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ABSTRACT

All text-based language problems can be reduced to either generation or embedding.
Current models only perform well at one or the other. We introduce generative
representational instruction tuning (GRIT) whereby a large language model is
trained to handle both generative and embedding tasks by distinguishing between
them through instructions. Compared to other open models, our resulting GRITLM
7B is among the top models on the Massive Text Embedding Benchmark (MTEB)
and outperforms various models up to its size on a range of generative tasks. By
scaling up further, GRITLM 8X7B achieves even stronger generative performance
while still being among the best embedding models. Notably, we find that GRIT
matches training on only generative or embedding data, thus we can unify both
at no performance loss. Among other benefits, the unification via GRIT speeds
up Retrieval-Augmented Generation (RAG) by >60% for long documents, by no
longer requiring separate retrieval and generation models. Models, code, etc. will
be made freely available.

GritLM
7B GritLM

8x7B

Embedding 
Models

Generative 
Models

Figure 1: Performance of various models on text representation (embedding) and generation
tasks. GRITLM is the first model to perform strongly at both types of tasks simultaneously.

1 INTRODUCTION

Creating a single general model that performs well at a wide range of tasks has been a long-standing
goal of the field of artificial intelligence (Kaiser et al., 2017; Jaegle et al., 2021; Cho et al., 2021;
Reed et al., 2022; Singh et al., 2022). Recently, large language models (LLMs) have emerged as a
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Generative
Representational

Instruction
Tuning

If an obscure legal term is given as the 
query, fetch text from law books or legal 
databases that can help explain the term. 

celestial res nullius

Please write me a blog post about my 
recent hike of Mt. Fuji at midnight.

GRIT

0.42, 1.52, -0.01…

0.01, -1.01, 0.45…

You start by…

Sure, here is the 
blog post.

It was August the 
10th when I 

arrived at Lake 
Kawaguchi from…

Given a scientific paper title, retrieve the 
paper's abstract 

Bitcoin: A Peer-to-Peer Electronic Cash System

You have two ropes, each takes exactly 1 
hour to burn. How would you use them to 

time exactly 15 minutes? The ropes are of 
uneven densities, so half the rope does not 

necessarily take half the time.

Representational 
Instruction Tuning

Generative 
Instruction Tuning

Figure 2: GRIT. The same model handles both text representation and generation tasks based on a
given instruction. For representation tasks, instructions ideally contain target domain , intent , and
unit (Asai et al., 2022). The representation is a numeric tensor, while the generative output is text.

promising direction for a single multi-task model (Radford et al., 2019; Brown et al., 2020). Prior
work has argued that all text-based language problems can be reduced to generation and thus handled
by a single LLM (Raffel et al., 2023; Du et al., 2021).

However, tasks that use embeddings, such as clustering or retrieval (Muennighoff et al., 2023c),
have largely been ignored from this perspective. Today, text embeddings power many real-world
applications ranging from search engines to user-facing chatbots (Huang et al., 2020; Su et al., 2017).
While integrating text embeddings into the generative paradigm is possible by generating a sequence
of numbers to form the embedding tensor, it becomes impractical due to the high dimensionality and
precision requirements of embeddings. Thus, it is more common and much easier to use the hidden
state of the model as the embedding representation, which is already a numeric tensor (Muennighoff,
2022; Wang & Kuo, 2020; Morris et al., 2023). However, for current generative models this leads to
poor performance. For example, while the T5 model (Raffel et al., 2023; Sanh et al., 2022) can handle
any generative task in a sequence-to-sequence fashion, it requires finetuning to make its hidden state
useful for text embedding (Ni et al., 2021a;b) during which it loses its generative capabilities.

We introduce GRIT (generative representational instruction tuning) which unifies embedding and
generative tasks, leading to a model that excels at both tasks as shown in Figure 1. Figure 2 depicts
how GRIT combines two previously disjoint training paradigms: (1) Generative instruction tuning,
whereby the model is trained to respond to instructions by generating an answer (Wei et al., 2022;
Sanh et al., 2022); and (2) Representational instruction tuning, whereby the model is trained to
represent a provided input according to an instruction (Su et al., 2023; Asai et al., 2022). Via the
instructions and separate loss functions the model learns to differentiate the two streams. We test our
approach on models with up to 47B parameters. This unification via GRIT leads to three advantages:
a) Performance: Our unified model matches the performance of embedding-only and generative-only
variants, even outperforming them on some tasks. At 7B parameters, GRITLM is among the best
models on the Massive Text Embedding Benchmark (Muennighoff et al., 2023c) and at the same
time outperforms some larger models on generative tasks, such as Llama 2 70B. By scaling further,
GRITLM 8X7B achieves even stronger generative performance, while only using 13B parameters at
inference due to its MoE architecture (Jiang et al., 2024). Further, as our models use sliding window
attention (Child et al., 2019; Beltagy et al., 2020) they can handle generative and embedding inputs
of arbitrary length.
b) Efficiency: Generative and embedding models are commonly used together to make up for each
other’s deficiencies (Guu et al., 2020; Lewis et al., 2021a). One such scenario is Retrieval-Augmented
Generation (RAG) (Lewis et al., 2021a), where an embedding model is used to retrieve context that is
provided to the generative model to answer a user query. This requires passing the user query and the
context into both the generative and the embedding model for a total of four forward passes. With

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

GRITLM, the embedding and generative model are equivalent, allowing us to cache computations
and halve the necessary number of forward passes. We find that this can lead to > 60% faster RAG at
inference with long documents.
c) Simplicity: Currently, API providers such as OpenAI provide separate generative and embedding
endpoints. This requires separate load balancing, additional storage, and more complex serving
software. A single model that handles both use cases significantly simplifies infrastructure needs.

Compared to generative instruction tuning, the main downside of GRIT is that it requires more
finetuning compute due to training with two objectives. However, finetuning is generally cheap
compared to pretraining, thus we think the benefits vastly outstrip this problem. Further, when
considering training a separate generative and embedding model from scratch (e.g. for RAG), GritLM
is generally cheaper when incorporating the pretraining compute, as there is only one pretraining and
finetuning for GritLM, not separate ones for both a generative and an embedding model. Thus we
recommend practitioners building instruction-following language models to adopt GRIT.

Alongside GRIT, we introduce novel performance improvements for embedding models including
the use of bidirectional attention with mean pooling for LLM embeddings and ensuring that in-batch
negatives stem from the same dataset rather than any dataset, as well as novelties for generative models
including mixing sample- and token-level loss aggregation. We ablate these in detail in Appendix A.
We also put forth new ways to reduce memory requirements during training of embedding models,
which we elaborate in Appendix K.

2 GRIT

<s><|user|>
{instruction}
<|assistant|>
{response}</s>

<|user|>…

Representation Generation

<s><|user|>
{instruction}
<|embed|>

{sample to represent}

Mean Pooling Language Modeling Head

Figure 3: GRITLM architecture and format. Left: GRITLM uses bidirectional attention over the
input for embedding tasks. Mean pooling is applied over the final hidden state to yield the final
representation. Right: GRITLM uses causal attention over the input for generative tasks. A language
modeling head on top of the hidden states predicts the next tokens. The format supports conversations
with multiple turns (indicated with “...”).

GRIT unifies representational instruction tuning (Su et al., 2023; Asai et al., 2022; Wang et al., 2024)
and generative instruction tuning (Wei et al., 2022; Sanh et al., 2022; Muennighoff et al., 2023d) into
a single model. We finetune a pretrained LLM (Brown et al., 2020) with embedding and generative
instruction data in a consistent format (Figure 3). For embedding data, we follow prior work and use
a contrastive objective with in-batch negatives (Chen et al., 2020; Gao et al., 2022):

LRep = − 1

M

M∑
i=1

log
exp(τ · σ(fθ(q(i)), fθ(d(i))))∑M
j=1 exp(τ · σ(fθ(q(i)), fθ(d(j))))

(1)

where f is GRITLM parametrized by the model θ, τ is a temperature hyperparameter and σ cor-
responds to pooling applied to each output followed by cosine similarity. q and d are query and
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document samples. As depicted in Figure 3, we use bidirectional attention followed by mean pooling,
which corresponds to averaging the hidden states across the sequence length. During pooling, we only
average the final hidden states of the input sample, ignoring the instruction and format tokens. How-
ever, the instruction and format tokens still influence the final representation through the self-attention
mechanism (Vaswani et al., 2023).

To compute the loss on generative data, we use the language modeling objective whereby the model
needs to predict the next token (Radford et al., 2018; 2019):

LGen = − 1

N

N∑
i=1

logP (fθ,η(x
(i))|fθ,η(x(<i))) (2)

where f is GRITLM with parameters θ and language modeling head η, which is only used for
generation. x are generative training samples. We only compute loss over predicted tokens i.e.
“{response}</s>” in Figure 3. A key consideration is how to aggregate the generative loss.
Aggregating at the sample level corresponds to giving each sample the same weight within a batch
regardless of its token count. Such aggregation is commonly used for instruction tuning, as it can
boost performance on discriminative tasks (Muennighoff et al., 2023d). However, Muennighoff et al.
(2023d) also show how this in turn can lead to a model biased toward short generations. Meanwhile,
aggregation at the token level corresponds to giving each token the same weight, thus samples with
many tokens become more important. This leads to a model producing longer generations, which
can be important for performance on generative tasks. Especially, human or machine-evaluated
generative tasks, such as AlpacaEval (Li et al., 2023b), are known to be biased toward preferring
longer generations (Wang et al., 2023). Note that when every sample has the same sequence length
such as during pretraining or when the batch size is 1, token and sample level generative loss are equal
to each other. One can mix the two to balance their trade-offs, for example doing token level loss
across a subset of the batch and then giving each subset the same weight. We explore the trade-offs
in our ablations in Appendix A. We sum the objectives with optional loss weights λRep and λGen:

LGRIT = λRepLRep + λGenLGen (3)

Notably, our formulation supports differing numbers of embedding samples (M ) and generative
samples/tokens (N ). This allows for significantly increasing the embedding batch size while keeping
the generative batch size fixed. A large embedding batch size is often key to well-performing text
embedding models (Xiao et al., 2023) at the cost of requiring more compute at each step.

3 EXPERIMENTS

In this section, we first outline our experimental setup in §3.1. In §3.2, we discuss and benchmark the
embedding and generative performance of our models. In Appendix A, we ablate the settings that led
to our final models, including training data, precision, pooling, sequence length, and loss weights.

3.1 SETUP

We finetune our final models from Mistral 7B (Jiang et al., 2023) and Mixtral 8x7B (Jiang et al., 2024)
using adaptations of E5 (Wang et al., 2024) and the Tülu 2 data (Ivison et al., 2023). For E5, we adapt
it by adding S2ORC (Lo et al., 2020) to increase its scientific data (“E5S”), while for Tülu 2 we filter
out their custom prompts that contain answers related to the origin of their model. For GRITLM 7B,
we use a batch size of 2048 for embedding data and 256 for generative data and we train the model
for a total of 1253 steps corresponding to one epoch on the generative data and 1.36 epochs on the
embedding data. For GRITLM 8X7B, the embedding batch size is 256 due to compute limitations.
We use several strategies to reduce the memory required during training including a novel technique
to split the embedding triplet into separate forward and backward passes detailed in Appendix K.
Other hyperparameters are detailed in the ablation experiments in Appendix A and Appendix L. For
embedding performance we evaluate using the 56 main datasets from MTEB (Muennighoff et al.,
2023c). For generative performance, we largely follow the evaluation setup of Ivison et al. (2023)
except that we use the HumanEvalSynthesize (Muennighoff et al., 2023a) variant of HumanEval, as
it is more adequate for instruction-following models. We explain each task in detail in Appendix H.
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Table 1: Embedding performance of GRITLM and others. We indicate parameter counts where
available (B=billions). See Appendix H for task, metric, and dataset details. Appendix J contains
per-dataset results of GRITLM models. LLMs not finetuned for embedding (Llama 2 70B, Mistral
7B (Instruct), GPT-J 6B, Gen.-only) are evaluated with weighted-mean pooling (Muennighoff, 2022).
♥Results from the MTEB leaderboard (https://hf.co/spaces/mteb/leaderboard)

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

Proprietary models♥

OpenAI v3 75.5 49.0 85.7 59.2 55.4 81.7 29.9 64.6

Other Open Models♥

Llama 2 70B 60.4 29.0 47.1 38.5 9.0 49.1 26.1 35.6
Mistral 7B 63.5 34.6 53.5 43.2 13.2 57.4 19.7 40.5
Mistral 7B Instruct 67.1 34.6 59.6 44.8 16.3 63.4 25.9 43.7
GPT-J 6B 66.2 39.0 60.6 48.9 19.8 60.9 26.3 45.2
SGPT BE 5.8B 68.1 40.3 82.0 56.6 50.3 78.1 31.5 58.9
Instructor XL 1.5B 73.1 44.7 86.6 57.3 49.3 83.1 32.3 61.8
BGE Large 0.34B 76.0 46.1 87.1 60.0 54.3 83.1 31.6 64.2
E5 Mistral 7B 78.5 50.3 88.3 60.2 56.9 84.6 31.4 66.6

GRITLM
Gen.-only 7B 65.4 32.7 54.2 43.0 13.7 60.2 21.1 41.2
Emb.-only 7B 78.8 51.1 87.1 60.7 57.5 83.8 30.2 66.8
GRITLM 7B 79.5 50.6 87.2 60.5 57.4 83.4 30.4 66.8
GRITLM 8X7B 78.5 50.1 85.0 59.8 55.1 83.3 29.8 65.7

Table 2: Generative performance of GRITLM and others. We indicate parameter counts where
available (B=billions). See Appendix H for dataset, setup, and metric details. ♥Results from Ivison
et al. (2023) except for numbers marked with ♦ which are from Touvron et al. (2023) and † which are
from us. For models that cannot be easily used as chat models, we set Alpaca to 0.

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

Proprietary models♥

GPT-4-0613 81.4 95.0 89.1 65.2 86.6† 91.2 84.8

Other Open Models♥

GPT-J 6B 27.7 2.5 30.2 9.4 9.8 0.0 13.3
SGPT BE 5.8B 24.4 1.0 0.0 22.8 0.0 0.0 8.0
Zephyr 7B β 58.6 28.0 44.9 23.7 28.5 85.8 44.9
Llama 2 70B 64.5 55.5 66.0 62.6 29.9♦ 0.0 46.4
Llama 2 Chat 13B 53.2 9.0 40.3 32.1 19.6† 91.4 40.9
Llama 2 Chat 70B 60.9 59.0 49.0 44.4 34.3† 94.5 57.0
Tülu 2 7B 50.4 34.0 48.5 46.4 24.5† 73.9 46.3
Tülu 2 13B 55.4 46.0 49.5 53.2 31.4 78.9 52.4
Tülu 2 70B 67.3 73.0 68.4 53.6 41.6 86.6 65.1
Mistral 7B 60.1 44.5 55.6 55.8 30.5 0.0 41.1
Mistral 7B Instruct 53.0 36.0 38.5 27.8 34.0 75.3 44.1
Mixtral 8x7B Instruct 68.4 65.0 55.9 24.3 53.5 94.8 60.3

GRITLM
Emb.-only 7B 23.5 1.0 0.0 21.0 0.0 0.0 7.6
Gen.-only 7B 57.5 52.0 55.4 56.6 34.5 75.4 55.2
GRITLM 7B 57.6 57.5 54.8 55.4 32.8 74.8 55.5
GRITLM 8X7B 66.7 61.5 70.2 58.2 53.4 84.0 65.7
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3.2 MAIN RESULTS

GRIT leads to a strong embedding and generative model We benchmark GRITLM 7B,
GRITLM 8X7B and generative- and embedding-only variants with other models in Table 1 and
Table 2. We find that GRITLM 7B outperforms various prior open models on the Massive Text
Embedding Benchmark (Muennighoff et al., 2023c) while still outperforming a range of generative
models up to its size of 7 billion parameters. For our comparisons we focus on models that are similar
to GritLM (e.g. E5 Mistral (Wang et al., 2024) uses the same base model, Instructor (Su et al., 2023)
uses a similar dataset, etc.), but we note that there have been various recent embedding and generative
models with stronger performance, such as Llama3 (Dubey et al., 2024), NV-Embed (Lee et al., 2024)
and others (Li et al., 2024; 2023c; Meng et al., 2024; Chen et al., 2024b; Kim et al., 2024). However,
GRIT models are the only ones that can handle both embedding and generation at strong performance
(Figure 1). For example, using Llama 70B (Touvron et al., 2023) for embedding leads to a score of
only 35.6 on MTEB as depicted in Table 1. GRITLM almost doubles that performance on MTEB,
while still outperforming Llama 70B on generative tasks by more than 20% (Table 2). For GRITLM
8X7B, the embedding performance slightly decreases from GRITLM 7B, which is likely because we
had to decrease its embedding batch size from 2048 for GRITLM 7B to only 256 for GRITLM 8X7B
due to compute limitations (§3.1). We also train embedding-only and generative-only variants of
GRITLM that only use representational or generative instruction tuning but are otherwise equivalent.
Benchmarking the embedding-only variant (or models like SGPT BE 5.8B (Muennighoff, 2022))
on generative tasks in Table 2 by simply re-adding the language modeling head that was dropped
during embedding finetuning leads to around random performance (25.0 is the random baseline on
MMLU). Similarly, benchmarking the embedding performance of the generative-only model only
leads to a score of 41.2 in Table 1. Thus, joint optimization via the GRIT approach is critical to
achieve strong performance for both embedding and generation. We note, however, that with 7 billion
parameters GRITLM 7B is significantly more costly to run than many other embedding models
in Table 1, such as BGE Large with only 335 million parameters (Xiao et al., 2023). In addition,
GRITLM 7B produces representations of 4096 dimensions, which require 4× more storage than the
1024-dimensional embeddings of BGE Large.

GRITLM matches embedding-only and generative-only variants We find that unifying the two
objectives via GRITLM matches both the generative-only and the embedding-only variants. This is
similar to observations made for visual models (Yu et al., 2022). However, while GRITLM is trained
for the same number of steps as the embedding- and generative-only models, it needs more compute
per training step as it does a forward and backward pass on both embedding and generative data.

4 RERANKING WITH GRIT
Table 3: Reranking (Rerank) using GRITLM as
both Bi- and Cross-Encoder.

MTEB DS (↓) No Rerank Rerank top 10

ArguAna 63.24 64.39
ClimateFEVER 30.91 31.85
CQADupstack 49.42 50.05
DBPedia 46.60 47.82
FiQA2018 59.95 60.39
FEVER 82.74 82.85
HotpotQA 79.40 80.46
NFCorpus 40.89 41.23
NQ 70.30 71.49
MSMARCO 41.96 42.47
QuoraRetrieval 89.47 88.67
SCIDOCS 24.41 24.54
SciFact 79.17 79.28
TRECCOVID 74.80 75.24
Touche2020 27.93 28.41
Average 57.4 57.9

For retrieval tasks, it is common to follow the
embedding-based retrieval stage by a reranking
stage (Nogueira & Cho, 2020). In the reranking
stage, for each query, the top-k chosen docu-
ments are reranked based on a usually more
expensive but more performant method. For
LLMs, prior work has shown that this can be
done by passing each of the k documents to-
gether with the query to the model and scoring
the pair with log probabilities (Muennighoff,
2022). Note that this scales quadratically with
the number of documents and queries and is thus
usually too expensive for the first stage (“Cross-
Encoder”). Meanwhile, using embeddings for
the first stage is much cheaper as it only requires
passing each query and each document once and
thus scales linearly (“Bi-Encoder”). More re-
cent work relies on instructions to use LLMs for
reranking (Sun et al., 2023; Ma et al., 2023b;
Pradeep et al., 2023a;b). While prior work uses
separate models for the embedding and rerank-
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ing stages, GRITLM can be used for both stages
due to its unified capabilities. In Table 3, we display the embedding performance of GRITLM 7B
when additionally allowing it to rerank the top 10 documents selected via its embedding capabilities
for each query. For reranking, we use the model’s generative capabilities following the permutation
generation approach from Sun et al. (2023) and reusing their prompt. We find that reranking via the
generative capabilities of GRITLM 7B allows it to improve on its own embedding performance on
almost every retrieval dataset. Increasing the top-k documents beyond ten is likely to further improve
results, however, at the cost of more compute (Muennighoff, 2022).

5 RAG WITH GRIT

Embedding Model

To slow down your speed 
of aging, you can…

Technological and lifestyle factors 
may influence an individual’s 

longevity. Cellular reprogramming…

GritLMGenerative Model

How to prevent aging?

Index

How to prevent aging?

Traditional RAG

Index

Query Caching

How to prevent aging?

1st Cache: 
Reuse query

representation 
for retrieval

To slow down your speed 
of aging, you can…

Technological and lifestyle factors 
may influence an individual’s 

longevity. Cellular reprogramming…

Query-Doc Caching

GritLM

Index

How to prevent aging?

1st Cache: 
Reuse query 

representation 
for retrieval

To slow down your speed 
of aging, you can…

2nd Cache: Reuse document 
key-value states for generation

Figure 4: RAG with GRIT. Left: Traditional Retrieval-Augmented Generation (RAG) relies on
a separate embedding model and generative model. Right: GRITLM simplifies RAG as it handles
both embedding and generation. Query Caching removes the duplicate forward pass of the query
by reusing its representation. Query-Doc Caching also removes the forward pass on the document
during inference, as the cached index also stores the document key-value states.

Method By unifying embedding and generation, GRITLM simplifies Retrieval-Augmented Gener-
ation (RAG). Figure 4 displays how caching can reduce forward passes. Specifically, we introduce:
(a) Query Caching: In traditional RAG, the query needs to be passed both through the embedding
model and later through the generative model. In Query Caching, we cache the key-value states
from the embedding forward pass and reuse them for the generative pass, exploiting the property that
both are the same model: GRITLM. Thus, we save compute equivalent to one forward pass of the
query. Equivalently, we can also perform the generative forward pass over the query first and use its
representation to retrieve the document on the fly (depicted in Figure 4). To make the generations
with Query Caching completely equivalent to RAG, we place the query at the beginning of the prompt
such that it only attends to itself through causal attention.
(b) Doc Caching: Here we cache the documents, D. When the index is created, we also save the
key-value states of every document and add them to the index. Thus, the index consists of the
document embeddings and key-value states. Note that the computational cost of creating the index
remains the same as the key-value states have to be computed even if only embeddings are desired.
At inference, we still retrieve based on embedding similarity but the index returns the key-value states
instead of the text passage. These key-value states are then provided to the model to avoid having to
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Figure 5: Inference latency of RAG with GRITLM 7B. When benchmarking scaling query length
(left), document length is fixed at 1, whereas query length is fixed at 1 when scaling document length
(right). In addition to the query/doc lengths, the formatting and prompt take up around 40 tokens. We
visualize the standard deviation across 100 runs as the shaded area. For each approach, we generate
16 tokens. See Figure 6 for CPU latency.

recompute them. This effectively saves a forward pass for every in-context document at inference.
However, this method increases the necessary storage. While the text passages no longer need to be
stored, the key-value states now need to be stored and they usually require more storage depending
on the model. We note that Document Caching also works for models other than GRITLM. However,
for such models, one needs to pass all documents through the generation model ahead of time, thus
increasing the cost of creating the index. To maintain equivalence with RAG, the document should be
at the beginning of the prompt for Document Caching (opposite of Query Caching).
(b) Query-Doc Caching / Doc-Query Caching: We can also combine Query Caching and Doc
Caching to save even more inference costs. However, combining them inevitably leads to discrep-
ancies compared to RAG, as in traditional RAG either the query or the document is conditioned on
the other one. Meanwhile, if both are cached then they are not conditioned on one another via the
self-attention mechanism. We refer to Query-Doc Caching if the query is followed by the document
in the prompt and to Doc-Query Caching if the document comes first.

Setup We benchmark the caching variants on Natural Questions (Kwiatkowski et al., 2019) using
2,681,468 documents from BEIR NQ (Thakur et al., 2021) as our index. We score models by
checking if any correct answer is anywhere in the generation (“match”). Prior work often checks
if the generation exactly matches the answer (“exact match”) (Izacard et al., 2022). However, due
to the chat data our model answers in few sentences, thus exact match fails to credit many correct
answers. In the first 20 samples of the “No RAG” baseline, “exact match” leads to 4 false negatives
that “match” credits correctly without any false positives. We do not use instructions for embedding
here, only the format in Figure 3.

Performance As depicted in Table 4, RAG performs better than the “No RAG” baseline where
the model is not provided any context. This validates that despite its small size compared to prior
work (Lin et al., 2023), our index is still valuable. While Query and Doc Caching can theoretically
lead to the exact same performance as RAG, we experience differences for two reasons: 1) Attention:
Our model is trained to embed with bidirectional attention (§2) and thus we use bidirectional attention
when embedding query or document. Meanwhile, the generative model expects causal key-value
states. In the Query-Doc/Doc-Query setup, there is an additional mismatch in either the documents or
the queries not having attended to the other one, as both need to be embedded and cached separately.
2) Formatting: The query is formatted in the embedding format as depicted in Figure 3, which the
model has never seen during generative training. This could further lead to a performance drop. Due
to 1) and 2), Query Caching leads to a performance drop compared to traditional RAG. However,
the Query Caching performance of 25.46 is still better than not using RAG, thus it comes down to a
speed-performance trade-off. Formatting the RAG baseline using the embedding format (Figure 3)
reduces its score from 30.50 to 29.36 (not depicted), thus the additional four-point discrepancy
of Query Caching and the majority of the damage is because of the attention issue. Meanwhile,
Doc Caching slightly improves performance resulting in the best match score among all methods
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Table 4: RAG benchmarking on Natural Questions with GRITLM 7B. For RAG, the retrieved
context is simply placed in the context of the language model in contrast to our caching alternatives
(Figure 4). CPU and GPU latencies are measured on an “Intel(R) Xeon(R) Platinum 8481C CPU @
2.70GHz” and one “NVIDIA H100 80GB HBM3”, respectively. Sample A has a query of 1 token and
a document of 4000 tokens, and sample B is the inverse. For each approach, we generate 16 tokens.
Storage consists of the index and passages, except for Doc Caching variants where it is the index and
key-value states. The index is stored in float32, while key-value states are stored in bfloat16. See
Appendix F for experiments on TriviaQA and MMLU.

Match CPU Latency (s, ↓) GPU Latency (s, ↓) Storage (↓)
(0-shot, ↑) Sample A Sample B Sample A Sample B

No RAG 21.00 4.3 ± 0.36 13.69 ± 1.0 0.24 ± 0.04 0.38 ± 0.04 0GB
Query then document prompt

RAG 30.50 11.64 ± 0.74 14.88 ± 0.87 0.39 ± 0.02 0.40 ± 0.02 43GB
Query Caching 25.46 18.30 ± 0.76 6.87 ± 0.89 0.44 ± 0.03 0.27 ± 0.02 43GB
Query-Doc Caching 21.63 5.12 ± 0.23 6.62 ± 0.97 0.27 ± 0.03 0.29 ± 0.01 30TB

Document then query prompt

RAG 30.47 14.18 ± 1.01 15.33 ± 0.87 0.39 ± 0.01 0.4 ± 0.01 43GB
Doc Caching 33.38 5.25 ± 0.34 23.23 ± 1.05 0.27 ± 0.03 0.45 ± 0.02 30TB
Doc-Query Caching 18.39 5.23 ± 0.37 6.41 ± 0.96 0.26 ± 0.03 0.27 ± 0.02 30TB

considered. This is possibly because, unlike the query, the document does not need to be as thoroughly
understood, and skimming it may suffice. Thus, the slightly corrupted key-value states do not result in
a performance drop. Query-Doc and Doc-Query Caching only perform near the “No RAG” baseline in
our experiments, which may limit their usefulness in practice. This is likely caused by the additional
attention mismatch that they introduce. This issue as well as the formatting issue could likely be
solved by an additional RAG finetuning stage on top of GRITLM, which we leave to future work.

Latency Caching is much faster than RAG on both CPUs and GPUs, especially for long sequences
(Figure 5). In Table 4, we display that for 4000 tokens, Query Caching is 54% and 33% faster on
CPUs and GPUs, respectively (Sample B). For Doc Caching it is 63% and 31% (Sample A). If
going beyond 4000 tokens the speed-ups will be even larger. However, for the opposite samples in
Table 4 speed remains around the same. This is because while for Sample A, Doc Caching caches
4000 tokens, for Sample B it caches only 1 token, which does not provide any speed-up. Thus, Doc
Caching should be used when documents are expected to be very long, while Query Caching should
be used when queries are expected to be very long. In a production setting, a simple input length
check could switch from one caching mode to the other. As is the case in Table 4, caching can match
or even be faster than not using retrieval at all (“No RAG”). This could be due to the embedding
forward pass not using the language modeling head. For Query Caching, the language modeling head
is only used for the tokens that are generated, while for “RAG” and “No RAG” it is used for the entire
input. The matrix multiplication with the language modeling head is computationally expensive due
to its high dimensionality, which could cause the slower speed of the no retrieval baseline. Query-Doc
Caching and Doc-Query Caching cache both documents and queries and thus lead to major speed-ups
for both Sample A and Sample B in Table 4. Overall, speed-ups are larger on CPUs, as GPUs can
process the entire sequence in parallel, thus the advantage of caching parts of it is smaller. We also
note that our RAG baseline uses our 7B parameter model for both the embedding and generative
model but without caching. In practice, it is often common to have an embedding model that is
much smaller and cheaper than the generative model. Nonetheless, as caching with GRITLM-7B
approaches the No RAG latency in Table 4, we still expect it to be faster than setups with smaller
embedding models for long sequences. In addition, it would lead to significantly better performance
in that case due to the state-of-the-art retrieval performance of GRITLM.

Storage In most RAG setups the embeddings of all documents are precomputed and stored to be
later used at inference. This is referred to as the index. In traditional RAG, the documents themselves
still need to be stored, as the index is only used to find the document ID, which is then used to fetch
the document text and pass it to the generative model. For Doc Caching variants documents no
longer need to be stored, however, the key-value states need to be stored. The key-value states take
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up a lot of storage, as they consist of two tensors of shape (batch size, number of heads, sequence
length, dimension per head) for each batch. For our 2,681,468 documents and the 7-billion parameter
GRITLM model, this leads to 30TB of key-value states. However, unlike the index, the key-value
states can be fully offloaded to disk and do not need to be kept in memory. Once the document ID
has been determined via the index, the corresponding key-value state can be simply loaded from disk.
For a single sample, this corresponds to loading 12.5MB of key-value states into memory.

6 RELATED WORK

The story of text embedding and text generation has been a story of unification.

Embedding Models used to focus on word representations (Pennington et al., 2014; Mikolov
et al., 2013) that struggled generalizing to entire sentences or passages (Conneau & Kiela, 2018).
InferSent (Conneau et al., 2018), SBERT (Reimers & Gurevych, 2019) and similar models (Ni
et al., 2021b;a) emerged that handle both the embedding of words and sentences at good quality by
considering context when present. However, for strong performance, they require separate models for
symmetric and asymmetric tasks (Muennighoff et al., 2023c; Neelakantan et al., 2022). Symmetric
embedding tasks are ones where the query and document are expected to come from the same
distribution, such as STS. Meanwhile, for asymmetric tasks, they come from different distributions
and as such could have very different sequence lengths like in retrieval. For example, the MTEB
benchmark (Muennighoff et al., 2023c) revealed that SentT5 (Ni et al., 2021b) only performs well at
symmetric tasks, while GTR (Ni et al., 2021a) only at asymmetric tasks despite both using T5 (Raffel
et al., 2023) as their base model. Recent embedding models have been able to unify symmetric and
asymmetric tasks into a single model by differentiating them in the prompt (Xiao et al., 2023; Wang
et al., 2022a). Further, including detailed instructions in the prompt has allowed unifying practically
any embedding task into a single model (Su et al., 2023).

Generative Models used to be tailored to a single task, such as translation (Sutskever et al., 2014) or
question answering (Yin et al., 2016). McCann et al. (2018) cast multiple generative tasks as question
answering to unify them within a single model, however, performance was still limited and it did not
generalize to arbitrary tasks. Large-scale self-supervised pretraining has enabled the use of a single
large language model (LLM) for practically any generative task (Brown et al., 2020; Chowdhery
et al., 2022; Rae et al., 2022; BigScience Workshop et al., 2023; Scao et al., 2022; Groeneveld et al.,
2024; Li et al., 2023a). However, using an LLM without careful prompting often leads to poor
performance (Rubin et al., 2022; Min et al., 2022b). Finetuning LLMs on instructions has emerged
as a method to significantly ease the usage of the models to apply them to any generative task with
strong results (Wei et al., 2022; Sanh et al., 2022; Min et al., 2022a; Wang et al., 2022c; Mishra et al.,
2022; Iyer et al., 2023; Üstün et al., 2024; Singh et al., 2024; Zhou et al., 2023).

The two streams of embedding and generative models have each been unified into a single model that
handles any task within its stream. Unifying the two streams into a single model that handles any
task both for embedding and generation is the natural next step toward a general multi-task model.

7 CONCLUSION

We present GRIT to unify text embedding and generation, and thus all text-based language prob-
lems, into one model: GRITLM. GRITLM 7B performs strongly on the Massive Text Embedding
Benchmark, while simultaneously possessing generative capabilities that exceed some larger models.
Notably, its performance matches otherwise equivalent embedding-only and generative-only variants
allowing us to unify them at no performance loss. We show that GRIT simplifies the field using the
examples of reranking and RAG. For reranking, we are able to improve retrieval performance by
around 10% by reusing GRITLM as reranker instead of having to rely on a separate model. For RAG,
we unify the retriever and reader into a single model, GRITLM, speeding up inference by >60%
for long texts at no performance loss via GRIT Doc Caching. We believe GRIT paves the way for
a paradigm shift in language modeling, where embedding and generation seamlessly coexist in a
single model. As such, we highlight the various limitations of this work and point the community to
potential future research in Appendix Q.
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Jonathan Tow, Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammana-
manchi, Thomas Wang, Benoı̂t Sagot, Niklas Muennighoff, et al. Bloom: A 176b-parameter
open-access multilingual language model, 2023.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al. Improving
language models by retrieving from trillions of tokens, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners, 2020.

Isabel Cachola, Kyle Lo, Arman Cohan, and Daniel S. Weld. Tldr: Extreme summarization of
scientific documents, 2020.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge
distillation, 2024a.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge
distillation, 2024b. URL https://arxiv.org/abs/2402.03216.

Lingjiao Chen, Matei Zaharia, and James Zou. How is chatgpt’s behavior changing over time?, 2023.

11

https://graphics.stanford.edu/courses/cs468-06-fall/Papers/03%20AMNSW%20-%20JACM.pdf
https://graphics.stanford.edu/courses/cs468-06-fall/Papers/03%20AMNSW%20-%20JACM.pdf
https://aclanthology.org/2023.acl-tutorials.6/
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://arxiv.org/abs/2402.03216


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, et al. Evaluating large language models trained on code, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations, 2020.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollar, and
C. Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server, 2015.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers, 2019.

Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. Unifying vision-and-language tasks via text
generation, 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways, 2022.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, et al. Scaling instruction-finetuned language models, 2022.

Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev,
and Jennimaria Palomaki. Tydi qa: A benchmark for information-seeking question answering in
typologically diverse languages, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

Arman Cohan, Sergey Feldman, Iz Beltagy, Doug Downey, and Daniel S. Weld. Specter: Document-
level representation learning using citation-informed transformers, 2020.

Alexis Conneau and Douwe Kiela. Senteval: An evaluation toolkit for universal sentence representa-
tions, 2018.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes. Supervised
learning of universal sentence representations from natural language inference data, 2018.

William Coster and David Kauchak. Simple english wikipedia: A new text simplification task, 2011.
URL https://api.semanticscholar.org/CorpusID:9128245.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
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Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus, 2017.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension, 2017. URL https://arxiv.org/
abs/1705.03551.

Lukasz Kaiser, Aidan N. Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar, Llion Jones, and
Jakob Uszkoreit. One model to learn them all, 2017.

Uday Kamath, John Liu, and James Whitaker. Deep learning for nlp and speech recognition, 2019.
URL https://link.springer.com/book/10.1007/978-3-030-14596-5.
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A ABLATIONS

Attention and pooling We train GRITLM starting from a pretrained decoder language model
which has been trained with causal attention. Prior work has shown that while embeddings of causal
LLMs are competitive, they are outperformed by BERT-like encoders with bidirectional attention at
the same number of parameters (Muennighoff, 2022; Devlin et al., 2019). This lines up with intuition,
as bidirectional attention allows the model to adjust the representation of the first tokens based on
information obtained from future tokens. Meanwhile, causal attention only allows information to
propagate one way. Thus, for causal attention early tokens may yield poor representations due to a lack
of understanding of the entire sample. To counter this issue, we experiment with adapting the model
during finetuning to learn to use bidirectional attention. In Table 5 we find that adapting the causally
pretrained LLM with bidirectional attention provides the best embedding performance. For
fully causal embeddings, we confirm findings from Muennighoff (2022) that position-weighted mean
pooling (“Wmean”) leads to better embedding performance than taking the embedding of the last
token despite recent work finding the opposite (Zhang et al., 2023; Ma et al., 2023a). For last token
pooling, we follow Zhang et al. (2023) and use a special token. We find that adapting the model to be
a PrefixLM (Raffel et al., 2023), whereby the attention over the generative instruction is bidirectional
but still causal for the response (“Sample”) worsens performance in contrast to prior work (Wang et al.,
2022b). Thus, we stick with fully causal generation. The unified variant significantly outperforms the
embedding-only variants, while underperforming the best generative-only variant. However, once
we switched from MEDI to the E5 dataset in later ablations the embedding-only variant matched
the unified variant. Meanwhile, the worse generative performance of the unified model was due to a
suboptimal loss setting that we fixed in the loss ablations. Several papers after the initial preprint
release of this work have confirmed the benefit of bidirectional attention (BehnamGhader et al., 2024;
Springer et al., 2024).

Base model The GRITLM approach generalizes to any generative language model, thus we ablate
initializing from GPT-J 6B (Wang & Komatsuzaki, 2021), Llama 2 7B or Mistral 7B (Jiang et al.,
2023). Using Mistral 7B leads to the best performance for both embedding and generative tasks.
For generative tasks, this is expected as the pretrained Mistral 7B performs the best among the
three (Table 2). However, for embedding tasks, GPT-J outperforms Mistral 7B (Table 1). Thus, the
embedding performance of a pretrained model is not predictive of its embedding performance
after finetuning. Rather, its generative performance appears to be a more reliable indicator of its
embedding performance after finetuning.

Generative dataset We benchmark our filtered Tülu 2 introduced in §3.1 (Ivison et al., 2023)
with UltraChat (Ding et al., 2023; Tunstall et al., 2023) and the OpenAssistant version from Oc-
toPack (Muennighoff et al., 2023a; Köpf et al., 2023; Longpre et al., 2023). Using Tülu 2 leads to
better performance on every generative task considered (see Appendix I for per-task results). This
is likely due to Tülu 2 containing a larger diversity of tasks (Ivison et al., 2023). Another possible
reason is that Tülu 2 may have been carefully tuned on the generative evaluation datasets, as we use
largely the same evaluation setup as the creators of Tülu 2 (Ivison et al., 2023).

Embedding dataset We benchmark MEDI (Su et al., 2023), a new version of MEDI with better
negatives which we build and call MEDI2, and the E5 dataset (Wang et al., 2024). While MEDI
and MEDI2 always preface instructions with “Represent” (see e.g. Figure 11), the E5 dataset places
no constraint on the instruction prefix (see e.g. Figure 12). Thus, when using the E5 dataset the
“<|embed|>” formatting is critical to tell the model that it will be subject to the representation loss,
not the generative loss (Figure 3). Further, MEDI and MEDI2 always contain instructions for both
queries and documents, which we refer to as two-sided instructions. Meanwhile, the E5 dataset
uses one-sided instructions for asymmetric datasets (Muennighoff, 2022), whereby the documents
receive no instructions, only the queries. The advantage of not using document instructions is that
the document corpus can be encoded once and then cached and reused across a variety of tasks.
During training on E5, symmetric tasks are also in a one-sided setting, but we still evaluate them in
the two-sided format. This should not be a problem as the cosine similarity function we use during
training is transitive: if sentence A with instruction is similar to sentence B without instruction, and
sentence B without instruction is similar to sentence C with instruction, then we can confidently say
that sentence A with instruction is also similar to sentence C with instruction. As depicted in Table 5,
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Attention Emb Attention Gen Pooling Emb GenInstruction Sample Instruction Sample

Embedding Only

Causal Wmean 60.0 -
Causal Bidirectional Mean 61.0 -

Bidirectional Mean 61.8 -

Generative Only

Causal - 55.2
Bidirectional Causal - 50.7

Unified

Causal Causal Last token 61.2 53.0
Causal Causal Wmean 62.8 52.8

Bidirectional Causal Mean 64.0 52.9

(a) Attention and pooling ablations. Wmean is position-weighted mean pooling (Muennighoff, 2022).

Variant Emb Gen

Mistral 7B 54.6 22.4
Llama 2 7B 48.2 20.8
GPT-J 6B 51.9 14.0

(b) Base model

Dataset Emb

MEDI 64.0
MEDI2 64.7

E5 66.0

(c) Embedding dataset

Dataset Gen

Tülu 2 55.2
OASST 37.7

UltraChat 47.4

(d) Generative dataset

Variant Emb Gen

No head 62.7 49.2
→ 1024 62.1 48.0

(e) Embedding head

BS Emb:Gen Emb Gen

256:256 63.2 53.4
4096:256 64.2 53.3

(f) Batch size (BS)

Precision Emb Gen

FP32 66.3 52.4
BF16∗ 66.5 55.0

(g) Precision

IBN origin Emb Gen

Any dataset 66.0 50.9
Same dataset 66.0 51.1

(h) In-batch negatives (IBN)

Format Gen

Tülu 2 55.2
Zephyr β 49.0

(i) Format

Tokens Emb Gen

512 64.1 52.2
2048 64.7 53.8

(j) Emb training max tokens

Gen loss type LRep/LGen Emb Gen

Token 2.4 66.1 54.4
Token 6.0 66.5 55.0

Mix (32 → 8) 4.1 66.7 55.4

Gen loss type AlpacaEval

Mix (4 → 64) 67.6
Mix (32 → 8) 74.7

(k) Loss ablations. LRep/LGen is the loss ratio of the 1st step adjusted via λRep and λGen. Mix refers
to mixing sample and token level loss, e.g. (32 → 8) is token level loss across 32 samples and then
sample level loss across 8 sub-batches for a total batch size of 256.

Table 5: GRIT ablations. Emb corresponds to the MTEB average, while Gen corresponds to the
average across generative tasks (Appendix H). The embedding head variant “→ 1024” corresponds
to down-projecting the final hidden state with a linear layer from 4096 to 1024 dimensions, only for
embedding tasks. BF16∗ means that some computations are still in FP32 as explained in Appendix A.
The setting chosen for GRITLM is bold. Once an ablation was successful, we adopted its setting, thus
the bold performance slightly varies from one table to the next. For example, the base model ablation
(b) is done for just 100 hundred steps with sub-optimal formatting. Full results are in Appendix I.
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using the E5 dataset performs best by a wide margin. An inspection of samples, suggests that this is
likely due to its superior hard negatives and diversity of tasks generated by GPT-4 (Appendix S). For
our final runs with the E5 dataset, we additionally add scientific data (§3.1).

Embedding head The cost of caching the embeddings of a large document corpus is directly
proportional to the embedding dimensionality. To minimize such costs, we experiment with adding
an embedding head consisting of a linear layer with activation that down-projects the embedding (Ni
et al., 2021a; Muennighoff, 2022). This layer is only used for embedding tasks. Down-projecting
the embeddings four-fold (from 4096 to 1024) leads to an embedding performance decrease of
around 1%. This may be acceptable for certain use cases where the saved storage is more important.
However, for our final model, we do not use such a head to keep it simple and achieve maximum
performance. Search techniques (Arya et al., 1998; Johnson et al., 2017; Douze et al., 2024) or
dimensionality reduction techniques such as Principal Component Analysis still allow for reducing
the embedding dimension of our final model post-training while maintaining most of the performance.
Similar to the storage cost-performance trade-off we explore here, we hypothesize that there is a
speed/cost-performance trade-off with taking the embedding from different layers of our model. For
example, we could train using the embedding after half the layers of the model, thus speeding up the
embedding model by 50% while likely only incurring a small drop in embedding performance

Batch size Due to the utilization of in-batch negatives for contrastive training (§2), a larger batch
size provides a more accurate gradient. Thus, scaling up the batch size is a key ingredient in most
well-performing embedding models (Xiao et al., 2023; Wang et al., 2022a). We experiment with
scaling up the embedding batch size to 4096 while keeping it at 256 for generative data. This leads to
a 1.0 gain on the embedding average while generative performance remains stable. Especially the 15
retrieval datasets that are part of the embedding average benefit from the increase in batch size (see
Table 18). For our final model, we use a batch size of 2048 for embedding and 256 for generative
data.

Precision The parameters of the Mistral 7B model are in bfloat16 (BF16) precision as it was
pretrained in this format. We experiment with finetuning it with float32 (FP32) precision versus
keeping the BF16 format and training with mixed precision. FP32 training is more costly, however,
the additional precision may result in a better model. Our intuition is that more precision is important
for embedding but not as much for generation. This is because while for generative tasks evaluated
greedily, the model output is a discretionary argmax over the predictions of the language modeling
head, for embedding tasks it is a continuous representation. Thus, small differences due to a lack
of precision may not change the model’s generation but will affect its representation. Hence, for
embedding tasks, we always cast the hidden states to FP32 during the pooling operation and keep
them this way for the similarity computation. Not keeping them in FP32 after pooling worsens
performance slightly, but may be necessary for cheap storage (see Appendix O). In addition, some
operations such as layer normalization (Ba et al., 2016) are also performed in FP32 even for BF16
training due to PyTorch autocast (Zhao et al., 2023). In Table 5, we find that there is no benefit from
doing even more computations in FP32 besides the ones listed above. Thus, we train and evaluate all
our other models in BF16 mixed precision to speed up training and inference.

In-batch negatives We always use in-batch negatives for embedding training (§2), however, we
ablate whether or not they come from the same dataset. We hypothesize that making them all come
from the same dataset leads to better negatives as the model needs to distinguish them based on more
nuanced differences. In practice, we find that the average embedding performance remains around
the same. However, we notice a 1.3 jump on the 15-dataset Retrieval average (Table 20). Thus, we
stick with the variant where in-batch negatives stem from the same dataset.

Format Our chosen format is depicted in Figure 3, which is equivalent to Tülu 2 (Ivison et al., 2023)
for generative tasks. We also benchmark the Zephyr β format (Tunstall et al., 2023), which has an
additional end-of-sequence token (“</s>”) after each user utterance. We find that it performs worse
on generative tasks. The additional end-of-sequence after the user utterance increases the likelihood
of the model generating another end-of-sequence token earlier than necessary. This significantly
harms HumanEvalSynthesize performance and slightly reduces AlpacaEval, where long generations
can be critical (see Appendix I for task-specific performance).
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Max tokens Our base model, Mistral 7B, can handle sequences of arbitrary length due to its sliding
window attention (Jiang et al., 2023). As finetuning with longer sequences is more expensive we ablate
its benefits. We compare training with a maximum token limit of 512 versus 2048 for embedding
documents. For embedding queries, we always use 256, and for generative data, we always use 2048.
We find that increasing the embedding document sequence length during training slightly boosts
performance on both embedding and generation even though we still evaluate embedding tasks with
512. This boost likely comes from our training data containing many documents beyond 512 tokens,
which need to be truncated if the maximum sequence length is 512. Such truncation may remove the
critical parts that make two texts a positive or a negative contrastive pair and thus hinder learning.
As our embedding evaluation (MTEB) contains few documents longer than 512 tokens there is little
truncation happening at evaluation (Muennighoff et al., 2023c; Günther et al., 2024; 2023). Note
that just like their base models, our final models GRITLM 7B and GRITLM 8X7B can produce
embeddings for sequences of arbitrary length. However, due to a lack of benchmarks, we do not
know how well the embeddings of our models perform for input sequences longer than 512 tokens.

Loss ablations As detailed in §2, we experiment with both token and sample level generative loss.
Further, we ablate the representation and generative loss weights, λRep and λGen. For the unified
visual model CoCa, the authors find that giving a weight of 2 to generation and 1 to embedding
boosts performance on both streams (Yu et al., 2022). However, rather than the weights, we argue
that the loss ratio, LRep/LGen, is of more interest as it reveals which objective has a larger impact on
the optimization of the model. We maintain a ratio of LRep/LGen ¿ 1 i.e. giving more weight to the
representation loss. This is because the model has already been pretrained with the generative loss,
thus we expect less additional generative training to be necessary. Meanwhile, the contrastive loss for
embedding data is new to the model, thus we expect more learning to be needed on the embedding
side. Further, the embedding loss drops off extremely quickly as can be seen in the loss graphs in
Appendix G. Thus, even though the representation loss has a higher weight at the start, throughout
training they have very similar weights with both hovering around a loss of 1.0. We find that mixing
sample and token level generative loss leads to the best performance by a small margin. As expected
in §2, token level loss to some degree is critical for good performance on AlpacaEval. For “Mix
(4 -> 64)” token level loss is applied across only 4 samples and then sample level loss across 64
sub-batches, which leads to a 7-point drop in AlpacaEval performance. This drop is accompanied by
a decrease in median AlpacaEval generation length from 941 to 865. Thus, token level loss across
many samples is critical to maintaining long generations, which directly impacts the AlpacaEval
score.

B DISCUSSION

Further unification To the best of our knowledge, GRITLM is the first model to unify text em-
bedding and generation, and thus all text-based language problems, into a single model at strong
performance. However, many adjacent directions remain to be improved or unified. (a) Multilin-
guality: Our model is also capable of embedding and generation in non-English languages as seen in
its TyDi QA performance (Table 2). However, major performance gains on non-English tasks are
likely possible through both data (Muennighoff et al., 2023d; Yong et al., 2023) and architecture
changes (Chen et al., 2024a; Feng et al., 2022; Duquenne et al., 2023) targeting multilinguality. (b)
Multimodality: Many embedding and generative problems are not purely text-based, such as joint
embedding of images and text (Radford et al., 2021), generative image captioning (Hossain et al.,
2018), image-text pair classification (Muennighoff, 2020; Kiela et al., 2021) or speech versions of
every text problem (Kamath et al., 2019). It remains to be explored whether they can be as easily
unified as text embedding and generation in this work.

Why does GRIT work? GRIT unifies embedding and generative tasks into a single model at
no performance loss on either one, which may seem surprising. When the embedding dataset is
MEDI2, we show that embedding performance even improves once the generative objective is added
compared to an otherwise equivalent embedding-only model (Appendix A). We think that our results
confirm that generative language modeling and text embeddings are two sides of the same coin. Both
tasks require a model to have a deep understanding of natural language and only differ in the way
that understanding is expressed. Possibly, our unified model contains a small number of parameters
that act as a switch to make the final representations either useful for mean pooling and subsequent
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embedding tasks or primed for the language modeling head and subsequent generative tasks. We are
excited about future work exploring what is happening inside of GRITLM. To support such research,
we release all our work freely.

Optimizing RAG with GRITLM RAG and the caching variants we have presented in this work
operate on a frozen language model. Meanwhile, there has been extensive work on optimizing a
generative model specifically for interaction with a retrieval system (Gao et al., 2024; Zhu et al., 2024;
Asai et al., 2023a). These works commonly optimize only the retriever (Shi et al., 2023) or only the
reader (Borgeaud et al., 2022; Yasunaga et al., 2023; Asai et al., 2023b; Luo et al., 2023). However,
recent work has shown that jointly optimizing both models leads to the best performance (Lin et al.,
2023). With its state-of-the-art retrieval and generative performance, GRITLM can act as both the
retriever and reader in a single model. Thus, optimizing either one also changes the parameters of
the other. This has the potential to significantly simplify the joint optimization of the retriever and
reader. For example, it may suffice to only use the next-token objective (Equation 2) to penalize the
retriever for providing irrelevant context and at the same time the reader for poor use of the given
context. This is in contrast to separate models and objective functions used in Lin et al. (2023).

C ALIGNING GRITLM

Table 6: Aligning GRITLM with KTO after GRIT. The upper table depicts embedding performance
while the lower depicts generative performance.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

GRITLM 7B 79.5 50.6 87.2 60.5 57.4 83.4 30.4 66.8
GRITLM 7B KTO 79.6 50.1 87.1 60.5 57.1 83.5 30.5 66.7
GRITLM 8X7B 78.5 50.1 85.0 59.8 55.1 83.3 29.8 65.7
GRITLM 8X7B KTO 78.7 50.0 84.4 59.4 54.1 82.5 30.8 65.2

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

GRITLM 7B 57.6 57.5 54.8 55.4 32.8 74.8 55.5
GRITLM 7B KTO 57.6 57.5 55.4 55.8 31.5 86.7 57.4
GRITLM 8X7B 66.7 61.5 70.2 58.2 53.4 84.0 65.7
GRITLM 8X7B KTO 66.8 79.5 67.1 31.4 56.8 95.3 66.2

It is common to follow the instruction finetuning stage of generative language models by an alignment
tuning stage using methods like PPO (Schulman et al., 2017), DPO (Rafailov et al., 2023), or
KTO (Ethayarajh et al., 2024) (“HALOs” (Ethayarajh et al., 2024)). We experiment with further
finetuning GRITLM using KTO and benchmark the resulting models in Table 6. During this KTO
stage, no further embedding training is performed, thus it leads to a slight performance drop on the
MTEB average (66.8 to 66.7 and 65.7 to 65.2). However, the average generative performance of the
KTO-tuned models is stronger. Notably, AlpacaEval jumps by ¿10 points for both models. On the
more recent Alpaca 2.0 (Dubois et al., 2024), GritLM-8x7B-KTO has a length-controlled win rate of
18.5 with an average length of 1662 (not depicted). Thus, the KTO-finetuned models may be more
useful for use cases where the generative performance is more important. Future work may consider
continuing the embedding training during the alignment tuning stage. It may also be possible to
develop an alignment tuning method specifically for embedding performance and combine it with
generative alignment via KTO.
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D FEW-SHOT EMBEDDING DOES NOT WORK

Table 7: Few-shot embedding. The 12 MTEB
datasets (“DS”) are grouped by the 7 main MTEB
tasks in the same order as in Table 1.

Train DS (→) E5S MEDI2
MTEB DS (↓) 0 FS 1 FS 0 FS 1 FS

Banking77 88.5 88.3 88.1 87.9
Emotion 52.8 51.0 52.5 51.9
IMDB 95.0 93.9 94.3 92.2

BiorxivS2S 39.8 39.4 37.6 37.4

SprintDup. 93.0 94.9 95.2 95.7
TwitterSem 81.1 77.9 76.8 73.9
TwitterURL 87.4 87.1 85.9 86.1

ArguAna 63.2 51.7 53.5 53.2
SCIDOCS 24.4 19.7 25.5 25.5

AskUbuntu 67.3 64.7 66.6 66.0

STS12 77.3 78.0 76.6 73.5

SummEval 30.4 29.5 29.1 31.5

For generative models it has been well-
established that providing in-context exam-
ples (“few-shots”, FS) improves performance
(Brown et al., 2020). However, to the best of
our knowledge, there has been no work on in-
context learning with embedding models. In Ta-
ble 7, we benchmark the default 0-shot format
with providing a single few-shot example follow-
ing the task instruction. We take the few-shot
example from the respective evaluation dataset
(see §T.2 for the prompts). We find that pro-
viding few-shot examples overall worsens per-
formance. While there are small gains among
PairClassification tasks (SprintDup. and Twit-
terURL), these are marginal and inconsistent.
For the model trained on MEDI2, we even in-
clude few-shot embedding samples in the train-
ing data for around 5% of training samples.
However, the model seems not to have learned
to make good use of the few-shot examples.
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Figure 6: Inference latency of RAG with GRITLM 7B on CPUs. When benchmarking scaling
query length (left), document length is fixed at 1, whereas query length is fixed at 1 when scaling
document length (right). In addition to the query/doc lengths, the formatting and prompt take up
around 40 tokens. We visualize the standard deviation across 100 runs as the shaded area. For each
approach, we generate 16 tokens. See Figure 5 for GPU latency.
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F ADDITIONAL RAG RESULTS

Table 8: Additional doc caching results.
We use the same setup as in Table 4 to
benchmark doc caching on two additional
datasets: TriviaQA (Joshi et al., 2017) and
MMLU (Hendrycks et al., 2022).

Dataset (→) TriviaQA MMLU
Metric (→) Match (0-shot, ↑)

RAG 52.12 51.10
Doc Caching 57.93 53.46

In §5, we find that doc caching is the most promising
caching variant out of the ones we propose. This is
because (a) documents are usually significantly longer
than queries, thus caching documents has the highest
potential to reduce latency, (b) it maintains performance
of regular RAG (Table 4, and (c) it even works for non-
GRIT models though it requires more time to construct
the cache for non-GRIT models (§5). Thus we further
experiment with doc caching in Table 8 to verify its
performance on other datasets. Similar to Natural Ques-
tions in Table 4, we observe that doc caching maintains
performance of regular RAG (even slightly improves)
for TriviaQA and MMLU despite the attention mis-
match. Note that the attention mismatch problem can
always be resolved by simply not using bidirectional attention for the embedding part and thereby
guarantee the same performance as not using RAG, however, not using bidirectional attention comes
at a slight reduction in embedding performance according to our ablation experiments (Appendix A).

Table 9: Additional RAG results with
BGE. We use the same setup as in Table 4
to benchmark BGE embedding models with
the “Query then document” prompt. The
generative model is still GRITLM 7B.

Dataset (→) NQ
Metric (→) Match (0-shot, ↑)

BGE Large 0.34B 10.39
BGE Base 0.11B 10.31
BGE Small 0.03B 10.17

We also benchmark the BGE series of embedding mod-
els (Xiao et al., 2023) in Table 9 for RAG. We find per-
formance to be significantly worse than with GRITLM
in Table 4. Based on a manual inspection of samples, it
appears that the embedding models commonly retrieve
irrelevant passages that confuse the generative model.
There may be other smaller embedding models or other
generative models that may perform better, but over-
all we expect the RAG performance to be a function
of the embedding and generative performance of the
individual components (e.g. if an embedding model
performs better than GRITLM, we would expect it to
lead to better RAG performance; BGE generally does
not perform better on embedding as shown in Table 1).
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Figure 7: GRITLM 7B training loss smoothed with exponential moving average smoothing and
a weight of 0.9.
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Figure 8: GRITLM 8X7B training loss smoothed with exponential moving average smoothing
and a weight of 0.9.

H EVALUATION

For evaluating GRITLM, we select the most commonly used embedding and generative benchmarks:

Embedding To evaluate embedding performance we use the 7 main tasks from MTEB (Muen-
nighoff et al., 2023c).
(1) Classification (CLF): A logistic regression classifier is trained on embeddings from texts with
different labels. The classifier is scored with F1.
(2) Clustering (Clust.): K-means clustering is performed on embeddings from different sources.
The agreement of the clusters with respect to the source labels is scored with V-measure.
(3) Pair Classification (PairCLF): The cosine similarity of two embeddings with a binary label is
computed. The optimal similarity threshold across all samples is found and scored with AP (average
precision).
(4) Reranking (Rerank) A query embedding and reference embeddings are compared with cosine
similarity. The similarities are scored versus the ground truth ranking of the references via MAP
(mean AP).
(5) Retrieval: A query embedding and embeddings of references are compared with cosine similarity.
The position of the correct reference(s) in the top ten with the highest cosine similarity is scored with
nDCG@10 (normalized discounted cumulative gain).
(6) STS: The cosine similarity of two embeddings is compared with a ground truth continuous score
of their similarity and scored with Spearman correlation.
(7) Summarization (Summ.) Human-written and machine-written summaries of the same text are
embedded. The cosine similarity of the embeddings is compared to human ratings of the machine
summaries and scored with Spearman correlation.
Among the tasks, Reranking, Retrieval, and Summarization are asymmetric i.e. there are two different
kinds of embeddings: queries and documents. Others are symmetric i.e. there is only one kind.
We use instructions for every dataset specified in §T.1. Notably, for some models, we use different
instructions for query and document embeddings when dealing with asymmetric tasks. The datasets
within each task cover diverse domains ranging from scientific papers to casual conversations.

Generation For evaluating the generative performance of GRITLM, we largely follow the evalua-
tion setup of Tülu (Wang et al., 2023; Ivison et al., 2023) using open-source frameworks (Gao et al.,
2021a; Ben Allal et al., 2022).
(1) Multiple-Choice Question Answering via MMLU (Hendrycks et al., 2022): Models are tasked
to answer knowledge-intensive questions from different fields, such as humanities, social sciences,
and hard sciences. No few-shots are provided and answers are evaluated with exact match.
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(2) Problem solving via GSM (Cobbe et al., 2021): Models are tasked to solve a math problem
requiring multi-step reasoning. 8 few-shot (FS) examples with chain-of-thought reasoning (CoT) (Wei
et al., 2023) are provided and exact match is measured.
(3) Multilingual Closed-book Question Answering via TyDi QA (Clark et al., 2020): Models are
tasked to answer a question in one of six languages. We evaluate in the Gold Passage and no-context
setting following Anil et al. (2023).
(4) Code Generation via HumanEvalSynthesize (Muennighoff et al., 2023a; Chen et al., 2021):
We use the HumanEvalSynthesize Python dataset (Muennighoff et al., 2023a), which is adapted
from HumanEval (Chen et al., 2021) for easy evaluation of instruction-following models. Using the
instruction format is different from Ivison et al. (2023) who use HumanEval without an instruction
format which is not how the model is used in practice. Following Muennighoff et al. (2023a), we
score pass@1 using 20 samples and a temperature of 0.2.
(5) Boolean Expressions, Causal Judgement, etc. via BBH (Srivastava et al., 2023; Suzgun et al.,
2022) We evaluate a variety of reasoning tasks using BIG-Bench Hard (BBH) (Srivastava et al., 2023;
Suzgun et al., 2022). Similar to GSM8K, 3 FS CoT examples are provided and exact match is
measured.
(6) Open-ended writing, Summarization, Role-playing, etc. via AlpacaEval (Alpaca) (Li et al.,
2023b; Dubois et al., 2023) We evaluate a variety of open-ended generation tasks via the original 1.0
version of AlpacaEval (Li et al., 2023b; Dubois et al., 2023). GPT-4 (OpenAI et al., 2023) is used to
determine the win rate of generations compared to provided GPT-3 (Brown et al., 2020) answers. We
differ from Ivison et al. (2023) in that we reduce the maximum token length to 6144 from 8192. We
do not use MT-Bench due to its limitations pointed out in Appendix P. To ensure reproducibility, we
use greedy evaluation throughout.

I ABLATIONS DETAILED RESULTS

We display a breakdown of the results from Table 5 in Table 10 to Table 21. For MTEB per-
dataset results, we refer to Appendix J, the MTEB leaderboard (https://huggingface.co/
spaces/mteb/leaderboard) and our released result files (https://huggingface.co/
datasets/ANONYMIZED).

Table 10: Unified models attention and pooling ablations. The sequence of Cs and Bs refers to the
attention mechanism for (from left to right): Emb instruction, Emb sample, Gen instruction, Gen
sample, where C=Causal, B=Bidirectional, Emb=Embedding and Gen=Generative. WM, LT and M
refer to position-weighted mean, last token and mean pooling, respectively.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

CCCC WM 77.9 47.9 81.5 59.0 49.4 80.3 29.4 62.8
CCCC LT 78.8 46.9 84.5 59.6 43.9 78.7 29.3 61.2
BBCC M 79.0 48.6 86.3 59.5 49.9 81.7 30.1 63.8

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

CCCC WM 57.5 45.0 53.1 56.0 32.3 72.9 52.8
CCCC LT 57.2 45.5 54.7 54.0 31.1 75.7 53.0
BBCC M 57.0 46.5 54.5 55.0 30.4 73.8 52.9
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Table 11: Embedding-only models attention and pooling ablations. The sequence of Cs and
Bs refers to the attention mechanism for (from left to right): Emb instruction, Emb sample, where
C=Causal, B=Bidirectional and Emb=Embedding. WM and M refer to position-weighted mean and
mean pooling, respectively.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

CC WM 77.1 44.0 83.3 57.0 43.2 79.6 29.4 60.0
CB M 76.4 45.5 83.1 56.8 45.7 80.6 30.4 61.0
BB M 77.3 46.0 83.8 58.2 46.8 81.0 32.3 61.8

Table 12: Generative-only models attention ablations. The sequence of Cs and Bs refers to
the attention mechanism for (from left to right): Gen instruction, Gen sample, where C=Causal
and B=Bidirectional. IL=interleaved, whereby the bidirectional attention is interleaved with causal
attention in multi-turn samples (bidirectional for instructions, causal for answers). This allows for
faster generation in multi-turn settings as the kv-cache of the answer can be reused.

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

CC 57.5 52.0 55.4 56.6 34.5 75.4 55.2
BC 57.2 50.0 49.3 52.0 30.6 64.8 50.7
BC IL 52.6 41.0 46.9 45.4 - - -

Table 13: Base model ablations. Models are only trained for 100 steps and with other sub-optimal
settings, such as the Zephyr format, that were rectified through later ablations.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

Mistral 7B 70.6 43.7 74.0 54.8 35.3 72.9 31.2 54.6
Llama 2 7B 68.1 38.0 64.1 50.2 24.2 67.7 30.5 48.2
GPT-J 6B 70.7 41.4 69.6 53.9 29.7 70.4 29.8 51.9

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS
Metric (→) EM EM EM F1 pass@1

Mistral 7B 35.0 11.0 31.6 20.5 13.8 22.4
Llama 2 7B 35.8 7.0 27.2 21.0 12.9 20.8
GPT-J 6B 27.5 3.5 22.2 8.7 8.0 14.0

Table 14: Embedding-only models embedding dataset ablations. NNI = No Natural Instructions,
corresponding to not including natural instructions in the data. II = evaluating with the Instructor-XL
instructions (Su et al., 2023). Other models use our new structure with domain, intent, and unit
depicted in Figure 3. Thus, MEDI2 NNI II and MEDI2 NNI are the same model and only differ in
the evaluation instruction set.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

MEDI II 77.1 44.0 83.3 57.0 43.2 79.6 29.4 60.0
MEDI2 NNI II 74.0 43.5 80.5 56.6 46.1 78.4 29.5 59.6
MEDI2 NNI 74.2 44.5 80.7 57.3 49.5 79.6 30.8 61.1
MEDI2 75.1 43.8 80.6 57.5 50.2 81.7 31.9 61.7
MEDI2 + Weights 74.4 42.7 78.4 57.7 50.2 81.4 30.5 61.2
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Table 15: Unified models embedding dataset ablations. The sequence of Cs and Bs refers to
the attention mechanism for (from left to right): Emb instruction, Emb sample, where C=Causal,
B=Bidirectional, and Emb=Embedding. WM and M refer to position-weighted mean and mean
pooling, respectively. MEDI2BGE corresponds to our MEDI2 dataset with negatives coming from
the BGE training dataset MTP (Xiao et al., 2023).

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

CCCC WM MEDI 77.9 47.9 81.5 59.0 49.4 80.3 29.4 62.8
CCCC WM MEDI2 76.5 47.0 82.5 59.4 51.4 81.9 30.2 63.2

BBCC M MEDI 79.1 48.8 86.4 59.6 50.3 81.3 31.0 64.0
BBCC M MEDI2 77.0 48.7 86.0 61.0 53.6 83.0 29.1 64.7
BBCC M MEDI2BGE 77.0 48.9 86.9 61.3 53.1 82.8 29.4 64.7
BBCC M E5 79.7 49.5 86.2 59.6 55.3 83.6 29.9 66.0

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

CCCC WM MEDI 57.5 45.0 53.1 56.0 32.3 72.9 52.8
CCCC WM MEDI2 57.1 49.0 53.3 55.3 32.3 73.6 53.4

BBCC M MEDI 57.0 46.5 54.5 55.0 30.4 73.8 52.9
BBCC M MEDI2 57.0 50.5 53.8 54.7 32.3 74.7 53.8
BBCC M MEDI2BGE 57.4 48.0 54.7 55.1 32.0 74.7 53.7
BBCC M E5 57.3 47.5 54.2 54.6 33.6 75.4 53.8

Table 16: Generative dataset ablations. EP = number of epochs.

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

Tülu 2 1 EP 57.5 52.0 55.4 56.6 34.5 75.4 55.2
Tülu 2 2 EP 58.2 53.0 51.9 54.1 37.4 80.5 55.9
OASST 1 EP 53.8 24.0 41.1 28.2 27.4 51.7 37.7
OASST 2 EP 52.4 17.5 45.7 29.2 19.8 61.3 37.7
UltraChat 56.1 43.0 53.8 35.0 25.9 70.3 47.4

Table 17: Embedding Head. “→ 1024” refers to down-projecting the final hidden state with a linear
layer from 4096 to 1024 dimensions only for embedding tasks.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

No head 77.7 47.9 81.3 58.6 49.2 80.4 29.5 62.7
→ 1024 76.9 47.6 82.1 58.6 48.0 80.1 29.8 62.1

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

No head 54.2 42.5 50.6 53.9 28.4 65.5 49.2
→ 1024 53.6 37.0 48.8 54.4 26.6 67.3 48.0
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Table 18: Embedding batch size ablations. 256 and 4096 indicate the respective embedding batch
size. The generative batch size is always 256.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

MEDI2 256 76.5 47.0 82.5 59.4 51.4 81.9 30.2 63.2
MEDI2 4096 77.1 48.0 84.1 60.2 52.8 82.8 30.5 64.2

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

MEDI2 256 57.1 49.0 53.3 55.3 32.3 73.6 53.4
MEDI2 4096 57.7 48.0 53.2 54.5 32.0 74.3 53.3

Table 19: Precision ablations. BF16 refers to bfloat16 mixed precision and FP32 to float32 precision.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

BF16 79.7 50.2 87.6 60.2 56.5 83.4 30.8 66.5
FP32 79.6 50.3 87.2 59.9 56.1 83.3 30.9 66.3

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

BF16 58.2 51.5 52.8 55.9 37.3 74.4 55.0
FP32 55.9 52.0 49.9 53.9 31.2 71.3 52.4

Table 20: In-batch negatives ablations.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

Any dataset 79.7 49.8 85.5 59.8 54.9 83.9 30.5 66.0
Same dataset 79.5 48.9 87.4 59.0 56.2 83.0 30.5 66.0

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

Any dataset 56.1 43.5 53.1 46.6 33.5 72.3 50.9
Same dataset 55.0 45.0 54.4 49.3 29.6 73.4 51.1

Table 21: Generative format ablations.

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

Tülu 2 format 57.5 52.0 55.4 56.6 34.5 75.4 55.2
Zephyr β format 57.3 53.5 52.7 59.1 0.0 71.2 49.0
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Table 22: Unified models max tokens ablations. X:Y refers to “maximum tokens allowed for
embedding documents during training”:“maximum tokens allowed for queries and documents during
embedding evaluation”. The sequence of Cs and Bs refers to the attention mechanism for (from left
to right): Emb instruction, Emb sample, where C=Causal, B=Bidirectional, and Emb=Embedding.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

MEDI 2048:512 77.9 47.9 81.5 59.0 49.4 80.3 29.4 62.8
MEDI 2048:4096 77.9 47.9 81.5 59.0 49.4 80.2 31.3 62.8
MEDI 4096:512 76.7 47.3 79.8 58.8 47.0 78.5 30.0 61.3
MEDI 4096:4096 76.8 47.2 79.8 58.8 46.9 78.2 29.9 61.3

MEDI2 BBCC 2048:512 77.0 48.7 86.0 61.0 53.6 83.0 29.1 64.7
MEDI2 BBCC 512:512 76.9 47.6 85.5 61.0 52.8 82.3 28.8 64.1

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

MEDI 2048:512/4096 57.4 45.0 53.1 56.0 32.3 72.9 52.8
MEDI 4096:512/4096 53.8 43.0 52.7 54.8 30.1 - -

MEDI2 BBCC 2048:512 57.0 50.5 53.8 54.7 32.3 74.7 53.8
MEDI2 BBCC 512:512 56.9 46.5 53.1 52.6 31.2 72.8 52.2

Table 23: Loss ablations. E.g. Mix (32 → 8) corresponds to token level loss across 32 samples and
then sample level loss across 8 sub-batches for a total batch size of 256. E.g. 2.4 refers to the loss
ratio of the 1st step: LEmb/LGen.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

E5S Token 2.4 79.5 50.1 86.5 60.0 55.6 83.2 30.3 66.1
E5S Token 6.0 79.7 50.2 87.6 60.2 56.5 83.4 30.8 66.5
E5S Mix (32 → 8) 4.1 79.4 50.5 87.2 60.5 57.4 83.4 30.4 66.7

Dataset (→) MMLU GSM8K BBH TyDi QA HumanEval Alpaca Avg.
Setup (→) 0 FS 8 FS, CoT 3 FS, CoT 1 FS, GP 0 FS 0 FS, 1.0
Metric (→) EM EM EM F1 pass@1 % Win

E5S Token 2.4 57.9 48.5 53.5 56.5 35.2 75.0 54.4
E5S Token 6.0 58.2 51.5 52.8 55.9 37.3 74.4 55.0
E5S Mix (32 → 8) 4.1 57.6 57.0 54.8 55.4 32.8 74.8 55.4

MEDI2 Mix (4 → 64) 11.7 57.0 48.0 53.7 55.0 35.8 67.6 52.9
MEDI2 Mix (32 → 8) 10.2 57.0 50.5 53.8 54.7 32.3 74.7 53.8
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J GRITLM MTEB FULL RESULTS

Table 24: MTEB full results from Table 1.

Dataset Gen-only Emb-only GRITLM
7B 8X7B

AmazonCounterfactualClassification 70.06 82.55 81.18 80.48
AmazonPolarityClassification 74.74 96.19 96.52 96.32
AmazonReviewsClassification 38.63 57.28 57.81 57.18
Banking77Classification 71.25 88.73 88.47 87.46
EmotionClassification 36.61 51.83 52.81 50.06
ImdbClassification 73.94 94.58 95.00 94.32
MassiveIntentClassification 66.82 79.37 80.78 79.72
MassiveScenarioClassification 71.27 81.20 82.09 81.09
MTOPDomainClassification 85.40 96.72 96.16 95.29
MTOPIntentClassification 75.60 87.19 87.13 87.08
ToxicConversationsClassification 66.36 68.37 70.80 70.89
TweetSentimentExtractionClassification 54.61 61.91 64.78 62.48

ArxivClusteringP2P 45.40 50.87 51.67 50.72
ArxivClusteringS2S 29.86 47.35 48.11 48.01
BiorxivClusteringP2P 33.45 40.18 40.87 41.41
BiorxivClusteringS2S 23.02 39.60 39.80 38.67
MedrxivClusteringP2P 27.49 36.61 36.52 36.54
MedrxivClusteringS2S 23.17 37.28 36.80 37.24
RedditClustering 23.28 63.52 61.30 63.01
RedditClusteringP2P 55.00 67.81 67.26 65.86
StackExchangeClustering 47.14 75.53 77.33 74.41
StackExchangeClusteringP2P 33.95 46.22 41.33 38.52
TwentyNewsgroupsClustering 18.15 56.8 55.70 57.16

SprintDuplicateQuestions 51.57 93.37 93.00 91.24
TwitterSemEval2015 50.60 80.61 81.08 77.21
TwitterURLCorpus 60.36 87.20 87.40 86.45

AskUbuntuDupQuestions 49.02 68.13 67.34 65.60
MindSmallReranking 27.83 32.19 31.81 32.84
SciDocsRR 56.65 87.00 86.84 86.43
StackOverflowDupQuestions 38.42 55.48 55.96 54.33

ArguAna 35.96 62.95 63.24 59.49
ClimateFEVER 8.96 31.09 30.91 28.69
CQADupstackRetrieval 7.20 50.83 49.42 47.63
DBPedia 2.15 47.06 46.60 46.54
FEVER 5.02 85.41 82.74 85.02
FiQA2018 6.27 60.22 59.95 49.89
HotpotQA 6.67 79.15 79.40 73.83
MSMARCO 0.66 41.55 41.96 35.55
NFCorpus 3.74 41.69 40.89 39.05
NQ 2.14 69.46 70.30 63.87
QuoraRetrieval 64.42 89.08 89.47 87.70
SCIDOCS 2.32 24.86 24.41 23.06
SciFact 35.58 78.92 79.17 77.02
Touche2020 3.06 24.30 27.93 27.97
TRECCOVID 20.92 75.29 74.8 81.07

BIOSSES 70.87 86.20 86.35 87.34
SICK-R 58.95 83.03 83.13 80.56
STS12 44.25 78.07 77.34 73.69
STS13 64.22 85.98 85.04 85.82
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STS14 52.24 83.92 82.91 82.05
STS15 64.53 89.18 88.13 88.8
STS16 65.89 86.83 86.24 86.2
STS17 69.64 89.7 90.13 91.46
STS22 57.29 68.41 68.63 69.21
STSBenchmark 53.89 86.74 85.64 87.43

SummEval 21.14 30.18 30.37 29.82

Average 41.21 66.82 66.76 65.66
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Figure 9: Embedding memory ablations. Passage corresponds to both positive and document
embeddings. Loss is smoothed with exponential moving average smoothing and a weight of 0.99.

Generative training only requires sufficient memory to perform a forward and backward pass on
a single training sample of a given sequence length. Meanwhile, naive embedding training with
in-batch negatives requires sufficient memory to accommodate a forward and a backward pass on
3∗bs samples. The 3 corresponds to the need for passing a triplet of a query, a positive, and a negative
document (Equation 1). The batch size (bs) factor corresponds to the need for forwarding all samples
together as regular gradient accumulation does not work with in-batch negatives. Below we outline
the strategies we employ to reduce these memory needs.

Triplet As the full triplet is only required for loss calculation (Equation 1), it can be split across
separate forward and backward passes. To avoid the memory requirements of gradients in PyTorch
Autograd (Paszke et al., 2019), this requires two additional forward passes without gradients. Simpli-
fied code representing this procedure is depicted in Listing 1. In our training, it was sufficient to only
split the triplet into two parts: query and passages, where passages consist of both a positive and a
negative document. Thus, we only incur the cost of one additional forward pass without gradients on
the query. Alternatively, one could only backpropagate on a subset of the embeddings, however, we
show in Figure 9 that this leads to worse performance.

In-batch negatives There are two strategies to reduce the batch size memory requirement to that
of a single batch while using nearly unlimited in-batch negatives. (1) Distributed Training: The
best strategy is to distribute the training across up to bs GPUs. The representations can then be
gathered across GPUs to compute the contrastive loss with in-batch negatives. (2) GradCache: If
enough GPUs are not available, GradCache (Gao et al., 2021b) can be used. GradCache maintains
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Listing 1: Splitting of the embedding pass to save memory, simplified.

def distributed_contrastive_loss(q, p, n):
# Gather in-batch negatives across devices...
# Compute contrastive loss...

# Split triplet into three forward passes
pos_rep = model(pos)
with torch.no_grad():

q_rep = model(query)
neg_rep = model(neg)

# Only perform backward pass on positive documents
loss = distributed_contrastive_loss(q_rep, pos_rep, neg_rep)
loss.backward()

pos_rep = pos_rep.detach()
# Perform forward + backward on negatives & reuse rest
neg_rep = model(neg)
loss = distributed_contrastive_loss(q_rep, pos_rep, neg_rep)
loss.backward()

# Perform forward + backward on queries & reuse rest
neg_rep = neg_rep.detach()
q_rep = model(query)
loss = distributed_contrastive_loss(q_rep, pos_rep, neg_rep)
loss.backward()

in-batch negatives while allowing computation of gradients for each triplet at a time, thus effectively
corresponding to gradient accumulation for contrastive loss. However, it comes at the cost of
additional forward passes.

Across training runs, we make use of all three strategies (splitting, distributed training, GradCache).

L HYPERPARAMETERS

We finetune all parameters of our models for up to 1253 steps. Our learning rate is 2e-5, we use
3% of steps for linear warm-up of the learning rate and decay it linearly to 0 over training. To save
memory, we use PyTorch FSDP (Zhao et al., 2023), gradient checkpointing, BF16 mixed precision
training, and strategies outlined in Appendix K. During training, we use a sequence length of 2048
for generative samples, 256 for embedding queries, and 2048 for embedding documents unless
otherwise specified. We finetune using the Adam optimizer (Kingma & Ba, 2017) with beta1=0.9
and beta2=0.999 and no weight decay. We also use Flash-Attention 2 (Dao et al., 2022; Dao, 2023)
via PyTorch SDPA.

We evaluate models using the settings put forth by the creators of MTEB (Muennighoff et al., 2023c),
Tülu (Ivison et al., 2023; Wang et al., 2024) and HumanEvalSynthesize (Muennighoff et al., 2023a;
Zhuo et al., 2024). For MTEB, we evaluate using a maximum sequence length of 512 unless otherwise
specified.

M EMBEDDING INSTRUCTION FOR GENERATIVE MODELS

As prior instruction-tuned models have been trained without an embedding objective, it is unclear
whether one should add an instruction when evaluating them on embedding tasks. We benchmark
the Mistral 7B instruct model on MTEB with and without instruction in Table 25. We find that
performance is around the same, however, adding instructions performs slightly better. Thus, we add
an instruction for all instruction-tuned models when benchmarking their embedding performance.
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Table 25: Benchmarking the benefit of an embedding instruction for generative instruction-
tuned models. When an instruction is used (”Mistral Instruct w/”), we use the default instructions
from Instructor XL with the prompt template of the Mistral Instruct model. For no instruction
(”Mistral Instruct w/o”), the procedure is the same as for the base model (”Mistral”)

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

Mistral 63.5 34.6 53.5 43.2 13.2 57.4 19.7 40.5
Mistral Instruct w/o 65.4 35.6 60.2 44.6 16.8 61.1 25.9 43.3
Mistral Instruct w/ 67.1 34.6 59.6 44.8 16.3 63.4 25.9 43.7

N HUMANEVAL FORMAT Table 26: HumanEvalSynthesize with dif-
ferent formats using Tülu 2 7B.

Tülu 2 7B
Format No Chat Chat

Pass@1 23.4 24.5
Pass@10 32.4 31.3

In Tülu 2 (Ivison et al., 2023), models are evaluated
on HumanEval (Chen et al., 2021) without the model’s
chat format. As this does not reflect the intended usage
of the models, we instead use the appropriate chat for-
mat for evaluating HumanEval. To do so, we use the
instructions and evaluation procedure from HumanEval-
Synthesize (Muennighoff et al., 2023a). In Table 26 we benchmark the impact this has on performance
for the Tülu 2 7B model (Ivison et al., 2023). We find that the performance is around equivalent and
thus use the chat format for all evaluations of chat models. For non-chat models, we use the original
HumanEval continuation format as proposed by Chen et al. (2021)

O EMBEDDING IN FP32 VS BF16

We perform all training and evaluations in BF16 (bfloat16) mixed precision to speed up computations.
We verified that it performs comparably to FP32 (float32) on MTEB in Table 27. Note that pooling
and subsequent similarity computations are still in FP32.

Table 27: Embeddings in FP32 vs BF16. Benchmarking of the raw Mistral 7B model. “FP32”
corresponds to doing all computations in float32 precision. “BF16” and “BF16 Cache” corresponds
to doing most operations in bfloat16 except for operations that PyTorch auto casts to float32 (e.g.
normalization), pooling and similarity computations. For “BF16 Cache”, we cast the embeddings
after pooling to BF16 and then back to FP32 before similarity computations. This corresponds to
locally caching the embeddings in BF16 to save storage and then casting them to FP32 at inference.

Task (→) CLF Clust. PairCLF Rerank Retrieval STS Summ. Avg.
Metric (→) Acc. V-Meas. AP MAP nDCG Spear. Spear.
Dataset # (→) 12 11 3 4 15 10 1 56

FP32 63.46 34.62 53.56 43.24 13.26 57.38 19.87 40.51
BF16 63.47 34.60 53.52 43.24 13.24 57.38 19.68 40.50
BF16 Cache 63.47 34.56 53.52 43.25 13.11 57.38 19.71 40.46
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P UNRELIABILITY OF MT-BENCH

Table 28: Using GPT-4 vs GPT-4 Turbo as
a judge for MT-Bench. Each evaluator is
provided with the same generations of the
same instruction-tuned model.

GPT-4 GPT-4 Turbo Drop

Turn 1 4.08 3.05 25%
Turn 2 2.64 1.88 29%

Avg. 3.36 2.48 26%

We experiment with using MT-Bench with its rec-
ommended absolute scores for our generative eval-
uation (Zheng et al., 2023). However, we find that as
soon as we switch the LLM Evaluator from GPT-4
to GPT-4 Turbo, the scores change significantly (Ta-
ble 28). GPT-4 is a closed-source model with changes
happening behind the scenes that users may not know
about (Chen et al., 2023). Thus, if OpenAI decides to
change GPT-4, all existing MT-Bench absolute scores
would essentially become obsolete. The same applies
if the API is retired. To alleviate this, we also exper-
iment with using Zephyr 7B β (Tunstall et al., 2023)
and Llama 2 70B Chat (Touvron et al., 2023) as eval-
uators, however, we find them to often not provide any rating as they struggle to understand the
prompt. While AlpacaEval (Dubois et al., 2023; Li et al., 2023b), which we use, shares some of
these problems, its comparison-based evaluation is more stable. This is because comparing if one
generation is better than another generally has an objective ground truth solution. Meanwhile, there
is no objective solution as to whether an absolute score of a given generation should be 3 or 4
(MT-Bench has eleven levels from 0-10). This is up to the subjective value system of the evaluator.

Q LIMITATIONS AND FUTURE WORK

Efficiency As mentioned in §1, training using GRIT requires more compute than only embedding or
only generative training as two forward and backward passes are required. As finetuning is generally
cheaper than pretraining, this is not a major problem, but efficiency improvements would nonetheless
be worthwhile. One potential way to improve efficiency would be to extract the embedding and
generative signal from the same samples, rather than separate samples. This could halve the number
of forward passes required, yet due to the different loss functions, it may not make the backward
passes significantly faster.

Performance improvements While we find that GRITLM performs strongly on embedding and
generative tasks (§3.2), there have been many recent models with even stronger performance in
either embedding or generative tasks; yet not the combination of both. A natural future work would
therefore be extending the GRIT approach to more recent models, such as the Llama-3 series of
models (Dubey et al., 2024) to build stronger models that can handle both embedding and generation.

Caching improvements As we outline in §5, the caching variants with GRITLM suffer from
attention mismatch problems. Further, doc caching requires a significant amount of extra storage.
While storage is usually cheap, it may nonetheless be prohibitively expensive for very large indices.
One promising avenue for future work is improving caching with GRITLM, such as via finetuning
with caching, such that it learns to deal with the mismatch problem.

GRITLM Agents Future work may consider using the embedding capability to let the generative
model initiate a search over an index when it deems necessary. Currently, this is often accomplished
via external retrieval plugins. Such plugins are no longer necessary if the model can retrieve on
its own. Teaching the model to invoke its own embedding capability likely requires additional
finetuning (just like teaching it to invoke an external plugin (Schick et al., 2023)). A sample could
look something like:
“<|user|>\nWhat is the capital of Japan?\n<|internal|>\nI am not
sure I know this. Let me produce an embedding for it and search
for the answer. Retrieve answers for this query.\n<|embed|>\nWhat
is the capital of Japan?\n<|output|>\nTokyo, Japan’s busy capital,
mixes the ultramodern and the traditional..\n<|assistant|>\n
The capital of Japan is Tokyo.\n</s>”
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Pretraining For our experiments we take an off-the-shelf pretrained language model. However, it
should also be possible to use the GRIT approach to pretrain from scratch. As labeled embedding
data is likely too scarce for pretraining, one could either rely on unsupervised approaches for the
embedding objective, such as RetroMAE (Xiao et al., 2022; Xiao & Liu, 2022), or use methods like
data augmentation (Dhole et al., 2022), pruning (Xia et al., 2023) or multi-epoch training to deal with
the data constraint (Muennighoff et al., 2023b; Luukkonen et al., 2023).

Format Efficiency Our format in Figure 3 is inefficient, as encoding the embedding for-
mat, <s><|user|>\n<|embed|>\n, requires 13 tokens and encoding the generative format,
<s><|user|>\n<|assistant|>\n</s>, requires 15 tokens. Using special tokens could
simplify this and thus make training and inference slightly cheaper.

Training efficiency: Packing and Reusing It is common to pack samples during generative
instruction tuning to maximize efficiency (Chung et al., 2022; Muennighoff et al., 2023d). Packing
embedding samples during training should also be possible by ensuring attention is only paid to
each respective sample. Going even further is it possible to pack generative and embedding training
data into the same sample and reuse the same sample for both tasks? This could look similar to the
example provided in “GRITLM Agents” with the generative loss applied over the assistant response
and the contrastive loss applied to the representation of the text following “<|embed|>”. By reusing
samples it may be possible to significantly decrease the resources needed for GRIT.

R DATASET COMPOSITION

Table 29: E5S dataset composition.

Dataset (↓) Num samples

DuReader (Qiu et al., 2022) 86,395
ELI5 (Fan et al., 2019) 50293
FEVER (Thorne et al., 2018) 71,257
GPT4 Bitext (Wang et al., 2024) 89,324
GPT4 P2P (Wang et al., 2024) 16,842
GPT4 P2S (Wang et al., 2024) 121,878
GPT4 Retrieval (Wang et al., 2024) 166,602
GPT4 S2S (Wang et al., 2024) 13,481
GPT4 STS (Wang et al., 2024) 98,626
HotpotQA (Yang et al., 2018) 68,659
NLI (Gao et al., 2022) 275,601
MIRACL (Zhang et al., 2022) 40,203
MSMARCO (Bajaj et al., 2018) 244,582
MSMARCO Doc (Bajaj et al., 2018) 71,594
Mr. TyDi (Zhang et al., 2021) 48,729
NQ (Kwiatkowski et al., 2019) 71,408
S2ORC (Lo et al., 2020) 80,000
SQuAD (Rajpurkar et al., 2016) 87,599
T2Ranking (Xie et al., 2023) 112,335
TriviaQA (Karpukhin et al., 2020) 60,296
Quora (DataCanary et al., 2017) 14,926

Total 1,890,630
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Table 30: MEDI2 dataset composition.

MEDI Dataset (↓) Num samples

AGNews (Zhang et al., 2016) 199,792
Altlex (Hidey & McKeown, 2016) 112,602
Amazon QA (Gupta et al., 2019) 199,180
Amazon Review (Keung et al., 2020) 198,298
CC News (Hamborg et al., 2017) 190,503
CNN/Dailymail (Fabbri et al., 2021) 189,407
COCO Captions (Chen et al., 2015) 82,783
ELI5 (Fan et al., 2019) 196,572
FEVER KILT (Thorne et al., 2018; Petroni et al., 2021) 71,257
Flickr 30k (Young et al., 2014) 31,783
Gigaword (Rush et al., 2015; Graff et al., 2003) 200,000
GooAQ (Khashabi et al., 2021) 199,981
HotpotQA KILT (Yang et al., 2018; Petroni et al., 2021) 65,351
NLI (Gao et al., 2022) 277,195
MSMARCO (Bajaj et al., 2018) 491,980
MedMCQA (Pal et al., 2022) 156,905
Multi-LexSum (Shen et al., 2022) 2,771
NPR (Team, 2021b) 193,399
NQ (Kwiatkowski et al., 2019) 73,226
PAQ (Lewis et al., 2021b) 190,162
PubMedQA (Jin et al., 2019) 190,481
Reddit (Team, 2021c) 196,247
S2ORC (Lo et al., 2020) 193,458
SQuAD (Rajpurkar et al., 2016) 84,105
SciTLDR (Cachola et al., 2020) 1,742
SearchQA (Dunn et al., 2017) 114,520
Sentence Compression (Filippova & Altun, 2013) 179,996
SimpleWiki (Coster & Kauchak, 2011) 102,035
StackExchange (Team, 2021a) 201,050
SuperNI (300 datasets) (Wang et al., 2022c) 2,682,465
SPECTER (Cohan et al., 2020) 684,000
T-REx KILT (ElSahar et al., 2018; Petroni et al., 2021) 191,383
Quora (DataCanary et al., 2017) 101,762
WikiAnswers (Fader et al., 2014) 200,000
WikiHow (Koupaee & Wang, 2018) 128,542
XSum (Narayan et al., 2018) 190,427
Yahoo (Zhang et al., 2016) 198,346
Zeroshot KILT (Levy et al., 2017; Petroni et al., 2021) 124,547

Total 9,084,806
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S DATASET SAMPLES

Query instruction:

Represent the sentence for retrieving supporting documents;

Query sample:

what two plates form the san andreas fault

Positive instruction:

Represent the document for retrieval;

Positive sample:

The San Andreas Fault marks the junction between the North American and Pacific Plates. The fault
is 1300 km long, extends to at least 25 km in depth, and has a north west-south east trend. It is
classified as a right lateral (dextral) strike-slip fault. Loading the player ...

Negative instruction:

Represent the document for retrieval;

Negative sample:

The San Andreas Fault is the sliding boundary between the Pacific Plate and the North American
Plate. It slices California in two from Cape Mendocino to the Mexican border. San Diego, Los
Angeles and Big Sur are on the Pacific Plate.

Figure 10: MEDI sample.
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Query instruction:

Represent this question to retrieve a fitting Wikipedia passage (formal)

Query sample:

which two plates meet along the west coast of the USA

Positive instruction:

Represent this Wikipedia text in order to get a user query which it answers!

Positive sample:

on to a transitional deformation zone in the Chersky Range, then the Ulakhan Fault between it and
the Okhotsk Plate, and finally the Aleutian Trench to the end of the Queen Charlotte Fault system.
The westerly boundary is the Queen Charlotte Fault running offshore along the coast of Alaska and
the Cascadia subduction zone to the north, the San Andreas Fault through California, the East Pacific
Rise in the Gulf of California, and the Middle America Trench to the south.
On its western edge, the Farallon Plate has been subducting

Negative instruction:

Represent this passage to easily find a natural-written user question that can be answered by it.

Negative sample:

the continental margin.
Types.
There are two types of continental margins: äctiveänd p̈assivem̈argins.
Active margins are typically associated with lithospheric plate boundaries. These active margins can
be convergent or transform margins, and are also places of high tectonic activity, including volcanoes
and earthquakes. The West Coast of North America and South America are active margins. Active
continental margins are typically narrow from coast to shelf break, with steep descents into trenches.
Convergent active margins occur where oceanic plates meet continental

Figure 11: MEDI2 sample.
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Query instruction:

Given a question, retrieve Wikipedia passages that answer the question

Query sample:

which two plates meet along the west coast of the USA

Positive sample:

North American Plate boundary is the Queen Charlotte Fault running offshore along the coast of
Alaska and the Cascadia subduction zone to the north, the San Andreas Fault through California,
the East Pacific Rise in the Gulf of California, and the Middle America Trench to the south. On
its western edge, the Farallon Plate has been subducting under the North American Plate since the
Jurassic Period. The Farallon Plate has almost completely subducted beneath the western portion of
the North American Plate leaving that part of the North American Plate in contact with the Pacific
Plate as the San Andreas Fault. The Juan

Negative sample:

Caribbean Plate Caribbean Plate The Caribbean Plate is a mostly oceanic tectonic plate underlying
Central America and the Caribbean Sea off the north coast of South America. Roughly 3.2 million
square kilometers (1.2 million square miles) in area, the Caribbean Plate borders the North American
Plate, the South American Plate, the Nazca Plate and the Cocos Plate. These borders are regions of
intense seismic activity, including frequent earthquakes, occasional tsunamis, and volcanic eruptions.
The northern boundary with the North American plate is a transform or strike-slip boundary which
runs from the border area of Belize, Guatemala (Motagua Fault), and Honduras in Central

Figure 12: E5 sample. The E5 dataset does not use instructions for documents, thus the positive and
negative samples do not have instructions.

Instruction:

Q: Lloyd, Mark, and Michael have their Pokemon cards collection. Currently, Mark has thrice as
many cards as Lloyd but has 10 fewer cards than Michael. If Michael has 100 cards now, how many
more cards should they collect so that all three of them will have a total of 300 cards?
A: 80
Explain how we arrive at this answer:

Sample:

Explanation: Mark has 10 fewer cards than Michael so Mark has 100 cards - 10 cards = 90 cards.
So, Lloyd has 90 cards / 3 = 30 cards. All three of them have 90 cards + 30 cards + 100 cards = 220
cards. Thus, they need to collect 300 cards - 220 cards = 80 more cards.

Figure 13: Tülu 2 sample.
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T EVALUATION PROMPTS

T.1 EMBEDDING PROMPTS

Table 31 contains the prompt for each MTEB dataset when training on the E5 dataset, which are the
same instructions as used in Wang et al. (2024). Table 32 contains the MTEB prompts we use when
training on MEDI2, which we wrote ourselves. For models trained on MEDI, we use the instructions
for Instructor-XL from Su et al. (2023).

Table 31: Instructions used for evaluation on the MTEB benchmark when training with the E5
dataset. “STS*” indicates we use the same instructions for all the STS tasks. For retrieval datasets,
we do not use an instruction for the document and only display the query instruction.

Task Name Instruction

AmazonCounterfactualClassif. Classify a given Amazon customer review text as either counter-
factual or not-counterfactual

AmazonPolarityClassification Classify Amazon reviews into positive or negative sentiment

AmazonReviewsClassification Classify the given Amazon review into its appropriate rating
category

Banking77Classification Given a online banking query, find the corresponding intents

EmotionClassification Classify the emotion expressed in the given Twitter message
into one of the six emotions: anger, fear, joy, love, sadness, and
surprise

ImdbClassification Classify the sentiment expressed in the given movie review text
from the IMDB dataset

MassiveIntentClassification Given a user utterance as query, find the user intents

MassiveScenarioClassification Given a user utterance as query, find the user scenarios

MTOPDomainClassification Classify the intent domain of the given utterance in task-oriented
conversation

MTOPIntentClassification Classify the intent of the given utterance in task-oriented conver-
sation

ToxicConversationsClassif. Classify the given comments as either toxic or not toxic

TweetSentimentClassification Classify the sentiment of a given tweet as either positive, negative,
or neutral

ArxivClusteringP2P Identify the main and secondary category of Arxiv papers based
on the titles and abstracts

ArxivClusteringS2S Identify the main and secondary category of Arxiv papers based
on the titles

BiorxivClusteringP2P Identify the main category of Biorxiv papers based on the titles
and abstracts

BiorxivClusteringS2S Identify the main category of Biorxiv papers based on the titles

MedrxivClusteringP2P Identify the main category of Medrxiv papers based on the titles
and abstracts

MedrxivClusteringS2S Identify the main category of Medrxiv papers based on the titles

RedditClustering Identify the topic or theme of Reddit posts based on the titles

RedditClusteringP2P Identify the topic or theme of Reddit posts based on the titles and
posts

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

StackExchangeClustering Identify the topic or theme of StackExchange posts based on the
titles

StackExchangeClusteringP2P Identify the topic or theme of StackExchange posts based on the
given paragraphs

TwentyNewsgroupsClustering Identify the topic or theme of the given news articles

SprintDuplicateQuestions Retrieve duplicate questions from Sprint forum

TwitterSemEval2015 Retrieve tweets that are semantically similar to the given tweet

TwitterURLCorpus Retrieve tweets that are semantically similar to the given tweet

AskUbuntuDupQuestions Retrieve duplicate questions from AskUbuntu forum

MindSmallReranking Retrieve relevant news articles based on user browsing history

SciDocsRR Given a title of a scientific paper, retrieve the titles of other
relevant papers

StackOverflowDupQuestions Retrieve duplicate questions from StackOverflow forum

ArguAna Given a claim, find documents that refute the claim

ClimateFEVER Given a claim about climate change, retrieve documents that
support or refute the claim

CQADupstackRetrieval Given a question, retrieve detailed question descriptions from
Stackexchange that are duplicates to the given question

DBPedia Given a query, retrieve relevant entity descriptions from DBPedia

FEVER Given a claim, retrieve documents that support or refute the claim

FiQA2018 Given a financial question, retrieve user replies that best answer
the question

HotpotQA Given a multi-hop question, retrieve documents that can help
answer the question

MSMARCO Given a web search query, retrieve relevant passages that answer
the query

NFCorpus Given a question, retrieve relevant documents that best answer
the question

NQ Given a question, retrieve Wikipedia passages that answer the
question

QuoraRetrieval Given a question, retrieve questions that are semantically equiva-
lent to the given question

SCIDOCS Given a scientific paper title, retrieve paper abstracts that are cited
by the given paper

SciFact Given a scientific claim, retrieve documents that support or refute
the claim

Touche2020 Given a question, retrieve detailed and persuasive arguments that
answer the question

TRECCOVID Given a query on COVID-19, retrieve documents that answer the
query

STS* Retrieve semantically similar text.

SummEval Given a news summary, retrieve other semantically similar sum-
maries
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Table 32: Instructions used for evaluation on the MTEB benchmark when training with the
MEDI2 dataset. For asymmetric datasets, Q refers to instructions for queries, while D refers to
document instructions.

Task Name Instruction

AmazonCounterfactualClassification Represent the text to find another sentence with the same coun-
terfactuality, e.g. sentences with ”would”, ”wish”, etc. should
match with other sentences of that kind.

AmazonPolarityClassification Represent the review for finding another Amazon review with the
same sentiment (positive / negative)

AmazonReviewsClassification Represent the review for finding another Amazon review with the
same rating

Banking77Classification Represent the text for finding another one-sentence banking query
with the same intent

EmotionClassification Represent the text for finding another one-sentence text with the
same emotion

ImdbClassification Represent the text for finding another one-sentence movie review
with the same sentiment

MassiveIntentClassification Represent the text for finding another text of a few words with
the same intent

MassiveScenarioClassification Represent the text for finding another text of a few words about
the same scenario

MTOPDomainClassification Represent the text for finding another text of a few words about
the same domain

MTOPIntentClassification Represent the text for finding another text of a few words with
the same intent

ToxicConversationsClassification Represent the text for finding another comment of up to a passage
in length with the same level of toxicity (either toxic or not toxic)

TweetSentimentExtractionClassification Represent the tweet for finding another tweet with the same
sentiment (positive / neutral / negative)

ArxivClusteringP2P Represent the text to find another arXiv title with abstract (con-
catenated) about the same topic

ArxivClusteringS2S Represent the text to find another arXiv title about the same topic

BiorxivClusteringP2P Represent the text to find another bioRxiv title with abstract
(concatenated) about the same topic

BiorxivClusteringS2S Represent the text to find another bioRxiv title about the same
topic

MedrxivClusteringS2S Represent the text to find another medRxiv title about the same
topic

MedrxivClusteringP2P Represent the text to find another medRxiv title with abstract
(concatenated) about the same topic

RedditClustering Represent the text to find another Reddit community title that
stems from the same subreddit

RedditClusteringP2P Represent the text to find another Reddit community title with
post (concatenated) from the same subreddit

StackExchangeClustering Represent the text to find another StackExchange title that stems
from the same StackExchange
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StackExchangeClusteringP2P Represent the text to find another StackExchange title with post
(concatenated) that stems from the same StackExchange

TwentyNewsgroupsClustering Represent the title to find a similar news title from the same
newsgroup

SprintDuplicateQuestions Represent the question to be matched with another duplicate user
question from the Sprint community forum

TwitterSemEval2015 Represent the tweet to find another tweet that is a paraphrase of it

TwitterURLCorpus Represent the tweet to find another tweet that is a paraphrase of it

ArguAna Q Represent the passage to find a passage with a counter-argument
about the same topic to it

ArguAna D Represent the passage to find a passage with a counter-argument
about the same topic to it

ClimateFEVER Q Represent the climate-based claim to find a Wikipedia abstract to
support it

ClimateFEVER D Represent the Wikipedia abstract to find a climate-related claim
that it supports

CQADupstackAndroidRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Android StackExchange forum

CQADupstackAndroidRetrieval D Represent the question title with body posted by a user to find
a duplicate user question title from the Android StackExchange
forum

CQADupstackEnglishRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the English StackExchange forum

CQADupstackEnglishRetrieval D Represent the question title with body posted by a user to find
a duplicate user question title from the English StackExchange
forum

CQADupstackGamingRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Gaming StackExchange forum

CQADupstackGamingRetrieval D Represent the question title with body posted by a user to find
a duplicate user question title from the Gaming StackExchange
forum

CQADupstackGisRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Gis StackExchange forum

CQADupstackGisRetrieval D Represent the question title with body posted by a user to find a
duplicate user question title from the Gis StackExchange forum

CQADupstackMathematicaRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Mathematica StackExchange
forum

CQADupstackMathematicaRetrieval D Represent the question title with body posted by a user to find
a duplicate user question title from the Mathematica StackEx-
change forum

CQADupstackPhysicsRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Physics StackExchange forum

CQADupstackPhysicsRetrieval D Represent the question title with body posted by a user to find
a duplicate user question title from the Physics StackExchange
forum
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CQADupstackProgrammersRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Programmers StackExchange
forum

CQADupstackProgrammersRetrieval D Represent the question title with body posted by a user to find
a duplicate user question title from the Programmers StackEx-
change forum

CQADupstackStatsRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Stats StackExchange forum

CQADupstackStatsRetrieval D Represent the question title with body posted by a user to find a
duplicate user question title from the Stats StackExchange forum

CQADupstackTexRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Tex StackExchange forum

CQADupstackTexRetrieval D Represent the question title with body posted by a user to find a
duplicate user question title from the Tex StackExchange forum

CQADupstackUnixRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Unix StackExchange forum

CQADupstackUnixRetrieval D Represent the question title with body posted by a user to find a
duplicate user question title from the Unix StackExchange forum

CQADupstackWebmastersRetrieval Q Represent the title of a user question to find a duplicate user
question title with body from the Webmasters StackExchange
forum

CQADupstackWebmastersRetrieval D Represent the question title with body posted by a user to find a
duplicate user question title from the Webmasters StackExchange
forum

CQADupstackWordpressRetrieval Q Represent the title of a user question to find a duplicate user ques-
tion title with body from the Wordpress StackExchange forum

CQADupstackWordpressRetrieval D Represent the question title with body posted by a user to find a
duplicate user question title from the Wordpress StackExchange
forum

DBPedia Q Represent the entity to find a title with abstract about this entity
from the DBPedia corpus

DBPedia D Represent the title with abstract of a DBPedia corpus entry to find
the entity of a few words it is about

FEVER Q Represent the claim to find a Wikipedia abstract to support it

FEVER D Represent the Wikipedia abstract to find a claim that it supports

FiQA2018 Q Represent the StackExchange user query to find a StackExchange
post from the Investment topic that answers it

FiQA2018 D Represent the StackExchange post from the Investment topic to
find a StackExchange user query that it answers

HotpotQA Q Represent the multi-hop question to find a Wikipedia passage that
answers it

HotpotQA D Represent the Wikipedia passage to find a multi-hop question that
it answers

MSMARCO Q Represent the Bing user search query to find a passage that ade-
quately addresses it

MSMARCO D Represent the passage for finding a Bing user search query about
it

NFCorpus Q Represent the query from NutritionFacts to find a title with text
of a medical document from PubMed about it
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NFCorpus D Represent this text of a medical document from PubMed to find a
query someone may enter at NutritionFacts that it answers

NQ Q Represent the Google search query to find an answer span from a
Wikipedia article that addresses it

NQ D Represent the Wikipedia article span to find a Google search
query that would be addressed by it

SCIDOCS Q Represent the scientific paper title to find the title with abstract
of a scientific paper on PubMed that it has likely cited

SCIDOCS D Represent the title with abstract of this scientific paper to find the
title of another scientific paper on PubMed that likely cites this
article

SciFact Q Represent the scientific claim to find a scientific paper abstract
from PubMed to support it

SciFact D Represent the scientific paper abstract from PubMed to find a
scientific claim that it supports

TRECCOVID Q Represent the search query to find a scientific article about
COVID-19 that adequately addresses the query

TRECCOVID D Represent the scientific article about COVID-19 to find a user
query that it adequately addresses

Touche2020 Q Represent the question to find a title with passage of an argument
from args.me that takes a stance about it

Touche2020 D Represent the title with passage of an argument from args.me to
find a question that it takes a stance about

QuoraRetrieval Q Represent the Quora question to find another short duplicate
question on Quora

QuoraRetrieval D Represent the Quora question to find another short duplicate
question on Quora

AskUbuntuDupQuestions Q Represent the query to find a duplicate query on the AskUbuntu
community forum

AskUbuntuDupQuestions D Represent the query to find a duplicate query on the AskUbuntu
community forum

MindSmallReranking Q Represent the news headline to find another news headline that
the same reader would enjoy

MindSmallReranking D Represent the news headline to find another news headline that
the same reader would enjoy

SciDocsRR Q Represent the title to find a similar scientific paper title

SciDocsRR D Represent the title to find a similar scientific paper title

StackOverflowDupQuestions Q Represent the query to find a duplicate query on the StackOver-
flow Java/JavaScript/Python community forums

StackOverflowDupQuestions D Represent the query to find a duplicate query on the StackOver-
flow Java/JavaScript/Python community forums

BIOSSES Represent the text to find another biological statement with the
same meaning

SICK-R Represent the sentence to find another sentence with the same
meaning

STS12 Represent the sentence to find another sentence with the same
meaning

53



2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

STS13 Represent the sentence to find another sentence with the same
meaning

STS14 Represent the sentence to find another sentence with the same
meaning

STS15 Represent the sentence to find another sentence with the same
meaning

STS16 Represent the sentence to find another sentence with the same
meaning

STS17 Represent the sentence to find another sentence with the same
meaning

STS22 Represent the sentence to find another sentence with the same
meaning

STSBenchmark Represent the sentence to find another sentence with the same
meaning

SummEval Q Represent the human-written summary to find a high-quality
machine-written summary of the same news article

SummEval D Represent the machine-written summary to find a human-written
summary with similar quality of the same news article

T.2 EMBEDDING FEW-SHOT PROMPTS

Table 33: 1-shot example for the model trained on E5S. The example is appended to the respective
instruction in Table 31 separated by two newlines.

Task Name Instruction

Banking77Classification For example given ”I am still waiting on my card?”, it would
match with ”card arrival”

EmotionClassification For example given ”ive been feeling a little burdened lately wasnt
sure why that was”, it would match with ”sadness”

ImdbClassification For example given ”If only to avoid making this type of film in
the future. This film is interesting as an experiment but tells no
cogent story.¡br /¿¡br /¿One might feel virtuous for sitting thru it
because it touches on so many IMPORTANT issues but it does so
without any discernable motive. The viewer comes away with no
new perspectives (unless one comes up with one while one’s mind
wanders, as it will invariably do during this pointless film).¡br
/¿¡br /¿One might better spend one’s time staring out a window
at a tree growing.¡br /¿¡br /¿”, it would match with ”negative”

BiorxivClusteringP2P For example given ”Association of CDH11 with ASD revealed
by matched-gene co-expression analysis and mouse behavioral
studies”, it would match with ”neuroscience”

TwitterSemEval2015 For example given ”The Ending to 8 Mile is my fav part of the
whole movie”, it would match with ”Those last 3 battles in 8 Mile
are THE shit”
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TwitterURLCorpus For example given ”Liberals , dont let Donald Trump tarnish L.L.
Beans sterling brand reputation ”, it would match with ”Liber-
als, Don&rsquo;t Let Donald Trump Tarnish L.L. Bean&rsquo;s
Sterling Brand Reputation”

SprintDuplicateQuestions For example given ”Why is it impossible for me to find a easy
way to send a picture with text on my Kyocera DuraCore ?”, it
would match with ”Send or receive a picture with text - Kyocera
DuraCore”

AskUbuntuDupQuestions For example given ”what is a short cut i can use to switch appli-
cations ?”, you should retrieve ”keyboard short cut for switching
between two or more instances of the same application ?”

ArguAna For example given ”People will die if we don’t do animal testing
Every year, 23 new drugs are introduced in the UK alone.[13]
Almost all will be tested on animals. A new drug will be used
for a long time. Think of all the people saved by the use of
penicillin. If drugs cost more to test, that means drug companies
will develop less. This means more people suffering and dying”,
you should retrieve ”animals science science general ban animal
testing junior Many of these drugs are “me too” drugs – ones with
a slight change that doesn’t make much difference to an existing
drug. [14] So often the benefits from animal testing are marginal,
and even if there was a slight increase in human suffering, it
would be worth it based on the animal suffering saved.”

SCIDOCS For example given ”A Direct Search Method to solve Economic
Dispatch Problem with Valve-Point Effect”, you should retrieve
”A Hybrid EP and SQP for Dynamic Economic Dispatch with
Nonsmooth Fuel Cost Function Dynamic economic dispatch
(DED) is one of the main functions of power generation opera-
tion and control. It determines the optimal settings of generator
units with predicted load demand over a certain period of time.
The objective is to operate an electric power system most eco-
nomically while the system is operating within its security limits.
This paper proposes a new hybrid methodology for solving DED.
The proposed method is developed in such a way that a simple
evolutionary programming (EP) is applied as a based level search,
which can give a good direction to the optimal global region, and
a local search sequential quadratic programming (SQP) is used
as a fine tuning to determine the optimal solution at the final. Ten
units test system with nonsmooth fuel cost function is used to
illustrate the effectiveness of the proposed method compared with
those obtained from EP and SQP alone.”

STS12 For example given ”Counties with population declines will be Ver-
million, Posey and Madison.”, it would match with ”Vermillion,
Posey and Madison County populations will decline.”
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SummEval The provided query could be ”Mexican restaurant has decided
to tap into $70 billion food delivery market. Fast-casual chain
will work with the Postmates app to allow mobile orders. App
works in similar way to Uber, using hired drivers to deliver the
food. But the chain will add a 9% service charge - on top of
Postmates$́5 rate.” and the positive ”chipotle has decided to tap
into the $ 70 billion food delivery market by teaming up with an
app to bring burritos straight to customers d́oors . the fast-casual
chain will work with the postmates app to begin offering delivery
for online and mobile orders in 67 cities . the restaurant plans
to add a nine per cent service charge - with the delivery fees for
postmates beginning at $ 5 and up depending on distance and
demand .”

Table 34: 1-shot example for the model trained on MEDI2. The example is appended to the
respective instruction in Table 32 separated by two newlines.

Task Name Instruction

Banking77Classification The provided query could be ”I am still waiting on my card?” and
the positive ”What can I do if my card still hasn’t arrived after 2
weeks?”

EmotionClassification The provided query could be ”ive been feeling a little burdened
lately wasnt sure why that was” and the positive ”i feel like i have
to make the suffering i m seeing mean something”

ImdbClassification The provided query could be ”If only to avoid making this type
of film in the future. This film is interesting as an experiment but
tells no cogent story.¡br /¿¡br /¿One might feel virtuous for sitting
thru it because it touches on so many IMPORTANT issues but it
does so without any discernable motive. The viewer comes away
with no new perspectives (unless one comes up with one while
one’s mind wanders, as it will invariably do during this pointless
film).¡br /¿¡br /¿One might better spend one’s time staring out
a window at a tree growing.¡br /¿¡br /¿” and the positive ”The
silent one-panel cartoon Henry comes to Fleischer Studios, billed
as ”The world’s funniest human” in this dull little cartoon. Betty,
long past her prime, thanks to the Production Code, is running
a pet shop and leaves Henry in charge for far too long – five
minutes. A bore.”

SprintDuplicateQuestions The provided query could be ”Why is it impossible for me to find
a easy way to send a picture with text on my Kyocera DuraCore
?” and the positive ”Send or receive a picture with text - Kyocera
DuraCore”

TwitterSemEval2015 For example given ”The Ending to 8 Mile is my fav part of the
whole movie”, it would match with ”Those last 3 battles in 8 Mile
are THE shit”

TwitterURLCorpus For example given ”Liberals , dont let Donald Trump tarnish L.L.
Beans sterling brand reputation ”, it would match with ”Liber-
als, Don&rsquo;t Let Donald Trump Tarnish L.L. Bean&rsquo;s
Sterling Brand Reputation”
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AskUbuntuDupQuestions The provided query could be ”what is a short cut i can use to
switch applications ?” and the positive ”keyboard short cut for
switching between two or more instances of the same application
?”

ArguAna The provided query could be ”People will die if we don’t do
animal testing Every year, 23 new drugs are introduced in the
UK alone.[13] Almost all will be tested on animals. A new drug
will be used for a long time. Think of all the people saved by
the use of penicillin. If drugs cost more to test, that means drug
companies will develop less. This means more people suffering
and dying” and the positive ”animals science science general ban
animal testing junior Many of these drugs are “me too” drugs –
ones with a slight change that doesn’t make much difference to
an existing drug. [14] So often the benefits from animal testing
are marginal, and even if there was a slight increase in human
suffering, it would be worth it based on the animal suffering
saved.”

SCIDOCS The provided query could be ”A Direct Search Method to solve
Economic Dispatch Problem with Valve-Point Effect” and the
positive ”A Hybrid EP and SQP for Dynamic Economic Dispatch
with Nonsmooth Fuel Cost Function Dynamic economic dispatch
(DED) is one of the main functions of power generation opera-
tion and control. It determines the optimal settings of generator
units with predicted load demand over a certain period of time.
The objective is to operate an electric power system most eco-
nomically while the system is operating within its security limits.
This paper proposes a new hybrid methodology for solving DED.
The proposed method is developed in such a way that a simple
evolutionary programming (EP) is applied as a based level search,
which can give a good direction to the optimal global region, and
a local search sequential quadratic programming (SQP) is used
as a fine tuning to determine the optimal solution at the final. Ten
units test system with nonsmooth fuel cost function is used to
illustrate the effectiveness of the proposed method compared with
those obtained from EP and SQP alone.”

STS12 The provided query could be ”Counties with population declines
will be Vermillion, Posey and Madison.” and the positive ”Ver-
million, Posey and Madison County populations will decline.”

SummEval The provided query could be ”Mexican restaurant has decided
to tap into $70 billion food delivery market. Fast-casual chain
will work with the Postmates app to allow mobile orders. App
works in similar way to Uber, using hired drivers to deliver the
food. But the chain will add a 9% service charge - on top of
Postmates$́5 rate.” and the positive ”chipotle has decided to tap
into the $ 70 billion food delivery market by teaming up with an
app to bring burritos straight to customers d́oors . the fast-casual
chain will work with the postmates app to begin offering delivery
for online and mobile orders in 67 cities . the restaurant plans
to add a nine per cent service charge - with the delivery fees for
postmates beginning at $ 5 and up depending on distance and
demand .”
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T.3 GENERATIVE PROMPTS

Figure 14 until Figure 19 contain the prompts with examples used for our generative tasks.

Input:

<s><|user|>
The following are multiple choice questions (with answers) about abstract algebra.

Find the degree for the given field extension Q(sqrt(2), sqrt(3), sqrt(18)) over Q.
A. 0
B. 4
C. 2
D. 6
Answer:
<|assistant|>
The answer is:

Correct completion:

B

Figure 14: MMLU prompt example.
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Input:

<s><|user|>
Answer the following questions.
Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After
they are done, there will be 21 trees. How many trees did the grove workers plant today?
Answer: There are 15 trees originally. Then there were 21 trees after some more were planted. So
there must have been 21 - 15 = 6. So the answer is 6.

Question: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the
parking lot?
Answer: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. So the answer is 5.

Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they
have left in total?
Answer: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74.
After eating 35, they had 74 - 35 = 39. So the answer is 39.

Question: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How
many lollipops did Jason give to Denny?
Answer: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave
Denny 20 - 12 = 8. So the answer is 8.

Question: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How
many toys does he have now?
Answer: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more
toys. 5 + 4 = 9. So the answer is 9.

Question: There were nine computers in the server room. Five more computers were installed each
day, from monday to thursday. How many computers are now in the server room?
Answer: There were originally 9 computers. For each of 4 days, 5 more computers were added. So 5
* 4 = 20 computers were added. 9 + 20 is 29. So the answer is 29.

Question: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more.
How many golf balls did he have at the end of wednesday?
Answer: Michael started with 58 golf balls. After losing 23 on tuesday, he had 58 - 23 = 35. After
losing 2 more, he had 35 - 2 = 33 golf balls. So the answer is 33.

Question: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
Answer: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she has 23 -
15 dollars left. 23 - 15 is 8. So the answer is 8.

Question: The girls are trying to raise money for a carnival. Kim raises $320 more than Alexandra,
who raises $430, and Maryam raises $400 more than Sarah, who raises $300. How much money, in
dollars, did they all raise in total?
<|assistant|>
Answer:

Correct completion:

Kim raises 320+430=750 dollars. Maryam raises 400+300=700 dollars. They raise
750+430+400+700=2280 dollars. So the answer is 2280.

Figure 15: GSM8K prompt example.
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Input:

<s><|user|>
Questions that involve enumerating objects and asking the model to count them.

Q: I have a blackberry, a clarinet, a nectarine, a plum, a strawberry, a banana, a flute, an
orange, and a violin. How many fruits do I have?
A: Let’s think step by step.
We first identify the fruits on the list and include their quantity in parentheses:
- blackberry (1)
- nectarine (1)
- plum (1)
- strawberry (1)
- banana (1)
- orange (1)
Now, let’s add the numbers in parentheses: 1 + 1 + 1 + 1 + 1 + 1 = 6. So the answer is 6.

Q: I have an orange, a raspberry, two peaches, a blackberry, an apple, a grape, a nectarine, and three
plums. How many fruits do I have?
A: Let’s think step by step.
We first identify the fruits on the list and include their quantity in parentheses:
- orange (1)
- raspberry (1)
- peaches (2)
- blackberry (1)
- apple (1)
- grape (1)
- nectarine (1)
- plums (3)
Now, let’s add the numbers in parentheses: 1 + 1 + 2 + 1 + 1 + 1 + 1 + 3 = 11. So the answer is 11.

Q: I have a lettuce head, a head of broccoli, an onion, a stalk of celery, two carrots, a garlic, and a
yam. How many vegetables do I have?
A: Let’s think step by step.
We first identify the vegetables on the list and include their quantity in parentheses:
- lettuce (1)
- broccoli (1)
- onion (1)
- celery (1)
- carrots (2)
- garlic (1)
- yam (1)
Now, let’s add the numbers in parentheses: 1 + 1 + 1 + 1 + 2 + 1 + 1 = 8. So the answer is 8.

Q: I have a banana, four strawberries, an apple, two peaches, a plum, a blackberry, and two raspberries.
How many fruits do I have?
<|assistant|>

Correct completion:

12

Figure 16: BBH prompt example.

60



3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

Input:

<s><|user|>
Jawab pertanyaan berikut berdasarkan informasi di bagian yang diberikan.

Bagian: Mula-mula pada pelukis seorang pelukis pemandangan Wahdi Sumanta, Abdullah
Suriosubroto (ayah Basuki Abdullah). Kemudian bertemu dan berkenalan dengan Affandi, Sudarso,
dan Barli. Mereka lalu membentuk kelompok Lima serangkai. Di rumah tempat tinggal Affandi
mereka mengadakan latihan melukis bersama dengan tekun dan mendalam. Dari Wahdi, ia banyak
menggali pengetahuan tentang melukis. Kegiatannya bukan hanya melukis semata, tetapi pada
waktu senggang ia menceburkan diri pada kelompok sandiwara Sunda sebagai pelukis dekor. Dari
pengalaman itulah, ia mengasah kemampuannya.
Pertanyaan: dari manakah Hendra Gunawan belajar melukis?
Jawaban: kelompok Lima serangkai

Bagian: Empat Sehat Lima Sempurna adalah kampanye yang dilakukan pemerintah sejak tahun
1955 untuk membuat masyarakat memahami pola makan yang benar.[1]. Dalam konsep 4 sehat
5 sempurna, makanan dibagi atas empat sumber nutrisi penting, yaitu makanan pokok, lauk pauk,
sayur-mayur, buah-buahan, dan disempurnakan dengan susu bila mampu, menjadi lima sempurna[2]
Konsep ini menekankan pentingnya empat golongan makanan berupa sumber kalori untuk tenaga,
protein untuk pembangun, sayur dan buah sumber vitamin dan mineral untuk pemeliharaan.[1]
Pertanyaan: siapakah yang mencptakan Ide 4 sehat 5 sempurna pertama kali?

<|assistant|>
Jawaban:

Correct completion:

pemerintah

Figure 17: TyDi QA prompt example from Indonesian.
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Input:

<|user|>
Write a Python function ‘has close elements(numbers: List[float], threshold: float) -¿ bool‘ to solve
the following problem: Check if in given list of numbers, are any two numbers closer to each other
than given threshold.

>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True

<|assistant|>

from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:

""" Check if in given list of numbers, are any two numbers closer to
each other than

given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""

Correct completion:

for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):

if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:

return True

return False

Figure 18: HumanEvalSynthesize prompt example.
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Input:

<s><|user|>
If you were a Shakespearean character, how would you declare your love for someone in a soliloquy?

Completion by GPT-4 Turbo:

As an AI, I lack personal emotions and experiences, but I can craft a soliloquy in the style of a
Shakespearean character declaring love. Here’s an example:

(Imagine a dimly lit stage, a single spotlight shining down upon the forlorn lover, who
steps forward to share the depths of their heart.)

O, speak, thou lustrous beacon of the night,
With stars enkindled in thine eyes so bright.
Thou art the daybreak to my endless gloom,
The rose that in my barren heart doth bloom.

Forsooth, this love, a tempest full of grace,
Hath swept upon my soul without a trace.
My heart, once caged, now beats beneath thy gaze,
And yearns to laud thy beauty all its days.

What art thou, Love? A tyrant or a muse?
That rends my sense and all my thoughts confuse?
Thou art the riddle none can e’er resolve,
Yet in thy puzzle, my life doth revolve.

With every breath, I thee do magnify,
And to the world, my passion testify.
Thine essence hath become my sole refrain,
A melody that in my mind doth reign.

Shall I compare thee to a summer’s day?
Thou art more lovely and more temperate.
Rough winds do shake the darling buds of May,
And summer’s lease hath all too short a date.

But thy eternal summer shall not fade,
Nor lose possession of that fair thou ow’st.
Nor shall Death brag thou wander’st in his shade,
When in eternal lines to time thou grow’st.

So long as men can breathe, or eyes can see,
So long lives this, and this gives life to thee.

(With a heavy sigh, the lover steps back, their heart laid bare, the words hanging in the air
like the fragrance of an unseen bloom, their love declared, though the object of their affection
remains unaware, the audience enthralled by the vulnerability of true, unspoken love.)

Figure 19: AlpacaEval prompt example.
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T.4 RAG PROMPTS

Generative input:

<s><|user|>
what was the name of darth vader star destroyer
<|assistant|>
The answer is

Generation:

not clear. Darth Vader had a star destroyer, but it was

Figure 20: No RAG example and generation by GRITLM 7B.

Generative input:

<s><|user|>
what was the name of darth vader star destroyer

Star Destroyer The iconic Star Destroyer first appears in the opening scene of Star Wars,
as Darth Vader’s flagship, the Devastator, chases the Tantive IV above Tatooine. This appearance
shows the Imperial ship’s massive size in comparison to the Tantive IV.

Optionally using the prior context answer the query prior to it
<|assistant|>
The answer is

Generation:

the Devastator.</s>

Figure 21: RAG query then document example and generation by GRITLM 7B.
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Generative input:

<s><|user|>
Star Destroyer The iconic Star Destroyer first appears in the opening scene of Star Wars, as Darth
Vader’s flagship, the Devastator, chases the Tantive IV above Tatooine. This appearance shows the
Imperial ship’s massive size in comparison to the Tantive IV.

what was the name of darth vader star destroyer

Answer the prior query while optionally using the context prior to it
<|assistant|>
The answer is

Generation:

the Devastator.</s>

Figure 22: RAG document then query example and generation by GRITLM 7B.

Embedding input (query) passed via key-value states:

<s><|embed|>
what was the name of darth vader star destroyer

Generative input:

\n<|user|>
Star Destroyer The iconic Star Destroyer first appears in the opening scene of Star Wars, as Darth
Vader’s flagship, the Devastator, chases the Tantive IV above Tatooine. This appearance shows the
Imperial ship’s massive size in comparison to the Tantive IV.

Optionally using the prior context answer the query prior to it
<|assistant|>
The answer is

Generation:

Star Destroyer.</s>

Figure 23: GRIT Query Caching example and generation by GRITLM 7B.
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Embedding input (doc) passed via key-value states and cached in the index:

<s><|embed|>
Star Destroyer The iconic Star Destroyer first appears in the opening scene of Star Wars, as Darth
Vader’s flagship, the Devastator, chases the Tantive IV above Tatooine. This appearance shows the
Imperial ship’s massive size in comparison to the Tantive IV.

Generative input:

\n<|user|>
what was the name of darth vader star destroyer

Answer the prior query while optionally using the context prior to it
<|assistant|>
The answer is

Generation:

Devastator. The iconic Star Destroyer first appears in the opening

Figure 24: GRIT Doc Caching example and generation by GRITLM 7B.

Embedding input (doc) passed via key-value states and cached in the index:

<s><|embed|>
Star Destroyer The iconic Star Destroyer first appears in the opening scene of Star Wars, as Darth
Vader’s flagship, the Devastator, chases the Tantive IV above Tatooine. This appearance shows the
Imperial ship’s massive size in comparison to the Tantive IV.

Embedding input (query) passed via key-value states:

<s><|embed|>
what was the name of darth vader star destroyer

Generative input:

\n<|user|>
Answer the prior query while optionally using the context prior to it
<|assistant|>
The answer is

Generation:

the Star Destroyer. The Star Destroyer is a massive spacecraft

Figure 25: GRIT Doc-Query Caching example and generation by GRITLM 7B. Unlike for Doc
Caching, we prepend the bos token (“< s >”) to both query and document, which improved the
match score from 14.13 to 18.39.
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Embedding input (query) passed via key-value states:

<s><|embed|>
what was the name of darth vader star destroyer

Embedding input (doc) passed via key-value states and cached in the index:

<|embed|>
Star Destroyer The iconic Star Destroyer first appears in the opening scene of Star Wars, as Darth
Vader’s flagship, the Devastator, chases the Tantive IV above Tatooine. This appearance shows the
Imperial ship’s massive size in comparison to the Tantive IV.

Generative Input:

\n<|user|>
Optionally using the prior context answer the query prior to it
<|assistant|>
The answer is

Generation:

the Star Destroyer.

Figure 26: GRIT Query-Doc Caching example and generation by GRITLM 7B.

U HARDWARE

For the training of GRITLM 7B, we used 8 nodes with 8 NVIDIA A100 80GB GPUs each for 48
hours corresponding to 3,072 GPU hours. Meanwhile for GRITLM 8X7B, we used 32 nodes with 8
NVIDIA H100 80GB GPUs each for 80 hours corresponding to 20,480 GPU hours. As we train both
models for 1253 steps, this corresponds to several minutes per step. This slow training time is mainly
due to (a) a large batch size per step, (b) large models and our associated strategies to make them fit
into memory at the cost of speed (Appendix K, Appendix L), and (c) a cluster with slow inter-node
communication. The Gen.-only and Emb.-only models in Table 1 used 72 and 1760 H100 80GB
GPU hours, respectively. Adding up all ablations and evaluations, we likely used somewhere around
100,000 GPU hours.

V ARTIFACTS

Table 35: Produced artifacts that will be released upon deanonymization.

Artifact Public Link

Table 6

7B KTO https://hf.co/ANONYMIZED

8x7B KTO https://hf.co/ANONYMIZED

Table 10

CCCC WM https://hf.co/ANONYMIZED

CCCC LT https://hf.co/ANONYMIZED

BBCC M https://hf.co/ANONYMIZED
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Table 11

CC WM https://hf.co/ANONYMIZED

CB M https://hf.co/ANONYMIZED

BB M https://hf.co/ANONYMIZED

Table 12

CC https://hf.co/ANONYMIZED

BC https://hf.co/ANONYMIZED

BC IL https://hf.co/ANONYMIZED

Table 13

Mistral 7B https://hf.co/ANONYMIZED

Llama 2 7B https://hf.co/ANONYMIZED

GPT-J 6B https://hf.co/ANONYMIZED

Table 14

MEDI https://hf.co/ANONYMIZED

MEDI2 NNI https://hf.co/ANONYMIZED

MEDI2 https://hf.co/ANONYMIZED

MEDI2 + W https://hf.co/ANONYMIZED

Table 15

MEDI https://hf.co/ANONYMIZED

MEDI2 https://hf.co/ANONYMIZED

BBCC MEDI https://hf.co/ANONYMIZED

BBCC MEDI2 https://hf.co/ANONYMIZED

BBCC MEDI2BGE https://hf.co/ANONYMIZED

BBCC E5 https://hf.co/ANONYMIZED

Table 16

Tülu 2 1 EP https://hf.co/ANONYMIZED

Tülu 2 2 EP https://hf.co/ANONYMIZED

OASST 1 EP https://hf.co/ANONYMIZED

OASST 2 EP https://hf.co/ANONYMIZED

UltraChat https://hf.co/ANONYMIZED

Table 17

No head https://hf.co/ANONYMIZED

-> 1024 https://hf.co/ANONYMIZED

Table 18

256 https://hf.co/ANONYMIZED
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4096 https://hf.co/ANONYMIZED

Table 19

BF16 https://hf.co/ANONYMIZED

FP32 https://hf.co/ANONYMIZED

Table 20

Any dataset https://hf.co/ANONYMIZED

Same dataset https://hf.co/ANONYMIZED

Table 21

Tülu 2 https://hf.co/ANONYMIZED

Zephyr β https://hf.co/ANONYMIZED

Table 22

MEDI 2048 https://hf.co/ANONYMIZED

MEDI 4096 https://hf.co/ANONYMIZED

BBCC MEDI2 512 https://hf.co/ANONYMIZED

BBCC MEDI2 2048 https://hf.co/ANONYMIZED

Table 23

E5 Token 4.2 https://hf.co/ANONYMIZED

E5 Token 6.0 https://hf.co/ANONYMIZED

E5 Mix 32 -> 8 https://hf.co/ANONYMIZED

MEDI2 Mix 4 -> 64 https://hf.co/ANONYMIZED

MEDI2 Mix 32 -> 8 https://hf.co/ANONYMIZED

Other

Code https://github.com/ANONYMIZED

Logs https://wandb.ai/ANONYMIZED

Tülu 2 https://hf.co/datasets/ANONYMIZED

MEDI https://hf.co/datasets/ANONYMIZED

MEDI2 https://hf.co/datasets/ANONYMIZED

MEDI2BGE https://hf.co/datasets/ANONYMIZED

GRITLM 7B NQ In-
dex (§5)

https://hf.co/datasets/ANONYMIZED

Main artifacts

GRITLM 7B https://hf.co/ANONYMIZED

GRITLM 8x7B https://hf.co/ANONYMIZED
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Table 36: Used artifacts released by others.

Model / Dataset Public Link

GPT-4 (OpenAI et al., 2023) https://openai.com/gpt-4

OpenAI v3 (OpenAI et al.,
2023)

https://openai.com/blog/new-embedding-models-and-api-updates

Gemini (Team et al., 2023) https://deepmind.google/technologies/gemini/

Llama 2 (Touvron et al.,
2023)

https://hf.co/meta-llama

Mistral 7B (Jiang et al.,
2023)

https://hf.co/mistralai/Mistral-7B-v0.1

Mistral 7B Instruct (Jiang
et al., 2023)

https://hf.co/mistralai/Mistral-7B-Instruct-v0.1

Mixtral 8x7B (Jiang et al.,
2024)

https://hf.co/mistralai/Mixtral-8x7B-v0.1

Mixtral 8x7B Instruct (Jiang
et al., 2024)

https://hf.co/mistralai/Mixtral-8x7B-Instruct-v0.1

Tülu 2 (Ivison et al., 2023) https://hf.co/collections/allenai/
tulu-v2-suite-6551b56e743e6349aab45101

GPT-J 6B (Wang & Komat-
suzaki, 2021)

https://hf.co/EleutherAI/gpt-j-6b

SGPT BE 5.8B (Muen-
nighoff, 2022)

https://hf.co/Muennighoff/SGPT-5.
8B-weightedmean-msmarco-specb-bitfit

Instructor-XL 1.5B (Su
et al., 2023)

https://hf.co/hkunlp/instructor-xl

BGE Large 0.34B (Xiao
et al., 2023)

https://hf.co/BAAI/bge-large-en-v1.5

Zephyr 7B β (Tunstall et al.,
2023)

https://hf.co/HuggingFaceH4/zephyr-7b-beta

E5 Mistral 7B (Wang et al.,
2024)

https://hf.co/intfloat/e5-mistral-7b-instruct

UltraChat (Ding et al., 2023;
Tunstall et al., 2023)

https://hf.co/datasets/HuggingFaceH4/ultrachat_200k

OASST (Köpf et al., 2023;
Muennighoff et al., 2023a)

https://hf.co/datasets/bigcode/oasst-octopack
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https://hf.co/Muennighoff/SGPT-5.8B-weightedmean-msmarco-specb-bitfit
https://hf.co/hkunlp/instructor-xl
https://hf.co/BAAI/bge-large-en-v1.5
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