

000 **IN-CONTEXT ALGORITHM EMULATION IN**
001 **FIXED-WEIGHT TRANSFORMERS**
002

003 **Anonymous authors**
004

005 Paper under double-blind review
006

007 **ABSTRACT**
008

009 We prove that a minimal Transformer with frozen weights emulates a broad class
010 of algorithms by in-context prompting. We formalize two modes of in-context algo-
011 rithm emulation. In the *task-specific mode*, for any continuous function $f : \mathbb{R} \rightarrow \mathbb{R}$,
012 we show the existence of a single-head softmax attention layer whose forward pass
013 reproduces functions of the form $f(w^\top x - y)$ to arbitrary precision. This gen-
014 eral template subsumes many popular machine learning algorithms (e.g., gradient
015 descent, linear regression, ridge regression). In the *prompt-programmable mode*,
016 we prove universality: a single fixed-weight two-layer softmax attention module
017 emulates all algorithms from the task-specific class (i.e., each implementable by a
018 single softmax attention) via only prompting. Our key idea is to construct prompts
019 that encode an algorithm’s parameters into token representations, creating sharp
020 dot-product gaps that force the softmax attention to follow the intended computa-
021 tion. This construction requires no feed-forward layers and no parameter updates.
022 All adaptation happens through the prompt alone. Numerical results corroborate
023 our theory. These findings forge a direct link between in-context learning and algo-
024 rithmic emulation, and offer a simple mechanism for large Transformers to serve as
025 prompt-programmable [interpreters](#) of algorithms. They illuminate how GPT-style
026 foundation models may swap algorithms via prompts alone, and establish a form
027 of algorithmic universality in modern Transformer models.
028

029 **1 INTRODUCTION**
030

031 We show that a minimal Transformer architecture with frozen weights is capable of emulating a broad
032 class of algorithms through prompt design alone. This stylized problem setting isolates the core of in-
033 context computation and provides an analytic lens on fundamental questions in Transformer models:
034 How do fixed-weight models execute diverse tasks from context alone? How does a prompt turn into
035 an algorithmic procedure? How do prompt-encoded parameters and query-key routing realize task
036 identification and stepwise execution? What minimal architectural ingredients suffice for general in-
037 context capability? As foundation models rise to prominence in modern AI (Bommasani, 2021), these
038 questions are central, since much of their practical utility comes from in-context learning (prompting)
039 rather than explicit retraining (Brown et al., 2020; Liu et al., 2023). Against this backdrop, this work
040 offers a rigorous basis for in-context *task learning*¹, supplies a simple mechanism for Transformers
041 to act as prompt-programmable algorithm libraries, and shows how GPT-style models may swap
042 algorithms via prompts alone, shedding light on their general-purpose capabilities.
043

044 Large Transformer models exhibit ability to adapt to a new task by conditioning on examples or
045 instructions provided in the prompt without any gradient updates. This capability is known as In-
046 Context Learning (ICL) (Min et al., 2022; Brown et al., 2020). Prior work on Transformer in-context
047 learning falls into two strands. One trains models that learn in context for a specific function class
048 (Garg et al., 2022; Akyürek et al., 2023; Li et al., 2023; Ahn et al., 2023; Zhang et al., 2024). The
049 other hand-engineers Transformers to enact particular algorithms with fixed weights (Bai et al., 2023;
050 Von Oswald et al., 2023; Wu et al., 2025). In particular, Bai et al. (2023) demonstrate that *task-specific*
051 attention layers — attention mechanisms with weights designed for a given task — implement a
052

053 ¹We use “task” to highlight algorithm-level adaptation (to diverse tasks), not mere pattern completion.

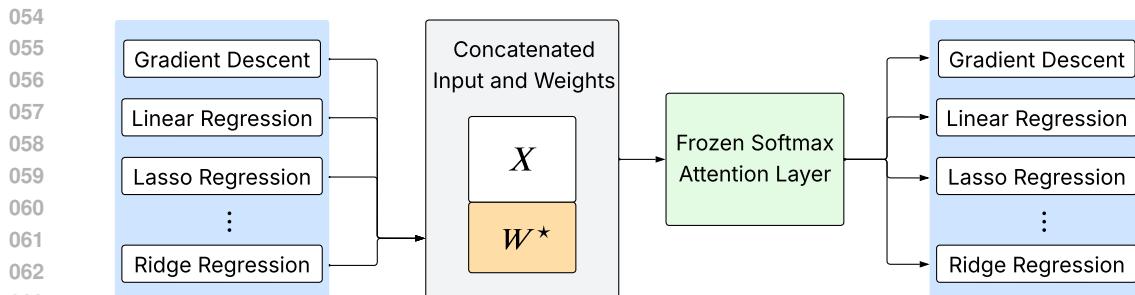


Figure 1: **Prompt-Programmable In-Context Algorithm Emulation Overview.** X denotes the data input, and W^* encodes the instructions of the algorithm we aim to emulate. We show that even a 2-layer softmax attention module suffices to emulate a broad class of algorithms by changing prompt (Theorem 4.1), i.e., the W^* in the prompt. This separates *algorithm information* (in the prompt) from “model parameters” (frozen). By sending the algorithm-specific information (e.g., instructions + data) to a fixed-weight model, the *prompt* acts as the *program* and the *frozen transformer* as the *interpreter*. This makes the “weights-as-data” mechanism explicit and is the core mechanism of prompt-programmability: a minimal frozen Transformer serves as a modular interface in which swapping the prompt swaps the algorithm with no retraining.

variety of algorithms without gradient updates. For example, a single Transformer with fixed, task-tailored attention weights achieves near-optimal performance on algorithms such as least-squares regression, ridge regression, lasso, and gradient descent (Bai et al., 2023; Wu et al., 2025). These results suggest that Transformers are capable of *in-context algorithm emulation*. Yet these approaches retrain per task or hard-wire per algorithm. They do not give a single fixed architecture that is prompt-programmable across many algorithms with explicit guarantees and minimal components.

To combat this, we advance this line of research by omitting the need for designing a new Transformer block for every algorithm. We propose a frozen Transformer architecture to emulate a library of attention-based algorithms in context without weight updates. We achieve this by embedding algorithm-specific information into input prompts. Specifically, we formalize two emulation modes, and establish explicit guarantees and constructive minimal designs for both. In the *task-specific* mode (Section 3), a dedicated attention module with fixed weights (single- or multi-head) executes one algorithm in context. In the *prompt-programmable* mode (Section 4), by contrast, a single Transformer module with fixed weights reprograms itself through different prompts to execute multiple algorithms on the fly. These constructions yield universality and minimality results for in-context algorithm emulation. Specifically, we demonstrate a minimalist model of internal algorithm swapping, where prompts serve as the context carrying algorithmic instructions.

Contributions. We establish a new form of in-context learning universality for *algorithm emulation*, limited to *attention-implementable algorithms*. Our contributions are four-fold:

- **Task-Specific Emulation of $f(w^\top x - y)x$.** A single-head, single-layer softmax attention with a linear map universally approximates functions of the form $f(w^\top x - y)x$ for any continuous f , with frozen weights and a suitable prompt. This general result subsumes, for example, computing per-sample gradients and performing gradient descent updates (by choosing f as a loss derivative), as well as solving linear and ridge regression in one forward pass.
- **Constructive, Interpretable Prompt Design for Algorithm Emulation.** We give an explicit prompt design strategy that encodes the target task’s parameters and induces large query-key margins so softmax follows the intended pattern, furnishing an interpretable, verifiable recipe for prompt-programming a fixed attention-only module.
- **A Simple Mechanism for Internal Algorithm Swapping of Transformer Models.** Changing only the prompt-encoded algorithm weights swaps the algorithm executed by the fixed attention-only module, without retraining. Theory (finite libraries) and experiments (e.g., Lasso, ridge, linear regression) confirm high-fidelity swapping. Altogether, these results shed light on the general-purpose capability of GPT-style Transformer models to select and swap internal routines via prompts (our formal proofs concern attention-only modules).

In conclusion, we show a minimalist transformer architecture serve as a general-purpose algorithm emulator in context through prompt design. Our findings contribute to a sharp theoretical foundation for viewing in-context learning as in-context algorithm emulation. They suggest that large pretrained softmax attention models (such as GPT-style Transformers) encode a library of algorithms, and swap

108 among them based on prompts. This is achieved within a unified attention architecture and without
 109 any parameter updates. We believe this perspective opens new opportunities for understanding the
 110 emulation ability of Transformer models.

111 **Organization.** Section 2 presents ideas we build on. Section 3 presents illustrative examples of
 112 learning statistical models in-context with *task-specific* attention heads. Section 4 presents our main
 113 results. Appendix A presents our proof strategies. Section 5 presents numerical validations.

114 **Related Work.** Due to page limits, we defer related work discussions to Appendix B.

115 **Notations.** We denote the index set $\{1, \dots, I\}$ by $[I]$. We use lowercase letters for vectors and
 116 uppercase letters for matrices. The vector $e_j^{(n)} \in \mathbb{R}^n$ denotes the one-hot vector with 1 in the j -th
 117 position and 0 elsewhere. We write $X \in \mathbb{R}^{d \times n}$ for the input sequence, where d is the token dimension
 118 and n is the sequence length. We denote the number of attention heads by H . We use $\|\cdot\|_\infty$ and
 119 $\|\cdot\|_2$ for the vector ∞ -norm and 2-norm, respectively.

122 2 PRELIMINARIES: ATTENTION, IN-CONTEXT LEARNING AND EMULATION

123 **Softmax Attention.** We define a multi-layer self-attention layer with softmax activation as follows.

124 **Definition 2.1** (Softmax Attention Layer). For any input sequence $X \in \mathbb{R}^{d \times n}$, the multi-head
 125 attention output (with H heads) is

$$126 \text{Attn}_m(X) = \sum_{h=1}^H \underbrace{W_V^{(h)} X}_{d_o \times n} \text{Softmax}(\underbrace{(W_K^{(h)} X)^\top W_Q^{(h)} X}_{n \times n}) \underbrace{W_O^{(h)}}_{n \times n_o} \in \mathbb{R}^{d_o \times n_o},$$

127 where $W_K^{(h)}, W_Q^{(h)} \in \mathbb{R}^{d_h \times d}$, $W_V^{(h)} \in \mathbb{R}^{d_o \times d}$, and $W_O^{(h)} \in \mathbb{R}^{n \times n_o}$ for $h \in [H]$. We use Attn_s to
 128 denote *single-head* self-attention.

129 Following the notation of (Hu et al., 2025a), we pick non-identical dimensions for weight matrices
 130 W_K, W_Q, W_V for generality of our analysis.

131 In the common $K := W_K X$, $Q := W_Q X$, $V := W_V X$ notation, a single-layer softmax attention
 132 takes a set of key vectors $K = \{k_1, \dots, k_n\}$, value vectors $V = \{v_1, \dots, v_n\}$, and a query vector q ,
 133 to produce an output as a weighted sum of the value vectors. The weights on v_i is $\text{Softmax}(k_i^\top q)$,
 134 emphasizing values whose keys are most similar to the query. That is, the softmax attention uses the
 135 query as a cue to retrieve the most relevant information from the values (via their keys).

136 **Linear Transformation Layer** $\text{Linear}(\cdot)$. Throughout this paper, we sometimes compose attention
 137 with an additional linear mapping for flexibility. Such a linear transformation layer uses learned
 138 parameters to increase expressivity in attention-based constructions.

139 **Definition 2.2.** Let $Z = [z_1, \dots, z_n] \in \mathbb{R}^{d \times n}$ be the input sequence with columns $z_i \in \mathbb{R}^d$. We
 140 use $\text{Linear} : \mathbb{R}^{d \times n} \rightarrow \mathbb{R}^{p \times m}$ (for some output length m) to denote *column-wise* linear affine maps.
 141 Each output column depends only on one input column, possibly with replication or an additive bias.
 142 We write Linear when dimensions are clear (input/output shapes chosen to match attention).

143 This layer is a generic *column-wise affine* operator. It preprocesses the input to an attention mechanism
 144 or post-processes its output. For example, $\text{Attn}_s \circ \text{Linear}(Z)$ applies a per-token affine
 145 projection (optionally with replication, so $m \neq n$) before single-head attention. It subsumes the
 146 practical per-token linear layer as the special case $m = n$ with shared parameters and optional bias:
 147 $\text{Linear}(Z) = AZ + b\mathbf{1}_n^\top \in \mathbb{R}^{p \times n}$ with $A \in \mathbb{R}^{p \times d}$, $b \in \mathbb{R}^p$ and $\mathbf{1}_n$ the all-ones vector. In all cases,
 148 columns are processed independently (no cross-column mixing).

149 **In-Context Learning Setup.** In in-context learning, a fixed model (e.g., a pretrained Transformer)
 150 performs a new task without parameter updates. Formally, the model aims to approximate an unknown
 151 function $f : X \rightarrow Y$ given a few examples of f in the input prompt. At inference, we provide n
 152 exemplar pairs and a query x_q , and concatenate them into a single sequence

$$153 X := \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \end{bmatrix} \in \mathbb{R}^{(d+1) \times n} \quad \text{and} \quad x_q \in \mathbb{R}^{d \times 1}. \quad (2.1)$$

162 Namely, the model receives (X, x_q) as the input prompt. The goal of ICL is for the model, given
 163 input prompt (X, x_q) , to (i) infer f from the exemplars and (ii) apply it to x_q to predict $y_q = f(x_q)$.
 164 All the learning happens in the forward pass through the sequence X in an implicit fashion.

165 **Task-Specific Attention.** Task-specific attention uses fixed parameters to carry out a particular task
 166 when the prompt follows the required structure (see (Bai et al., 2023) for examples.)

168 **Definition 2.3.** An attention layer is *task-specific* if there exists a prompt family \mathcal{P} such that, for
 169 any prompt $P \in \mathcal{P}$ constructed from task parameters/data, the attention’s forward pass implements
 170 the task’s mapping on the query token(s), with no parameter change.

171 In particular, we embed the task’s defining transformations (e.g. a linear mapping corresponding to f
 172 or part of f) into the attention weight matrices. Given a well-formed prompt of exemplar and query
 173 tokens, the attention selects and combines these tokens to compute the correct output. Effectively,
 174 this allows an attention layer to approximate diverse functions in context without weight updates.

176 **Terminology: Task-Specific vs. Prompt-Programmable In-Context Emulation.** In-context
 177 algorithm emulation refers to executing an algorithm through a forward pass without weight updates.
 178 The core contribution of this work is to formalize two in-context modes and study their scope:

- 179 • **Task-Specific In-Context Emulation:** for each algorithm \mathcal{A} , there exists an attention module
 180 (possibly multi-head) whose forward pass on a well-formed prompt implements \mathcal{A} on the query
 181 token(s). Each algorithm therefore requires its own dedicated parameters.
- 182 • **Prompt-Programmable In-Context Emulation (via single frozen module):** there exists a single
 183 attention module with fixed weights Attn^* such that, for every \mathcal{A} in a target class, a suitable prompt
 184 $P_{\mathcal{A}}$ makes Attn^* implement \mathcal{A} on the query token(s). All adaptation occurs through the prompt
 185 rather than through weight changes. Namely, one Attn^* implements a library of algorithms.

186 These modes are complementary: the first reflects the conventional dedicated-module view (e.g.,
 187 (Bai et al., 2023)), while the second is stronger — one *fixed-weight attention module* emulates many
 188 algorithms via prompts (our contribution). In the remainder of the paper, Section 3 develops the
 189 task-specific case. Section 4 establishes the prompt-programmable case by showing how the latter
 190 *subsumes* the former via in-context simulation of task-specific modules.

192 3 TASK-SPECIFIC IN-CONTEXT ALGORITHM EMULATION

194 We present multiple examples demonstrating how softmax attention modules mimic behaviors of
 195 various learning algorithms including gradient descent and linear regression. We begin with a very
 196 general result showing that even a single-layer, single-head attention mechanism is a universal
 197 approximator for a broad class of functions defined on the prompt.

199 **In-Context Universal Approximation of $f(w^\top x - y)x$.** Let $x \in \mathbb{R}^d$, $y \in \mathbb{R}$, $w \in \mathbb{R}^d$, and let
 200 $f : \mathbb{R} \rightarrow \mathbb{R}$ be continuous. We consider functions of the form $f(w^\top x - y)x$, where f acts on
 201 the residual $w^\top x - y$. This template is very general: many learning rules for linear models take
 202 this form, including many residual/gradient-style updates². Hence $f(w^\top x - y)x$ subsumes a wide
 203 family of residual-driven updates central to machine learning. Thus, their in-context realization
 204 explains much of in-context learning. To this end, showing that attention is capable of emulating any
 205 continuous $f(w^\top x - y)x$ indicates a powerful and general capability. It means the attention module
 206 implements any continuous adjustment or mapping based on the prediction $w^\top x$ and the label y . The
 207 next theorem shows how a single-head attention approximates $[f(w^\top x_i - y_i)x_i]_{i=1}^n$ arbitrarily well.

208 **Theorem 3.1** (In-Context Emulation of $f(w^\top x - y)x$ with Single-Head Attention). **Let**
 209 **$[L_{\min}, L_{\max}]$ be a bounded interval containing all values of $w^\top x - y$, and let**

$$210 \quad X := \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \end{bmatrix} \in \mathbb{R}^{(d+1) \times n} \quad \text{and} \quad W := [w \quad w \quad \cdots \quad w] \in \mathbb{R}^{d \times n},$$

213
 214 ²For example, $f(t) = t$ corresponds to the raw residual $(w^\top x - y)x$, $f(\cdot) = \nabla_w \ell(\cdot)$ corresponds to per-
 215 sample gradients $\nabla_w \ell(w^\top x - y)x$ linear regression or classification with loss $\ell(\cdot)$, and nonlinear f (sigmoid,
 step, etc.) corresponds to perceptron updates or other error-correcting rules.

216
217

where $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$, and $w \in \mathbb{R}^d$ is the coefficient vector. Define the input as:

218
219
220

$$Z := \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \\ w & w & \cdots & w \end{bmatrix} = \begin{bmatrix} X \\ W \end{bmatrix} \in \mathbb{R}^{(2d+1) \times n}. \quad (3.1)$$

221
222

Assume $\max\{\|X\|_\infty, \|W\|_\infty\} \leq B$. For any **continuously differentiable** function $f : \mathbb{R} \rightarrow \mathbb{R}$ and any $\epsilon > 0$, there exists a single-head attention Attn_s with a linear layer Linear such that

223
224

$$\|\text{Attn}_s \circ \text{Linear}(Z) - [f(w^\top x_1 - y_1)x_1 \quad \cdots \quad f(w^\top x_n - y_n)x_n]\|_\infty \leq \epsilon, \quad \text{for any } \epsilon > 0.$$

225

Proof. See [Appendix D.1](#) for a detailed proof. \square

227

Theorem 3.1 establishes that even the simplest softmax attention alone suffices to encode any continuous function of the form $f(w^\top x - y)x$ by incorporating weights in the prompt. A direct implication is by replacing f with the derivatives of differentiable loss function as follows.

231

Example 1: In-Context Emulation of Single-Step GD. Building on **Theorem 3.1**, we show that a softmax attention layer emulates Gradient Descent (GD) in-context. Fristly, we replace the continuous function $f(\cdot)$ in **Theorem 3.1** with $\nabla \ell(\cdot)$, where $\ell : \mathbb{R} \rightarrow \mathbb{R}$ is any differentiable loss function. We show that the softmax attention emulates *per-sample gradients* in context.

232

Corollary 3.1.1 (In-Context Emulation of Per-Sample Gradients). Let $\ell : \mathbb{R} \rightarrow \mathbb{R}$ be differentiable and $\ell' : \mathbb{R} \rightarrow \mathbb{R}$ for its scalar derivative, $\ell'(t) = \frac{d}{dt}\ell(t)$. For $z := w^\top x - y$ with $x \in \mathbb{R}^d$, $y \in \mathbb{R}$, $w \in \mathbb{R}^d$, denote $\nabla_w \ell(z) := \ell'(z)$. Set $f(\cdot) = \ell'(\cdot)$ in **Theorem 3.1**. With $Z = [X; W]$ as in (3.1), for any $\epsilon > 0$, there exist a single-head attention $\text{Attn}_s(\cdot)$ and a linear map $\text{Linear}(\cdot)$ such that,

233

$$\left\| \underbrace{\text{Attn}_s \circ \text{Linear}(Z)}_{=: \hat{G} \text{ approximated per-sample gradient matrix}} - \underbrace{[\ell'(w^\top x_1 - y_1)x_1, \dots, \ell'(w^\top x_n - y_n)x_n]}_{=: G \text{ target per-sample gradient matrix}} \right\|_\infty \leq \epsilon.$$

234

Corollary 3.1.1 shows that a single-layer single-head softmax attention with a linear map approximates the individual (per-sample) gradient terms $\{\ell'(w^\top x_i - y_i)x_i\}_{i=1}^n$. Moreover, the layer outputs all per-sample gradient terms in parallel. Next, we extend **Corollary 3.1.1** to show that a fixed attention layer implements the full gradient-descent update across all samples in-context.

235

Aggregating the per-sample gradients gives one GD step

236
237
238

$$\hat{L}_n(w) := \frac{1}{n} \sum_{i=1}^n \ell(w^\top x_i - y_i), \quad \nabla \hat{L}_n(w) = \frac{1}{n} \sum_{i=1}^n \ell'(w^\top x_i - y_i)x_i =: g.$$

239

From **Corollary 3.1.1**, let \hat{G} be the attention output and choose the readout $u := \frac{1}{n}\mathbf{1}_n \in \mathbb{R}^n$ (equivalently, right-multiply by $W_O = u$ in [Definition 2.1](#)). Define the attention estimate of the average gradient as $\hat{g} := \hat{G}u$. Then $\hat{g} \approx g$, and the target update is $w_{\text{GD}}^+ := w - \eta \nabla \hat{L}_n(w)$. Feeding w in the prompt and applying the same readout produces a single d -dimensional update vector from the layer. The next corollary states the precise approximation guarantee.

240

Corollary 3.1.2 (In-Context Emulation of a Single GD Step). Let $\ell : \mathbb{R} \rightarrow \mathbb{R}$ be differentiable and define $\hat{L}_n(w) := \frac{1}{n} \sum_{i=1}^n \ell(w^\top x_i - y_i)$. For any step size $\eta > 0$ and any $\epsilon > 0$, there exist a single-head attention Attn_s and a linear map Linear such that, with $Z = [X; W]$ as in (3.1), choosing the readout $u := \frac{1}{n}\mathbf{1}_n$ (equivalently, right-multiply by $W_O = u$ in [Definition 2.1](#)), we have

241

$$\hat{w}_{\text{GD}} := (\text{Attn}_s \circ \text{Linear}(Z))u \in \mathbb{R}^d \quad \text{and} \quad \|\hat{w}_{\text{GD}} - \underbrace{(w - \eta \nabla \hat{L}_n(w))}_{w_{\text{GD}}^+}\|_\infty \leq \epsilon.$$

242

Proof. See [Appendix D.2](#) for a detailed proof. \square

243

Corollary 3.1.2 shows that a single-layer, single-head softmax attention with a linear map aggregates the per-sample gradients via the output projection. It produces a d -vector \hat{w}_{GD} that approximates the GD update $w_{\text{GD}}^+ = w - \eta \nabla \hat{L}_n(w)$. Notably, each output column encodes a copy of w together with a scaled per-sample gradient term. Averaging via the readout $u = \frac{1}{n}\mathbf{1}_n$ then recovers w_{GD}^+ up to ϵ .

270 **Example 2: In-Context Emulation of Multi-Step GD.** We extend the single-step construction to
 271 show that a multi-layer softmax attention network emulates multi-step gradient descent. In particular,
 272 an $(L+1)$ -layer transformer approximates L steps of gradient descent.

273 Stack $(L+1)$ copies of the single-head layer from [Corollary 3.1.2](#). At layer t ($0 \leq t < L$), use the
 274 readout $u^{(t)} = \frac{1}{n} \mathbf{1}_n$ and the prompt $Z^{(t)} = [X; W^{(t)}]$ with $W^{(t)} := [\hat{w}_{\text{GD}}^{(t)} \cdots \hat{w}_{\text{GD}}^{(t)}]$. Define

$$\hat{w}_{\text{GD}}^{(0)} := w, \quad \text{and} \quad \hat{w}_{\text{GD}}^{(t+1)} := \text{Attn}_s \circ \text{Linear}(Z^{(t)})u^{(t)}.$$

275 For the target iterates, set $w_{\text{GD}}^{(0)} = w$ and $w_{\text{GD}}^{(t+1)} = w_{\text{GD}}^{(t)} - \eta \nabla \hat{L}_n(w_{\text{GD}}^{(t)})$. By [Corollary 3.1.2](#),
 276 [Lemma D.4](#) and $\|\cdot\|_\infty \leq \|\cdot\|_2$, we arrive

$$\|\hat{w}_{\text{GD}}^{(t)} - w_{\text{GD}}^{(t)}\|_\infty \leq t\epsilon, \quad t \in [L].$$

277 **Example 3: In-Context Emulation of Linear Regression.** We now present the construction for
 278 squared loss. We show that a single-layer softmax attention emulates linear regression in-context.

279 **Corollary 3.1.3** (In-Context Emulation of Linear Regression). For any dataset $\{(x_i, y_i)\}_{i=1}^n$ with
 280 $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$ and any $\epsilon > 0$, there exist a single-head attention Attn_s , a linear map Linear , and a
 281 readout $u \in \mathbb{R}^n$ such that, with $Z = [X; W]$ as in [\(3.1\)](#) (for any fixed bounded w),

$$\hat{w}_{\text{linear}} := (\text{Attn}_s \circ \text{Linear}(Z))u \in \mathbb{R}^d, \quad \text{and} \quad \|\hat{w}_{\text{linear}} - w_{\text{linear}}\|_\infty \leq \epsilon,$$

282 where $w_{\text{linear}} := \text{argmin}_{w \in \mathbb{R}^d} \frac{1}{2n} \sum_{i=1}^n (\langle w, x_i \rangle - y_i)^2$.

283 *Proof.* See [Appendix D.3](#) for detailed proof. □

284 **Example 4: In-Context Emulation of Ridge Regression.** We add regularization term and show
 285 that a single-layer softmax attention emulates ridge regression with L_2 penalty.

286 **Corollary 3.1.4** (In-Context Emulation of Ridge Regression). For any dataset $\{(x_i, y_i)\}_{i=1}^n$, any
 287 $\lambda \geq 0$, and any $\epsilon > 0$, there exist a single-head attention Attn_s , a linear map Linear , and a readout
 288 $u \in \mathbb{R}^n$ such that, with $Z = [X; W]$ as in [\(3.1\)](#) (and the regularization signal included in the prompt),

$$\hat{w}_{\text{ridge}} := (\text{Attn}_s \circ \text{Linear}(Z))u \in \mathbb{R}^d, \quad \text{and} \quad \|\hat{w}_{\text{ridge}} - w_{\text{ridge}}\|_\infty \leq \epsilon,$$

289 where $w_{\text{ridge}} := \text{argmin}_{w \in \mathbb{R}^d} \frac{1}{2n} \sum_{i=1}^n (\langle w, x_i \rangle - y_i)^2 + \frac{\lambda}{2} \|w\|_2^2$ with regularization term $\lambda \geq 0$.

290 *Proof.* See [Appendix D.4](#) for detailed proof. □

291 So far our constructions in [Section 3](#) show that, given freedom to choose parameters per algorithm,
 292 attention modules emulate gradient descent, linear regression, ridge regression, and related updates in
 293 context. These results establish the expressive power of task-specific in-context emulation, akin to
 294 [\(Bai et al., 2023\)](#). In [Section 4](#), we build on this foundation and prove a stronger universality: a single
 295 frozen attention module Attn^* , via prompt programming, simulates all such task-specific modules.

310 4 PROMPT-PROGRAMMABLE IN-CONTEXT ALGORITHM EMULATION

311 This section presents our main results: softmax attention is capable of (i) emulating *task-specific*
 312 *attention heads* in-context ([Section 4.1](#)), (ii) emulating statistical models in-context ([Section 4.2](#)),
 313 and (iii) emulating any network (with linear projections) in-context ([Section 4.3](#)). Unlike [Section 3](#)
 314 requiring a separate task-specific module for each algorithm, here we fix one frozen module Attn^* and
 315 show that suitable prompts instruct it to emulate every algorithm in the target class. This establishes
 316 universality: one set of weights executes a library of algorithms through prompt programming.

317 4.1 IN-CONTEXT EMULATION OF ATTENTION

318 We first specify the input prompt with weight encoding.

319 **Definition 4.1** (Vectorization). For any matrix $X \in \mathbb{R}^{d_h \times d}$, we define $\underline{X} := \text{vec}(X) \in \mathbb{R}^{dd_h}$ such
 320 that $\underline{X}_{(i-1)d+j} = X_{i,j}$ for all $i \in [d_h]$ and $j \in [d]$.

324
 325 **Definition 4.2** (Input Prompt of In-Context Emulation of Attention). Let $X \in \mathbb{R}^{d \times n}$ be the input
 326 sequence, and let $W_K, W_Q, W_V \in \mathbb{R}^{d_h \times d}$ be the weight matrices of the target attention head to be
 327 emulated. Define the vectorizations

$$328 \quad \underline{W}_K := \text{vec}(W_K) \in \mathbb{R}^{dd_h}, \quad \underline{W}_Q := \text{vec}(W_Q) \in \mathbb{R}^{dd_h}, \quad \underline{W}_V := \text{vec}(W_V) \in \mathbb{R}^{dd_h},$$

329 and

$$330 \quad w := [\underline{W}_K; \underline{W}_Q; \underline{W}_V] \in \mathbb{R}^{3dd_h},$$

331 where w is the concatenation of $\underline{W}_K, \underline{W}_Q, \underline{W}_V$. Finally, define the extended input X_p for in-context
 332 emulation of the attention head specified by W_K, W_Q, W_V as

$$334 \quad X_p := \begin{bmatrix} X \\ W_{\text{in}} \\ I_n \end{bmatrix} \quad \text{with} \quad W_{\text{in}} := \begin{bmatrix} 0 \cdot w & 1 \cdot w & 2 \cdot w & \cdots & (n-1) \cdot w \\ w & w & w & \cdots & w \end{bmatrix} \in \mathbb{R}^{6dd_h \times n}.$$

337 In other words, W_{in} is a $2 \times n$ block matrix whose j -th column consists of $j \cdot w \in \mathbb{R}^{dd_h}$ (in the first
 338 block-row) and $w \in \mathbb{R}^{dd_h}$ (in the second block-row), for $j = 0, 1, \dots, n-1$. Appending W_{in} as
 339 additional rows to X produces the prompt X_p that encodes the target weights.

340 Using this weight-encoding prompt, we now design a two-layer attention mechanism to reproduces
 341 the effect of the target attention head in-context.

343 **Theorem 4.1** (In-Context Emulation of Attention). Let $X \in \mathbb{R}^{d \times n}$ be an input sequence, and let
 344 $W_K, W_Q, W_V \in \mathbb{R}^{d_h \times d}$ be the weight matrices of the target attention head we wish to emulate
 345 in-context. Assume $\|W_K X\|_\infty, \|W_Q X\|_\infty, \|W_V X\|_\infty \leq B_{KQV}$ with $B_{KQV} > 0$. Then, for any
 346 $\epsilon > 0$, there exists a two-layer attention network — a multi-head attention layer Attn_m followed by
 347 a single-head attention layer Attn_s — such that

$$348 \quad \left\| \underbrace{\text{Attn}_s \circ \text{Attn}_m(X_p)}_{\text{Emulator}} - \underbrace{W_V X \text{Softmax}_\beta((W_K X)^\top W_Q X)}_{\text{Target}} \right\|_\infty \leq \epsilon,$$

351 where X_p is the prompt defined in [Definition 4.2](#).

353 **Remark 4.1** (Permutation Equivariance). Our construction keeps the permutation equivariance of
 354 attention in its approximation. This means changing the order of columns in X results in an identical
 355 change in the order of the columns in $\text{Attn}_s \circ \text{Attn}_m(X_p)$.

356 *Proof.* See [Appendix A.1](#) for the proof sketch and [Appendix D.5](#) for a detailed proof. \square

358 We now provide an alternative formulation of the above result. In this variant, a single-head attention
 359 layer comes first, followed by a multi-head layer with sequence-wise linear projections.

361 **Theorem 4.2** (In-Context Emulation of Attention; Alternative Formulation). Let $X \in \mathbb{R}^{d \times n}$ be the
 362 input sequence, and let $W_K, W_Q, W_V \in \mathbb{R}^{n \times d}$ be the weight matrices of the target attention. Assume
 363 $B = \max\{\|X\|_\infty, \|W_K\|_\infty, \|W_Q\|_\infty, \|W_V\|_\infty\}$ and $\|W_K X\|_\infty, \|W_Q X\|_\infty, \|W_V X\|_\infty \leq B_{KQV}$ for
 364 $B_{KQV} \geq 0$. Then, for any $\epsilon > 0$, there exists a single-head attention layer Attn_s followed by a
 365 multi-head attention layer with linear projections such that

$$366 \quad \left\| \text{Attn}_s \circ \left(\sum_{j=1}^{3n} \text{Attn}_j \circ \text{Linear}_j \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) \right) - \underbrace{W_V X}_{n \times n} \underbrace{\text{Softmax}_\beta((W_K X)^\top W_Q X)}_{n \times n} \right\|_\infty \leq \epsilon.$$

371 *Proof.* See [Appendix A.2](#) for the proof sketch and [Appendix D.6](#) for a detailed proof. \square

373 [Theorems 4.1 and 4.2](#) allow us to approximate arbitrary target one-layer attention using another
 374 two-layer attention. This construction requires no feed-forward layers and no parameter updates. All
 375 approximation happens through the prompt alone (by embedding target attention weights and input
 376 X into the prompt).

377 **Discussion: Target Attention Approximation for Algorithm Emulation.** [Theorems 4.1 and 4.2](#)
 378 present a general algorithm emulation result: a fixed-weight two-layer softmax attention mod-

ule emulates *all* algorithms implementable by softmax attention via only prompting. For example, if we choose the input sequence $X \in \mathbb{R}^{d \times n}$ in Theorem 4.1 and Theorem 4.2 to be the $\text{Linear}(Z) \in \mathbb{R}^{2(2d+n+2) \times n(P+1)}$ in Theorem 3.1, then we are able to approximate all one-layer attentions implementing target algorithms of the $f(w^\top x - y)x$ class: Corollaries 3.1.1 to 3.1.4. Thus, we achieve in-context emulation of the entire class of algorithms expressible as $f(w^\top x - y)x$.

To the best of our knowledge, this provides the first constructive toy model of fixed-weight transformer exhibiting *general-purpose ability* (i.e., *one* fixed-weight model for *many* tasks). Moreover, the construction is explicit, interpretable, and softmax-native. A few remarks are in order.

Remark 4.2 (Differences between Theorems 4.1 and 4.2). Theorems 4.1 and 4.2 both establish that a fixed multi-head attention network can approximate any given attention head in-context. We present two versions of the construction using different formulations and analytical techniques. In particular, Theorem 4.1 encodes the target algorithm into the token representations (keeping the sequence length fixed), whereas Theorem 4.2 achieves a similar effect by encoding the weights as additional tokens in the input sequence (keeping each token’s dimension fixed).

Remark 4.3. Our constructions may contain non-standard choices, including encoding information along the embedding dimension and using $3n$ parallel attention heads. We emphasize that the methods apply to approximate a more realistic attention with far fewer hidden dimensions and number of heads in practice. Section 5 provides further details.

Remark 4.4 (Comparison with Prior Work). We remark that our results differ from prior work in three key aspects. First, we study the practical softmax attention rather than linear or ReLU attention (Bai et al., 2023; Von Oswald et al., 2023; Vladymyrov et al., 2024). Second, our results in Section 4 go beyond task-specific ICL and establish that fixed-weight Transformers are prompt-programmable (Bai et al., 2023; Wu et al., 2025; Li et al., 2025). Third, our results are constructive, providing concrete emulation examples in contrast to prior prompting expressivity (Wang et al., 2023; Furuya et al., 2024) or Turing-completeness results (Pérez et al., 2021; Giannou et al., 2023; Qiu et al., 2024). The closest works to ours are (Giannou et al., 2023; Bai et al., 2023). Bai et al. (2023) show that Transformers can execute several standard algorithms in-context, but each algorithm uses its own tailored attention layer. Our results show that a single fixed attention module can emulate a broad set of algorithms through prompt changes. Giannou et al. (2023) study a fixed looped Transformers that implement arbitrary programs. However, their results are “there exists”-type: their universal Transformer is a conceptual Turing machine, not a fully specified numerical model. While our results are also extensible to looped setting (i.e., Corollary 3.1.2), our focus is different: we use an attention-only, FFN-free model and analyze its algorithmic universality *constructively*. This highlights the power of softmax attention mechanism and offers a clean testbed for developing scientific theories (interpretable, controllable and predictable like physics) of GPT-style foundation models.

Extension: Modern Hopfield Networks. We extend our results to in-context optimization ability of dense associative memory models (Ramsauer et al., 2021) in Appendix E.

4.2 IN-CONTEXT EMULATION OF STATISTICAL METHODS

Theorem 4.2 shows that a frozen attention module approximates a target attention head by embedding the head’s weights into its input prompt. We now leverage this idea to emulate a broader class of algorithms. In essence, we replace the embedded target attention weights with the parameters of an arbitrary statistical method that we aim to emulate. By the same principle, the fixed attention module then mimics the behavior of diverse statistical models within the in-context learning framework.

Corollary 4.2.1 (In-Context Emulation of Statistical Methods). Let \mathcal{A} be the set of all algorithms implementable by a single-layer attention network in-context. For any finite collection of algorithms $\{a_1, a_2, \dots, a_k\} := \mathcal{A}_0 \subseteq \mathcal{A}$, there exists a two-layer attention network (a single-head layer Attn_s composed with a multi-head layer Attn_m) such that for each $a \in \mathcal{A}_0$ in the collection

$$\left\| \sum_{j=1}^{3n} \text{Attn}_s \circ \text{Attn}_j \circ \text{Linear}_j \left(\begin{bmatrix} X \\ W^a \end{bmatrix} \right) - a(X) \right\|_\infty \leq \epsilon,$$

where W^a is the W defined as Definition 4.2 using W_K^a, W_Q^a, W_V^a .

432 *Proof.* See Appendix D.7 for detailed proof. □

433
 434
 435
 436 We show that a fixed attention module emulates an arbitrary finite library of in-context algorithms by
 437 varying its prompt. This result highlights the flexibility of softmax attention: unlike prior work that
 438 requires re-training or fine-tuning of the model, here we provably achieve task-specific behavior by
 439 modifying the input prompt. In effect, a pretrained Transformer internalizes a small set of fundamental
 440 procedures and later deploys them, via prompting, across a wide range of data distributions. Since
 441 the number of distinct algorithms is far smaller than the number of possible datasets, a model that
 442 learns a handful of algorithms can leverage them to handle many different scenarios.

443 4.3 ATTENTION MAKES EVERY (LINEAR) NETWORK IN-CONTEXT

444 We now extend the above ideas to show that softmax attention emulates *any* network (comprised of
 445 linear transformations) in-context. Consider any layer of a neural network that applies a trainable
 446 linear map $x \rightarrow \Theta x$ with weight matrix Θ . Our results imply that if Θ is provided as part of the
 447 input sequence, a fixed attention module is capable of approximating this transformation to arbitrary
 448 precision. Hence linear layers in standard architectures are replaceable with attention whose effective
 449 weights are encoded in the prompt rather than learned. This substitution turns the network into an
 450 in-context learner in place of, or alongside, conventional training.

451 **Remark 4.5** (In-Context Emulation of Linear Layers). For example, suppose a model contains a
 452 linear layer $f(x) = \Theta x$ with weight matrix Θ . By including Θ (appropriately encoded) in the input
 453 as in our constructions above, a single softmax attention layer emulates $f(x)$ in-context to arbitrary
 454 precision. In other words, any trainable linear mapping in the original network is replicable with a
 455 prompt-programmable attention layer whose parameters are set by the input sequence. This enables
 456 the overall network to adjust that layer’s behavior on-the-fly via prompts, rather than having to learn
 457 Θ through pre-training.

458 5 NUMERICAL STUDIES

459 This section provides numerical results to back
 460 up our theory. We validate two building blocks
 461 on synthetic data: (i) approximation of con-
 462 tinuous functions (Section 5.1); and (ii) approxi-
 463 mation of attention heads (Section 5.2). These
 464 studies quantify approximation error and its re-
 465 lation to model size and the number of heads.

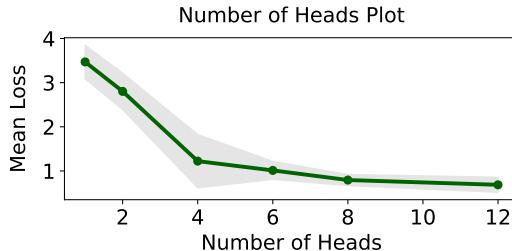
466 5.1 PROOF-OF-CONCEPT 467 EXPERIMENT ON THEOREM 3.1

468 **Objective: Verifying Attention Approximates**
 469 $f(w^\top x - y)x$. We investigate accuracy of softmax
 470 attention approximating $f(w^\top x - y)x$ by
 471 training a single-head softmax attention with
 472 linear connection.

473 **Data Generation.** We randomly generate $X \in$
 474 $\mathbb{R}^{n \times d}$ drawn from a normal distribution, $X \sim 10 \cdot N(0, 1) - 5$. We also generate weight matrix
 475 $W \in \mathbb{R}^{n \times d}$ and $y \in \mathbb{R}^n$, both randomly drawn from a standard normal distribution, $N(0, 1)$. Here, n
 476 represents the sequence length and d represents input dimension. The true label is $f(w^\top x - y)x$,
 477 where we choose $f(\cdot) = \tanh(\cdot)$.

478 **Model Architecture.** We train a single-head attention network with linear transformation to approxi-
 479 mate $\tanh(w^\top x - y)x$. We first apply linear transformation to both $[X; y]$ and W . We then train
 480 the single-head attention model with the linear transformations to approximate our target function as
 481 shown in the proof of Theorem 3.1.

482 **Results.** As shown in Figure 2, evaluated on Mean Square Error loss, the model approximates the
 483 target $\tanh(w^\top x - y)x$ with minimal error. This experiment proves our theory.



484 **Figure 2: Sensitivity of Attention Emulation to the**
 485 **Number of Heads.** We report loss (MSE) as the mean
 486 and one standard deviation (shaded region) over 10 ran-
 487 dom seed runs. We use synthetic data of 50000 data
 488 points with sequence length being 20 and input dimen-
 489 sion being 24. We set batch size to be 32 and hidden
 490 dimension to be 48. Each multi-head model and the
 491 single-head softmax attention layer is trained for 50
 492 epochs. The optimizer used is Adam with learning rate
 493 0.001. We visualize the performance (MSE \pm Std) for
 494 1, 2, 4, 6, 8, 12 heads.

495 **9**

486 5.2 PROOF-OF-CONCEPT EXPERIMENT ON EMULATING ATTENTION HEADS
487488 **Objective: Verifying Approximation Rates.** We investigate the affect of the number of attention
489 heads H on the accuracy of softmax attention approximating softmax attention head.490 **Data Generation.** We randomly generate a sequence of tokens $X = [x_1, x_2, \dots, x_n] \in \mathbb{R}^{d \times n}$,
491 where each entry x_i is drawn independently from a normal distribution,

492
$$X \sim 2 \cdot N(0, 1) - 1.$$

493

494 We also generate weight matrices $K = W_K X^\top \in \mathbb{R}^{h \times n}$, $Q = W_Q X^\top \in \mathbb{R}^{h \times n}$, and $V =$
495 $W_V X^\top \in \mathbb{R}^{d \times n}$. Each parameter matrix is randomly drawn from a standard normal distribution,
496 $N(0, 1)$. Here, n represents the sequence length, d represents token dimension, and h represents
497 hidden dimension. The true label $Y \in \mathbb{R}^{d \times n}$ results from applying a single-layer softmax attention
498 mechanism on inputs X , K , Q , and V .499 **Model Architecture.** We train a multi-layer attention network to approximate softmax attention
500 function. We first train separate multi-head models with linear transformation to approximate K , Q ,
501 and V . Then, we use a single-head softmax attention layer to approximate softmax attention function
502 as in the proof.503 **Results.** As shown in [Figure 2](#) and [Table 1](#), the
504 result validates our claim that a multi-head softmax
505 attention mimics a target softmax attention
506 head to arbitrary precision. Moreover, it demon-
507 strates the convergence of multi-head softmax at-
508 tention emulating softmax-based attention map-
509 ping as the number of heads increases. The
510 approximation rate is in the trend of $O(1/H)$
511 where H is the number of heads. The small and decreasing MSE error indicates that the simple
512 softmax attention model approximates softmax attention head with stability.513 **Additional Experiments.** Due to page limits, we defer several experimental results to [Appendix C](#).
514 These include simulations of statistical algorithms ([Appendix C.1](#)) and approximations of statistical
515 models on real-world datasets where the model does not have access to the true algorithm weights
516 ([Appendix C.2](#)). They further illustrate the approximation capabilities of Transformer in practice.

578 6 DISCUSSION AND CONCLUSION

599 We study *in-context algorithm emulation* in fixed-weight Transformers and formalize two modes:
600 task-specific ([Section 3](#)) and prompt-programmable algorithm emulation ([Section 4](#)). For the former,
601 we show that even a single-layer, single-head module suffices for emulating core families (of the form
602 $f(w^\top x - y)x$) such as one-step gradient descent and linear/ridge regression, achieving architectural
603 minimality ([Theorem 3.1](#)). For the latter, we show that a two-layer multi-head softmax attention
604 module emulates a broad class of algorithms by embedding the algorithm’s weights into the input
605 prompt ([Theorem 4.1](#)). Altogether, a fixed softmax attention module becomes a prompt-programmable
606 *library of algorithms*: weights remain frozen, and the prompt selects the routine.607 **Mechanism.** The mechanism is constructive. By encoding target weights in the input and creating
608 large dot-product margins, softmax attention routes along the intended computation without weight
609 updates. Numerical studies support the theory: on synthetic data the model accurately approximates
610 continuous maps of the form $f(\langle w, x \rangle - y)x$ and emulates attention heads. Approximation error
611 decreases as the number of heads grows. On a real dataset (Ames Housing), the frozen module-driven
612 by prompts rather than true algorithm weights achieves low error against standard statistical models.613 **Implications.** Our results tighten the link between in-context learning and algorithmic emulation.
614 Viewing prompts as callable subroutines that select and configure algorithms within a frozen model,
615 we draw three takeaways: (i) prompt engineering becomes interface design for algorithm selection,
616 (ii) pretraining objectives *could*, in future work, be designed to encourage learning compact libraries
617 of reusable procedures, and (iii) analyses of internal routing help clarify how foundation models select
618 among algorithms. This lens explains the breadth of in-context generalization, guides prompt design,
619 and motivates new pretraining objectives for more effective algorithm installation and utilization.Table 1: **Sensitivity to the Number of Heads.** Emulation MSE (mean \pm std) for multi-head softmax attention with 1, 2, 4, 6, 8, and 12 heads.

Heads	1	2	4	6	8	12
MSE	3.469	2.802	1.222	1.012	0.793	0.686
Std	0.381	0.413	0.603	0.204	0.127	0.171

540
541 **ETHIC STATEMENT**

542 This paper does not involve human subjects, personally identifiable data, or sensitive applications.
 543 We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
 544 of this research comply with the principles of fairness, transparency, and integrity.

545
546 **REPRODUCIBILITY STATEMENT**

547 We ensure reproducibility on both theoretical and empirical fronts. For theory, we include all formal
 548 assumptions, definitions, and complete proofs in the appendix. For experiments, we describe model
 549 architectures, datasets, preprocessing steps, hyperparameters, and training details in the main text and
 550 appendix. Code and scripts are provided in the supplementary materials to replicate the empirical
 551 results.

552
553 **REFERENCES**

554 Jacob Abernethy, Alekh Agarwal, Teodor Vanislavov Marinov, and Manfred K Warmuth. A mecha-
 555 nism for sample-efficient in-context learning for sparse retrieval tasks. In *International Conference*
 556 *on Algorithmic Learning Theory*, pages 3–46. PMLR, 2024.

557 Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
 558 preconditioned gradient descent for in-context learning. *Advances in Neural Information Processing*
 559 *Systems*, 36:45614–45650, 2023.

560 Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
 561 algorithm is in-context learning? investigations with linear models. In *The Eleventh International*
 562 *Conference on Learning Representations*, 2023.

563 Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
 564 Provable in-context learning with in-context algorithm selection. *Advances in neural information*
 565 *processing systems*, 36:57125–57211, 2023.

566 Rishi Bommasani. On the opportunities and risks of foundation models. *arXiv preprint*
 567 *arXiv:2108.07258*, 2021.

568 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 569 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 570 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

571 Dean De Cock. Ames, iowa: Alternative to the boston housing data as an end of semester regression
 572 project. *Journal of Statistics Education*, 19(3):1–13, 2011.

573 Takashi Furuya, Maarten V de Hoop, and Gabriel Peyré. Transformers are universal in-context
 574 learners. *arXiv preprint arXiv:2408.01367*, 2024.

575 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
 576 in-context? a case study of simple function classes. *Advances in Neural Information Processing*
 577 *Systems*, 35:30583–30598, 2022.

578 Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
 579 Papailiopoulos. Looped transformers as programmable computers. In *International Conference on*
 580 *Machine Learning*, pages 11398–11442. PMLR, 2023.

581 Jerry Yao-Chieh Hu, Hude Liu, Hong-Yu Chen, Weimin Wu, and Han Liu. Universal approximation
 582 with softmax attention. *arXiv preprint arXiv:2504.15956*, 2025a.

583 Jerry Yao-Chieh Hu, Wei-Po Wang, Ammar Gilani, Chenyang Li, Zhao Song, and Han Liu. Fun-
 584 damental limits of prompt tuning transformers: Universality, capacity and efficiency. In *The*
 585 *Thirteenth International Conference on Learning Representations*, 2025b.

586 Tokio Kajitsuka and Issei Sato. Are transformers with one layer self-attention using low-rank
 587 weight matrices universal approximators? In *The Twelfth International Conference on Learning*
 588 *Representations*, 2024.

594 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 595 tuning. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language
 596 Processing (EMNLP)*, 2021.

597

598 Gen Li, Yuchen Jiao, Yu Huang, Yuting Wei, and Yuxin Chen. Transformers meet in-context learning:
 599 A universal approximation theory. *arXiv preprint arXiv:2506.05200*, 2025.

600 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
 601 *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics (ACL)*,
 602 2021.

603

604 Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
 605 as algorithms: Generalization and stability in in-context learning. In *International conference on
 606 machine learning*, pages 19565–19594. PMLR, 2023.

607 Hude Liu, Jerry Yao-Chieh Hu, Zhao Song, and Han Liu. Attention mechanism, max-affine partition,
 608 and universal approximation. *arXiv preprint arXiv:2504.19901*, 2025.

609

610 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
 611 Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
 612 processing. *ACM computing surveys*, 55(9):1–35, 2023.

613 Sheng Liu, Haotian Ye, Lei Xing, and James Zou. In-context vectors: Making in context learning more
 614 effective and controllable through latent space steering. In *Forty-first International Conference on
 615 Machine Learning*, 2024.

616

617 Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
 618 Prompt tuning can be comparable to fine-tuning across scales and tasks. In *Proceedings of the 60th
 619 Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pages
 620 61–68, 2022.

621 Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
 622 Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
 623 *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pages
 624 11048–11064, 2022.

625 Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing-complete. *Journal of Machine
 626 Learning Research*, 22(75):1–35, 2021.

627

628 Ruizhong Qiu, Zhe Xu, Wenxuan Bao, and Hanghang Tong. Ask, and it shall be given: On the turing
 629 completeness of prompting. *arXiv preprint arXiv:2411.01992*, 2024.

630 Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas Adler,
 631 Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, et al. Hopfield networks
 632 is all you need. 2021.

633

634 Max Vladymyrov, Johannes Von Oswald, Mark Sandler, and Rong Ge. Linear transformers are
 635 versatile in-context learners. *Advances in Neural Information Processing Systems*, 37:48784–48809,
 636 2024.

637 Johannes Von Oswald, Eyyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
 638 Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
 639 *International Conference on Machine Learning*, pages 35151–35174. PMLR, 2023.

640

641 Yihan Wang, Jatin Chauhan, Wei Wang, and Cho-Jui Hsieh. Universality and limitations of prompt
 642 tuning. *Advances in Neural Information Processing Systems*, 36:75623–75643, 2023.

643 Weimin Wu, Maojiang Su, Jerry Yao-Chieh Hu, Zhao Song, and Han Liu. In-context deep learning
 644 via transformer models. In *International Conference on Machine Learning*. PMLR, 2025.

645

646 Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.
 647 Are transformers universal approximators of sequence-to-sequence functions? In *International
 648 Conference on Learning Representations*, 2020.

648 Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
649 *Journal of Machine Learning Research*, 25(49):1–55, 2024.
650

651 Yufan Zhuang, Chandan Singh, Liyuan Liu, Jingbo Shang, and Jianfeng Gao. Vector-icl: In-context
652 learning with continuous vector representations. In *The Thirteenth International Conference on*
653 *Learning Representations*, 2025.

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 Appendix

703	A Proof Sketches	15
707	A.1 Proof Sketch for Theorem 4.1	15
708	A.2 Proof Sketch for Theorem 4.2	17
709	B Related Work	18
710	B.1 Core Related Work	18
711	B.2 Broader Discussion	18
713	C Additional Numerical Studies	19
714	C.1 Proof-of-Concept Experiment on Emulating Statistical Models	20
715	C.2 Real-World Experiment on Emulating Statistical Models	20
716	C.3 Proof-of-Concept Experiment on Theorem 4.2	21
717	D Proofs of Main Text	22
718	D.1 Proof of Theorem 3.1	32
719	D.2 Proof of Corollary 3.1.2	41
720	D.3 Proof of Corollary 3.1.3	42
721	D.4 Proof of Corollary 3.1.4	42
722	D.5 Proof of Theorem 4.1	43
723	D.6 Proof of Theorem 4.2	53
724	D.7 Proof of Corollary 4.2.1	69
725	E In-Context Application of Statistical Methods by Modern Hopfield Network	70

727 IMPACT STATEMENT

729 We prove that a single frozen softmax attention head emulates a broad library of attention-
730 implementable algorithms via prompt design, establishing pretrained Transformers as universal
731 algorithm stores and reducing the need for task-specific fine-tuning. This sharpens the theoretical
732 basis of in-context learning, offers a principled recipe for prompt engineering, and equips auditors
733 with a clear test for hidden prompt-encoded behaviors, all without releasing new models or data.
734 Therefore, the work advances foundational understanding, lowers compute and energy demands, and
735 introduces minimal societal risk.

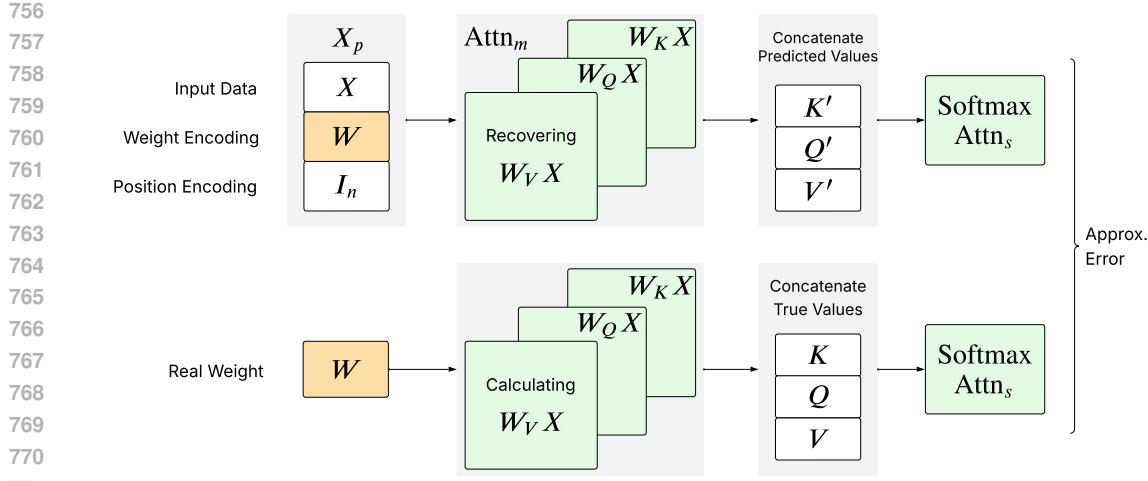
737 LIMITATIONS AND FUTURE DIRECTION

739 Prompt length grows linearly with the weight dimension, which limits practicality. The proofs
740 assume exact real-valued softmax and ignore token discretizations or numerical noise. Prompts
741 are hand-crafted. Learning them automatically is open. Language and vision inputs are untested.
742 Weight encoding happens along embedding dimension. The construction is not permutation invariant,
743 but permutation equivariant of the input data. Lastly, we leave tighter constants, shorter prompts,
744 extensions to deeper models and connection with model pretraining to future work.

745 LLM USAGE DISCLOSURE

747 We used large language models (LLMs) to aid and polish writing, such as improving clarity, grammar,
748 and conciseness. We also used LLMs for retrieval and discovery, for example exhausting literature to
749 identify potential missing related work. All technical content, proofs, experiments, and results are
750 original contributions by the authors.

751
752
753
754
755



810
 811 **Step 2: Multi-Head Decomposition for In-Context Recovery of K, Q, V .** We devote the first
 812 attention layer (Attn_m) to recovering the key, query, and value matrices that the target attention
 813 would compute. By definition, each row in K, Q , and V takes the form: $k_i^\top X, q_i^\top X$ and $v_i^\top X$. Here
 814 k_i^\top , q_i^\top and v_i^\top are rows in W_K, W_Q and W_V . Our goal is, for each data token x_i (the i -th column of
 815 X), to approximate $k_j^\top x_i, q_j^\top x_i$, and $v_j^\top x_i$. To do this, we design Attn_m to have a fixed number of
 816 heads partitioned into *three groups*, corresponding to K, Q , and V respectively. Combining heads'
 817 outputs within each group yields approximations of K, Q , and V . Explicitly, in the first multi-head
 818 layer Attn_m , we split the heads so that:

819 • A group of heads jointly approximates $W_K X$. By (Hu et al., 2025a, Theorem 3.2), the heads in this
 820 group admit further subdivision into sub-groups. Each sub-group outputs a linear transformations
 821 of X , namely $k_i^\top X$ for rows $k_i^\top X$ of K .
 822 • Another group of heads approximates $W_Q X$ in a similar manner.
 823 • A final group approximates $W_V X$.

824 Concatenate or combine these head outputs so that the final embedding from $\text{Attn}_m(X_p)$ contains
 825 (up to small error) the blocks $[K; Q; V]$ for all positions in X .

826 Explicitly, for each row k_j^\top of W_K (and similarly for q_j^\top and v_j^\top), we prepend the corresponding
 827 heads with a token-wise linear map $A(\cdot)$. $A(X_p)$ pulls out the target row (i.e., k_j) from w and repeats
 828 it n times. The resulting sub-prompt $A(X_p)$ has the form

$$829 \begin{bmatrix} 0 \cdot k_j & 1 \cdot k_j & \cdots & (n-1) \cdot k_j \\ k_j & k_j & \cdots & k_j \\ & & & I_n \end{bmatrix},$$

830 so the corresponding softmax heads return $k_j^\top X$ up to any error ϵ_0 by the truncated-linear interpolation
 831 theorem (Theorem D.1). With $H = \lceil 2(b-a)/((n-2)\epsilon_0) \rceil$ heads per sub-group, we cover all d_h
 832 rows in K (and similarly for Q and V). Altogether, the $3N = 3d_h H$ heads satisfy

$$833 \underbrace{\left\| \sum_{j=1}^{d_h} \text{Attn}_j^K(X_p) - K \right\|_\infty}_{:=K'} \leq \epsilon_0, \quad \underbrace{\left\| \sum_{j=d_h+1}^{2d_h} \text{Attn}_j^Q(X_p) - Q \right\|_\infty}_{:=Q'} \leq \epsilon_0, \quad \underbrace{\left\| \sum_{j=2d_h+1}^{3d_h} \text{Attn}_j^V(X_p) - V \right\|_\infty}_{:=V'} \leq \epsilon_0.$$

834 We collect these outputs column-wise into

$$835 \begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix}, \quad \text{and} \quad \left\| \begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix} - \begin{bmatrix} K \\ Q \\ V \end{bmatrix} \right\|_\infty \leq \epsilon_0.$$

836
 837 **Step 3: Single-Head Assembly for Emulated Map.** We consider the second layer Attn_s as
 838 a single-head attention with fixed weights chosen to “read” the K', Q', V' triples from $Z :=$
 839 $\text{Attn}_m(X_p)$ and perform the “emulated” attention mechanism. Explicitly, apply a single-head
 840 attention layer Attn_s whose parameters are set to read off the K, Q , and V sub-blocks in each token
 841 embedding:

$$842 \text{Attn}_s(Z) := W_V^{(s)} Z \text{Softmax}((W_K^{(s)} Z)^\top (W_Q^{(s)} Z)).$$

843 For $Z := \text{Attn}_m(X_p)$, we choose fixed weights

$$844 W_K^{(s)} = [0_{d_h \times 2d_h} \quad I_{d_h}], \quad W_Q^{(s)} = [I_{d_h} \quad 0_{d_h \times 2d_h}], \quad W_V^{(s)} = [0_{d_h \times d_h} \quad I_{d_h} \quad 0_{d_h \times d_h}],$$

845 so that

$$846 W_K^{(s)} Z \approx W_K X, \quad W_Q^{(s)} Z \approx W_Q X, \quad W_V^{(s)} Z \approx W_V X.$$

847 Hence,

$$848 \text{Attn}_s(Z) = \text{Attn}_s \circ \text{Attn}_m(X_p) = \text{Attn}_s \left(\begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix} \right) = V' \text{Softmax}((K')^\top Q') \\ 849 \approx W_V X \text{Softmax}((W_K X)^\top W_Q X).$$

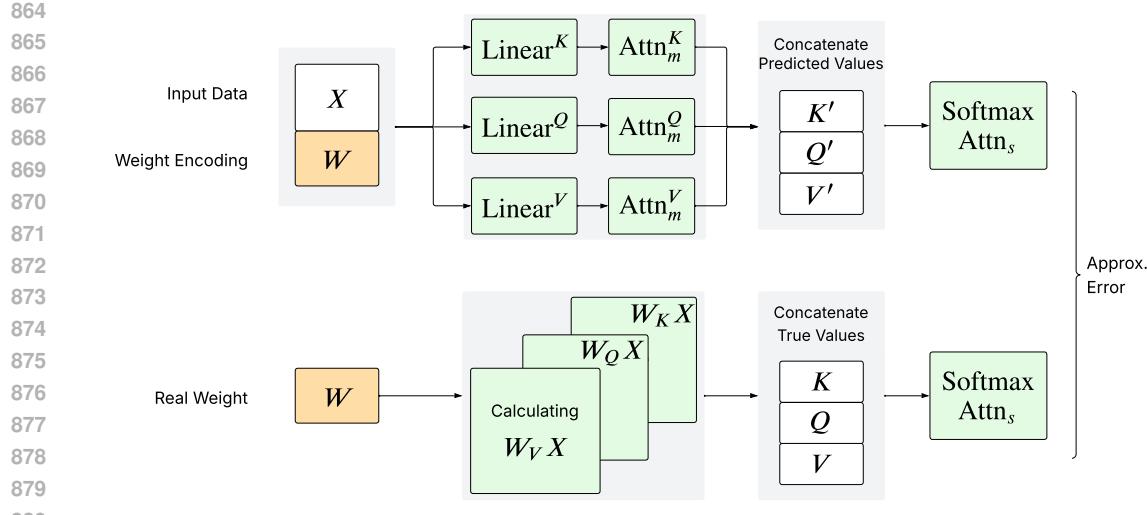


Figure 4: **Visualization of Proof Sketch for Theorem 4.2.** We visualize our proof technique. We combine input data and weight encoding as input. Each key, query, and value has a unique set of linear transformation of input (Linear) and multi-head attention (Attn_m). We feed the input into each set to attain the approximate key, query, and value representations, respectively. We then compare the single-head attention Attn_s outputs from approximate values with ground truth values to obtain approximation error.

To be precise, because K', Q', V' differ from K, Q, V by at most ϵ_0 (in $\|\cdot\|_\infty$), a first-order perturbation argument for softmax (uniform Lipschitz in sup-norm) shows

$$\|\text{Attn}_s\left(\begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix}\right) - \text{Attn}_s\left(\begin{bmatrix} K \\ Q \\ V \end{bmatrix}\right)\| \leq \epsilon_0 + n B_{KQV} \epsilon_1,$$

where B_{KQV} bounds X, W_K, W_Q, W_V and $\epsilon_1 = O(\epsilon_0)$.

Step 4: Error Bound. Finally, we make the approximation arbitrarily precise. Because we are capable of making each head’s linear approximation arbitrarily close, we ensure

$$\|\text{Attn}_s \circ \text{Attn}_m([X; W]) - W_V X \text{Softmax}((W_K X)^\top W_Q X)\|_\infty \leq \epsilon,$$

for any $\epsilon > 0$. This completes the construction, proving in-context emulation of the target attention. Please see [Appendix D.5](#) for a detailed proof and [Figure 3](#) for proof visualization.

A.2 PROOF SKETCH FOR THEOREM 4.2

We outline how to emulate the desired attention step-by-step with a fixed two-layer transformer. Similar to [Theorem 4.1](#) (and [Theorem D.1](#)), our construction ensures each token’s representation in the intermediate layer carries an approximate copy of its key, query, and value vectors, which the final layer uses to perform the softmax attention. All necessary components (including the weight matrices W_K, W_Q, W_V themselves) are encoded into the input, so the network’s weights remain untrained and generic.

Step 1: Encoding Weights into the Input. Let $X \in \mathbb{R}^{d \times n}$ be the input tokens. Append a “weight encoding” matrix W that contains the rows of W_K, W_Q, W_V (the weight matrices of the target attention head). This forms an extended input $[X; W]$. The entries of X and W remain within a bounded range $[-B, B]$. This bound ensures that all inner products remain finite.

Step 2: Multi-Head Approximation of K, Q, V . The first layer has many heads. Partition them into three groups. One group approximates $K := W_K X$; one approximates $Q := W_Q X$; and one approximates $V := W_V X$. Then

- **Simulating Dot Products on a 1D Grid.** Consider a single entry $k_j^\top x_c$. All entries in K, Q, V lie between $[-dB^2, dB^2]$, since the entries of X and W remain within a bounded range $[-B, B]$. We create grid points $L_0 < \dots < L_P$ covering $[-dB^2, dB^2]$. We design the head’s key and query so

918 that the softmax assigns each grid point L_i a weight based on its distance to $k_j^\top x_c$. We set the value
 919 vector to encode L_i . Thus, the head output for token x_c approximates $k_j^\top x_c$. Fine grids reduce the
 920 error.
 921

- 922 • **Reconstructing Full K, Q, V .** Repeat this idea for every entry in K, Q, V . Each row uses one
 923 head to approximate $k_j^\top X, q_j^\top X$, or $v_j^\top X$. Combine these approximations to obtain the matrices
 924 K', Q', V' . The sup norm

$$925 \quad \| \begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix} - \begin{bmatrix} K \\ Q \\ V \end{bmatrix} \|_\infty, \quad \text{can be made arbitrarily small.}$$

$$926$$

$$927$$

928 **Step 3: Single-Head Assembly of the Attention Output.** The second layer, Attn_s , has one head.
 929 We set its weight matrices $W_K^{(s)}, W_Q^{(s)}, W_V^{(s)}$ to pick out K', Q', V' from each token's embedding.
 930 Then, Attn_s computes
 931

$$932 \quad V' \text{Softmax}((K')^\top Q') \approx W_V X \text{Softmax}((W_K X)^\top W_Q X),$$

933 since $K' \approx K, Q' \approx Q$ and $V' \approx V$.
 934

935 **Step 4: Error Bound.** Softmax and matrix multiplication are continuous. Small errors in K', Q', V'
 936 cause a small error in the final output. By refining the grid (and using enough heads), we make the
 937 sup norm error below any $\epsilon > 0$. Please see [Appendix D.6](#) for a detailed proof and [Figure 4](#) for proof
 938 visualization.

939 B RELATED WORK

941 Our results diverge from prior findings on Transformer universality and in-context learning.
 942

943 B.1 CORE RELATED WORK

945 **Universal Approximation.** Prior studies establish that Transformers approximate arbitrary
 946 sequence-to-sequence functions, but they do not address in-context learning and often assume
 947 complex architectures. For example, [Yun et al. \(2020\)](#) prove that deep multi-head Transformers
 948 with feed-forward layers are universal approximators of continuous sequence-to-sequence functions.
 949 Subsequent advances tighten this finding: [Kajitsuka and Sato \(2024\)](#); [Hu et al. \(2025b\)](#) show that even
 950 a single-layer Transformer realizes any continuous sequence function. However, these results treat
 951 Transformers as parametric function approximators. The model requires re-training and re-prompting
 952 to adapt to a new target function instead of handling multiple tasks through context. In contrast, we
 953 prove that a minimal Transformer architecture, even a single-layer, single-head attention module with
 954 no feed-forward network, emulates a broad class of algorithms without weight updates by varying
 955 its prompt. This result achieves a new level of generality through context alone (i.e. prompt-based
 956 conditioning) despite a fixed minimalist model.

957 **In-Context Learning and Algorithm Emulation.** Another line of recent theory bridges Trans-
 958 formers with in-context learning by designing model components to carry out specific algorithms.
 959 For example, [Bai et al. \(2023\)](#) show that Transformers execute a broad range of standard algorithms
 960 in-context, but each algorithm requires a distinct, tailored attention head. In comparison, we extend
 961 this approach by showing that one fixed attention mechanism emulates any specialized attention head
 962 via prompt encoding. Rather than crafting a different attention module for each algorithm, a single
 963 frozen softmax-based attention layer takes its instructions from the prompt to perform all tasks in
 964 context. This minimal model thus becomes a unified and compact in-context algorithm emulator. It
 965 switches behaviors by changing only its input prompt, setting it apart from earlier approaches that
 966 required per-task reparameterization.

967 B.2 BROADER DISCUSSION

969 **Universal Approximation and Expressivity of Transformers.** Transformers exhibit strong ex-
 970 pressive power as sequence models. Recent theory shows even minimal Transformer architectures
 971 approximate broad classes of functions. [Kajitsuka and Sato \(2024\)](#); [Hu et al. \(2025b\)](#) prove a
 972 single-layer, single-head Transformer can memorize any finite dataset perfectly. [Kajitsuka and](#)

972 Sato (2024) achieve this with low-rank attention matrices, while Hu et al. (2025b) use attention
 973 matrices of any rank. Adding two small feed-forward layers makes it a universal approximator for
 974 continuous sequence functions under permutation-equivariance. More recently, Hu et al. (2025a)
 975 show self-attention layers alone are universal approximators. Specifically, two attention-only layers
 976 approximate continuous sequence-to-sequence mappings, and even a single softmax-attention layer
 977 suffices for universal approximation. Similarly, Liu et al. (2025) also demonstrate that one single-head
 978 attention connected with linear transformations is sufficient to approximate any continuous function
 979 in L_∞ norm. These results eliminate the need for feed-forward networks, improving on earlier
 980 constructions. Overall, these findings highlight the inherent expressiveness of minimal attention
 981 mechanisms.

982
 983 **Transformers as In-Context Learners and Algorithm Emulators.** Large Transformers also learn
 984 in-context by conditioning on examples in their prompts, without updating weights (Brown et al.,
 985 2020). Recent work formally explains this by showing attention-based models implement standard
 986 learning algorithms internally. Bai et al. (2023) construct Transformer heads executing algorithms
 987 such as linear regression, ridge regression, Lasso, and gradient descent steps, achieving near-optimal
 988 predictions. Wu et al. (2025) further build Transformers explicitly simulating multiple gradient
 989 descent iterations for training deep neural networks, with provable convergence guarantees. Empirical
 990 and theoretical studies confirm Transformers internalize learning algorithms when meta-trained on
 991 task families. Garg et al. (2022) show meta-trained Transformers mimic classical algorithms, such
 992 as ordinary least squares regression, in-context. Similarly, Akyürek et al. (2023); Von Oswald et al.
 993 (2023); Zhang et al. (2024) analyze Transformers trained on linear regression tasks and demonstrate
 994 their outputs mimic gradient descent steps precisely. Overall, existing literature shows that sufficiently
 995 trained or carefully designed Transformers emulate step-by-step computations of standard algorithms
 996 through prompt conditioning.

997
 998 **Prompt Tuning.** Prompt-tuning adapts frozen models by learning a short continuous prefix (Lester
 999 et al., 2021; Li and Liang, 2021; Liu et al., 2022). It keeps backbone weights fixed and updates only
 1000 prompt embeddings. Our setting is stricter: prompts are hand-designed, not learned, and we give
 1001 exact approximation bounds. Thus we expose the theoretical limit of prompt control: a single frozen
 1002 softmax head can mimic any task-specific head.

1003
 1004 **Encoding Context Along Embedding Dimension.** Recent work in in-context learning explores
 1005 encoding and manipulating context in the embedding space rather than sequence dimension. For
 1006 example, Liu et al. (2024) propose In-Context Vectors for steering the model’s behavior by adding
 1007 task-specific vectors along the embedding space. Zhuang et al. (2025) extend this idea by showing
 1008 that manipulating embedding vectors such as interpolation makes in-context learning more control-
 1009 lable. Abernethy et al. (2024) showcase that appending additional information along the embedding
 1010 dimension allows the model to perform sample-efficient in-context learning.

1011
 1012 **Comparison to Our Work.** The above results demonstrate the versatility of Transformer networks,
 1013 but they require task-specific weights, training, or learned prompts. For instance, Bai et al. (2023)
 1014 design a different task-specific head for each algorithm of interest, raising the question of whether
 1015 a single fixed attention mechanism could instead serve as a universal emulator for any algorithm
 1016 given the right prompt. Our work directly addresses this question. In contrast, we prove one fixed
 1017 softmax head emulates any specialized head through prompt encoding alone. No additional weights
 1018 or training are required. Even the simplest attention (one layer, one head) acts as a universal algorithm
 1019 emulator when given the right prompt, shifting focus from architecture to prompt design.

1020 C ADDITIONAL NUMERICAL STUDIES

1021
 1022 We extend the synthetic validation to statistical algorithms (Appendix C.1) and include a real-world
 1023 study (Appendix C.2). The frozen attention module emulates linear, ridge, and lasso on synthetic
 1024 data. On the Ames Housing dataset, the model operates without access to true algorithm weights and
 1025 achieves low approximation error. In addition, we validate Theorem 4.2 through handcrafted frozen
 1026 attention weights and parameters as constructed in the proof (Appendix C.3).

1026
1027

C.1 PROOF-OF-CONCEPT EXPERIMENT ON EMULATING STATISTICAL MODELS

1028
1029
1030

Objective: Emulation of Statistical Models. We investigate the accuracy of a frozen softmax attention approximating statistical models including Lasso, Ridge and linear regression by only varying the input prompts.

1031
1032
1033
1034

Data Generation. We simulate an in-context dataset by randomly generating a sequence of input tokens $X = [x_1, x_2, \dots, x_n] \in \mathbb{R}^{n \times d}$, where each x_i is independently drawn from a scaled standard normal distribution,

1035

$$x_i \sim 2 \cdot N(0, 1) - 1.$$

1036
1037
1038
1039

A task-specific prompt vector $w \in \mathbb{R}^{p \times 1}$ is sampled from $N(0, 1)$. In the case of Lasso, we randomly zero out entries in w with probability 0.5 to induce sparsity. We generate the output sequence $Y \in \mathbb{R}^{n \times 1}$ via a noisy linear projection: $Y = Xw + \epsilon$, where $\epsilon \sim N(0, \sigma^2)$ is Gaussian noise. For Ridge, we calculate weights using $(X^\top X + \lambda I_d)^{-1} X^\top Y$ with $\lambda = 5$.

1040

1041
1042
1043
1044
1045
1046
1047
1048
1049

Model Architecture and Training. We use a mixture of statistical data to train a single-layer attention network with linear transformation. Each input sample consists of $X \in \mathbb{R}^{n \times d}$ and algorithm-specific prompt $w \in \mathbb{R}^p$. We replicate w across the sequence length and concatenate it with X along the feature dimension to obtain an augmented input $[X; w] \in \mathbb{R}^{n \times (d+p)}$. We pass it through a multi-head attention layer. We train the model for 300 epochs using the Adam optimizer with a learning rate of 0.001. We use 6 attention heads, a hidden dimension of 48, an input dimension of 24, a batch size of 32, and 50000 synthetic samples. After training, we freeze the attention weights, resulting in a fixed softmax attention layer. We evaluate the frozen model on its ability to emulate various statistical algorithms using test data.

1050
1051
1052
1053
1054

Baseline Architecture. We train three separate attention models for Lasso, Ridge, and linear regression. That is, each attention model weights are adaptive to its corresponding algorithm. We use these models as baselines for comparison with the frozen attention model we propose. All baseline models use the same hyper-parameters as the frozen model.

1055
1056
1057
1058
1059
1060
1061
1062
1063

Results. As shown in [Table 2](#), we compare mean MSE and standard deviation over 5 random seed runs for the frozen attention model against baseline for Lasso, Ridge, and linear regression on the synthetic data. The frozen attention model performs as well as the baseline models trained individually on each algorithm. It achieves lower MSE on Lasso and linear regression tasks compared to their corresponding baselines. It shows that a frozen attention mechanism generalizes across these tasks given task-specific prompts. Moreover, the frozen model exhibits lower variance across all tasks, suggesting increased stability and robustness. These results support our claim that a frozen softmax attention layer, when conditioned on task-specific prompts, emulates statistical algorithms in context without much performance degradation.

1064
1065
1066
1067

Table 2: Comparison Between Baseline and Frozen Attention Layer on Synthetic Dataset. We compare loss (MSE) as the mean and one standard deviation over 5 random seed runs for baseline vs. frozen model on different algorithms. We train on 50000 training data points evaluate on 10000 testing data points for each algorithm.

1068

Model	Lasso	Ridge Regression	Linear Regression
Baseline	0.068 ± 0.015	0.004 ± 0.0003	0.147 ± 0.067
Frozen Attention	0.059 ± 0.001	0.071 ± 0.0002	0.120 ± 0.003

1073

C.2 REAL-WORLD EXPERIMENT ON EMULATING STATISTICAL MODELS

1074
1075
1076
1077
1078

Objective: Real-World Emulation of Statistical Models. Building on [Appendix C.1](#), we use real-world data to investigate the accuracy of a frozen softmax attention emulating algorithms.

1079

Data Collection and Processing. We collect data from Ames Housing Dataset ([De Cock, 2011](#)). This dataset consists of 2930 observations and 79 features. We process the data by log-transforming

1080 the target variable, encoding categorical variables with one-hot vectors, replacing missing entries
 1081 with median values, and standardizing numerical features. The resulting data consists of 262 features.
 1082 We fit the processed data to Lasso, Ridge, and linear regression models to obtain algorithm weights
 1083 as part of the input.
 1084

1085 **Model Architecture and Training.** We use a mixture of statistical data to train a single-layer
 1086 attention network with linear transformation. The input is passed through a multi-head attention layer
 1087 with a linear transformation. We train the model for 300 epochs using the Adam optimizer with a
 1088 learning rate of 0.001. We use 8 attention heads, a hidden dimension of 524, and a batch size of 32.
 1089 After training, we freeze the attention weights, resulting in a fixed softmax attention layer. The frozen
 1090 model is then evaluated on its ability to emulate various statistical algorithms using test data. We
 1091 train the baseline models the same way as the synthetic experiment.
 1092

1093 **Table 3: Comparison Between Baseline and Frozen Attention Layer on Ames Housing Dataset.** We
 1094 compare loss (MSE) as the mean and one standard deviation over 5 random seed runs for baseline vs. frozen
 1095 model on different algorithms. We train on 80% training data and evaluate on 20% testing data for each
 1096 algorithm.
 1097

Model	Lasso	Ridge Regression	Linear Regression
Baseline	0.0354 ± 0.0000	0.0132 ± 0.0000	0.0288 ± 0.0000
Frozen Attention	0.0322 ± 0.0000	0.0252 ± 0.0000	0.0250 ± 0.0000

1103 **Results.** As shown in Table 3, we compare mean MSE and standard deviation over 5 random seed
 1104 runs for the frozen attention model against baseline for Lasso, Ridge, and linear regression on Ames
 1105 Housing Data. The results shows the frozen attention model performs as well as the baseline models
 1106 trained individually. We use an auxiliary network to approximate the required weight encoding. Our
 1107 experiment validates that the mechanism works even when the exact weights are not supplied in real
 1108 world scenarios.
 1109

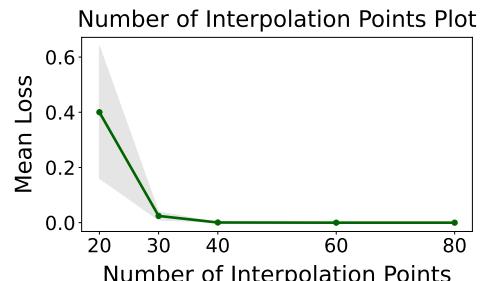
C.3 PROOF-OF-CONCEPT EXPERIMENT ON THEOREM 4.2

1111 **Objective: Verifying Handcrafted Frozen Attention Approximates Attention.** We validate that
 1112 the frozen attention prescribed in Theorem 4.2 approximates softmax attention with low error. In
 1113 particular, we handcraft the weights as in the proof of Theorem 4.2.
 1114

1115 **Data Generation.** We create a synthetic dataset.
 1116 We randomly generate $X \in \mathbb{R}^{n \times d}$ drawn from a
 1117 uniform distribution over $[-1, 1]$, $X \sim U(-1, 1)$.
 1118 For each sample, we generate three weight matrices
 1119 $W_K, W_Q, W_V \in \mathbb{R}^{n \times d}$ drawn from standard
 1120 normal distribution $N(0, 1)$. We then compute $K = W_K X^\top, Q = W_Q X^\top, V = W_V X^\top \in \mathbb{R}^{n \times n}$.
 1121 The true target attention output is therefore given
 1122 by $Y = V \text{Softmax}(K^\top Q) \in \mathbb{R}^{n \times n}$.
 1123

1124 **Model Architecture.** Following the proof in Appendix D.6, we hard-wire the linear layer weights,
 1125 attention weights, and interpolation points for the
 1126 two-layer softmax attention module as our emulator.
 1127 The model operates in a zero-shot, one-pass setting
 1128 with no training or parameter updates.
 1129

1131 **Results.** We report the results in Table 4 and Figure 5. We compare the MSE loss between the
 1132 emulator output and the target attention output. Specifically, we fix the number of data points
 1133 n , input dimension d , softmax temperature β , and number of samples for testing. We vary the
 1134 number of interpolation points P . The result validates our claim that the handcrafted frozen attention



1135 **Figure 5: Sensitivity of Handcrafted Attention Emulation to the Number of Interpolation Points.** We report loss (MSE) as the mean and one standard deviation (shaded region) over 4 sample data points. Each data point has sequence length $n = 12$ and input dimension $d = 24$. We set softmax temperature $\beta = 2$. We visualize the performance (MSE \pm Std) for $P = 20, 30, 40, 60, 80$.
 1136

1134 approximates the target attention. Moreover, we show that as P increases, the approximation error
 1135 and standard deviation both further decrease.
 1136

1137 **Table 4: Sensitivity to the Number of Interpolation Points.** We report MSE loss (mean \pm std) between outputs
 1138 of handcrafted frozen attention and target attention varying number of interpolation points P over 4 samples.
 1139 We choose $n = 12, d = 4, \beta = 2$, samples = 4 for evaluation.

P	20	30	40	60	80
Mean MSE	4.002×10^{-1}	2.442×10^{-2}	5.852×10^{-4}	5.770×10^{-9}	5.037×10^{-14}
Std	2.393×10^{-1}	1.451×10^{-2}	8.538×10^{-5}	1.994×10^{-9}	1.620×10^{-14}

1140 D PROOFS OF MAIN TEXT

1141 To prepare our proofs, we state the following axillary definitions and lemmas.

1142 **Definition D.1** (Truncated Linear Function). We define the truncated linear function as follows:

$$1143 \text{Range}_{[a,b]}(x) = \begin{cases} a & x \leq a, \\ 1144 x & a \leq x \leq b, \\ b & b \leq x. \end{cases}$$

1145 Intuitively, $\text{Range}_{[a,b]}(\cdot)$ is the part of a linear function whose value is in $[a, b]$.

1146 We then define the interpolation points in $[a, b]$ that are used in later proofs.

1147 **Definition D.2** (Interpolation). Let $[a, b] \subset \mathbb{R}$ be an interval with $a \leq b$ and let $p \in \mathbb{N}^*$ be a positive
 1148 integer. We define

$$1149 \tilde{L}_0^{[a,b]} := a, \quad \tilde{L}_p^{[a,b]} := b, \quad \tilde{L}_i^{[a,b]} := a + \frac{i}{p}(b - a), \quad i = [p - 1].$$

1150 Hence, $\tilde{L}_0 < \tilde{L}_1 < \dots < \tilde{L}_p$ forms a uniform partition of $[a, b]$. We also write

$$1151 \Delta L := \tilde{L}_i^{[a,b]} - \tilde{L}_{i-1}^{[a,b]}, \quad i \in [p].$$

1152 We often omit the superscript $[a, b]$ when the context is clear.

1153 We also propose the following lemma to show Hardmax property that is capable of being approximated
 1154 by Softmax.

1155 **Lemma D.1** (Lemma F.1 in (Hu et al., 2025a)): Approximating Hardmax with Finite-Temperature
 1156 Softmax). Let $x = [x_1, x_2, \dots, x_n] \in \mathbb{R}^n, \epsilon > 0$. Define $\text{Softmax}_\beta(\cdot)$ as

$$1157 \text{Softmax}_\beta(x) := \left[\frac{\exp(\beta x_1)}{\sum_{j=1}^n \exp(\beta x_j)}, \dots, \frac{\exp(\beta x_n)}{\sum_{j=1}^n \exp(\beta x_j)} \right].$$

1158 The following statements hold:

- 1159 • **Case of a Unique Largest Entry.** Assume $x_1 = \max_{i \in [n]} x_i$ is unique, and $x_2 = \max_{i \in [n] \setminus \{1\}} x_i$.
 1160 Then, if $\beta \geq (\ln(n-1) - \ln(\epsilon))/(x_1 - x_2)$, we have

$$1161 \left\| \text{Softmax}_\beta(x) - e_1 \right\|_\infty \leq \epsilon,$$

1162 where $e_1 \in \mathbb{R}^n$ is the one-hot vector corresponding to the maximal entry of x (i.e., x_1 .)

- 1163 • **Case of Two Largest Entries (Tied or Separated by δ).** Assume x_1 and x_2 are the first and
 1164 second largest entries, respectively, with $\delta = x_1 - x_2 \geq 0$. Let x_3 be the third largest entry and is
 1165 smaller than x_1 by a constant $\gamma > 0$ irrelevant to the input. Then, if $\beta \geq (\ln(n-2) - \ln \epsilon)/\gamma$, we
 1166 have

$$1167 \left\| \text{Softmax}_\beta(x) - \frac{1}{1 + e^{-\beta \delta}} e_1 - \frac{e^{-\beta \delta}}{1 + e^{-\beta \delta}} e_2 \right\|_\infty \leq \epsilon.$$

1168 The following technical lemma is used in the proof of [Theorem D.1](#).

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198

Lemma D.2 (Refined Version of Lemma F.2 in (Hu et al., 2025a): Cases of All Heads in Attn^H). For $a \in [\tilde{L}_0, \tilde{L}_{H(n-2)}]$. For any $h \in [H]$, define three cases of the relationship between a and h

- **Case 1:** $a \in [\tilde{L}_{(h-1)(n-2)}, \tilde{L}_{h(n-2)-1}]$,
- **Case 2:** $a \notin [\tilde{L}_{(h-1)(n-2)-1}, \tilde{L}_{h(n-2)}]$.
- **Case 3:** $a \in [\tilde{L}_{(h-1)(n-2)-1}, \tilde{L}_{(h-1)(n-2)}] \cup [\tilde{L}_{h(n-2)-1}, \tilde{L}_{h(n-2)}]$.

These cases includes all possible situation. Then for all h , only two cases exists

- a falls in Case 1 for an h and Case 2 for all others.
- a falls in Case 3 for two adjacent h and Case 2 for all others.

1199 *Proof.* Because $a \in [\tilde{L}_0, \tilde{L}_{H(n-2)}]$ and

$$[\tilde{L}_0, \tilde{L}_{H(n-2)}] = \bigcup_{h=1}^H [\tilde{L}_{(h-1)(n-2)}, \tilde{L}_{h(n-2)}],$$

1202 we have

$$a \in [\tilde{L}_{(h_a-1)(n-2)}, \tilde{L}_{h_a(n-2)}] \quad (\text{D.1})$$

1205 for an arbitrary h_a .

1206 This leads to only two possible cases

- Case 1*: $a \in [\tilde{L}_{(h_a-1)(n-2)}, \tilde{L}_{h_a(n-2)-1}]$.
- Case 2*: $a \in [\tilde{L}_{h_a(n-2)-1}, \tilde{L}_{h_a(n-2)}]$.

1211 **Case 1*:** $a \in [\tilde{L}_{(h_a-1)(n-2)}, \tilde{L}_{h_a(n-2)-1}]$. Because $a \in [\tilde{L}_{(h_a-1)(n-2)}, \tilde{L}_{h_a(n-2)-1}]$, for $h \neq h_a$,
1212 we have

$$\begin{aligned} \tilde{L}_{h(n-2)-2}, \tilde{L}_{h(n-2)} &< \tilde{L}_{(h_a-1)(n-2)}, \quad h < h_a \\ \tilde{L}_{h(n-2)+1}, \tilde{L}_{(h-1)(n-2)-1} &\geq \tilde{L}_{h_a(n-2)-1}, \quad h > h_a. \end{aligned}$$

1213 Thus

$$\begin{aligned} [\tilde{L}_{(h_a-1)(n-2)}, \tilde{L}_{h_a(n-2)-1}] \cap [\tilde{L}_{(h-1)(n-2)-1}, \tilde{L}_{h(n-2)}] &= \emptyset \\ [\tilde{L}_{(h_a-1)(n-2)}, \tilde{L}_{h_a(n-2)-1}] \cap [\tilde{L}_{(h-1)(n-2)-1}, \tilde{L}_{h(n-2)}] &= \emptyset \end{aligned}$$

1214 for all $h \neq h_a$.

1215 This means that a does not fall into Case 1 nor Case 3 for other $h \in [H]$. Thus a has to fall into Case
1216 2 for other h .

1217 **Case 2*:** $a \in [\tilde{L}_{(h_a-1)(n-2)}, \tilde{L}_{(h_a-1)(n-2)+1}] \cup [\tilde{L}_{h_a(n-2)-1}, \tilde{L}_{h_a(n-2)}]$. Without loss of general-
1218 ity, assume a to be in the left half $[\tilde{L}_{(h_a-1)(n-2)}, \tilde{L}_{(h_a-1)(n-2)+1}]$. Because

$$[\tilde{L}_{(h_a-1)(n-2)}, \tilde{L}_{(h_a-1)(n-2)+1}] = [\tilde{L}_{(h_a-1)(n-2)-1}, \tilde{L}_{(h_a-1)(n-2)}], \quad (\text{Case 3 of } h_a - 1)$$

$$[\tilde{L}_{(h_a-1)(n-2)}, \tilde{L}_{(h_a-1)(n-2)+1}] = [\tilde{L}_{(h_a-1)(n-2)-1}, \tilde{L}_{(h_a-1)(n-2)}], \quad (\text{Case 3 of } h_a)$$

1219 this means a falls into Case 3 for h_a and $h_a - 1$.

1220 This completes the proof. \square

1221 We are now ready to prove a refined version of (Hu et al., 2025a, Theorem 3.2).

1222 **Theorem D.1** (Multi-Head Attention Approximate Truncated Linear Models In-Context). Let
1223 $X \in \mathbb{R}^{d \times n}$ be the input. Fix real numbers $a < b$, and let the truncation operator $\text{Range}_{[a,b]}(\cdot)$ follow
1224 **Definition D.1**. Let w_s denote the linear coefficient of the in-context truncated linear model. Define
1225 W_s as

$$W_s := \begin{bmatrix} 0 \cdot w_s & 1 \cdot w_s & \cdots & (n-1) \cdot w_s \\ w_s & w_s & \cdots & w_s \end{bmatrix} \in \mathbb{R}^{2d \times n}.$$

1226 For a precision parameter $p > n$ with $\epsilon = O(1/p)$, number of head $H = p/(n-2)$ there exists a
1227 single-layer, H -head self-attention Attn^H with a linear transformation $A : \mathbb{R}^{d \times n} \rightarrow \mathbb{R}^{(3d+n) \times n}$,

1242
1243such that $\text{Attn}^H \circ A : \mathbb{R}^{d \times n} \rightarrow \mathbb{R}^{d_o \times n}$ satisfies, for any $i \in [n]$,1244
1245
1246
1247

$$\|\text{Attn}^H \circ A(X)_{:,i} - \text{Range}_{[a,b]}(w_s^\top x_i) e_{\tilde{k}_i}\|_\infty \leq \underbrace{\max\{|a|, |b|\} \cdot \epsilon_0}_{\text{finite-}\beta \text{ softmax error}} + \underbrace{\frac{b-a}{(n-2)H}}_{\text{interpolation error}}.$$

1248

Here $e_{\tilde{k}_i}$ is the one-hot vector with a 1 at position \tilde{k}_i -th index and 0 elsewhere, and1249
1250

$$\tilde{k}_i = G(k_i) \in [d_o], \quad \text{with } k_i = \operatorname{argmin}_{k \in \{0,1,\dots,p-1\}} (-2x_i^\top w_i - 2t_i + \tilde{L}_0 + \tilde{L}_k) \cdot k,$$

1251
1252
1253where $G : [p] \rightarrow [d_o]$ denotes any set-to-constant function sending each selected interpolation index k_i into an appropriate integer $\tilde{k}_i \in [d_o]$ for $i \in [n]$.

1254

1255

1256

1257

1258

Proof. Define $A : \mathbb{R}^{d \times n} \rightarrow \mathbb{R}^{(3d+n) \times n}$ for the input sequence X as1259
1260
1261
1262

$$A(X) := \underbrace{\begin{bmatrix} I_{3d} \\ 0_{n \times 3d} \end{bmatrix}}_{\text{token-wise linear}} \begin{bmatrix} X \\ W_s \\ I_n \end{bmatrix} + \underbrace{\begin{bmatrix} 0_{3d \times n} \\ I_n \end{bmatrix}}_{\text{positional encoding}} = \begin{bmatrix} X \\ W_s \\ I_n \end{bmatrix} \in \mathbb{R}^{(3d+n) \times n}.$$

1263
1264Thus, A is a token-wise linear layer augmented with positional encoding, as it applies a linear projection to each token and then adds a unique per-token bias.1265
1266
1267Let p be a precision parameter, without loss of generality, let it be divisible by $n-2$ and denote $p/(n-2)$ as H .

1268

Now we define the multi-head attention Attn of H heads. Denote $\ell_k := k(\tilde{L}_k + \tilde{L}_0)$ for $k \in [p]$ following [Definition D.2](#). We denote the h -th head as Attn_h , and define the weight matrices as

1269

$$W_K^{(h)} = -\beta \begin{bmatrix} 0_{d \times d} & -2I_d & -2[(h-1)(n-2)-1]I_d & 0 & 0 & \cdots & 0 \\ 0_{1 \times d} & 0_{1 \times d} & 0_{1 \times d} & \ell_{(h-1)(n-2)-1} & \ell_{(h-1)(n-2)} & \cdots & \ell_{h(n-2)} \end{bmatrix},$$

1270

$$W_Q^{(h)} = \begin{bmatrix} I_d & 0_{d \times 2d} & 0_{d \times n} \\ 0_{1 \times d} & 0_{1 \times 2d} & 1_{1 \times n} \end{bmatrix},$$

1271

$$W_V^{(h)} = \begin{bmatrix} 0_{d_o \times (3d+1)} & \tilde{L}_{(h-1)(n-2)} e_{\tilde{k}_{(h-1)(n-2)}} & \tilde{L}_{(h-1)(n-2)+1} e_{\tilde{k}_{(h-1)(n-2)+1}} & \cdots & \tilde{L}_{h(n-2)-1} e_{\tilde{k}_{h(n-2)-1}} & 0_{d_o} \end{bmatrix},$$

1272

for every $h \in [H]$.

1273

Here $\beta > 0$ is a coefficient we use to control the precision of our approximation. The attention reaches higher precision as β gets larger.

1274

With the construction of weights, we are also able to calculate the K , Q , V matrices in Attn

1275

$$K^{(h)} := W_K^{(h)} A(X)$$

1276

$$= W_K^{(h)} \cdot \begin{bmatrix} X \\ W_s \\ I_n \end{bmatrix}$$

1277

$$= W_K^{(h)} \cdot \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ 0 \cdot w_s & 1 \cdot w_s & \cdots & (n-1) \cdot w_s \\ w_s & w_s & \cdots & w_s \\ e_1^{(n)} & e_2^{(n)} & \cdots & e_n^{(n)} \end{bmatrix}$$

1278

1279

$$= -\beta \begin{bmatrix} 0_{d \times d} & -2I_d & -2[(h-1)(n-2)-1]I_d & 0 & 0 & \cdots & 0 \\ 0_{1 \times d} & 0_{1 \times d} & 0_{1 \times d} & \ell_{(h-1)(n-2)-1} & \ell_{(h-1)(n-2)} & \cdots & \ell_{h(n-2)} \end{bmatrix}$$

1280

1281

$$\cdot \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ 0 \cdot w_s & 1 \cdot w_s & \cdots & (n-1) \cdot w_s \\ w_s & w_s & \cdots & w_s \\ e_1^{(n)} & e_2^{(n)} & \cdots & e_n^{(n)} \end{bmatrix}$$

$$1296 \quad = -\beta \begin{bmatrix} -2[(h-1)(n-2)-1]w_s & -2(h-1)(n-2)w_s & \cdots & -2h(n-2)w_s \\ \ell_{(h-1)(n-2)-1} & \ell_{(h-1)(n-2)} & \cdots & \ell_{h(n-2)} \end{bmatrix} \in \mathbb{R}^{(d+1) \times n}, \\ 1297 \\ 1298 \\ 1299$$

1300 where the last equality comes from multiplying X with 0, thus this is a extraction of non-zero entries
1301 in W_K .

1302 For Q , we have

$$1303 \quad Q^{(h)} := W_Q^h A(X) \\ 1304 \\ 1305 \quad = \begin{bmatrix} I_d & 0_{d \times 2d} & 0_{d \times n} \\ 0_{1 \times d} & 0_{1 \times 2d} & 1_{1 \times n} \end{bmatrix} \cdot \begin{bmatrix} X \\ W_s \\ I_n \end{bmatrix} \\ 1306 \\ 1307 \\ 1308 \quad = \begin{bmatrix} I_d \cdot X + 0_{d \times 2d} \cdot W_s + 0_{d \times n} \cdot I_n \\ 0_{1 \times d} \cdot X + 0_{1 \times 2d} \cdot W_s + 1_{1 \times n} \cdot I_n \end{bmatrix} \\ 1309 \\ 1310 \\ 1311 \quad = \begin{bmatrix} X \\ 1_{1 \times n} \end{bmatrix} \in \mathbb{R}^{(d+1) \times n}. \quad (D.3)$$

1312 For V , we have

$$1313 \quad V^{(h)} := W_V^{(h)} A(X) \\ 1314 \\ 1315 \\ 1316 \quad = \begin{bmatrix} 0_{d_o \times (3d+1)} & \tilde{L}_{(h-1)(n-2)} e_{\tilde{k}_{(h-1)(n-2)}} & \cdots & \tilde{L}_{h(n-2)-1} e_{\tilde{k}_{h(n-2)-1}} & 0_{d_o} \end{bmatrix} \cdot \begin{bmatrix} X \\ W_s \\ I_n \end{bmatrix} \\ 1317 \\ 1318 \\ 1319 \quad = \underbrace{0_{d_o \times 3d}}_{d_o \times 3d} \cdot \begin{bmatrix} X \\ W_s \end{bmatrix} + \underbrace{\begin{bmatrix} 0_{d_o} & \tilde{L}_{(h-1)(n-2)} e_{\tilde{k}_{(h-1)(n-2)}} & \cdots & \tilde{L}_{h(n-2)-1} e_{\tilde{k}_{h(n-2)-1}} & 0_{d_o} \end{bmatrix}}_{d_o \times n} \cdot I_n \\ 1320 \\ 1321 \\ 1322 \quad = \begin{bmatrix} 0_{d_o} & \tilde{L}_{(h-1)(n-2)} e_{\tilde{k}_{(h-1)(n-2)}} & \tilde{L}_{(h-1)(n-2)+1} e_{\tilde{k}_{(h-1)(n-2)+1}} & \cdots & \tilde{L}_{h(n-2)-1} e_{\tilde{k}_{h(n-2)-1}} & 0_{d_o} \end{bmatrix} \\ 1323 \\ 1324 \quad \in \mathbb{R}^{d_o \times n}. \quad (D.4)$$

1325 Given that all \tilde{k}_j , where $j \in [p]$, share the same number in $[d_o]$, we denote this number by k_G .

1326 Hence we rewrite $V^{(h)}$ as

$$1327 \quad V^{(h)} = \begin{bmatrix} 0_{d_o} & \tilde{L}_{(h-1)(n-2)} e_{k_G} & \tilde{L}_{(h-1)(n-2)+1} e_{k_G} & \cdots & \tilde{L}_{h(n-2)-1} e_{k_G} & 0_{d_o} \end{bmatrix}.$$

1328 We define m_v as

$$1329 \quad m_v := \max\{|a|, |b|\}.$$

1330 By the definition of $V^{(h)}$, we have

$$1331 \quad \|V\|_\infty \leq \max_{i \in [P]} \{\tilde{L}_i\} \leq m_v. \quad (D.5)$$

1332 **Remark D.1** (Intuition of the Construction of $V^{(h)}$). As previously mentioned, \tilde{L}_i , for $i \in [p]$,
1333 are all the interpolation points. In this context, $V^{(h)}$ encompasses the $(n-2)$ elements of these
1334 interpolations (i.e., $(h-1)(n-2)$ to $h(n-2)-1$). Meanwhile, the value on the two ends of
1335 V^h are both set to 0_{d_o} , because we suppress the head and let it output 0 when the input X is not
1336 close enough to the interpolations of the head.

1337 Now we are ready to calculate the output of each Attn_h

$$1338 \quad \text{Attn}_h(A(X)) \\ 1339 \\ 1340 \quad = V^{(h)} \text{Softmax}((K^{(h)})^\top Q^{(h)}) \\ 1341 \\ 1342 \quad = V^{(h)} \text{Softmax} \left(-\beta \begin{bmatrix} -2[(h-1)(n-2)-1]w & -2(h-1)(n-2)w & \cdots & -2h(n-2)w \\ \ell_{(h-1)(n-2)-1} & \ell_{(h-1)(n-2)} & \cdots & \ell_{h(n-2)} \end{bmatrix}^\top \begin{bmatrix} X \\ 1_{1 \times n} \end{bmatrix} \right),$$

1350 where last line is by plug in (D.2) and (D.3). Note the i -th column of the attention score matrix (the
1351 Softmax nested expression) is equivalent to the following expressions
1352

$$\begin{aligned}
& \text{Softmax}((K^{(h)})^\top Q^{(h)})_{:,i} \\
&= \text{Softmax} \left(-\beta \begin{bmatrix} -2[(h-1)(n-2)-1]w & -2(h-1)(n-2)w & \cdots & -2h(n-2)w \\ \ell_{(h-1)(n-2)-1} & \ell_{(h-1)(n-2)} & \cdots & \ell_{h(n-2)} \end{bmatrix}^\top \begin{bmatrix} X \\ 1_{1 \times n} \end{bmatrix} \right)_{:,i} \\
&= \text{Softmax} \left(-\beta \begin{bmatrix} -2[(h-1)(n-2)-1]w^\top x_i + \ell_{(h-1)(n-2)-1} \\ -2(h-1)(n-2)w^\top x_i + \ell_{(h-1)(n-2)} \\ \vdots \\ -2h(n-2)w^\top x_i + \ell_{h(n-2)} \end{bmatrix} \right) \quad (\text{pick column } i) \\
&= \text{Softmax} \left(-\beta \begin{bmatrix} [(h-1)(n-2)-1](-2w^\top x_i + \tilde{L}_{(h-1)(n-2)-1} + \tilde{L}_0) - 2[(h-1)(n-2)-1]t \\ (h-1)(n-2)(-2w^\top x_i + \tilde{L}_{(h-1)(n-2)} + \tilde{L}_0) - 2(h-1)(n-2)t \\ \vdots \\ h(n-2)(-2w^\top x_i + \tilde{L}_{h(n-2)} + \tilde{L}_0) - 2h(n-2)t \end{bmatrix} \right) \\
&\quad (\text{By } \ell_k = k(\tilde{L}_k + \tilde{L}_0) - 2kt) \\
&= \text{Softmax} \left(-\frac{\beta}{\Delta L} \begin{bmatrix} (-2x_i^\top w - 2t + \tilde{L}_0 + \tilde{L}_{(h-1)(n-2)-1}) \cdot [(h-1)(n-2)-1]\Delta L \\ (-2x_i^\top w - 2t + \tilde{L}_0 + \tilde{L}_{(h-1)(n-2)}) \cdot (h-1)(n-2)\Delta L \\ \vdots \\ (-2x_i^\top w - 2t + \tilde{L}_0 + \tilde{L}_{h(n-2)}) \cdot h(n-2)\Delta L \end{bmatrix} \right) \\
&\quad (\text{By multiplying and dividing by } \Delta L) \\
&= \text{Softmax} \left(-\frac{\beta}{\Delta L} \begin{bmatrix} (-2x_i^\top w - 2t + \tilde{L}_0 + \tilde{L}_{(h-1)(n-2)-1}) \cdot (\tilde{L}_{(h-1)(n-2)-1} - \tilde{L}_0) \\ (-2x_i^\top w - 2t + \tilde{L}_0 + \tilde{L}_{(h-1)(n-2)}) \cdot (\tilde{L}_{(h-1)(n-2)} - \tilde{L}_0) \\ \vdots \\ (-2x_i^\top w - 2t + \tilde{L}_0 + \tilde{L}_{h(n-2)}) \cdot (\tilde{L}_{h(n-2)} - \tilde{L}_0) \end{bmatrix} \right) \\
&\quad (\text{By } k\Delta L = \tilde{L}_k - \tilde{L}_0) \\
&= \text{Softmax} \left(-\frac{\beta}{\Delta L} \begin{bmatrix} (-2x_i^\top w - 2t) \cdot \tilde{L}_{(h-1)(n-2)-1} + (\tilde{L}_{(h-1)(n-2)-1})^2 + (x_i^\top w + t)^2 \\ (-2x_i^\top w - 2t) \cdot \tilde{L}_{(h-1)(n-2)} + (\tilde{L}_{(h-1)(n-2)})^2 + (x_i^\top w + t)^2 \\ \vdots \\ (-2x_i^\top w - 2t) \cdot \tilde{L}_{h(n-2)} + (\tilde{L}_{h(n-2)})^2 + (x_i^\top w + t)^2 \end{bmatrix} \right) \\
&= \text{Softmax} \left(-\frac{\beta}{\Delta L} \begin{bmatrix} (x_i^\top w + t - \tilde{L}_{(h-1)(n-2)-1})^2 \\ (x_i^\top w + t - \tilde{L}_{(h-1)(n-2)})^2 \\ \vdots \\ (x_i^\top w + t - \tilde{L}_{h(n-2)})^2 \end{bmatrix} \right). \tag{D.6}
\end{aligned}$$

1391 Here, the second-last equality arises from the fact that the softmax function is shift-invariant, allowing
1392 us to subtract and add a constant across all coordinates. To be more precise, we first expand the
1393 product for k -th coordinate of the column vector

$$\begin{aligned}
& (-2x_i^\top w - 2t + \tilde{L}_k)(\tilde{L}_k - \tilde{L}_0) \\
&= (-2x_i^\top w - 2t)L_k + L_k L_k + L_k^2 - (-2x_i^\top w - 2t)L_0 - L_0^2 - L_0 L_k \\
&= (-2x_i^\top w - 2t)L_k + L_k^2 - \underbrace{(-2x_i^\top w - 2t)L_0 - L_0^2}_{\text{constant across the column vector}}.
\end{aligned}$$

1399 Then, dropping the constant and adding another constant $(x_i^\top w + t)^2$ across all coordinates, the
1400 above equation becomes

$$(-2x_i^\top w - 2t)L_k + L_k^2 + (x_i^\top w + t)^2 = (x_i^\top w + t - L_k)^2.$$

1401

1404 Hence we finish the derivation of (D.6). Thus we have
 1405

$$1406 \text{Attn}_h(A(X))_{:,i} = V^{(h)} \text{Softmax} \left(-\frac{\beta}{\Delta L} \begin{bmatrix} (x_i^\top w + t - \tilde{L}_{(h-1)(n-2)-1})^2 \\ (x_i^\top w + t - \tilde{L}_{(h-1)(n-2)})^2 \\ \vdots \\ (x_i^\top w + t - \tilde{L}_{h(n-2)})^2 \end{bmatrix} \right). \quad (D.7)$$

1411 For a specific h , we calculate the result of (D.7) column by column. Let X_i denote any column
 1412 (token) of the matrix X . We partition the situation at each column (token) into three distinct cases:
 1413

- 1414 • **Case 1:** $w^\top X_i + t$ is strictly within the interpolation range of Attn_h ($X \in [\tilde{L}_{(h-1)(n-2)}, \tilde{L}_{h(n-2)-1}]$). This excludes the following range at the edge of the interpolation
 1415 range of

$$1416 [\tilde{L}_{(h-1)(n-2)-1}, \tilde{L}_{(h-1)(n-2)}] \cup [\tilde{L}_{h(n-2)-1}, \tilde{L}_{h(n-2)}].$$

- 1417 • **Case 2:** $w^\top X_i + t$ is not within the interpolation range of Attn_h :

$$1418 w^\top X_i + t \notin [\tilde{L}_{(h-1)(n-2)-1}, \tilde{L}_{h(n-2)}].$$

- 1419 • **Case 3:** $w^\top X_i + t$ is on the edge (region) of the interpolation range of Attn_h :

$$1420 w^\top X_i + t \in [\tilde{L}_{(h-1)(n-2)-1}, \tilde{L}_{(h-1)(n-2)}] \cup [\tilde{L}_{h(n-2)-1}, \tilde{L}_{h(n-2)}].$$

1421 Two remarks are in order.

1422 **Remark D.2** (Cases of a Single Head Attention). The H heads split the approximation of the
 1423 truncated linear map across disjoint intervals. For head h ,

$$1424 \|\text{Attn}_h(X) - \text{Range}_{[a + \frac{b-a}{p}((h-1)(n-2)-1), a + \frac{b-a}{p}h(n-2)]}(X)\|_\infty \leq \epsilon_1,$$

1425 where $\epsilon > 0$ is arbitrarily small.

1426 With this understanding, $w^\top X_i + t$:

- 1427 • **Case 1:** falls into the interior of the interpolation range of the h -th head Attn_h , denoted as
 1428 $\text{Range}_{[a + (b-a)((h-1)(n-2)-1)/p, a + (b-a)h(n-2)/p]}$.
- 1429 • **Case 2:** remains outside of the interpolation range of the h -th head Attn_h .
- 1430 • **Case 3:** falls on the boundary of the interpolation range of the h -th head Attn_h .

1431 **Remark D.3** (Cases of All Attention Heads). According to [Lemma D.2](#), for all heads in
 1432 Attn^H , there are two possible cases:

- 1433 • **Case 1*:** x falls into Case 1 for a head, and Case 2 for all other heads.

- 1434 • **Case 2*:** x falls into Case 3 for two heads with adjacent interpolation ranges, and Case 2 for
 1435 other heads.

1436 This also means that when Case 1 appears in Attn^H , the situation of all head in Attn^H falls
 1437 into Case 1*. And when Case 3 appears in Attn^H , the situation of all head in Attn^H falls into
 1438 Case 2*. Thus, We discuss Case 2* in the discussion of Case 3.

1439 **Case 1:** $X_i \in [\tilde{L}_{(h-1)(n-2)}, \tilde{L}_{h(n-2)-1}]$. In this case, our goal is to demonstrate this attention head
 1440 outputs a value close to $\text{Range}_{[a,b]}(w^\top X_i + t)$.

1441 Let \tilde{L}_s and \tilde{L}_{s+1} be the two interpolants such that

$$1442 w^\top X_i + t \in [\tilde{L}_s, \tilde{L}_{s+1}]. \quad (D.8)$$

1458 Then, s and $s + 1$ are also the labels of the two largest entries in
 1459

$$1460 -\frac{\beta}{\Delta L} \begin{bmatrix} (w^\top X_i + t - \tilde{L}_{(h-1)(n-2)-1})^2 \\ (w^\top X_i + t - \tilde{L}_{(h-1)(n-2)})^2 \\ \vdots \\ (w^\top X_i + t - \tilde{L}_{h(n-2)})^2 \end{bmatrix},$$

1461 since
 1462

$$1463 \begin{aligned} & \underset{k \in \{(h-1)(n-2)-1, h(n-2)\}}{\operatorname{argmax}} -\frac{\beta}{\Delta L} (w^\top X_i + t - \tilde{L}_k)^2 \\ &= \underset{k \in \{(h-1)(n-2)-1, h(n-2)\}}{\operatorname{argmin}} (w^\top X_i + t - \tilde{L}_k)^2 \\ &= \underset{k \in \{(h-1)(n-2)-1, h(n-2)\}}{\operatorname{argmin}} |w^\top X_i + t - \tilde{L}_k|. \end{aligned}$$

1464 We also note that the distance of $w^\top X_i + t$ to interpolants beside \tilde{L}_s and \tilde{L}_{s+1} differs from $w^\top X_i + t$
 1465 for at least $\tilde{L}_s - \tilde{L}_{s-1} = (b - a)/p$ or $\tilde{L}_{s+1} - \tilde{L}_s = (b - a)/p$.
 1466

1467 This is equivalent to the occasion when $x_1 - x_3$ in [Lemma D.1](#) is larger than
 1468

$$1469 \max \left\{ \frac{\beta}{\Delta L} (w^\top X_i + t - \tilde{L}_{s-1})^2 - (w^\top X_i + t - \tilde{L}_s)^2, \frac{\beta}{\Delta L} (w^\top X_i + t - \tilde{L}_{s+2})^2 - (w^\top X_i + t - \tilde{L}_{s+1})^2 \right\} \\ 1470 \geq \frac{\beta}{\Delta L} \cdot \left(\frac{b - a}{p} \right)^2,$$

1471 which is invariant to X_i .
 1472

1473 Thus according to [Lemma D.1](#) and the fact that the s and $s + 1$ are the two largest entries in the i -th
 1474 column of the attention score matrix, we have
 1475

$$1476 \left\| \operatorname{Softmax} \left(-\frac{\beta}{\Delta L} \begin{bmatrix} (w^\top X_i + t - \tilde{L}_{(h-1)(n-2)-1})^2 \\ (w^\top X_i + t - \tilde{L}_{(h-1)(n-2)})^2 \\ \vdots \\ (w^\top X_i + t - \tilde{L}_{h(n-2)})^2 \end{bmatrix} \right) - \frac{1}{1 + e^{-\beta\delta}} \underbrace{e_s}_{n \times 1} - \frac{e^{-\beta\delta}}{1 + e^{-\beta\delta}} \underbrace{e_{s+1}}_{n \times 1} \right\|_\infty \leq \epsilon_2,$$

1477 for any $\epsilon_2 > 0$.
 1478

1479 This yields that
 1480

$$1481 \begin{aligned} & \left\| V \operatorname{Softmax} \left(-\frac{\beta}{\Delta L} \begin{bmatrix} (w^\top X_i + t - \tilde{L}_{(h-1)(n-2)-1})^2 \\ (w^\top X_i + t - \tilde{L}_{(h-1)(n-2)})^2 \\ \vdots \\ (w^\top X_i + t - \tilde{L}_{h(n-2)})^2 \end{bmatrix} \right) - V \frac{1}{1 + e^{-\beta\delta}} e_s - V \frac{e^{-\beta\delta}}{1 + e^{-\beta\delta}} e_{s+1} \right\|_\infty \\ & \leq \left\| \operatorname{Softmax} \left(-\frac{\beta}{\Delta L} \begin{bmatrix} (w^\top X_i + t - \tilde{L}_{(h-1)(n-2)-1})^2 \\ (w^\top X_i + t - \tilde{L}_{(h-1)(n-2)})^2 \\ \vdots \\ (w^\top X_i + t - \tilde{L}_{h(n-2)})^2 \end{bmatrix} \right) - \frac{1}{1 + e^{-\beta\delta}} e_s - \frac{e^{-\beta\delta}}{1 + e^{-\beta\delta}} e_{s+1} \right\|_\infty \cdot \|V\|_\infty \\ & \leq \|V\|_\infty \epsilon_2. \end{aligned}$$

1482 This is equivalent to
 1483

$$1484 \begin{aligned} & \|V \operatorname{Softmax}(K^\top Q)_{:,i} - \frac{1}{1 + e^{-\beta\delta}} \tilde{L}_{(h-1)(n-2)+s-1} e_{k_G} - \frac{e^{-\beta\delta}}{1 + e^{-\beta\delta}} \tilde{L}_{(h-1)(n-2)+s} e_{k_G}\|_\infty \\ & \leq \|V\|_\infty \cdot \epsilon_2 \quad (\text{By } \|AB\| \leq \|A\| \cdot \|B\|) \\ & \leq m_v \epsilon_2, \end{aligned} \tag{D.9}$$

1485 where the last line is by [\(D.5\)](#).
 1486

1512 From (D.8), we derive that
 1513
 1514
$$\left\| \frac{1}{1+e^{-\beta\delta}} \tilde{L}_{(h-1)(n-2)+s-1} + \frac{e^{-\beta\delta}}{1+e^{-\beta\delta}} \tilde{L}_{(h-1)(n-2)+s} - (w^\top X_i + t) e_{k_G} \right\|_\infty$$

 1515
 1516
$$\leq \left\| \frac{1}{1+e^{-\beta\delta}} (\tilde{L}_{(h-1)(n-2)+s-1} - (w^\top X_i + t) e_{k_G}) \right\|_\infty + \left\| \frac{e^{-\beta\delta}}{1+e^{-\beta\delta}} (\tilde{L}_{(h-1)(n-2)+s} - (w^\top X_i + t)) \right\|_\infty$$

 1517 (By convex combination of $(w^\top X_i + t)$ and triangle inequality)
 1518
 1519
$$\leq \frac{1}{1+e^{-\beta\delta}} \cdot \frac{b-a}{p} + \frac{e^{-\beta\delta}}{1+e^{-\beta\delta}} \cdot \frac{b-a}{p}$$

 1520 (By (D.8))
 1521
 1522
$$= \frac{b-a}{p}.$$

 1523 (D.10)

1524 Combing (D.9) and (D.10) yields

1525
$$\|V \text{Softmax}(K^\top Q)_{:,i} - (w^\top X_i + t)\|_\infty$$

 1526
 1527
$$\leq \|V \text{Softmax}(K^\top Q)_{:,i} - \frac{1}{1+e^{-\beta\delta}} \tilde{L}_{(h-1)(n-2)+s-1} - \frac{e^{-\beta\delta}}{1+e^{-\beta\delta}} \tilde{L}_{(h-1)(n-2)+s}\|_\infty$$

 1528
 1529
$$+ \left\| \frac{1}{1+e^{-\beta\delta}} \tilde{L}_{(h-1)(n-2)+s-1} + \frac{e^{-\beta\delta}}{1+e^{-\beta\delta}} \tilde{L}_{(h-1)(n-2)+s} - (w^\top X_i + t) e_{k_G} \right\|_\infty$$

 1530 (By triangle inequality)
 1531
 1532
$$\leq m_v \epsilon_2 + \frac{b-a}{p},$$

 1533 (D.11)

1534 where the first inequality comes from adding and subtracting the interpolation points' convex combination and then applying triangle inequality.
 1535
 1536
 1537
 1538
 1539
 1540

1541 **Case 2:** $X \notin [\tilde{L}_{(h-1)(n-2)-1}, \tilde{L}_{h(n-2)}]$. In this case, X_i falls out of the range of interpolation covered by Attn_h .
 1542
 1543

1544 Without loss of generality, suppose $w^\top X_i + t$ to lie left to the range of interpolation of Attn_h .

1545 This yields that $\tilde{L}_{(h-1)(n-2)-1}$ is the closest interpolant within Attn_h to $w^\top X_i + t$. Furthermore,
 1546 the second closest interpolant $\tilde{L}_{(h-1)(n-2)}$ is at least further for at least $(b-a)/p$, which is a constant
 1547 irrelevant to X_i
 1548

1549 Then by Lemma D.1, we have

1550
 1551
 1552
 1553
 1554
$$\left\| \text{Softmax} \left(-\frac{\beta}{\Delta L} \begin{bmatrix} (w^\top X_i + t - \tilde{L}_{(h-1)(n-2)-1})^2 \\ (w^\top X_i + t - \tilde{L}_{(h-1)(n-2)})^2 \\ \vdots \\ (w^\top X_i + t - \tilde{L}_{h(n-2)})^2 \end{bmatrix} \right) - \underbrace{e_1}_{n \times 1} \right\|_\infty \leq \epsilon_3,$$

 1555

for any $\epsilon_3 > 0$.
 1556

1557 This yields that

1558
 1559
 1560
 1561
 1562
$$\begin{aligned} \|V \text{Softmax} \left(-\frac{\beta}{\Delta L} \begin{bmatrix} (w^\top X_i + t - \tilde{L}_{(h-1)(n-2)-1})^2 \\ (w^\top X_i + t - \tilde{L}_{(h-1)(n-2)})^2 \\ \vdots \\ (w^\top X_i + t - \tilde{L}_{h(n-2)})^2 \end{bmatrix} \right) - V \underbrace{e_1}_{n \times 1} \right\|_\infty \\ \leq \|V\|_\infty \cdot \epsilon_3 \\ \leq m_v \epsilon_3, \end{aligned}$$

 1563 (By $\|AB\| \leq \|A\| \cdot \|B\|$)
 1564
 1565

where the last line is by (D.5).

1566 This is equivalent to
 1567

$$1568 \quad \left\| V\text{Softmax} \left(-\frac{\beta}{\Delta L} \begin{bmatrix} (w^\top X_i + t - \tilde{L}_{(h-1)(n-2)-1})^2 \\ (w^\top X_i + t - \tilde{L}_{(h-1)(n-2)})^2 \\ \vdots \\ (w^\top X_i + t - \tilde{L}_{h(n-2)})^2 \end{bmatrix} \right) - 0_{d_o} \right\|_\infty \leq m_v \epsilon_3. \quad (\text{D.12})$$

$$1571$$

$$1572$$

$$1573$$

1574 **Case 1*.** According to [Lemma D.2](#), when Case 1 occurs for one head in the H heads of Attn^H , all
 1575 other head will be in Case 2.

1576 Combining with the result in Case 2, we have the output of all heads as
 1577

$$1578 \quad \left\| \text{Attn}^H(A(X))_{:,i} - (w^\top X_i + t)e_{k_G} \right\|_\infty \\ 1579 = \left\| \sum_{h_0 \in [H]/\{h\}} \text{Attn}_{h_0} \circ A(X)_{:,i} \right\|_\infty + \left\| \text{Attn}_h \circ A(X)_{:,i} - (w^\top X_i + t)e_{k_G} \right\|_\infty \\ 1580 \\ 1581 = (H-1)m_v \epsilon_3 + m_v \epsilon_2 + \frac{b-a}{p} \quad (\text{By (D.11) and (D.12)}) \\ 1582 \\ 1583 = (H-1)m_v \epsilon_3 + m_v \epsilon_2 + \frac{b-a}{H(n-2)}. \\ 1584 \\ 1585$$

1586 Setting ϵ_2, ϵ_3 to be
 1587

$$1588 \quad \epsilon_2 = \frac{\epsilon_0}{2} \\ 1589 \\ 1590 \quad \epsilon_3 = \frac{\epsilon_0}{2(H-1)m} \\ 1591$$

1592 yields the final result.
 1593

1594 **Case 3 (and Case 2*):** $X \in [\tilde{L}_{(h-1)(n-2)-1}, \tilde{L}_{(h-1)(n-2)}] \cup [\tilde{L}_{h(n-2)-1}, \tilde{L}_{h(n-2)}]$. In this case,
 1595 $w^\top X_i + t$ is the boundary of the interpolation range of Attn_{h_0} . By [Lemma D.2](#), it should also fall on
 1596 the boundary of a head with neighboring interpolation range. Without loss of generality, we set it to
 1597 be Attn_{h_0-1} . Furthermore, [Lemma D.2](#) indicates that $w^\top X_i + t$ should fall on no other interpolation
 1598 range of any heads beside Attn_{h_0} and Attn_{h_0-1} .
 1599

1600 Combining this with case 2, we have
 1601

$$1602 \quad \text{Attn}^H(A(X))_{:,i} = \sum_{h=1}^H \text{Attn}_h \circ A(X)_{:,i} \\ 1603 \\ 1604 \in [(-(H-2)m_v \epsilon_3 + \text{Attn}_{h_0} \circ A(X)_{:,i} + \text{Attn}_{h_0-1} \circ A(X)_{:,i}), \\ 1605 \quad ((H-2)m_v \epsilon_3 + \text{Attn}_{h_0} \circ A(X)_{:,i} + \text{Attn}_{h_0-1} \circ A(X)_{:,i})]. \\ 1606 \quad (\text{By (D.12)}) \\ 1607$$

1608 By [Lemma D.1](#), let δ denote
 1609

$$1610 \quad \delta = \tilde{L}_{(h-1)(n-2)+s} - (w^\top X_i + t)e_{k_G} - [\tilde{L}_{(h-1)(n-2)+s} - (w^\top X_i + t)e_{k_G}],$$

1611 we have
 1612

$$1613 \quad \left\| \text{Softmax}((K^{(h)})^\top Q^{(h)}) - \left(\frac{1}{1+e^{-\beta\delta}} e_1 + \frac{e^{-\beta\delta}}{1+e^{-\beta\delta}} e_2 \right) \right\| \leq \epsilon_4,$$

1614 and
 1615

$$1616 \quad \left\| \text{Softmax}((K^{(h-1)})^\top Q^{(h-1)}) - \left(\frac{1}{1+e^{-\beta\delta}} e_{n-1} + \frac{e^{-\beta\delta}}{1+e^{-\beta\delta}} e_n \right) \right\| \leq \epsilon_5,$$

1617 for any $\epsilon_4, \epsilon_5 > 0$.
 1618

1619 Thus we have

$$1620 \quad \|V^{(h)} \text{Softmax}((K^{(h)})^\top Q^{(h)}) + V^{(h-1)} \text{Softmax}((K^{(h-1)})^\top Q^{(h-1)})\|$$

$$\begin{aligned}
& - V \left(\frac{1}{1 + e^{-\beta\delta}} e_1 + \frac{e^{-\beta\delta}}{1 + e^{-\beta\delta}} e_2 + \frac{1}{1 + e^{-\beta\delta}} e_{n-1} + \frac{e^{-\beta\delta}}{1 + e^{-\beta\delta}} e_n \right) \|\infty \\
& \leq \|V\|_\infty (\epsilon_4 + \epsilon_5).
\end{aligned}$$

This is equivalent to

$$\begin{aligned}
& \|V^{(h)} \text{Softmax}((K^{(h)})^\top Q^{(h)}) + V^{(h-1)} \text{Softmax}((K^{(h-1)})^\top Q^{(h-1)}) \\
& - \left(\frac{1}{1+e^{-\beta\delta}} \cdot 0 + \frac{e^{-\beta\delta}}{1+e^{-\beta\delta}} e_{k_G} \tilde{L}_{(h-1)(n-2)+s} + \frac{1}{1+e^{-\beta\delta}} e_{k_G} \tilde{L}_{(h-1)(n-2)+s-1} + \frac{e^{-\beta\delta}}{1+e^{-\beta\delta}} e_{k_G} \right) \cdot 0 \|_\infty \\
& \leq \|V\|_\infty \cdot (\epsilon_4 + \epsilon_5).
\end{aligned}$$

Thus we have

$$\begin{aligned}
& \|V^{(h)} \text{Softmax}((K^{(h)})^\top Q^{(h)}) + V^{(h-1)} \text{Softmax}((K^{(h-1)})^\top Q^{(h-1)}) \\
& \quad - \left(\frac{e^{-\beta\delta}}{1+e^{-\beta\delta}} e_{k_G} \tilde{L}_{(h-1)(n-2)+s} + \frac{1}{1+e^{-\beta\delta}} e_{k_G} \tilde{L}_{(h-1)(n-2)+s-1} \right) \|_\infty \\
& \leq \|V\|_\infty (\epsilon_4 + \epsilon_5),
\end{aligned}$$

which implies

$$\begin{aligned}
& \left\| \sum_{h=1}^H \text{Attn}_h(A(X))_{:,i} - \left(\frac{e^{-\beta\delta}}{1+e^{-\beta\delta}} e_{k_G} \tilde{L}_{(h-1)(n-2)+s} + \frac{1}{1+e^{-\beta\delta}} e_{k_G} \tilde{L}_{(h-1)(n-2)+s-1} \right) \right\|_\infty \\
& \leq (H-2)m_v\epsilon_3 + \|V\|_\infty(\epsilon_4 + \epsilon_5). \tag{D.13}
\end{aligned}$$

Finally, since

$$\left\| \frac{e^{-\beta\delta}}{1+e^{-\beta\delta}}e_{k_G}\tilde{L}_{(h-1)(n-2)+s} + \frac{1}{1+e^{-\beta\delta}}e_{k_G}\tilde{L}_{(h-1)(n-2)+s-1} - (w^\top X_i + t)e_{k_G} \right\|_\infty \leq \frac{b-a}{p},$$

(By (D.10))

combining with (D.13), we have

$$\begin{aligned}
& \| \sum_{h=1}^H \text{Attn}_h(A(X))_{:,i} - (w^\top X_i + t) e_{k_G} \|_\infty \\
& \leq \| \sum_{h=1}^H \text{Attn}_h(A(X))_{:,i} - \left(\frac{e^{-\beta\delta}}{1+e^{-\beta\delta}} e_{k_G} \tilde{L}_{(h-1)(n-2)+s} + \frac{1}{1+e^{-\beta\delta}} e_{k_G} \tilde{L}_{(h-1)(n-2)+s-1} \right) \|_\infty \\
& \quad + \| \left(\frac{e^{-\beta\delta}}{1+e^{-\beta\delta}} e_{k_G} \tilde{L}_{(h-1)(n-2)+s} + \frac{1}{1+e^{-\beta\delta}} e_{k_G} \tilde{L}_{(h-1)(n-2)+s-1} \right) - (w^\top X_i + t) e_{k_G} \|_\infty \\
& \leq \frac{b-a}{p} + (H-2)m_v\epsilon_3 + \|V\|_\infty(\epsilon_4 + \epsilon_5) \\
& \leq \frac{b-a}{H(n-2)} + (H-2)\max\{|a|,|b|\}\epsilon_3 + \max\{|a|,|b|\}(\epsilon_4 + \epsilon_5).
\end{aligned}$$

(By triangle inequality)

Setting $\epsilon_3, \epsilon_4, \epsilon_5$ to be

$$\epsilon_3 = \frac{\epsilon_0}{3(H-2)}$$

$$\epsilon_4 = \epsilon_5 = \frac{\epsilon_0}{3}$$

yields the final result.

This completes the proof. \square

Lemma D.3 (Attention Prepended with Token-Wise Linear Transformation is Still a Transformer). For any attention Attn and any linear transformation A , $\text{Attn} \circ A$ is still an attention.

1674 *Proof.* We denote the transformation matrix of A also as M_A . Denote the attention Attn as
 1675

$$1676 \quad \text{Attn}(Z) := W_V Z \text{Softmax}((W_K Z)^\top W_Q Z).$$

1677 Then we have

$$1678 \quad \text{Attn} \circ A(Z) = W_V M_A Z \text{Softmax}((W_K M_A Z)^\top W_Q M_A Z).$$

1679 It is a new attention with parameters $W_K M_A, W_Q M_A$ and $W_V M_A$. \square
 1680

1681
 1682
 1683
 1684
 1685
1686 Lemma D.4 (Lemma 14 in (Bai et al., 2023): Composition of Error for Approximating Convex GD).
 1687 Suppose $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is a convex function. Let $w^* \in \operatorname{argmin}_{w \in \mathbb{R}^d} f(w)$, $R \geq 2\|w^*\|_2$, and assume
 1688 that ∇f is L_f -smooth on $B_2^d(R)$. Let sequences $\{\hat{w}^\ell\}_{\ell \geq 0} \subset \mathbb{R}^d$ and $\{w_{\text{GD}}^\ell\}_{\ell \geq 0} \subset \mathbb{R}^d$ be given by
 1689 $\hat{w}^0 = w_{\text{GD}}^0 = \mathbf{0}$,

$$1690 \quad \begin{cases} \hat{w}^{\ell+1} = \hat{w}^\ell - \eta \nabla f(\hat{w}^\ell) + \epsilon^\ell, & \|\epsilon^\ell\|_2 \leq \epsilon, \\ w_{\text{GD}}^{\ell+1} = w_{\text{GD}}^\ell - \eta \nabla f(w_{\text{GD}}^\ell), \end{cases}$$

1691 for all $\ell \geq 0$. Then as long as $\eta \leq 2/L_f$, for any $0 \leq L \leq R/(2\epsilon)$, it holds that $\|\hat{w}^L - w_{\text{GD}}^L\|_2 \leq L\epsilon$
 1692 and $\|\hat{w}^L\|_2 \leq \frac{R}{2} + L\epsilon \leq R$.
 1693

1694
1695 Corollary D.1.1 (Corollary A.2 in (Bai et al., 2023): Gradient Descent for Smooth and Strongly
 1696 Convex Function). Suppose $L : \mathbb{R}^d \rightarrow \mathbb{R}$ is a α -strongly convex and β -smooth for some $0 < \alpha \leq \beta$.
 1697 Then, the gradient descent iterates $w_{\text{GD}}^{(t+1)} := w_{\text{GD}}^t - \eta \nabla L(w_{\text{GD}}^t)$ with learning rate $\eta = 1/\beta$ and
 1698 initialization $w_{\text{GD}}^0 \in \mathbb{R}^d$ satisfies for any $t \geq 1$,

$$1699 \quad \|w_{\text{GD}}^t - w^*\|_2^2 \leq \exp\left(-\frac{t}{\kappa}\right) \cdot \|w_{\text{GD}}^0 - w^*\|_2^2,$$

$$1700 \quad L(w_{\text{GD}}^t) - L(w^*) \leq \frac{\beta}{2} \exp\left(-\frac{t}{\kappa}\right) \cdot \|w_{\text{GD}}^0 - w^*\|_2^2,$$

1701 where $\kappa := \beta/\alpha$ is the condition number of L , and $w^* := \operatorname{argmin}_{w \in \mathbb{R}^d} L(w)$.
 1702

1703 D.1 PROOF OF THEOREM 3.1

1704
1705 Definition D.3 (Interpolation Points). Define $P + 1$ interpolation points of the effective domain of
 1706 f , i.e., the range of $w^\top x - y$, as

$$1707 \quad L_j := L_{\min} + \frac{j}{P}(L_{\max} - L_{\min}), \quad \text{for } j \in 0, 1, \dots, P,$$

1708 where $[L_{\min}, L_{\max}]$ is a bounded interval containing all values of $w^\top x - y$.
 1709

1710
1711 Theorem D.2 (In-Context Emulation of $f(w^\top x - y)x$ with Single-Head Attention; [Theorem 3.1](#)
 1712 Restate). Let $[L_{\min}, L_{\max}]$ be a bounded interval containing all values of $w^\top x - y$, and let

$$1713 \quad X := \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \end{bmatrix} \in \mathbb{R}^{(d+1) \times n} \quad \text{and} \quad W := [w \ w \ \cdots \ w] \in \mathbb{R}^{d \times n},$$

1714 where $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$, and $w \in \mathbb{R}^d$ is the coefficient vector. Define the input as:
 1715

$$1716 \quad Z := \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \\ w & w & \cdots & w \end{bmatrix} = \begin{bmatrix} X \\ W \end{bmatrix} \in \mathbb{R}^{(2d+1) \times n}. \quad (\text{D.14})$$

1717 Assume $\max\{\|X\|_\infty, \|W\|_\infty\} \leq B$. For any continuously differentiable function $f : \mathbb{R} \rightarrow \mathbb{R}$ and
 1718 any $\epsilon > 0$, there exists a single-head attention Attn_s with a linear layer Linear such that

$$1719 \quad \|\text{Attn}_s \circ \text{Linear}(Z) - [f(w^\top x_1 - y_1)x_1 \ \cdots \ f(w^\top x_n - y_n)x_n]\|_\infty \leq \epsilon, \quad \text{for any } \epsilon > 0.$$

1728 *Proof.* We define the linear transformation of Z as a concatenation of two functions with some
 1729 manual padding of zeros:

$$1731 \quad \text{Linear}(Z) := \underbrace{\begin{bmatrix} \text{Linear}_x(X) \\ \text{Linear}_w(W) \end{bmatrix}}_{2(2d+n+2) \times n(P+1)},$$

$$1732$$

$$1733$$

1734 where we define $\text{Linear}_x \in \mathbb{R}^{(2d+n+2) \times n(P+1)}$ and $\text{Linear}_w \in \mathbb{R}^{(2d+n+2) \times n}$ as below.

1735 We define Linear_w as:

$$1737 \quad \text{Linear}_w(W) := \underbrace{\begin{bmatrix} I_d \\ 0_{(d+n+2) \times d} \end{bmatrix}}_{(2d+n+2) \times d} \underbrace{W}_{d \times n} + \underbrace{\begin{bmatrix} 0_{d \times n} \\ -1_{1 \times n} \\ 0_{d \times n} \\ 1_{1 \times n} \\ I_n \end{bmatrix}}_{(2d+n+2) \times n} = \underbrace{\begin{bmatrix} W \\ -1_{1 \times n} \\ 0_{d \times n} \\ 1_{1 \times n} \\ I_n \end{bmatrix}}_{(2d+n+2) \times n}.$$

$$1738$$

$$1739$$

$$1740$$

$$1741$$

$$1742$$

$$1743$$

1744 We define Linear_x as:

$$1745 \quad \text{Linear}_x(X)$$

$$1746 \quad := \sum_{i=1}^n \underbrace{\begin{bmatrix} I_{d+1} \\ 0_{(d+1+n) \times (d+1)} \end{bmatrix}}_{(2d+n+2) \times (d+1)} \underbrace{X}_{(d+1) \times n} \underbrace{\begin{bmatrix} 0_{n \times (i-1)(P+1)} & 2L_0 e_i^{(n)} & 2L_1 e_i^{(n)} & \cdots & 2L_P e_i^{(n)} & 0_{n \times (n-i)(P+1)} \end{bmatrix}}_{n \times n(P+1)}$$

$$1747$$

$$1748$$

$$1749$$

$$1750 \quad + \sum_{i=1}^n \underbrace{\begin{bmatrix} 0_{(d+1) \times d} & 0_{(d+1)} \\ I_d & 0_d \\ 0_{(n+1) \times d} & 0_{n+1} \end{bmatrix}}_{(2d+n+2) \times (d+1)} \underbrace{X}_{(d+1) \times n} \underbrace{\begin{bmatrix} 0_{n \times (i-1)(P+1)} & f(L_0) e_i^{(i)} & f(L_1) e_i^{(i)} & \cdots & f(L_P) e_i^{(i)} & 0_{n \times (n-i)(P+1)} \end{bmatrix}}_{n \times n(P+1)}$$

$$1751$$

$$1752$$

$$1753$$

$$1754$$

$$1755 \quad + \underbrace{\begin{bmatrix} 0_{(2d+1) \times (P+1)} & \cdots & 0_{(2d+1) \times (P+1)} \\ S & \cdots & S \\ Ce_1^{(n)} 1_{1 \times (P+1)} & \cdots & Ce_n^{(n)} 1_{1 \times (P+1)} \end{bmatrix}}_{(2d+n+2) \times n(P+1)}$$

$$1756$$

$$1757$$

$$1758$$

$$1759 \quad = \underbrace{\begin{bmatrix} T_1 & T_2 & \cdots & T_n \end{bmatrix}}_{(2d+n+2) \times n(P+1)},$$

$$1760$$

$$1761$$

1762 where $\{L_j\}_{j=0}^P$ are the $P+1$ interpolation points (Definition D.3); $e_i^{(n)} \in \mathbb{R}^n$ is the one-hot vector
 1763 with 1 at index i and 0 elsewhere; C is a constant to be determined later, and

$$1764 \quad 1_{1 \times (P+1)} := \underbrace{\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}}_{1 \times (P+1)},$$

$$1765$$

$$1766$$

$$1767 \quad S := \underbrace{\begin{bmatrix} -L_0^2 & -L_1^2 & \cdots & -L_P^2 \end{bmatrix}}_{1 \times (P+1)},$$

$$1768$$

$$1769$$

$$1770 \quad T_i := \underbrace{\begin{bmatrix} 2L_0 x_i & 2L_1 x_i & \cdots & 2L_P x_i \\ 2L_0 y_i & 2L_1 y_i & \cdots & 2L_P y_i \\ f(L_0) x_i & f(L_1) x_i & \cdots & f(L_P) x_i \\ -L_0^2 & -L_1^2 & \cdots & -L_P^2 \\ Ce_i^{(n)} & Ce_i^{(n)} & \cdots & Ce_i^{(n)} \end{bmatrix}}_{(2d+n+2) \times (P+1)}.$$

$$1771$$

$$1772$$

$$1773$$

$$1774$$

$$1775$$

$$1776$$

$$1777$$

$$1778$$

$$1779$$

$$1780$$

$$1781$$

1782 So our $\text{Linear}(Z)$ is:
1783

$$\begin{aligned}
 1784 \quad & \text{Linear}(Z) = \underbrace{\begin{bmatrix} T_1 & T_2 & \cdots & T_n \\ W_{d \times n} & 0_{d \times nP} \\ -1_{1 \times n} & 0_{1 \times nP} \\ 0_{d \times n} & 0_{d \times nP} \\ 1_{1 \times n} & 0_{1 \times nP} \\ I_n & 0_{n \times nP} \end{bmatrix}}_{2(2d+n+2) \times n(P+1)} = \underbrace{\begin{bmatrix} 2L_0x_1 & \cdots & 2L_Px_1 & \cdots & \cdots & 2L_0x_n & \cdots & 2L_Px_n \\ 2L_0y_1 & \cdots & 2L_Py_1 & \cdots & \cdots & 2L_0y_n & \cdots & 2L_Py_n \\ f(L_0)x_1 & \cdots & f(L_P)x_1 & \cdots & \cdots & f(L_0)x_n & \cdots & f(L_P)x_n \\ -L_0^2 & \cdots & -L_P^2 & \cdots & \cdots & -L_0^2 & \cdots & -L_P^2 \\ Ce_1^{(n)} & \cdots & Ce_1^{(n)} & \cdots & \cdots & Ce_n^{(n)} & \cdots & Ce_n^{(n)} \\ W_{d \times n} & & & & & 0_{d \times nP} & & \\ -1_{1 \times n} & & & & & 0_{1 \times nP} & & \\ 0_{d \times n} & & & & & 0_{d \times nP} & & \\ 1_{1 \times n} & & & & & 0_{1 \times nP} & & \\ I_n & & & & & 0_{n \times nP} & & \end{bmatrix}}_{2(2d+n+2) \times n(P+1)}.
 \end{aligned}$$

1794 Now we construct W_K, W_Q, W_V, W_O to be:
1795

$$\begin{aligned}
 1796 \quad & W_K := \underbrace{\begin{bmatrix} I_{2d+n+2} & 0_{(2d+n+2) \times (2d+n+2)} \end{bmatrix}}_{(2d+n+2) \times 2(2d+n+2)}, \\
 1797 \quad & W_Q := \underbrace{\begin{bmatrix} 0_{(2d+n+2) \times (2d+n+2)} & I_{2d+n+2} \end{bmatrix}}_{(2d+n+2) \times 2(2d+n+2)}, \\
 1798 \quad & W_V := \underbrace{\begin{bmatrix} 0_{d \times (d+1)} & I_d & 0_{d \times (2d+2n+3)} \end{bmatrix}}_{d \times 2(2d+n+2)}, \\
 1799 \quad & W_O := \underbrace{\begin{bmatrix} I_n \\ 0_{nP \times n} \end{bmatrix}}_{n(P+1) \times n}.
 \end{aligned}$$

1800 Thus,

$$\begin{aligned}
 1801 \quad & W_K \text{Linear}(Z) = \underbrace{\begin{bmatrix} T_1 & T_2 & \cdots & T_n \end{bmatrix}}_{(2d+n+2) \times n(P+1)}, \quad (W_K \text{ selects the } T_i \text{ blocks in } \text{Linear}(Z)) \\
 1802 \quad & W_Q \text{Linear}(Z) = \underbrace{\begin{bmatrix} W_{d \times n} & 0_{d \times nP} \\ -1_{1 \times n} & 0_{1 \times nP} \\ 0_{d \times n} & 0_{d \times nP} \\ 1_{1 \times n} & 0_{1 \times nP} \\ I_n & 0_{n \times nP} \end{bmatrix}}_{(2d+n+2) \times n(P+1)}, \quad (W_Q \text{ selects the bottom } (2d+n+2) \text{ rows in } \text{Linear}(Z)) \\
 1803 \quad & W_V \text{Linear}(Z) = \underbrace{\begin{bmatrix} F_1 & F_2 & \cdots & F_n \end{bmatrix}}_{d \times n(P+1)}, \quad (W_V \text{ selects the } (d+2)\text{-th row in } T_i)
 \end{aligned}$$

1804 where we define F_i as:
1805

$$F_i := \underbrace{\begin{bmatrix} f(L_0)x_i & f(L_1)x_i & \cdots & f(L_P)x_i \end{bmatrix}}_{d \times (P+1)}.$$

1806 Therefore,
1807

$$\begin{aligned}
 1808 \quad & \text{Attn}_s \circ \text{Linear}(Z) \\
 1809 \quad & = W_V \text{Linear}(Z) \cdot \text{Softmax}_\beta((W_K \text{Linear}(Z))^\top W_Q \text{Linear}(Z)) \cdot W_O \\
 1810 \quad & = \underbrace{\begin{bmatrix} F_1 & F_2 & \cdots & F_n \end{bmatrix}}_{d \times n(P+1)} \underbrace{\text{Softmax}_\beta\left(\begin{bmatrix} T_1 & T_2 & \cdots & T_n \end{bmatrix}^\top\right)}_{n(P+1) \times n(P+1)} \underbrace{\begin{bmatrix} W_{d \times n} & 0_{d \times nP} \\ -1_{1 \times n} & 0_{1 \times nP} \\ 0_{d \times n} & 0_{d \times nP} \\ 1_{1 \times n} & 0_{1 \times nP} \\ I_n & 0_{n \times nP} \end{bmatrix}}_{(2d+n+2) \times n(P+1)} \underbrace{\begin{bmatrix} I_n \\ 0_{nP \times n} \end{bmatrix}}_{n(P+1) \times n}. \quad (\text{D.15})
 \end{aligned}$$

1836 For simplicity of presentation, we define
 1837

$$\tilde{T} := \underbrace{[T_1 \ T_2 \ \cdots \ T_n]}_{n(P+1) \times (2d+n+2)}^\top.$$

1840
 1841 For the Softmax_β part in (D.15), we have:

$$\begin{aligned} & \text{Softmax}_\beta((W_K \text{Linear}(Z))^\top W_Q \text{Linear}(Z)) \cdot W_O \\ &= \text{Softmax}_\beta(\underbrace{\tilde{T}}_{n(P+1) \times (2d+n+2)} \underbrace{\begin{bmatrix} W_{d \times n} & 0_{d \times nP} \\ -1_{1 \times n} & 0_{1 \times nP} \\ 0_{d \times n} & 0_{d \times nP} \\ 1_{1 \times n} & 0_{1 \times nP} \\ I_n & 0_{n \times nP} \end{bmatrix}}_{(2d+n+2) \times n(P+1)}) \underbrace{\begin{bmatrix} I_n \\ 0_{nP \times n} \end{bmatrix}}_{n(P+1) \times n} \quad (\text{By the definition of } \tilde{T}) \\ &= \text{Softmax}_\beta(\underbrace{\tilde{T} \begin{bmatrix} W_{d \times n} \\ -1_{1 \times n} \\ 0_{d \times n} \\ 1_{1 \times n} \\ I_n \end{bmatrix}}_{n(P+1) \times n} \underbrace{\tilde{T} \begin{bmatrix} 0_{d \times nP} \\ 0_{1 \times nP} \\ 0_{d \times nP} \\ 0_{1 \times nP} \\ 0_{n \times nP} \end{bmatrix}}_{n(P+1) \times nP}) \underbrace{\begin{bmatrix} I_n \\ 0_{nP \times n} \end{bmatrix}}_{n(P+1) \times n} \quad (\text{By distributivity of matrix multiplication over block concatenation}) \\ &= \underbrace{\text{Softmax}_\beta(\tilde{T} \begin{bmatrix} W_{d \times n} \\ -1_{1 \times n} \\ 0_{d \times n} \\ 1_{1 \times n} \\ I_n \end{bmatrix})}_{n(P+1) \times n} \underbrace{\text{Softmax}_\beta(\tilde{T} \begin{bmatrix} 0_{d \times nP} \\ 0_{1 \times nP} \\ 0_{d \times nP} \\ 0_{1 \times nP} \\ 0_{n \times nP} \end{bmatrix})}_{n(P+1) \times nP} \underbrace{\begin{bmatrix} I_n \\ 0_{nP \times n} \end{bmatrix}}_{n(P+1) \times n} \quad (\text{By the column-wise operation nature of } \text{Softmax}_\beta) \\ &= \text{Softmax}_\beta(\underbrace{[T_1 \ T_2 \ \cdots \ T_n]}_{n(P+1) \times (2d+n+2)}^\top \underbrace{\begin{bmatrix} W_{d \times n} \\ -1_{1 \times n} \\ 0_{d \times n} \\ 1_{1 \times n} \\ I_n \end{bmatrix}}_{(2d+n+2) \times n}). \quad (\underbrace{\begin{bmatrix} I_n \\ 0_{nP \times n} \end{bmatrix}}_{n(P+1) \times n} \text{ selects the first Softmax}_\beta \text{ block}) \end{aligned}$$

1871 Since our target is a token-wise approximation, we focus on a single token. We consider the c -th
 1872 column ($c \in [n]$) in the Softmax_β part, and we have
 1873

$$\begin{aligned} & (\text{Softmax}_\beta((W_K \text{Linear}(Z))^\top W_Q \text{Linear}(Z)) \cdot W_O)_{:,c} = \text{Softmax}_\beta(\underbrace{\begin{bmatrix} T_1^\top \\ T_2^\top \\ \vdots \\ T_n^\top \end{bmatrix}}_{n(P+1) \times (2d+n+2)} \cdot \underbrace{\begin{bmatrix} w \\ -1 \\ 0_d \\ 1 \\ e_c^{(n)} \end{bmatrix}}_{(2d+n+2) \times 1}) \\ &= \text{Softmax}_\beta(\underbrace{\begin{bmatrix} M_{1,c} \\ M_{2,c} \\ \vdots \\ M_{n,c} \end{bmatrix}}_{n(P+1) \times 1}), \end{aligned}$$

1890 where each sub-block $M_{i,c} \in \mathbb{R}^{(P+1) \times 1}$ for $i \in [n]$ is
 1891

$$\begin{aligned}
 1892 \quad M_{i,c} &:= \underbrace{T_i^\top}_{(P+1) \times (2d+n+2)} \cdot \underbrace{\begin{bmatrix} w \\ -1 \\ 0_d \\ 1 \\ e_c^{(n)} \end{bmatrix}}_{(2d+n+2) \times 1} \\
 1893 \quad &= \underbrace{\begin{bmatrix} 2L_0 x_i^\top & 2L_0 y_i & f(L_0) x_i^\top & -L_0^2 & C(e_i^{(n)})^\top \\ 2L_1 x_i^\top & 2L_1 y_i & f(L_1) x_i^\top & -L_1^2 & C(e_i^{(n)})^\top \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 2L_P x_i^\top & 2L_P y_i & f(L_P) x_i^\top & -L_P^2 & C(e_i^{(n)})^\top \end{bmatrix}}_{(P+1) \times (2d+n+2)} \cdot \underbrace{\begin{bmatrix} w \\ -1 \\ 0_d \\ 1 \\ e_c^{(n)} \end{bmatrix}}_{(2d+n+2) \times 1} \quad (\text{By transpose of } T_i) \\
 1894 \quad &= \underbrace{\begin{bmatrix} 2L_0 x_i^\top w - 2L_0 y_i - L_0^2 + C\mathbb{1}_{i=c} \\ 2L_1 x_i^\top w - 2L_1 y_i - L_1^2 + C\mathbb{1}_{i=c} \\ \vdots \\ 2L_P x_i^\top w - 2L_P y_i - L_P^2 + C\mathbb{1}_{i=c} \end{bmatrix}}_{(P+1) \times 1}, \\
 1895 \quad &= \underbrace{\begin{bmatrix} u_0^{(i)} + C\mathbb{1}_{i=c} \\ u_1^{(i)} + C\mathbb{1}_{i=c} \\ \vdots \\ u_P^{(i)} + C\mathbb{1}_{i=c} \end{bmatrix}}_{(P+1) \times 1}
 \end{aligned}$$

1911 where $\mathbb{1}_{i=c}$ denotes the indicator function of $i = c$.
 1912

1913 For simplicity, let

$$1914 \quad u_j^{(i)} := 2L_j x_i^\top w - 2L_j y_i - L_j^2, \quad \text{for } j \in \{0, \dots, P\}, \quad (\text{D.16})$$

1915 such that

$$\begin{aligned}
 1916 \quad M_{i,c} &= \underbrace{\begin{bmatrix} u_0^{(i)} + C\mathbb{1}_{i=c} \\ u_1^{(i)} + C\mathbb{1}_{i=c} \\ \vdots \\ u_P^{(i)} + C\mathbb{1}_{i=c} \end{bmatrix}}_{(P+1) \times 1}.
 \end{aligned}$$

1923 This means that

$$\begin{aligned}
 1924 \quad &(\text{Softmax}_\beta((W_K \text{Linear}(Z))^\top W_Q \text{Linear}(Z)) \cdot W_O)_{:,c} \\
 1925 \quad &= \text{Softmax}(\beta \underbrace{\begin{bmatrix} M_{1,c} \\ M_{2,c} \\ \vdots \\ M_{n,c} \end{bmatrix}}_{n(P+1) \times 1}) \\
 1926 \quad &= \sum_{i=1}^n \sum_{j=0}^P \frac{\exp\{\beta(u_j^{(i)} + C\mathbb{1}_{i=c})\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\{\beta(u_{j'}^{(i')} + C\mathbb{1}_{i'=c})\}} \underbrace{e_{(i-1)(P+1)+(j+1)}^{(n(P+1))}}_{n(P+1) \times 1}. \\
 1927 \quad &\quad \quad \quad (\text{By the definition of Softmax}_\beta) \\
 1928 \quad &= \sum_{i=1}^n \sum_{j=0}^P \frac{\exp\{\beta(u_j^{(i)} + C\mathbb{1}_{i=c})\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\{\beta(u_{j'}^{(i')} + C\mathbb{1}_{i'=c})\}} \underbrace{e_{(i-1)(P+1)+(j+1)}^{(n(P+1))}}_{n(P+1) \times 1}.
 \end{aligned}$$

1937 Thus we have

$$\begin{aligned}
 1938 \quad &\text{Attn}_s \circ \text{Linear}(Z)_{:,c} \\
 1939 \quad &= W_V \text{Linear}(Z) \cdot (\text{Softmax}_\beta((W_K \text{Linear}(Z))^\top W_Q \text{Linear}(Z)) \cdot W_O)_{:,c} \\
 1940 \quad &= \underbrace{[F_1 \quad \cdots \quad F_n]}_{d \times n(P+1)} \cdot \sum_{i=1}^n \sum_{j=0}^P \frac{\exp\{\beta(u_j^{(i)} + C\mathbb{1}_{i=c})\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\{\beta(u_{j'}^{(i')} + C\mathbb{1}_{i'=c})\}} \underbrace{e_{(i-1)(P+1)+(j+1)}^{(n(P+1))}}_{n(P+1) \times 1}
 \end{aligned}$$

$$\begin{aligned}
&= \underbrace{[f(L_0)x_1 \cdots f(L_P)x_1 \cdots f(L_0)x_n \cdots f(L_P)x_n]}_{d \times n(P+1)} \cdot \quad (\text{By the definiton of } F_i) \\
&\quad \sum_{i=1}^n \sum_{j=0}^P \frac{\exp\left\{\beta(u_j^{(i)} + C\mathbb{1}_{i=c})\right\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\left\{\beta(u_{j'}^{(i')} + C\mathbb{1}_{i'=c})\right\}} \underbrace{e_{(i-1)(P+1)+(j+1)}^{(n(P+1))}}_{n(P+1) \times 1} \\
&= \sum_{i=1}^n \sum_{j=0}^P \frac{\exp\left\{\beta(u_j^{(i)} + C\mathbb{1}_{i=c})\right\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\left\{\beta(u_{j'}^{(i')} + C\mathbb{1}_{i'=c})\right\}} \\
&\quad \underbrace{[f(L_0)x_1 \cdots f(L_P)x_1 \cdots f(L_0)x_n \cdots f(L_P)x_n]}_{d \times n(P+1)} \cdot \underbrace{e_{(i-1)(P+1)+(j+1)}^{(n(P+1))}}_{n(P+1) \times 1} \\
&\quad \quad \quad (\text{By distributivity of matrix multiplication}) \\
&= \sum_{i=1}^n \sum_{j=0}^P \frac{\exp\left\{\beta(u_j^{(i)} + C\mathbb{1}_{i=c})\right\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\left\{\beta(u_{j'}^{(i')} + C\mathbb{1}_{i'=c})\right\}} f(L_j) \underbrace{x_i}_{d \times 1} \\
&\quad \quad \quad (\text{The one-hot vector retrieves the } ((i-1)(P+1) + (j+1))\text{-th column})
\end{aligned}$$

Again, our goal is to approximate $f(x_c^\top w - y_c)x_c$ with:

$$\text{Attn}_s \circ \text{Linear}(Z)_{:,c} = \sum_{i=1}^n \sum_{j=0}^P \frac{\exp\left\{\beta(u_j^{(i)} + C\mathbb{1}_{i=c})\right\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\left\{\beta(u_{j'}^{(i')} + C\mathbb{1}_{i'=c})\right\}} f(L_j) x_i. \quad (\text{D.17})$$

We start to analyze the summation of weights $\sum_{j=0}^P (\dots)$ for $i = c$ and $i \neq c$. We use the result of this analysis to bound our target approximation $\|\text{Attn}_s \circ \text{Linear}(Z)_{:,c} - f(x_c^\top w - y_c)x_c\|_\infty$ later.

- For every $i \in [n]$, if $i \neq c$, we have

$$\begin{aligned}
&\frac{\sum_{j=0}^P \exp\left\{\beta u_j^{(i)}\right\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\left\{\beta(u_{j'}^{(i')} + C\mathbb{1}_{i'=c})\right\}} \\
&< \frac{\sum_{j=0}^P \exp\left\{\beta u_j^{(i)}\right\}}{\sum_{j'=0}^P \exp\left\{\beta(u_{j'}^{(i')} + C)\right\}} \\
&\leq \epsilon_0,
\end{aligned} \quad (\text{D.18})$$

where (D.18) is by taking only the $i' = c$ term, and the last line is by the softmax-shift equality

$$\frac{\sum_{j=0}^P e^{u_j}}{\sum_{j'=0}^P e^{v_{j'}+C}} = \frac{\sum_{j=0}^P e^{u_j}}{e^C \sum_{j'=0}^P e^{v_{j'}}},$$

for any constant C and choosing $C := M - \frac{1}{\beta} \ln \epsilon_0 = (\max_j L_j) \cdot (2dB^2 + 2B) - \frac{1}{\beta} \ln \epsilon_0$ with $\epsilon_0 > 0$.³

³More explicitly, recall (D.16): $u_j^{(i)} := 2L_j x_i^\top w - 2L_j y_i - L_j^2$. Since $\max\{\|X\|_\infty, \|W\|_\infty\} \leq B$, we have

$$\|x_i\|_\infty \leq B, \quad |y_i| \leq B, \quad \|w\|_\infty \leq B,$$

which implies $\|w\|_1 \leq dB$. Let $L_* := \max_j |L_j|$. For a fixed pair of i, i' , we have

$$\begin{aligned}
u_j^{(i)} - u_j^{(i')} &= 2L_j \cdot ((x_i - x_{i'})^\top w - (y_i - y_{i'})) \\
&\leq 2|L_j| \cdot (|(x_i - x_{i'})^\top w| + |(y_i - y_{i'})|) \quad (\text{By triangle inequality}) \\
&\leq 2L_* \cdot (\|x_i - x_{i'}\|_\infty \cdot \|w\|_1 + |(y_i - y_{i'})|) \quad (\text{By } L_* := \max_j |L_j| \text{ and Hölder's inequality}) \\
&\leq 2L_* \cdot ((\|x_i\|_\infty + \|x_{i'}\|_\infty) \cdot \|w\|_1 + |y_i| + |y_{i'}|) \quad (\text{By triangle inequality}) \\
&\leq 2L_* \cdot ((2B) \cdot dB + 2B) \quad (\text{By } \|x_i\|_\infty \leq B, |y_i| \leq B \text{ and } \|w\|_1 \leq dB)
\end{aligned}$$

1998 Thus, the weight assigned to $i \neq c$ is tiny.
 1999

2000 • For $i = c$, we have

$$\begin{aligned}
 & \frac{\sum_{j=0}^P \exp\{\beta(u_j^{(c)} + C)\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\{\beta(u_{j'}^{(i')} + C\mathbf{1}_{i'=c})\}} \\
 &= 1 - \frac{\sum_{i \neq c}^n \sum_{j=0}^P \exp\{\beta(u_j^{(i)} + C\mathbf{1}_{i=c})\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\{\beta(u_{j'}^{(i')} + C\mathbf{1}_{i'=c})\}} \quad (\text{By } \sum_{i \neq c}^n \sum_{j=0}^P (\dots) + \sum_{i=c}^n \sum_{j=0}^P (\dots) = 1) \\
 &\geq 1 - (n-1)\epsilon_0,
 \end{aligned} \tag{D.21}$$

2009 where the last inequality follows from (i.e., (D.19))

$$\frac{\sum_{i \neq c}^n \sum_{j=0}^P \exp\{\beta(u_j^{(i)} + C\mathbf{1}_{i=c})\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\{\beta(u_{j'}^{(i')} + C\mathbf{1}_{i'=c})\}} \leq (n-1)\epsilon_0,$$

2014 and setting $0 < \epsilon_0 < 1/(n-1)$. Therefore, the weight concentrates at $i = c$.

2015

2016

2017 From (D.19), (D.21), and our target approximation

$$\begin{aligned}
 & \|\text{Attn}_s \circ \text{Linear}(Z)_{:,c} - f(x_c^\top w - y_c)x_c\|_\infty \\
 &= \left\| \sum_{i=1}^n \sum_{j=0}^P \frac{\exp\{\beta(u_j^{(i)} + C\mathbf{1}_{i=c})\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\{\beta(u_{j'}^{(i')} + C\mathbf{1}_{i'=c})\}} f(L_j)x_i - f(x_c^\top w - y_c)x_c \right\|_\infty,
 \end{aligned} \tag{D.22}$$

2023 we split (D.22) into two terms

$$\begin{aligned}
 & \left\| \sum_{i=1}^n \sum_{j=0}^P \frac{\exp\{\beta(u_j^{(i)} + C\mathbf{1}_{i=c})\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\{\beta(u_{j'}^{(i')} + C\mathbf{1}_{i'=c})\}} f(L_j)x_i - f(x_c^\top w - y_c)x_c \right\|_\infty \\
 &= \left\| \sum_{i \neq c}^n \sum_{j=0}^P \frac{\exp\{\beta(u_j^{(i)})\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\{\beta(u_{j'}^{(i')} + C\mathbf{1}_{i'=c})\}} f(L_j)x_i \right. \\
 &\quad \left. + \sum_{j=0}^P \frac{\exp\{\beta(u_j^{(i)} + C)\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\{\beta(u_{j'}^{(i')} + C\mathbf{1}_{i'=c})\}} f(L_j)x_i - f(x_c^\top w - y_c)x_c \right\|_\infty \\
 &\quad \quad \quad (\text{By splitting the summation over } i \text{ into two parts: } i = c \text{ and } i \neq c) \\
 &\leq \underbrace{\left\| \sum_{i \neq c}^n \sum_{j=0}^P \frac{\exp\{\beta(u_j^{(i)})\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\{\beta(u_{j'}^{(i')} + C\mathbf{1}_{i'=c})\}} f(L_j)x_i \right\|_\infty}_{(I)} \tag{D.23}
 \end{aligned}$$

$$\leq 2L_* \cdot (2dB^2 + 2B) =: M.$$

2044 Hence, we have $u_j^{(i)} \leq u_j^{(i')} + M$, which implies

$$e^{\beta u_j^{(i)}} \leq e^{\beta M} e^{\beta u_j^{(i')}}, \quad \text{for all } j \in \{0, \dots, P\}. \tag{D.20}$$

2047 Then, (D.18) becomes, for any constant C ,

$$\frac{\sum_{j=0}^P \exp\{\beta u_j^{(i)}\}}{\exp\{\beta C\} \sum_{j'=0}^P \exp\{\beta u_{j'}^{(i')}\}} \leq \frac{e^{\beta M} \sum_{j=0}^P \exp\{\beta u_j^{(i')}\}}{e^{\beta C} \sum_{j'=0}^P \exp\{\beta u_{j'}^{(i')}\}} = e^{\beta(M-C)}.$$

2051 Choosing $C := M - \frac{1}{\beta} \ln \epsilon_0 = (\max_j L_j) \cdot (2dB^2 + 2B) - \frac{1}{\beta} \ln \epsilon_0$, we obtain the desired bound ϵ_0 .

$$\begin{aligned}
& + \underbrace{\left\| \sum_{j=0}^P \frac{\exp\left\{\beta(u_j^{(i)} + C)\right\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\left\{\beta(u_{j'}^{(i')} + C \mathbf{1}_{i'=c})\right\}} f(L_j) x_i - f(x_c^\top w - y_c) x_c \right\|_\infty,}_{(II)} \\
& \quad \text{(By triangle inequality)}
\end{aligned}$$

where we are capable of bounding term (I) with (D.19) and term (II) as follows.

For term (I) in (D.23), we have

$$\begin{aligned}
& (I) \\
&= \left\| \sum_{i \neq c}^n \sum_{j=0}^P \frac{\exp\left\{\beta(u_j^{(i)})\right\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\left\{\beta(u_{j'}^{(i')}) + C\mathbf{1}_{i'=c}\right\}} f(L_j) x_i \right\|_\infty \\
&\leq \sum_{i \neq c}^n \sum_{j=0}^P \left\| \frac{\exp\left\{\beta(u_j^{(i)})\right\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\left\{\beta(u_{j'}^{(i')}) + C\mathbf{1}_{i'=c}\right\}} f(L_j) x_i \right\|_\infty \quad (\text{By triangle inequality}) \\
&= \sum_{i \neq c}^n \sum_{j=0}^P \frac{\exp\left\{\beta(u_j^{(i)})\right\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\left\{\beta(u_{j'}^{(i')}) + C\mathbf{1}_{i'=c}\right\}} \|f(L_j) x_i\|_\infty \quad (\text{By non-negativity of exponential}) \\
&= \sum_{i \neq c}^n \sum_{j=0}^P \frac{\exp\left\{\beta(u_j^{(i)})\right\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\left\{\beta(u_{j'}^{(i')}) + C\mathbf{1}_{i'=c}\right\}} |f(L_j)| \cdot \|x_i\|_\infty \\
&\quad \quad \quad (\text{By } \|f(L_j) x_i\|_\infty = |f(L_j)| \cdot \|x_i\|_\infty) \\
&\leq \frac{\sum_{i \neq c}^n \sum_{j=0}^P \exp\left\{\beta(u_j^{(i)})\right\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\left\{\beta(u_{j'}^{(i')}) + C\mathbf{1}_{i'=c}\right\}} B_f \cdot B \\
&\quad \quad \quad (\text{By } B_f := \max |f| \text{ and } \max\{\|X\|_\infty, \|W\|_\infty\} \leq B) \\
&\leq (n-1)\epsilon_0 B_f B, \quad (\text{By (D.19)})
\end{aligned}$$

where we define $B_f := \max |f|$ as the bound for f .

For term (II) in (D.23), we have

2085 (II)
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104

$$\begin{aligned}
&= \left\| \sum_{j=0}^P \frac{\exp\left\{\beta(u_j^{(c)} + C)\right\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\left\{\beta(u_{j'}^{(i')} + C \mathbf{1}_{i'=c})\right\}} f(L_j) \underbrace{x_c}_{d \times 1} - f(x_c^\top w - y_c) \underbrace{x_c}_{d \times 1} \right\|_\infty \\
&= \left\| \sum_{j=0}^P \frac{\exp\left\{\beta(u_j^{(c)} + C)\right\}}{\sum_{i'=1}^n \sum_{k=0}^P \exp\left\{\beta(u_k^{(i')} + C \mathbf{1}_{i'=c})\right\}} \cdot (f(L_j)x_c - f(x_c^\top w - y_c)x_c) \right. \\
&\quad \left. - \left(1 - \frac{\sum_{j'=0}^P \exp\left\{\beta(u_{j'}^{(c)} + C)\right\}}{\sum_{i'=1}^n \sum_{k=0}^P \exp\left\{\beta(u_k^{(i')} + C \mathbf{1}_{i'=c})\right\}}\right) \cdot f(x_c^\top w - y_c)x_c \right\|_\infty \\
&\quad \quad \quad \text{(By } \sum_j \frac{A_j}{C} B_j - D = \sum_j \frac{A_j}{C} (B_j - D) - \left(1 - \frac{\sum_{j'} A_{j'}}{C}\right) D \text{)} \\
&= \left\| \sum_{j=0}^P \frac{\exp\left\{\beta(u_j^{(c)} + C)\right\}}{\sum_{j'=0}^P \exp\left\{\beta(u_{j'}^{(c)} + C)\right\}} \cdot \frac{\sum_{j'=0}^P \exp\left\{\beta(u_{j'}^{(c)} + C)\right\}}{\sum_{i'=1}^n \sum_{k=0}^P \exp\left\{\beta(u_k^{(i')} + C \mathbf{1}_{i'=c})\right\}} \cdot (f(L_j)x_c - f(x_c^\top w - y_c)x_c) \right\|_\infty
\end{aligned}$$

$$\begin{aligned}
& - (1 - \frac{\sum_{j'=0}^P \exp\{\beta(u_{j'}^{(c)} + C)\}}{\sum_{i'=1}^n \sum_{k=0}^P \exp\{\beta(u_k^{(i')} + C \mathbf{1}_{i'=c})\}}) \cdot f(x_c^\top w - y_c) x_c \|_\infty \\
& \quad (\text{By } \sum_j \frac{A_j}{C} (B_j - D) - (1 - \frac{\sum_{j'} A_{j'}}{C}) D = \sum_j \frac{A_j}{E} (B_j - D) - (1 - \frac{\sum_{j'} A_{j'}}{C}) D) \\
& \leq \sum_{j=0}^P \frac{\exp\{\beta(u_j^{(c)} + C)\}}{\sum_{j'=0}^P \exp\{\beta(u_{j'}^{(c)} + C)\}} \cdot (f(L_j) - f(x_c^\top w - y_c)) x_c \\
& \quad - (1 - \frac{\sum_{j'=0}^P \exp\{\beta(u_{j'}^{(c)} + C)\}}{\sum_{i'=1}^n \sum_{k=0}^P \exp\{\beta(u_k^{(i')} + C \mathbf{1}_{i'=c})\}}) \cdot f(x_c^\top w - y_c) x_c \|_\infty \quad (\text{By } \frac{E}{C} < 1) \\
& \leq \sum_{j=0}^P \frac{\exp\{\beta(u_j^{(c)} + C)\}}{\sum_{j'=0}^P \exp\{\beta(u_{j'}^{(c)} + C)\}} \cdot |f(L_j) - f(x_c^\top w - y_c)| \cdot \|x_c\|_\infty \\
& \quad - (1 - \frac{\sum_{j'=0}^P \exp\{\beta(u_{j'}^{(c)} + C)\}}{\sum_{i'=1}^n \sum_{k=0}^P \exp\{\beta(u_k^{(i')} + C \mathbf{1}_{i'=c})\}}) \cdot |f(x_c^\top w - y_c)| \cdot \|x_c\|_\infty \\
& \quad (\text{By triangle inequality, and } \|av\|_\infty \leq |a| \cdot \|v\|_\infty \text{ where } a \in \mathbb{R} \text{ and } v \in \mathbb{R}^d) \\
& \leq \sum_{j=0}^P \frac{\exp\{\beta(u_j^{(c)} + C)\}}{\sum_{j'=0}^P \exp\{\beta(u_{j'}^{(c)} + C)\}} \cdot |f(L_j) - f(x_c^\top w - y_c)| \cdot \|x_c\|_\infty + (n-1)\epsilon_0 B_f \|x_c\|_\infty \\
& \quad (\text{By (D.21) and } B_f := \max |f|) \\
& = \sum_{j=0}^P \frac{\exp\{\beta u_j^{(c)}\}}{\sum_{j'=0}^P \exp\{\beta u_{j'}^{(c)}\}} \cdot |f(L_j) - f(x_c^\top w - y_c)| \cdot \|x_c\|_\infty + (n-1)\epsilon_0 B_f B \\
& \quad (\text{By } \exp\{\beta(u_j^{(c)} + C)\} = \exp\{\beta u_j^{(c)}\} \exp\{\beta C\} \text{ and } \max\{\|X\|_\infty, \|W\|_\infty\} \leq B) \\
& = \underbrace{\sum_{j=0}^P \frac{\exp\{-\beta(x_c^\top w - y_c - L_j)^2\}}{\sum_{j'=0}^P \exp\{-\beta(x_c^\top w - y_c - L_{j'})^2\}} \cdot |f(L_j) - f(x_c^\top w - y_c)| \cdot \|x_c\|_\infty}_{\text{:= (II-1)}} + \underbrace{(n-1)\epsilon_0 B_f B}_{\text{:= (II-2)}}, \\
& \quad (\text{D.24})
\end{aligned}$$

where the last equality follows from completing the square

$$u_j^{(c)} = 2L_j x_c^\top w - 2L_j y_c - L_j^2 = -(L_j - (x_c^\top w - y_c))^2 + (x_c^\top w - y_c)^2.$$

For term (II-1) in (D.24), we have

$$\begin{aligned}
& \text{(II-1)} \\
& = \sum_{j=0}^P \frac{\exp\{-\beta(x_c^\top w - y_c - L_j)^2\}}{\sum_{j'=0}^P \exp\{-\beta(x_c^\top w - y_c - L_{j'})^2\}} \cdot |f(L_j) - f(x_c^\top w - y_c)| \cdot \|x_c\|_\infty \\
& = \sum_{j:|L_j - (x_c^\top w - y_c)| \leq \Delta L}^P \frac{\exp\{-\beta(x_c^\top w - y_c - L_j)^2\}}{\sum_{j'=0}^P \exp\{-\beta(x_c^\top w - y_c - L_{j'})^2\}} \cdot |f(L_j) - f(x_c^\top w - y_c)| \cdot \|x_c\|_\infty \\
& \quad + \sum_{j:|L_j - (x_c^\top w - y_c)| > \Delta L}^P \frac{\exp\{-\beta(x_c^\top w - y_c - L_j)^2\}}{\sum_{j'=0}^P \exp\{-\beta(x_c^\top w - y_c - L_{j'})^2\}} \cdot |f(L_j) - f(x_c^\top w - y_c)| \cdot \|x_c\|_\infty,
\end{aligned} \quad (\text{D.25})$$

where we define $\Delta L := (L_{\max} - L_{\min})/P$ and divide the interpolation points into two groups with one group at least ΔL away from $x_c^\top w - y_c$, and the other within ΔL .

2160 For the first term in (D.25), we set ΔL to be sufficiently small (P large enough) such that,

$$2161 \quad |f(t) - f(t')| \leq \epsilon_1, \quad \forall \epsilon_1 > 0,$$

2162 when $|t - t'| \leq \Delta L$.

2163 For the second term in (D.25), we set β to be sufficiently large such that

$$2164 \quad \sum_{j:|L_j - (x_c^\top w - y_c)| > \Delta L} \frac{\exp\{-\beta(x_c^\top w - y_c - L_j)^2\}}{\sum_{j'=0}^P \exp\{-\beta(x_c^\top w - y_c - L_{j'})^2\}} \leq \epsilon_2, \quad (\text{D.26})$$

2165 for any $0 < \epsilon_2 < 1$.

2166 Thus, for term (II-1), we have

$$\begin{aligned} 2167 \quad & (II-1) \\ 2168 \quad &= \sum_{j:|L_j - (x_c^\top w - y_c)| \leq \Delta L} \frac{\exp\{-\beta(x_c^\top w - y_c - L_j)^2\}}{\sum_{j'=0}^P \exp\{-\beta(x_c^\top w - y_c - L_{j'})^2\}} \cdot |f(L_j) - f(x_c^\top w - y_c)| \cdot \|x_c\|_\infty \\ 2169 \quad &+ \sum_{j:|L_j - (x_c^\top w - y_c)| > \Delta L} \frac{\exp\{-\beta(x_c^\top w - y_c - L_j)^2\}}{\sum_{j'=0}^P \exp\{-\beta(x_c^\top w - y_c - L_{j'})^2\}} \cdot |f(L_j) - f(x_c^\top w - y_c)| \cdot \|x_c\|_\infty \\ 2170 \quad &\leq \sum_{j:|L_j - (x_c^\top w - y_c)| \leq \Delta L} \frac{\exp\{-\beta(x_c^\top w - y_c - L_j)^2\}}{\sum_{j'=0}^P \exp\{-\beta(x_c^\top w - y_c - L_{j'})^2\}} \cdot \epsilon_1 \cdot B \\ 2171 \quad &+ \sum_{j:|L_j - (x_c^\top w - y_c)| > \Delta L} \frac{\exp\{-\beta(x_c^\top w - y_c - L_j)^2\}}{\sum_{j'=0}^P \exp\{-\beta(x_c^\top w - y_c - L_{j'})^2\}} \cdot (|f(L_j)| + |f(x_c^\top w - y_c)|) \cdot B \\ 2172 \quad &\quad (\text{By } |f(L_j) - f(x_c^\top w - y_c)| < \epsilon_1, \max\{\|X\|_\infty, \|W\|_\infty\} \leq B, \text{ and triangle inequality}) \\ 2173 \quad &\leq \sum_{j:|L_j - (x_c^\top w - y_c)| \leq \Delta L} \frac{\exp\{-\beta(x_c^\top w - y_c - L_j)^2\}}{\sum_{j'=0}^P \exp\{-\beta(x_c^\top w - y_c - L_{j'})^2\}} \cdot \epsilon_1 \cdot B \\ 2174 \quad &+ \sum_{j:|L_j - (x_c^\top w - y_c)| > \Delta L} \frac{\exp\{-\beta(x_c^\top w - y_c - L_j)^2\}}{\sum_{j'=0}^P \exp\{-\beta(x_c^\top w - y_c - L_{j'})^2\}} \cdot 2B_f \cdot B \quad (\text{By } B_f := \max|f|) \\ 2175 \quad &\leq \underbrace{\sum_{j:|L_j - (x_c^\top w - y_c)| \leq \Delta L} \frac{\exp\{-\beta(x_c^\top w - y_c - L_j)^2\}}{\sum_{j'=0}^P \exp\{-\beta(x_c^\top w - y_c - L_{j'})^2\}}}_{:=\kappa} \cdot \epsilon_1 \cdot B + \epsilon_2 \cdot 2B_f \cdot B \quad (\text{By (D.26)}) \\ 2176 \quad &\leq \epsilon_1 \cdot B + \epsilon_2 \cdot 2B_f \cdot B. \quad (\text{By } \kappa < 1) \end{aligned}$$

2177 Combining (I), (II-1), and (II-2), we have:

$$2178 \quad \|\text{Attn}_s \circ \text{Linear}(Z)_{:,c} - f(x_c^\top w - y_c)x_c\|_\infty \leq \underbrace{(n-1)\epsilon_0 B_f B}_{\text{from (I)}} + \underbrace{\epsilon_1 B + 2\epsilon_2 B_f B}_{\text{from (II-1)}} + \underbrace{(n-1)\epsilon_0 B_f B}_{\text{from (II-2)}}.$$

2179 Since ϵ_0 , ϵ_1 and ϵ_2 are arbitrarily small, we have

$$2180 \quad \|\text{Attn}_s \circ \text{Linear}(Z)_{:,c} - f(x_c^\top w - y_c)x_c\|_\infty \leq \epsilon,$$

2181 for any $\epsilon > 0$.

2182 This completes the proof. \square

2183 D.2 PROOF OF COROLLARY 3.1.2

2184 **Corollary D.2.1** (In-Context Emulation of a Single GD Step; Corollary 3.1.2 Restate). Let $\ell : \mathbb{R} \rightarrow \mathbb{R}$ be differentiable and define $\widehat{L}_n(w) := \frac{1}{n} \sum_{i=1}^n \ell(w^\top x_i - y_i)$. For any step size $\eta > 0$ and any $\epsilon > 0$, there exist a single-head attention Attn_s and a linear map Linear such that, with $Z = [X; W]$ as in (3.1), choosing the readout $u := \frac{1}{n} \mathbf{1}_n$ (equivalently, right-multiply by $W_O = u$ in Definition 2.1),

2214 we have

2215
2216 $\hat{w}_{\text{GD}} := (\text{Attn}_s \circ \text{Linear}(Z))u \in \mathbb{R}^d \quad \text{and} \quad \|\hat{w}_{\text{GD}} - \underbrace{(w - \eta \nabla \hat{L}_n(w))}_{w_{\text{GD}}^+}\|_{\infty} \leq \epsilon.$
2217
2218

2219
2220 *Proof.* From [Corollary 3.1.1](#), we derive that $\|(\text{Attn}_s \circ \text{Linear})_i - \nabla \ell(w^T x_i - y_i)x_i\|_{\infty} \leq \epsilon$ for all
2221 $i \in [n]$.

2222 Therefore,

2223
2224
$$\begin{aligned} \hat{w} &= w + \frac{1}{n} \sum_{j=1}^n (\text{Attn}_s \circ \text{Linear})_j \\ &= w - \frac{\eta}{n} \sum_{j=1}^n \nabla \ell(w^T x_j - y_j)x_j + \epsilon' \\ &= w - \eta \nabla \hat{L}_n(w) + \epsilon' \\ &= w_{\text{GD}} + \epsilon' \end{aligned}$$

2225
2226
2227
2228
2229
2230
2231
2232

2233 This completes the proof. \square 2234
2235 D.3 PROOF OF [COROLLARY 3.1.3](#)2236
2237 **Theorem D.3** (In-Context Emulation of Linear Regression; [Corollary 3.1.3](#) Restate). For any dataset
2238 $\{(x_i, y_i)\}_{i=1}^n$ with $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$ and any $\epsilon > 0$, there exist a single-head attention Attn_s , a linear
2239 map Linear , and a readout $u \in \mathbb{R}^n$ such that, with $Z = [X; W]$ as in [\(3.1\)](#) (for any fixed bounded
2240 w),

2241
2242 $\hat{w}_{\text{linear}} := (\text{Attn}_s \circ \text{Linear}(Z))u \in \mathbb{R}^d, \quad \text{and} \quad \|\hat{w}_{\text{linear}} - w_{\text{linear}}\|_{\infty} \leq \epsilon,$

2243 where $w_{\text{linear}} := \operatorname{argmin}_{w \in \mathbb{R}^d} \frac{1}{2n} \sum_{i=1}^n (\langle w, x_i \rangle - y_i)^2$.2244
2245
2246 *Proof.* From [Corollary 3.1.2](#), we know that $\|\hat{w}^l - w_{\text{GD}}^l\|_{\infty} \leq \epsilon/2$ for all $l \in [L]$. Note that
2247 $\frac{1}{2n} \sum_{i=1}^n (\langle w, x_i \rangle - y_i)^2$ is convex and smooth which satisfies the precondition for [Corollary D.1.1](#).
2248 Therefore, from [Corollary D.1.1](#), using $\|\cdot\|_{\infty} \leq \|\cdot\|_2$, we derive that $\|w_{\text{GD}}^l - w_{\text{linear}}^l\|_{\infty} \leq \epsilon/2$.
2249 Thus, $\|\text{Attn} - w_{\text{linear}}\|_{\infty} \leq \|\hat{w}^l - w_{\text{GD}}^l\|_{\infty} + \|w_{\text{GD}}^l - w_{\text{linear}}^l\|_{\infty} \leq \epsilon$ by triangle inequality. This
2250 completes the proof. \square 2251
2252 D.4 PROOF OF [COROLLARY 3.1.4](#)2253
2254 **Theorem D.4** (Restate of [Corollary 3.1.4](#): In-Context Emulation of Ridge Regression). For any
2255 input-output pair (x_i, y_i) , where $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$, $i \in [n]$, and any $\epsilon > 0$, there exists a single-layer
2256 Attention network with linear connection Attn such that

2257
2258 $\|\text{Attn} - w_{\text{ridge}}\|_{\infty} \leq \epsilon,$

2259 where $w_{\text{ridge}} := \operatorname{argmin}_{w \in \mathbb{R}^d} \frac{1}{2n} \sum_{i=1}^n (\langle w, x_i \rangle - y_i)^2 + \frac{\lambda}{2} \|w\|_2^2$ with regularization term $\lambda \geq 0$.2260
2261
2262
2263 *Proof.* From [Corollary 3.1.2](#), we know that $\|\hat{w}^l - w_{\text{GD}}^l\|_{\infty} \leq \epsilon/2$ for all $l \in [L]$. Note
2264 that $\frac{1}{2n} \sum_{i=1}^n (\langle w, x_i \rangle - y_i)^2 + \frac{\lambda}{2} \|w\|_2^2$ is convex and smooth which satisfies the precondition
2265 for [Corollary D.1.1](#). Therefore, from [Corollary D.1.1](#), using $\|\cdot\|_{\infty} \leq \|\cdot\|_2$, we derive that
2266 $\|w_{\text{GD}}^l - w_{\text{ridge}}^l\|_{\infty} \leq \epsilon/2$. Thus, $\|\text{Attn} - w_{\text{ridge}}\|_{\infty} \leq \|\hat{w}^l - w_{\text{GD}}^l\|_{\infty} + \|w_{\text{GD}}^l - w_{\text{ridge}}^l\|_{\infty} \leq \epsilon$ by
2267 triangle inequality. This completes the proof. \square

2268 D.5 PROOF OF THEOREM 4.1
2269

2270 **Theorem D.5** (In-Context Emulation of Attention; [Theorem 4.1 Restate](#)). Let $X \in \mathbb{R}^{d \times n}$ be an
2271 input sequence, and let $W_K, W_Q, W_V \in \mathbb{R}^{d_h \times d}$ be the weight matrices of the target attention head we
2272 wish to emulate in-context. [Assume](#) $\|W_K X\|_\infty, \|W_Q X\|_\infty, \|W_V X\|_\infty \leq B_{KQV}$ with $B_{KQV} > 0$.
2273 Then, for any $\epsilon > 0$, there exists a two-layer attention network — a multi-head attention layer Attn_m
2274 followed by a single-head attention layer Attn_s — such that

$$2275 \quad \| \underbrace{\text{Attn}_s \circ \text{Attn}_m(X_p)}_{\text{Emulator}} - \underbrace{W_V X \text{Softmax}_\beta((W_K X)^\top W_Q X)}_{\text{Target}} \|_\infty \leq \epsilon,$$

$$2276$$

$$2277$$

2278 where X_p is the prompt defined in [Definition 4.2](#).

2280 *Proof.* We state our high-level proof sketch first.

2281 **Step 1: In-Context Weight Encoding.** We define

$$2284 \quad \underbrace{K}_{d_h \times n} := \underbrace{W_K}_{d_h \times d} \cdot \underbrace{X}_{d \times n}, \quad \underbrace{Q}_{d_h \times n} := \underbrace{W_Q}_{d_h \times d} \cdot \underbrace{X}_{d \times n}, \quad \underbrace{V}_{d_h \times n} := \underbrace{W_V}_{d_h \times d} \cdot \underbrace{X}_{d \times n}.$$

$$2285$$

$$2286$$

2287 We aim to approximate the attention mechanism $V \text{Softmax}_\beta(K^\top Q)$ using a two-layer transformer
2288 $\text{Attn}_s \circ \text{Attn}_m$. Therefore, the transformer $\text{Attn}_s \circ \text{Attn}_m$ must have in-context access to the
2289 information about W_K, W_Q and W_V . This is equivalent to exposing the transformer $\text{Attn}_s \circ \text{Attn}_m$
2290 to the target algorithm’s specification.

2291 To that end, we augment the input sequence X with two auxiliary blocks:

- 2293 1. The weight encoding W_{in} of the target algorithm. W_{in} contains the vectorization of the target
2294 weights W_K, W_Q and W_V .
- 2295 2. A positional encoding I_n . I_n exposes token indices.

2297 Concretely, following [Definition 4.2](#), we form

$$2298 \quad X_p = \underbrace{\begin{bmatrix} X \\ W_{\text{in}} \\ I_n \end{bmatrix}}_{(d+6dd_h+n) \times n} \quad \text{with} \quad W_{\text{in}} = \underbrace{\begin{bmatrix} 0 \cdot w & 1 \cdot w & 2 \cdot w & \cdots & (n-1) \cdot w \\ w & w & w & \cdots & w \end{bmatrix}}_{6dd_h \times n},$$

$$2299$$

$$2300$$

$$2301$$

$$2302$$

2303 and

$$2304 \quad w = \underbrace{\begin{bmatrix} W_K \\ W_Q \\ W_V \end{bmatrix}}_{3dd_h \times 1}.$$

$$2305$$

$$2306$$

$$2307$$

$$2308$$

2309 **Step 2: Multi-Head Decomposition for In-Context Recovery of K, Q, V .** In this step, we use
2310 the multi-head layer Attn_m to build approximators of K, Q , and V from the prompt X_p . We denote
2311 these approximators by K', Q' , and V' , corresponding to K, Q , and V .

2312 Explicitly, we have

$$2314 \quad \underbrace{\text{Attn}_m(X_p)}_{3d_h \times n} - \underbrace{\begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix}}_{3d_h \times n} \|_\infty \leq \epsilon_0.$$

$$2315$$

$$2316$$

$$2317$$

$$2318$$

$$2319$$

2320 Intuitively, this works as: X_p contains the raw input X and the weight encodings of W_K, W_Q and
2321 W_V . Then Attn_m “reads” X and the target weight parameters from X_p within its attention heads to
form the desired approximation.

2322 **Step 3: Single-Head Assembly for Emulated Map.** We use the single-head layer Attn_s to perform
 2323 the attention computation. From K', Q', V' , Attn_s produces
 2324

$$2325 \quad V' \text{Softmax}_\beta((K')^\top Q').$$

2326 For reference, the target computation is $V \text{Softmax}_\beta((K)^\top Q)$. This step aligns the output of Attn_s
 2327 with the target attention, using the approximated K', Q', V' as inputs.
 2328

2329 **Step 4: Error Bound.** Finally, we bound the gap between the computed and target attention:
 2330

$$2331 \quad \|V' \text{Softmax}_\beta((K')^\top Q') - V \text{Softmax}_\beta((K)^\top Q)\|_\infty \leq \epsilon_0 + n B_{KQV} \epsilon_1.$$

2332 Our proof starts here.
 2333

2334 **Step 1: In-Context Weight Encoding.** For clarity and simplicity, we define
 2335

$$k_i := (W_K^\top)_{:,i} \in \mathbb{R}^d, \quad (\text{D.27})$$

$$q_i := (W_Q^\top)_{:,i} \in \mathbb{R}^d, \quad (\text{D.28})$$

$$v_i := (W_V^\top)_{:,i} \in \mathbb{R}^d, \quad (\text{D.29})$$

2339 such that the vectorized weight matrices $\underline{W}_K, \underline{W}_Q, \underline{W}_V$ in [Definition 4.2](#) become
 2340

$$2341 \quad \underline{W}_K = \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_{d_h} \end{bmatrix} \in \mathbb{R}^{d d_h}, \quad \underline{W}_Q = \begin{bmatrix} q_1 \\ q_2 \\ \vdots \\ q_{d_h} \end{bmatrix} \in \mathbb{R}^{d d_h}, \quad \underline{W}_V = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_{d_h} \end{bmatrix} \in \mathbb{R}^{d d_h},$$

2345 and w becomes
 2346

$$2347 \quad w = \begin{bmatrix} \underline{W}_K \\ \underline{W}_Q \\ \underline{W}_V \end{bmatrix} = \begin{bmatrix} k_1 \\ \vdots \\ k_{d_h} \\ q_1 \\ \vdots \\ q_{d_h} \\ v_1 \\ \vdots \\ v_{d_h} \end{bmatrix}.$$

2348 W_{in} remains as
 2349

$$2350 \quad W_{\text{in}} := \begin{bmatrix} 0 \cdot w & 1 \cdot w & 2 \cdot w & \cdots & (n-1) \cdot w \\ w & w & w & \cdots & w \end{bmatrix} \in \mathbb{R}^{6 d d_h \times n}.$$

2351 Then, for the input X , we append it with the target weights W_{in} and the positional encoding I_n as in
 2352 [Definition 4.2](#). We denote this result with X_p and write it out as
 2353

$$2354 \quad X_p := \underbrace{\begin{bmatrix} X \\ W_{\text{in}} \\ I_n \end{bmatrix}}_{(d+6 d d_h+n) \times n}. \quad (\text{D.30})$$

2355 **Step 2: Multi-Head Decomposition for In-Context Recovery of K, Q, V .** In this part, we
 2356 construct approximators for K, Q and V via Attn_m . We construct the approximators by approximating
 2357 each row of K, Q, V and then aggregating the results across rows. Each row in K, Q and V has the
 2358 form: $k_i^\top X, q_i^\top X$, and $v_i^\top X$. To approximate these rows in K, Q, V , we apply [Theorem D.1](#) to each
 2359 row separately. Namely, we allocate an H -head attention to each row of K, Q and V to carry out
 2360 the row-wise approximations. Since $K, Q, V \in \mathbb{R}^{d_h \times n}$, each of K, Q, V uses $H \cdot d_h$ heads. We
 2361 interpret H as the number of heads per row dimension, since each K, Q , and V has d_h rows. Finally,
 2362 we define a multi-head attention Attn_m as the union of these three groups of $H d_h$ heads. Therefore,
 2363 Attn_m has $3 H d_h$ heads in total.
 2364

2376 We label the $3Hd_h$ heads in Attn_m as:

2377 $\text{Attn}_{j,\tilde{h}}^K, \quad j \in [d_h], \quad \tilde{h} \in \{J+1, \dots, J+H\}; \quad (\text{Approximates } K)$

2379 $\text{Attn}_{j,\tilde{h}}^Q, \quad j \in [2d_h] \setminus [d_h], \quad \tilde{h} \in \{J+1, \dots, J+H\}; \quad (\text{Approximates } Q)$

2381 $\text{Attn}_{j,\tilde{h}}^V, \quad j \in [3d_h] \setminus [2d_h], \quad \tilde{h} \in \{J+1, \dots, J+H\}, \quad (\text{Approximates } V)$

2383 where we define $J := (j-1)H$ to simplify our notation. Each $\text{Attn}_{j,\tilde{h}}^K$, $\text{Attn}_{j,\tilde{h}}^Q$, and $\text{Attn}_{j,\tilde{h}}^V$ is
 2384 a single-head attention. Index j identifies the target row, and index \tilde{h} identifies the head allocated
 2385 to that row. Here $j \in [2d_h] \setminus [d_h]$ denotes the set difference. That is, $j \in [2d_h] \setminus [d_h]$ means
 2386 $j \in \{d_h+1, \dots, 2d_h\}$.

2387 Thus, Attn_m consists of three groups of attention heads:

2389
$$\text{Attn}_m := \underbrace{\sum_{j=1}^{d_h} \sum_{\tilde{h}=J+1}^{J+H} \text{Attn}_{j,\tilde{h}}^K}_{\text{Approximates } K} + \underbrace{\sum_{j=d_h+1}^{2d_h} \sum_{\tilde{h}=J+1}^{J+H} \text{Attn}_{j,\tilde{h}}^Q}_{\text{Approximates } Q} + \underbrace{\sum_{j=2d_h+1}^{3d_h} \sum_{\tilde{h}=J+1}^{J+H} \text{Attn}_{j,\tilde{h}}^V}_{\text{Approximates } V},$$

2394 In the subsequent proof, we provide the constructions of $\text{Attn}_{j,\tilde{h}}^K$, $\text{Attn}_{j,\tilde{h}}^Q$, $\text{Attn}_{j,\tilde{h}}^V$ from [Theorem D.1](#).

2396 To apply [Theorem D.1](#) to construct heads in Attn_m , let a and b denote the minimum and maximum
 2397 of the inner products $k_i^\top x_m$, $q_i^\top x_m$, and $v_i^\top x_m$, over all $i \in [d_h]$ and $m \in [n]$:

2399
$$a \leq \min\{k_i^\top x_m, q_i^\top x_m, v_i^\top x_m\} \quad \text{and} \quad \max\{k_i^\top x_m, q_i^\top x_m, v_i^\top x_m\} \leq b.$$

2400 Next, we choose

2402
$$H := \lceil \frac{2(b-a)}{(n-2)\epsilon_0} \rceil,$$

2404 such that the interpolation error in [Theorem D.1](#) is at most $\frac{\epsilon_0}{2}$ for any $\epsilon_0 > 0$.

2405 Third, [Theorem D.1](#) requires a single map $A : \mathbb{R}^{d \times n} \rightarrow \mathbb{R}^{(3d+n) \times n}$ shared across all H heads. In our
 2406 construction, we realize this augmentation by prepending each head of Attn^H in [Theorem D.1](#) with a
 2407 head-specific linear map $A_{\tilde{h}} : \mathbb{R}^{(d+6dd_h+n) \times n} \rightarrow \mathbb{R}^{(3d+n) \times n}$. The map $A_{\tilde{h}}$ maps the input X_p to the
 2408 desired dimension and picks out the target k_i , q_i or v_i (this is equivalent to the w_s in [Theorem D.1](#).)
 2409 to let Attn^H perform the desired linear transformation $k_i^\top X$, $v_i^\top X$ or $q_i^\top X$. Here \tilde{h} still identifies
 2410 the single head assigned to a specific row. By [Lemma D.3](#), $\text{Attn}^H \circ A_{\tilde{h}}$ remains an H -head attention.
 2411 Therefore, we use $\text{Attn}^H \circ A_{\tilde{h}}$ to build the heads in Attn_m .

2413 We construct $A_{\tilde{h}}$ as

2415
$$A_{\tilde{h}} := \underbrace{\begin{bmatrix} I_d & 0_{d \times 3dd_h} & 0_{d \times 3dd_h} & 0_{d \times n} \\ 0_{d \times d} & E_{\tilde{h}} & 0_{d \times 3dd_h} & 0_{d \times n} \\ 0_{d \times d} & E_{\tilde{h}} & K_{\tilde{h}} E_{\tilde{h}} & 0_{d \times n} \\ 0_{n \times d} & 0_{n \times 3dd_h} & 0_{n \times 3dd_h} & I_n \end{bmatrix}}_{(3d+n) \times (d+6dd_h+n)},$$

2420 where

2421
$$E_{\tilde{h}} := \underbrace{\begin{bmatrix} 0_{d \times (d[\tilde{h}/H])} & I_d & 0_{d \times (3dd_h - d[\tilde{h}/H] - d)} \end{bmatrix}}_{d \times 3dd_h},$$

2424
$$K_{\tilde{h}} := [(\tilde{h}\%H - 1)(n-2) - 1].$$

2425 Here $\tilde{h}\%H$ denotes the remainder of dividing \tilde{h} by H . We define $\%$ such that instead of the common
 2426 $(kH)\%H = 0$,

2428
$$kH\%H = H, \quad \text{for all } k \in \mathbb{N}^+.$$

2429

2430 Applying \tilde{A}_h to X_p yields
 2431

$$\begin{aligned}
& A_{\tilde{h}} \cdot X_p := \underbrace{\begin{bmatrix} I_d & 0_{d \times 3dd_h} & 0_{d \times 3dd_h} & 0_{d \times n} \\ 0_{d \times d} & E_{\tilde{h}} & 0_{d \times 3dd_h} & 0_{d \times n} \\ 0_{d \times d} & E_{\tilde{h}} & K_{\tilde{h}} E_{\tilde{h}} & 0_{d \times n} \\ 0_{n \times d} & 0_{n \times 3dd_h} & 0_{n \times 3dd_h} & I_n \end{bmatrix}}_{(3d+n) \times (d+6dd_h+n)} \cdot \underbrace{\begin{bmatrix} X \\ W_{\text{in}} \\ I_n \end{bmatrix}}_{(d+6dd_h+n) \times n} \quad (\text{By the definition of } A_{\tilde{h}} \text{ and } X_p) \\
& = \underbrace{\begin{bmatrix} X \\ [E_{\tilde{h}} \ 0_{d \times 3dd_h}] \cdot W_{\text{in}} \\ [E_{\tilde{h}} \ K_{\tilde{h}} E_{\tilde{h}}] \cdot W_{\text{in}} \\ I_n \end{bmatrix}}_{(3d+n) \times n},
\end{aligned}$$

2442 where $\begin{bmatrix} E_{\tilde{h}} & 0_{d \times 3d\tilde{h}} \end{bmatrix} W_{\text{in}}$ expands as

$$\begin{aligned}
2444 \quad & \begin{bmatrix} E_{\tilde{h}} & 0_{d \times 3dd_h} \end{bmatrix} W_{\text{in}} \\
2445 \quad & = \underbrace{\begin{bmatrix} E_{\tilde{h}} & 0_{d \times 3dd_h} \end{bmatrix}}_{d \times 6dd_h} \underbrace{\begin{bmatrix} 0 \cdot w & 1 \cdot w & 2 \cdot w & \cdots & (n-1) \cdot w \\ w & w & w & \cdots & w \end{bmatrix}}_{6dd_h \times n} \\
2446 \quad & = \underbrace{E_{\tilde{h}}}_{d \times 3dd_h} \cdot \underbrace{\begin{bmatrix} 0 \cdot w & 1 \cdot w & 2 \cdot w & \cdots & (n-1) \cdot w \end{bmatrix}}_{3dd_h \times n} + \underbrace{\begin{bmatrix} 0_{d \times 3dd_h} \end{bmatrix}}_{3dd_h \times n} \underbrace{\begin{bmatrix} w & w & w & \cdots & w \end{bmatrix}}_{3dd_h \times n} \\
2447 \quad & = \underbrace{\begin{bmatrix} 0 \cdot E_{\tilde{h}}w & 1 \cdot E_{\tilde{h}}w & 2 \cdot E_{\tilde{h}}w & \cdots & (n-1) \cdot E_{\tilde{h}}w \end{bmatrix}}_{d \times n}, \\
2448 \quad & \\
2449 \quad & \\
2450 \quad & \\
2451 \quad & \\
2452 \quad & \\
2453 \quad &
\end{aligned}$$

2454 and

$$\begin{aligned}
& E_{\tilde{h}} w = \underbrace{\begin{bmatrix} 0_{d \times (d \lceil \tilde{h}/H \rceil - d)} & I_d & 0_{d \times (3dd_h - (d \lceil \tilde{h}/H \rceil - d) - d)} \end{bmatrix}}_{d \times 3dd_h} \begin{bmatrix} k_1 \\ \vdots \\ k_{d_h} \\ q_1 \\ \vdots \\ q_{d_h} \\ v_1 \\ \vdots \\ v_{d_h} \end{bmatrix}_{3dd_h \times 1} \quad (\text{By the definition of } E_{\tilde{h}} \text{ and } w) \\
& = \begin{cases} k_{\lceil \tilde{h}/H \rceil}, & 1 \leq \tilde{h} \leq Hd_h \\ q_{\lceil \tilde{h}/H \rceil - d_h}, & Hd_h < \tilde{h} \leq 2Hd_h \\ v_{\lceil \tilde{h}/H \rceil - 2d_h}, & 2Hd_h < \tilde{h} \leq 3Hd_h \end{cases} . \quad (\text{D.31})
\end{aligned}$$

The equality (D.31) holds since $E_{\tilde{h}}$ selects the $[\tilde{h}/H]$ -th block in w .

Similarly, $[E_{\tilde{i}} \quad K_{\tilde{i}} E_{\tilde{i}}] \cdot W_{\text{in}}$ expands as

$$\begin{aligned}
& \underbrace{[E_{\tilde{h}} \quad K_{\tilde{h}} E_{\tilde{h}}]}_{d \times 6dd_{\tilde{h}}} W_{\text{in}} \\
&= \underbrace{[E_{\tilde{h}} \quad K_{\tilde{h}} E_{\tilde{h}}]}_{d \times 6dd_{\tilde{h}}} \underbrace{\begin{bmatrix} 0 \cdot w & 1 \cdot w & 2 \cdot w & \cdots & (n-1) \cdot w \\ w & w & w & \cdots & w \end{bmatrix}}_{6dd_{\tilde{h}} \times n} \quad (\text{By the definition of } W_{\text{in}}) \\
&= \underbrace{E_{\tilde{h}}}_{d \times 3dd_{\tilde{h}}} \cdot \underbrace{[0 \cdot w \quad 1 \cdot w \quad 2 \cdot w \quad \cdots \quad (n-1) \cdot w]}_{3dd_{\tilde{h}} \times n} + \underbrace{K_{\tilde{h}} E_{\tilde{h}}}_{d \times 3dd_{\tilde{h}}} \underbrace{[w \quad w \quad w \quad \cdots \quad w]}_{3dd_{\tilde{h}} \times n} \\
& \quad (\text{By } [A \quad B] \begin{bmatrix} C \\ D \end{bmatrix} = AB + CD)
\end{aligned}$$

$$= \underbrace{[K_{\tilde{h}} E_{\tilde{h}} w \quad (K_{\tilde{h}} + 1) E_{\tilde{h}} w \quad \cdots \quad (K_{\tilde{h}} + n - 1) E_{\tilde{h}} w]}_{d \times n},$$

Up to here, we are capable of selecting a target k_i, q_i or v_i , and we start to build our heads in Attn_m .

When $1 \leq \tilde{h} \leq Hd_h$, we compute $A_{\tilde{h}} \cdot X_p$ as

$$A_{\tilde{h}} \cdot X_p = \underbrace{\begin{bmatrix} 0 \cdot k_{\lceil \tilde{h}/H \rceil} & 1 \cdot k_{\lceil \tilde{h}/H \rceil} & \cdots & (n-1) \cdot k_{\lceil \tilde{h}/H \rceil} \\ k_{\lceil \tilde{h}/H \rceil} & k_{\lceil \tilde{h}/H \rceil} & \cdots & k_{\lceil \tilde{h}/H \rceil} \\ & & I_n & \\ \end{bmatrix}}_{(3d+n) \times n}.$$

This means every \tilde{h} in $\{J+1, \dots, J+H\}$ with $j \in [d_h]$ has the same $A_{\tilde{h}} \cdot X_p$:

$$\underbrace{\begin{bmatrix} 0 \cdot k_j & 1 \cdot k_j & \cdots & (n-1) \cdot k_j \\ k_j & k_j & \cdots & k_j \\ & & I_n & \\ \end{bmatrix}}_{(3d+n) \times n}$$

For each $j \in [d_h]$, by [Theorem D.1](#), there exists an H -head attention $\text{Attn}'_j : \mathbb{R}^{(3d+n) \times n} \rightarrow \mathbb{R}^{3d_h \times n}$, such that the output satisfies

$$\|\underbrace{\text{Attn}'_j(\overbrace{A_{\tilde{h}} \cdot X_p}^{3d_h \times 1})}_{(3d+n) \times n} - (k_j^\top x_i) \underbrace{e_j^{(3d_h)}}_{3d_h \times 1}\|_\infty \leq \epsilon_0, \quad (\text{D.32})$$

for every $i \in [n]$ and any $\epsilon_0 > 0$.

From [\(D.32\)](#), we have

$$\|\underbrace{\text{Attn}'_j(\overbrace{A_{\tilde{h}} \cdot X_p}^{3d_h \times n})}_{(3d+n) \times n} - \underbrace{e_j^{(3d_h)} k_j^\top X}_{3d_h \times n}\|_\infty \leq \epsilon_0,$$

where

$$e_j^{(3d_h)} k_j^\top X = \underbrace{[(k_j^\top x_1) e_j^{(3d_h)} \quad (k_j^\top x_2) e_j^{(3d_h)} \quad \cdots \quad (k_j^\top x_n) e_j^{(3d_h)}]}_{3d_h \times n}.$$

We use $\text{Attn}'_j^{(s)}$ to label the heads in Attn'_j , and we define $\text{Attn}_{j, \tilde{h}}^K(Z)$ to be

$$\text{Attn}_{j, \tilde{h}}^K(Z) := \text{Attn}'_j^{(\tilde{h})}(A_{\tilde{h}} \cdot Z), \quad (Z \in \mathbb{R}^{(d+6dd_h+n) \times n} \text{ denotes any input})$$

where $j \in [d_h]$ and $\tilde{h} \in \{J+1, \dots, J+H\}$.

By [Lemma D.3](#), $\text{Attn}_{j, \tilde{h}}^K(Z)$ is still an attention.

Thus

$$\text{Attn}_j^K(Z) := \sum_{\tilde{h}=J+1}^{J+H} \text{Attn}_{j, \tilde{h}}^K(Z),$$

is also an attention.

Thus, we have

$$\|\underbrace{\text{Attn}_j^K(X_p)}_{3d_h \times n} - \underbrace{e_j^{(3d_h)} k_j^\top X}_{3d_h \times n}\|_\infty \leq \epsilon_0.$$

2538 This means that

$$2539 \quad \left\| \underbrace{\sum_{j=1}^{d_h} \text{Attn}_j^K(X_p)}_{3d_h \times n} - \underbrace{\begin{bmatrix} K \\ 0_{d_h \times n} \\ 0_{d_h \times n} \end{bmatrix}}_{3d_h \times n} \right\|_{\infty} \leq \epsilon_0. \quad (D.33)$$

2544 Similarly for Q , by (D.31), when $Hd_h < \tilde{h} \leq 2Hd_h$, we have

$$2546 \quad E_{\tilde{h}} w = \underbrace{q_{\lceil \tilde{h}/H \rceil - d_h}}_{d \times 1},$$

2548 and

$$2549 \quad A_{\tilde{h}} \cdot X_p = \underbrace{\begin{bmatrix} X \\ 0 \cdot q_{j-d_h} & 1 \cdot q_{j-d_h} & \cdots & (n-1) \cdot q_{j-d_h} \\ q_{j-d_h} & q_{j-d_h} & \cdots & q_{j-d_h} \\ I_n \end{bmatrix}}_{(3d+n) \times n},$$

2555 where $j \in [2d_h] \setminus [d_h]$.

2556 For each $j \in [2d_h] \setminus [d_h]$, by Theorem D.1, there exists an H -head attention $\text{Attn}_j'' : \mathbb{R}^{(3d+n) \times n} \rightarrow \mathbb{R}^{3d_h \times n}$, such that

$$2559 \quad \left\| \underbrace{\text{Attn}_j''(A_{\tilde{h}} \cdot X_p)}_{3d_h \times n} - \underbrace{e_j^{(3d_h)} q_{j-d_h}^\top X}_{3d_h \times n} \right\|_{\infty} \leq \epsilon_0,$$

2561 for any $\epsilon_0 > 0$.

2562 Then we construct $\text{Attn}_{j,\tilde{h}}^Q$ in a way similar to $\text{Attn}_{j,\tilde{h}}^K$

$$2565 \quad \text{Attn}_{j,\tilde{h}}^Q(Z) := \text{Attn}_j''(\tilde{h})(A_{\tilde{h}} \cdot Z), \quad (Z \in \mathbb{R}^{(d+6dd_h+n) \times n} \text{ denotes any input})$$

2566 where $j \in [2d_h] \setminus [d_h]$ and $\tilde{h} \in \{J+1, \dots, J+H\}$.

2568 By Lemma D.3, $\text{Attn}_{j,\tilde{h}}^Q(Z)$ is an attention.

2569 Thus

$$2571 \quad \text{Attn}_j^Q(Z) := \sum_{\tilde{h}=J+1}^{J+H} \text{Attn}_{j,\tilde{h}}^Q(Z),$$

2574 is also an attention.

2575 Thus, we have

$$2577 \quad \left\| \underbrace{\text{Attn}_j^Q(X_p)}_{3d_h \times n} - \underbrace{e_j^{(3d_h)} q_{j-d_h}^\top X}_{3d_h \times n} \right\|_{\infty} \leq \epsilon_0.$$

2580 This means that

$$2582 \quad \left\| \underbrace{\sum_{j=d_h+1}^{2d_h} \text{Attn}_j^Q(X_p)}_{3d_h \times n} - \underbrace{\begin{bmatrix} Q \\ 0_{d_h \times n} \\ 0_{d_h \times n} \end{bmatrix}}_{3d_h \times n} \right\|_{\infty} \leq \epsilon_0. \quad (D.34)$$

2586 For V , with analogous construction to that of K and Q , there exists an H -head attention $\text{Attn}_j^V : \mathbb{R}^{(3d+n) \times n} \rightarrow \mathbb{R}^{3d_h \times n}$ such that

$$2589 \quad \left\| \underbrace{\text{Attn}_j^V(X_p)}_{3d_h \times n} - \underbrace{e_j^{(3d_h)} v_{j-2d_h}^\top X}_{3d_h \times n} \right\|_{\infty} \leq \epsilon_0,$$

2591 for each $j \in [3d_h] \setminus [2d_h]$ and any $\epsilon_0 > 0$.

2592 This means that

$$2593 \quad \left\| \underbrace{\sum_{j=2d_h+1}^{3d_h} \text{Attn}_j^V(X_p)}_{3d_h \times n} - \underbrace{\begin{bmatrix} 0_{d_h \times n} \\ 0_{d_h \times n} \\ V \end{bmatrix}}_{3d_h \times n} \right\|_\infty \leq \epsilon_0. \quad (D.35)$$

2598 Combining (D.33), (D.34) and (D.35), we have

$$2599 \quad \begin{aligned} 2600 \quad & \left\| \text{Attn}_m(X_p) - \begin{bmatrix} K \\ Q \\ V \end{bmatrix} \right\|_\infty \\ 2601 \quad & = \left\| \sum_{j=1}^{d_h} \text{Attn}_j^K(X_p) - \begin{bmatrix} K \\ 0_{d_h \times n} \\ 0_{d_h \times n} \end{bmatrix} + \sum_{j=d_h+1}^{2d_h} \text{Attn}_j^Q(X_p) - \begin{bmatrix} 0_{d_h \times n} \\ Q \\ 0_{d_h \times n} \end{bmatrix} + \sum_{j=2d_h+1}^{3d_h} \text{Attn}_j^V(X_p) - \begin{bmatrix} 0_{d_h \times n} \\ 0_{d_h \times n} \\ V \end{bmatrix} \right\|_\infty \\ 2602 \quad & \leq \epsilon_0. \end{aligned} \quad (D.36)$$

2607 We define

$$2608 \quad \underbrace{\begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix}}_{3d_h \times n} := \text{Attn}_m(X_p).$$

2613 Thus, (D.36) becomes

$$2614 \quad \left\| \underbrace{\begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix}}_{3d_h \times n} - \underbrace{\begin{bmatrix} K \\ Q \\ V \end{bmatrix}}_{3d_h \times n} \right\|_\infty \leq \epsilon_0, \quad (D.37)$$

2623 **Step 3: Single-Head Assembly for Emulated Map.** Our goal in this part is to reconstruct the
2624 attention mechanism

$$2626 \quad V' \text{Softmax}_\beta((K')^\top Q'), \quad \text{and} \quad V \text{Softmax}_\beta((K)^\top Q),$$

2627 from K', Q', V' and K, Q, V via Attn_s .

2628 In order to achieve this, we construct Attn_s to be

$$2629 \quad \text{Attn}_s(Z) := \underbrace{\begin{bmatrix} 0_{d_h \times 2d_h} & I_{d_h} \end{bmatrix}}_{:=W_{V,s}} Z \cdot \text{Softmax}_\beta(\underbrace{\begin{bmatrix} I_{d_h} & 0_{d_h \times 2d_h} \end{bmatrix}}_{:=W_{K,s}} Z)^\top \underbrace{\begin{bmatrix} 0_{d_h \times d_h} & I_{d_h} & 0_{d_h \times d_h} \end{bmatrix}}_{:=W_{Q,s}} Z,$$

2632 where $Z \in \mathbb{R}^{3d_h \times n}$ denotes any input.

2634 Thus, we have

$$2635 \quad \underbrace{\text{Attn}_s\left(\begin{bmatrix} K \\ Q \\ V \end{bmatrix}\right)}_{3d_h \times n} = \underbrace{V}_{d_h \times n} \text{Softmax}_\beta(\underbrace{(K)^\top Q}_{n \times n}), \quad (D.38)$$

2640 and

$$2642 \quad \underbrace{\text{Attn}_s\left(\begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix}\right)}_{3d_h \times n} = \underbrace{V'}_{d_h \times n} \text{Softmax}_\beta(\underbrace{(K')^\top Q'}_{n \times n}). \quad (D.39)$$

2646 **Step 4: Error Bound.** From (D.38) and (D.39), we have
 2647

$$\begin{aligned}
 & \text{Attn}_s\left(\begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix}\right) - \text{Attn}_s\left(\begin{bmatrix} K \\ Q \\ V \end{bmatrix}\right) \\
 &= \underbrace{V' \cdot \text{Softmax}_\beta(K'^\top Q')}_{d_h \times n} - \underbrace{V \cdot \text{Softmax}_\beta(K^\top Q)}_{d_h \times n} \quad (\text{By (D.39) and (D.38)}) \\
 &= V' \text{Softmax}_\beta(K'^\top Q') - V \text{Softmax}_\beta(K'^\top Q) + V \text{Softmax}_\beta(K^\top Q) - V \text{Softmax}_\beta(K^\top Q) \\
 &= (V' - V) \text{Softmax}_\beta(K'^\top Q') + V (\text{Softmax}_\beta(K'^\top Q') - \text{Softmax}_\beta(K^\top Q)), \tag{D.40}
 \end{aligned}$$

2656 and the last equality follows from the distributivity of matrix multiplication.
 2657

2658 Then, (D.40) yields
 2659

$$\begin{aligned}
 & \|\text{Attn}_s\left(\begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix}\right) - \text{Attn}_s\left(\begin{bmatrix} K \\ Q \\ V \end{bmatrix}\right)\|_\infty \\
 &= \| (V' - V) \text{Softmax}_\beta(K'^\top Q') + V (\text{Softmax}_\beta(K'^\top Q') - \text{Softmax}_\beta(K^\top Q)) \|_\infty \\
 &\leq \underbrace{\|(V' - V) \text{Softmax}_\beta(K'^\top Q')\|_\infty}_{:=(I)} + \underbrace{\|V (\text{Softmax}_\beta(K'^\top Q') - \text{Softmax}_\beta(K^\top Q))\|_\infty}_{:=(II)}, \tag{D.41}
 \end{aligned}$$

2666 and the last inequality follows from the triangle inequality.
 2667

2668 For term (I) in (D.41), since each column in $\text{Softmax}_\beta(K'^\top Q')$ sums up to 1, then
 2669

$$\underbrace{(V' - V)}_{d_h \times n} \underbrace{\text{Softmax}_\beta(K'^\top Q')_{:,j}}_{n \times 1},$$

2671 is a weighted sum of the columns in $(V' - V)$.
 2672

2673 Thus we have
 2674

$$\|(V' - V) \text{Softmax}_\beta(K'^\top Q')_{:,j}\|_\infty \leq \|V' - V\|_\infty \leq \epsilon_0,$$

2675 and the first inequality holds since the column average of $(V' - V)$ has a maximum entry no greater
 2676 than the maximum entry among the original columns in $(V' - V)$. The second inequality holds since
 2677 (D.37).

2678 Then we get
 2679

$$(I) \leq \epsilon_0. \tag{D.42}$$

2681 Term (II) in (D.41) is
 2682

$$(II) = \|V (\text{Softmax}_\beta(K'^\top Q') - \text{Softmax}_\beta(K^\top Q))\|_\infty.$$

2684 For simplicity of presentation, we define
 2685

$$\Delta S := \text{Softmax}_\beta(K'^\top Q') - \text{Softmax}_\beta(K^\top Q),$$

2686 such that for each entry in (II), we have
 2687

$$\begin{aligned}
 |(V \Delta S)_{ij}| &= \left| \sum_{k=1}^n V_{ik} (\Delta S)_{kj} \right| \quad (\text{By the definition of matrix multiplication}) \\
 &\leq \sum_{k=1}^n |V_{ik}| \cdot |(\Delta S)_{kj}| \quad (\text{By triangle inequality and } |ab| = |a| \cdot |b| \text{ for all } a, b \in \mathbb{R}) \\
 &\leq \sum_{k=1}^n \|V\|_\infty \cdot \|\Delta S\|_\infty \quad (\text{By } |V_{ik}| \leq \|V\|_\infty \text{ and } |(\Delta S)_{kj}| \leq \|\Delta S\|_\infty) \\
 &= n \|V\|_\infty \cdot \|\Delta S\|_\infty,
 \end{aligned}$$

2697 and this leads to
 2698

$$(II) \leq n \|V\|_\infty \cdot \|\Delta S\|_\infty. \tag{D.43}$$

2700 For each entry in ΔS , we have
 2701

$$\begin{aligned}
 & |(\Delta S)_{i,j}| & (D.44) \\
 & = |(\text{Softmax}_\beta(K'^\top Q') - \text{Softmax}_\beta(K^\top Q))_{i,j}| \\
 & = \left| \frac{e^{\beta K'_i \cdot Q'_j}}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}} - \frac{e^{\beta K_i \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}} \right| \quad (K'_i, Q'_i, K_i, Q_i \text{ denote the } i\text{-th column in } K', Q', K, Q) \\
 & = \left| \frac{e^{\beta K'_i \cdot Q'_j}}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}} - \frac{e^{\beta K_i \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}} + \frac{e^{\beta K_i \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}} - \frac{e^{\beta K_i \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}} \right| \\
 & \leq \left| \frac{e^{\beta K'_i \cdot Q'_j} - e^{\beta K_i \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}} \right| + \left| e^{\beta K_i \cdot Q_j} \left(\frac{1}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}} - \frac{1}{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}} \right) \right| \quad (\text{By triangle inequality}) \\
 & = \frac{e^{\beta K'_i \cdot Q'_j}}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}} |1 - e^{\beta(K_i \cdot Q_j - K'_i \cdot Q'_j)}| + \frac{e^{\beta K_i \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}} \left| \frac{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}} - 1 \right| \\
 & \quad (\text{By non-negativity of exponential})
 \end{aligned}$$

$$\begin{aligned}
 & < \underbrace{|1 - e^{\beta(K_i \cdot Q_j - K'_i \cdot Q'_j)}|}_{:=(II-1)} + \underbrace{|1 - \frac{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}}|}_{:=(II-2)}, & (D.45)
 \end{aligned}$$

2720 and the last inequality holds since
 2721

$$\frac{e^{\beta K'_i \cdot Q'_j}}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}} < 1, \quad \frac{e^{\beta K_i \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}} < 1.$$

2724 To bound term (II-1) in (D.45), we recall
 2725

$$\left\| \underbrace{\begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix}}_{3d_h \times n} - \underbrace{\begin{bmatrix} K \\ Q \\ V \end{bmatrix}}_{3d_h \times n} \right\|_\infty \leq \epsilon_0,$$

2729 so

$$\begin{aligned}
 & \left\| \underbrace{K'}_{d_h \times n} - \underbrace{K}_{d_h \times n} \right\|_\infty \leq \epsilon_0, \\
 & \left\| \underbrace{Q'}_{d_h \times n} - \underbrace{Q}_{d_h \times n} \right\|_\infty \leq \epsilon_0.
 \end{aligned}$$

2736 Let K'_i, Q'_i, K_i, Q_i denote the i -th column in K', Q', K, Q , then we have
 2737

$$\begin{aligned}
 \underbrace{\Delta K_i}_{d_h \times 1} &:= \underbrace{K'_i - K_i}_{d_h \times 1}, \quad \|\Delta K_i\|_\infty \leq \epsilon_0, \\
 \underbrace{\Delta Q_i}_{d_h \times 1} &:= \underbrace{Q'_i - Q_i}_{d_h \times 1}, \quad \|\Delta Q_i\|_\infty \leq \epsilon_0.
 \end{aligned}$$

2742 Thus, for term (II-1) in (D.45), we have
 2743

$$\begin{aligned}
 & (II-1) \\
 & = |1 - \exp\{\beta(K_i \cdot Q_j - K'_i \cdot Q'_j)\}| \\
 & = |1 - \exp\{\beta(K_i \cdot Q_j - (K_i + \Delta K_i) \cdot (Q_j + \Delta Q_j))\}| \\
 & \quad (\text{By } K'_i = K_i + \Delta K_i \text{ and } Q'_i = Q_i + \Delta Q_i) \\
 & = |1 - \exp\{-\beta(K_i \cdot \Delta Q_j + Q_j \cdot \Delta K_i + \Delta K_i \cdot \Delta Q_j)\}|, \\
 & \quad (\text{By } K_i \cdot Q_j - (K_i + \Delta K_i) \cdot (Q_i + \Delta Q_i) = -(K_i \cdot \Delta Q_j + Q_j \cdot \Delta K_i + \Delta K_i \cdot \Delta Q_j))
 \end{aligned}$$

2750 and we know
 2751

$$\begin{aligned}
 & K_i \cdot \Delta Q_j + Q_j \cdot \Delta K_i + \Delta K_i \cdot \Delta Q_j \\
 & \leq d_h \cdot \|K_i\|_\infty \|\Delta Q_j\|_\infty + d_h \cdot \|Q_j\|_\infty \|\Delta K_i\|_\infty + d_h \cdot \|\Delta K_i\|_\infty \|\Delta Q_j\|_\infty \\
 & \quad (\text{By } a \cdot b \leq d_h \|a\|_\infty \|b\|_\infty \text{ for all } a, b \in \mathbb{R}^{d_h})
 \end{aligned}$$

2754 $\leq 2d_h B_{KQV} \epsilon_0 + d_h \epsilon_0^2.$ (By $\|K_i\|_\infty, \|Q_j\|_\infty \leq B_{KQV}$ and $\|\Delta K_i\|_\infty, \|\Delta Q_j\|_\infty \leq \epsilon_0$)

2755 Thus, we have

2756
$$(II-1) \leq |1 - e^{-\beta d_h (2B_{KQV} \epsilon_0 + \epsilon_0^2)}|. \quad (\text{D.46})$$

2757 For term (II-2) in (D.45), we have

2758
$$(II-2)$$

2759
$$= |1 - \frac{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K_{i'}' \cdot Q_j'}}| \quad (\text{By the definition of (II-2)})$$

2760
$$= |1 - \frac{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}}{\sum_{i'=1}^n e^{\beta (K_{i'} + \Delta K_{i'}) \cdot (Q_j + \Delta Q_j)}}| \quad (\text{By } K_{i'}' = K_{i'} + \Delta K_{i'} \text{ and } Q_i' = Q_i + \Delta Q_i)$$

2761
$$= |1 - \frac{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}}{\sum_{i'=1}^n e^{\beta (K_{i'} \cdot Q_j + K_{i'} \cdot \Delta Q_j + Q_j \cdot \Delta K_{i'} + \Delta K_{i'} \cdot \Delta Q_j)}}|,$$

2762 and for all i' in the denominator, we have

2763
$$\begin{aligned} & K_{i'} \cdot Q_j + K_{i'} \cdot \Delta Q_j + Q_j \cdot \Delta K_{i'} + \Delta K_{i'} \cdot \Delta Q_j \\ & \leq K_{i'} \cdot Q_j + d_h \cdot \|K_{i'}\|_\infty \|\Delta Q_j\|_\infty + d_h \cdot \|Q_j\|_\infty \|\Delta K_{i'}\|_\infty + d_h \cdot \|\Delta K_{i'}\|_\infty \|\Delta Q_j\|_\infty \\ & \quad (\text{By } a \cdot b \leq d_h \|a\|_\infty \|b\|_\infty \text{ for all } a, b \in \mathbb{R}^{d_h}) \\ & \leq K_{i'} \cdot Q_j + 2d_h B_{KQV} \epsilon_0 + d_h \epsilon_0^2. \quad (\text{By } \|K_{i'}\|_\infty, \|Q_j\|_\infty \leq B_{KQV} \text{ and } \|\Delta K_{i'}\|_\infty, \|\Delta Q_j\|_\infty \leq \epsilon_0) \end{aligned}$$

2764 Thus,

2765
$$(II-2)$$

2766
$$= |1 - \frac{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}}{\sum_{i'=1}^n e^{\beta (K_{i'} \cdot Q_j + K_{i'} \cdot \Delta Q_j + Q_j \cdot \Delta K_{i'} + \Delta K_{i'} \cdot \Delta Q_j)}}|$$

2767
$$\leq |1 - \frac{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}}{\sum_{i'=1}^n e^{\beta (K_{i'} \cdot Q_j + 2d_h B_{KQV} \epsilon_0 + d_h \epsilon_0^2)}}|$$

2768
$$= |1 - \frac{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}}{e^{\beta d_h (2B_{KQV} \epsilon_0 + \epsilon_0^2)} \sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}}| \quad (e^{\beta d_h (2B_{KQV} \epsilon_0 + \epsilon_0^2)} \text{ is independent of } i')$$

2769
$$= |1 - e^{-\beta d_h (2B_{KQV} \epsilon_0 + \epsilon_0^2)}|, \quad (\text{D.47})$$

2770 and the last equality holds since the common factor $\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}$ cancels out.

2771 Combining (D.45), (D.46), and (D.47), we have

2772
$$\begin{aligned} & |(\text{Softmax}_\beta(K'^\top Q') - \text{Softmax}_\beta(K^\top Q))_{i,j}| \\ & < 2|1 - e^{-\beta d_h (2B_{KQV} \epsilon_0 + \epsilon_0^2)}| \\ & \leq 2|1 - e^{-\beta d_h (2B_{KQV} \epsilon_0 + \epsilon_0)}|. \quad (\text{By requiring } 0 < \epsilon_0 \leq 1) \end{aligned}$$

2773 Thus for any $0 < \epsilon_1 < 2$, when ϵ_0 satisfies

2774
$$0 < \epsilon_0 \leq \min\{1, \frac{-\ln(1 - \frac{\epsilon_1}{2})}{\beta d_h (2B_{KQV} + 1)}\},$$

2775 we have

2776
$$|(\text{Softmax}_\beta(K'^\top Q') - \text{Softmax}_\beta(K^\top Q))_{i,j}| < \epsilon_1. \quad (\text{D.48})$$

2777 From (D.43) and (D.48), we have

2778
$$(II) \leq n\|V\|_\infty \|\Delta S\|_\infty < nB_{KQV} \epsilon_1, \quad (\text{D.49})$$

2779 since $\|V\|_\infty \leq B_{KQV}$ and $\|\Delta S\|_\infty < \epsilon_1$.

2780 Combining (D.41) with (D.42) and (D.49) yields

2781
$$\|\text{Attn}_s(\begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix}) - \text{Attn}_s(\begin{bmatrix} K \\ Q \\ V \end{bmatrix})\|_\infty < \epsilon_0 + nB_{KQV} \epsilon_1.$$

2808 When we take ϵ_0 and ϵ_1 to be infinitely small, the right-hand side tends to 0.
 2809

2810 This completes the proof. \square

2811

2812 **D.6 PROOF OF THEOREM 4.2**

2813

2814 **Theorem D.6** (Theorem 4.2 Restate). Let $X \in \mathbb{R}^{d \times n}$ be the input sequence, and let
 2815 $W_K, W_Q, W_V \in \mathbb{R}^{n \times d}$ be the weight matrices of the target attention. Assume $B =$
 2816 $\max\{\|X\|_\infty, \|W_K\|_\infty, \|W_Q\|_\infty, \|W_V\|_\infty\}$ and $\|W_K X\|_\infty, \|W_Q X\|_\infty, \|W_V X\|_\infty \leq B_{KQV}$ for
 2817 $B_{KQV} \geq 0$. Then, for any $\epsilon > 0$, there exists a single-head attention layer Attn_s followed by a
 2818 multi-head attention layer with linear projections such that

$$2819 \quad \|\text{Attn}_s \circ \left(\sum_{j=1}^{3n} \text{Attn}_j \circ \text{Linear}_j \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) \right) - \underbrace{W_V X}_{n \times n} \underbrace{\text{Softmax}_\beta \left((W_K X)^\top W_Q X \right)}_{n \times n} \|_\infty \leq \epsilon.$$

2824

2825 *Proof.* Follow our proof sketch in Appendix A.2, our proof consists of four conceptual steps.

2826

2827 **Step 1: Encoding Weights into the Input.** For clarity and simplicity, we define

$$2828 \quad k_i := (W_K^\top)_{:,i} \in \mathbb{R}^d, \\ 2829 \quad q_i := (W_Q^\top)_{:,i} \in \mathbb{R}^d, \\ 2830 \quad v_i := (W_V^\top)_{:,i} \in \mathbb{R}^d,$$

2832 such that $W_K^\top, W_Q^\top, W_V^\top$ writes out as

$$2834 \quad W_K^\top = \underbrace{[k_1 \ k_2 \ \cdots \ k_n]}_{d \times n}, \quad W_Q^\top = \underbrace{[q_1 \ q_2 \ \cdots \ q_n]}_{d \times n}, \quad W_V^\top = \underbrace{[v_1 \ v_2 \ \cdots \ v_n]}_{d \times n}.$$

2836

2837 Then, we express the input as

$$2838 \quad \begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} = \underbrace{\begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ k_1 & k_2 & \cdots & k_n \\ q_1 & q_2 & \cdots & q_n \\ v_1 & v_2 & \cdots & v_n \end{bmatrix}}_{4d \times n} \quad (D.50)$$

2843

2844 where x_i, k_i, q_i and v_i are all d dimensional vectors for $i \in [n]$.

2845

2846 **Step 2: Multi-Head Approximation of K, Q, V .** For the simplicity of presentation, we define

$$2847 \quad K := \underbrace{W_K X}_{n \times d \ d \times n}, \quad Q := \underbrace{W_Q X}_{n \times d \ d \times n}, \quad V := \underbrace{W_V X}_{n \times d \ d \times n}.$$

2849

2850 Writing W_K, W_Q , and W_V row-wise as

$$2851 \quad W_K = \underbrace{\begin{bmatrix} k_1^\top \\ k_2^\top \\ \vdots \\ k_n^\top \end{bmatrix}}_{n \times d}, \quad W_Q = \underbrace{\begin{bmatrix} q_1^\top \\ q_2^\top \\ \vdots \\ q_n^\top \end{bmatrix}}_{n \times d}, \quad W_V = \underbrace{\begin{bmatrix} v_1^\top \\ v_2^\top \\ \vdots \\ v_n^\top \end{bmatrix}}_{n \times d},$$

2856

2857 and $X = [x_1 \ \cdots \ x_n]$, we express K, Q , and V entry-wise as

$$2858 \quad K = \begin{bmatrix} k_1^\top x_1 & k_1^\top x_2 & \cdots & k_1^\top x_n \\ k_2^\top x_1 & k_2^\top x_2 & \cdots & k_2^\top x_n \\ \vdots & \vdots & \vdots & \vdots \\ k_n^\top x_1 & k_n^\top x_2 & \cdots & k_n^\top x_n \end{bmatrix},$$

$$Q = \begin{bmatrix} q_1^\top x_1 & q_1^\top x_2 & \cdots & q_1^\top x_n \\ q_2^\top x_1 & q_2^\top x_2 & \cdots & q_2^\top x_n \\ \vdots & \vdots & \vdots & \vdots \\ q_n^\top x_1 & q_n^\top x_2 & \cdots & q_n^\top x_n \end{bmatrix},$$

$$V = \begin{bmatrix} v_1^\top x_1 & v_1^\top x_2 & \cdots & v_1^\top x_n \\ v_2^\top x_1 & v_2^\top x_2 & \cdots & v_2^\top x_n \\ \vdots & \vdots & \vdots & \vdots \\ v_n^\top x_1 & v_n^\top x_2 & \cdots & v_n^\top x_n \end{bmatrix}.$$

Here k_i^\top , q_i^\top , and v_i^\top identify the i -th row of K , Q and V , while x_j identifies the j -th column.

In this section, our goal is to approximate K , Q , and V . Our strategy is to approximate K , Q , and V row by row, and within each row, entry by entry. More precisely, for each $i \in [n]$, we approximate

$$k_i^\top X, \quad q_i^\top X, \quad v_i^\top X,$$

by approximating the scalar products

$$k_i^\top x_j, \quad q_i^\top x_j, \quad v_i^\top x_j, \quad \text{for all } j \in [n],$$

and then collecting these approximations to form approximations of the full matrices K , Q , and V .

To approximate each scalar $k_i^\top x_j$, $q_i^\top x_j$, and $v_i^\top x_j$, we first determine their joint range over all $i, j \in [n]$. Within this joint range, we construct a set of uniform-space grid points. Then, we approximate each target entry $k_i^\top x_j$, $q_i^\top x_j$, or $v_i^\top x_j$ by an entry-specific weighted sum of these grid points, where grid points closer to the target entry value receive larger weights. In this way, we represent every entry by its own set of interpolation weights, while all approximations share the same global grid.

We introduce our notation for the uniform grid points used in our interpolation scheme.

Interpolations. We recall

$$B = \max(\|X\|_\infty, \|W_K\|_\infty, \|W_Q\|_\infty, \|W_V\|_\infty).$$

Thus, for all $i, j \in [n]$,

$$-d \cdot B^2 \leq k_i^\top x_j, q_i^\top x_j, v_i^\top x_j \leq d \cdot B^2. \quad (\text{D.51})$$

Namely, $[-dB^2, dB^2]$ contains all entries of K , Q , and V .

Then, we take $L_0 := -dB^2$ and $L_P := dB^2$ as the two endpoints of our interpolation and define for $i \in \{0\} \cup [P]$

$$L_i := \frac{iL_P + (P - i)L_0}{P}, \quad (\text{D.52})$$

where P is the number of interpolation steps (the number of equal divisions of $[L_0, L_P]$). The points $\{L_i\}_{i=0}^P$ form our uniform grid over the target range.

We use ΔL to denote the length of the interval between two neighboring grid points. We have

$$\Delta L := \frac{L_P - L_0}{P} = \frac{2dB^2}{P}. \quad (\text{D.53})$$

Now we have all the ingredients needed to approximate each entry using a weighted sum. However, the input,

$$\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} = \underbrace{\begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ k_1 & k_2 & \cdots & k_n \\ q_1 & q_2 & \cdots & q_n \\ v_1 & v_2 & \cdots & v_n \end{bmatrix}}_{4d \times n},$$

contains information from all rows in the target K , Q , and V , but does not contain the grid points. We need a mechanism to select a specific k_i , q_i , or v_i (corresponding to one row of K , Q , or V) and to include the grid points for us.

To address this, we introduce row-specific linear transformations Linear_j , where $j \in [3n]$, since we have n rows for each of K , Q , and V . Each Linear_j serves two purposes: it incorporates the input and the uniform grid points, and selects the k_i , q_i , or v_i associated with index i (corresponding to one row of K , Q , or V).

For the clarity of presentation, we relabel these $3n$ linear transformations according to whether they are responsible for K , Q , or V

$$\begin{aligned} \text{Linear}_j^K &:= \text{Linear}_j, \quad j \in [n], & (\text{Responsible for } K) \\ \text{Linear}_j^Q &:= \text{Linear}_{n+j}, \quad j \in [n], & (\text{Responsible for } Q) \\ \text{Linear}_j^V &:= \text{Linear}_{2n+j}, \quad j \in [n]. & \end{aligned} \quad (\text{D.54})$$

Later in the proof, we specify the explicit form of these Linear_j .

So far, Linear_j allows us to combine the input with the uniform grid points and to select the desired k_i , q_i , or v_i . The next step is to *implement* the entry-specific weighted sums to approximate the entries of K , Q , and V .

For this, we use a row-specific single-head attention: for each $i \in [n]$, we assign one head to approximate $k_i^\top X$ using the weighted sum, one head to approximate $q_i^\top X$ in the same manner, and one head to approximate $v_i^\top X$ in the same manner. Each such head operates token-wise: given its designated row i , the head approximates all scalars $k_i^\top x_j$, $q_i^\top x_j$, or $v_i^\top x_j$ across $j \in [n]$.

Since each of K , Q , and V has n rows and we use a single-head for each row, we use a total of $3n$ heads to approximate K , Q , and V . We use Attn_j to label these $3n$ heads and $j \in [3n]$.

Again, for the clarity of presentation, we provide another equivalent way, as Attn_j , to label these $3n$ heads

$$\begin{aligned} \text{Attn}_j^K &:= \text{Attn}_j, \quad j \in [n], \\ \text{Attn}_j^Q &:= \text{Attn}_{n+j}, \quad j \in [n], \\ \text{Attn}_j^V &:= \text{Attn}_{2n+j}, \quad j \in [n]. \end{aligned} \quad (\text{D.55})$$

Later in our proof, we provide the construction of these Attn_j explicitly.

Now we are ready to approximate each of K , Q , and V . We approximate K first to demonstrate our procedure and deal with Q and V in a similar manner later.

In-Context Calculation of K . First, we define the linear transformation $\text{Linear}_j^K : \mathbb{R}^{4d \times n} \rightarrow \mathbb{R}^{(2d+3) \times (P+1)}$ attached before Attn_j^K as:

$$\begin{aligned} \text{Linear}_j^K(Z) &:= \underbrace{\begin{bmatrix} 0_{d \times d} & 0_{d \times d} & 0_{d \times 2d} \\ 0_{d \times d} & I_d & 0_{d \times 2d} \\ 0_{3 \times d} & 0_{3 \times d} & 0_{3 \times 2d} \end{bmatrix}}_{(2d+3) \times 4d} \underbrace{Z}_{4d \times n} \underbrace{\begin{bmatrix} 2L_0 e_j^{(n)} & 2L_1 e_j^{(n)} & \cdots & 2L_P e_j^{(n)} \end{bmatrix}}_{n \times (P+1)} + \\ &\quad (Z \in \mathbb{R}^{4d \times n} \text{ denotes any input}) \\ &\quad \underbrace{\begin{bmatrix} I_d & 0_{d \times d} & 0_{d \times 2d} \\ 0_{d \times d} & 0_{d \times d} & 0_{d \times 2d} \\ 0_{3 \times d} & 0_{3 \times d} & 0_{3 \times 2d} \end{bmatrix}}_{(2d+3) \times 4d} \underbrace{Z}_{4d \times n} \underbrace{\begin{bmatrix} I_n & 0_{n \times (P+1-n)} \end{bmatrix}}_{n \times (P+1)} + \underbrace{\begin{bmatrix} 0_{2d \times (P+1)} \\ M_1 \\ M_L \end{bmatrix}}_{(2d+3) \times (P+1)}, \end{aligned}$$

where M_1, M_L are

$$M_1 := \underbrace{\begin{bmatrix} 1_{1 \times n} & 0_{1 \times (P+1-n)} \end{bmatrix}}_{1 \times (P+1)}, \quad (\text{D.56})$$

$$M_L := \underbrace{\begin{bmatrix} L_0 & L_1 & \cdots & L_P \\ -L_0^2 & -L_1^2 & \cdots & -L_P^2 \end{bmatrix}}_{2 \times (P+1)}. \quad (\text{D.57})$$

2970 The Linear_j^K layer takes the input $[X^\top \quad W_K \quad W_Q \quad W_V]^\top$ and outputs in the following way:
 2971

$$\begin{aligned}
 2972 \quad & \text{Linear}_j^K \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) \\
 2973 \quad & = \underbrace{\begin{bmatrix} 0_{d \times d} & 0_{d \times d} & 0_{d \times 2d} \\ 0_{d \times d} & I_d & 0_{d \times 2d} \\ 0_{3 \times d} & 0_{3 \times d} & 0_{3 \times 2d} \end{bmatrix}}_{(2d+3) \times 4d} \underbrace{\begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ k_1 & k_2 & \cdots & k_n \\ q_1 & q_2 & \cdots & q_n \\ v_1 & v_2 & \cdots & v_n \end{bmatrix}}_{4d \times n} \underbrace{\begin{bmatrix} 2L_0 e_j^{(n)} & 2L_1 e_j^{(n)} & \cdots & 2L_P e_j^{(n)} \end{bmatrix}}_{n \times (P+1)} + \\
 2974 \quad & \underbrace{\begin{bmatrix} I_d & 0_{d \times d} & 0_{d \times 2d} \\ 0_{d \times d} & 0_{d \times d} & 0_{d \times 2d} \\ 0_{3 \times d} & 0_{3 \times d} & 0_{3 \times 2d} \end{bmatrix}}_{(2d+3) \times 4d} \underbrace{\begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ k_1 & k_2 & \cdots & k_n \\ q_1 & q_2 & \cdots & q_n \\ v_1 & v_2 & \cdots & v_n \end{bmatrix}}_{4d \times n} \underbrace{\begin{bmatrix} I_n & 0_{n \times (P+1-n)} \end{bmatrix}}_{n \times (P+1)} + \underbrace{\begin{bmatrix} 0_{2d \times (P+1)} \\ M_1 \\ M_L \end{bmatrix}}_{(2d+3) \times (P+1)} \quad (\text{By (D.50)}) \\
 2975 \quad & = \underbrace{\begin{bmatrix} 0_{d \times 1} & 0_{d \times 1} & \cdots & 0_{d \times 1} \\ k_1 & k_2 & \cdots & k_n \\ 0_{3 \times 1} & 0_{3 \times 1} & \cdots & 0_{3 \times 1} \end{bmatrix}}_{(2d+3) \times n} \underbrace{\begin{bmatrix} 2L_0 e_j^{(n)} & 2L_1 e_j^{(n)} & \cdots & 2L_P e_j^{(n)} \end{bmatrix}}_{n \times (P+1)} + \\
 2976 \quad & \underbrace{\begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ 0_{d \times 1} & 0_{d \times 1} & \cdots & 0_{d \times 1} \\ 0_{3 \times 1} & 0_{3 \times 1} & \cdots & 0_{3 \times 1} \end{bmatrix}}_{(2d+3) \times n} \underbrace{\begin{bmatrix} I_n & 0_{n \times (P+1-n)} \end{bmatrix}}_{n \times (P+1)} + \underbrace{\begin{bmatrix} 0_{2d \times (P+1)} \\ M_1 \\ M_L \end{bmatrix}}_{(2d+3) \times (P+1)} \\
 2977 \quad & \quad (\text{By selecting } k_i \text{ and } x_i \text{ with } I_d \text{ for all } i \in [n]) \\
 2978 \quad & = \underbrace{\begin{bmatrix} 0_{d \times 1} & 0_{d \times 1} & \cdots & 0_{d \times 1} \\ 2L_0 k_j & 2L_1 k_j & \cdots & 2L_P k_j \\ 0_{3 \times 1} & 0_{3 \times 1} & \cdots & 0_{3 \times 1} \end{bmatrix}}_{(2d+3) \times (P+1)} + \underbrace{\begin{bmatrix} x_1 & x_2 & \cdots & x_n & 0_{d \times 1} & \cdots & 0_{d \times 1} \\ 0_{d \times 1} & 0_{d \times 1} & \cdots & 0_{d \times 1} & 0_{d \times 1} & \cdots & 0_{d \times 1} \\ 0_{3 \times 1} & 0_{3 \times 1} & \cdots & 0_{3 \times 1} & 0_{3 \times 1} & \cdots & 0_{3 \times 1} \end{bmatrix}}_{(2d+3) \times (P+1)} + \\
 2979 \quad & \quad (\text{By selecting } k_j \text{ with } e_j^{(n)}) \\
 2980 \quad & \underbrace{\begin{bmatrix} 0_{2d \times 1} & 0_{2d \times 1} & \cdots & 0_{2d \times 1} & 0_{2d \times 1} & \cdots & 0_{2d \times 1} \\ 1 & 1 & \cdots & 1 & 0 & \cdots & 0 \\ L_0 & L_1 & \cdots & L_{n-1} & L_n & \cdots & L_P \\ -L_0^2 & -L_1^2 & \cdots & -L_{n-1}^2 & -L_n^2 & \cdots & -L_P^2 \end{bmatrix}}_{(2d+3) \times (P+1)} \\
 2981 \quad & \quad (\text{By the definition of } M_1 \text{ and } M_L; \text{i.e., (D.56) and (D.57)}) \\
 2982 \quad & = \underbrace{\begin{bmatrix} x_1 & x_2 & \cdots & x_n & 0_d & \cdots & 0_d \\ 2L_0 k_j & 2L_1 k_j & \cdots & 2L_{n-1} k_j & 2L_n k_j & \cdots & 2L_P k_j \\ 1 & 1 & \cdots & 1 & 0 & \cdots & 0 \\ L_0 & L_1 & \cdots & L_{n-1} & L_n & \cdots & L_P \\ -L_0^2 & -L_1^2 & \cdots & -L_{n-1}^2 & -L_n^2 & \cdots & -L_P^2 \end{bmatrix}}_{(2d+3) \times (P+1)}. \quad (\text{D.58})
 2983 \quad & \\
 2984 \quad & \\
 2985 \quad & \\
 2986 \quad & \\
 2987 \quad & \\
 2988 \quad & \\
 2989 \quad & \\
 2990 \quad & \\
 2991 \quad & \\
 2992 \quad & \\
 2993 \quad & \\
 2994 \quad & \\
 2995 \quad & \\
 2996 \quad & \\
 2997 \quad & \\
 2998 \quad & \\
 2999 \quad & \\
 3000 \quad & \\
 3001 \quad & \\
 3002 \quad & \\
 3003 \quad & \\
 3004 \quad & \\
 3005 \quad & \\
 3006 \quad & \\
 3007 \quad & \\
 3008 \quad & \\
 3009 \quad & \\
 3010 \quad & \\
 3011 \quad & \\
 3012 \quad & \\
 3013 \quad & \\
 3014 \quad & \\
 3015 \quad & \\
 3016 \quad & \\
 3017 \quad & \\
 3018 \quad & \\
 3019 \quad & \\
 3020 \quad & \\
 3021 \quad & \\
 3022 \quad & \\
 3023 \quad &
 \end{aligned}$$

3015 Next, we construct $\text{Attn}_j^K : \mathbb{R}^{(2d+3) \times (P+1)} \rightarrow \mathbb{R}^{3n \times n}$ to be
 3016

$$\text{Attn}_j^K(D) := \underbrace{W_{\hat{K}}^{K;j} D}_{3n \times (P+1)} \underbrace{\text{Softmax}_\beta((W_{\hat{K}}^{K;j} D)^\top W_{\hat{Q}}^{K;j} D)}_{(P+1) \times (P+1)} \underbrace{W_{\hat{O}}^{K;j}}_{(P+1) \times n},$$

3017 where $D \in \mathbb{R}^{(2d+3) \times (P+1)}$ denotes any input, and
 3018

$$W_{\hat{K}}^{K;j} := \underbrace{\begin{bmatrix} 0_{d \times d} & I_d & 0_{d \times 1} & 0_{d \times 1} & 0_{d \times 1} \\ 0_{1 \times d} & 0_{1 \times d} & 0 & 0 & 1 \end{bmatrix}}_{(d+1) \times (2d+3)}, \quad (\text{D.59})$$

$$W_{\widehat{Q}}^{K;j} := \underbrace{\begin{bmatrix} I_d & 0_{d \times d} & 0_{d \times 1} & 0_{d \times 1} & 0_{d \times 1} \\ 0_{1 \times d} & 0_{1 \times d} & 1 & 0 & 0 \end{bmatrix}}_{(d+1) \times (2d+3)}, \quad (\text{D.60})$$

$$W_{\hat{V}}^{K;j} \coloneqq \underbrace{e_j^{(3n)}}_{3n \times 1} \underbrace{\begin{bmatrix} 0_{1 \times (2d+1)} & 1 & 0 \end{bmatrix}}_{1 \times (2d+3)}, \quad (\text{D.61})$$

$$W_{\widehat{O}}^{K;j} \coloneqq \underbrace{\begin{bmatrix} I_n \\ 0_{(P+1-n) \times n} \end{bmatrix}}_{(P+1) \times n}. \quad (\text{D.62})$$

We define the \hat{K}_j^K of Attn_j^K to be:

$$\begin{aligned}
\hat{K}_j^K &:= W_{\hat{K}}^{K;j} \cdot \text{Linear}_j^K \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) \\
&= \underbrace{\begin{bmatrix} 0_{d \times d} & I_d & 0_{d \times 1} & 0_{d \times 1} & 0_{d \times 1} \\ 0_{1 \times d} & 0_{1 \times d} & 0 & 0 & 1 \end{bmatrix}}_{(d+1) \times (2d+3)} \cdot \underbrace{\begin{bmatrix} x_1 & x_2 & \cdots & x_n & \cdots & 0_d \\ 2L_0 k_j & 2L_1 k_j & \cdots & 2L_{n-1} k_j & \cdots & 2L_P k_j \\ 1 & 1 & \cdots & 1 & \cdots & 0 \\ L_0 & L_1 & \cdots & L_{n-1} & \cdots & L_P \\ -L_0^2 & -L_1^2 & \cdots & -L_{n-1}^2 & \cdots & -L_P^2 \end{bmatrix}}_{(2d+3) \times (P+1)} \quad (\text{By (D.59) and (D.58)}) \\
&= \underbrace{\begin{bmatrix} 2L_0 k_j & 2L_1 k_j & \cdots & 2L_{n-1} k_j & \cdots & 2L_P k_j \\ -L_0^2 & -L_1^2 & \cdots & -L_{n-1}^2 & \cdots & -L_P^2 \end{bmatrix}}_{(d+1) \times (P+1)}, \quad (\text{D.63})
\end{aligned}$$

and the last equality holds since I_d selects the $2L_{ikj}$ row, and 1 selects the $-L_i^2$ row where $i \in \{0\} \cup [P]$.

We define the \hat{Q}_j^K of Attn_j^K to be:

$$\begin{aligned}
\widehat{Q}_j^K &:= W_{\widehat{Q}}^{K;j} \cdot \text{Linear}_j^K \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) \\
&= \underbrace{\begin{bmatrix} I_d & 0_{d \times d} & 0_{d \times 1} & 0_{d \times 1} & 0_{d \times 1} \\ 0_{1 \times d} & 0_{1 \times d} & 1 & 0 & 0 \end{bmatrix}}_{(d+1) \times (2d+3)} \cdot \underbrace{\begin{bmatrix} x_1 & x_2 & \cdots & x_n & \cdots & 0_d \\ 2L_0 k_j & 2L_1 k_j & \cdots & 2L_{n-1} k_j & \cdots & 2L_P k_j \\ 1 & 1 & \cdots & 1 & \cdots & 0 \\ L_0 & L_1 & \cdots & L_{n-1} & \cdots & L_P \\ -L_0^2 & -L_1^2 & \cdots & -L_{n-1}^2 & \cdots & -L_P^2 \end{bmatrix}}_{(2d+3) \times (P+1)} \quad (\text{By (D.60) and (D.58)}) \\
&= \underbrace{\begin{bmatrix} x_1 & x_2 & \cdots & x_n & 0_{d \times (P+1-n)} \\ 1 & 1 & \cdots & 1 & 0_{1 \times (P+1-n)} \end{bmatrix}}_{(d+1) \times (P+1)}, \tag{D.64}
\end{aligned}$$

and the last equality holds since I_d selects the x_i row where $i \in [n]$, and 1 selects the 1_s row.

We define the \widehat{V}_i^K of Attn_i^K to be:

$$\widehat{V}_j^K := W_{\widehat{V}}^{K;j} \cdot \text{Linear}_j^K \left(\begin{bmatrix} X \\ W^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right)$$

$$\begin{aligned}
&= \underbrace{e_j^{(3n)} \begin{bmatrix} 0_{1 \times (2d+1)} & 1 & 0 \end{bmatrix}}_{3n \times 1} \underbrace{\begin{bmatrix} x_1 & x_2 & \cdots & x_n & 0_d & \cdots & 0_d \\ 2L_0k_j & 2L_1k_j & \cdots & 2L_{n-1}k_j & 2L_nk_j & \cdots & 2L_Pk_j \\ 1 & 1 & \cdots & 1 & 0 & \cdots & 0 \\ L_0 & L_1 & \cdots & L_{n-1} & L_n & \cdots & L_P \\ -L_0^2 & -L_1^2 & \cdots & -L_{n-1}^2 & -L_n^2 & \cdots & -L_P^2 \end{bmatrix}}_{(2d+3) \times (P+1)} \\
&= \underbrace{e_j^{(3n)} \begin{bmatrix} L_0 & L_1 & \cdots & L_{n-1} & L_n & \cdots & L_P \end{bmatrix}}_{3n \times 1} \quad (By \ (D.61) \ and \ (D.58)) \\
\end{aligned} \tag{D.65}$$

and the last equality holds since the 1 selects the L_i row where $i \in \{0\} \cup [P]$.

Combining the results of \hat{K}_j^K and \hat{Q}_j^K , we calculate the $\text{Softmax}_\beta((\hat{K}_j^K)^\top \hat{Q}_j^K)$ in Attn_j^K as

$$\begin{aligned}
&\text{Softmax}_\beta((\hat{K}_j^K)^\top \hat{Q}_j^K) \\
&= \text{Softmax}_\beta \left(\underbrace{\begin{bmatrix} 2L_0k_j & 2L_1k_j & \cdots & 2L_{n-1}k_j & \cdots & 2L_Pk_j \\ -L_0^2 & -L_1^2 & \cdots & -L_{n-1}^2 & \cdots & -L_P^2 \end{bmatrix}}_{(P+1) \times (d+1)}^\top \underbrace{\begin{bmatrix} x_1 & x_2 & \cdots & x_n & 0_{d \times (P+1-n)} \\ 1 & 1 & \cdots & 1 & 0_{1 \times (P+1-n)} \end{bmatrix}}_{(d+1) \times (P+1)} \right) \\
&\quad (By \ the \ definition \ of \ \hat{K}_j^K \ and \ \hat{Q}_j^K; \ i.e. \ (D.63) \ and \ (D.64)) \\
&= \text{Softmax}_\beta \left(\underbrace{\begin{bmatrix} 2L_0k_j^\top & -L_0^2 \\ 2L_1k_j^\top & -L_1^2 \\ \vdots & \vdots \\ 2L_Pk_j^\top & -L_P^2 \end{bmatrix}}_{(P+1) \times (d+1)} \underbrace{\begin{bmatrix} x_1 & x_2 & \cdots & x_n & 0_{d \times (P+1-n)} \\ 1 & 1 & \cdots & 1 & 0_{1 \times (P+1-n)} \end{bmatrix}}_{(d+1) \times (P+1)} \right) \quad (By \ the \ transpose \ of \ \hat{K}_j^K) \\
&= \text{Softmax}_\beta \left(\underbrace{\begin{bmatrix} 2L_0k_j^\top x_1 - L_0^2 & 2L_0k_j^\top x_2 - L_0^2 & \cdots & 2L_0k_j^\top x_n - L_0^2 & 0_{d \times (P+1-n)} \\ 2L_1k_j^\top x_1 - L_1^2 & 2L_1k_j^\top x_2 - L_1^2 & \cdots & 2L_1k_j^\top x_n - L_1^2 & 0_{d \times (P+1-n)} \\ \vdots & \vdots & & \vdots & \vdots \\ 2L_Pk_j^\top x_1 - L_P^2 & 2L_Pk_j^\top x_2 - L_P^2 & \cdots & 2L_Pk_j^\top x_n - L_P^2 & 0_{d \times (P+1-n)} \end{bmatrix}}_{(P+1) \times (P+1)} \right) \\
&\quad (By \ matrix \ multiplication) \\
&= \text{Softmax}_\beta \left(\underbrace{\begin{bmatrix} -(k_j^\top x_1 - L_0)^2 + (k_j^\top x_1)^2 & \cdots & -(k_j^\top x_n - L_0)^2 + (k_j^\top x_n)^2 & 0_{d \times (P+1-n)} \\ -(k_j^\top x_1 - L_1)^2 + (k_j^\top x_1)^2 & \cdots & -(k_j^\top x_n - L_1)^2 + (k_j^\top x_n)^2 & 0_{d \times (P+1-n)} \\ \vdots & & \vdots & \vdots \\ -(k_j^\top x_1 - L_P)^2 + (k_j^\top x_1)^2 & \cdots & -(k_j^\top x_n - L_P)^2 + (k_j^\top x_n)^2 & 0_{d \times (P+1-n)} \end{bmatrix}}_{(P+1) \times (P+1)} \right) \\
&\quad (2L_i k_j^\top x_m - L_i^2 = -(k_j^\top x_m - L_i)^2 + (k_j^\top x_m)^2 \ where \ i \in \{0\} \cup [P] \ and \ m \in [n]) \\
&= \text{Softmax}_\beta \left(\underbrace{\begin{bmatrix} -(k_j^\top x_1 - L_0)^2 & \cdots & -(k_j^\top x_n - L_0)^2 & 0_{d \times (P+1-n)} \\ -(k_j^\top x_1 - L_1)^2 & \cdots & -(k_j^\top x_n - L_1)^2 & 0_{d \times (P+1-n)} \\ \vdots & & \vdots & \vdots \\ -(k_j^\top x_1 - L_P)^2 & \cdots & -(k_j^\top x_n - L_P)^2 & 0_{d \times (P+1-n)} \end{bmatrix}}_{(P+1) \times (P+1)} \right), \quad (D.66)
\end{aligned}$$

and the last line holds since the following property of Softmax_β

$$\text{Softmax}_\beta(v) = \text{Softmax}_\beta(v + C \cdot 1_{(P+1) \times 1}),$$

for any vector $v \in \mathbb{R}^{P+1}$ and $C \in \mathbb{R}$.

From (D.66), we have

$$\text{Softmax}_\beta((\hat{K}_j^K)^\top \hat{Q}_j^K) \cdot W_{\hat{O}}^{K;j}$$

$$\begin{aligned}
&= \text{Softmax}_\beta \left(\underbrace{\begin{bmatrix} -(k_j^\top x_1 - L_0)^2 & \cdots & -(k_j^\top x_n - L_0)^2 & 0_{d \times (P-n+1)} \\ -(k_j^\top x_1 - L_1)^2 & \cdots & -(k_j^\top x_n - L_1)^2 & 0_{d \times (P-n+1)} \\ \vdots & & \vdots & \vdots \\ -(k_j^\top x_1 - L_P)^2 & \cdots & -(k_j^\top x_n - L_P)^2 & 0_{d \times (P-n+1)} \end{bmatrix}}_{(P+1) \times (P+1)} \right) \underbrace{\begin{bmatrix} I_n \\ 0_{(P+1-n) \times n} \end{bmatrix}}_{(P+1) \times n} \\
&= \text{Softmax}_\beta \left(\underbrace{\begin{bmatrix} -(k_j^\top x_1 - L_0)^2 & \cdots & -(k_j^\top x_n - L_0)^2 \\ -(k_j^\top x_1 - L_1)^2 & \cdots & -(k_j^\top x_n - L_1)^2 \\ \vdots & & \vdots \\ -(k_j^\top x_1 - L_P)^2 & \cdots & -(k_j^\top x_n - L_P)^2 \end{bmatrix}}_{(P+1) \times n} \right), \tag{D.67}
\end{aligned}$$

where the last line follows from the column-wise nature of the $\text{Softmax}_\beta()$ function.

From (D.67), we have

$$(\text{Softmax}_\beta((\hat{K}_j^K)^\top \hat{Q}_j^K) \cdot W_{\hat{O}}^{K;j})_{r,c} = \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}},$$

for every $r \in \{0\} \cup [P]$ and $c \in [n]$.

Thus, for each column in (D.67), we have

$$(\text{Softmax}_\beta((\hat{K}_j^K)^\top \hat{Q}_j^K) \cdot W_{\hat{O}}^{K;j})_{:,c} = \underbrace{\sum_{r=0}^P \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} e_{r+1}^{(P+1)}}_{(P+1) \times 1}. \tag{D.68}$$

Combining \hat{V}_j^K and $(\text{Softmax}_\beta((\hat{K}_j^K)^\top \hat{Q}_j^K) \cdot W_{\hat{O}}^{K;j})_{:,c}$, we obtain

$$\begin{aligned}
&\hat{V}_j^K \cdot (\text{Softmax}_\beta((\hat{K}_j^K)^\top \hat{Q}_j^K) \cdot W_{\hat{O}}^{K;j})_{:,c} \\
&= \underbrace{e_j^{(3n)} [L_0 \ L_1 \ \cdots \ L_{n-1} \ L_n \ \cdots \ L_P]}_{3n \times 1} \underbrace{\sum_{r=0}^P \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} e_{r+1}^{(P+1)}}_{(P+1) \times 1} \\
&\quad \text{(By (D.65) and (D.68))} \\
&= \underbrace{e_j^{(3n)} \sum_{r=0}^P \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}}}_{3n \times 1} \underbrace{[L_0 \ L_1 \ \cdots \ L_{n-1} \ L_n \ \cdots \ L_P]}_{1 \times (P+1)} \underbrace{e_{r+1}^{(P+1)}}_{(P+1) \times 1} \\
&\quad \text{(By the distributivity of matrix multiplication)} \\
&= \underbrace{e_j^{(3n)} \sum_{r=0}^P \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}}}_{3n \times 1} L_r \quad (e_{r+1}^{(P+1)} \text{ selects } L_r \text{ for every } r \in \{0\} \cup [P]) \\
&= \sum_{r=0}^P \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} L_r e_j^{(3n)}, \tag{D.69}
\end{aligned}$$

for every $c \in [n]$.

Hence,

$$\hat{V}_j^K \cdot (\text{Softmax}_\beta((\hat{K}_j^K)^\top \hat{Q}_j^K) \cdot W_{\hat{O}}^{K;j})_{:,c},$$

is a weighted average of the vectors $L_r e_j^{(3n)}$, with weights depending on β and the distance between L_r and $k_j^\top x_c$.

3186 We recall: $\widehat{V}_j^K \cdot (\text{Softmax}_\beta((\widehat{K}_j^K)^\top \widehat{Q}_j^K) \cdot W_{\widehat{O}}^{K;j})_{:,c}$ gives the c -th column of Attn_j^K . Therefore,
 3187 each column of Attn_j^K stores a weighted sum as an approximator for each entry in $k_j^\top X$.
 3188

3189 We show that (D.69) is close to $k_j^\top x_c$:

$$\begin{aligned}
 3190 \quad & \|\widehat{V}_j^K \cdot (\text{Softmax}_\beta((\widehat{K}_j^K)^\top \widehat{Q}_j^K) \cdot W_{\widehat{O}}^{K;j})_{:,c} - k_j^\top x_c \cdot e_j^{(3n)}\|_\infty \\
 3191 \quad & = \left\| \underbrace{\sum_{r=0}^P \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} L_r \cdot e_j^{(3n)} - \underbrace{k_j^\top x_c \cdot e_j^{(3n)}}_{\text{scalar}} \right\|_\infty \quad (\text{By (D.69)}) \\
 3192 \quad & = \left\| \left(\sum_{r=0}^P \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} L_r - k_j^\top x_c \right) \cdot e_j^{(3n)} \right\|_\infty \\
 3193 \quad & = \left| \sum_{r=0}^P \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} L_r - k_j^\top x_c \right| \quad (\text{We have one non-zero entry in } e_j^{(3n)}) \\
 3194 \quad & = \left| \sum_{r=0}^P \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} L_r - \sum_{r=0}^P \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} k_j^\top x_c \right| \\
 3195 \quad & \quad \quad \quad (\text{By } (\sum_{r=0}^P e^{-\beta(L_r - k_j^\top x_c)^2}) / (\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}) = 1) \\
 3196 \quad & = \left| \sum_{r=0}^P \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} (L_r - k_j^\top x_c) \right| \\
 3197 \quad & = \left| \sum_{r:|L_r - k_j^\top x_c| < \Delta L} \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} (L_r - k_j^\top x_c) + \sum_{r:|L_r - k_j^\top x_c| \geq \Delta L} \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} (L_r - k_j^\top x_c) \right| \\
 3198 \quad & \quad \quad \quad (\text{By dividing the } L_r \text{ into two groups: one within } \Delta L \text{ away from } k_j^\top x_c, \text{ one at least } \Delta L \text{ away from } k_j^\top x_c) \\
 3199 \quad & \leq \left| \sum_{r:|L_r - k_j^\top x_c| < \Delta L} \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} (L_r - k_j^\top x_c) \right| + \left| \sum_{r:|L_r - k_j^\top x_c| \geq \Delta L} \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} (L_r - k_j^\top x_c) \right| \\
 3200 \quad & \quad \quad \quad (\text{By triangle inequality}) \\
 3201 \quad & \leq \underbrace{\sum_{r:|L_r - k_j^\top x_c| < \Delta L} \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} |L_r - k_j^\top x_c|}_{:= (I)} + \underbrace{\sum_{r:|L_r - k_j^\top x_c| \geq \Delta L} \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} |L_r - k_j^\top x_c|}_{:= (II)}, \\
 3202 \quad & \quad \quad \quad (\text{D.70})
 \end{aligned}$$

3223 and the last inequality holds due to the triangle inequality and the non-negativity of the exponential
 3224 function.

3225 For term (I) in (D.70), we have

$$\begin{aligned}
 3226 \quad & (I) \\
 3227 \quad & = \sum_{r:|L_r - k_j^\top x_c| < \Delta L} \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} |L_r - k_j^\top x_c| \quad (\text{By the definition of term (I) in (D.70)}) \\
 3228 \quad & < \sum_{r:|L_r - k_j^\top x_c| < \Delta L} \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} \Delta L \quad (\text{In this group of } L_r, |L_r - k_j^\top x_c| < \Delta L) \\
 3229 \quad & \leq \Delta L, \quad (\text{D.71})
 \end{aligned}$$

3230 and the last inequality holds since

$$\frac{\sum_{r:|L_r - k_j^\top x_c| < \Delta L} e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} \leq 1. \quad (\text{The numerator is part of the denominator})$$

3240 For term (II) in (D.70), we have
 3241 (II)
 3242
$$= \sum_{r:|L_r - k_j^\top x_c| \geq \Delta L} \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} |L_r - k_j^\top x_c| \quad (\text{By the definition of term (II) in (D.70)})$$

 3243
$$\leq \sum_{r:|L_r - k_j^\top x_c| \geq \Delta L} \frac{e^{-\beta(L_r - k_j^\top x_c)^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} 2dB^2$$

 3244
$$\quad (\text{By (D.51) and (D.52), we have } |L_r - k_j^\top x_c| \leq 2dB^2)$$

 3245
$$\leq \sum_{r:|L_r - k_j^\top x_c| \geq \Delta L} \frac{e^{-\beta \Delta L^2}}{\sum_{s=0}^P e^{-\beta(L_s - k_j^\top x_c)^2}} 2dB^2$$

 3246
$$\quad (\text{By } |L_r - k_j^\top x_c| \geq \Delta L, \text{ we have } e^{-\beta(L_r - k_j^\top x_c)^2} \leq e^{-\beta \Delta L^2})$$

 3247
$$\leq \sum_{r:|L_r - k_j^\top x_c| \geq \Delta L} \frac{e^{-\beta \Delta L^2}}{\max_s \{e^{-\beta(L_s - k_j^\top x_c)^2}\}} 2dB^2$$

 3248
$$\quad (\text{We only keep the contribution from the nearest } L_s \text{ to } k_j^\top x_c)$$

 3249
$$\leq \sum_{r:|L_r - k_j^\top x_c| \geq \Delta L} \frac{e^{-\beta \Delta L^2}}{e^{-\beta \frac{\Delta L^2}{4}}} 2dB^2, \quad (\text{D.72})$$

 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261

3262 and the last inequality holds since, by our construction of L_s in (D.52), the distance from $k_j^\top x_c$ to
 3263 the nearest L_s is at most $\frac{\Delta L}{2}$. That is,

3264
$$|L_{s_0} - k_j^\top x_c| \leq \frac{\Delta L}{2}, \quad \text{for } s_0 = \operatorname{argmin}_s |L_s - k_j^\top x_c|.$$

3265 From (D.72), we have

3266
$$\sum_{|L_r - k_j^\top x_c| \geq \Delta L} e^{-\frac{3}{4}\beta \Delta L^2} 2dB^2 \leq P e^{-\frac{3}{4}\beta \Delta L^2} 2dB^2, \quad (\text{D.73})$$

3267 and the last inequality holds since, by our construction of L_r in (D.52), at most P points satisfy
 3268 $|L_r - k_j^\top x_c| \geq \Delta L$. This P -point scenario occurs when the value of $k_j^\top x_c$ equals one of the L_r grid
 3269 points.

3270 Combining (D.70), (D.71), and (D.73), we have:

3271
$$\|\hat{V}_j^K \cdot (\text{Softmax}_\beta((\hat{K}_j^K)^\top \hat{Q}_j^K) \cdot W_{\hat{O}}^{K;j})_{:,c} - k_j^\top x_c \cdot e_j^{(3n)}\|_\infty \leq \underbrace{\Delta L}_{\text{:=}(a)} + \underbrace{P e^{-\frac{3}{4}\beta \Delta L^2} 2dB^2}_{\text{:=}(b)}.$$

 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293

For term (a) in (D.74), we recall

$$\Delta L = \frac{2dB^2}{P}. \quad (\text{By the definition of } \Delta L. \text{ i.e., (D.53)})$$

To bound ΔL , we choose

$$P \geq \frac{4dB^2}{\epsilon_1},$$

for any $\epsilon_1 > 0$, such that

$$\Delta L \leq \frac{\epsilon_1}{2}.$$

For term (b) in (D.74), we set

$$\beta \geq \frac{4}{3} \frac{1}{(\Delta L)^2} \ln\left(\frac{4dB^2 P}{\epsilon_1}\right),$$

such that

$$Pe^{-\frac{3}{4}\beta\Delta L^2}2dB^2 \leq \frac{\epsilon_1}{2}.$$

Thus, from (D.74), we have

$$\begin{aligned} \|\widehat{V}_j^K \cdot (\text{Softmax}_\beta((\widehat{K}_j^K)^\top \widehat{Q}_j^K) \cdot W_{\widehat{O}}^{K;j})_{:,c} - \underbrace{k_j^\top x_c}_{\text{scalar}} \underbrace{e_j^{(3n)}}_{3n \times 1} \|_\infty &\leq \Delta L + Pe^{-\frac{3}{4}\beta\Delta L^2}2dB^2 \\ &\leq \frac{\epsilon_1}{2} + \frac{\epsilon_1}{2} \\ &= \epsilon_1, \end{aligned}$$

and this leads to

$$\|\widehat{V}_j^K \cdot \text{Softmax}_\beta((\widehat{K}_j^K)^\top \widehat{Q}_j^K) \cdot W_{\widehat{O}}^{K;j} - \underbrace{e_j^{(3n)}}_{3n \times 1} \underbrace{k_j^\top X}_{1 \times n} \|_\infty \leq \epsilon_1. \quad (\text{D.75})$$

We recall

$$\begin{aligned} &\widehat{V}_j^K \cdot \text{Softmax}_\beta((\widehat{K}_j^K)^\top \widehat{Q}_j^K) \cdot W_{\widehat{O}}^{K;j} \\ &= W_{\widehat{V}}^{K;j} \text{Linear}_j^K \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) \cdot \text{Softmax}_\beta((W_{\widehat{K}}^{K;j} \text{Linear}_j^K \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right))^\top W_{\widehat{Q}}^{K;j} \text{Linear}_j^K \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right)) \cdot W_{\widehat{O}}^{K;j} \\ &\quad \text{(By the definition of } \widehat{K}_j^K, \widehat{Q}_j^K, \text{ and } \widehat{V}_j^K) \\ &= \text{Attn}_j^K \circ \text{Linear}_j^K \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right). \quad \text{(By the definition of } \text{Attn}_j^K) \end{aligned}$$

Thus, we write (D.75) as

$$\|\text{Attn}_j^K \circ \text{Linear}_j^K \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) - \underbrace{e_j^{(3n)}}_{3n \times 1} \underbrace{k_j^\top X}_{1 \times n} \|_\infty \leq \epsilon_1,$$

and we sum over the index j to obtain the approximation across rows

$$\left\| \sum_{j=1}^n \text{Attn}_j^K \circ \text{Linear}_j^K \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) - \begin{bmatrix} K \\ 0_{n \times n} \\ 0_{n \times n} \end{bmatrix} \right\|_\infty \leq \epsilon_1, \quad (\text{D.76})$$

for any $\epsilon_1 > 0$.

In-Context Calculation of Q and V . We approximate Q and V using the same procedure as that of K .

We start with Q .

Again, we define Linear_j^Q preceding Attn_j^Q first. We construct Linear_j^Q similarly to Linear_j^K . The only difference is the position of the identity I_d in the first term. Explicitly,

$$\begin{aligned} \text{Linear}_j^Q(Z) &:= \underbrace{\begin{bmatrix} 0_{d \times d} & 0_{d \times d} & 0_{d \times d} & 0_{d \times d} \\ 0_{d \times d} & 0_{d \times d} & I_d & 0_{d \times d} \\ 0_{3 \times d} & 0_{3 \times d} & 0_{3 \times d} & 0_{3 \times d} \end{bmatrix}}_{(2d+3) \times 4d} \underbrace{Z}_{4d \times n} \underbrace{\begin{bmatrix} 2L_0 e_j^{(n)} & 2L_1 e_j^{(n)} & \cdots & 2L_P e_j^{(n)} \end{bmatrix}}_{n \times (P+1)} + \\ &\quad \underbrace{\begin{bmatrix} I_d & 0_{d \times d} & 0_{d \times 2d} \\ 0_{d \times d} & 0_{d \times d} & 0_{d \times 2d} \\ 0_{3 \times d} & 0_{3 \times d} & 0_{3 \times 2d} \end{bmatrix}}_{(2d+3) \times 4d} \underbrace{Z}_{4d \times n} \underbrace{\begin{bmatrix} I_n & 0_{n \times (P+1-n)} \end{bmatrix}}_{n \times (P+1)} + \underbrace{\begin{bmatrix} 0_{2d \times (P+1)} \\ M_1 \\ M_L \end{bmatrix}}_{(2d+3) \times (P+1)}. \end{aligned}$$

3348 Linear $_j^Q$ takes $[X^\top \quad W_K \quad W_Q \quad W_V]^\top$ as input and outputs:
 3349

$$3350 \quad \text{Linear}_j^Q \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) = \underbrace{\begin{bmatrix} x_1 & x_2 & \cdots & x_n & 0_d & \cdots & 0_d \\ 2L_0 q_j & 2L_1 q_j & \cdots & 2L_{n-1} q_j & 2L_n q_j & \cdots & 2L_P q_j \\ 1 & 1 & \cdots & 1 & 0 & \cdots & 0 \\ L_0 & L_1 & \cdots & L_{n-1} & L_n & \cdots & L_P \\ -L_0^2 & -L_1^2 & \cdots & -L_{n-1}^2 & -L_n^2 & \cdots & -L_P^2 \end{bmatrix}}_{(d+1) \times (P+1)}.$$

3355 Next, we construct $\text{Attn}_j^Q : \mathbb{R}^{(2d+3) \times (P+1)} \rightarrow \mathbb{R}^{3n \times n}$ to be
 3356

$$3357 \quad \text{Attn}_j^Q(D) := \underbrace{W_{\hat{V}}^{Q;j} D}_{3n \times (P+1)} \cdot \underbrace{\text{Softmax}_\beta((W_{\hat{K}}^{Q;j} D)^\top W_{\hat{Q}}^{Q;j} D)}_{(P+1) \times (P+1)} \cdot \underbrace{W_{\hat{O}}^{Q;j}}_{(P+1) \times n},$$

3360 where $D \in \mathbb{R}^{(2d+3) \times (P+1)}$ denotes any input, and

$$3361 \quad W_{\hat{K}}^{Q;j} := W_{\hat{K}}^{K;j} = \underbrace{\begin{bmatrix} 0_{d \times d} & I_d & 0_{d \times 1} & 0_{d \times 1} & 0_{d \times 1} \\ 0_{1 \times d} & 0_{1 \times d} & 0 & 0 & 1 \end{bmatrix}}_{(d+1) \times (2d+3)},$$

$$3365 \quad W_{\hat{Q}}^{Q;j} := W_{\hat{Q}}^{K;j} = \underbrace{\begin{bmatrix} I_d & 0_{d \times d} & 0_{d \times 1} & 0_{d \times 1} & 0_{d \times 1} \\ 0_{1 \times d} & 0_{1 \times d} & 1 & 0 & 0 \end{bmatrix}}_{(d+1) \times (2d+3)},$$

$$3369 \quad W_{\hat{V}}^{Q;j} := \underbrace{e_{n+j}^{(3n)} [0_{1 \times d} \quad 0_{1 \times d} \quad 0 \quad 1 \quad 0]}_{3n \times 1 \quad 1 \times (2d+3)},$$

$$3372 \quad W_{\hat{O}}^{Q;j} := W_{\hat{O}}^{K;j} = \underbrace{\begin{bmatrix} I_n \\ 0_{(P+1-n) \times n} \end{bmatrix}}_{(P+1) \times n}.$$

3375 We define the \hat{K}_j^Q of Attn_j^Q to be

$$3378 \quad \hat{K}_j^Q := W_{\hat{K}}^{Q;j} \cdot \text{Linear}_j^Q \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) = \underbrace{\begin{bmatrix} 2L_0 q_j & 2L_1 q_j & \cdots & 2L_{n-1} q_j & \cdots & 2L_P q_j \\ -L_0^2 & -L_1^2 & \cdots & -L_{n-1}^2 & \cdots & -L_P^2 \end{bmatrix}}_{(d+1) \times (P+1)}. \quad (\text{D.77})$$

3382 We define the \hat{Q}_j^Q of Attn_j^Q to be

$$3384 \quad \hat{Q}_j^Q := W_{\hat{Q}}^{Q;j} \cdot \text{Linear}_j^Q \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) = \underbrace{\begin{bmatrix} x_1 & x_2 & \cdots & x_n & 0_{d \times (P+1-n)} \\ 1 & 1 & \cdots & 1 & 0_{1 \times (P+1-n)} \end{bmatrix}}_{(d+1) \times (P+1)}. \quad (\text{D.78})$$

3388 We define the \hat{V}_j^Q of Attn_j^Q to be

$$3390 \quad \hat{V}_j^Q := W_{\hat{V}}^{Q;j} \cdot \text{Linear}_j^Q \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) = \underbrace{e_{n+j}^{(3n)} [L_0 \quad L_1 \quad \cdots \quad L_{n-1} \quad L_n \quad \cdots \quad L_P]}_{3n \times 1 \quad 1 \times (P+1)}. \quad (\text{D.79})$$

3395 Then, by going through the same calculations as those of K , we have

$$3396 \quad \left\| \sum_{j=1}^n \text{Attn}_j^Q \circ \text{Linear}_j^Q \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) - \begin{bmatrix} 0_{n \times n} \\ Q \\ 0_{n \times n} \end{bmatrix} \right\|_\infty \leq \epsilon_1. \quad (\text{D.80})$$

3402 To approximate V , we define
 3403

$$\begin{aligned} 3404 \quad \text{Linear}_j^V(Z) &:= \underbrace{\begin{bmatrix} 0_{d \times d} & 0_{d \times d} & 0_{d \times d} & 0_{d \times d} \\ 0_{d \times d} & 0_{d \times d} & 0_{d \times d} & I_d \\ 0_{3 \times d} & 0_{3 \times d} & 0_{3 \times d} & 0_{3 \times d} \end{bmatrix}}_{(2d+3) \times 4d} \underbrace{Z}_{4d \times n} \underbrace{\begin{bmatrix} 2L_0 e_j^{(n)} & 2L_1 e_j^{(n)} & \cdots & 2L_P e_j^{(n)} \end{bmatrix}}_{n \times (P+1)} + \\ 3405 \\ 3406 \\ 3407 \\ 3408 \\ 3409 \\ 3410 \\ 3411 \\ 3412 \\ 3413 \\ 3414 \\ 3415 \\ 3416 \\ 3417 \\ 3418 \\ 3419 \\ 3420 \\ 3421 \\ 3422 \\ 3423 \\ 3424 \\ 3425 \\ 3426 \\ 3427 \\ 3428 \\ 3429 \\ 3430 \\ 3431 \\ 3432 \\ 3433 \\ 3434 \\ 3435 \\ 3436 \\ 3437 \\ 3438 \\ 3439 \\ 3440 \\ 3441 \\ 3442 \\ 3443 \\ 3444 \\ 3445 \\ 3446 \\ 3447 \\ 3448 \\ 3449 \\ 3450 \\ 3451 \\ 3452 \\ 3453 \\ 3454 \\ 3455 \end{aligned} \quad \begin{bmatrix} I_d & 0_{d \times d} & 0_{d \times 2d} \\ 0_{d \times d} & 0_{d \times d} & 0_{d \times 2d} \\ 0_{3 \times d} & 0_{3 \times d} & 0_{3 \times 2d} \end{bmatrix} \underbrace{Z}_{4d \times n} \underbrace{\begin{bmatrix} I_n & 0_{n \times (P+1-n)} \end{bmatrix}}_{n \times (P+1)} + \underbrace{\begin{bmatrix} 0_{2d \times (P+1)} \\ M_1 \\ M_L \end{bmatrix}}_{(2d+3) \times (P+1)}.$$

Linear $_j^V$ outputs in a similar manner as Linear $_j^K$:

$$\text{Linear}_j^V(Z) = \begin{bmatrix} x_1 & x_2 & \cdots & x_n & 0_d & \cdots & 0_d \\ 2L_0 v_j & 2L_1 v_j & \cdots & 2L_{n-1} v_j & 2L_n v_j & \cdots & 2L_P v_j \\ 1 & 1 & \cdots & 1 & 0 & \cdots & 0 \\ L_0 & L_1 & \cdots & L_{n-1} & L_n & \cdots & L_P \\ -L_0^2 & -L_1^2 & \cdots & -L_{n-1}^2 & -L_n^2 & \cdots & -L_P^2 \end{bmatrix}.$$

Next, we construct $\text{Attn}_j^V : \mathbb{R}^{(2d+3) \times (P+1)} \rightarrow \mathbb{R}^{3n \times n}$ to be

$$\text{Attn}_j^V := \underbrace{W_{\hat{V}}^{V;j} D}_{3n \times (P+1)} \cdot \underbrace{\text{Softmax}_\beta((W_{\hat{K}}^{V;j} D)^\top W_{\hat{Q}}^{V;j} D)}_{(P+1) \times (P+1)} \underbrace{W_{\hat{O}}^{V;j}}_{(P+1) \times n},$$

where $D \in \mathbb{R}^{(2d+3) \times (P+1)}$ denotes any input, and

$$\begin{aligned} W_{\hat{K}}^{V;j} &:= W_{\hat{K}}^{K;j} = \underbrace{\begin{bmatrix} 0_{d \times d} & I_d & 0_{d \times 1} & 0_{d \times 1} & 0_{d \times 1} \\ 0_{1 \times d} & 0_{1 \times d} & 0 & 0 & 1 \end{bmatrix}}_{(d+1) \times (2d+3)}, \\ W_{\hat{Q}}^{V;j} &:= W_{\hat{Q}}^{K;j} = \underbrace{\begin{bmatrix} I_d & 0_{d \times d} & 0_{d \times 1} & 0_{d \times 1} & 0_{d \times 1} \\ 0_{1 \times d} & 0_{1 \times d} & 1 & 0 & 0 \end{bmatrix}}_{(d+1) \times (2d+3)}, \\ W_{\hat{V}}^{V;j} &:= \underbrace{e_{2n+j}^{(3n)} [0_{1 \times d} \ 0_{1 \times d} \ 0 \ 1 \ 0]}_{3n \times 1 \ 1 \times (2d+3)}, \\ W_{\hat{O}}^{V;j} &:= W_{\hat{O}}^{K;j} = \underbrace{\begin{bmatrix} I_n \\ 0_{(P+1-n) \times n} \end{bmatrix}}_{(P+1) \times n}. \end{aligned}$$

We define the \hat{K}_j^V to be

$$\hat{K}_j^V := W_{\hat{K}}^{V;j} \cdot \text{Linear}_j^V \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) = \underbrace{\begin{bmatrix} 2L_0 v_j & 2L_1 v_j & \cdots & 2L_{n-1} v_j & \cdots & 2L_P v_j \\ -L_0^2 & -L_1^2 & \cdots & -L_{n-1}^2 & \cdots & -L_P^2 \end{bmatrix}}_{(d+1) \times (P+1)}. \quad (\text{D.81})$$

We define the \hat{Q}_j^V to be

$$\hat{Q}_j^V := W_{\hat{Q}}^{V;j} \cdot \text{Linear}_j^V \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) = \underbrace{\begin{bmatrix} x_1 & x_2 & \cdots & x_n & 0_{d \times (P+1-n)} \\ 1 & 1 & \cdots & 1 & 0_{1 \times (P+1-n)} \end{bmatrix}}_{(d+1) \times (P+1)}. \quad (\text{D.82})$$

3456 We define the \widehat{V}_j^V to be
 3457

$$3458 \quad \widehat{V}_j^V := W_{\widehat{V}}^{V;j} \cdot \text{Linear}_j^V \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) = \underbrace{e_{2n+j}^{(3n)} \left[L_0 \quad L_1 \quad \cdots \quad L_{n-1} \quad L_n \quad \cdots \quad L_P \right]}_{3n \times 1} \underbrace{\left[L_0 \quad L_1 \quad \cdots \quad L_{n-1} \quad L_n \quad \cdots \quad L_P \right]}_{1 \times (P+1)}. \quad (\text{D.83})$$

3462 Similarly, by going through the same calculations as those of K , we have
 3463

$$3464 \quad \left\| \sum_{j=1}^n \text{Attn}_j^V \circ \text{Linear}_j^V \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) - \begin{bmatrix} 0_{n \times n} \\ 0_{n \times n} \\ V \end{bmatrix} \right\|_\infty \leq \epsilon_1. \quad (\text{D.84})$$

3468 Then, by combining (D.76), (D.80), and (D.84), we have
 3469

$$3470 \quad \left\| \sum_{j=1}^n \text{Attn}_j^K \circ \text{Linear}_j^K \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) - \begin{bmatrix} K \\ 0_{n \times n} \\ 0_{n \times n} \end{bmatrix} + \sum_{j=1}^n \text{Attn}_j^Q \circ \text{Linear}_j^Q \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) - \begin{bmatrix} 0_{n \times n} \\ Q \\ 0_{n \times n} \end{bmatrix} + \right. \\ 3471 \quad \left. \sum_{j=1}^n \text{Attn}_j^V \circ \text{Linear}_j^V \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) - \begin{bmatrix} 0_{n \times n} \\ 0_{n \times n} \\ V \end{bmatrix} \right\|_\infty \leq \epsilon_1.$$

3479 As previously stated in (D.54), Linear_j^K , Linear_j^Q and Linear_j^V denote Linear_j , Linear_{n+j} and
 3480 Linear_{2n+j} respectively. Also, as in (D.55), Attn_j^K , Attn_j^Q and Attn_j^V denote Attn_j , Attn_{n+j} and
 3481 Attn_{2n+j} .
 3482

3483 Thus, we have

$$3484 \quad \left\| \sum_{j=1}^{3n} \text{Attn}_j \circ \text{Linear}_j \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right) - \underbrace{\begin{bmatrix} K \\ Q \\ V \end{bmatrix}}_{3n \times n} \right\|_\infty \leq \epsilon_1. \quad (\text{D.85})$$

3489 We define
 3490

$$3491 \quad \begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix} := \sum_{j=1}^{3n} \text{Attn}_j \circ \text{Linear}_j \left(\begin{bmatrix} X \\ W_K^\top \\ W_Q^\top \\ W_V^\top \end{bmatrix} \right),$$

3495 such that (D.85) becomes

$$3496 \quad \left\| \begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix} - \begin{bmatrix} K \\ Q \\ V \end{bmatrix} \right\|_\infty \leq \epsilon_1. \quad (\text{D.86})$$

3502 **Step 3: Single-Head Assembly of the Attention Output.** Our goal in this part is to reconstruct the
 3503 attention mechanism

$$3504 \quad V' \text{Softmax}_\beta((K')^\top Q'), \quad \text{and} \quad V \text{Softmax}_\beta((K)^\top Q),$$

3505 from K' , Q' , V' and K , Q , V via Attn_s .
 3506

3507 To achieve the reconstruction of attention mechanisms, we build Attn_s as

$$3508 \quad \text{Attn}_s(Z) := [0_{n \times 2n} \quad I_n] Z \cdot \text{Softmax}_\beta(([I_n \quad 0_{n \times 2n}] Z)^\top [0_{n \times n} \quad I_n \quad 0_{n \times n}] Z),$$

3509 where $Z \in \mathbb{R}^{3n \times n}$ denotes any input.

3510 Then, we have

3511

$$3512 \text{Attn}_s(\underbrace{\begin{bmatrix} K \\ Q \\ V \end{bmatrix}}_{3n \times n}) = \underbrace{V}_{n \times n} \text{Softmax}_\beta(\underbrace{(K)^\top Q}_{n \times n}),$$

3513

3514 and

3515

$$3516 \text{Attn}_s(\underbrace{\begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix}}_{3n \times n}) = \underbrace{V'}_{n \times n} \text{Softmax}_\beta(\underbrace{(K')^\top Q'}_{n \times n}).$$

3517

3518 **Step 4: Error Bound** From the results of **Step 3**, we have

3519

$$\begin{aligned} 3520 \text{Attn}_s(\begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix}) - \text{Attn}_s(\begin{bmatrix} K \\ Q \\ V \end{bmatrix}) \\ 3521 = V' \text{Softmax}_\beta(K'^\top Q') - V \text{Softmax}_\beta(K^\top Q) \\ 3522 = V' \text{Softmax}_\beta(K'^\top Q') - V \text{Softmax}_\beta(K'^\top Q') + V \text{Softmax}_\beta(K'^\top Q') - V \text{Softmax}_\beta(K^\top Q) \\ 3523 = (V' - V) \text{Softmax}_\beta(K'^\top Q') + V(\text{Softmax}_\beta(K'^\top Q') - \text{Softmax}_\beta(K^\top Q)). \end{aligned}$$

3524

3525 Thus, we have

3526

$$\begin{aligned} 3527 \|\text{Attn}_s(\begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix}) - \text{Attn}_s(\begin{bmatrix} K \\ Q \\ V \end{bmatrix})\|_\infty \\ 3528 = \|(V' - V) \text{Softmax}_\beta(K'^\top Q') + V(\text{Softmax}_\beta(K'^\top Q') - \text{Softmax}_\beta(K^\top Q))\|_\infty \\ 3529 \leq \underbrace{\|(V' - V) \text{Softmax}_\beta(K'^\top Q')\|_\infty}_{\text{:= (A)}} + \underbrace{\|V(\text{Softmax}_\beta(K'^\top Q') - \text{Softmax}_\beta(K^\top Q))\|_\infty}_{\text{:= (B)}}, \quad (\text{D.87}) \\ 3530 \end{aligned}$$

3531

3532 and the last inequality follows from the triangle inequality.

3533

3534 For term (A) in (D.87), since each column in $\text{Softmax}_\beta(K'^\top Q')$ sums up to 1, then for each column of (A),

3535

$$\underbrace{(V' - V)}_{n \times n} \underbrace{\text{Softmax}_\beta(K'^\top Q')_{:,j}}_{n \times 1},$$

3536

3537 is a weighted sum of the columns from $(V' - V)$.

3538

3539 Then, we have

3540

$$\|(V' - V) \text{Softmax}_\beta(K'^\top Q')_{:,j}\|_\infty \leq \|V' - V\|_\infty \leq \epsilon_1,$$

3541

3542 and the first inequality holds since the column average of $(V' - V)$ has a maximum entry no greater than the maximum entry among the original columns in $(V' - V)$. The second inequality holds since (D.86). This conclusion holds for every column in term (A), so we obtain

3543

$$(A) \leq \epsilon_1. \quad (\text{D.88})$$

3544

3545 Term (B) in (D.87) is

3546

$$(B) = \|V(\text{Softmax}_\beta(K'^\top Q') - \text{Softmax}_\beta(K^\top Q))\|_\infty.$$

3547

3548 For the simplicity of presentation, we define

3549

$$\Delta S := \text{Softmax}_\beta(K'^\top Q') - \text{Softmax}_\beta(K^\top Q),$$

3550

such that for each entry in (B) , we have

$$\begin{aligned}
 |(V\Delta S)_{ij}| &= \left| \sum_{k=1}^n V_{ik}(\Delta S)_{kj} \right| && \text{(By the definition of matrix multiplication)} \\
 &\leq \sum_{k=1}^n |V_{ik}| \cdot |(\Delta S)_{kj}| && \text{(By triangle inequality and } |ab| = |a| \cdot |b| \text{ for all } a, b \in \mathbb{R}) \\
 &\leq \sum_{k=1}^n \|V\|_\infty \cdot \|\Delta S\|_\infty && \text{(By } |V_{ik}| \leq \|V\|_\infty \text{ and } |(\Delta S)_{kj}| \leq \|\Delta S\|_\infty) \\
 &= n\|V\|_\infty \cdot \|\Delta S\|_\infty,
 \end{aligned}$$

and this leads to

$$(B) \leq n\|V\|_\infty \cdot \|\Delta S\|_\infty. \quad (\text{D.89})$$

For each entry in ΔS , we have

$$\begin{aligned}
 &|(\Delta S)_{i,j}| \\
 &= |(\text{Softmax}_\beta(K'^\top Q') - \text{Softmax}_\beta(K^\top Q))_{i,j}| \\
 &= \left| \frac{e^{\beta K'_i \cdot Q'_j}}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}} - \frac{e^{\beta K_i \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}} \right| && (K'_i, Q'_i, K_i, Q_i \text{ denote the } i\text{-th column in } K', Q', K, Q) \\
 &= \left| \frac{e^{\beta K'_i \cdot Q'_j}}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}} - \frac{e^{\beta K_i \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}} + \frac{e^{\beta K_i \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}} - \frac{e^{\beta K_i \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}} \right| \\
 &\leq \left| \frac{e^{\beta K'_i \cdot Q'_j} - e^{\beta K_i \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}} \right| + \left| e^{\beta K_i \cdot Q_j} \left(\frac{1}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}} - \frac{1}{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}} \right) \right| && \text{(By triangle inequality)} \\
 &= \frac{e^{\beta K'_i \cdot Q'_j}}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}} |1 - e^{\beta(K_i \cdot Q_j - K'_i \cdot Q'_j)}| + \frac{e^{\beta K_i \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}} \left| \frac{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}} - 1 \right| \\
 &\quad \text{(By non-negativity of exponential)} \\
 &< \underbrace{|1 - e^{\beta(K_i \cdot Q_j - K'_i \cdot Q'_j)}|}_{:=(B-1)} + \underbrace{\left| 1 - \frac{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}} \right|}_{:=(B-2)}, \quad (\text{D.90})
 \end{aligned}$$

and the last inequality holds since

$$\frac{e^{\beta K'_i \cdot Q'_j}}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}} < 1, \quad \frac{e^{\beta K_i \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}} < 1.$$

To bound term $(B-1)$ in (D.90), we recall

$$\left\| \underbrace{\begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix}}_{3n \times n} - \underbrace{\begin{bmatrix} K \\ Q \\ V \end{bmatrix}}_{3n \times n} \right\|_\infty \leq \epsilon_1,$$

so

$$\begin{aligned}
 \left\| \underbrace{K' - K}_{n \times n} \right\|_\infty &\leq \epsilon_1, \\
 \left\| \underbrace{Q' - Q}_{n \times n} \right\|_\infty &\leq \epsilon_1.
 \end{aligned}$$

Let K'_i, Q'_i, K_i, Q_i denote the i -th column in K', Q', K, Q , then we have

$$\begin{aligned}
 \underbrace{\Delta K_i}_{n \times 1} &:= \underbrace{K'_i - K_i}_{n \times 1}, \quad \|\Delta K_i\|_\infty \leq \epsilon_1, \\
 \underbrace{\Delta Q_i}_{n \times 1} &:= \underbrace{Q'_i - Q_i}_{n \times 1}, \quad \|\Delta Q_i\|_\infty \leq \epsilon_1.
 \end{aligned}$$

3618 Thus, for term (B-1) in (D.90), we have
 3619
 3620

$$\begin{aligned}
 (B-1) &= |1 - \exp\{\beta(K_i \cdot Q_j - K'_i \cdot Q'_j)\}| \\
 &= |1 - \exp\{\beta(K_i \cdot Q_j - (K_i + \Delta K_i) \cdot (Q_j + \Delta Q_j))\}| \\
 &\quad (\text{By } K'_i = K_i + \Delta K_i \text{ and } Q'_i = Q_i + \Delta Q_i) \\
 &= |1 - \exp\{-\beta(K_i \cdot \Delta Q_j + Q_j \cdot \Delta K_i + \Delta K_i \cdot \Delta Q_j)\}|, \\
 &\quad (\text{By } K_i \cdot Q_j - (K_i + \Delta K_i) \cdot (Q_i + \Delta Q_i) = -(K_i \cdot \Delta Q_j + Q_j \cdot \Delta K_i + \Delta K_i \cdot \Delta Q_j))
 \end{aligned}$$

3621 and we know
 3622

$$\begin{aligned}
 K_i \cdot \Delta Q_j + Q_j \cdot \Delta K_i + \Delta K_i \cdot \Delta Q_j \\
 \leq n \cdot \|K_i\|_\infty \|\Delta Q_j\|_\infty + n \cdot \|Q_j\|_\infty \|\Delta K_i\|_\infty + n \cdot \|\Delta K_i\|_\infty \|\Delta Q_j\|_\infty \\
 &\quad (\text{By } a \cdot b \leq n\|a\|_\infty \|b\|_\infty \text{ for all } a, b \in \mathbb{R}^n) \\
 \leq 2nB_{KQV}\epsilon_1 + n\epsilon_1^2. &\quad (\text{By } \|K_i\|_\infty, \|Q_j\|_\infty \leq B_{KQV} \text{ and } \|\Delta K_i\|_\infty, \|\Delta Q_j\|_\infty \leq \epsilon_1)
 \end{aligned}$$

3623 Thus, we have
 3624

$$(B-1) \leq |1 - e^{-\beta n(2B_{KQV}\epsilon_1 + \epsilon_1^2)}|. \quad (\text{D.91})$$

3625 For term (B-2) in (D.90), we have
 3626

$$\begin{aligned}
 (B-2) &= |1 - \frac{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}}{\sum_{i'=1}^n e^{\beta K'_{i'} \cdot Q'_j}}| \\
 &= |1 - \frac{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}}{\sum_{i'=1}^n e^{\beta(K_{i'} + \Delta K_{i'}) \cdot (Q_j + \Delta Q_j)}}| \\
 &= |1 - \frac{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}}{\sum_{i'=1}^n e^{\beta(K_{i'} \cdot Q_j + K_{i'} \cdot \Delta Q_j + Q_j \cdot \Delta K_{i'} + \Delta K_{i'} \cdot \Delta Q_j)}}|,
 \end{aligned}$$

3627 and for all i' in the denominator, we have
 3628

$$\begin{aligned}
 K_{i'} \cdot Q_j + K_{i'} \cdot \Delta Q_j + Q_j \cdot \Delta K_{i'} + \Delta K_{i'} \cdot \Delta Q_j \\
 \leq K_{i'} \cdot Q_j + n \cdot \|K_{i'}\|_\infty \|\Delta Q_j\|_\infty + n \cdot \|Q_j\|_\infty \|\Delta K_{i'}\|_\infty + n \cdot \|\Delta K_{i'}\|_\infty \|\Delta Q_j\|_\infty \\
 &\quad (\text{By } a \cdot b \leq n\|a\|_\infty \|b\|_\infty \text{ for all } a, b \in \mathbb{R}^n) \\
 \leq K_{i'} \cdot Q_j + 2nB_{KQV}\epsilon_1 + n\epsilon_1^2. &\quad (\text{By } \|K_{i'}\|_\infty, \|Q_j\|_\infty \leq B_{KQV} \text{ and } \|\Delta K_{i'}\|_\infty, \|\Delta Q_j\|_\infty \leq \epsilon_1)
 \end{aligned}$$

3629 Thus,
 3630

$$\begin{aligned}
 (B-2) &= |1 - \frac{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}}{\sum_{i'=1}^n e^{\beta(K_{i'} \cdot Q_j + K_{i'} \cdot \Delta Q_j + Q_j \cdot \Delta K_{i'} + \Delta K_{i'} \cdot \Delta Q_j)}}| \\
 &\leq |1 - \frac{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}}{\sum_{i'=1}^n e^{\beta(K_{i'} \cdot Q_j + 2nB_{KQV}\epsilon_1 + n\epsilon_1^2)}}| \\
 &= |1 - \frac{\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}}{e^{\beta n(2B_{KQV}\epsilon_1 + \epsilon_1^2)} \sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}}| && (e^{\beta n(2B_{KQV}\epsilon_1 + \epsilon_1^2)} \text{ is independent of } i') \\
 &= |1 - e^{-\beta n(2B_{KQV}\epsilon_1 + \epsilon_1^2)}|,
 \end{aligned}$$

3631 and the last equality holds since the common factor $\sum_{i'=1}^n e^{\beta K_{i'} \cdot Q_j}$ cancels out.
 3632

3633 Combining (D.90), (D.91), and (D.92), we have
 3634

$$\begin{aligned}
 &|(\text{Softmax}_\beta(K'^\top Q') - \text{Softmax}_\beta(K^\top Q))_{i,j}| \\
 &< 2|1 - e^{-\beta n(2B_{KQV}\epsilon_1 + \epsilon_1^2)}| \\
 &\leq 2|1 - e^{-\beta n(2B_{KQV}\epsilon_1 + \epsilon_1)}|. && (\text{By requiring } 0 < \epsilon_1 \leq 1)
 \end{aligned}$$

3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671

3672 Thus, for any $0 < \epsilon_0 < 2$, when ϵ_1 satisfies
 3673

$$3674 \quad 0 < \epsilon_1 \leq \min\{1, \frac{-\ln(1 - \frac{\epsilon_0}{2})}{\beta n(2B_{KQV} + 1)}\},$$

3675 we have
 3676

$$3677 \quad |(\text{Softmax}_\beta(K'^\top Q') - \text{Softmax}_\beta(K^\top Q))_{i,j}| < \epsilon_0. \quad (\text{D.93})$$

3678 From (D.89) and (D.93), we have
 3679

$$3680 \quad (B) \leq n\|V\|_\infty\|\Delta S\|_\infty < nB_{KQV}\epsilon_0, \quad (\text{D.94})$$

3681 since $\|V\|_\infty \leq B_{KQV}$ and $\|\Delta S\|_\infty < \epsilon_0$.
 3682

3683 Combining (D.87), (D.88) and (D.94) yields
 3684

$$3685 \quad \|\text{Attn}_s(\begin{bmatrix} K' \\ Q' \\ V' \end{bmatrix}) - \text{Attn}_s(\begin{bmatrix} K \\ Q \\ V \end{bmatrix})\|_\infty < \epsilon_1 + nB_{KQV}\epsilon_0.$$

3687 When we take ϵ_0 and ϵ_1 to be infinitely small, the right-hand side tends to 0.
 3688

3689 This completes the proof. \square
 3690

3692 D.7 PROOF OF COROLLARY 4.2.1

3693
 3694 **Theorem D.7** (Restate of Corollary 4.2.1: In-Context Emulation of Statistical Methods). Let \mathcal{A}
 3695 denote the set of all the in-context algorithms that a single-layer attention is able to approximate. For
 3696 an $a \in \mathcal{A}$ (that is, a specific algorithm), let W_K^a, W_Q^a, W_V^a denote the weights of the attention that
 3697 implements this algorithm. For any $\epsilon > 0$ and any finite set $\mathcal{A}_0 \in \mathcal{A}$, there exists a 2-layer attention
 3698 $\text{Attn} \circ \text{Attn}_m$ such that
 3699

$$3700 \quad \left\| \sum_{j=1}^{3n} \text{Attn}_s \circ \text{Attn}_j \circ \text{Linear}_j \left(\begin{bmatrix} X \\ W^a \end{bmatrix} \right) - a(X) \right\|_\infty \leq \epsilon, \quad a \in \mathcal{A}_0,$$

3701 where W^a is the W defined as Definition 4.2 using W_K^a, W_Q^a, W_V^a .
 3702

3703
 3704
 3705
 3706 *Proof.* Without loss of generality, assume all W_K^a, W_Q^a, W_V^a to be of the same hidden dimension
 3707 since we are always able to pad them to the same size. According to Theorem 4.2, there exists a
 3708 network $\sum_{j=1}^n \text{Attn}_s \circ \text{Attn}_j \circ \text{Linear}_j$ that approximate $a(X)$ with an error no larger than $\epsilon > 0$
 3709 when given input of the form:
 3710

$$3711 \quad \begin{bmatrix} X \\ W_K^{a\top} \\ W_Q^{a\top} \\ W_V^{a\top} \end{bmatrix}.$$

3712 Then for a set of $a \in \mathcal{A}_0$, define $P_m := \max_{a \in \mathcal{A}_0} P_\epsilon^{(a)}$.
 3713

3714 By Theorem 4.2, there exists a network consisting of a self-attention followed by a multi-head
 3715 attention with a linear layer and parameter P equals to P_m , such that for any $a \in \mathcal{A}_0$, we have
 3716

$$3717 \quad \left\| \sum_{j=1}^{3n} \text{Attn}_s \circ \text{Attn}_j \circ \text{Linear}_j \left(\begin{bmatrix} X \\ W_K^{a\top} \\ W_Q^{a\top} \\ W_V^{a\top} \end{bmatrix} \right) - a(X) \right\|_\infty \leq \epsilon, \quad a \in \mathcal{A}_0.$$

3718 This completes the proof. \square
 3719

3720

3726 **E IN-CONTEXT APPLICATION OF STATISTICAL METHODS BY MODERN**
 3727 **HOPFIELD NETWORK**
 3728

3729
 3730 **Definition E.1** (Modern Hopfield Network). Define $Y = (y_1, \dots, y_N)^\top \in \mathbb{R}^{d_y \times N}$ as the raw
 3731 stored pattern, $R = (r_1, \dots, r_S)^\top \in \mathbb{R}^{R_r \times S}$ as the raw state pattern, and $W_Q \in \mathbb{R}^{d \times d_r}$, $W_K \in$
 3732 $\mathbb{R}^{d \times d_y}$, $W_V \in \mathbb{R}^{d_v \times d}$ as the projection matrices. A Hopfield layer Hopfield is defined as:

3733
 3734 $\text{Hopfield}(R; Y, W_Q, W_K, W_V) := \underbrace{W_V \widetilde{W_K Y}}_{d_v \times d} \underbrace{\text{Softmax}(\beta (W_K Y)^\top W_Q R)}_{N \times S} \in \mathbb{R}^{d_v \times S}, \quad (\text{E.1})$
 3735
 3736

3737 where β is a temperature parameter.

3738 With $K \in \mathbb{R}^{d \times N}$ denoting $W_K Y$, $Q \in \mathbb{R}^{d \times S}$ denoting $W_Q R$ and $V \in \mathbb{R}^{d_v \times N}$ denoting $W_V W_K Y$,
 3739 (E.1) writes out as:

3740 $\text{Hopfield}(R; Y, W_Q, W_K, W_V) := V \text{Softmax}(\beta \cdot K^\top Q) \in \mathbb{R}^{d_v \times S}.$
 3741

3742 **Theorem E.1.** Let $Z = [z_1, z_2, \dots, z_n] \in \mathbb{R}^{d \times n}$ denote the input from a compact input domain.
 3743 For any linear transformation $l(z) = a^\top z + b : \mathbb{R}^d \rightarrow \mathbb{R}$, and any continuous function $f : \mathbb{R} \rightarrow \mathbb{R}^o$
 3744 where o is the output dimension, there exists a Hopfield network Hopfield such that

3745 $\|\text{Hopfield}(Z) - [f(l(z_1)) \ f(l(z_2)) \ \dots \ f(l(z_n))] \|_\infty \leq \epsilon,$
 3746

3747 for any $\epsilon > 0$.

3753 *Proof.* We first perform a simple token-wise linear transformation on the input:

3754 $\text{Linear}(Z) := \begin{bmatrix} I_{d \times d} \\ 0_{1 \times d} \end{bmatrix} Z + \begin{bmatrix} 0_{d \times n} \\ 1_{1 \times n} \end{bmatrix} = \begin{bmatrix} Z \\ 1_{1 \times n} \end{bmatrix} \in \mathbb{R}^{(d+1) \times n}.$
 3755
 3756

3757 We then construct W_Q to be:

3758 $W_Q := I_{(d+1)},$
 3759

3760 which is an identity matrix of dimension $\mathbb{R}^{(d+1) \times (d+1)}$.

3761 This yields that

3762 $Q := W_Q \text{Linear}(Z) = \begin{bmatrix} Z \\ 1_{1 \times n} \end{bmatrix} \in \mathbb{R}^{(d+1) \times n}.$
 3763
 3764

3765 Following the definition of *Interpolations* in [Appendix D.6](#), K, V are constructed as (here we omit Y
 3766 since it's not the input):

3767 $K := \begin{bmatrix} 2L_0 a & 2L_1 a & \dots & 2L_P a \\ 2L_0 b - L_0^2 & 2L_1 b - L_1^2 & \dots & 2L_P b - L_P^2 \end{bmatrix},$
 3768
 3769 $V := [f(L_0) \ f(L_1) \ \dots \ f(L_P)].$
 3770

3771 By [Definition E.1](#), we have

3772 $\text{Hopfield}(Z)$
 3773
 3774 $= [f(L_0) \ f(L_1) \ \dots \ f(L_P)] \text{Softmax} \left(\beta \begin{bmatrix} 2l(z_1)L_0 - L_0^2 & 2l(z_2)L_0 - L_0^2 & \dots & 2l(z_n)L_0 - L_0^2 \\ 2l(z_1)L_1 - L_1^2 & 2l(z_2)L_1 - L_1^2 & \dots & 2l(z_n)L_1 - L_1^2 \\ \vdots & \vdots & \ddots & \vdots \\ 2l(z_1)L_P - L_P^2 & 2l(z_2)L_P - L_P^2 & \dots & 2l(z_n)L_P - L_P^2 \end{bmatrix} \right).$
 3775
 3776
 3777

3778 This is equivalent to:

3779 $\text{Hopfield}(Z)$

$$= [f(L_0) \ f(L_1) \ \cdots \ f(L_P)] \text{Softmax} \left(-\beta \begin{bmatrix} (l(z_1) - L_0)^2 & (l(z_2) - L_0)^2 & \cdots & (l(z_n) - L_0)^2 \\ (l(z_1) - L_1)^2 & (l(z_2) - L_1)^2 & \cdots & (l(z_n) - L_1)^2 \\ \vdots & \vdots & & \vdots \\ (l(z_1) - L_P)^2 & (l(z_2) - L_P)^2 & \cdots & (l(z_n) - L_P)^2 \end{bmatrix} \right).$$

For any column $c \in [n]$ in $\text{Hopfield}(Z)$, we have

$$\begin{aligned} \text{Hopfield}(Z)_{:,c} &= [f(L_0) \ f(L_1) \ \cdots \ f(L_P)] \text{Softmax}(-\beta \begin{bmatrix} (l(z_c) - L_0)^2 \\ (l(z_c) - L_1)^2 \\ \vdots \\ (l(z_c) - L_P)^2 \end{bmatrix}) \\ &= \sum_{r=1}^P \frac{e^{-\beta(l(z_c) - L_r)^2}}{\sum_{r'=1}^P e^{-\beta(l(z_c) - L_{r'})^2}} f(L_r). \end{aligned}$$

When β is large enough, we have

$$\sum_{(l(z_c) - L_r)^2 \geq \Delta L} \frac{e^{-\beta(l(z_c) - L_r)^2}}{\sum_{r'=1}^P e^{-\beta(l(z_c) - L_{r'})^2}} \leq \sum_{(l(z_c) - L_r)^2 \geq \Delta L} \frac{e^{-\beta \Delta L}}{e^{-\beta \frac{\Delta L}{2}}} \leq P e^{-\frac{\beta \Delta L}{2}} \leq \epsilon_1,$$

for any $\epsilon_1 > 0$.

This means that the proportion of the $f(L_r)$ in $\text{Hopfield}(Z)_{:,c}$ that deviates from $l(z_c)$ is no larger than ϵ_1 .

Since f and l are continuous, and Z comes from a compact domain, $l(z_i)$ comes from a compact domain for all $i \in [n]$. Thus f is uniformly continuous on its input domain. This means that for any $\epsilon_2 > 0$, there exists a $\delta > 0$ such that when $(x - y)^2 \leq \delta$, $\|f(x) - f(y)\|_\infty \leq \epsilon_2$.

Configuring $\Delta L \leq \delta$ yields:

$$\begin{aligned} &\|\text{Hopfield}(Z)_{:,c} - f(l(z_c))\|_\infty \\ &\leq \sum_{r=1}^P \frac{e^{-\beta(l(z_c) - L_r)^2}}{\sum_{r'=1}^P e^{-\beta(l(z_c) - L_{r'})^2}} \|f(L_r) - f(l(z_c))\|_\infty \\ &= \sum_{(l(z_c) - L_r)^2 \geq \Delta L} \frac{e^{-\beta(l(z_c) - L_r)^2}}{\sum_{r'=1}^P e^{-\beta(l(z_c) - L_{r'})^2}} \|f(L_r) - f(l(z_c))\|_\infty \\ &\quad + \sum_{(l(z_c) - L_r)^2 \leq \Delta L} \frac{e^{-\beta(l(z_c) - L_r)^2}}{\sum_{r'=1}^P e^{-\beta(l(z_c) - L_{r'})^2}} \|f(L_r) - f(l(z_c))\|_\infty \\ &\leq \epsilon_1 \cdot 2B + (1 - \epsilon_1)\epsilon_2, \end{aligned}$$

where $B := \|f\|_{L_\infty}$ is the bound of f in infinite norm.

We set $\epsilon_2 \leq \epsilon/2$, $\epsilon_1 \leq \epsilon/(4B)$. This yields:

$$\begin{aligned} \|\text{Hopfield}(Z)_{:,c} - f(l(z_c))\|_\infty &\leq \epsilon_1 \cdot 2B + (1 - \epsilon_1)\epsilon_2 \\ &\leq \frac{\epsilon}{4B} \cdot 2B + 1 \cdot \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

This completes the proof. \square

Theorem E.2. Define

$$X := \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \end{bmatrix} \in \mathbb{R}^{(d+1) \times n} \quad \text{and} \quad W := [w \ w \ \cdots \ w] \in \mathbb{R}^{d \times n},$$

where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$ are the input-output pairs. $w \in \mathbb{R}^d$ is the linear coefficient to optimize. Suppose x_i, y_i and w are bounded by B in infinite norm.

3834 For any continuous function $f : \mathbb{R} \rightarrow \mathbb{R}$, there exists a Hopfield layer Hopfield with linear connec-
 3835 tions such that
 3836 $\| \text{Hopfield}(W; X) - [f(w^\top x_1 - y_1)x_1 \quad f(w^\top x_2 - y_2)x_2 \quad \dots \quad f(w^\top x_n - y_n)x_n] \|_\infty \leq \epsilon$,
 3837 for any $\epsilon > 0$.
 3838

3845 *Proof.* Before plugging input W to the Hopfield layer, we pass it through a linear transformation
 3846 Linear_w :

$$\text{Linear}_w(W) := \begin{bmatrix} I_d \\ 0_{(d+n+2) \times d} \end{bmatrix} W + \begin{bmatrix} 0_{d \times n} \\ -1_{1 \times n} \\ 0_{d \times n} \\ -1_{1 \times n} \\ I_n \end{bmatrix} = \begin{bmatrix} W \\ -1_{1 \times n} \\ 0_{d \times n} \\ -1_{1 \times n} \\ I_n \end{bmatrix} \in \mathbb{R}^{(2d+n+2) \times n}.$$

3852 We also pass X through a linear transformation Linear_x :

$$\begin{aligned} \text{Linear}_x(X) &:= \sum_{i=1}^n \underbrace{\begin{bmatrix} I_{d+1} \\ 0_{(d+1+n) \times (d+1)} \end{bmatrix}}_{(2d+n+2) \times (d+1)} \underbrace{X}_{(d+1) \times n} \underbrace{\begin{bmatrix} 0_{n \times (i-1)(P+1)} & 2L_0 e_i^{(n)} & 2L_1 e_i^{(n)} & \dots & 2L_P e_i^{(n)} & 0_{n \times (n-i)(P+1)} \end{bmatrix}}_{n \times n(P+1)} \\ &+ \sum_{i=1}^n \underbrace{\begin{bmatrix} 0_{(d+1) \times d} & 0_{(d+1)} \\ I_d & 0_d \\ 0_{(n+1) \times d} & 0_{n+1} \end{bmatrix}}_{(2d+n+2) \times (d+1)} X \begin{bmatrix} 0_{n \times (i-1)(P+1)} & f(L_0) e_i^{(i)} & f(L_1) e_i^{(i)} & \dots & f(L_P) e_i^{(i)} & 0_{n \times (n-i)(P+1)} \end{bmatrix} \\ &+ \underbrace{\begin{bmatrix} 0_{(2d+1) \times (P+1)} & \dots & 0_{(2d+1) \times (P+1)} \\ S & \dots & S \\ (2dB^2 + B - \ln \epsilon_0) e_1^{(n)} 1_{1 \times (P+1)} & \dots & (2dB^2 + B - \ln \epsilon_0) e_n^{(n)} 1_{1 \times (P+1)} \end{bmatrix}}_{(2d+n+2) \times n(P+1)} \\ &= [T_1 \quad T_2 \quad \dots \quad T_n], \end{aligned}$$

3869 where

$$\begin{aligned} 1_{1 \times (P+1)} &:= [1 \quad 1 \quad \dots \quad 1] \in \mathbb{R}^{1 \times (P+1)}, \\ S &:= [-L_0^2 \quad -L_1^2 \quad \dots \quad L_P^2] \in \mathbb{R}^{1 \times (P+1)}, \\ T_i &:= \begin{bmatrix} 2L_0 x_i & 2L_1 x_i & \dots & 2L_P x_i \\ 2L_0 y_i & 2L_1 y_i & \dots & 2L_P y_i \\ f(L_0) x_i & f(L_1) x_i & \dots & f(L_P) x_i \\ -L_0^2 & -L_1^2 & \dots & -L_P^2 \\ (2dB^2 + B - \ln \epsilon_0) e_i^{(n)} & (2dB^2 + B - \ln \epsilon_0) e_i^{(n)} & \dots & (2dB^2 + B - \ln \epsilon_0) e_i^{(n)} \end{bmatrix} \in \mathbb{R}^{(2d+n+2) \times (P+1)}. \end{aligned}$$

3879 Here ϵ_0 is a parameter that we will designate later according to ϵ .

3880 Now construct W_K, W_Q, W_V to be:

$$\begin{aligned} W_Q &:= I_{2d+n+2}, \\ W_K &:= I_{2d+n+2}, \\ W_V^\top &:= [0_{d \times (d+1)} \quad I_d \quad 0_{d \times (n+1)}] \in \mathbb{R}^{d \times (2d+n+2)}. \end{aligned}$$

3886 Therefore, by [Definition E.1](#), the output becomes:

$$\text{Hopfield}(\text{Linear}_w(W); \text{Linear}_x(X)) = W_V \text{Linear}_x(X) \text{Softmax}(\beta \text{Linear}_x(X)^\top \text{Linear}_w(W)),$$

where

$$\text{Softmax}(\text{Linear}_x(X)^\top \text{Linear}_w(W)) = \text{Softmax}(\beta [T_1 \quad T_2 \quad \cdots \quad T_n]^\top \begin{bmatrix} W \\ -1_{1 \times n} \\ 0_{d \times n} \\ -1_{1 \times n} \\ I_n \end{bmatrix}).$$

This is equivalent to:

$$(\text{Linear}_x(X)^\top \text{Linear}_w(W))_{:,c} = \begin{bmatrix} T_1^\top \\ T_2^\top \\ \vdots \\ T_n^\top \end{bmatrix} \cdot \begin{bmatrix} w \\ -1 \\ 0_d \\ -1 \\ e_c^{(n)} \end{bmatrix}.$$

$$= \begin{bmatrix} M_{1,c} \\ M_{2,c} \\ \vdots \\ M_{n,c} \end{bmatrix},$$

where

$$M_{i,c} := T_i^\top \cdot \begin{bmatrix} w \\ -1 \\ 0_d \\ -1 \\ e_i^{(n)} \end{bmatrix}$$

$$= \begin{bmatrix} 2L_0 x_i^\top w - 2L_0 y_i - L_0^2 + (2dB^2 + B - \ln \epsilon_0) \mathbb{1}_{i=c} \\ 2L_1 x_i^\top w - 2L_1 y_i - L_1^2 + (2dB^2 + B - \ln \epsilon_0) \mathbb{1}_{i=c} \\ \dots \\ 2L_P x_i^\top w - 2L_P y_i - L_P^2 + (2dB^2 + B - \ln \epsilon_0) \mathbb{1}_{i=c} \end{bmatrix},$$

where $i \in [n]$ and $c \in [n]$, and $\mathbb{1}_{i=c}$ represents the indicator function of $i = c$.

This means that

$$\begin{aligned}
& \text{Softmax}(\beta \text{Linear}_x(X)^\top \text{Linear}_w(W))_{:,c} \\
&= \text{Softmax}(\beta \begin{bmatrix} M_{1,c} \\ M_{2,c} \\ \vdots \\ M_{n,c} \end{bmatrix}) \\
&= \beta \sum_{i=1}^n \sum_{j=1}^P \frac{\exp\left\{2L_j x_i^\top w - 2L_j y_i - L_0^2 + (2dB^2 + B - \ln \epsilon_0) \mathbf{1}_{i=c}\right\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\left\{u_{j'}^{(i')} + (2dB^2 + B - \ln \epsilon_0) \mathbf{1}_{i=c}\right\}} e^{(nP)}_{(i-1)P+j}.
\end{aligned}$$

Thus we have (without loss of generality, we ignore the β parameter in Softmax):

where F is:

$$F_i := [f(L_0)x_i \quad f(L_1)x_i \quad \cdots \quad f(L_P)x_i].$$

For every $i \in [n]$, if $i \neq c$, we have

$$\begin{aligned}
& \sum_{j=0}^P \frac{\exp\{2L_j x_i^\top w - 2L_j y_i - L_j^2 + (2dB^2 + B - \ln \epsilon_0) \mathbb{1}_{i=c}\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\{2L_{j'} x_{i'}^\top w - 2L_{j'} y_{i'} - L_{j'}^2 + (2dB^2 + B - \ln \epsilon_0) \mathbb{1}_{i=c}\}} \\
&= \sum_{j=0}^P \frac{\exp\{2L_j x_i^\top w - 2L_j y_i - L_j^2\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\{2L_{j'} x_{i'}^\top w - 2L_{j'} y_{i'} - L_{j'}^2 + (2dB^2 + B - \ln \epsilon_0) \mathbb{1}_{i=c}\}} \\
&< \sum_{j=0}^P \frac{\exp\{2L_j x_i^\top w - 2L_j y_i - L_j^2\}}{\sum_{j'=0}^P \exp\{2L_{j'} x_i^\top w - 2L_{j'} y_{i'} - L_{j'}^2 + (2dB^2 + B - \ln \epsilon_0)\}} \\
&\quad \text{(only taking the } i' = c \text{ part)} \\
&< \sum_{j=0}^P \frac{\exp\{2dB^2 + B\}}{P \exp(2dB^2 + B - \ln \epsilon_0)} = \epsilon_0.
\end{aligned}$$

For $i = c$, since

$$\sum_{i \neq c}^n \sum_{j=0}^P \frac{\exp\{2L_j x_i^\top w - 2L_j y_i - L_j^2 + (2dB^2 + B - \ln \epsilon_0) \mathbf{1}_{i=c}\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\{2L_{j'} x_{i'}^\top w - 2L_{j'} y_{i'} - L_{j'}^2 + (2dB^2 + B - \ln \epsilon_0) \mathbf{1}_{i=c}\}} \leq (n-1)\epsilon_0,$$

we have

$$\begin{aligned}
& \frac{\sum_{j=0}^P \exp\left\{u_j^{(c)} + (2dB^2 + B - \ln \epsilon_0)\right\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\left\{2L_{j'} x_{i'}^\top w - 2L_{j'} y_{i'} - L_{j'}^2 + (2dB^2 + B - \ln \epsilon_0) \mathbf{1}_{i=c}\right\}} \\
&= \sum_{j=0}^P \frac{\exp\left\{u_j^{(c)} + (2dB^2 + B - \ln \epsilon_0)\right\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\left\{2L_{j'} x_{i'}^\top w - 2L_{j'} y_{i'} - L_{j'}^2 + (2dB^2 + B - \ln \epsilon_0) \mathbf{1}_{i=c}\right\}} \\
&\geq 1 - (n-1)\epsilon_0.
\end{aligned}$$

Thus for the parts in the weighted sum output that corresponds to rows in $M_{:,c}$ in the attention score matrix, we have

3974
 3975
$$\left\| \sum_{j=0}^P \frac{\exp\left\{u_j^{(c)} + (2dB^2 + B - \ln \epsilon_0)\right\}}{\sum_{i'=1}^n \sum_{j'=0}^P \exp\left\{2L_{j'} x_{i'}^\top w - 2L_{j'} y_{i'} - L_{j'}^2 + (2dB^2 + B - \ln \epsilon_0) \mathbb{1}_{i=c}\right\}} f(L_j) x_c - f(x_c^\top w - y_c) x_c \right\|_\infty$$

 3976
 3977
$$= \left\| \sum_{j=0}^P \frac{\exp\left\{u_j^{(c)} + (2dB^2 + B - \ln \epsilon_0)\right\}}{\sum_{j'=0}^P \exp\left\{u_{j'}^{(c)} + (2dB^2 + B - \ln \epsilon_0)\right\}} (f(L_j) x_c - f(x_c^\top w - y_c) x_c) \right. \\$$

 3978
 3979
$$\left. \cdot \frac{\sum_{j'=0}^P \exp\left\{u_{j'}^{(c)} + (2dB^2 + B - \ln \epsilon_0)\right\}}{\sum_{i'=1}^n \sum_{k=0}^P \exp\left\{u_k^{(i')} + (2dB^2 + B - \ln \epsilon_0) \mathbb{1}_{i=c}\right\}} \right. \\$$

 3980
 3981
$$\left. - \left(1 - \frac{\sum_{j'=0}^P \exp\left\{u_{j'}^{(c)} + (2dB^2 + B - \ln \epsilon_0)\right\}}{\sum_{i'=1}^n \sum_{k=0}^P \exp\left\{u_k^{(i')} + (2dB^2 + B - \ln \epsilon_0) \mathbb{1}_{i=c}\right\}}\right) f(x_c^\top w - y_c) x_c \right\|_\infty \\$$

 3982
 3983
 3984
$$\leq \sum_{j=0}^P \frac{\exp\left\{u_j^{(c)} + (2dB^2 + B - \ln \epsilon_0)\right\}}{\sum_{j'=0}^P \exp\left\{u_{j'}^{(c)} + (2dB^2 + B - \ln \epsilon_0)\right\}} |f(L_j) - f(x_c^\top w - y_c)| \cdot d \|x_c\|_\infty \\$$

 3985
 3986
 3987
$$- \left(1 - \frac{\sum_{j'=0}^P \exp\left\{u_{j'}^{(c)} + (2dB^2 + B - \ln \epsilon_0)\right\}}{\sum_{i'=1}^n \sum_{k=0}^P \exp\left\{u_k^{(i')} + (2dB^2 + B - \ln \epsilon_0) \mathbb{1}_{i=c}\right\}}\right) |f(x_c^\top w - y_c)| \|x_c\|_\infty \\$$

 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995

$$\begin{aligned}
& \leq \sum_{j=0}^P \frac{\exp\{u_j^{(c)} + (2dB^2 + B - \ln \epsilon_0)\}}{\sum_{j'=0}^P \exp\{u_{j'}^{(c)} + (2dB^2 + B - \ln \epsilon_0)\}} |f(x_c^\top w - y_c)| \|x_c\|_\infty \\
& \quad + (n-1)\epsilon_0 B_f \|x_c\|_\infty \\
& = \sum_{j=0}^P \frac{\exp\{u_j^{(c)}\}}{\sum_{j'=0}^P \exp\{u_{j'}^{(c)}\}} |f(L_j) - f(x_c^\top w - y_c)| \|x_c\|_\infty + (n-1)\epsilon_0 B_f \|x_c\|_\infty \\
& = \sum_{j=0}^P \frac{\exp\{-\beta(x_c^\top w - y_c - L_j)^2\}}{\sum_{j'=0}^P \exp\{-\beta(x_c^\top w - y_c - L_{j'})^2\}} |f(L_j) - f(x_c^\top w - y_c)| \|x_c\|_\infty + (n-1)\epsilon_0 B_f \|x_c\|_\infty,
\end{aligned}$$

where we define $B_f := |f|$ as the bound for f .

For any $\epsilon_1 > 0$, set ΔL to be sufficiently small such that

$$|f(x) - f(y)| \leq \epsilon_1,$$

when $|x - y| \leq \Delta L$.

Then when β is sufficiently large, we have

$$\sum_{|L_i - (x_c^\top w - y_c)| > \Delta L} \frac{\exp\{-\beta(x_c^\top w - y_c - L_j)^2\}}{\sum_{j'=0}^P \exp\{-\beta(x_c^\top w - y_c - L_{j'})^2\}} \leq \epsilon_2,$$

for any $\epsilon_2 > 0$.

Thus

$$\begin{aligned}
& \sum_{j=0}^P \frac{\exp\{-\beta(x_c^\top w - y_c - L_j)^2\}}{\sum_{j'=0}^P \exp\{-\beta(x_c^\top w - y_c - L_{j'})^2\}} |f(L_j) - f(x_c^\top w - y_c)| \\
& = \sum_{|L_i - (x_c^\top w - y_c)| > \Delta L} \frac{\exp\{-\beta(x_c^\top w - y_c - L_j)^2\}}{\sum_{j'=0}^P \exp\{-\beta(x_c^\top w - y_c - L_{j'})^2\}} |f(L_j) - f(x_c^\top w - y_c)| \\
& \quad + \sum_{|L_i - (x_c^\top w - y_c)| \leq \Delta L} \frac{\exp\{-\beta(x_c^\top w - y_c - L_j)^2\}}{\sum_{j'=0}^P \exp\{-\beta(x_c^\top w - y_c - L_{j'})^2\}} |f(L_j) - f(x_c^\top w - y_c)| \\
& \leq \epsilon_2 \cdot 2B_f + \epsilon_1.
\end{aligned}$$

This completes the proof. \square

Corollary E.2.1 (In-Context GD of Hopfield Layer). Define

$$X := \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ y_1 & y_2 & \cdots & y_n \end{bmatrix} \in \mathbb{R}^{(d+1) \times n} \quad \text{and} \quad W := [w \ w \ \cdots \ w] \in \mathbb{R}^{d \times n},$$

where $x_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$ are the input-output pairs. $w \in \mathbb{R}^d$ is the linear coefficient we aim to optimize. For any differentiable loss function $\ell : \mathbb{R} \rightarrow \mathbb{R}$, There exists a Hopfield layer Hopfield with linear connections such that

$$\|\text{Hopfield}(W; X) - [\nabla \ell(w^\top x_1 - y_1)x_1 \ \nabla \ell(w^\top x_2 - y_2)x_2 \ \cdots \ \nabla \ell(w^\top x_n - y_n)x_n]\|_\infty \leq \epsilon,$$

for any $\epsilon > 0$.

Proof. Replacing the continuous function f in [Theorem E.2](#) with $\nabla \ell$ completes the proof. \square