018) 71,594
Mr. TyDi (Zhang et al., 2021) 48,729
NQ (Kwiatkowski et al., 2019) 71,408
S2ORC (Lo et al., 2020) 80,000
SQuAD (Rajpurkar et al., 2016) 87,599
T2Ranking (Xie et al., 2023) 112,335
TriviaQA (Karpukhin et al., 2020) 60,296
Quora (DataCanary et al., 2017) 14,926

Total 1,890,630

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Table 30: MEDI2 dataset composition.

MEDI Dataset (↓) Num samples

AGNews (Zhang et al., 2016) 199,792
Altlex (Hidey & McKeown, 2016) 112,602
Amazon QA (Gupta et al., 2019) 199,180
Amazon Review (Keung et al., 2020) 198,298
CC News (Hamborg et al., 2017) 190,503
CNN/Dailymail (Fabbri et al., 2021) 189,407
COCO Captions (Chen et al., 2015) 82,783
ELI5 (Fan et al., 2019) 196,572
FEVER KILT (Thorne et al., 2018; Petroni et al., 2021) 71,257
Flickr 30k (Young et al., 2014) 31,783
Gigaword (Rush et al., 2015; Graff et al., 2003) 200,000
GooAQ (Khashabi et al., 2021) 199,981
HotpotQA KILT (Yang et al., 2018; Petroni et al., 2021) 65,351
NLI (Gao et al., 2022) 277,195
MSMARCO (Bajaj et al., 2018) 491,980
MedMCQA (Pal et al., 2022) 156,905
Multi-LexSum (Shen et al., 2022) 2,771
NPR (Team, 2021b) 193,399
NQ (Kwiatkowski et al., 2019) 73,226
PAQ (Lewis et al., 2021b) 190,162
PubMedQA (Jin et al., 2019) 190,481
Reddit (Team, 2021c) 196,247
S2ORC (Lo et al., 2020) 193,458
SQuAD (Rajpurkar et al., 2016) 84,105
SciTLDR (Cachola et al., 2020) 1,742
SearchQA (Dunn et al., 2017) 114,520
Sentence Compression (Filippova & Altun, 2013) 179,996
SimpleWiki (Coster & Kauchak, 2011) 102,035
StackExchange (Team, 2021a) 201,050
SuperNI (300 datasets) (Wang et al., 2022c) 2,682,465
SPECTER (Cohan et al., 2020) 684,000
T-REx KILT (ElSahar et al., 2018; Petroni et al., 2021) 191,383
Quora (DataCanary et al., 2017) 101,762
WikiAnswers (Fader et al., 2014) 200,000
WikiHow (Koupaee & Wang, 2018) 128,542
XSum (Narayan et al., 2018) 190,427
Yahoo (Zhang et al., 2016) 198,346
Zeroshot KILT (Levy et al., 2017; Petroni et al., 2021) 124,547

Total 9,084,806

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

S DATASET SAMPLES

Query instruction:

Represent the sentence for retrieving supporting documents;

Query sample:

what two plates form the san andreas fault

Positive instruction:

Represent the document for retrieval;

Positive sample:

The San Andreas Fault marks the junction between the North American and Pacific Plates. The fault
is 1300 km long, extends to at least 25 km in depth, and has a north west-south east trend. It is
classified as a right lateral (dextral) strike-slip fault. Loading the player ...

Negative instruction:

Represent the document for retrieval;

Negative sample:

The San Andreas Fault is the sliding boundary between the Pacific Plate and the North American
Plate. It slices California in two from Cape Mendocino to the Mexican border. San Diego, Los
Angeles and Big Sur are on the Pacific Plate.

Figure 10: MEDI sample.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Query instruction:

Represent this question to retrieve a fitting Wikipedia passage (formal)

Query sample:

which two plates meet along the west coast of the USA

Positive instruction:

Represent this Wikipedia text in order to get a user query which it answers!

Positive sample:

on to a transitional deformation zone in the Chersky Range, then the Ulakhan Fault between it and
the Okhotsk Plate, and finally the Aleutian Trench to the end of the Queen Charlotte Fault system.
The westerly boundary is the Queen Charlotte Fault running offshore along the coast of Alaska and
the Cascadia subduction zone to the north, the San Andreas Fault through California, the East Pacific
Rise in the Gulf of California, and the Middle America Trench to the south.
On its western edge, the Farallon Plate has been subducting

Negative instruction:

Represent this passage to easily find a natural-written user question that can be answered by it.

Negative sample:

the continental margin.
Types.
There are two types of continental margins: äctiveänd p̈assivem̈argins.
Active margins are typically associated with lithospheric plate boundaries. These active margins can
be convergent or transform margins, and are also places of high tectonic activity, including volcanoes
and earthquakes. The West Coast of North America and South America are active margins. Active
continental margins are typically narrow from coast to shelf break, with steep descents into trenches.
Convergent active margins occur where oceanic plates meet continental

Figure 11: MEDI2 sample.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Query instruction:

Given a question, retrieve Wikipedia passages that answer the question

Query sample:

which two plates meet along the west coast of the USA

Positive sample:

North American Plate boundary is the Queen Charlotte Fault running offshore along the coast of
Alaska and the Cascadia subduction zone to the north, the San Andreas Fault through California,
the East Pacific Rise in the Gulf of California, and the Middle America Trench to the south. On
its western edge, the Farallon Plate has been subducting under the North American Plate since the
Jurassic Period. The Farallon Plate has almost completely subducted beneath the western portion of
the North American Plate leaving that part of the North American Plate in contact with the Pacific
Plate as the San Andreas Fault. The Juan

Negative sample:

Caribbean Plate Caribbean Plate The Caribbean Plate is a mostly oceanic tectonic plate underlying
Central America and the Caribbean Sea off the north coast of South America. Roughly 3.2 million
square kilometers (1.2 million square miles) in area, the Caribbean Plate borders the North American
Plate, the South American Plate, the Nazca Plate and the Cocos Plate. These borders are regions of
intense seismic activity, including frequent earthquakes, occasional tsunamis, and volcanic eruptions.
The northern boundary with the North American plate is a transform or strike-slip boundary which
runs from the border area of Belize, Guatemala (Motagua Fault), and Honduras in Central

Figure 12: E5 sample. The E5 dataset does not use instructions for documents, thus the positive and
negative samples do not have instructions.

Instruction:

Q: Lloyd, Mark, and Michael have their Pokemon cards collection. Currently, Mark has thrice as
many cards as Lloyd but has 10 fewer cards than Michael. If Michael has 100 cards now, how many
more cards should they collect so that all three of them will have a total of 300 cards?
A: 80
Explain how we arrive at this answer:

Sample:

Explanation: Mark has 10 fewer cards than Michael so Mark has 100 cards - 10 cards = 90 cards.
So, Lloyd has 90 cards / 3 = 30 cards. All three of them have 90 cards + 30 cards + 100 cards = 220
cards. Thus, they need to collect 300 cards - 220 cards = 80 more cards.

Figure 13: Tülu 2 sample.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

T EVALUATION PROMPTS

T.1 EMBEDDING PROMPTS

Table 31 contains the prompt for each MTEB dataset when training on the E5 dataset, which are the
same instructions as used in Wang et al. (2024). Table 32 contains the MTEB prompts we use when
training on MEDI2, which we wrote ourselves. For models trained on MEDI, we use the instructions
for Instructor-XL from Su et al. (2023).

Table 31: Instructions used for evaluation on the MTEB benchmark when training with the E5
dataset. “STS*” indicates we use the same instructions for all the STS tasks. For retrieval datasets,
we do not use an instruction for the document and only display the query instruction.

Task Name Instruction

AmazonCounterfactualClassif. Classify a given Amazon customer review text as either counter-
factual or not-counterfactual

AmazonPolarityClassification Classify Amazon reviews into positive or negative sentiment

AmazonReviewsClassification Classify the given Amazon review into its appropriate rating
category

Banking77Classification Given a online banking query, find the corresponding intents

EmotionClassification Classify the emotion expressed in the given Twitter message
into one of the six emotions: anger, fear, joy, love, sadness, and
surprise

ImdbClassification Classify the sentiment expressed in the given movie review text
from the IMDB dataset

MassiveIntentClassification Given a user utterance as query, find the user intents

MassiveScenarioClassification Given a user utterance as query, find the user scenarios

MTOPDomainClassification Classify the intent domain of the given utterance in task-oriented
conversation

MTOPIntentClassification Classify the intent of the given utterance in task-oriented conver-
sation

ToxicConversationsClassif. Classify the given comments as either toxic or not toxic

TweetSentimentClassification Classify the sentiment of a given tweet as either positive, negative,
or neutral

ArxivClusteringP2P Identify the main and secondary category of Arxiv papers based
on the titles and abstracts

ArxivClusteringS2S Identify the main and secondary category of Arxiv papers based
on the titles

BiorxivClusteringP2P Identify the main category of Biorxiv papers based on the titles
and abstracts

BiorxivClusteringS2S Identify the main category of Biorxiv papers based on the titles

MedrxivClusteringP2P Identify the main category of Medrxiv papers based on the titles
and abstracts

MedrxivClusteringS2S Identify the main category of Medrxiv papers based on the titles

RedditClustering Identify the topic or theme of Reddit posts based on the titles

RedditClusteringP2P Identify the topic or theme of Reddit posts based on the titles and
posts

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

StackExchangeClustering Identify the topic or theme of StackExchange posts based on the
titles

StackExchangeClusteringP2P Identify the topic or theme of StackExchange posts based on the
given paragraphs

TwentyNewsgroupsClustering Identify the topic or theme of the given news articles

SprintDuplicateQuestions Retrieve duplicate questions from Sprint forum

TwitterSemEval2015 Retrieve tweets that are semantically similar to the given tweet

TwitterURLCorpus Retrieve tweets that are semantically similar to the given tweet

AskUbuntuDupQuestions Retrieve duplicate questions from AskUbuntu forum

MindSmallReranking Retrieve relevant news articles based on user browsing history

SciDocsRR Given a title of a scientific paper, retrieve the titles of other
relevant papers

StackOverflowDupQuestions Retrieve duplicate questions from StackOverflow forum

ArguAna Given a claim, find documents that refute the claim

ClimateFEVER Given a claim about climate change, retrieve documents that
support or refute the claim

CQADupstackRetrieval Given a question, retrieve detailed question descriptions from
Stackexchange that are duplicates to the given question

DBPedia Given a query, retrieve relevant entity descriptions from DBPedia

FEVER Given a claim, retrieve documents that support or refute the claim

FiQA2018 Given a financial question, retrieve user replies that best answer
the question

HotpotQA Given a multi-hop question, retrieve documents that can help
answer the question

MSMARCO Given a web search query, retrieve relevant passages that answer
the query

NFCorpus Given a question, retrieve relevant documents that best answer
the question

NQ Given a question, retrieve Wikipedia passages that answer the
question

QuoraRetrieval Given a question, retrieve questions that are semantically equiva-
lent to the given question

SCIDOCS Given a scientific paper title, retrieve paper abstracts that are cited
by the given paper

SciFact Given a scientific claim, retrieve documents that support or refute
the claim

Touche2020 Given a question, retrieve detailed and persuasive arguments that
answer the question

TRECCOVID Given a query on COVID-19, retrieve documents that answer the
query

STS* Retrieve semantically similar text.

SummEval Given a news summary, retrieve other semantically similar sum-
maries

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Table 32: Instructions used for evaluation on the MTEB benchmark when training with the
MEDI2 dataset. For asymmetric datasets, Q refers to instructions for queries, while D refers to
document instructions.

Task Name Instruction

AmazonCounterfactualClassification Represent the text to find another sentence with the same coun-
terfactuality, e.g. sentences with ”would”, ”wish”, etc. should
match with other sentences of that kind.

AmazonPolarityClassification Represent the review for finding another Amazon review with the
same sentiment (positive / negative)

AmazonReviewsClassification Represent the review for finding another Amazon review with the
same rating

Banking77Classification Represent the text for finding another one-sentence banking query
with the same intent

EmotionClassification Represent the text for finding another one-sentence text with the
same emotion

ImdbClassification Represent the text for finding another one-sentence movie review
with the same sentiment

MassiveIntentClassification Represent the text for finding another text of a few words with
the same intent

MassiveScenarioClassification Represent the text for finding another text of a few words about
the same scenario

MTOPDomainClassification Represent the text for finding another text of a few words about
the same domain

MTOPIntentClassification Represent the text for finding another text of a few words with
the same intent

ToxicConversationsClassification Represent the text for finding another comment of up to a passage
in length with the same level of toxicity (either toxic or not toxic)

TweetSentimentExtractionClassification Represent the tweet for finding another tweet with the same
sentiment (positive / neutral / negative)

ArxivClusteringP2P Represent the text to find another arXiv title with abstract (con-
catenated) about the same topic

ArxivClusteringS2S Represent the text to find another arXiv title about the same topic

BiorxivClusteringP2P Represent the text to find another bioRxiv title with abstract
(concatenated) about the same topic

BiorxivClusteringS2S Represent the text to find another bioRxiv title about the same
topic

MedrxivClusteringS2S Represent the text to find another medRxiv title about the same
topic

MedrxivClusteringP2P Represent the text to find another medRxiv title with abstract
(concatenated) about the same topic

RedditClustering Represent the text to find another Reddit community title that
stems from the same subreddit

RedditClusteringP2P Represent the text to find another Reddit community title with
post (concatenated) from the same subreddit

StackExchangeClustering Represent the text to find another StackExchange title that stems
from the same StackExchange

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

StackExchangeClusteringP2P Represent the text to find another StackExchange title with post
(concatenated) that stems from the same StackExchange

TwentyNewsgroupsClustering Represent the title to find a similar news title from the same
newsgroup

SprintDuplicateQuestions Represent the question to be matched with another duplicate user
question from the Sprint community forum

TwitterSemEval2015 Represent the tweet to find another tweet that is a paraphrase of it

TwitterURLCorpus Represent the tweet to find another tweet that is a paraphrase of it

ArguAna Q Represent the passage to find a passage with a counter-argument
about the same topic to it

ArguAna D Represent the passage to find a passage with a counter-argument
about the same topic to it

ClimateFEVER Q Represent the climate-based claim to find a Wikipedia abstract to
support it

ClimateFEVER D Represent the Wikipedia abstract to find a climate-related claim
that it supports

CQADupstackAndroidRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Android StackExchange forum

CQADupstackAndroidRetrieval D Represent the question title with body posted by a user to find
a duplicate user question title from the Android StackExchange
forum

CQADupstackEnglishRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the English StackExchange forum

CQADupstackEnglishRetrieval D Represent the question title with body posted by a user to find
a duplicate user question title from the English StackExchange
forum

CQADupstackGamingRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Gaming StackExchange forum

CQADupstackGamingRetrieval D Represent the question title with body posted by a user to find
a duplicate user question title from the Gaming StackExchange
forum

CQADupstackGisRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Gis StackExchange forum

CQADupstackGisRetrieval D Represent the question title with body posted by a user to find a
duplicate user question title from the Gis StackExchange forum

CQADupstackMathematicaRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Mathematica StackExchange
forum

CQADupstackMathematicaRetrieval D Represent the question title with body posted by a user to find
a duplicate user question title from the Mathematica StackEx-
change forum

CQADupstackPhysicsRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Physics StackExchange forum

CQADupstackPhysicsRetrieval D Represent the question title with body posted by a user to find
a duplicate user question title from the Physics StackExchange
forum

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

CQADupstackProgrammersRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Programmers StackExchange
forum

CQADupstackProgrammersRetrieval D Represent the question title with body posted by a user to find
a duplicate user question title from the Programmers StackEx-
change forum

CQADupstackStatsRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Stats StackExchange forum

CQADupstackStatsRetrieval D Represent the question title with body posted by a user to find a
duplicate user question title from the Stats StackExchange forum

CQADupstackTexRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Tex StackExchange forum

CQADupstackTexRetrieval D Represent the question title with body posted by a user to find a
duplicate user question title from the Tex StackExchange forum

CQADupstackUnixRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Unix StackExchange forum

CQADupstackUnixRetrieval D Represent the question title with body posted by a user to find a
duplicate user question title from the Unix StackExchange forum

CQADupstackWebmastersRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Webmasters StackExchange
forum

CQADupstackWebmastersRetrieval D Represent the question title with body posted by a user to find a
duplicate user question title from the Webmasters StackExchange
forum

CQADupstackWordpressRetrieval Q Represent the title of a user question to find a duplicate user ques-
tion title with body from the Wordpress StackExchange forum

CQADupstackWordpressRetrieval D Represent the question title with body posted by a user to find a
duplicate user question title from the Wordpress StackExchange
forum

DBPedia Q Represent the entity to find a title with abstract about this entity
from the DBPedia corpus

DBPedia D Represent the title with abstract of a DBPedia corpus entry to find
the entity of a few words it is about

FEVER Q Represent the claim to find a Wikipedia abstract to support it

FEVER D Represent the Wikipedia abstract to find a claim that it supports

FiQA2018 Q Represent the StackExchange user query to find a StackExchange
post from the Investment topic that answers it

FiQA2018 D Represent the StackExchange post from the Investment topic to
find a StackExchange user query that it answers

HotpotQA Q Represent the multi-hop question to find a Wikipedia passage that
answers it

HotpotQA D Represent the Wikipedia passage to find a multi-hop question that
it answers

MSMARCO Q Represent the Bing user search query to find a passage that ade-
quately addresses it

MSMARCO D Represent the passage for finding a Bing user search query about
it

NFCorpus Q Represent the query from NutritionFacts to find a title with text
of a medical document from PubMed about it

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

NFCorpus D Represent this text of a medical document from PubMed to find a
query someone may enter at NutritionFacts that it answers

NQ Q Represent the Google search query to find an answer span from a
Wikipedia article that addresses it

NQ D Represent the Wikipedia article span to find a Google search
query that would be addressed by it

SCIDOCS Q Represent the scientific paper title to find the title with abstract
of a scientific paper on PubMed that it has likely cited

SCIDOCS D Represent the title with abstract of this scientific paper to find the
title of another scientific paper on PubMed that likely cites this
article

SciFact Q Represent the scientific claim to find a scientific paper abstract
from PubMed to support it

SciFact D Represent the scientific paper abstract from PubMed to find a
scientific claim that it supports

TRECCOVID Q Represent the search query to find a scientific article about
COVID-19 that adequately addresses the query

TRECCOVID D Represent the scientific article about COVID-19 to find a user
query that it adequately addresses

Touche2020 Q Represent the question to find a title with passage of an argument
from args.me that takes a stance about it

Touche2020 D Represent the title with passage of an argument from args.me to
find a question that it takes a stance about

QuoraRetrieval Q Represent the Quora question to find another short duplicate
question on Quora

QuoraRetrieval D Represent the Quora question to find another short duplicate
question on Quora

AskUbuntuDupQuestions Q Represent the query to find a duplicate query on the AskUbuntu
community forum

AskUbuntuDupQuestions D Represent the query to find a duplicate query on the AskUbuntu
community forum

MindSmallReranking Q Represent the news headline to find another news headline that
the same reader would enjoy

MindSmallReranking D Represent the news headline to find another news headline that
the same reader would enjoy

SciDocsRR Q Represent the title to find a similar scientific paper title

SciDocsRR D Represent the title to find a similar scientific paper title

StackOverflowDupQuestions Q Represent the query to find a duplicate query on the StackOver-
flow Java/JavaScript/Python community forums

StackOverflowDupQuestions D Represent the query to find a duplicate query on the StackOver-
flow Java/JavaScript/Python community forums

BIOSSES Represent the text to find another biological statement with the
same meaning

SICK-R Represent the sentence to find another sentence with the same
meaning

STS12 Represent the sentence to find another sentence with the same
meaning

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

STS13 Represent the sentence to find another sentence with the same
meaning

STS14 Represent the sentence to find another sentence with the same
meaning

STS15 Represent the sentence to find another sentence with the same
meaning

STS16 Represent the sentence to find another sentence with the same
meaning

STS17 Represent the sentence to find another sentence with the same
meaning

STS22 Represent the sentence to find another sentence with the same
meaning

STSBenchmark Represent the sentence to find another sentence with the same
meaning

SummEval Q Represent the human-written summary to find a high-quality
machine-written summary of the same news article

SummEval D Represent the machine-written summary to find a human-written
summary with similar quality of the same news article

T.2 EMBEDDING FEW-SHOT PROMPTS

Table 33: 1-shot example for the model trained on E5S. The example is appended to the respective
instruction in Table 31 separated by two newlines.

Task Name Instruction

Banking77Classification For example given ”I am still waiting on my card?”, it would
match with ”card arrival”

EmotionClassification For example given ”ive been feeling a little burdened lately wasnt
sure why that was”, it would match with ”sadness”

ImdbClassification For example given ”If only to avoid making this type of film in
the future. This film is interesting as an experiment but tells no
cogent story.¡br /¿¡br /¿One might feel virtuous for sitting thru it
because it touches on so many IMPORTANT issues but it does so
without any discernable motive. The viewer comes away with no
new perspectives (unless one comes up with one while one’s mind
wanders, as it will invariably do during this pointless film).¡br
/¿¡br /¿One might better spend one’s time staring out a window
at a tree growing.¡br /¿¡br /¿”, it would match with ”negative”

BiorxivClusteringP2P For example given ”Association of CDH11 with ASD revealed
by matched-gene co-expression analysis and mouse behavioral
studies”, it would match with ”neuroscience”

TwitterSemEval2015 For example given ”The Ending to 8 Mile is my fav part of the
whole movie”, it would match with ”Those last 3 battles in 8 Mile
are THE shit”

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

TwitterURLCorpus For example given ”Liberals , dont let Donald Trump tarnish L.L.
Beans sterling brand reputation ”, it would match with ”Liber-
als, Don’t Let Donald Trump Tarnish L.L. Bean’s
Sterling Brand Reputation”

SprintDuplicateQuestions For example given ”Why is it impossible for me to find a easy
way to send a picture with text on my Kyocera DuraCore ?”, it
would match with ”Send or receive a picture with text - Kyocera
DuraCore”

AskUbuntuDupQuestions For example given ”what is a short cut i can use to switch appli-
cations ?”, you should retrieve ”keyboard short cut for switching
between two or more instances of the same application ?”

ArguAna For example given ”People will die if we don’t do animal testing
Every year, 23 new drugs are introduced in the UK alone.[13]
Almost all will be tested on animals. A new drug will be used
for a long time. Think of all the people saved by the use of
penicillin. If drugs cost more to test, that means drug companies
will develop less. This means more people suffering and dying”,
you should retrieve ”animals science science general ban animal
testing junior Many of these drugs are “me too” drugs – ones with
a slight change that doesn’t make much difference to an existing
drug. [14] So often the benefits from animal testing are marginal,
and even if there was a slight increase in human suffering, it
would be worth it based on the animal suffering saved.”

SCIDOCS For example given ”A Direct Search Method to solve Economic
Dispatch Problem with Valve-Point Effect”, you should retrieve
”A Hybrid EP and SQP for Dynamic Economic Dispatch with
Nonsmooth Fuel Cost Function Dynamic economic dispatch
(DED) is one of the main functions of power generation opera-
tion and control. It determines the optimal settings of generator
units with predicted load demand over a certain period of time.
The objective is to operate an electric power system most eco-
nomically while the system is operating within its security limits.
This paper proposes a new hybrid methodology for solving DED.
The proposed method is developed in such a way that a simple
evolutionary programming (EP) is applied as a based level search,
which can give a good direction to the optimal global region, and
a local search sequential quadratic programming (SQP) is used
as a fine tuning to determine the optimal solution at the final. Ten
units test system with nonsmooth fuel cost function is used to
illustrate the effectiveness of the proposed method compared with
those obtained from EP and SQP alone.”

STS12 For example given ”Counties with population declines will be Ver-
million, Posey and Madison.”, it would match with ”Vermillion,
Posey and Madison County populations will decline.”

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

SummEval The provided query could be ”Mexican restaurant has decided
to tap into $70 billion food delivery market. Fast-casual chain
will work with the Postmates app to allow mobile orders. App
works in similar way to Uber, using hired drivers to deliver the
food. But the chain will add a 9% service charge - on top of
Postmates$́5 rate.” and the positive ”chipotle has decided to tap
into the $ 70 billion food delivery market by teaming up with an
app to bring burritos straight to customers d́oors . the fast-casual
chain will work with the postmates app to begin offering delivery
for online and mobile orders in 67 cities . the restaurant plans
to add a nine per cent service charge - with the delivery fees for
postmates beginning at $ 5 and up depending on distance and
demand .”

Table 34: 1-shot example for the model trained on MEDI2. The example is appended to the
respective instruction in Table 32 separated by two newlines.

Task Name Instruction

Banking77Classification The provided query could be ”I am still waiting on my card?” and
the positive ”What can I do if my card still hasn’t arrived after 2
weeks?”

EmotionClassification The provided query could be ”ive been feeling a little burdened
lately wasnt sure why that was” and the positive ”i feel like i have
to make the suffering i m seeing mean something”

ImdbClassification The provided query could be ”If only to avoid making this type
of film in the future. This film is interesting as an experiment but
tells no cogent story.¡br /¿¡br /¿One might feel virtuous for sitting
thru it because it touches on so many IMPORTANT issues but it
does so without any discernable motive. The viewer comes away
with no new perspectives (unless one comes up with one while
one’s mind wanders, as it will invariably do during this pointless
film).¡br /¿¡br /¿One might better spend one’s time staring out
a window at a tree growing.¡br /¿¡br /¿” and the positive ”The
silent one-panel cartoon Henry comes to Fleischer Studios, billed
as ”The world’s funniest human” in this dull little cartoon. Betty,
long past her prime, thanks to the Production Code, is running
a pet shop and leaves Henry in charge for far too long – five
minutes. A bore.”

SprintDuplicateQuestions The provided query could be ”Why is it impossible for me to find
a easy way to send a picture with text on my Kyocera DuraCore
?” and the positive ”Send or receive a picture with text - Kyocera
DuraCore”

TwitterSemEval2015 For example given ”The Ending to 8 Mile is my fav part of the
whole movie”, it would match with ”Those last 3 battles in 8 Mile
are THE shit”

TwitterURLCorpus For example given ”Liberals , dont let Donald Trump tarnish L.L.
Beans sterling brand reputation ”, it would match with ”Liber-
als, Don’t Let Donald Trump Tarnish L.L. Bean’s
Sterling Brand Reputation”

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

AskUbuntuDupQuestions The provided query could be ”what is a short cut i can use to
switch applications ?” and the positive ”keyboard short cut for
switching between two or more instances of the same application
?”

ArguAna The provided query could be ”People will die if we don’t do
animal testing Every year, 23 new drugs are introduced in the
UK alone.[13] Almost all will be tested on animals. A new drug
will be used for a long time. Think of all the people saved by
the use of penicillin. If drugs cost more to test, that means drug
companies will develop less. This means more people suffering
and dying” and the positive ”animals science science general ban
animal testing junior Many of these drugs are “me too” drugs –
ones with a slight change that doesn’t make much difference to
an existing drug. [14] So often the benefits from animal testing
are marginal, and even if there was a slight increase in human
suffering, it would be worth it based on the animal suffering
saved.”

SCIDOCS The provided query could be ”A Direct Search Method to solve
Economic Dispatch Problem with Valve-Point Effect” and the
positive ”A Hybrid EP and SQP for Dynamic Economic Dispatch
with Nonsmooth Fuel Cost Function Dynamic economic dispatch
(DED) is one of the main functions of power generation opera-
tion and control. It determines the optimal settings of generator
units with predicted load demand over a certain period of time.
The objective is to operate an electric power system most eco-
nomically while the system is operating within its security limits.
This paper proposes a new hybrid methodology for solving DED.
The proposed method is developed in such a way that a simple
evolutionary programming (EP) is applied as a based level search,
which can give a good direction to the optimal global region, and
a local search sequential quadratic programming (SQP) is used
as a fine tuning to determine the optimal solution at the final. Ten
units test system with nonsmooth fuel cost function is used to
illustrate the effectiveness of the proposed method compared with
those obtained from EP and SQP alone.”

STS12 The provided query could be ”Counties with population declines
will be Vermillion, Posey and Madison.” and the positive ”Ver-
million, Posey and Madison County populations will decline.”

SummEval The provided query could be ”Mexican restaurant has decided
to tap into $70 billion food delivery market. Fast-casual chain
will work with the Postmates app to allow mobile orders. App
works in similar way to Uber, using hired drivers to deliver the
food. But the chain will add a 9% service charge - on top of
Postmates$́5 rate.” and the positive ”chipotle has decided to tap
into the $ 70 billion food delivery market by teaming up with an
app to bring burritos straight to customers d́oors . the fast-casual
chain will work with the postmates app to begin offering delivery
for online and mobile orders in 67 cities . the restaurant plans
to add a nine per cent service charge - with the delivery fees for
postmates beginning at $ 5 and up depending on distance and
demand .”

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

T.3 GENERATIVE PROMPTS

Figure 14 until Figure 19 contain the prompts with examples used for our generative tasks.

Input:

<s><|user|>
The following are multiple choice questions (with answers) about abstract algebra.

Find the degree for the given field extension Q(sqrt(2), sqrt(3), sqrt(18)) over Q.
A. 0
B. 4
C. 2
D. 6
Answer:
<|assistant|>
The answer is:

Correct completion:

B

Figure 14: MMLU prompt example.

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

Input:

<s><|user|>
Answer the following questions.
Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After
they are done, there will be 21 trees. How many trees did the grove workers plant today?
Answer: There are 15 trees originally. Then there were 21 trees after some more were planted. So
there must have been 21 - 15 = 6. So the answer is 6.

Question: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the
parking lot?
Answer: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. So the answer is 5.

Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they
have left in total?
Answer: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74.
After eating 35, they had 74 - 35 = 39. So the answer is 39.

Question: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How
many lollipops did Jason give to Denny?
Answer: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave
Denny 20 - 12 = 8. So the answer is 8.

Question: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How
many toys does he have now?
Answer: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more
toys. 5 + 4 = 9. So the answer is 9.

Question: There were nine computers in the server room. Five more computers were installed each
day, from monday to thursday. How many computers are now in the server room?
Answer: There were originally 9 computers. For each of 4 days, 5 more computers were added. So 5
* 4 = 20 computers were added. 9 + 20 is 29. So the answer is 29.

Question: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more.
How many golf balls did he have at the end of wednesday?
Answer: Michael started with 58 golf balls. After losing 23 on tuesday, he had 58 - 23 = 35. After
losing 2 more, he had 35 - 2 = 33 golf balls. So the answer is 33.

Question: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
Answer: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she has 23 -
15 dollars left. 23 - 15 is 8. So the answer is 8.

Question: The girls are trying to raise money for a carnival. Kim raises $320 more than Alexandra,
who raises $430, and Maryam raises $400 more than Sarah, who raises $300. How much money, in
dollars, did they all raise in total?
<|assistant|>
Answer:

Correct completion:

Kim raises 320+430=750 dollars. Maryam raises 400+300=700 dollars. They raise
750+430+400+700=2280 dollars. So the answer is 2280.

Figure 15: GSM8K prompt example.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

Input:

<s><|user|>
Questions that involve enumerating objects and asking the model to count them.

Q: I have a blackberry, a clarinet, a nectarine, a plum, a strawberry, a banana, a flute, an
orange, and a violin. How many fruits do I have?
A: Let’s think step by step.
We first identify the fruits on the list and include their quantity in parentheses:
- blackberry (1)
- nectarine (1)
- plum (1)
- strawberry (1)
- banana (1)
- orange (1)
Now, let’s add the numbers in parentheses: 1 + 1 + 1 + 1 + 1 + 1 = 6. So the answer is 6.

Q: I have an orange, a raspberry, two peaches, a blackberry, an apple, a grape, a nectarine, and three
plums. How many fruits do I have?
A: Let’s think step by step.
We first identify the fruits on the list and include their quantity in parentheses:
- orange (1)
- raspberry (1)
- peaches (2)
- blackberry (1)
- apple (1)
- grape (1)
- nectarine (1)
- plums (3)
Now, let’s add the numbers in parentheses: 1 + 1 + 2 + 1 + 1 + 1 + 1 + 3 = 11. So the answer is 11.

Q: I have a lettuce head, a head of broccoli, an onion, a stalk of celery, two carrots, a garlic, and a
yam. How many vegetables do I have?
A: Let’s think step by step.
We first identify the vegetables on the list and include their quantity in parentheses:
- lettuce (1)
- broccoli (1)
- onion (1)
- celery (1)
- carrots (2)
- garlic (1)
- yam (1)
Now, let’s add the numbers in parentheses: 1 + 1 + 1 + 1 + 2 + 1 + 1 = 8. So the answer is 8.

Q: I have a banana, four strawberries, an apple, two peaches, a plum, a blackberry, and two raspberries.
How many fruits do I have?
<|assistant|>

Correct completion:

12

Figure 16: BBH prompt example.

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

Input:

<s><|user|>
Jawab pertanyaan berikut berdasarkan informasi di bagian yang diberikan.

Bagian: Mula-mula pada pelukis seorang pelukis pemandangan Wahdi Sumanta, Abdullah
Suriosubroto (ayah Basuki Abdullah). Kemudian bertemu dan berkenalan dengan Affandi, Sudarso,
dan Barli. Mereka lalu membentuk kelompok Lima serangkai. Di rumah tempat tinggal Affandi
mereka mengadakan latihan melukis bersama dengan tekun dan mendalam. Dari Wahdi, ia banyak
menggali pengetahuan tentang melukis. Kegiatannya bukan hanya melukis semata, tetapi pada
waktu senggang ia menceburkan diri pada kelompok sandiwara Sunda sebagai pelukis dekor. Dari
pengalaman itulah, ia mengasah kemampuannya.
Pertanyaan: dari manakah Hendra Gunawan belajar melukis?
Jawaban: kelompok Lima serangkai

Bagian: Empat Sehat Lima Sempurna adalah kampanye yang dilakukan pemerintah sejak tahun
1955 untuk membuat masyarakat memahami pola makan yang benar.[1]. Dalam konsep 4 sehat
5 sempurna, makanan dibagi atas empat sumber nutrisi penting, yaitu makanan pokok, lauk pauk,
sayur-mayur, buah-buahan, dan disempurnakan dengan susu bila mampu, menjadi lima sempurna[2]
Konsep ini menekankan pentingnya empat golongan makanan berupa sumber kalori untuk tenaga,
protein untuk pembangun, sayur dan buah sumber vitamin dan mineral untuk pemeliharaan.[1]
Pertanyaan: siapakah yang mencptakan Ide 4 sehat 5 sempurna pertama kali?

<|assistant|>
Jawaban:

Correct completion:

pemerintah

Figure 17: TyDi QA prompt example from Indonesian.

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

Input:

<|user|>
Write a Python function ‘has close elements(numbers: List[float], threshold: float) -¿ bool‘ to solve
the following problem: Check if in given list of numbers, are any two numbers closer to each other
than given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True

<|assistant|>

from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to
each other than

given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""

Correct completion:

for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):

if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:

return True

return False

Figure 18: HumanEvalSynthesize prompt example.

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2025

Input:

<s><|user|>
If you were a Shakespearean character, how would you declare your love for someone in a soliloquy?

Completion by GPT-4 Turbo:

As an AI, I lack personal emotions and experiences, but I can craft a soliloquy in the style of a
Shakespearean character declaring love. Here’s an example:

(Imagine a dimly lit stage, a single spotlight shining down upon the forlorn lover, who
steps forward to share the depths of their heart.)

O, speak, thou lustrous beacon of the night,
With stars enkindled in thine eyes so bright.
Thou art the daybreak to my endless gloom,
The rose that in my barren heart doth bloom.

Forsooth, this love, a tempest full of grace,
Hath swept upon my soul without a trace.
My heart, once caged, now beats beneath thy gaze,
And yearns to laud thy beauty all its days.

What art thou, Love? A tyrant or a muse?
That rends my sense and all my thoughts confuse?
Thou art the riddle none can e’er resolve,
Yet in thy puzzle, my life doth revolve.

With every breath, I thee do magnify,
And to the world, my passion testify.
Thine essence hath become my sole refrain,
A melody that in my mind doth reign.

Shall I compare thee to a summer’s day?
Thou art more lovely and more temperate.
Rough winds do shake the darling buds of May,
And summer’s lease hath all too short a date.

But thy eternal summer shall not fade,
Nor lose possession of that fair thou ow’st.
Nor shall Death brag thou wander’st in his shade,
When in eternal lines to time thou grow’st.

So long as men can breathe, or eyes can see,
So long lives this, and this gives life to thee.

(With a heavy sigh, the lover steps back, their heart laid bare, the words hanging in the air
like the fragrance of an unseen bloom, their love declared, though the object of their affection
remains unaware, the audience enthralled by the vulnerability of true, unspoken love.)

Figure 19: AlpacaEval prompt example.

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2025

T.4 RAG PROMPTS

Generative input:

<s><|user|>
what was the name of darth vader star destroyer
<|assistant|>
The answer is

Generation:

not clear. Darth Vader had a star destroyer, but it was

Figure 20: No RAG example and generation by GRITLM 7B.

Generative input:

<s><|user|>
what was the name of darth vader star destroyer

Star Destroyer The iconic Star Destroyer first appears in the opening scene of Star Wars,
as Darth Vader’s flagship, the Devastator, chases the Tantive IV above Tatooine. This appearance
shows the Imperial ship’s massive size in comparison to the Tantive IV.

Optionally using the prior context answer the query prior to it
<|assistant|>
The answer is

Generation:

the Devastator.</s>

Figure 21: RAG query then document example and generation by GRITLM 7B.

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2025

Generative input:

<s><|user|>
Star Destroyer The iconic Star Destroyer first appears in the opening scene of Star Wars, as Darth
Vader’s flagship, the Devastator, chases the Tantive IV above Tatooine. This appearance shows the
Imperial ship’s massive size in comparison to the Tantive IV.

what was the name of darth vader star destroyer

Answer the prior query while optionally using the context prior to it
<|assistant|>
The answer is

Generation:

the Devastator.</s>

Figure 22: RAG document then query example and generation by GRITLM 7B.

Embedding input (query) passed via key-value states:

<s><|embed|>
what was the name of darth vader star destroyer

Generative input:

\n<|user|>
Star Destroyer The iconic Star Destroyer first appears in the opening scene of Star Wars, as Darth
Vader’s flagship, the Devastator, chases the Tantive IV above Tatooine. This appearance shows the
Imperial ship’s massive size in comparison to the Tantive IV.

Optionally using the prior context answer the query prior to it
<|assistant|>
The answer is

Generation:

Star Destroyer.</s>

Figure 23: GRIT Query Caching example and generation by GRITLM 7B.

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2025

Embedding input (doc) passed via key-value states and cached in the index:

<s><|embed|>
Star Destroyer The iconic Star Destroyer first appears in the opening scene of Star Wars, as Darth
Vader’s flagship, the Devastator, chases the Tantive IV above Tatooine. This appearance shows the
Imperial ship’s massive size in comparison to the Tantive IV.

Generative input:

\n<|user|>
what was the name of darth vader star destroyer

Answer the prior query while optionally using the context prior to it
<|assistant|>
The answer is

Generation:

Devastator. The iconic Star Destroyer first appears in the opening

Figure 24: GRIT Doc Caching example and generation by GRITLM 7B.

Embedding input (doc) passed via key-value states and cached in the index:

<s><|embed|>
Star Destroyer The iconic Star Destroyer first appears in the opening scene of Star Wars, as Darth
Vader’s flagship, the Devastator, chases the Tantive IV above Tatooine. This appearance shows the
Imperial ship’s massive size in comparison to the Tantive IV.

Embedding input (query) passed via key-value states:

<s><|embed|>
what was the name of darth vader star destroyer

Generative input:

\n<|user|>
Answer the prior query while optionally using the context prior to it
<|assistant|>
The answer is

Generation:

the Star Destroyer. The Star Destroyer is a massive spacecraft

Figure 25: GRIT Doc-Query Caching example and generation by GRITLM 7B. Unlike for Doc
Caching, we prepend the bos token (“< s >”) to both query and document, which improved the
match score from 14.13 to 18.39.

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2025

Embedding input (query) passed via key-value states:

<s><|embed|>
what was the name of darth vader star destroyer

Embedding input (doc) passed via key-value states and cached in the index:

<|embed|>
Star Destroyer The iconic Star Destroyer first appears in the opening scene of Star Wars, as Darth
Vader’s flagship, the Devastator, chases the Tantive IV above Tatooine. This appearance shows the
Imperial ship’s massive size in comparison to the Tantive IV.

Generative Input:

\n<|user|>
Optionally using the prior context answer the query prior to it
<|assistant|>
The answer is

Generation:

the Star Destroyer.

Figure 26: GRIT Query-Doc Caching example and generation by GRITLM 7B.

U HARDWARE

For the training of GRITLM 7B, we used 8 nodes with 8 NVIDIA A100 80GB GPUs each for 48
hours corresponding to 3,072 GPU hours. Meanwhile for GRITLM 8X7B, we used 32 nodes with 8
NVIDIA H100 80GB GPUs each for 80 hours corresponding to 20,480 GPU hours. As we train both
models for 1253 steps, this corresponds to several minutes per step. This slow training time is mainly
due to (a) a large batch size per step, (b) large models and our associated strategies to make them fit
into memory at the cost of speed (Appendix K, Appendix L), and (c) a cluster with slow inter-node
communication. The Gen.-only and Emb.-only models in Table 1 used 72 and 1760 H100 80GB
GPU hours, respectively. Adding up all ablations and evaluations, we likely used somewhere around
100,000 GPU hours.

V ARTIFACTS

Table 35: Produced artifacts that will be released upon deanonymization.

Artifact Public Link

Table 6

7B KTO https://hf.co/ANONYMIZED

8x7B KTO https://hf.co/ANONYMIZED

Table 10

CCCC WM https://hf.co/ANONYMIZED

CCCC LT https://hf.co/ANONYMIZED

BBCC M https://hf.co/ANONYMIZED

67

https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2025

Table 11

CC WM https://hf.co/ANONYMIZED

CB M https://hf.co/ANONYMIZED

BB M https://hf.co/ANONYMIZED

Table 12

CC https://hf.co/ANONYMIZED

BC https://hf.co/ANONYMIZED

BC IL https://hf.co/ANONYMIZED

Table 13

Mistral 7B https://hf.co/ANONYMIZED

Llama 2 7B https://hf.co/ANONYMIZED

GPT-J 6B https://hf.co/ANONYMIZED

Table 14

MEDI https://hf.co/ANONYMIZED

MEDI2 NNI https://hf.co/ANONYMIZED

MEDI2 https://hf.co/ANONYMIZED

MEDI2 + W https://hf.co/ANONYMIZED

Table 15

MEDI https://hf.co/ANONYMIZED

MEDI2 https://hf.co/ANONYMIZED

BBCC MEDI https://hf.co/ANONYMIZED

BBCC MEDI2 https://hf.co/ANONYMIZED

BBCC MEDI2BGE https://hf.co/ANONYMIZED

BBCC E5 https://hf.co/ANONYMIZED

Table 16

Tülu 2 1 EP https://hf.co/ANONYMIZED

Tülu 2 2 EP https://hf.co/ANONYMIZED

OASST 1 EP https://hf.co/ANONYMIZED

OASST 2 EP https://hf.co/ANONYMIZED

UltraChat https://hf.co/ANONYMIZED

Table 17

No head https://hf.co/ANONYMIZED

-> 1024 https://hf.co/ANONYMIZED

Table 18

256 https://hf.co/ANONYMIZED

68

https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2025

4096 https://hf.co/ANONYMIZED

Table 19

BF16 https://hf.co/ANONYMIZED

FP32 https://hf.co/ANONYMIZED

Table 20

Any dataset https://hf.co/ANONYMIZED

Same dataset https://hf.co/ANONYMIZED

Table 21

Tülu 2 https://hf.co/ANONYMIZED

Zephyr β https://hf.co/ANONYMIZED

Table 22

MEDI 2048 https://hf.co/ANONYMIZED

MEDI 4096 https://hf.co/ANONYMIZED

BBCC MEDI2 512 https://hf.co/ANONYMIZED

BBCC MEDI2 2048 https://hf.co/ANONYMIZED

Table 23

E5 Token 4.2 https://hf.co/ANONYMIZED

E5 Token 6.0 https://hf.co/ANONYMIZED

E5 Mix 32 -> 8 https://hf.co/ANONYMIZED

MEDI2 Mix 4 -> 64 https://hf.co/ANONYMIZED

MEDI2 Mix 32 -> 8 https://hf.co/ANONYMIZED

Other

Code https://github.com/ANONYMIZED

Logs https://wandb.ai/ANONYMIZED

Tülu 2 https://hf.co/datasets/ANONYMIZED

MEDI https://hf.co/datasets/ANONYMIZED

MEDI2 https://hf.co/datasets/ANONYMIZED

MEDI2BGE https://hf.co/datasets/ANONYMIZED

GRITLM 7B NQ In-
dex (§5)

https://hf.co/datasets/ANONYMIZED

Main artifacts

GRITLM 7B https://hf.co/ANONYMIZED

GRITLM 8x7B https://hf.co/ANONYMIZED

69

https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED
https://github.com/ANONYMIZED
https://wandb.ai/ANONYMIZED
https://hf.co/datasets/ANONYMIZED
https://hf.co/datasets/ANONYMIZED
https://hf.co/datasets/ANONYMIZED
https://hf.co/datasets/ANONYMIZED
https://hf.co/datasets/ANONYMIZED
https://hf.co/ANONYMIZED
https://hf.co/ANONYMIZED

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2025

Table 36: Used artifacts released by others.

Model / Dataset Public Link

GPT-4 (OpenAI et al., 2023) https://openai.com/gpt-4

OpenAI v3 (OpenAI et al.,
2023)

https://openai.com/blog/new-embedding-models-and-api-updates

Gemini (Team et al., 2023) https://deepmind.google/technologies/gemini/

Llama 2 (Touvron et al.,
2023)

https://hf.co/meta-llama

Mistral 7B (Jiang et al.,
2023)

https://hf.co/mistralai/Mistral-7B-v0.1

Mistral 7B Instruct (Jiang
et al., 2023)

https://hf.co/mistralai/Mistral-7B-Instruct-v0.1

Mixtral 8x7B (Jiang et al.,
2024)

https://hf.co/mistralai/Mixtral-8x7B-v0.1

Mixtral 8x7B Instruct (Jiang
et al., 2024)

https://hf.co/mistralai/Mixtral-8x7B-Instruct-v0.1

Tülu 2 (Ivison et al., 2023) https://hf.co/collections/allenai/
tulu-v2-suite-6551b56e743e6349aab45101

GPT-J 6B (Wang & Komat-
suzaki, 2021)

https://hf.co/EleutherAI/gpt-j-6b

SGPT BE 5.8B (Muen-
nighoff, 2022)

https://hf.co/Muennighoff/SGPT-5.
8B-weightedmean-msmarco-specb-bitfit

Instructor-XL 1.5B (Su
et al., 2023)

https://hf.co/hkunlp/instructor-xl

BGE Large 0.34B (Xiao
et al., 2023)

https://hf.co/BAAI/bge-large-en-v1.5

Zephyr 7B β (Tunstall et al.,
2023)

https://hf.co/HuggingFaceH4/zephyr-7b-beta

E5 Mistral 7B (Wang et al.,
2024)

https://hf.co/intfloat/e5-mistral-7b-instruct

UltraChat (Ding et al., 2023;
Tunstall et al., 2023)

https://hf.co/datasets/HuggingFaceH4/ultrachat_200k

OASST (Köpf et al., 2023;
Muennighoff et al., 2023a)

https://hf.co/datasets/bigcode/oasst-octopack

70

https://openai.com/gpt-4
https://openai.com/blog/new-embedding-models-and-api-updates
https://deepmind.google/technologies/gemini/
https://hf.co/meta-llama
https://hf.co/mistralai/Mistral-7B-v0.1
https://hf.co/mistralai/Mistral-7B-Instruct-v0.1
https://hf.co/mistralai/Mixtral-8x7B-v0.1
https://hf.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://hf.co/collections/allenai/tulu-v2-suite-6551b56e743e6349aab45101
https://hf.co/collections/allenai/tulu-v2-suite-6551b56e743e6349aab45101
https://hf.co/EleutherAI/gpt-j-6b
https://hf.co/Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit
https://hf.co/Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit
https://hf.co/hkunlp/instructor-xl
https://hf.co/BAAI/bge-large-en-v1.5
https://hf.co/HuggingFaceH4/zephyr-7b-beta
https://hf.co/intfloat/e5-mistral-7b-instruct
https://hf.co/datasets/HuggingFaceH4/ultrachat_200k
https://hf.co/datasets/bigcode/oasst-octopack

	Introduction
	GRIT
	Experiments
	Setup
	Main Results

	Reranking with GRIT
	RAG with GRIT
	Related work
	Conclusion
	
	Ablations
	Discussion
	Aligning GritLM
	Few-shot embedding does not work
	RAG Caching CPU Latency
	Additional RAG results
	Loss Curves
	Evaluation
	Ablations Detailed Results
	GritLM MTEB Full Results
	Reducing Embedding Training Memory
	Hyperparameters
	Embedding Instruction for Generative Models
	HumanEval Format
	Embedding in FP32 vs BF16
	Unreliability of MT-Bench
	Limitations and Future Work
	Dataset Composition
	Dataset Samples
	Evaluation Prompts
	Embedding Prompts
	Embedding Few-Shot Prompts
	Generative Prompts
	RAG Prompts

	Hardware
	Artifacts

