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ABSTRACT

Glycans are the most abundant biomolecules on Earth, and participate in key pro-
cesses in all living organisms. The chemical variability and topological complex-
ity of their natural branched structures has been a challenge in computational gly-
cobiology. As a tool for improving predictive models associated with glycobiol-
ogy, we propose SweetBERT, a BERT-based language model for encoding glycan
sequences which includes explicit information about the branching structure of
the sequence. This is achieved by including a pseudo-graph representation in the
input embeddings. Performance on downstream tasks by our model underscore
promising results of Transformer architectures in addressing the complexities of
glycan representation.
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1 INTRODUCTION

Figure 1: Summary of the study. A, B and C: example of a glycan represented as IUPAC-Extended
and IUPAC-Condensed sequences (A), its equivalent in SNFG nomenclature (B) and its molecular
3D representation (C). D: schematic example of the tokenisation and construction of the input em-
bedding from the sequence in (A). Depth in the branched structure is shown with different shades
of gray; the darker the shade, the further the subsequence is in the tree of ramifications. Here, the
branching embedding values E0 represents the main sequence, E1 the first level of ramification, and
E2 the second level of ramification. E: model performance evaluation. SweetBERT was pretrained
as a masked language model (MLM), with generated and null branching embeddings, on glycan
sequences in IUPAC-Extended nomenclature using 2 tokenisation strategies. It was afterwards fine-
tuned on classification tasks (immunogenicity, glycosylation linkage type and taxonomy prediction)
on glycan sequences in IUPAC-condensed nomenclature for the same 2 tokenisation strategies.

Glycans are one of the fundamental biomolecules in biology, along with proteins, lipids, and nu-
cleic acids. They are complex molecules based on carbohydrates that can be found either isolated
or covalently bound to other biomolecules, such as proteins and lipids, forming glycoproteins or
glycolipids, or other chemical compounds like sulfates (Varki & Kornfeld, 2022; Varki & Gagneux,
2015). Glycans participate in most metabolic processes in living organisms, both normal and patho-
logical, as well as in the regulation of protein stability and function, cell-to-cell recognition, and
cell structure among others. Due to their importance in metabolism, glycans also play a role in
disease development and inflammation processes, making carbohydrate-based molecules attractive
candidates as alternatives to traditional drug targets (Hudak & Bertozzi, 2014).

Contrary to proteins or nucleic acids, whose sequence can be deduced from the gene encoding their
structure, the expression of a specific glycan can lead to a variety of different functions, even within
the same organism and across different tissues (Varki & Gagneux, 2017). Furthermore, glycans
are not necessarily simply linear chains of their most basic unit, the monosaccharide, due to the
possibility of linkage at almost any carbon in the glycan. This results in multiple branches and a
huge diversity of glycans found in organisms. These peculiarities make carbohydrate sequencing a
challenge that has slowed the development of research in glycobiology.

The continuous development of experimental and computational techniques within glycobiology
has nonetheless led to the accumulation of significant amounts of data and the development of struc-
tured databases that bioinformatics approaches can leverage for further research. AI tools have
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significantly enhanced bioinformatics by providing powerful methods for analyzing complex bio-
logical data. Machine learning algorithms can detect patterns and relationships in large datasets that
are difficult for humans to discern, facilitating predictions about gene function, protein interactions,
and disease associations (Jumper et al., 2021; Jia et al., 2024; Rehana et al., 2024). Most of these
approaches have been focused on working with linear chains of amino acids and nucleotides.

SweetTalk (Bojar et al., 2020a), a glycan language model based on recurrent neural networks (RNN),
has been successful in studying and classifying connectivity of glycans to proteins (glycosilation)
and predicting their immunogenicity (i.e. the ability of glycan structures to trigger an immune
response) from their representation in IUPAC-Condensed nomenclature (McNaught, 1996). This
nomenclature is highly specific for glycans, and is far more structured and inflexible than the gen-
eral IUPAC conventions, as it precisely encodes intricate branching patterns, stereochemistry, and
glycosidic linkages to eliminate ambiguity. Based on SweetTalk, SweetOrigins (Bojar et al., 2020b)
extends these capabilities by predicting the taxonomy (i.e. the systematic classification of glycan
structures based on shared biosynthetic pathways and evolutionary relationships) of glycans. How-
ever, due to the complexity of polysaccharide linkage, these models present issues dealing with a
high amount of branches (Bojar et al., 2020a). To overcome this problem, SweetNet (Burkholz et al.,
2021) was developed, a graph convolutional neural network (GCNN) that accounts for the tree-like
structure of glycans. It serves as a representation for the SNFG nomenclature system (Varki et al.,
2015) obtained from the IUPAC-Condensed sequences, and outperforms previous machine learning
tools.

BERT architectures (Devlin et al., 2018), initially developed for natural language processing (NLP)
tasks, have successfully proven their capacity to understand chemical properties from linear strings
(SMILES, SELFIES) (Chithrananda et al., 2020; Ahmad et al., 2022) by using Transformer blocks
(Vaswani et al., 2017). Typically, RNNs have a limited ability to capture contextuality, whereas
BERT allows for parallel processing of the sequence, resulting in a better understanding of the full
context, and in faster training and inference times. BERT-based models also efficiently manage
variable-length inputs with better interpretability through attention mechanisms. Although GNNs
are computationally efficient and well-suited for graph-like structures, such as glycans, they tend to
be task-specific and less flexible than transformer-based models. GNNs are often limited in their
ability to generalize across tasks, constraining their adaptability across diverse biological tasks. In
contrast, BERT-based models have the potential to manage the branched structure of glycans more
dynamically while preserving the flexibility needed for various biological tasks. Considering the
importance of glycans in biological processes a more versatile and generalizable model is crucial.
In this work, we explore the capabilities of the transformer architecture for representing glycan
sequences with SweetBERT —a BERT-based model that includes a pseudo-graph representation
that can be extracted from linear text sequences in IUPAC glycan nomenclatures (McNaught, 1996)
to account for the branched structure of glycans.

2 METHODS

The glycan sequences used in this study follow the IUPAC rules for glycans (McNaught, 1996),
which is immediately recognisable by glycobiologists (Figure 1A). These sequences were obtained
from the dataset based in Sugarbase (Bojar et al., 2021) provided in the SweetTalk repository. It con-
tains 21296 glycans from several organisms in IUPAC-Condensed nomenclature. IUPAC nomencla-
tures represent the molecule linearly by connecting the monomers with their bonds between paren-
thesis (“(” and “)” characters) and the sequence of each ramification between brackets (“[” and “]”
characters). Further ramifications can also occur within a branch, having then nested brackets as in
the example shown in Figure 1. These 4 symbols are essential for the representation of the tree-like
structure of the glycan in other glycan encodings, such as SNFG (Varki et al., 2015) (Figure 1B).
In the original dataset, the sequences are presented in the IUPAC-Condensed format, which makes
some abbreviation to the IUPAC-Extended format based in some assumptions (McNaught, 1996).
For pretraining the models, the dataset was converted to the extended nomenclature, as it is the
most explicit way of representing monosaccharides. Thus, it will provide more information about
underlying grammar implied by the nomenclature system, avoiding contextual ambiguities.

For encoding the sequences into tokens, two different tokenisation strategies were considered (Fig-
ure 1E). The first one, similarly to the “glycowords” proposed by Bojar et al., follows the IUPAC
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rules for naming glycans (Bojar et al., 2020a; McNaught, 1996). It considers each monosaccharide
and bond as words, and splits them into elements that correspond to principal characteristics of the
monomer (a and b, for alpha and beta configurations; p and f, for the ring type; etc.). The second
tokenisation strategy we explored is based on a wordpiece algorithm that is widely used in BERT-
based models (Song et al., 2020). It iterates over the data corpus splitting the words into subwords
that individually correspond to a token. With this approach the number of identical occurrences is
maximised while the overlaps between them are minimised. This results in two different corpus
vocabulary sizes with a difference of almost one order of magnitude (1156 vs 210).

SweetBERT is based on BERTBASE, which has 12 Transformer blocks (Vaswani et al., 2017) result-
ing in 110M parameters. It uses the embeddings to numerically represent the input sequence. The
sum of three different types of embeddings gives this initial input embedding: token embedding,
which encodes the values of each token (tokens are numbers assigned to the slices obtained after
splitting the sequence. These slices can represent words, characters, or subwords depending on the
tokenisation strategy); segment embedding, which identifies the tokens that belong to a type of se-
quence (in our case there is only one type); and positional embedding, which indicates the position
of each token within the sequence.

In order to include information about the depth of ramification of the motifs composing a glycan,
we added a fourth embedding to the previous ones (Figure 1D), the branching embedding. This has
been inspired by the work of Wang et al. (2021), where the positional embedding is a depiction of
the priority of mathematical operations. This can be understood as a pseudo-graph that represents
the nested nature of mathematical equations, similar to glycan branched structures. In our case,
we combine both the positional embedding and the branching embedding as the representation of
the location of the tokens in the tree-like structure of the glycan. The branching embeddings were
generated by searching for the tokens that encode the characters “[” and “]”, and encoding the level
of ramification of the tokens contained between them with scalars, being 0 those that are present on
the main branch, 1 for the first level of branching, 2 for the second, etc. See Figure 1 and section
A.1 for more details.

3 RESULTS

3.1 PRE-TRAINING

Table A2 presents the performance metrics of SweetBERT models based on perplexity and loss.
Perplexity measures the ability of the model to predict token sequences, with lower values indicating
higher confidence in predictions. Loss, on the other hand, quantifies the difference between the
tokens predicted by the model for the masked positions and the actual tokens, where lower loss
reflects a better fit to the training data. Including explicit branching information shows the best
overall performance, with the lowest loss values (0.1583 and 0.1639 for training and validation
respectively when tokenising with the wordpiece algorithm and 0.0842 and 0.0784 for the IUPAC-
based tokenisation). This suggests that the pseudo-graph embedding helps the model to capture the
underlying data structure more efficiently, even with very similar perplexity values during training.

Although, at this stage of the analysis it seems that providing explicit branching level information in
the input embeddings may improve the performance, this will be corroborated by downstream clas-
sification tasks. SweetBERT performance will be compared to SweetTalk using the same training,
validation and test dataset splits explained in A.2.

3.2 FINE-TUNING

We fine-tuned SweetBERT using three specific datasets representing immunogenicity, protein O-
and N-linkage and taxonomy data for glycans which were previously used to test SweetTalk by
Bojar et al. These contain IUPAC-condensed sequences, with binary labels for immunogenicity
(1370 sequences), “N”, “O” and “free” labels for glycosilation (1686 sequences), and the taxonomy
information at 8 different levels (domain, kingdom, phylum, class, order, family, genus and species)
(12674 sequences). With regards of glycosilation type labels, “N” refers to glycans liked to the N
present in asparagine residues in proteins, “O” to those attached to serine or threonine residues, and
“free” are glycans that exist independently without covalent links to proteins or lipids. These datasets
were split following the proportions mentioned in A.2 with an equivalent proportion of labels in all
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splits. It is important to note that SweetBERT was fine-tuned with datasets that included sequences
in a nomenclature system that differs slightly from the one used for pretraining (IUPAC-extended
for pretraning and IUPAC-condensed for fine-tuning), showcasing also the capacity of BERT-based
models to handle tokens outside of the vocabulary (OOV). This cannot be done with the current
implementation of SweetTalk, as it cannot handle OOVs. For the taxonomy dataset splits, due also
to the implementation of SweetTalk in SweetOrigins, the test set was previously obtained from the
complete dataset, and the splitting into the training and validation sets is performed by SweetOrigins
after the tokenisation of the remaining sequences for every taxonomy level independently, dropping
those that appear less than 5 times. This means that sequences that are used as training examples in
one taxonomy level might be in the validation set for another one.

For glycosylation type classification, to compare our models with the reported performance of
SweetTalk, the dataset was preprocessed in such a way that glycans tagged as “free” were dropped
from the final input, reducing the problem into that of binary classification as only O- and N-linkages
are taking into account. In this case, both SweetBERT and SweetTalk reached perfect scores in both
accuracy and MCC (Table 1), showing no differences in the performance when using the wordpiece
tokenisation. We also explored the capacity of the models on a multi-class classification task on
the same dataset, by recovering the glycans tagged as “free” (less than 10% of the data). In this
task, also using the wordpiece tokenisation, SweetBERT outperforms the other models in accuracy
and MCC scores, with a very similar performance of SweetBERT-null compared to with SweetTalk.
This improvement becomes clearer when calculating the balanced accuracy due to class imbalance.
Also, the confusion matrices (Figure A2) show that, even though the accuracy and MCC are very
close for these models, SweetBERT provides a more balanced precision for all three classes.

SweetTalk is also outperformed by SweetBERT and has very similar metrics as SweetBERT-null
in the immunogenicity classifier for the wordpiece tokenisation. The confusion matrices (Figure
A2) show that both BERT-based models achieve a more balanced classification than SweetTalk,
although the three models seem to predict better the immunogenic-positive glycan sequences. This
also suggests that the BERT-based models find clearer features within these sequences used to make
predictions.

In the taxonomy prediction of glycans SweetBERT-null outperforms SweetTalk, with SweetBERT
showing a performance very similar and often superior to SweetTalk. When comparing SweetBERT
and SweetBERT-null, even though the performance is worse for all tasks using the IUPAC-based
tokenisation, the ranks of the metrics are consistent within the tokenisation strategies, giving some
insights on whether the explicit information of branching is actually needed or not.

Table 1: Table with the average accuracy and Matthews Correlation Coefficient (MCC) after 5 runs.
MCC was calculated for multi-class classifiers according to Gorodkin (2004). *Due to the unbal-
anced dataset for “free”-labeled sequences, balanced accuracy (in parentheses) was also obtained.

ARCHITECTURE SWEETBERT-NULL (WORDPIECE) SWEETBERT-NULL(IUPAC-BASED) SWEETBERT(WORDPIECE) SWEETBERT(IUPAC-BASED) SWEETTALK
TASK ACC. MCC ACC. MCC ACC. MCC ACC. MCC ACC. MCC

GLYCOSYLATION
(BINARY)

0.9901 0.9800 0.9640 0.9276 1.0000 1.0000 0.9640 0.9276 1.0000 1.0000

GLYCOSYLATION
(3 CLASSES)*

0.9254 (0.8713) 0.8736 0.8982
(0.8727)

0.8378 0.9740
(0.9356)

0.9529 0.9207
(0.9072)

0.8628 0.9728
(0.9014)

0.9501

IMMUNOGENICITY 0.8864 0.7801 0.8106 0.6557 0.8985 0.7986 0.8364 0.6714 0.8894 0.7832
DOMAIN 0.9107 0.8248 0.8470 0.7006 0.8915 0.7847 0.7522 0.5333 0.7587 0.8035
KINGDOM 0.8517 0.7917 0.7174 0.5967 0.8295 0.7567 0.6789 0.5308 0.8207 0.7445
PHYLUM 0.7491 0.6849 0.6422 0.5386 0.7524 0.6805 0.5603 0.4162 0.7521 0.6809
CLASS 0.6533 0.6008 0.5516 0.4855 0.5863 0.5278 0.4426 0.3507 0.5814 0.5185
ORDER 0.4966 0.4695 0.3950 0.3605 0.4079 0.3789 0.2913 0.2436 0.4354 0.4056
FAMILY 0.4208 0.4004 0.3278 0.2994 0.3674 0.3463 0.2579 0.2205 0.4090 0.3868
GENUS 0.3657 0.3534 0.2715 0.2554 0.3125 0.3023 0.1952 0.1772 0.3085 0.2925
SPECIES 0.2872 0.2759 0.1802 0.1636 0.2221 0.2109 0.1530 0.1374 0.2702 0.2548

4 DISCUSSION

SweetTalk tokenisation strategy considers glycowords as overlapping triplets composed by three
monosaccharides and two bonds. This process removes “[“ and “]”, which are the characters that
inform about a branch occurring in the sequence. In other words, branching is not taken into account
in the tokenisation. This implies that two different sequences, one with branches and one completely
linear, can be interpreted by this model to be the same if their composing monosaccharides follow
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the same order in the linear sequence. This can be supported by the analysis made to understand
how including branching information plays a role in model performance in Section A.4.

In the case of linkage prediction including the three classes, SweetBERT-null and SweetTalk appear
to be more sensitive to unbalanced datasets, probably because the third label can be considered as
noise for these two models (Figure A1). However, including explicit information about the branch-
ing level in SweetBERT helps the model to focus the attention towards the main skeleton of the
sequence, explaining its overall better performance despite of branching level. This also relates to
what is seen with the immunogenicity confusion matrices (Figure A2).

For immunogenicity prediction, SweetTalk outperformed SweetBERT models on the sequences
without any branches. This is consistent with the idea that effectively de-branching the training
data causes it to appear more highly redundant. Though SweetBERT-null is not including explicit
information about branches, implicit information about branching may be derived from tokenisation
of the characters “[“ and “]”. Additionally, this model shows similar performances to SweetBERT
for this classification task, although the values of its metrics are always lower.

When evaluating taxonomy prediction, we encountered additional challenges due to class reduction
and test set generation. SweetTalk removes classes that appear fewer than five times during its
train/validation split. Since the original implementation only creates training and validation sets,
we added a previous step to extract a test set. Consequently, some classes appear exclusively in
the test set but not in the training or validation sets—and vice versa—leading to discrepancies in
performance. Addressing these issues will be a focus of future work to ensure more consistent
evaluation across taxonomy levels.

5 CONCLUSIONS

In this work, we introduced SweetBERT, a novel BERT-based model that explicitly incorporates a
pseudo-graph representation of glycan sequences by embedding their branching information from
IUPAC nomenclature. By leveraging Transformer architectures to capture long-range contextual de-
pendencies and structural intricacies, SweetBERT outperforms traditional RNN-based approaches
in language modeling and downstream classification tasks—including immunogenicity, glycosyla-
tion type, and taxonomy prediction—while also demonstrating robust handling of out-of-vocabulary
tokens across different nomenclature variants. We explored how the branching information affects
the performance of the models, demonstrating that branching information can guide the attention
of the model producing more balanced classifiers in some tasks. These findings underscore the po-
tential of Transformer-based models in advancing computational glycobiology and pave the way for
developing more sophisticated biomolecular analysis tools, such as multitask models or multi-modal
approaches.
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A APPENDIX

A.1 BRANCHING EMBEDDING

To construct the branching embedding, we initialize it by considering all tokens in the sequence
as branch level 0. Afterwards, we iteratively scan the IUPAC sequence identifying the position of
the tokens that encode the characters “[” and “]” and the tokens located between these two. As
shown before, these are the characters that represent which part of the sequence is located within a
branch. We will call them “opening and closing branching tokens” for the sake of explanation. Every
iteration finds the sequence of tokens with the deepest level of branching that starts with an opening
branching token that is assigned to a branch level 0 in the branching embedding, and adds 1 at their
positions in the branching embedding for representing a level of nested branching. Therefore, the
higher the subramifications in a branch, the higher the branching level. This is performed in such
way that the tokens located in the deepest nested branches are firstly identified by looking for any
opening branching token in the branch subsequence and whether the next branching token found
in the sequence is an opening or a closing one. The search for further subbranching is continued
until no more opening branching tokens are found in the nested subsequence. Once the deepest
level of subbranching has been found, 1 is added to the branching embedding on the positions that
correspond to the tokens in this nested sequence. Then the process is reversed to find the parent
subsequences and 1 is added to the branching embedding in the positions of the tokens contained
within the opening branching token followed by a closing branching token whose both branching
level codifications are 0.

Schematically, the process to produce the branching embedding is as follows:

1. Constructing a template null vector for the embedding with the same length as the token
embedding.

2. Looking for the positions of all “[” tokens and their corresponding “]” token in the token
embedding.

3. Adding +1 to the template in the positions that are contained between the positions of the
pairs “[”-“]” found in the previous step.

The final branching embedding will have a value equal or higher than 2 for the sub-branches, 1 for
the primary branches and 0 for the skeleton of the sequence.

A.2 EXPERIMENTS SETUP

We trained four models: SweetBERT including explicit branching information by generating the
branching embedding and SweetBERT with a null branching embedding (considering that the final
input embedding is constructed by adding all the embeddings, this will be equivalent to not including
the branching embedding) using two tokenisation strategies: wordpiece and IUPAC-based. Each
model was pre-trained in 6 parallelised Nvidia 11 GB GPUs for 100 epochs, with a batch size of
12 and an initial learning rate of 5× 10−5 using the Adam optimiser (Kingma, 2014) with a weight
decay of 0, beta parameters 0.9 and 0.999 and epsilon 1× 10−8.

The data was split in two, with 80% of the sequences for training and 20% for validation. The
models were trained as masked language models with 20% of the tokens randomly masked.

8



Published as a conference paper at ICLR 2025

To compare the performance of these two models and the tokenisation strategies adopted, further
fine-tuning for classification tasks was done. It has been showed that cross-entropy loss and per-
plexity scores in pre-training models are not sufficient for comparing performance (Liu et al., 2023).
This is where downstream tasks play a decisive role in performance analysis. Following Bojar’s
work (Bojar et al., 2020a;b), SweetBERT was fine-tuned for glycan immunogenicity, glycosylation
type (O-/N-linkage to proteins) and taxonomy prediction. We used again the datasets provided by
Bojar et al. (2020a;b) which are also based on the Sugarbase dataset (Bojar et al., 2021). The splits
for training, validation and testing follow proportions of 80%, 10% and 10%, respectively. The
sequences in these datasets are presented in the IUPAC-condensed nomenclature format.

We provide in table A1 the hyperparameters used for finetuning SweetBERT-null and SweetBERT.
For finetuning SweetTalk, the same hyperparameters as the ones provided by Bojar et al. (2020a;b)
were used.

Table A1: Summary of the hyperparameters used for fine-tuning for SweetBERT-null and Sweet-
BERT.

TASK EPOCHS LEARNING
RATE

WEIGHT
DECAY

BATCH SIZE

IMMUNOGENICITY 20 2E-5 0.001 14
GLYCOSYLATION (BINARY) 50 1E-4 0.01 14
GLYCOSYLATION (3 CLASSES) 50 1E-4 0.01 14
TAXONOMY 30 1E-4 0.001 14
TAXONOMY (SPECIES) 50 1E-4 0.001 14

A.3 SWEETBERT PRETRAINING METRICS AND ANALYSIS

On top of comparing the perplexity and loss metrics, we also performed a t-SNE clustering analysis
to explore the representation of branched sequences across the different models trained (Table A3).
We compared them using the Calinski-Harabasz (Caliński & Harabasz, 1974) and the silhouette
(Rousseeuw, 1987) scores. The Calinski-Harabasz score measures the quality of the clusters, con-
sidering the ratio of the sum of between-cluster dispersion to within-cluster dispersion. The higher
the score, the more compact and separated the clusters are. On the other hand, Silhouette score mea-
sures how well-separated and compact clusters are with values from -1 to 1, where negative values
indicate that samples have been assigned to the wrong cluster and 0 indicates overlapping clusters.
In these terms, SweetBERT trained with the generated branching embeddings performs the best
(A3), achieving the highest Calinski-Harabasz and Silhouette scores, although the latter are negative
values relatively close to 0, which indicates well-defined and compact clusters but overlapping.

PCA shows that the IUPAC-based token models require fewer components to explain 90% of the
variance (12-13 components) compared to the wordpiece models (21 components) (Table A3). This
suggests that IUPAC-based tokenisation creates a more efficient data representation, capturing more
meaningful variance with fewer dimensions, which may be due to the vocabulary size generated by
this tokenisation strategy.

Table A2: Performance metrics of SweetBERT for both tokenisation strategies in pretraining.

PERPLEXITY (TRAINING) PERPLEXITY (VALIDATION) LOSS (TRAINING) LOSS (VALIDATION)

WORDPIECE SWEETBERT 1.5967 1.5997 0.1583 0.1639
SWEETBERT-NULL 1.5163 1.5062 0.167 0.1732

IUPAC-BASED SWEETBERT 1.9782 1.9564 0.0858 0.0784
SWEEETBERT-NULL 1.9825 1.9487 0.0964 0.0877
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Table A3: Metrics on the t-SNE and PCA analyses of SweetBERT-null and SweetBERT learned
embeddings for both tokenisation strategies after pretraining.

SILHOUETTE SCORE (T-SNE) CALINSKI-HARABASZ SCORE (T-SNE) PC VAR>90%

WORDPIECE SWEETBERT -0.0970 120.1990 21
SWEETBERT-NULL -0.1039 85.3525 21

IUPAC-BASED SWEETBERT -0.0987 102.8422 13
SWEETBERT-NULL -0.1081 86.0362 12

A.4 BRANCHING ANALYSIS

Figure A1 shows the average of the balanced accuracy for the tasks of glycosylation and immuno-
genicity classification for SweetBERT, SweetBERT-null and SweetTalk, using for the first two the
wordpiece tokenisation. The test dataset was filtered by the maximum branching level on the se-
quences. 0 indicates that there are no branches, 1 that only primary branches are present, 2+ that
there are at least second-level branches, and All includes all sequences without filtering.

Figure A2 shows the accuracy values of the best runs for SweetBERT, SweetBERT-null and
SweetTalk for the same classification tasks.
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Figure A1: Branching analysis of the balanced accuracy of the three models for A) glycosylation
classification (3 classes); and B) immunogenicity classification.
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Figure A2: Confusion matrices of the best runs for SweetBERT-null, SweetBERT using wordpiece
tokenisation and SweetTalk for A) glycosylation classification (3 classes); and B) immunogenicity
classification. The values represent the proportion of data with each predicted label and its corre-
sponding ground truth label. Values closer to 1 are represented in yellow while the lowest values are
shown in deep purple.
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