
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IN-CONTEXT ALGORITHM EMULATION IN
FIXED-WEIGHT TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We prove that a minimal Transformer with frozen weights emulates a broad class
of algorithms by in-context prompting. We formalize two modes of in-context algo-
rithm emulation. In the task-specific mode, for any continuous function f : R → R,
we show the existence of a single-head softmax attention layer whose forward pass
reproduces functions of the form f(w⊤x − y) to arbitrary precision. This gen-
eral template subsumes many popular machine learning algorithms (e.g., gradient
descent, linear regression, ridge regression). In the prompt-programmable mode,
we prove universality: a single fixed-weight two-layer softmax attention module
emulates all algorithms from the task-specific class (i.e., each implementable by a
single softmax attention) via only prompting. Our key idea is to construct prompts
that encode an algorithm’s parameters into token representations, creating sharp
dot-product gaps that force the softmax attention to follow the intended computa-
tion. This construction requires no feed-forward layers and no parameter updates.
All adaptation happens through the prompt alone. Numerical results corroborate
our theory. These findings forge a direct link between in-context learning and algo-
rithmic emulation, and offer a simple mechanism for large Transformers to serve as
prompt-programmable interpreters of algorithms. They illuminate how GPT-style
foundation models may swap algorithms via prompts alone, and establish a form
of algorithmic universality in modern Transformer models.

1 INTRODUCTION

We show that a minimal Transformer architecture with frozen weights is capable of emulating a broad
class of algorithms through prompt design alone. This stylized problem setting isolates the core of in-
context computation and provides an analytic lens on fundamental questions in Transformer models:
How do fixed-weight models execute diverse tasks from context alone? How does a prompt turn into
an algorithmic procedure? How do prompt-encoded parameters and query-key routing realize task
identification and stepwise execution? What minimal architectural ingredients suffice for general in-
context capability? As foundation models rise to prominence in modern AI (Bommasani, 2021), these
questions are central, since much of their practical utility comes from in-context learning (prompting)
rather than explicit retraining (Brown et al., 2020; Liu et al., 2023). Against this backdrop, this work
offers a rigorous basis for in-context task learning1, supplies a simple mechanism for Transformers
to act as prompt-programmable algorithm libraries, and shows how GPT-style models may swap
algorithms via prompts alone, shedding light on their general-purpose capabilities.

Large Transformer models exhibit ability to adapt to a new task by conditioning on examples or
instructions provided in the prompt without any gradient updates. This capability is known as In-
Context Learning (ICL) (Min et al., 2022; Brown et al., 2020). Prior work on Transformer in-context
learning falls into two strands. One trains models that learn in context for a specific function class
(Garg et al., 2022; Akyürek et al., 2023; Li et al., 2023; Ahn et al., 2023; Zhang et al., 2024). The
other hand-engineers Transformers to enact particular algorithms with fixed weights (Bai et al., 2023;
Von Oswald et al., 2023; Wu et al., 2025). In particular, Bai et al. (2023) demonstrate that task-specific
attention layers — attention mechanisms with weights designed for a given task — implement a

1We use “task” to highlight algorithm-level adaptation (to diverse tasks), not mere pattern completion.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Process
Frozen Softmax 

Attention Layer 

Gradient Descent Concatenated

Input and Weights

Linear Regression

Lasso Regression

Ridge Regression

Gradient Descent

Linear Regression

Lasso Regression

Ridge Regression

Figure 1: Prompt-Programmable In-Context Algorithm Emulation Overview. X denotes the data input,
and W ⋆ encodes the instructions of the algorithm we aim to emulate. We show that even a 2-layer softmax
attention module suffices to emulate a broad class of algorithms by changing prompt (Theorem 4.1), i.e., the
W ⋆ in the prompt. This separates algorithm information (in the prompt) from “model parameters” (frozen). By
sending the algorithm-specific information (e.g., instructions + data) to a fixed-weight model, the prompt acts as
the program and the frozen transformer as the interpreter. This makes the “weights-as-data” mechanism explicit
and is the core mechanism of prompt-programmability: a minimal frozen Transformer serves as a modular
interface in which swapping the prompt swaps the algorithm with no retraining.

variety of algorithms without gradient updates. For example, a single Transformer with fixed, task-
tailored attention weights achieves near-optimal performance on algorithms such as least-squares
regression, ridge regression, lasso, and gradient descent (Bai et al., 2023; Wu et al., 2025). These
results suggest that Transformers are capable of in-context algorithm emulation. Yet these approaches
retrain per task or hard-wire per algorithm. They do not give a single fixed architecture that is
prompt-programmable across many algorithms with explicit guarantees and minimal components.

To combat this, we advance this line of research by omitting the need for designing a new Transformer
block for every algorithm. We propose a frozen Transformer architecture to emulate a library of
attention-based algorithms in context without weight updates. We achieve this by embedding
algorithm-specific information into input prompts. Specifically, we formalize two emulation modes,
and establish explicit guarantees and constructive minimal designs for both. In the task-specific
mode (Section 3), a dedicated attention module with fixed weights (single- or multi-head) executes
one algorithm in context. In the prompt-programmable mode (Section 4), by contrast, a single
Transformer module with fixed weights re-programs itself through different prompts to execute
multiple algorithms on the fly. These constructions yield universality and minimality results for
in-context algorithm emulation. Specifically, we demonstrate a minimalist model of internal algorithm
swapping, where prompts serve as the context carrying algorithmic instructions.

Contributions. We establish a new form of in-context learning universality for algorithm emulation,
limited to attention-implementable algorithms. Our contributions are four-fold:

• Task-Specific Emulation of f(w⊤x − y)x. A single-head, single-layer softmax attention with
a linear map universally approximates functions of the form f(w⊤x− y)x for any continuous f ,
with frozen weights and a suitable prompt. This general result subsumes, for example, computing
per-sample gradients and performing gradient descent updates (by choosing f as a loss derivative),
as well as solving linear and ridge regression in one forward pass.

• Constructive, Interpretable Prompt Design for Algorithm Emulation. We give an explicit
prompt design strategy that encodes the target task’s parameters and induces large query-key
margins so softmax follows the intended pattern, furnishing an interpretable, verifiable recipe for
prompt-programming a fixed attention-only module.

• A Simple Mechanism for Internal Algorithm Swapping of Transformer Models. Changing
only the prompt-encoded algorithm weights swaps the algorithm executed by the fixed attention-
only module, without retraining. Theory (finite libraries) and experiments (e.g., Lasso, ridge,
linear regression) confirm high-fidelity swapping. Altogether, these results shed light on the
general-purpose capability of GPT-style Transformer models to select and swap internal routines
via prompts (our formal proofs concern attention-only modules).

In conclusion, we show a minimalist transformer architecture serve as a general-purpose algorithm
emulator in context through prompt design. Our findings contribute to a sharp theoretical foundation
for viewing in-context learning as in-context algorithm emulation. They suggest that large pretrained
softmax attention models (such as GPT-style Transformers) encode a library of algorithms, and swap

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

among them based on prompts. This is achieved within a unified attention architecture and without
any parameter updates. We believe this perspective opens new opportunities for understanding the
emulation ability of Transformer models.

Organization. Section 2 presents ideas we build on. Section 3 presents illustrative examples of
learning statistical models in-context with task-specific attention heads. Section 4 presents our main
results. Appendix A presents our proof strategies. Section 5 presents numerical validations.

Related Work. Due to page limits, we defer related work discussions to Appendix B.

Notations. We denote the index set {1, . . . , I} by [I]. We use lowercase letters for vectors and
uppercase letters for matrices. The vector e(n)j ∈ Rn denotes the one-hot vector with 1 in the j-th
position and 0 elsewhere. We write X ∈ Rd×n for the input sequence, where d is the token dimension
and n is the sequence length. We denote the number of attention heads by H . We use ∥ · ∥∞ and
∥ · ∥2 for the vector ∞-norm and 2-norm, respectively.

2 PRELIMINARIES: ATTENTION, IN-CONTEXT LEARNING AND EMULATION

Softmax Attention. We define a multi-layer self-attention layer with softmax activation as follows.

Definition 2.1 (Softmax Attention Layer). For any input sequence X ∈ Rd×n, the multi-head
attention output (with H heads) is

Attnm(X) =

H∑
h=1

W
(h)
V X︸ ︷︷ ︸
do×n

Softmax((W
(h)
K X)⊤W

(h)
Q X︸ ︷︷ ︸

n×n

)W
(h)
O︸ ︷︷ ︸

n×no

∈ Rdo×no ,

where W
(h)
K ,W

(h)
Q ∈ Rdh×d, W (h)

V ∈ Rdo×d, and W
(h)
O ∈ Rn×no for h ∈ [H]. We use Attns to

denote single-head self-attention.

Following the notation of (Hu et al., 2025a), we pick non-identical dimensions for weight matrices
WK ,WQ,WV for generality of our analysis.

In the common K := WKX , Q := WQX , V := WV X notation, a single-layer softmax attention
takes a set of key vectors K = {k1, . . . , kn}, value vectors V = {v1, . . . , vn}, and a query vector q,
to produce an output as a weighted sum of the value vectors. The weights on vi is Softmax(k⊤i q),
emphasizing values whose keys are most similar to the query. That is, the softmax attention uses the
query as a cue to retrieve the most relevant information from the values (via their keys).

Linear Transformation Layer Linear(·). Throughout this paper, we sometimes compose attention
with an additional linear mapping for flexibility. Such a linear transformation layer uses learned
parameters to increase expressivity in attention-based constructions.

Definition 2.2. Let Z = [z1, . . . , zn] ∈ Rd×n be the input sequence with columns zi ∈ Rd. We
use Linear : Rd×n → Rp×m (for some output length m) to denote column-wise linear affine maps.
Each output column depends only on one input column, possibly with replication or an additive bias.
We write Linear when dimensions are clear (input/output shapes chosen to match attention).

This layer is a generic column-wise affine operator. It preprocesses the input to an attention mech-
anism or post-processes its output. For example, Attns ◦ Linear(Z) applies a per-token affine
projection (optionally with replication, so m ̸= n) before single-head attention. It subsumes the
practical per-token linear layer as the special case m = n with shared parameters and optional bias:
Linear(Z) = AZ + b1⊤

n ∈ Rp×n with A ∈ Rp×d, b ∈ Rp and 1n the all-ones vector. In all cases,
columns are processed independently (no cross-column mixing).

In-Context Learning Setup. In in-context learning, a fixed model (e.g., a pretrained Transformer)
performs a new task without parameter updates. Formally, the model aims to approximate an unknown
function f : X → Y given a few examples of f in the input prompt. At inference, we provide n
exemplar pairs and a query xq , and concatenate them into a single sequence

X :=

[
x1 x2 · · · xn

y1 y2 · · · yn

]
∈ R(d+1)×n and xq ∈ Rd×1. (2.1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Namely, the model receives (X,xq) as the input prompt. The goal of ICL is for the model, given
input prompt (X,xq), to (i) infer f from the exemplars and (ii) apply it to xq to predict yq = f(xq).
All the learning happens in the forward pass through the sequence X in an implicit fashion.

Task-Specific Attention. Task-specific attention uses fixed parameters to carry out a particular task
when the prompt follows the required structure (see (Bai et al., 2023) for examples.)

Definition 2.3. An attention layer is task-specific if there exists a prompt family P such that, for
any prompt P ∈ P constructed from task parameters/data, the attention’s forward pass implements
the task’s mapping on the query token(s), with no parameter change.

In particular, we embed the task’s defining transformations (e.g. a linear mapping corresponding to f
or part of f ) into the attention weight matrices. Given a well-formed prompt of exemplar and query
tokens, the attention selects and combines these tokens to compute the correct output. Effectively,
this allows an attention layer to approximate diverse functions in context without weight updates.

Terminology: Task-Specific vs. Prompt-Programmable In-Context Emulation. In-context
algorithm emulation refers to executing an algorithm through a forward pass without weight updates.
The core contribution of this work is to formalize two in-context modes and study their scope:

• Task-Specific In-Context Emulation: for each algorithm A, there exists an attention module
(possibly multi-head) whose forward pass on a well-formed prompt implements A on the query
token(s). Each algorithm therefore requires its own dedicated parameters.

• Prompt-Programmable In-Context Emulation (via single frozen module): there exists a single
attention module with fixed weights Attn⋆ such that, for every A in a target class, a suitable prompt
PA makes Attn⋆ implement A on the query token(s). All adaptation occurs through the prompt
rather than through weight changes. Namely, one Attn⋆ implements a library of algorithms.

These modes are complementary: the first reflects the conventional dedicated-module view (e.g.,
(Bai et al., 2023)), while the second is stronger — one fixed-weight attention module emulates many
algorithms via prompts (our contribution). In the remainder of the paper, Section 3 develops the
task-specific case. Section 4 establishes the prompt-programmable case by showing how the latter
subsumes the former via in-context simulation of task-specific modules.

3 TASK-SPECIFIC IN-CONTEXT ALGORITHM EMULATION

We present multiple examples demonstrating how softmax attention modules mimic behaviors of
various learning algorithms including gradient descent and linear regression. We begin with a very
general result showing that even a single-layer, single-head attention mechanism is a universal
approximator for a broad class of functions defined on the prompt.

In-Context Universal Approximation of f(w⊤x − y)x. Let x ∈ Rd, y ∈ R, w ∈ Rd, and let
f : R → R be continuous. We consider functions of the form f(w⊤x − y)x, where f acts on
the residual w⊤x − y. This template is very general: many learning rules for linear models take
this form, including many residual/gradient-style updates2. Hence f(w⊤x− y)x subsumes a wide
family of residual-driven updates central to machine learning. Thus, their in-context realization
explains much of in-context learning. To this end, showing that attention is capable of emulating any
continuous f(w⊤x− y)x indicates a powerful and general capability. It means the attention module
implements any continuous adjustment or mapping based on the prediction w⊤x and the label y. The
next theorem shows how a single-head attention approximates [f(w⊤xi − yi)xi]

n
i=1 arbitrarily well.

Theorem 3.1 (In-Context Emulation of f(w⊤x − y)x with Single-Head Attention). Let
[Lmin, Lmax] be a bounded interval containing all values of w⊤x− y, and let

X :=

[
x1 x2 · · · xn

y1 y2 · · · yn

]
∈ R(d+1)×n and W := [w w · · · w] ∈ Rd×n,

2For example, f(t) = t corresponds to the raw residual (w⊤x− y)x, f(·) = ∇wℓ(·) corresponds to per-
sample gradients ∇wℓ(w

⊤x− y)x linear regression or classification with loss ℓ(·), and nonlinear f (sigmoid,
step, etc.) corresponds to perceptron updates or other error-correcting rules.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where xi ∈ Rd, yi ∈ R, and w ∈ Rd is the coefficient vector. Define the input as:

Z :=

[
x1 x2 · · · xn

y1 y2 · · · yn
w w · · · w

]
=

[
X
W

]
∈ R(2d+1)×n. (3.1)

Assume max{∥X∥∞, ∥W∥∞} ≤ B. For any continuously differentiable function f : R → R and
any ϵ > 0, there exists a single-head attention Attns with a linear layer Linear such that
∥Attns ◦ Linear(Z)−

[
f(w⊤x1 − y1)x1 · · · f(w⊤xn − yn)xn

]
∥∞ ≤ ϵ, for any ϵ > 0.

Proof. See Appendix D.1 for a detailed proof.

Theorem 3.1 establishes that even the simplest softmax attention alone suffices to encode any
continuous function of the form f(w⊤x − y)x by incorporating weights in the prompt. A direct
implication is by replacing f with the derivatives of differentiable loss function as follows.

Example 1: In-Context Emulation of Single-Step GD. Building on Theorem 3.1, we show that a
softmax attention layer emulates Gradient Descent (GD) in-context. Fristly, we replace the continuous
function f(·) in Theorem 3.1 with ∇ℓ(·), where ℓ : R → R is any differentiable loss function. We
show that the softmax attention emulates per-sample gradients in context.

Corollary 3.1.1 (In-Context Emulation of Per-Sample Gradients). Let ℓ : R → R be differentiable
and ℓ′ : R → R for its scalar derivative, ℓ′(t) = d

dtℓ(t). For z := w⊤x − y with x ∈ Rd, y ∈ R,
w ∈ Rd, denote ∇wℓ(z) := ℓ′(z). Set f(·) = ℓ′(·) in Theorem 3.1. With Z = [X;W ] as in (3.1),
for any ϵ > 0, there exist a single-head attention Attns(·) and a linear map Linear(·) such that,

∥ Attns ◦ Linear(Z)︸ ︷︷ ︸
=:Ĝ approximated per-sample gradient matrix

− [ℓ′(w⊤x1 − y1)x1, · · · , ℓ′(w⊤xn − yn)xn]︸ ︷︷ ︸
=:G target per-sample gradient matrix

∥∞ ≤ ϵ.

Corollary 3.1.1 shows that a single-layer single-head softmax attention with a linear map approximates
the individual (per-sample) gradient terms {ℓ′(w⊤xi − yi)xi}ni=1. Moreover, the layer outputs all
per-sample gradient terms in parallel. Next, we extend Corollary 3.1.1 to show that a fixed attention
layer implements the full gradient-descent update across all samples in-context.

Aggregating the per-sample gradients gives one GD step

L̂n(w) :=
1

n

n∑
i=1

ℓ(w⊤xi − yi), ∇L̂n(w) =
1

n

n∑
i=1

ℓ′(w⊤xi − yi)xi =: g.

From Corollary 3.1.1, let Ĝ be the attention output and choose the readout u := 1
n1n ∈ Rn

(equivalently, right-multiply by WO = u in Definition 2.1). Define the attention estimate of the
average gradient as ĝ := Ĝu. Then ĝ ≈ g, and the target update is w+

GD := w − η∇L̂n(w). Feeding
w in the prompt and applying the same readout produces a single d-dimensional update vector from
the layer. The next corollary states the precise approximation guarantee.

Corollary 3.1.2 (In-Context Emulation of a Single GD Step). Let ℓ : R → R be differentiable
and define L̂n(w) := 1

n

∑n
i=1 ℓ(w

⊤xi − yi). For any step size η > 0 and any ϵ > 0, there exist
a single-head attention Attns and a linear map Linear such that, with Z = [X;W ] as in (3.1),
choosing the readout u := 1

n1n (equivalently, right-multiply by WO = u in Definition 2.1), we have

ŵGD := (Attns ◦ Linear(Z))u ∈ Rd and ∥ŵGD − (w − η∇L̂n(w))︸ ︷︷ ︸
w+

GD

∥∞ ≤ ϵ.

Proof. See Appendix D.2 for a detailed proof.

Corollary 3.1.2 shows that a single-layer, single-head softmax attention with a linear map aggregates
the per-sample gradients via the output projection. It produces a d-vector ŵGD that approximates the
GD update w+

GD = w − η∇L̂n(w). Notably, each output column encodes a copy of w together with
a scaled per-sample gradient term. Averaging via the readout u = 1

n1n then recovers w+
GD up to ϵ.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Example 2: In-Context Emulation of Multi-Step GD. We extend the single-step construction to
show that a multi-layer softmax attention network emulates multi-step gradient descent. In particular,
an (L+1)-layer transformer approximates L steps of gradient descent.

Stack (L+1) copies of the single-head layer from Corollary 3.1.2. At layer t (0 ≤ t < L), use the
readout u(t) = 1

n1n and the prompt Z(t) = [X;W (t)] with W (t) := [ŵ
(t)
GD · · · ŵ(t)

GD]. Define

ŵ
(0)
GD := w, and ŵ

(t+1)
GD := Attns ◦ Linear(Z(t))u(t).

For the target iterates, set w(0)
GD = w and w

(t+1)
GD = w

(t)
GD − η∇L̂n(w

(t)
GD). By Corollary 3.1.2,

Lemma D.4 and ∥ · ∥∞ ≤ ∥ · ∥2, we arrive

∥ŵ(t)
GD − w

(t)
GD∥∞ ≤ tϵ, t ∈ [L].

Example 3: In-Context Emulation of Linear Regression. We now present the construction for
squared loss. We show that a single-layer softmax attention emulates linear regression in-context.

Corollary 3.1.3 (In-Context Emulation of Linear Regression). For any dataset {(xi, yi)}ni=1 with
xi ∈ Rd, yi ∈ R and any ϵ > 0, there exist a single-head attention Attns, a linear map Linear, and a
readout u ∈ Rn such that, with Z = [X;W ] as in (3.1) (for any fixed bounded w),

ŵlinear := (Attns ◦ Linear(Z))u ∈ Rd, and ∥ŵlinear − wlinear∥∞ ≤ ϵ,

where wlinear := argminw∈Rd
1
2n

∑n
i=1(⟨w, xi⟩ − yi)

2.

Proof. See Appendix D.3 for detailed proof.

Example 4: In-Context Emulation of Ridge Regression. We add regularization term and show
that a single-layer softmax attention emulates ridge regression with L2 penalty.

Corollary 3.1.4 (In-Context Emulation of Ridge Regression). For any dataset {(xi, yi)}ni=1, any
λ ≥ 0, and any ϵ > 0, there exist a single-head attention Attns, a linear map Linear, and a readout
u ∈ Rn such that, with Z = [X;W ] as in (3.1) (and the regularization signal included in the prompt),

ŵridge := (Attns ◦ Linear)(Z)u ∈ Rd, and ∥ŵridge − wridge∥∞ ≤ ϵ,

where wridge := argminw∈Rd
1
2n

∑n
i=1(⟨w, xi⟩ − yi)

2 + λ
2 ∥w∥

2
2 with regularization term λ ≥ 0.

Proof. See Appendix D.4 for detailed proof.

So far our constructions in Section 3 show that, given freedom to choose parameters per algorithm,
attention modules emulate gradient descent, linear regression, ridge regression, and related updates in
context. These results establish the expressive power of task-specific in-context emulation, akin to
(Bai et al., 2023). In Section 4, we build on this foundation and prove a stronger universality: a single
frozen attention module Attn⋆, via prompt programming, simulates all such task-specific modules.

4 PROMPT-PROGRAMMABLE IN-CONTEXT ALGORITHM EMULATION

This section presents our main results: softmax attention is capable of (i) emulating task-specific
attention heads in-context (Section 4.1), (ii) emulating statistical models in-context (Section 4.2),
and (iii) emulating any network (with linear projections) in-context (Section 4.3). Unlike Section 3
requiring a separate task-specific module for each algorithm, here we fix one frozen module Attn⋆ and
show that suitable prompts instruct it to emulate every algorithm in the target class. This establishes
universality: one set of weights executes a library of algorithms through prompt programming.

4.1 IN-CONTEXT EMULATION OF ATTENTION

We first specify the input prompt with weight encoding.

Definition 4.1 (Vectorization). For any matrix X ∈ Rdh×d, we define X := vec(X) ∈ Rddh such
that X(i−1)d+j = Xi,j for all i ∈ [dh] and j ∈ [d].

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Definition 4.2 (Input Prompt of In-Context Emulation of Attention). Let X ∈ Rd×n be the input
sequence, and let WK ,WQ,WV ∈ Rdh×d be the weight matrices of the target attention head to be
emulated. Define the vectorizations

WK := vec(WK) ∈ Rddh , WQ := vec(WQ) ∈ Rddh , WV := vec(WV ) ∈ Rddh ,

and
w := [WK ;WQ;WV ] ∈ R3ddh ,

where w is the concatenation of WK ,WQ,WV . Finally, define the extended input Xp for in-context
emulation of the attention head specified by WK ,WQ,WV as

Xp :=

[
X
Win

In

]
with Win :=

[
0 · w 1 · w 2 · w · · · (n− 1) · w
w w w · · · w

]
∈ R6ddh×n.

In other words, Win is a 2× n block matrix whose j-th column consists of j · w ∈ Rddh (in the first
block-row) and w ∈ Rddh (in the second block-row), for j = 0, 1, . . . , n − 1. Appending Win as
additional rows to X produces the prompt Xp that encodes the target weights.

Using this weight-encoding prompt, we now design a two-layer attention mechanism to reproduces
the effect of the target attention head in-context.

Theorem 4.1 (In-Context Emulation of Attention). Let X ∈ Rd×n be an input sequence, and let
WK ,WQ,WV ∈ Rdh×d be the weight matrices of the target attention head we wish to emulate
in-context. Assume ∥WKX∥∞, ∥WQX∥∞, ∥WV X∥∞ ≤ BKQV with BKQV > 0. Then, for any
ϵ > 0, there exists a two-layer attention network — a multi-head attention layer Attnm followed by
a single-head attention layer Attns — such that

∥Attns ◦Attnm(Xp)︸ ︷︷ ︸
Emulator

−WV XSoftmaxβ((WKX)⊤WQX)︸ ︷︷ ︸
Target

∥∞ ≤ ϵ,

where Xp is the prompt defined in Definition 4.2.

Remark 4.1 (Permutation Equivariance). Our construction keeps the permutation equivariance of
attention in its approximation. This means changing the order of columns in X results in an identical
change in the order of the columns in Attns ◦Attnm(Xp).

Proof. See Appendix A.1 for the proof sketch and Appendix D.5 for a detailed proof.

We now provide an alternative formulation of the above result. In this variant, a single-head attention
layer comes first, followed by a multi-head layer with sequence-wise linear projections.

Theorem 4.2 (In-Context Emulation of Attention; Alternative Formulation). Let X ∈ Rd×n be the
input sequence, and let WK ,WQ,WV ∈ Rn×d be the weight matrices of the target attention. Assume
B = max{∥X∥∞, ∥WK∥∞, ∥WQ∥∞, ∥WV ∥∞} and ∥WKX∥∞, ∥WQX∥∞, ∥WV X∥∞ ≤ BKQV

for BKQV ≥ 0. Then, for any ϵ > 0, there exists a single-head attention layer Attns followed by a
multi-head attention layer with linear projections such that

∥Attns ◦ (
3n∑
j=1

Attnj ◦ Linearj(


X
W⊤

K

W⊤
Q

W⊤
V

))−WV X︸ ︷︷ ︸
n×n

Softmaxβ ((WKX)⊤WQX)︸ ︷︷ ︸
n×n

∥∞ ≤ ϵ.

Proof. See Appendix A.2 for the proof sketch and Appendix D.6 for a detailed proof.

Theorems 4.1 and 4.2 allow us to approximate arbitrary target one-layer attention using another
two-layer attention. This construction requires no feed-forward layers and no parameter updates. All
approximation happens through the prompt alone (by embedding target attention weights and input
X into the prompt).

Discussion: Target Attention Approximation for Algorithm Emulation. Theorems 4.1 and 4.2
present a general algorithm emulation result: a fixed-weight two-layer softmax attention mod-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

ule emulates all algorithms implementable by softmax attention via only prompting. For exam-
ple, if we choose the input sequence X ∈ Rd×n in Theorem 4.1 and Theorem 4.2 to be the
Linear(Z) ∈ R2(2d+n+2)×n(P+1) in Theorem 3.1, then we are able to approximate all one-layer
attentions implementing target algorithms of the f(w⊤x− y)x class: Corollaries 3.1.1 to 3.1.4. Thus,
we achieve in-context emulation of the entire class of algorithms expressible as f(w⊤x− y)x.

To the best of our knowledge, this provides the first constructive toy model of fixed-weight transformer
exhibiting general-purpose ability (i.e., one fixed-weight model for many tasks). Moreover, the
construction is explicit, interpretable, and softmax-native. A few remarks are in order.

Remark 4.2 (Differences between Theorems 4.1 and 4.2). Theorems 4.1 and 4.2 both establish that
a fixed multi-head attention network can approximate any given attention head in-context. We present
two versions of the construction using different formulations and analytical techniques. In particular,
Theorem 4.1 encodes the target algorithm into the token representations (keeping the sequence length
fixed), whereas Theorem 4.2 achieves a similar effect by encoding the weights as additional tokens in
the input sequence (keeping each token’s dimension fixed).

Remark 4.3. Our constructions may contain non-standard choices, including encoding information
along the embedding dimension and using 3n parallel attention heads. We emphasize that the methods
apply to approximate a more realistic attention with far fewer hidden dimensions and number of
heads in practice. Section 5 provides further details.

Remark 4.4 (Comparison with Prior Work). We remark that our results differ from prior work in
three key aspects. First, we study the practical softmax attention rather than linear or ReLU attention
(Bai et al., 2023; Von Oswald et al., 2023; Vladymyrov et al., 2024). Second, our results in Section 4
go beyond task-specific ICL and establish that fixed-weight Transformers are prompt-programmable
(Bai et al., 2023; Wu et al., 2025; Li et al., 2025). Third, our results are constructive, providing
concrete emulation examples in contrast to prior prompting expressivity (Wang et al., 2023; Furuya
et al., 2024) or Turing-completeness results (Pérez et al., 2021; Giannou et al., 2023; Qiu et al., 2024).
The closest works to ours are (Giannou et al., 2023; Bai et al., 2023). Bai et al. (2023) show that
Transformers can execute several standard algorithms in-context, but each algorithm uses its own
tailored attention layer. Our results show that a single fixed attention module can emulate a broad
set of algorithms through prompt changes. Giannou et al. (2023) study a fixed looped Transformers
that implement arbitrary programs. However, their results are “there exists”-type: their universal
Transformer is a conceptual Turing machine, not a fully specified numerical model. While our results
are also extensible to looped setting (i.e., Corollary 3.1.2), our focus is different: we use an attention-
only, FFN-free model and analyze its algorithmic universality constructively. This highlights the
power of softmax attention mechanism and offers a clean testbed for developing scientific theories
(interpretable, controllable and predictable like physics) of GPT-style foundation models.

Extension: Modern Hopfield Networks. We extend our results to in-context optimization ability of
dense associative memory models (Ramsauer et al., 2021) in Appendix E.

4.2 IN-CONTEXT EMULATION OF STATISTICAL METHODS

Theorem 4.2 shows that a frozen attention module approximates a target attention head by embedding
the head’s weights into its input prompt. We now leverage this idea to emulate a broader class of
algorithms. In essence, we replace the embedded target attention weights with the parameters of an
arbitrary statistical method that we aim to emulate. By the same principle, the fixed attention module
then mimics the behavior of diverse statistical models within the in-context learning framework.

Corollary 4.2.1 (In-Context Emulation of Statistical Methods). Let A be the set of all algorithms
implementable by a single-layer attention network in-context. For any finite collection of algorithms
{a1, a2, . . . , ak} := A0 ⊆ A, there exists a two-layer attention network (a single-head layer Attns
composed with a multi-head layer Attnm) such that for each a ∈ A0 in the collection

∥
3n∑
j=1

Attns ◦Attnj ◦ Linearj
([

X
W a

])
− a(X)∥∞ ≤ ϵ,

where W a is the W defined as Definition 4.2 using W a
K ,W a

Q,W
a
V .

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Proof. See Appendix D.7 for detailed proof.

We show that a fixed attention module emulates an arbitrary finite library of in-context algorithms by
varying its prompt. This result highlights the flexibility of softmax attention: unlike prior work that
requires re-training or fine-tuning of the model, here we provably achieve task-specific behavior by
modifying the input prompt. In effect, a pretrained Transformer internalizes a small set of fundamental
procedures and later deploys them, via prompting, across a wide range of data distributions. Since
the number of distinct algorithms is far smaller than the number of possible datasets, a model that
learns a handful of algorithms can leverage them to handle many different scenarios.

4.3 ATTENTION MAKES EVERY (LINEAR) NETWORK IN-CONTEXT

We now extend the above ideas to show that softmax attention emulates any network (comprised of
linear transformations) in-context. Consider any layer of a neural network that applies a trainable
linear map x → Θx with weight matrix Θ. Our results imply that if Θ is provided as part of the
input sequence, a fixed attention module is capable of approximating this transformation to arbitrary
precision. Hence linear layers in standard architectures are replaceable with attention whose effective
weights are encoded in the prompt rather than learned. This substitution turns the network into an
in-context learner in place of, or alongside, conventional training.

Remark 4.5 (In-Context Emulation of Linear Layers). For example, suppose a model contains a
linear layer f(x) = Θx with weight matrix Θ. By including Θ (appropriately encoded) in the input
as in our constructions above, a single softmax attention layer emulates f(x) in-context to arbitrary
precision. In other words, any trainable linear mapping in the original network is replicable with a
prompt-programmable attention layer whose parameters are set by the input sequence. This enables
the overall network to adjust that layer’s behavior on-the-fly via prompts, rather than having to learn
Θ through pre-training.

5 NUMERICAL STUDIES

2 4 6 8 10 12
Number of Heads

1

2

3

4

M
ea

n 
Lo

ss

Number of Heads Plot

Figure 2: Sensitivity of Attention Emulation to the
Number of Heads. We report loss (MSE) as the mean
and one standard deviation (shaded region) over 10 ran-
dom seed runs. We use synthetic data of 50000 data
points with sequence length being 20 and input dimen-
sion being 24. We set batch size to be 32 and hidden
dimension to be 48. Each multi-head model and the
single-head softmax attention layer is trained for 50
epochs. The optimizer used is Adam with learning rate
0.001. We visualize the performance (MSE ± Std) for
1, 2, 4, 6, 8, 12 heads.

This section provides numerical results to back
up our theory. We validate two building blocks
on synthetic data: (i) approximation of contin-
uous functions (Section 5.1); and (ii) approxi-
mation of attention heads (Section 5.2). These
studies quantify approximation error and its re-
lation to model size and the number of heads.

5.1 PROOF-OF-CONCEPT
EXPERIMENT ON THEOREM 3.1

Objective: Verifying Attention Approximates
f(w⊤x− y)x. We investigate accuracy of soft-
max attention approximating f(w⊤x− y)x by
training a single-head softmax attention with
linear connection.

Data Generation. We randomly generate X ∈
Rn×d drawn from a normal distribution, X ∼ 10 · N(0, 1) − 5. We also generate weight matrix
W ∈ Rn×d and y ∈ Rn, both randomly drawn from a standard normal distribution, N(0, 1). Here, n
represents the sequence length and d represents input dimension. The true label is f(w⊤x − y)x,
where we choose f(·) = tanh(·).
Model Architecture. We train a single-head attention network with linear transformation to approxi-
mate tanh

(
w⊤x− y

)
x. We first apply linear transformation to both [X; y] and W . We then train

the single-head attention model with the linear transformations to approximate our target function as
shown in the proof of Theorem 3.1.

Results. As shown in Figure 2, evaluated on Mean Square Error loss, the model approximates the
target tanh

(
w⊤x− y

)
x with minimal error. This experiment proves our theory.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5.2 PROOF-OF-CONCEPT EXPERIMENT ON EMULATING ATTENTION HEADS

Objective: Verifying Approximation Rates. We investigate the affect of the number of attention
heads H on the accuracy of softmax attention approximating softmax attention head.

Data Generation. We randomly generate a sequence of tokens X = [x1, x2, · · · , xn] ∈ Rd×n,
where each entry xi is drawn independently from a normal distribution,

X ∼ 2 ·N(0, 1)− 1.

We also generate weight matrices K = WKX⊤ ∈ Rh×n, Q = WQX
⊤ ∈ Rh×n, and V =

WV X
⊤ ∈ Rd×n. Each parameter matrix is randomly drawn from a standard normal distribution,

N(0, 1). Here, n represents the sequence length, d represents token dimension, and h represents
hidden dimension. The true label Y ∈ Rd×n results from applying a single-layer softmax attention
mechanism on inputs X , K, Q, and V .

Model Architecture. We train a multi-layer attention network to approximate softmax attention
function. We first train separate multi-head models with linear transformation to approximate K, Q,
and V . Then, we use a single-head softmax attention layer to approximate softmax attention function
as in the proof.

Table 1: Sensitivity to the Number of Heads. Emula-
tion MSE (mean ± std) for multi-head softmax attention
with 1, 2, 4, 6, 8, and 12 heads.

Heads 1 2 4 6 8 12
MSE 3.469 2.802 1.222 1.012 0.793 0.686
Std 0.381 0.413 0.603 0.204 0.127 0.171

Results. As shown in Figure 2 and Table 1, the
result validates our claim that a multi-head soft-
max attention mimics a target softmax attention
head to arbitrary precision. Moreover, it demon-
strates the convergence of multi-head softmax at-
tention emulating softmax-based attention map-
ping as the number of heads increases. The
approximation rate is in the trend of O(1/H)
where H is the number of heads. The small and decreasing MSE error indicates that the simple
softmax attention model approximates softmax attention head with stability.

Additional Experiments. Due to page limits, we defer several experimental results to Appendix C.
These include simulations of statistical algorithms (Appendix C.1) and approximations of statistical
models on real-world datasets where the model does not have access to the true algorithm weights
(Appendix C.2). They further illustrate the approximation capabilities of Transformer in practice.

6 DISCUSSION AND CONCLUSION

We study in-context algorithm emulation in fixed-weight Transformers and formalize two modes:
task-specific (Section 3) and prompt-programmable algorithm emulation (Section 4). For the former,
we show that even a single-layer, single-head module suffices for emulating core families (of the form
f(w⊤x− y)x) such as one-step gradient descent and linear/ridge regression, achieving architectural
minimality (Theorem 3.1). For the latter, we show that a two-layer multi-head softmax attention
module emulates a broad class of algorithms by embedding the algorithm’s weights into the input
prompt (Theorem 4.1). Altogether, a fixed softmax attention module becomes a prompt-programmable
library of algorithms: weights remain frozen, and the prompt selects the routine.

Mechanism. The mechanism is constructive. By encoding target weights in the input and creating
large dot-product margins, softmax attention routes along the intended computation without weight
updates. Numerical studies support the theory: on synthetic data the model accurately approximates
continuous maps of the form f(⟨w, x⟩ − y)x and emulates attention heads. Approximation error
decreases as the number of heads grows. On a real dataset (Ames Housing), the frozen module-driven
by prompts rather than true algorithm weights-achieves low error against standard statistical models.

Implications. Our results tighten the link between in-context learning and algorithmic emulation.
Viewing prompts as callable subroutines that select and configure algorithms within a frozen model,
we draw three takeaways: (i) prompt engineering becomes interface design for algorithm selection,
(ii) pretraining objectives could, in future work, be designed to encourage learning compact libraries
of reusable procedures, and (iii) analyses of internal routing help clarify how foundation models select
among algorithms. This lens explains the breadth of in-context generalization, guides prompt design,
and motivates new pretraining objectives for more effective algorithm installation and utilization.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility on both theoretical and empirical fronts. For theory, we include all formal
assumptions, definitions, and complete proofs in the appendix. For experiments, we describe model
architectures, datasets, preprocessing steps, hyperparameters, and training details in the main text and
appendix. Code and scripts are provided in the supplementary materials to replicate the empirical
results.

REFERENCES

Jacob Abernethy, Alekh Agarwal, Teodor Vanislavov Marinov, and Manfred K Warmuth. A mecha-
nism for sample-efficient in-context learning for sparse retrieval tasks. In International Conference
on Algorithmic Learning Theory, pages 3–46. PMLR, 2024.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. Advances in Neural Information Processing
Systems, 36:45614–45650, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2023.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural information
processing systems, 36:57125–57211, 2023.

Rishi Bommasani. On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Dean De Cock. Ames, iowa: Alternative to the boston housing data as an end of semester regression
project. Journal of Statistics Education, 19(3):1–13, 2011.

Takashi Furuya, Maarten V de Hoop, and Gabriel Peyré. Transformers are universal in-context
learners. arXiv preprint arXiv:2408.01367, 2024.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference on
Machine Learning, pages 11398–11442. PMLR, 2023.

Jerry Yao-Chieh Hu, Hude Liu, Hong-Yu Chen, Weimin Wu, and Han Liu. Universal approximation
with softmax attention. arXiv preprint arXiv:2504.15956, 2025a.

Jerry Yao-Chieh Hu, Wei-Po Wang, Ammar Gilani, Chenyang Li, Zhao Song, and Han Liu. Fun-
damental limits of prompt tuning transformers: Universality, capacity and efficiency. In The
Thirteenth International Conference on Learning Representations, 2025b.

Tokio Kajitsuka and Issei Sato. Are transformers with one layer self-attention using low-rank
weight matrices universal approximators? In The Twelfth International Conference on Learning
Representations, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2021.

Gen Li, Yuchen Jiao, Yu Huang, Yuting Wei, and Yuxin Chen. Transformers meet in-context learning:
A universal approximation theory. arXiv preprint arXiv:2506.05200, 2025.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics (ACL),
2021.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International conference on
machine learning, pages 19565–19594. PMLR, 2023.

Hude Liu, Jerry Yao-Chieh Hu, Zhao Song, and Han Liu. Attention mechanism, max-affine partition,
and universal approximation. arXiv preprint arXiv:2504.19901, 2025.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM computing surveys, 55(9):1–35, 2023.

Sheng Liu, Haotian Ye, Lei Xing, and James Zou. In-context vectors: Making in context learning more
effective and controllable through latent space steering. In Forty-first International Conference on
Machine Learning, 2024.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages
61–68, 2022.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages
11048–11064, 2022.

Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is turing-complete. Journal of Machine
Learning Research, 22(75):1–35, 2021.

Ruizhong Qiu, Zhe Xu, Wenxuan Bao, and Hanghang Tong. Ask, and it shall be given: On the turing
completeness of prompting. arXiv preprint arXiv:2411.01992, 2024.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas Adler,
Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, et al. Hopfield networks
is all you need. 2021.

Max Vladymyrov, Johannes Von Oswald, Mark Sandler, and Rong Ge. Linear transformers are
versatile in-context learners. Advances in Neural Information Processing Systems, 37:48784–48809,
2024.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pages 35151–35174. PMLR, 2023.

Yihan Wang, Jatin Chauhan, Wei Wang, and Cho-Jui Hsieh. Universality and limitations of prompt
tuning. Advances in Neural Information Processing Systems, 36:75623–75643, 2023.

Weimin Wu, Maojiang Su, Jerry Yao-Chieh Hu, Zhao Song, and Han Liu. In-context deep learning
via transformer models. In International Conference on Machine Learning. PMLR, 2025.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.
Are transformers universal approximators of sequence-to-sequence functions? In International
Conference on Learning Representations, 2020.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1–55, 2024.

Yufan Zhuang, Chandan Singh, Liyuan Liu, Jingbo Shang, and Jianfeng Gao. Vector-icl: In-context
learning with continuous vector representations. In The Thirteenth International Conference on
Learning Representations, 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix

A Proof Sketches 15
A.1 Proof Sketch for Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
A.2 Proof Sketch for Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B Related Work 18
B.1 Core Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
B.2 Broader Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

C Additional Numerical Studies 19
C.1 Proof-of-Concept Experiment on Emulating Statistical Models . . . . . . . . . . . 20
C.2 Real-World Experiment on Emulating Statistical Models . . . . . . . . . . . . . . 20
C.3 Proof-of-Concept Experiment on Theorem 4.2 . . . . . . . . . . . . . . . . . . . . 21

D Proofs of Main Text 22
D.1 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
D.2 Proof of Corollary 3.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
D.3 Proof of Corollary 3.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
D.4 Proof of Corollary 3.1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
D.5 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
D.6 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
D.7 Proof of Corollary 4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

E In-Context Application of Statistical Methods by Modern Hopfield Network 70

IMPACT STATEMENT

We prove that a single frozen softmax attention head emulates a broad library of attention-
implementable algorithms via prompt design, establishing pretrained Transformers as universal
algorithm stores and reducing the need for task-specific fine-tuning. This sharpens the theoretical
basis of in-context learning, offers a principled recipe for prompt engineering, and equips auditors
with a clear test for hidden prompt-encoded behaviors, all without releasing new models or data.
Therefore, the work advances foundational understanding, lowers compute and energy demands, and
introduces minimal societal risk.

LIMITATIONS AND FUTURE DIRECTION

Prompt length grows linearly with the weight dimension, which limits practicality. The proofs
assume exact real-valued softmax and ignore token discretizations or numerical noise. Prompts
are hand-crafted. Learning them automatically is open. Language and vision inputs are untested.
Weight encoding happens along embedding dimension. The construction is not permutation invariant,
but permutation equivariant of the input data. Lastly, we leave tighter constants, shorter prompts,
extensions to deeper models and connection with model pretraining to future work.

LLM USAGE DISCLOSURE

We used large language models (LLMs) to aid and polish writing, such as improving clarity, grammar,
and conciseness. We also used LLMs for retrieval and discovery, for example exhausting literature to
identify potential missing related work. All technical content, proofs, experiments, and results are
original contributions by the authors.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Process

Process

Process

Input Data

Weight Encoding

Position Encoding

Recovering

Concatenate
Predicted Values

Concatenate

True Values

Approx. 

Error

Process

Process

Calculating
Real Weight

Figure 3: Visualization of Proof Sketch for Theorem 4.1. We visualize our proof technique. We combine
input data, weight encoding, and position encoding into Xp as input to the multi-head attention Attnm to recover
approximate key, query, and value representations. We then compare the single-head attention Attns outputs
from approximate values with ground truth values to obtain approximation error.

A PROOF SKETCHES

We present our proof strategies here.

A.1 PROOF SKETCH FOR THEOREM 4.1

We construct a two-layer Transformer (single-head layer Attns followed by multi-head layer Attnm)
that replicates the target attention to within any error ϵ > 0. Recall from Theorem 4.1:

∥
Step 3︷ ︸︸ ︷
Attns ◦Attnm(

Step 1︷︸︸︷
Xp )︸ ︷︷ ︸

Step 2︸ ︷︷ ︸
Emulator

−WV XSoftmax((WKX)⊤WQX)︸ ︷︷ ︸
Target

∥∞ ≤ ϵ.

The high-level idea is: (Step 1) augment the input with a prompt encoding of the target weights
WK ,WQ,WV , (Step 2) use groups of heads in Attnm to approximate the matrices K := WKX ,
Q := WQX , V := WV X in-context (up to small error), and (Step 3) apply Attns with fixed
weights to assemble the Attnm output: the approximators K ′, Q′, V ′. We then argue in (Step 4) the
approximation error can be made < ϵ via a stability bound on softmax attention.

Step 1: In-Context Weight Encoding. We augment the input X ∈ Rd×n by appending special
tokens encoding the matrices WK ,WQ,WV . We denote the augmented input as Xp. This allows the
transformer Attns ◦Attnm to “read” the relevant weight parameters in its attention heads.

Explicitly, we embed both the data sequence and the target head into the input (Definition 4.2):

Xp =

[
X
Win

In

]
with Win :=

[
0 · w 1 · w 2 · w · · · (n− 1) · w
w w w · · · w

]
,

where w = [W⊤
K ,W⊤

Q,W
⊤
V ]

⊤ concatenates every column of W⊤
K ,W⊤

Q ,W⊤
V following Defini-

tion 4.2. The block In provides token-position codes used in our construction.

The idea of this augmentation is to emulate the target computation WV XSoftmax((WKX)⊤WQX)
with the emulator: a two-layer transformer Attns ◦ Attnm. To achieve this, Attns ◦ Attnm must
access the information of X , WK ,WQ and WV in-context. The augmentation above encodes these
parameters (target algorithm’s specifications) in the prompt.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Step 2: Multi-Head Decomposition for In-Context Recovery of K,Q, V . We devote the first
attention layer (Attnm) to recovering the key, query, and value matrices that the target attention
would compute. By definition, each row in K,Q, and V takes the form: k⊤i X, q⊤i X and v⊤i X . Here
k⊤i , q

⊤
i and v⊤i are rows in WK ,WQ and WV . Our goal is, for each data token xi (the i-th column of

X), to approximate k⊤j xi, q⊤j xi, and v⊤j xi. To do this, we design Attnm to have a fixed number of
heads partitioned into three groups, corresponding to K, Q, and V respectively. Combining heads’
outputs within each group yields approximations of K, Q, and V . Explicitly, in the first multi-head
layer Attnm, we split the heads so that:

• A group of heads jointly approximates WKX . By (Hu et al., 2025a, Theorem 3.2), the heads in this
group admit further subdivision into sub-groups. Each sub-group outputs a linear transformations
of X , namely k⊤i X for rows k⊤i X of K.

• Another group of heads approximates WQX in a similar manner.

• A final group approximates WV X .

Concatenate or combine these head outputs so that the final embedding from Attnm(Xp) contains
(up to small error) the blocks [K;Q;V ] for all positions in X .

Explicitly, for each row k⊤j of WK (and similarly for q⊤j and v⊤j ), we prepend the corresponding
heads with a token-wise linear map A(·). A(Xp) pulls out the target row (i.e., kj) from w and repeats
it n times. The resulting sub-prompt A(Xp) has the form X

0 · kj 1 · kj · · · (n− 1) · kj
kj kj · · · kj

In

 ,

so the corresponding softmax heads return k⊤j X up to any error ϵ0 by the truncated-linear interpolation
theorem (Theorem D.1). With H = ⌈2(b− a)/((n− 2)ϵ0)⌉ heads per sub-group, we cover all dh
rows in K (and similarly for Q and V ). Altogether, the 3N = 3dhH heads satisfy

∥
dh∑
j=1

AttnKj (Xp)︸ ︷︷ ︸
:=K′

−K∥∞ ≤ ϵ0, ∥
2dh∑

j=dh+1

AttnQj (Xp)︸ ︷︷ ︸
:=Q′

−Q∥∞ ≤ ϵ0, ∥
3dh∑

j=2dh+1

AttnVj (Xp)︸ ︷︷ ︸
:V ′

−V ∥∞ ≤ ϵ0.

We collect these outputs column-wise into[
K ′

Q′

V ′

]
, and ∥

[
K ′

Q′

V ′

]
−

[
K
Q
V

]
∥∞ ≤ ϵ0.

Step 3: Single-Head Assembly for Emulated Map. We consider the second layer Attns as
a single-head attention with fixed weights chosen to “read” the K ′, Q′, V ′ triples from Z :=
Attnm(Xp) and perform the “emulated” attention mechanism. Explicitly, apply a single-head
attention layer Attns whose parameters are set to read off the K, Q, and V sub-blocks in each token
embedding:

Attns(Z) := W
(s)
V ZSoftmax((W

(s)
K Z)⊤(W

(s)
Q Z)).

For Z := Attnm(Xp), we choose fixed weights

W
(s)
K = [0dh×2dh

Idh ] , W
(s)
Q = [Idh

0dh×2dh ] , W
(s)
V = [0dh×dh

Idh
0dh×dh ] ,

so that
W

(s)
K Z ≈ WKX, W

(s)
Q Z ≈ WQX, W

(s)
V Z ≈ WV X.

Hence,

Attns(Z) = Attns ◦Attnm(Xp) = Attns(

[
K ′

Q′

V ′

]
) = V ′Softmax((K ′)⊤Q′)

≈ WV XSoftmax((WKX)⊤WQX).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Process

Concatenate
Predicted Values

Concatenate

True Values

Approx. 

Error

Process

Process

Calculating
Real Weight

Input Data

Weight Encoding

Figure 4: Visualization of Proof Sketch for Theorem 4.2. We visualize our proof technique. We combine
input data and weight encoding as input. Each key, query, and value has a unique set of linear transformation of
input (Linear) and multi-head attention (Attnm). We feed the input into each set to attain the approximate key,
query, and value representations, respectively. We then compare the single-head attention Attns outputs from
approximate values with ground truth values to obtain approximation error.

To be precise, because K ′, Q′, V ′ differ from K,Q, V by at most ϵ0 (in ∥ · ∥∞), a first-order
perturbation argument for softmax (uniform Lipschitz in sup-norm) shows

∥Attns(

[
K ′

Q′

V ′

]
)−Attns(

[
K
Q
V

]
)∥ ≤ ϵ0 + nBKQV ϵ1,

where BKQV bounds X,WK ,WQ,WV and ϵ1 = O(ϵ0).

Step 4: Error Bound. Finally, we make the approximation arbitrarily precise. Because we are
capable of making each head’s linear approximation arbitrarily close, we ensure

∥Attns ◦Attnm([X;W ])−WV XSoftmax((WKX)⊤ WQX)∥∞ ≤ ϵ,

for any ϵ > 0. This completes the construction, proving in-context emulation of the target attention.
Please see Appendix D.5 for a detailed proof and Figure 3 for proof visualization.

A.2 PROOF SKETCH FOR THEOREM 4.2

We outline how to emulate the desired attention step-by-step with a fixed two-layer transformer.
Similar to Theorem 4.1 (and Theorem D.1), our construction ensures each token’s representation in
the intermediate layer carries an approximate copy of its key, query, and value vectors, which the
final layer uses to perform the softmax attention. All necessary components (including the weight
matrices WK ,WQ,WV themselves) are encoded into the input, so the network’s weights remain
untrained and generic.

Step 1: Encoding Weights into the Input. Let X ∈ Rd×n be the input tokens. Append a “weight
encoding” matrix W that contains the rows of WK ,WQ,WV (the weight matrices of the target
attention head). This forms an extended input [X;W ]. The entries of X and W remain within a
bounded range [−B,B]. This bound ensures that all inner products remain finite.

Step 2: Multi-Head Approximation of K,Q, V . The first layer has many heads. Partition them
into three groups. One group approximates K := WKX; one approximates Q := WQX; and one
approximates V := WV X . Then

• Simulating Dot Products on a 1D Grid. Consider a single entry k⊤j xc. All entries in K,Q, V lie
between [−dB2, dB2], since the entries of X and W remain within a bounded range [−B,B]. We
create grid points L0 < · · · < LP covering [−dB2, dB2]. We design the head’s key and query so

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

that the softmax assigns each grid point Li a weight based on its distance to k⊤j xc. We set the value
vector to encode Li. Thus, the head output for token xc approximates k⊤j xc. Fine grids reduce the
error.

• Reconstructing Full K,Q, V . Repeat this idea for every entry in K,Q, V . Each row uses one
head to approximate k⊤j X , q⊤j X , or v⊤j X . Combine these approximations to obtain the matrices
K ′, Q′, V ′. The sup norm

∥

[
K ′

Q′

V ′

]
−

[
K
Q
V

]
∥∞, can be made arbitrarily small.

Step 3: Single-Head Assembly of the Attention Output. The second layer, Attns, has one head.
We set its weight matrices W (s)

K ,W
(s)
Q ,W

(s)
V to pick out K ′, Q′, V ′ from each token’s embedding.

Then, Attns computes

V ′Softmax((K ′)⊤Q′) ≈ WV XSoftmax((WKX)⊤WQX),

since K ′ ≈ K, Q′ ≈ Q and V ′ ≈ V .

Step 4: Error Bound. Softmax and matrix multiplication are continuous. Small errors in K ′, Q′, V ′

cause a small error in the final output. By refining the grid (and using enough heads), we make the
sup norm error below any ϵ > 0. Please see Appendix D.6 for a detailed proof and Figure 4 for proof
visualization.

B RELATED WORK

Our results diverge from prior findings on Transformer universality and in-context learning.

B.1 CORE RELATED WORK

Universal Approximation. Prior studies establish that Transformers approximate arbitrary
sequence-to-sequence functions, but they do not address in-context learning and often assume
complex architectures. For example, Yun et al. (2020) prove that deep multi-head Transformers
with feed-forward layers are universal approximators of continuous sequence-to-sequence functions.
Subsequent advances tighten this finding: Kajitsuka and Sato (2024); Hu et al. (2025b) show that even
a single-layer Transformer realizes any continuous sequence function. However, these results treat
Transformers as parametric function approximators. The model requires re-training and re-prompting
to adapt to a new target function instead of handling multiple tasks through context. In contrast, we
prove that a minimal Transformer architecture, even a single-layer, single-head attention module with
no feed-forward network, emulates a broad class of algorithms without weight updates by varying
its prompt. This result achieves a new level of generality through context alone (i.e. prompt-based
conditioning) despite a fixed minimalist model.

In-Context Learning and Algorithm Emulation. Another line of recent theory bridges Trans-
formers with in-context learning by designing model components to carry out specific algorithms.
For example, Bai et al. (2023) show that Transformers execute a broad range of standard algorithms
in-context, but each algorithm requires a distinct, tailored attention head. In comparison, we extend
this approach by showing that one fixed attention mechanism emulates any specialized attention head
via prompt encoding. Rather than crafting a different attention module for each algorithm, a single
frozen softmax-based attention layer takes its instructions from the prompt to perform all tasks in
context. This minimal model thus becomes a unified and compact in-context algorithm emulator. It
switches behaviors by changing only its input prompt, setting it apart from earlier approaches that
required per-task reparameterization.

B.2 BROADER DISCUSSION

Universal Approximation and Expressivity of Transformers. Transformers exhibit strong ex-
pressive power as sequence models. Recent theory shows even minimal Transformer architectures
approximate broad classes of functions. Kajitsuka and Sato (2024); Hu et al. (2025b) prove a
single-layer, single-head Transformer can memorize any finite dataset perfectly. Kajitsuka and

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Sato (2024) achieve this with low-rank attention matrices, while Hu et al. (2025b) use attention
matrices of any rank. Adding two small feed-forward layers makes it a universal approximator for
continuous sequence functions under permutation-equivariance. More recently, Hu et al. (2025a)
show self-attention layers alone are universal approximators. Specifically, two attention-only layers
approximate continuous sequence-to-sequence mappings, and even a single softmax-attention layer
suffices for universal approximation. Similarly, Liu et al. (2025) also demonstrate that one single-head
attention connected with linear transformations is sufficient to approximate any continuous function
in L∞ norm. These results eliminate the need for feed-forward networks, improving on earlier
constructions. Overall, these findings highlight the inherent expressiveness of minimal attention
mechanisms.

Transformers as In-Context Learners and Algorithm Emulators. Large Transformers also learn
in-context by conditioning on examples in their prompts, without updating weights (Brown et al.,
2020). Recent work formally explains this by showing attention-based models implement standard
learning algorithms internally. Bai et al. (2023) construct Transformer heads executing algorithms
such as linear regression, ridge regression, Lasso, and gradient descent steps, achieving near-optimal
predictions. Wu et al. (2025) further build Transformers explicitly simulating multiple gradient
descent iterations for training deep neural networks, with provable convergence guarantees. Empirical
and theoretical studies confirm Transformers internalize learning algorithms when meta-trained on
task families. Garg et al. (2022) show meta-trained Transformers mimic classical algorithms, such
as ordinary least squares regression, in-context. Similarly, Akyürek et al. (2023); Von Oswald et al.
(2023); Zhang et al. (2024) analyze Transformers trained on linear regression tasks and demonstrate
their outputs mimic gradient descent steps precisely. Overall, existing literature shows that sufficiently
trained or carefully designed Transformers emulate step-by-step computations of standard algorithms
through prompt conditioning.

Prompt Tuning. Prompt-tuning adapts frozen models by learning a short continuous prefix (Lester
et al., 2021; Li and Liang, 2021; Liu et al., 2022). It keeps backbone weights fixed and updates only
prompt embeddings. Our setting is stricter: prompts are hand-designed, not learned, and we give
exact approximation bounds. Thus we expose the theoretical limit of prompt control: a single frozen
softmax head can mimic any task-specific head.

Encoding Context Along Embedding Dimension. Recent work in in-context learning explores
encoding and manipulating context in the embedding space rather than sequence dimension. For
example, Liu et al. (2024) propose In-Context Vectors for steering the model’s behavior by adding
task-specific vectors along the embedding space. Zhuang et al. (2025) extend this idea by showing
that manipulating embedding vectors such as interpolation makes in-context learning more control-
lable. Abernethy et al. (2024) showcase that appending additional information along the embedding
dimension allows the model to perform sample-efficient in-context learning.

Comparison to Our Work. The above results demonstrate the versatility of Transformer networks,
but they require task-specific weights, training, or learned prompts. For instance, Bai et al. (2023)
design a different task-specific head for each algorithm of interest, raising the question of whether
a single fixed attention mechanism could instead serve as a universal emulator for any algorithm
given the right prompt. Our work directly addresses this question. In contrast, we prove one fixed
softmax head emulates any specialized head through prompt encoding alone. No additional weights
or training are required. Even the simplest attention (one layer, one head) acts as a universal algorithm
emulator when given the right prompt, shifting focus from architecture to prompt design.

C ADDITIONAL NUMERICAL STUDIES

We extend the synthetic validation to statistical algorithms (Appendix C.1) and include a real-world
study (Appendix C.2). The frozen attention module emulates linear, ridge, and lasso on synthetic
data. On the Ames Housing dataset, the model operates without access to true algorithm weights and
achieves low approximation error. In addition, we validate Theorem 4.2 through handcrafted frozen
attention weights and parameters as constructed in the proof (Appendix C.3).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.1 PROOF-OF-CONCEPT EXPERIMENT ON EMULATING STATISTICAL MODELS

Objective: Emulation of Statistical Models. We investigate the accuracy of a frozen softmax
attention approximating statistical models including Lasso, Ridge and linear regression by only
varying the input prompts.

Data Generation. We simulate an in-context dataset by randomly generating a sequence of input
tokens X = [x1, x2, . . . , xn] ∈ Rn×d, where each xi is independently drawn from a scaled standard
normal distribution,

xi ∼ 2 ·N(0, 1)− 1.

A task-specific prompt vector w ∈ Rp×1 is sampled from N(0, 1). In the case of Lasso, we randomly
zero out entries in w with probability 0.5 to induce sparsity. We generate the output sequence
Y ∈ Rn×1 via a noisy linear projection: Y = Xw + ϵ, where ϵ ∼ N(0, σ2) is Gaussian noise. For
Ridge, we calculate weights using (X⊤X + λId)

−1X⊤Y with λ = 5.

Model Architecture and Training. We use a mixture of statistical data to train a single-layer
attention network with linear transformation. Each input sample consists of X ∈ Rn×d and algorithm-
specific prompt w ∈ Rp. We replicate w across the sequence length and concatenate it with X
along the feature dimension to obtain an augmented input [X;w] ∈ Rn×(d+p). We pass it through
a multi-head attention layer. We train the model for 300 epochs using the Adam optimizer with a
learning rate of 0.001. We use 6 attention heads, a hidden dimension of 48, an input dimension of
24, a batch size of 32, and 50000 synthetic samples. After training, we freeze the attention weights,
resulting in a fixed softmax attention layer. We evaluate the frozen model on its ability to emulate
various statistical algorithms using test data.

Baseline Architecture. We train three separate attention models for Lasso, Ridge, and linear
regression. That is, each attention model weights are adaptive to its corresponding algorithm. We use
these models as baselines for comparison with the frozen attention model we propose. All baseline
models use the same hyper-parameters as the frozen model.

Results. As shown in Table 2, we compare mean MSE and standard deviation over 5 random
seed runs for the frozen attention model against baseline for Lasso, Ridge, and linear regression
on the synthetic data. The frozen attention model performs as well as the baseline models trained
individually on each algorithm. It achieves lower MSE on Lasso and linear regression tasks compared
to their corresponding baselines. It shows that a frozen attention mechanism generalizes across these
tasks given task-specific prompts. Moreover, the frozen model exhibits lower variance across all
tasks, suggesting increased stability and robustness. These results support our claim that a frozen
softmax attention layer, when conditioned on task-specific prompts, emulates statistical algorithms in
context without much performance degradation.

Table 2: Comparison Between Baseline and Frozen Attention Layer on Synthetic Dataset. We compare
loss (MSE) as the mean and one standard deviation over 5 random seed runs for baseline vs. frozen model
on different algorithms. We train on 50000 training data points evaluate on 10000 testing data points for each
algorithm.

Model Lasso Ridge Regression Linear Regression
Baseline 0.068±0.015 0.004±0.0003 0.147±0.067
Frozen Attention 0.059±0.001 0.071±0.0002 0.120±0.003

C.2 REAL-WORLD EXPERIMENT ON EMULATING STATISTICAL MODELS

Objective: Real-World Emulation of Statistical Models. Building on Appendix C.1, we use
real-world data to investigate the accuracy of a frozen softmax attention emulating algorithms.

Data Collection and Processing. We collect data from Ames Housing Dataset (De Cock, 2011).
This dataset consists of 2930 observations and 79 features. We process the data by log-transforming

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

the target variable, encoding categorical variables with one-hot vectors, replacing missing entries
with median values, and standardizing numerical features. The resulting data consists of 262 features.
We fit the processed data to Lasso, Ridge, and linear regression models to obtain algorithm weights
as part of the input.

Model Architecture and Training. We use a mixture of statistical data to train a single-layer
attention network with linear transformation. The input is passed through a multi-head attention layer
with a linear transformation. We train the model for 300 epochs using the Adam optimizer with a
learning rate of 0.001. We use 8 attention heads, a hidden dimension of 524, and a batch size of 32.
After training, we freeze the attention weights, resulting in a fixed softmax attention layer. The frozen
model is then evaluated on its ability to emulate various statistical algorithms using test data. We
train the baseline models the same way as the synthetic experiment.

Table 3: Comparison Between Baseline and Frozen Attention Layer on Ames Housing Dataset. We
compare loss (MSE) as the mean and one standard deviation over 5 random seed runs for baseline vs. frozen
model on different algorithms. We train on 80% training data and evaluate on 20% testing data for each
algorithm.

Model Lasso Ridge Regression Linear Regression
Baseline 0.0354±0.0000 0.0132±0.0000 0.0288±0.0000
Frozen Attention 0.0322±0.0000 0.0252±0.0000 0.0250±0.0000

Results. As shown in Table 3, we compare mean MSE and standard deviation over 5 random seed
runs for the frozen attention model against baseline for Lasso, Ridge, and linear regression on Ames
Housing Data. The results shows the frozen attention model performs as well as the baseline models
trained individually. We use an auxiliary network to approximate the required weight encoding. Our
experiment validates that the mechanism works even when the exact weights are not supplied in real
world scenarios.

C.3 PROOF-OF-CONCEPT EXPERIMENT ON THEOREM 4.2

Objective: Verifying Handcrafted Frozen Attention Approximates Attention. We validate that
the frozen attention prescribed in Theorem 4.2 approximates softmax attention with low error. In
particular, we handcraft the weights as in the proof of Theorem 4.2.

20 30 40 60 80
Number of Interpolation Points

0.0

0.2

0.4

0.6

M
ea

n 
Lo

ss

Number of Interpolation Points Plot

Figure 5: Sensitivity of Handcrafted Atten-
tion Emulation to the Number of Interpolation
Points. We report loss (MSE) as the mean and one
standard deviation (shaded region) over 4 sample
data points. Each data point has sequence length
n = 12 and input dimension d = 24. We set soft-
max temperature β = 2. We visualize the perfor-
mance (MSE ± Std) for P = 20, 30, 40, 60, 80.

Data Generation. We create a synthetic dataset.
We randomly generate X ∈ Rn×d drawn from a
uniform distribution over [−1, 1], X ∼ U(−1, 1).
For each sample, we generate three weight matrices
WK ,WQ,WV ∈ Rn×d drawn from standard nor-
mal distribution N(0, 1). We then compute K =
WKX⊤, Q = WQX

⊤, V = WV X
⊤ ∈ Rn×n.

The true target attention output is therefore given
by Y = V Softmax(K⊤Q) ∈ Rn×n.

Model Architecture. Following the proof in Ap-
pendix D.6, we hard-wire the linear layer weights,
attention weights, and interpolation points for the
two-layer softmax attention module as our emulator.
The model operates in a zero-shot, one-pass setting
with no training or parameter updates.

Results. We report the results in Table 4 and Figure 5. We compare the MSE loss between the
emulator output and the target attention output. Specifically, we fix the number of data points
n, input dimension d, softmax temperature β, and number of samples for testing. We vary the
number of interpolation points P . The result validates our claim that the handcrafted frozen attention

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

approximates the target attention. Moreover, we show that as P increases, the approximation error
and standard deviation both further decrease.

Table 4: Sensitivity to the Number of Interpolation Points. We report MSE loss (mean± std) between outputs
of handcrafted frozen attention and target attention varying number of interpolation points P over 4 samples.
We choose n = 12, d = 4, β = 2, samples = 4 for evaluation.

P 20 30 40 60 80

Mean MSE 4.002× 10−1 2.442× 10−2 5.852× 10−4 5.770× 10−9 5.037× 10−14

Std 2.393× 10−1 1.451× 10−2 8.538× 10−5 1.994× 10−9 1.620× 10−14

D PROOFS OF MAIN TEXT

To prepare our proofs, we state the following axillary definitions and lemmas.

Definition D.1 (Truncated Linear Function). We define the truncated linear function as follows:

Range[a,b](x) =


a x ≤ a,

x a ≤ x ≤ b,

b b ≤ x.

Intuitively, Range[a,b](·) is the part of a linear function whose value is in [a, b].

We then define the interpolation points in [a, b] that are used in later proofs.

Definition D.2 (Interpolation). Let [a, b] ⊂ R be an interval with a ≤ b and let p ∈ N∗ be a positive
integer. We define

L̃
[a,b]
0 := a, L̃[a,b]

p := b, L̃
[a,b]
i := a+

i

p
(b− a), i = [p− 1].

Hence, L̃0 < L̃1 < · · · < L̃p forms a uniform partition of [a, b]. We also write

∆L := L̃
[a,b]
i − L̃

[a,b]
i−1 , i ∈ [p].

We often omit the superscript [a, b] when the context is clear.

We also propose the following lemma to show Hardmax property that is capable of being approximated
by Softmax.

Lemma D.1 (Lemma F.1 in (Hu et al., 2025a): Approximating Hardmax with Finite-Temperature
Softmax). Let x = [x1, x2, . . . , xn] ∈ Rn, ϵ > 0. Define Softmaxβ(·) as

Softmaxβ(x) := [
exp(βx1)∑n
j=1 exp(βxj)

, · · · , exp(βxn)∑n
j=1 exp(βxj)

].

The following statements hold:
• Case of a Unique Largest Entry. Assume x1 = maxi∈[n] xi is unique, and x2 = maxi∈[n]\{1} xi.

Then, if β ≥ (ln(n− 1)− ln(ϵ))/(x1 − x2), we have∥∥∥Softmaxβ(x)− e1

∥∥∥
∞

≤ ϵ,

where e1 ∈ Rn is the one-hot vector corresponding to to the maximal entry of x (i.e., x1.)
• Case of Two Largest Entries (Tied or Separated by δ). Assume x1 and x2 are the first and

second largest entries, respectively, with δ = x1 − x2 ≥ 0. Let x3 be the third largest entry and is
smaller than x1 by a constant γ > 0 irrelevant to the input. Then, if β ≥ (ln(n− 2)− ln ϵ)/γ, we
have ∥∥∥Softmaxβ(x)−

1

1 + e−βδ
e1 −

e−βδ

1 + e−βδ
e2

∥∥∥
∞

≤ ϵ.

The following technical lemma is used in the proof of Theorem D.1.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Lemma D.2 (Refined Version of Lemma F.2 in (Hu et al., 2025a): Cases of All Heads in AttnH ).
For a ∈ [L̃0, L̃H(n−2)]. For any h ∈ [H], define three cases of the relationship between a and h

• Case 1: a ∈ [L̃(h−1)(n−2), L̃h(n−2)−1],
• Case 2: a /∈ [L̃(h−1)(n−2)−1, L̃h(n−2)].
• Case 3: a ∈ [L̃(h−1)(n−2)−1, L̃(h−1)(n−2)] ∪ [L̃h(n−2)−1, L̃h(n−2)].

These cases includes all possible situation. Then for all h, only two cases exists
• a falls in Case 1 for an h and Case 2 for all others.
• a falls in Case 3 for two adjacent h and Case 2 for all others.

Proof. Because a ∈ [L̃0, L̃H(n−2)] and

[L̃0, L̃H(n−2)] = ∪H
h=1[L̃(h−1)(n−2), L̃h(n−2)],

we have
a ∈ [L̃(ha−1)(n−2), L̃ha(n−2)] (D.1)

for an arbitrary ha.

This leads to only two possible cases

• Case 1*: a ∈ [L̃(ha−1)(n−2), L̃ha(n−2)−1].

• Case 2*: a ∈ [L̃ha(n−2)−1, L̃ha(n−2)].

Case 1*: a ∈ [L̃(ha−1)(n−2), L̃ha(n−2)−1]. Because a ∈ [L̃(ha−1)(n−2), L̃ha(n−2)−1], for h ̸= ha,
we have

L̃h(n−2)−2, L̃h(n−2) < L̃(ha−1)(n−2), h < ha

L̃h(n−2)+1, L̃(h−1)(n−2)−1 ≥ L̃ha(n−2)−1, h > ha.

Thus
[L̃(ha−1)(n−2), L̃ha(n−2)−1] ∩ [L̃(h−1)(n−2)−1, L̃h(n−2)] = ∅

[L̃(ha−1)(n−2), L̃ha(n−2)−1] ∩ [L̃(h−1)(n−2)−1, L̃h(n−2)] = ∅
for all h ̸= ha.

This means that a does not fall into Case 1 nor Case 3 for other h ∈ [H]. Thus a has to fall into Case
2 for other h.

Case 2*: a ∈ [L̃(ha−1)(n−2), L̃(ha−1)(n−2)+1] ∪ [L̃ha(n−2)−1, L̃ha(n−2)]. Without loss of general-
ity, assume a to be in the left half [L̃(ha−1)(n−2), L̃(ha−1)(n−2)+1]. Because

[L̃(ha−1)(n−2), L̃(ha−1)(n−2)+1] = [L̃(ha−1)(n−2)−1, L̃(ha−1)(n−2)],
(
Case 3 of ha − 1

)
[L̃(ha−1)(n−2), L̃(ha−1)(n−2)+1] = [L̃(ha−1)(n−2)−1, L̃(ha−1)(n−2)],

(
Case 3 of ha

)
this means a falls into Case 3 for ha and ha − 1.

This completes the proof.

We are now ready to prove a refined version of (Hu et al., 2025a, Theorem 3.2).

Theorem D.1 (Multi-Head Attention Approximate Truncated Linear Models In-Context). Let
X ∈ Rd×n be the input. Fix real numbers a < b, and let the truncation operator Range[a,b](·) follow
Definition D.1. Let ws denote the linear coefficient of the in-context truncated linear model. Define
Ws as

Ws :=

[
0 · ws 1 · ws · · · (n− 1) · ws

ws ws · · · ws

]
∈ R2d×n.

For a precision parameter p > n with ϵ = O(1/p), number of head H = p/(n − 2) there exists a
single-layer, H-head self-attention AttnH with a linear transformation A : Rd×n → R(3d+n)×n,

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

such that AttnH ◦A : Rd×n → Rdo×n satisfies, for any i ∈ [n],

∥AttnH ◦A(X):,i − Range[a,b](w
⊤
s xi)ek̃i

∥∞ ≤ max{|a|, |b|} · ϵ0︸ ︷︷ ︸
finite-β softmax error

+
b− a

(n− 2)H︸ ︷︷ ︸
interpolation error

.

Here ek̃i
is the one-hot vector with a 1 at position k̃i-th index and 0 elsewhere, and

k̃i = G(ki) ∈ [do], with ki = argmin
k∈{0,1,··· ,p−1}

(−2x⊤
i wi − 2ti + L̃0 + L̃k) · k,

where G : [p] → [do] denotes any set-to-constant function sending each selected interpolation index
ki into an appropriate integer k̃i ∈ [do] for i ∈ [n].

Proof. Define A : Rd×n → R(3d+n)×n for the input sequence X as

A(X) :=

[
I3d

0n×3d

]
︸ ︷︷ ︸

token-wise linear

[
X
Ws

]
+

[
03d×n

In

]
︸ ︷︷ ︸

positional encoding

=

[
X
Ws

In

]
∈ R(3d+n)×n.

Thus, A is a token-wise linear layer augmented with positional encoding, as it applies a linear
projection to each token and then adds a unique per-token bias.

Let p be a precision parameter, without loss of generality, let it be divisible by n − 2 and denote
p/(n− 2) as H .

Now we define the multi-head attention Attn of H heads. Denote ℓk := k(L̃k + L̃0) for k ∈ [p]
following Definition D.2. We denote the h-th head as Attnh, and define the weight matrices as

W
(h)
K = −β

[
0d×d −2Id −2[(h− 1)(n− 2)− 1]Id 0 0 · · · 0
01×d 01×d 01×d ℓ(h−1)(n−2)−1 ℓ(h−1)(n−2) · · · ℓh(n−2))

]
,

W
(h)
Q =

[
Id 0d×2d 0d×n

01×d 01×2d 11×n

]
,

W
(h)
V =

[
0do×(3d+1) L̃(h−1)(n−2)ek̃(h−1)(n−2)

L̃(h−1)(n−2)+1ek̃(h−1)(n−2)+1 · · · L̃h(n−2)−1ek̃h(n−2)−1
0do

]
,

for every h ∈ [H].

Here β > 0 is a coefficient we use to control the precision of our approximation. The attention
reaches higher precision as β gets larger.

With the construction of weights, we are also able to calculate the K, Q, V matrices in Attn

K(h) :=W
(h)
K A(X)

=W
(h)
K ·

[
X
Ws

In

]

=W
(h)
K ·


x1 x2 · · · xn

0 · ws 1 · ws · · · (n− 1) · ws

ws ws · · · ws

e
(n)
1 e

(n)
2 · · · e

(n)
n


= − β

[
0d×d −2Id −2[(h− 1)(n− 2)− 1]Id 0 0 · · · 0
01×d 01×d 01×d ℓ(h−1)(n−2)−1 ℓ(h−1)(n−2) · · · ℓh(n−2))

]

·


x1 x2 · · · xn

0 · ws 1 · ws · · · (n− 1) · ws

ws ws · · · ws

e
(n)
1 e

(n)
2 · · · e

(n)
n


24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

= − β

[
−2[(h− 1)(n− 2)− 1]ws −2(h− 1)(n− 2)ws · · · −2h(n− 2)ws

ℓ(h−1)(n−2)−1 ℓ(h−1)(n−2) · · · ℓh(n−2)

]
∈ R(d+1)×n,

(D.2)

where the last equality comes from multiplying X with 0, thus this is a extraction of non-zero entries
in WK .

For Q, we have

Q(h) :=Wh
QA(X)

=

[
Id 0d×2d 0d×n

01×d 01×2d 11×n

]
·

[
X
Ws

In

]

=

[
Id ·X + 0d×2d ·Ws + 0d×n · In

01×d ·X + 01×2d ·Ws + 11×n · In

]
=

[
X

11×n

]
∈ R(d+1)×n. (D.3)

For V , we have

V (h) :=W
(h)
V A(X)

=
[
0do×(3d+1) L̃(h−1)(n−2)ek̃(h−1)(n−2)

· · · L̃h(n−2)−1ek̃h(n−2)−1
0do

]
·

[
X
Ws

In

]

= 0︸︷︷︸
do×3d

·
[
X
Ws

]
+
[
0do L̃(h−1)(n−2)ek̃(h−1)(n−2)

· · · L̃h(n−2)−1ek̃h(n−2)−1
0do

]
︸ ︷︷ ︸

do×n

·In

=
[
0do

L̃(h−1)(n−2)ek̃(h−1)(n−2)
L̃(h−1)(n−2)+1ek̃(h−1)(n−2)+1 · · · L̃h(n−2)−1ek̃h(n−2)−1

0do

]
∈ Rd0×n. (D.4)

Given that all k̃j , where j ∈ [p], share the same number in [do], we denote this number by kG.

Hence we rewrite V (h) as
V (h) =

[
0do L̃(h−1)(n−2)ekG

L̃(h−1)(n−2)+1ekG
· · · L̃h(n−2)−1ekG

0do

]
.

We define mv as
mv := max{|a|, |b|}.

By the definition of V (h), we have

∥V ∥∞ ≤ max
i∈[P ]

{L̃i} ≤ mv. (D.5)

Remark D.1 (Intuition of the Construction of V (h)). As previously mentioned, L̃i, for i ∈ [p],
are all the interpolation points. In this context, V (h) encompasses the (n− 2) elements of these
interpolations (i.e., (h− 1)(n− 2) to h(n− 2)− 1). Meanwhile, the value on the two ends of
V h are both set to 0do

, because we suppress the head and let it output 0 when the input X is not
close enough to the interpolations of the head.

Now we are ready to calculate the output of each Attnh

Attnh(A(X))

= V (h)Softmax((K(h))⊤Q(h))

= V (h)Softmax

(
−β

[
−2[(h− 1)(n− 2)− 1]w −2(h− 1)(n− 2)w · · · −2h(n− 2)w

ℓ(h−1)(n−2)−1 ℓ(h−1)(n−2) · · · ℓh(n−2)

]⊤ [
X

11×n

])
,

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

where last line is by plug in (D.2) and (D.3). Note the i-th column of the attention score matrix (the
Softmax nested expression) is equivalent to the following expressions

Softmax((K(h))⊤Q(h)):,i

= Softmax

(
−β

[
−2[(h− 1)(n− 2)− 1]w −2(h− 1)(n− 2)w · · · −2h(n− 2)w

ℓ(h−1)(n−2)−1 ℓ(h−1)(n−2) · · · ℓh(n−2)

]⊤ [
X

11×n

])
:,i

= Softmax

−β


−2[(h− 1)(n− 2)− 1]w⊤xi + ℓ(h−1)(n−2)−1

−2(h− 1)(n− 2)w⊤xi + ℓ(h−1)(n−2)

...
−2h(n− 2)w⊤xi + ℓh(n−2)


 (

pick column i
)

= Softmax

−β


[(h− 1)(n− 2)− 1](−2w⊤xi + L̃(h−1)(n−2)−1 + L̃0)− 2[(h− 1)(n− 2)− 1]t

(h− 1)(n− 2)(−2w⊤xi + L̃(h−1)(n−2) + L̃0)− 2(h− 1)(n− 2)t
...

h(n− 2)(−2w⊤xi + L̃h(n−2) + L̃0)− 2h(n− 2)t




(
By ℓk = k(L̃k + L̃0)− 2kt

)

= Softmax

− β

∆L


(−2x⊤

i w − 2t+ L̃0 + L̃(h−1)(n−2)−1) · [(h− 1)(n− 2)− 1]∆L

(−2x⊤
i w − 2t+ L̃0 + L̃(h−1)(n−2)) · (h− 1)(n− 2)∆L

...
(−2x⊤

i w − 2t+ L̃0 + L̃h(n−2)) · h(n− 2)∆L




(
By mutiplying and dividing by ∆L

)

= Softmax

− β

∆L


(−2x⊤

i w − 2t+ L̃0 + L̃(h−1)(n−2)−1) · (L̃(h−1)(n−2)−1 − L̃0)

(−2x⊤
i w − 2t+ L̃0 + L̃(h−1)(n−2)) · (L̃(h−1)(n−2) − L̃0)

...
(−2x⊤

i w − 2t+ L̃0 + L̃h(n−2)) · (L̃h(n−2) − L̃0)




(
By k∆L = L̃k − L̃0

)

= Softmax

− β

∆L


(−2x⊤

i w − 2t) · L̃(h−1)(n−2)−1 + (L̃(h−1)(n−2)−1)
2 + (x⊤

i w + t)2

(−2x⊤
i w − 2t) · L̃(h−1)(n−2) + (L̃(h−1)(n−2))

2 + (x⊤
i w + t)2

...
(−2x⊤

i w − 2t) · L̃h(n−2) + (L̃h(n−2))
2 + (x⊤

i w + t)2




= Softmax

− β

∆L


(x⊤

i w + t− L̃(h−1)(n−2)−1)
2

(x⊤
i w + t− L̃(h−1)(n−2))

2

...
(x⊤

i w + t− L̃h(n−2))
2


 . (D.6)

Here, the second-last equality arises from the fact that the softmax function is shift-invariant, allowing
us to subtract and add a constant across all coordinates. To be more precise, we first expand the
product for k-th coordinate of the column vector

(−2x⊤
i w − 2t+ L̃0 + L̃k)(L̃k − L̃0)

= (−2x⊤
i w − 2t)Lk + L0Lk + L2

k − (−2x⊤
i w − 2t)L0 − L2

0 − L0Lk

= (−2x⊤
i w − 2t)Lk + L2

k − (−2x⊤
i w − 2t)L0 − L2

0︸ ︷︷ ︸
constant across the column vector

.

Then, dropping the constant and adding another constant (x⊤
i w + t)2 across all coordinates, the

above equation becomes

(−2x⊤
i w − 2t)Lk + L2

k + (x⊤
i w + t)2 = (x⊤

i w + t− Lk)
2.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Hence we finish the derivation of (D.6). Thus we have

Attnh(A(X)):,i = V (h)Softmax

− β

∆L


(x⊤

i w + t− L̃(h−1)(n−2)−1)
2

(x⊤
i w + t− L̃(h−1)(n−2))

2

...
(x⊤

i w + t− L̃h(n−2))
2


 . (D.7)

For a specific h, we calculate the result of (D.7) column by column. Let Xi denote any column
(token) of the matrix X . We partition the situation at each column (token) into three distinct cases:

• Case 1: w⊤Xi + t is strictly within the interpolation range of Attnh (X ∈
[L̃(h−1)(n−2), L̃h(n−2)−1]). This excludes the following range at the edge of the interpolation
range of

[L̃(h−1)(n−2)−1, L̃(h−1)(n−2)] ∪ [L̃h(n−2)−1, L̃h(n−2)].

• Case 2: w⊤Xi + t is not within the interpolation range of Attnh:

w⊤Xi + t /∈ [L̃(h−1)(n−2)−1, L̃h(n−2)].

• Case 3: w⊤Xi + t is on the edge (region) of the interpolation range of Attnh:

w⊤Xi + t ∈ [L̃(h−1)(n−2)−1, L̃(h−1)(n−2)] ∪ [L̃h(n−2)−1, L̃h(n−2)].

Two remarks are in order.

Remark D.2 (Cases of a Single Head Attention). The H heads split the approximation of the
truncated linear map across disjoint intervals. For head h,

∥Attnh(X)− Range[a+ b−a
p ((h−1)(n−2)−1),a+ b−a

p h(n−2)](X)∥∞ ≤ ϵ1,

where ϵ > 0 is arbitrarily small.
With this understanding, w⊤Xi + t:
• Case 1: falls into the interior of the interpolation range of the h-th head Attnh, denoted as
Range[a+(b−a)((h−1)(n−2)−1)/p,a+(b−a)h(n−2)/p].

• Case 2: remains outside of the interpolation range of the h-th head Attnh.
• Case 3: falls on the boundary of the interpolation range of the h-th head Attnh.

Remark D.3 (Cases of All Attention Heads). According to Lemma D.2, for all heads in
AttnH , there are two possible cases:
• Case 1*: x falls into Case 1 for a head, and Case 2 for all other heads.

• Case 2*: x falls into Case 3 for two heads with adjacent interpolation ranges, and Case 2 for
other heads.

This also means that when Case 1 appears in AttnH , the situation of all head in AttnH falls
into Case 1*. And when Case 3 appears in AttnH , the situation of all head in AttnH falls into
Case 2*. Thus, We discuss Case 2* in the discussion of Case 3.

Case 1: Xi ∈ [L̃(h−1)(n−2), L̃h(n−2)−1]. In this case, our goal is to demonstrate this attention head
outputs a value close to Range[a,b](w

⊤Xi + t).

Let L̃s and L̃s+1 be the two interpolants such that

w⊤Xi + t ∈ [L̃s, L̃s+1]. (D.8)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Then, s and s+ 1 are also the labels of the two largest entries in

− β

∆L


(w⊤Xi + t− L̃(h−1)(n−2)−1)

2

(w⊤Xi + t− L̃(h−1)(n−2))
2

...
(w⊤Xi + t− L̃h(n−2))

2

 ,

since

argmax
k∈{(h−1)(n−2)−1,h(n−2)}

− β

∆L
(w⊤Xi + t− L̃k)

2

= argmin
k∈{(h−1)(n−2)−1,h(n−2)}

(w⊤Xi + t− L̃k)
2

= argmin
k∈{(h−1)(n−2)−1,h(n−2)}

|w⊤Xi + t− L̃k|.

We also note that the distance of w⊤Xi+ t to interpolants beside L̃s and L̃s+1 differs from w⊤Xi+ t

for at least L̃s − L̃s−1 = (b− a)/p or L̃s+1 − L̃s = (b− a)/p.

This is equivalent to the occasion when x1 − x3 in Lemma D.1 is larger than

max
{ β

∆L
(w⊤Xi + t− L̃s−1)

2 − (w⊤Xi + t− L̃s)
2,

β

∆L
(w⊤Xi + t− L̃s+2)

2 − (w⊤Xi + t− L̃s+1)
2
}

≥ β

∆L
· (b− a

p
)2,

which is invariant to Xi.

Thus according to Lemma D.1 and the fact that the s and s+ 1 are the two largest entries in the i-th
column of the attention score matrix, we have

∥∥∥Softmax

− β

∆L


(w⊤Xi + t− L̃(h−1)(n−2)−1)

2

(w⊤Xi + t− L̃(h−1)(n−2))
2

...
(w⊤Xi + t− L̃h(n−2))

2


− 1

1 + e−βδ
es︸︷︷︸
n×1

− e−βδ

1 + e−βδ
es+1︸︷︷︸
n×1

∥∥∥
∞

≤ ϵ2,

for any ϵ2 > 0.

This yields that

∥∥∥V Softmax

− β

∆L


(w⊤Xi + t− L̃(h−1)(n−2)−1)

2

(w⊤Xi + t− L̃(h−1)(n−2))
2

...
(w⊤Xi + t− L̃h(n−2))

2


− V

1

1 + e−βδ
es − V

e−βδ

1 + e−βδ
es+1

∥∥∥
∞

≤
∥∥∥Softmax

− β

∆L


(w⊤Xi + t− L̃(h−1)(n−2)−1)

2

(w⊤Xi + t− L̃(h−1)(n−2))
2

...
(w⊤Xi + t− L̃h(n−2))

2


− 1

1 + e−βδ
es −

e−βδ

1 + e−βδ
es+1

∥∥∥
∞

· ∥V ∥∞

≤ ∥V ∥∞ϵ2.

This is equivalent to

∥V Softmax(K⊤Q):,i −
1

1 + e−βδ
L̃(h−1)(n−2)+s−1ekG

− e−βδ

1 + e−βδ
L̃(h−1)(n−2)+sekG

∥∞

≤ ∥V ∥∞ · ϵ2
(
By ∥AB∥ ≤ ∥A∥ · ∥B∥

)
≤ mvϵ2, (D.9)

where the last line is by (D.5).

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

From (D.8), we derive that

∥ 1

1 + e−βδ
L̃(h−1)(n−2)+s−1 +

e−βδ

1 + e−βδ
L̃(h−1)(n−2)+s − (w⊤Xi + t)ekG

∥∞

≤ ∥ 1

1 + e−βδ
(L̃(h−1)(n−2)+s−1 − (w⊤Xi + t)ekG

)∥∞ + ∥ e−βδ

1 + e−βδ
(L̃(h−1)(n−2)+s − (w⊤Xi + t))∥∞(

By convex combination of (w⊤Xi + t) and triangle inequality
)

≤ 1

1 + e−βδ
· b− a

p
+

e−βδ

1 + e−βδ
· b− a

p

(
By (D.8)

)
=

b− a

p
. (D.10)

Combing (D.9) and (D.10) yields

∥V Softmax(K⊤Q):,i − (w⊤Xi + t)∥∞

≤ ∥V Softmax(K⊤Q):,i −
1

1 + e−βδ
L̃(h−1)(n−2)+s−1 −

e−βδ

1 + e−βδ
L̃(h−1)(n−2)+s∥∞

+ ∥ 1

1 + e−βδ
L̃(h−1)(n−2)+s−1 +

e−βδ

1 + e−βδ
L̃(h−1)(n−2)+s − (w⊤Xi + t)ekG

∥∞(
By triangle inequality

)
≤ mvϵ2 +

b− a

p
, (D.11)

where the first inequality comes from adding and subtracting the interpolation points’ convex combi-
nation and then applying triangle inequality.

Case 2: X /∈ [L̃(h−1)(n−2)−1, L̃h(n−2)]. In this case, Xi falls out of the range of interpolation
covered by Attnh.

Without loss of generality, suppose w⊤Xi + t to lie left to the range of interpolation of Attnh.

This yields that L̃(h−1)(n−2)−1 is the closest interpolant within Attnh to w⊤Xi + t. Furthermore,
the second closest interpolant L̃(h−1)(n−2) is at least further for at least (b−a)/p, which is a constant
irrelevant to Xi

Then by Lemma D.1, we have

∥∥∥Softmax

− β

∆L


(w⊤Xi + t− L̃(h−1)(n−2)−1)

2

(w⊤Xi + t− L̃(h−1)(n−2))
2

...
(w⊤Xi + t− L̃h(n−2))

2


− e1︸︷︷︸

n×1

∥∥∥
∞

≤ ϵ3,

for any ϵ3 > 0.

This yields that

∥V Softmax

− β

∆L


(w⊤Xi + t− L̃(h−1)(n−2)−1)

2

(w⊤Xi + t− L̃(h−1)(n−2))
2

...
(w⊤Xi + t− L̃h(n−2))

2


− V e1︸︷︷︸

n×1

∥∞

≤ ∥V ∥∞ · ϵ3
(
By ∥AB∥ ≤ ∥A∥ · ∥B∥

)
≤mvϵ3,

where the last line is by (D.5).

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

This is equivalent to

∥∥∥V Softmax

− β

∆L


(w⊤Xi + t− L̃(h−1)(n−2)−1)

2

(w⊤Xi + t− L̃(h−1)(n−2))
2

...
(w⊤Xi + t− L̃h(n−2))

2


− 0do

∥∥∥
∞

≤ mvϵ3. (D.12)

Case 1*. According to Lemma D.2, when Case 1 occurs for one head in the H heads of AttnH , all
other head will be in Case 2.

Combining with the result in Case 2, we have the output of all heads as

∥AttnH(A(X)):,i − (w⊤Xi + t)ekG
∥∞

= ∥
∑

h0∈[H]/{h}

Attnh0
◦A(X):,i∥∞ + ∥Attnh ◦A(X):,i − (w⊤Xi + t)ekG

∥∞

= (H − 1)mvϵ3 +mvϵ2 +
b− a

p

(
By (D.11) and (D.12)

)
= (H − 1)mvϵ3 +mvϵ2 +

b− a

H(n− 2)
.

Setting ϵ2, ϵ3 to be

ϵ2 =
ϵ0
2

ϵ3 =
ϵ0

2(H − 1)m

yields the final result.

Case 3 (and Case 2*): X ∈ [L̃(h−1)(n−2)−1, L̃(h−1)(n−2)] ∪ [L̃h(n−2)−1, L̃h(n−2)]. In this case,
w⊤Xi + t is the boundary of the interpolation range of Attnh0 . By Lemma D.2, it should also fall on
the boundary of a head with neighboring interpolation range. Without loss of generality, we set it to
be Attnh0−1. Furthermore, Lemma D.2 indicates that w⊤Xi + t should fall on no other interpolation
range of any heads beside Attnh0 and Attnh0−1.

Combining this with case 2, we have

AttnH(A(X)):,i =

H∑
h=1

Attnh ◦A(X):,i

∈ [(−(H − 2)mvϵ3 +Attnh0
◦A(X):,i +Attnh0−1 ◦A(X):,i),

((H − 2)mvϵ3 +Attnh0
◦A(X):,i +Attnh0−1 ◦A(X):,i)].(

By (D.12)
)

By Lemma D.1, let δ denote

δ = L̃(h−1)(n−2)+s − (w⊤Xi + t)ekG
− [L̃(h−1)(n−2)+s − (w⊤Xi + t)ekG

],

we have

∥Softmax((K(h))⊤Q(h))− (
1

1 + e−βδ
e1 +

e−βδ

1 + e−βδ
e2)∥ ≤ ϵ4,

and

∥Softmax((K(h−1))⊤Q(h−1))− (
1

1 + e−βδ
en−1 +

e−βδ

1 + e−βδ
en)∥ ≤ ϵ5,

for any ϵ4, ϵ5 > 0.

Thus we have
∥V (h)Softmax((K(h))⊤Q(h)) + V (h−1)Softmax((K(h−1))⊤Q(h−1))

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

− V (
1

1 + e−βδ
e1 +

e−βδ

1 + e−βδ
e2 +

1

1 + e−βδ
en−1 +

e−βδ

1 + e−βδ
en)∥∞

≤ ∥V ∥∞(ϵ4 + ϵ5).

This is equivalent to

∥V (h)Softmax((K(h))⊤Q(h)) + V (h−1)Softmax((K(h−1))⊤Q(h−1))

− (
1

1 + e−βδ
· 0 + e−βδ

1 + e−βδ
ekG

L̃(h−1)(n−2)+s +
1

1 + e−βδ
ekG

L̃(h−1)(n−2)+s−1 +
e−βδ

1 + e−βδ
ekG

) · 0∥∞

≤ ∥V ∥∞ · (ϵ4 + ϵ5).

Thus we have
∥V (h)Softmax((K(h))⊤Q(h)) + V (h−1)Softmax((K(h−1))⊤Q(h−1))

− (
e−βδ

1 + e−βδ
ekG

L̃(h−1)(n−2)+s +
1

1 + e−βδ
ekG

L̃(h−1)(n−2)+s−1)∥∞

≤ ∥V ∥∞(ϵ4 + ϵ5),

which implies

∥
H∑

h=1

Attnh(A(X)):,i − (
e−βδ

1 + e−βδ
ekG

L̃(h−1)(n−2)+s +
1

1 + e−βδ
ekG

L̃(h−1)(n−2)+s−1)∥∞

≤ (H − 2)mvϵ3 + ∥V ∥∞(ϵ4 + ϵ5). (D.13)

Finally, since

∥ e−βδ

1 + e−βδ
ekG

L̃(h−1)(n−2)+s +
1

1 + e−βδ
ekG

L̃(h−1)(n−2)+s−1 − (w⊤Xi + t)ekG
∥∞ ≤ b− a

p
,(

By (D.10)
)

combining with (D.13), we have

∥
H∑

h=1

Attnh(A(X)):,i − (w⊤Xi + t)ekG
∥∞

≤ ∥
H∑

h=1

Attnh(A(X)):,i − (
e−βδ

1 + e−βδ
ekG

L̃(h−1)(n−2)+s +
1

1 + e−βδ
ekG

L̃(h−1)(n−2)+s−1)∥∞

+ ∥( e−βδ

1 + e−βδ
ekG

L̃(h−1)(n−2)+s +
1

1 + e−βδ
ekG

L̃(h−1)(n−2)+s−1)− (w⊤Xi + t)ekG
∥∞(

By triangle inequality
)

≤ b− a

p
+ (H − 2)mvϵ3 + ∥V ∥∞(ϵ4 + ϵ5)

≤ b− a

H(n− 2)
+ (H − 2)max{|a|, |b|}ϵ3 +max{|a|, |b|}(ϵ4 + ϵ5).

Setting ϵ3, ϵ4, ϵ5 to be

ϵ3 =
ϵ0

3(H − 2)

ϵ4 = ϵ5 =
ϵ0
3

yields the final result.

This completes the proof.

Lemma D.3 (Attention Prepended with Token-Wise Linear Transformation is Still a Transformer).
For any attention Attn and any linear transformation A, Attn ◦A is still an attention.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Proof. We denote the transformation matrix of A also as MA. Denote the attention Attn as

Attn(Z) := WV ZSoftmax((WKZ)⊤WQZ).

Then we have
Attn ◦A(Z) = WV MAZSoftmax((WKMAZ)⊤WQMAZ).

It is a new attention with parameters WKMA,WQMA and WV MA.

Lemma D.4 (Lemma 14 in (Bai et al., 2023): Composition of Error for Approximating Convex GD).
Suppose f : Rd → R is a convex function. Let w⋆ ∈ argminw∈Rd f(w), R ≥ 2∥w⋆∥2, and assume
that ∇f is Lf -smooth on Bd

2 (R). Let sequences {ŵℓ}ℓ≥0 ⊂ Rd and {wℓ
GD}ℓ≥0 ⊂ Rd be given by

ŵ0 = w0
GD = 0, {

ŵℓ+1 = ŵℓ − η∇f(ŵℓ) + ϵℓ, ∥ϵℓ∥2 ≤ ϵ,

wℓ+1
GD = wℓ

GD − η∇f(wℓ
GD),

for all ℓ ≥ 0. Then as long as η ≤ 2/Lf , for any 0 ≤ L ≤ R/(2ϵ), it holds that ∥ŵL −wL
GD∥2 ≤ Lϵ

and ∥ŵL∥2 ≤ R
2 + Lϵ ≤ R.

Corollary D.1.1 (Corollary A.2 in (Bai et al., 2023): Gradient Descent for Smooth and Strongly
Convex Function). Suppose L : Rd → R is a α-strongly convex and β-smooth for som 0 < α ≤ β.
Then, the gradient descent iterates w(t+1)

GD := wt
GD − η∇L(wL

GD) with learning rage η = 1/β and
initialization w0

GD ∈ Rd satisfies for any t ≥ 1,

∥wt
GD − w⋆∥22 ≤ exp

(
− t

κ

)
· ∥w0

GD − w⋆∥22,

L(wt
GD)− L(w⋆) ≤ β

2
exp

(
− t

κ

)
· ∥w0

GD − w⋆∥22,

where κ := β/α is the condition number of L, and w⋆ := argminw∈Rd L(w).

D.1 PROOF OF THEOREM 3.1

Definition D.3 (Interpolation Points). Define P + 1 interpolation points of the effective domain of
f , i.e., the range of w⊤x− y, as

Lj := Lmin +
j

P
(Lmax − Lmin), for j ∈ 0, 1, . . . , P ,

where [Lmin, Lmax] is a bounded interval containing all values of w⊤x− y.

Theorem D.2 (In-Context Emulation of f(w⊤x − y)x with Single-Head Attention; Theorem 3.1
Restate). Let [Lmin, Lmax] be a bounded interval containing all values of w⊤x− y, and let

X :=

[
x1 x2 · · · xn

y1 y2 · · · yn

]
∈ R(d+1)×n and W := [w w · · · w] ∈ Rd×n,

where xi ∈ Rd, yi ∈ R, and w ∈ Rd is the coefficient vector. Define the input as:

Z :=

[
x1 x2 · · · xn

y1 y2 · · · yn
w w · · · w

]
=

[
X
W

]
∈ R(2d+1)×n. (D.14)

Assume max{∥X∥∞, ∥W∥∞} ≤ B. For any continuously differentiable function f : R → R and
any ϵ > 0, there exists a single-head attention Attns with a linear layer Linear such that
∥Attns ◦ Linear(Z)−

[
f(w⊤x1 − y1)x1 · · · f(w⊤xn − yn)xn

]
∥∞ ≤ ϵ, for any ϵ > 0.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Proof. We define the linear transformation of Z as a concatenation of two functions with some
manual padding of zeros:

Linear(Z) :=

[
Linearx(X)

Linearw(W ) 0(2d+n+2)×nP

]
︸ ︷︷ ︸

2(2d+n+2)×n(P+1)

,

where we define Linearx ∈ R(2d+n+2)×n(P+1) and Linearw ∈ R(2d+n+2)×n as below.

We define Linearw as:

Linearw(W ) :=

[
Id

0(d+n+2)×d

]
︸ ︷︷ ︸
(2d+n+2)×d

W︸︷︷︸
d×n

+


0d×n

−11×n

0d×n

11×n

In


︸ ︷︷ ︸
(2d+n+2)×n

=


W

−11×n

0d×n

11×n

In


︸ ︷︷ ︸
(2d+n+2)×n

.

We define Linearx as:
Linearx(X)

:=

n∑
i=1

[
Id+1

0(d+1+n)×(d+1)

]
︸ ︷︷ ︸
(2d+n+2)×(d+1)

X︸︷︷︸
(d+1)×n

[
0n×(i−1)(P+1) 2L0e

(n)
i 2L1e

(n)
i · · · 2LP e

(n)
i 0n×(n−i)(P+1)

]
︸ ︷︷ ︸

n×n(P+1)

+

n∑
i=1

0(d+1)×d 0(d+1)

Id 0d
0(n+1)×d 0n+1


︸ ︷︷ ︸

(2d+n+2)×(d+1)

X︸︷︷︸
(d+1)×n

[
0n×(i−1)(P+1) f(L0)e

(i)
i f(L1)e

(i)
i · · · f(LP )e

(i)
i 0n×(n−i)(P+1)

]
︸ ︷︷ ︸

n×n(P+1)

+

 0(2d+1)×(P+1) · · · 0(2d+1)×(P+1)

S · · · S

Ce
(n)
1 11×(P+1) · · · Ce

(n)
n 11×(P+1)


︸ ︷︷ ︸

(2d+n+2)×n(P+1)

= [T1 T2 · · · Tn]︸ ︷︷ ︸
(2d+n+2)×n(P+1)

,

where {Lj}Pj=0 are the P + 1 interpolation points (Definition D.3); e(n)i ∈ Rn is the one-hot vector
with 1 at index i and 0 elsewhere; C is a constant to be determined later, and

11×(P+1) := [1 1 · · · 1]︸ ︷︷ ︸
1×(P+1)

,

S :=
[
−L2

0 −L2
1 · · · L2

P

]︸ ︷︷ ︸
1×(P+1)

,

Ti :=


2L0xi 2L1xi · · · 2LPxi

2L0yi 2L1yi · · · 2LP yi
f(L0)xi f(L1)xi · · · f(LP )xi

−L2
0 −L2

1 · · · −L2
P

Ce
(n)
i Ce

(n)
i · · · Ce

(n)
i


︸ ︷︷ ︸

(2d+n+2)×(P+1)

.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

So our Linear(Z) is:

Linear(Z) =


T1 T2 · · · Tn

Wd×n 0d×nP

−11×n 01×nP

0d×n 0d×nP

11×n 01×nP

In 0n×nP


︸ ︷︷ ︸
2(2d+n+2)×n(P+1)

=



2L0x1 · · · 2LPx1 · · · · · · 2L0xn · · · 2LPxn

2L0y1 · · · 2LP y1 · · · · · · 2L0yn · · · 2LP yn
f(L0)x1 · · · f(LP )x1 · · · · · · f(L0)xn · · · f(LP )xn

−L2
0 · · · −L2

P · · · · · · −L2
0 · · · −L2

P

Ce
(n)
1 · · · Ce

(n)
1 · · · · · · Ce

(n)
n · · · Ce

(n)
n

Wd×n 0d×nP

−11×n 01×nP

0d×n 0d×nP

11×n 01×nP

In 0n×nP


︸ ︷︷ ︸

2(2d+n+2)×n(P+1)

.

Now we construct WK , WQ, WV , WO to be:

WK :=
[
I2d+n+2 0(2d+n+2)×(2d+n+2)

]︸ ︷︷ ︸
(2d+n+2)×2(2d+n+2)

,

WQ :=
[
0(2d+n+2)×(2d+n+2) I2d+n+2

]︸ ︷︷ ︸
(2d+n+2)×2(2d+n+2)

,

WV :=
[
0d×(d+1) Id 0d×(2d+2n+3)

]︸ ︷︷ ︸
d×2(2d+n+2)

,

WO :=

[
In

0nP×n

]
︸ ︷︷ ︸
n(P+1)×n

.

Thus,
WKLinear(Z) = [T1 T2 · · · Tn]︸ ︷︷ ︸

(2d+n+2)×n(P+1)

,
(
WK selects the Ti blocks in Linear(Z)

)

WQLinear(Z) =


Wd×n 0d×nP

−11×n 01×nP

0d×n 0d×nP

11×n 01×nP

In 0n×nP


︸ ︷︷ ︸
(2d+n+2)×n(P+1)

,
(
WQ selects the bottom (2d+ n+ 2) rows in Linear(Z)

)

WV Linear(Z) = [F1 F2 · · · Fn]︸ ︷︷ ︸
d×n(P+1)

,
(
WV selects the (d+ 2)-th row in Ti

)
where we define Fi as:

Fi := [f(L0)xi f(L1)xi · · · f(LP )xi]︸ ︷︷ ︸
d×(P+1)

.

Therefore,
Attns ◦ Linear(Z)

=WV Linear(Z) · Softmaxβ((WKLinear(Z))⊤WQLinear(Z)) ·WO

= [F1 F2 · · · Fn]︸ ︷︷ ︸
d×n(P+1)

Softmaxβ(

n(P+1)×n(P+1)︷ ︸︸ ︷
[T1 T2 · · · Tn]

⊤︸ ︷︷ ︸
n(P+1)×(2d+n+2)


Wd×n 0d×nP

−11×n 01×nP

0d×n 0d×nP

11×n 01×nP

In 0n×nP


︸ ︷︷ ︸
(2d+n+2)×n(P+1)

)

[
In

0nP×n

]
︸ ︷︷ ︸
n(P+1)×n

. (D.15)

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

For simplicity of presentation, we define

T̃ := [T1 T2 · · · Tn]
⊤︸ ︷︷ ︸

n(P+1)×(2d+n+2)

.

For the Softmaxβ part in (D.15), we have:

Softmaxβ((WKLinear(Z))⊤WQLinear(Z)) ·WO

= Softmaxβ( T̃︸︷︷︸
n(P+1)×(2d+n+2)


Wd×n 0d×nP

−11×n 01×nP

0d×n 0d×nP

11×n 01×nP

In 0n×nP


︸ ︷︷ ︸
(2d+n+2)×n(P+1)

)

[
In

0nP×n

]
︸ ︷︷ ︸
n(P+1)×n

(
By the definition of T̃

)

= Softmaxβ(

T̃

Wd×n

−11×n

0d×n

11×n

In

 T̃


0d×nP

01×nP

0d×nP

01×nP

0n×nP


n(P+1)×n n(P+1)×nP


︸ ︷︷ ︸ ︸ ︷︷ ︸

)

[
In

0nP×n

]
︸ ︷︷ ︸
n(P+1)×n

(
By distributivity of matrix multiplication over block concatenation

)

=

Softmaxβ(T̃


Wd×n

−11×n

0d×n

11×n

In

) Softmaxβ(T̃


0d×nP

01×nP

0d×nP

01×nP

0n×nP

)
n(P+1)×n n(P+1)×nP


︸ ︷︷ ︸ ︸ ︷︷ ︸

[
In

0nP×n

]
︸ ︷︷ ︸
n(P+1)×n

(
By the column-wise operation nature of Softmaxβ

)

= Softmaxβ([T1 T2 · · · Tn]
⊤︸ ︷︷ ︸

n(P+1)×(2d+n+2)


Wd×n

−11×n

0d×n

11×n

In


︸ ︷︷ ︸
(2d+n+2)×n

).
([ In

0nP×n

]
selects the first Softmaxβ block

)

Since our target is a token-wise approximation, we focus on a single token. We consider the c-th
column (c ∈ [n]) in the Softmaxβ part, and we have

(Softmaxβ((WKLinear(Z))⊤WQLinear(Z)) ·WO):,c = Softmaxβ(


T⊤
1

T⊤
2
...

T⊤
n


︸ ︷︷ ︸

n(P+1)×(2d+n+2)

·


w
−1
0d
1

e
(n)
c


︸ ︷︷ ︸

(2d+n+2)×1

)

= Softmaxβ(


M1,c

M2,c

...
Mn,c


︸ ︷︷ ︸
n(P+1)×1

),

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

where each sub-block Mi,c ∈ R(P+1)×1 for i ∈ [n] is

Mi,c := T⊤
i︸︷︷︸

(P+1)×(2d+n+2)

·


w
−1
0d
1

e
(n)
c


︸ ︷︷ ︸

(2d+n+2)×1

=


2L0x

⊤
i 2L0yi f(L0)x

⊤
i −L2

0 C(e
(n)
i )⊤

2L1x
⊤
i 2L1yi f(L1)x

⊤
i −L2

1 C(e
(n)
i )⊤

...
...

...
...

...
2LPx

⊤
i 2LP yi f(LP )x

⊤
i −L2

P C(e
(n)
i )⊤


︸ ︷︷ ︸

(P+1)×(2d+n+2)

·


w
−1
0d
1

e
(n)
c


︸ ︷︷ ︸

(2d+n+2)×1

(
By transpose of Ti

)

=


2L0x

⊤
i w − 2L0yi − L2

0 + C1i=c

2L1x
⊤
i w − 2L1yi − L2

1 + C1i=c

...
2LPx

⊤
i w − 2LP yi − L2

P + C1i=c


︸ ︷︷ ︸

(P+1)×1

,

where 1i=c denotes the indicator function of i = c.

For simplicity, let

u
(i)
j := 2Ljx

⊤
i w − 2Ljyi − L2

j , for j ∈ {0, . . . , P}, (D.16)
such that

Mi,c =


u
(i)
0 + C1i=c

u
(i)
1 + C1i=c

...
u
(i)
P + C1i=c


︸ ︷︷ ︸

(P+1)×1

.

This means that
(Softmaxβ((WKLinear(Z))⊤WQLinear(Z)) ·WO):,c

= Softmax(β


M1,c

M2,c

...
Mn,c


︸ ︷︷ ︸
n(P+1)×1

)

=

n∑
i=1

P∑
j=0

exp
{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

} e
(n(P+1))
(i−1)(P+1)+(j+1)︸ ︷︷ ︸

n(P+1)×1

.

(
By the definition of Softmaxβ

)
Thus we have

Attns ◦ Linear(Z):,c

= WV Linear(Z) · (Softmaxβ((WKLinear(Z))⊤WQLinear(Z)) ·WO):,c

= [F1 · · · Fn]︸ ︷︷ ︸
d×n(P+1)

·
n∑

i=1

P∑
j=0

exp
{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

} e
(n(P+1))
(i−1)(P+1)+(j+1)︸ ︷︷ ︸

n(P+1)×1

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

= [f(L0)x1 · · · f(LP )x1 · · · f(L0)xn · · · f(LP )xn]︸ ︷︷ ︸
d×n(P+1)

·
(
By the definitoin of Fi

)
n∑

i=1

P∑
j=0

exp
{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

} e
(n(P+1))
(i−1)(P+1)+(j+1)︸ ︷︷ ︸

n(P+1)×1

=

n∑
i=1

P∑
j=0

exp
{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}
[f(L0)x1 · · · f(LP )x1 · · · f(L0)xn · · · f(LP )xn]︸ ︷︷ ︸

d×n(P+1)

· e(n(P+1))
(i−1)(P+1)+(j+1)︸ ︷︷ ︸

n(P+1)×1(
By distributivity of matrix multiplication

)
=

n∑
i=1

P∑
j=0

exp
{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj) xi︸︷︷︸
d×1

.

(
The one-hot vector retrieves the ((i− 1)(P + 1) + (j + 1))-th column

)
Again, our goal is to approximate f(x⊤

c w − yc)xc with:

Attns ◦ Linear(Z):,c =

n∑
i=1

P∑
j=0

exp
{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj)xi. (D.17)

We start to analyze the summation of weights
∑P

j=0(· · · ) for i = c and i ̸= c. We use the result of
this analysis to bound our target approximation ∥Attns ◦ Linear(Z):,c − f(x⊤

c w − yc)xc∥∞ later.

• For every i ∈ [n], if i ̸= c, we have∑P
j=0 exp

{
βu

(i)
j

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

} (
By 1i ̸=c = 0 for i ̸= c

)

<

∑P
j=0 exp

{
βu

(i)
j

}
∑P

j′=0 exp
{
β(u

(i′)
j′ + C)

} (D.18)

≤ ϵ0, (D.19)
where (D.18) is by taking only the i′ = c term, and the last line is by the softmax-shift equality∑P

j=0 e
uj∑P

j′=0 e
vj′+C

=

∑P
j=0 e

uj

eC
∑P

j′=0 e
vj′

,

for any constant C and choosing C := M − 1
β ln ϵ0 = (maxj Lj) · (2dB2 + 2B)− 1

β ln ϵ0 with
ϵ0 > 0.3

3More explicitly, recall (D.16): u(i)
j := 2Ljx

⊤
i w − 2Ljyi − L2

j . Since max{∥X∥∞, ∥W∥∞} ≤ B, we
have

∥xi∥∞ ≤ B, |yi| ≤ B, ∥w∥∞ ≤ B,

which implies ∥w∥1 ≤ dB. Let L⋆ := maxj |Lj |. For a fixed pair of i, i′, we have

u
(i)
j − u

(i′)
j = 2Lj · ((xi − xi′)

⊤w − (yi − yi′))

≤ 2|Lj | · (|(xi − xi′)
⊤w|+ |(yi − yi′)|)

(
By triangle inequality

)
≤ 2L⋆ · (∥xi − xi′∥∞ · ∥w∥1 + |(yi − yi′)|)

(
By L⋆ := maxj |Lj | and Hölder’s inequality

)
≤ 2L⋆ · ((∥xi∥∞ + ∥xi′∥∞) · ∥w∥1 + |yi|+ |yi′)|)

(
By triangle inequality

)
≤ 2L⋆ · ((2B) · dB + 2B)

(
By ∥xi∥∞ ≤ B, |y| ≤ B and ∥w∥1 ≤ dB

)
37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Thus, the weight assigned to i ̸= c is tiny.

• For i = c, we have∑P
j=0 exp

{
β(u

(c)
j + C

}
)∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}
= 1−

∑n
i̸=c

∑P
j=0 exp

{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

} (
By

∑n
i ̸=c

∑P
j=0(· · · ) +

∑n
i=c

∑P
j=0(· · · ) = 1

)
≥ 1− (n− 1)ϵ0, (D.21)

where the last inequality follows from (i.e., (D.19))∑n
i ̸=c

∑P
j=0 exp

{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

} ≤ (n− 1)ϵ0,

and setting 0 < ϵ0 < 1/(n− 1). Therefore, the weight concentrates at i = c.

From (D.19), (D.21), and our target approximation

∥Attns ◦ Linear(Z):,c − f(x⊤
c w − yc)xc∥∞

= ∥
n∑

i=1

P∑
j=0

exp
{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj)xi − f(x⊤
c w − yc)xc∥∞, (D.22)

we split (D.22) into two terms

∥
n∑

i=1

P∑
j=0

exp
{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj)xi − f(x⊤
c w − yc)xc∥∞

= ∥
n∑

i̸=c

P∑
j=0

exp
{
β(u

(i)
j )
}

∑n
i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj)xi

+

P∑
j=0

exp
{
β(u

(i)
j + C)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj)xi − f(x⊤
c w − yc)xc∥∞(

By splitting the summation over i into two parts: i = c and i ̸= c
)

≤ ∥
n∑

i ̸=c

P∑
j=0

exp
{
β(u

(i)
j )
}

∑n
i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj)xi∥∞

︸ ︷︷ ︸
(I)

(D.23)

≤ 2L⋆ · (2dB2 + 2B) =: M.

Hence, we have u
(i)
j ≤ u

(i′)
j +M , which implies

eβu
(i)
j ≤ eβMeβu

(i′)
j , for all j ∈ {0, . . . , P}. (D.20)

Then, (D.18) becomes, for any constant C,∑P
j=0 exp

{
βu

(i)
j

}
exp{βC}

∑P
j′=0 exp

{
βu

(i′)
j′

} ≤
eβM

∑P
j=0 exp

{
βu

(i′)
j

}
eβC

∑P
j′=0 exp

{
βu

(i′)
j′

} = eβ(M−C).

Choosing C := M − 1
β
ln ϵ0 = (maxj Lj) · (2dB2 + 2B)− 1

β
ln ϵ0, we obtain the desired bound ϵ0.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

+ ∥
P∑

j=0

exp
{
β(u

(i)
j + C)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj)xi − f(x⊤
c w − yc)xc∥∞

︸ ︷︷ ︸
(II)

,

(
By triangle inequality

)
where we are capable of bounding term (I) with (D.19) and term (II) as follows.

For term (I) in (D.23), we have
(I)

= ∥
n∑

i̸=c

P∑
j=0

exp
{
β(u

(i)
j )
}

∑n
i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj)xi∥∞

≤
n∑

i ̸=c

P∑
j=0

∥
exp
{
β(u

(i)
j )
}

∑n
i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj)xi∥∞
(
By triangle inequality

)

=

n∑
i ̸=c

P∑
j=0

exp
{
β(u

(i)
j )
}

∑n
i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}∥f(Lj)xi∥∞
(
By non-negativity of exponential

)

=

n∑
i ̸=c

P∑
j=0

exp
{
β(u

(i)
j )
}

∑n
i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

} |f(Lj)| · ∥xi∥∞(
By ∥f(Lj)xi∥∞ = |f(Lj)| · ∥xi∥∞

)
≤

∑n
i ̸=c

∑P
j=0 exp

{
β(u

(i)
j )
}

∑n
i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}Bf ·B

(
By Bf := max |f | and max{∥X∥∞, ∥W∥∞} ≤ B

)
≤ (n− 1)ϵ0BfB,

(
By (D.19)

)
where we define Bf := max |f | as the bound for f .

For term (II) in (D.23), we have
(II)

= ∥
P∑

j=0

exp
{
β(u

(c)
j + C)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj) xc︸︷︷︸
d×1

−f(x⊤
c w − yc) xc︸︷︷︸

d×1

∥∞

= ∥
P∑

j=0

exp
{
β(u

(c)
j + C)

}
∑n

i′=1

∑P
k=0 exp

{
β(u

(i′)
k + C1i′=c)

} · (f(Lj)xc − f(x⊤
c w − yc)xc)

− (1−

∑P
j′=0 exp

{
β(u

(c)
j′ + C)

}
∑n

i′=1

∑P
k=0 exp

{
β(u

(i′)
k + C1i′=c)

} ) · f(x⊤
c w − yc)xc∥∞

(
By

∑
j

Aj

C
Bj −D =

∑
j

Aj

C
(Bj −D)− (1−

∑
j′ Aj′
C

)D
)

= ∥
P∑

j=0

exp
{
β(u

(c)
j + C)

}
∑P

j′=0 exp
{
β(u

(c)
j′ + C)

} ·

∑P
j′=0 exp

{
β(u

(c)
j′ + C)

}
∑n

i′=1

∑P
k=0 exp

{
β(u

(i′)
k + C1i′=c)

} · (f(Lj)xc − f(x⊤
c w − yc)xc)

39



2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

− (1−

∑P
j′=0 exp

{
β(u

(c)
j′ + C)

}
∑n

i′=1

∑P
k=0 exp

{
β(u

(i′)
k + C1i′=c)

} ) · f(x⊤
c w − yc)xc∥∞

(
By

∑
j

Aj

C
(Bj −D)− (1−

∑
j′ Aj′
C

)D =
∑

j

Aj

E
· E
C
(Bj −D)− (1−

∑
j′ Aj′
C

)D
)

≤ ∥
P∑

j=0

exp
{
β(u

(c)
j + C)

}
∑P

j′=0 exp
{
β(u

(c)
j′ + C)

} · (f(Lj)− f(x⊤
c w − yc))xc

− (1−

∑P
j′=0 exp

{
β(u

(c)
j′ + C)

}
∑n

i′=1

∑P
k=0 exp

{
β(u

(i′)
k + C1i′=c)

} ) · f(x⊤
c w − yc)xc∥∞

(
By E

C
< 1

)

≤
P∑

j=0

exp
{
β(u

(c)
j + C)

}
∑P

j′=0 exp
{
β(u

(c)
j′ + C)

} · |f(Lj)− f(x⊤
c w − yc)| · ∥xc∥∞

− (1−

∑P
j′=0 exp

{
β(u

(c)
j′ + C)

}
∑n

i′=1

∑P
k=0 exp

{
β(u

(i′)
k + C1i′=c)

} ) · |f(x⊤
c w − yc)| · ∥xc∥∞

(
By triangle inequality, and ∥av∥∞ ≤ |a| · ∥v∥∞ where a ∈ R and v ∈ Rd

)
≤

P∑
j=0

exp
{
β(u

(c)
j + C)

}
∑P

j′=0 exp
{
β(u

(c)
j′ + C)

} · |f(Lj)− f(x⊤
c w − yc)| · ∥xc∥∞ + (n− 1)ϵ0Bf∥xc∥∞(

By (D.21) and Bf := max |f |
)

=

P∑
j=0

exp
{
βu

(c)
j

}
∑P

j′=0 exp
{
βu

(c)
j′

} · |f(Lj)− f(x⊤
c w − yc)| · ∥xc∥∞ + (n− 1)ϵ0BfB

(
By exp

{
β(u

(c)
j + C)

}
= exp

{
βu

(c)
j

}
exp{βC} and max{∥X∥∞, ∥W∥∞} ≤ B

)
=

P∑
j=0

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· |f(Lj)− f(x⊤
c w − yc)| · ∥xc∥∞︸ ︷︷ ︸

:=(II-1)

+(n− 1)ϵ0BfB︸ ︷︷ ︸
:=(II-2)

,

(D.24)
where the last equality follows from completing the square

u
(c)
j = 2Ljx

⊤
c w − 2Ljyc − L2

j = −(Lj − (x⊤
c w − yc))

2 + (x⊤
c w − yc)

2.

For term (II-1) in (D.24), we have
(II-1)

=

P∑
j=0

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· |f(Lj)− f(x⊤
c w − yc)| · ∥xc∥∞

=

P∑
j:|Lj−(x⊤

c w−yc)|≤∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· |f(Lj)− f(x⊤
c w − yc)| · ∥xc∥∞

+

P∑
j:|Lj−(x⊤

c w−yc)|>∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· |f(Lj)− f(x⊤
c w − yc)| · ∥xc∥∞,

(D.25)

where we define ∆L := (Lmax − Lmin)/P and divide the interpolation points into two groups with
one group at least ∆L away from x⊤

c w − yc, and the other within ∆L.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

For the first term in (D.25), we set ∆L to be sufficiently small (P large enough) such that,
|f(t)− f(t′)| ≤ ϵ1, ∀ ϵ1 > 0,

when |t− t′| ≤ ∆L.

For the second term in (D.25), we set β to be sufficiently large such that∑
j:|Lj−(x⊤

c w−yc)|>∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

≤ ϵ2, (D.26)

for any 0 < ϵ2 < 1.

Thus, for term (II-1), we have
(II-1)

=

P∑
j:|Lj−(x⊤

c w−yc)|≤∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· |f(Lj)− f(x⊤
c w − yc)| · ∥xc∥∞

+

P∑
j:|Lj−(x⊤

c w−yc)|>∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· |f(Lj)− f(x⊤
c w − yc)| · ∥xc∥∞

≤
P∑

j:|Lj−(x⊤
c w−yc)|≤∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· ϵ1 ·B

+

P∑
j:|Lj−(x⊤

c w−yc)|>∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· (|f(Lj)|+ |f(x⊤
c w − yc)|) ·B(

By |f(Lj)− f(x⊤
c w − yc)| < ϵ1, max{∥X∥∞, ∥W∥∞} ≤ B, and triangle inequality

)
≤

P∑
j:|Lj−(x⊤

c w−yc)|≤∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· ϵ1 ·B

+

P∑
j:|Lj−(x⊤

c w−yc)|>∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· 2Bf ·B
(
By Bf := max |f |

)

≤
P∑

j:|Lj−(x⊤
c w−yc)|≤∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}︸ ︷︷ ︸

:=κ

·ϵ1 ·B + ϵ2 · 2Bf ·B
(
By (D.26)

)

≤ ϵ1 ·B + ϵ2 · 2Bf ·B.
(
By κ < 1

)
Combining (I), (II-1), and (II-2), we have:

∥Attns ◦ Linear(Z):,c − f(x⊤
c w − yc)xc∥∞ ≤ (n− 1)ϵ0BfB︸ ︷︷ ︸

from (I)

+ ϵ1B + 2ϵ2BfB︸ ︷︷ ︸
from (II-1)

+(n− 1)ϵ0BfB︸ ︷︷ ︸
from (II-2)

.

Since ϵ0, ϵ1 and ϵ2 are arbitrarily small, we have

∥Attns ◦ Linear(Z):,c − f(x⊤
c w − yc)xc∥∞ ≤ ϵ,

for any ϵ > 0.

This completes the proof.

D.2 PROOF OF COROLLARY 3.1.2

Corollary D.2.1 (In-Context Emulation of a Single GD Step; Corollary 3.1.2 Restate). Let ℓ : R →
R be differentiable and define L̂n(w) :=

1
n

∑n
i=1 ℓ(w

⊤xi− yi). For any step size η > 0 and any ϵ >
0, there exist a single-head attention Attns and a linear map Linear such that, with Z = [X;W ] as
in (3.1), choosing the readout u := 1

n1n (equivalently, right-multiply by WO = u in Definition 2.1),

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

we have
ŵGD := (Attns ◦ Linear(Z))u ∈ Rd and ∥ŵGD − (w − η∇L̂n(w))︸ ︷︷ ︸

w+
GD

∥∞ ≤ ϵ.

Proof. From Corollary 3.1.1, we derive that ∥(Attns ◦ Linear)i −∇ℓ(w⊤xi − yi)xi∥∞ ≤ ϵ for all
i ∈ [n].

Therefore,

ŵ = w +
1

n

n∑
j=1

(Attns ◦ Linear)j

= w − η

n

n∑
j=1

∇ℓ(w⊤xj − yj)xj + ϵ′

= w − η∇L̂n(w) + ϵ′

= wGD + ϵ′

This completes the proof.

D.3 PROOF OF COROLLARY 3.1.3

Theorem D.3 (In-Context Emulation of Linear Regression; Corollary 3.1.3 Restate). For any dataset
{(xi, yi)}ni=1 with xi ∈ Rd, yi ∈ R and any ϵ > 0, there exist a single-head attention Attns, a linear
map Linear, and a readout u ∈ Rn such that, with Z = [X;W ] as in (3.1) (for any fixed bounded
w),

ŵlinear := (Attns ◦ Linear(Z))u ∈ Rd, and ∥ŵlinear − wlinear∥∞ ≤ ϵ,

where wlinear := argminw∈Rd
1
2n

∑n
i=1(⟨w, xi⟩ − yi)

2.

Proof. From Corollary 3.1.2, we know that ∥ŵl − wl
GD∥∞ ≤ ϵ/2 for all l ∈ [L]. Note that

1
2n

∑n
i=1(⟨w, xi⟩ − yi)

2 is convex and smooth which satisfies the precondition for Corollary D.1.1.
Therefore, from Corollary D.1.1, using ∥ · ∥∞ ≤ ∥ · ∥2, we derive that ∥wl

GD − wl
linear∥∞ ≤ ϵ/2.

Thus, ∥Attn − wlinear∥∞ ≤ ∥ŵl − wl
GD∥∞ + ∥wl

GD − wl
linear∥∞ ≤ ϵ by triangle inequality. This

completes the proof.

D.4 PROOF OF COROLLARY 3.1.4

Theorem D.4 (Restate of Corollary 3.1.4: In-Context Emulation of Ridge Regression). For any
input-output pair (xi, yi), where xi ∈ Rd, yi ∈ R, i ∈ [n], and any ϵ > 0, there exists a single-layer
Attention network with linear connection Attn such that

∥Attn− wridge∥∞ ≤ ϵ,

where wridge := argminw∈Rd
1
2n

∑n
i=1(⟨w, xi⟩ − yi)

2 + λ
2 ∥w∥

2
2 with regularization term λ ≥ 0.

Proof. From Corollary 3.1.2, we know that ∥ŵl − wl
GD∥∞ ≤ ϵ/2 for all l ∈ [L]. Note

that 1
2n

∑n
i=1(⟨w, xi⟩ − yi)

2 + λ
2 ∥w∥

2
2 is convex and smooth which satisfies the precondition

for Corollary D.1.1. Therefore, from Corollary D.1.1, using ∥ · ∥∞ ≤ ∥ · ∥2, we derive that
∥wl

GD − wl
ridge∥∞ ≤ ϵ/2. Thus, ∥Attn − wridge∥∞ ≤ ∥ŵl − wl

GD∥∞ + ∥wl
GD − wl

ridge∥∞ ≤ ϵ by
triangle inequality. This completes the proof.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

D.5 PROOF OF THEOREM 4.1

Theorem D.5 (In-Context Emulation of Attention; Theorem 4.1 Restate). Let X ∈ Rd×n be an
input sequence, and let WK ,WQ,WV ∈ Rdh×d be the weight matrices of the target attention head we
wish to emulate in-context. Assume ∥WKX∥∞, ∥WQX∥∞, ∥WV X∥∞ ≤ BKQV with BKQV > 0.
Then, for any ϵ > 0, there exists a two-layer attention network — a multi-head attention layer Attnm
followed by a single-head attention layer Attns — such that

∥Attns ◦Attnm(Xp)︸ ︷︷ ︸
Emulator

−WV XSoftmaxβ((WKX)⊤WQX)︸ ︷︷ ︸
Target

∥∞ ≤ ϵ,

where Xp is the prompt defined in Definition 4.2.

Proof. We state our high-level proof sketch first.

Step 1: In-Context Weight Encoding. We define
K︸︷︷︸

dh×n

:= WK︸︷︷︸
dh×d

· X︸︷︷︸
d×n

, Q︸︷︷︸
dh×n

:= WQ︸︷︷︸
dh×d

· X︸︷︷︸
d×n

, V︸︷︷︸
dh×n

:= WV︸︷︷︸
dh×d

· X︸︷︷︸
d×n

.

We aim to approximate the attention mechanism V Softmaxβ(K
⊤Q) using a two-layer transformer

Attns ◦ Attnm. Therefore, the transformer Attns ◦ Attnm must have in-context access to the
information about WK ,WQ and WV . This is equivalent to exposing the transformer Attns ◦Attnm
to the target algorithm’s specification.

To that end, we augment the input sequence X with two auxiliary blocks:

1. The weight encoding Win of the target algorithm. Win contains the vectorization of the target
weights WK ,WQ and WV .

2. A positional encoding In. In exposes token indices.

Concretely, following Definition 4.2, we form

Xp =

[
X
Win

In

]
︸ ︷︷ ︸

(d+6ddh+n)×n

with Win =

[
0 · w 1 · w 2 · w · · · (n− 1) · w
w w w · · · w

]
︸ ︷︷ ︸

6ddh×n

,

and

w =

WK
WQ

WV


︸ ︷︷ ︸
3ddh×1

.

Step 2: Multi-Head Decomposition for In-Context Recovery of K,Q, V . In this step, we use
the multi-head layer Attnm to build approximators of K,Q, and V from the prompt Xp. We denote
these approximators by K ′, Q′, and V ′, corresponding to K, Q, and V .

Explicitly, we have

∥

Attnm(Xp)︷ ︸︸ ︷[
K ′

Q′

V ′

]
︸ ︷︷ ︸
3dh×n

−

[
K
Q
V

]
︸︷︷ ︸
3dh×n

∥∞ ≤ ϵ0.

Intuitively, this works as: Xp contains the raw input X and the weight encodings of WK ,WQ and
WV . Then Attnm “reads” X and the target weight parameters from Xp within its attention heads to
form the desired approximation.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Step 3: Single-Head Assembly for Emulated Map. We use the single-head layer Attns to perform
the attention computation. From K ′, Q′, V ′, Attns produces

V ′Softmaxβ((K
′)⊤Q′).

For reference, the target computation is V Softmaxβ((K)⊤Q). This step aligns the output of Attns
with the target attention, using the approximated K ′, Q′, V ′ as inputs.

Step 4: Error Bound. Finally, we bound the gap between the computed and target attention:

∥V ′Softmaxβ((K
′)⊤Q′)− V Softmaxβ((K)⊤Q)∥∞ ≤ ϵ0 + nBKQV ϵ1.

Our proof starts here.

Step 1: In-Context Weight Encoding. For clarity and simplicity, we define

ki := (W⊤
K ):,i ∈ Rd, (D.27)

qi := (W⊤
Q ):,i ∈ Rd, (D.28)

vi := (W⊤
V ):,i ∈ Rd, (D.29)

such that the vectorized weight matrices WK , WQ, WV in Definition 4.2 become

WK =


k1
k2
...

kdh

 ∈ Rddh , WQ =


q1
q2
...

qdh

 ∈ Rddh , WV =


v1
v2
...

vdh

 ∈ Rddh ,

and w becomes

w =

WK
WQ

WV

 =



k1
...

kdh

q1
...

qdh

v1
...

vdh


.

Win remains as

Win :=

[
0 · w 1 · w 2 · w · · · (n− 1) · w
w w w · · · w

]
∈ R6ddh×n.

Then, for the input X , we append it with the target weights Win and the positional encoding In as in
Definition 4.2. We denote this result with Xp and write it out as

Xp :=

[
X
Win

In

]
︸ ︷︷ ︸

(d+6ddh+n)×n

. (D.30)

Step 2: Multi-Head Decomposition for In-Context Recovery of K,Q, V . In this part, we con-
struct approximators for K,Q and V via Attnm. We construct the approximators by approximating
each row of K,Q, V and then aggregating the results across rows. Each row in K,Q and V has the
form: k⊤i X, q⊤i X , and v⊤i X . To approximate these rows in K,Q, V , we apply Theorem D.1 to each
row separately. Namely, we allocate an H-head attention to each row of K,Q and V to carry out
the row-wise approximations. Since K,Q, V ∈ Rdh×n, each of K, Q, V uses H · dh heads. We
interpret H as the number of heads per row dimension, since each K, Q, and V has dh rows. Finally,
we define a multi-head attention Attnm as the union of these three groups of Hdh heads. Therefore,
Attnm has 3Hdh heads in total.

44



2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

We label the 3Hdh heads in Attnm as:

AttnK
j,h̃

, j ∈ [dh], h̃ ∈ {J + 1, . . . , J +H};
(
Approximates K

)
AttnQ

j,h̃
, j ∈ [2dh] \ [dh], h̃ ∈ {J + 1, . . . , J +H};

(
Approximates Q

)
AttnV

j,h̃
, j ∈ [3dh] \ [2dh], h̃ ∈ {J + 1, . . . , J +H},

(
Approximates V

)
where we define J := (j − 1)H to simplify our notation. Each AttnK

j,h̃
, AttnQ

j,h̃
, and AttnV

j,h̃
is

a single-head attention. Index j identifies the target row, and index h̃ identifies the head allocated
to that row. Here j ∈ [2dh] \ [dh] denotes the set difference. That is, j ∈ [2dh] \ [dh] means
j ∈ {dh + 1, . . . , 2dh}.

Thus, Attnm consists of three groups of attention heads:

Attnm :=

dh∑
j=1

J+H∑
h̃=J+1

AttnK
j,h̃︸ ︷︷ ︸

Approximates K

+

2dh∑
j=dh+1

J+H∑
h̃=J+1

AttnQ
j,h̃︸ ︷︷ ︸

Approximates Q

+

3dh∑
j=2dh+1

J+H∑
h̃=J+1

AttnV
j,h̃︸ ︷︷ ︸

Approximates V

,

In the subsequent proof, we provide the constructions of AttnK
j,h̃

, AttnQ
j,h̃

, AttnV
j,h̃

from Theo-
rem D.1.

To apply Theorem D.1 to construct heads in Attnm, let a and b denote the minimum and maximum
of the inner products k⊤i xm, q⊤i xm, and v⊤i xm, over all i ∈ [dh] and m ∈ [n]:

a ≤ min{k⊤i xm, q⊤i xm, v⊤i xm} and max{k⊤i xm, q⊤i xm, v⊤i xm} ≤ b.

Next, we choose

H := ⌈ 2(b− a)

(n− 2)ϵ0
⌉,

such that the interpolation error in Theorem D.1 is at most ϵ0
2 for any ϵ0 > 0.

Third, Theorem D.1 requires a single map A : Rd×n → R(3d+n)×n shared across all H heads. In our
construction, we realize this augmentation by prepending each head of AttnH in Theorem D.1 with a
head-specific linear map Ah̃ : R(d+6ddh+n)×n → R(3d+n)×n. The map Ah̃ maps the input Xp to the
desired dimension and picks out the target ki, qi or vi (this is equivalent to the ws in Theorem D.1.)
to let AttnH perform the desired linear transformation k⊤i X, v⊤i X or q⊤i X . Here h̃ still identifies
the single head assigned to a specific row. By Lemma D.3, AttnH ◦Ah̃ remains an H-head attention.
Therefore, we use AttnH ◦Ah̃ to build the heads in Attnm.

We construct Ah̃ as

Ah̃
:=

 Id 0d×3ddh
0d×3ddh

0d×n

0d×d Eh̃ 0d×3ddh
0d×n

0d×d Eh̃ Kh̃Eh̃ 0d×n

0n×d 0n×3ddh
0n×3ddh

In


︸ ︷︷ ︸

(3d+n)×(d+6ddh+n)

,

where
Eh̃

:=
[
0d×(d[h̃/H]) Id 0d×(3ddh−d[h̃/H]−d)

]︸ ︷︷ ︸
d×3ddh

,

Kh̃
:= [(h̃%H − 1)(n− 2)− 1].

Here h̃%H denotes the remainder of dividing h̃ by H . We define % such that instead of the common
(kH)%H = 0,

kH%H = H, for all k ∈ N+.

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Applying Ah̃ to Xp yields

Ah̃ ·Xp :=

 Id 0d×3ddh
0d×3ddh

0d×n

0d×d Eh̃ 0d×3ddh
0d×n

0d×d Eh̃ Kh̃Eh̃ 0d×n

0n×d 0n×3ddh
0n×3ddh

In


︸ ︷︷ ︸

(3d+n)×(d+6ddh+n)

·

[
X
Win

In

]
︸ ︷︷ ︸

(d+6ddh+n)×n

(
By the definition of Ah̃ and Xp

)

=


X[

Eh̃ 0d×3ddh

]
·Win[

Eh̃ Kh̃Eh̃

]
·Win

In


︸ ︷︷ ︸

(3d+n)×n

,

where
[
Eh̃ 0d×3ddh

]
Win expands as[

Eh̃ 0d×3ddh

]
Win

=
[
Eh̃ 0d×3ddh

]︸ ︷︷ ︸
d×6ddh

[
0 · w 1 · w 2 · w · · · (n− 1) · w
w w w · · · w

]
︸ ︷︷ ︸

6ddh×n

= Eh̃︸︷︷︸
d×3ddh

· [0 · w 1 · w 2 · w · · · (n− 1) · w]︸ ︷︷ ︸
3ddh×n

+ [0d×3ddh ] [w w w · · · w]︸ ︷︷ ︸
3ddh×n

=
[
0 · Eh̃w 1 · Eh̃w 2 · Eh̃w · · · (n− 1) · Eh̃w

]︸ ︷︷ ︸
d×n

,

and

Eh̃w =
[
0d×(d⌈h̃/H⌉−d) Id 0d×(3ddh−(d⌈h̃/H⌉−d)−d)

]︸ ︷︷ ︸
d×3ddh



k1
...

kdh

q1
...

qdh

v1
...

vdh


︸ ︷︷ ︸
3ddh×1

(
By the definition of Eh̃ and w

)

=


k⌈h̃/H⌉, 1 ≤ h̃ ≤ Hdh

q⌈h̃/H⌉−dh
, Hdh < h̃ ≤ 2Hdh

v⌈h̃/H⌉−2dh
, 2Hdh < h̃ ≤ 3Hdh

. (D.31)

The equality (D.31) holds since Eh̃ selects the ⌈h̃/H⌉-th block in w.

Similarly, [Eh̃ Kh̃Eh̃] ·Win expands as[
Eh̃ Kh̃Eh̃

]
Win

=
[
Eh̃ Kh̃Eh̃

]︸ ︷︷ ︸
d×6ddh

[
0 · w 1 · w 2 · w · · · (n− 1) · w
w w w · · · w

]
︸ ︷︷ ︸

6ddh×n

(
By the definition of Win

)

= Eh̃︸︷︷︸
d×3ddh

· [0 · w 1 · w 2 · w · · · (n− 1) · w]︸ ︷︷ ︸
3ddh×n

+Kh̃Eh̃︸ ︷︷ ︸
d×3ddh

[w w w · · · w]︸ ︷︷ ︸
3ddh×n(

By
[
A B

] [C
D

]
= AB + CD

)

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

=
[
Kh̃Eh̃w (Kh̃ + 1)Eh̃w · · · (Kh̃ + n− 1)Eh̃w

]︸ ︷︷ ︸
d×n

,

Up to here, we are capable of selecting a target ki, qi or vi, and we start to build our heads in Attnm.

When 1 ≤ h̃ ≤ Hdh, we compute Ah̃ ·Xp as

Ah̃ ·Xp =


X

0 · k⌈h̃/H⌉ 1 · k⌈h̃/H⌉ · · · (n− 1) · k⌈h̃/H⌉
k⌈h̃/H⌉ k⌈h̃/H⌉ · · · k⌈h̃/H⌉

In


︸ ︷︷ ︸

(3d+n)×n

.

This means every h̃ in {J + 1, . . . , J +H} with j ∈ [dh] has the same Ah̃ ·Xp: X
0 · kj 1 · kj · · · (n− 1) · kj
kj kj · · · kj

In


︸ ︷︷ ︸

(3d+n)×n

For each j ∈ [dh], by Theorem D.1, there exists an H-head attention Attn′j : R(3d+n)×n → R3dh×n,
such that the output satisfies

∥Attn′j(
(3d+n)×n︷ ︸︸ ︷
Ah̃ ·Xp ):,i︸ ︷︷ ︸

3dh×1

−(k⊤j xi) e
(3dh)
j︸ ︷︷ ︸

3dh×1

∥∞ ≤ ϵ0, (D.32)

for every i ∈ [n] and any ϵ0 > 0.

From (D.32), we have

∥Attn′j(
(3d+n)×n︷ ︸︸ ︷
Ah̃ ·Xp )︸ ︷︷ ︸

3dh×n

− e
(3dh)
j k⊤j X︸ ︷︷ ︸
3dh×n

∥∞ ≤ ϵ0,

where

e
(3dh)
j k⊤j X =

[
(k⊤j x1)e

(3dh)
j (k⊤j x2)e

(3dh)
j · · · (k⊤j xn)e

(3dh)
j

]
︸ ︷︷ ︸

3dh×n

.

We use Attn
′(s)
j to label the heads in Attn′j , and we define AttnK

j,h̃
(Z) to be

AttnK
j,h̃

(Z) := Attn
′(h̃)
j (Ah̃ · Z),

(
Z ∈ R(d+6ddh+n)×n denotes any input

)
where j ∈ [dh] and h̃ ∈ {J + 1, . . . , J +H}.

By Lemma D.3, AttnK
j,h̃

(Z) is still an attention.

Thus

AttnKj (Z) :=

J+H∑
h̃=J+1

AttnK
j,h̃

(Z),

is also an attention.

Thus, we have

∥AttnKj (Xp)︸ ︷︷ ︸
3dh×n

− e
(3dh)
j k⊤j X︸ ︷︷ ︸
3dh×n

∥∞ ≤ ϵ0.

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

This means that

∥
dh∑
j=1

AttnKj (Xp)︸ ︷︷ ︸
3dh×n

−

[
K

0dh×n

0dh×n

]
︸ ︷︷ ︸
3dh×n

∥∞ ≤ ϵ0. (D.33)

Similarly for Q, by (D.31), when Hdh < h̃ ≤ 2Hdh, we have
Eh̃w = q⌈h̃/H⌉−dh︸ ︷︷ ︸

d×1

,

and

Ah̃ ·Xp =

 X
0 · qj−dh

1 · qj−dh
· · · (n− 1) · qj−dh

qj−dh
qj−dh

· · · qj−dh

In


︸ ︷︷ ︸

(3d+n)×n

,

where j ∈ [2dh] \ [dh].

For each j ∈ [2dh] \ [dh], by Theorem D.1, there exists an H-head attention Attn′′j : R(3d+n)×n →
R3dh×n, such that

∥Attn′′j (Ah̃ ·Xp)︸ ︷︷ ︸
3dh×n

− e
(3dh)
j q⊤j−dh

X︸ ︷︷ ︸
3dh×n

∥∞ ≤ ϵ0,

for any ϵ0 > 0.

Then we construct AttnQ
j,h̃

in a way similar to AttnK
j,h̃

AttnQ
j,h̃

(Z) := Attn
′′(h̃)
j (Ah̃ · Z),

(
Z ∈ R(d+6ddh+n)×n denotes any input

)
where j ∈ [2dh] \ [dh] and h̃ ∈ {J + 1, . . . , J +H}.

By Lemma D.3, AttnQ
j,h̃

(Z) is an attention.

Thus

AttnQj (Z) :=

J+H∑
h̃=J+1

AttnQ
j,h̃

(Z),

is also an attention.

Thus, we have

∥AttnQj (Xp)︸ ︷︷ ︸
3dh×n

− e
(3dh)
j q⊤j−dh

X︸ ︷︷ ︸
3dh×n

∥∞ ≤ ϵ0.

This means that

∥
2dh∑

j=dh+1

AttnQj (Xp)︸ ︷︷ ︸
3dh×n

−

[
0dh×n

Q
0dh×n

]
︸ ︷︷ ︸
3dh×n

∥∞ ≤ ϵ0. (D.34)

For V , with analogous construction to that of K and Q, there exists an H-head attention AttnVj :

R(3d+n)×n → R3dh×n such that
∥AttnVj (Xp)︸ ︷︷ ︸

3dh×n

− e
(3dh)
j v⊤j−2dh

X︸ ︷︷ ︸
3dh×n

∥∞ ≤ ϵ0,

for each j ∈ [3dh] \ [2dh] and any ϵ0 > 0.

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

This means that

∥
3dh∑

j=2dh+1

AttnVj (Xp)︸ ︷︷ ︸
3dh×n

−

[
0dh×n

0dh×n

V

]
︸ ︷︷ ︸
3dh×n

∥∞ ≤ ϵ0. (D.35)

Combining (D.33), (D.34) and (D.35), we have

∥Attnm(Xp)−

[
K
Q
V

]
∥∞

= ∥
dh∑
j=1

AttnKj (Xp)−

[
K

0dh×n

0dh×n

]
+

2dh∑
j=dh+1

AttnQj (Xp)−

[
0dh×n

Q
0dh×n

]
+

3dh∑
j=2dh+1

AttnVj (Xp)−

[
0dh×n

0dh×n

V

]
∥∞

≤ ϵ0. (D.36)

We define [
K ′

Q′

V ′

]
︸ ︷︷ ︸
3dh×n

:= Attnm(Xp).

Thus, (D.36) becomes

∥

[
K ′

Q′

V ′

]
︸ ︷︷ ︸
3dh×n

−

[
K
Q
V

]
︸︷︷ ︸
3dh×n

∥∞ ≤ ϵ0, (D.37)

Step 3: Single-Head Assembly for Emulated Map. Our goal in this part is to reconstruct the
attention mechanism

V ′Softmaxβ((K
′)⊤Q′), and V Softmaxβ((K)⊤Q),

from K ′, Q′, V ′ and K,Q, V via Attns.

In order to achieve this, we construct Attns to be
Attns(Z) := [0dh×2dh

Idh ]︸ ︷︷ ︸
:=WV,s

Z · Softmaxβ(([Idh
0dh×2dh ]︸ ︷︷ ︸

:=WK,s

Z)⊤ [0dh×dh
Idh

0dh×dh ]︸ ︷︷ ︸
:=WQ,s

Z),

where Z ∈ R3dh×n denotes any input.

Thus, we have
dh×n︷ ︸︸ ︷

Attns(

[
K
Q
V

]
︸︷︷ ︸
3dh×n

) = V︸︷︷︸
dh×n

Softmaxβ((K)⊤Q︸ ︷︷ ︸
n×n

), (D.38)

and
dh×n︷ ︸︸ ︷

Attns(

[
K ′

Q′

V ′

]
)︸ ︷︷ ︸

3dh×n

= V ′︸︷︷︸
dh×n

Softmaxβ((K
′)⊤Q′︸ ︷︷ ︸
n×n

). (D.39)

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Step 4: Error Bound. From (D.38) and (D.39), we have

Attns(

[
K ′

Q′

V ′

]
)−Attns(

[
K
Q
V

]
)

= V ′︸︷︷︸
dh×n

·Softmaxβ(K
′⊤Q′)︸ ︷︷ ︸

n×n

− V︸︷︷︸
dh×n

·Softmaxβ(K
⊤Q)︸ ︷︷ ︸

n×n

(
By (D.39) and (D.38)

)
= V ′Softmaxβ(K

′⊤Q′)− V Softmaxβ(K
′⊤Q′) + V Softmaxβ(K

′⊤Q′)− V Softmaxβ(K
⊤Q)

= (V ′ − V )Softmaxβ(K
′⊤Q′) + V (Softmaxβ(K

′⊤Q′)− Softmaxβ(K
⊤Q)), (D.40)

and the last equality follows from the distributivity of matrix multiplication.

Then, (D.40) yields

∥Attns(

[
K ′

Q′

V ′

]
)−Attns(

[
K
Q
V

]
)∥∞

= ∥(V ′ − V )Softmaxβ(K
′⊤Q′) + V (Softmaxβ(K

′⊤Q′)− Softmaxβ(K
⊤Q))∥∞

≤ ∥(V ′ − V )Softmaxβ(K
′⊤Q′)∥∞︸ ︷︷ ︸

:=(I)

+ ∥V (Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q))∥∞︸ ︷︷ ︸
:=(II)

, (D.41)

and the last inequality follows from the triangle inequality.

For term (I) in (D.41), since each column in Softmaxβ(K
′⊤Q′) sums up to 1, then

(V ′ − V )︸ ︷︷ ︸
dh×n

Softmaxβ(K
′⊤Q′):,j︸ ︷︷ ︸

n×1

,

is a weighted sum of the columns in (V ′ − V ).

Thus we have
∥(V ′ − V )Softmaxβ(K

′⊤Q′):,j∥∞ ≤ ∥V ′ − V ∥∞ ≤ ϵ0,

and the first inequality holds since the column average of (V ′ − V ) has a maximum entry no greater
than the maximum entry among the original columns in (V ′ − V ). The second inequality holds since
(D.37).

Then we get
(I) ≤ ϵ0. (D.42)

Term (II) in (D.41) is

(II) = ∥V (Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q))∥∞.

For simplicity of presentation, we define

∆S := Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q),

such that for each entry in (II), we have

|(V∆S)ij | = |
n∑

k=1

Vik(∆S)kj |
(
By the definition of matrix multiplication

)
≤

n∑
k=1

|Vik| · |(∆S)kj |
(
By triangle inequality and |ab| = |a| · |b| for all a, b ∈ R

)
≤

n∑
k=1

∥V ∥∞ · ∥∆S∥∞
(
By |Vik| ≤ ∥V ∥∞ and |(∆S)kj | ≤ ∥∆S∥∞

)
= n∥V ∥∞ · ∥∆S∥∞,

and this leads to
(II) ≤ n∥V ∥∞ · ∥∆S∥∞. (D.43)

50



2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

For each entry in ∆S, we have
|(∆S)i,j | (D.44)

= |(Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q))i,j |

= | eβK
′
i·Q

′
j∑n

i′=1 e
βK′

i′ ·Q
′
j

− eβKi·Qj∑n
i′=1 e

βKi′ ·Qj
|

(
K′

i, Q
′
i, Ki, Qi denote the i-th column in K′, Q′, K, Q

)
= | eβK

′
i·Q

′
j∑n

i′=1 e
βK′

i′ ·Q
′
j

− eβKi·Qj∑n
i′=1 e

βK′
i′ ·Q

′
j

+
eβKi·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

− eβKi·Qj∑n
i′=1 e

βKi′ ·Qj
|

≤ |e
βK′

i·Q
′
j − eβKi·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

|+ |eβKi·Qj (
1∑n

i′=1 e
βK′

i′ ·Q
′
j

− 1∑n
i′=1 e

βKi′ ·Qj
)|

(
By triangle inequality

)
=

eβK
′
i·Q

′
j∑n

i′=1 e
βK′

i′ ·Q
′
j

|1− eβ(Ki·Qj−K′
i·Q

′
j)|+ eβKi·Qj∑n

i′=1 e
βKi′ ·Qj

|
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

− 1|(
By non-negativity of exponential

)
< |1− eβ(Ki·Qj−K′

i·Q
′
j)|︸ ︷︷ ︸

:=(II-1)

+ |1−
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

|︸ ︷︷ ︸
:=(II-2)

, (D.45)

and the last inequality holds since

eβK
′
i·Q

′
j∑n

i′=1 e
βK′

i′ ·Q
′
j

< 1,
eβKi·Qj∑n

i′=1 e
βKi′ ·Qj

< 1.

To bound term (II-1) in (D.45), we recall

∥

[
K ′

Q′

V ′

]
︸ ︷︷ ︸
3dh×n

−

[
K
Q
V

]
︸︷︷ ︸
3dh×n

∥∞ ≤ ϵ0,

so
∥K ′ −K︸ ︷︷ ︸

dh×n

∥∞ ≤ ϵ0,

∥Q′ −Q︸ ︷︷ ︸
dh×n

∥∞ ≤ ϵ0.

Let K ′
i, Q

′
i, Ki, Qi denote the i-th column in K ′, Q′, K, Q, then we have

∆Ki︸︷︷︸
dh×1

:= K ′
i −Ki︸ ︷︷ ︸
dh×1

, ∥∆Ki∥∞ ≤ ϵ0,

∆Qi︸︷︷︸
dh×1

:= Q′
i −Qi︸ ︷︷ ︸
dh×1

, ∥∆Qi∥∞ ≤ ϵ0.

Thus, for term (II-1) in (D.45), we have
(II-1)

= |1− exp
{
β(Ki ·Qj −K ′

i ·Q′
j)
}
|

= |1− exp{β(Ki ·Qj − (Ki +∆Ki) · (Qj +∆Qj))}|(
By K′

i = Ki +∆Ki and Q′
i = Qi +∆Qi

)
= |1− exp{−β(Ki ·∆Qj +Qj ·∆Ki +∆Ki ·∆Qj)}|,(

By Ki ·Qj − (Ki +∆Ki) · (Qi +∆Qi) = −(Ki ·∆Qj +Qj ·∆Ki +∆Ki ·∆Qj)
)

and we know
Ki ·∆Qj +Qj ·∆Ki +∆Ki ·∆Qj

≤ dh · ∥Ki∥∞∥∆Qj∥∞ + dh · ∥Qj∥∞∥∆Ki∥∞ + dh · ∥∆Ki∥∞∥∆Qj∥∞(
By a · b ≤ dh∥a∥∞∥b∥∞ for all a, b ∈ Rdh

)
51



2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

≤ 2dhBKQV ϵ0 + dhϵ
2
0.

(
By ∥Ki∥∞, ∥Qj∥∞ ≤ BKQV and ∥∆Ki∥∞, ∥∆Qj∥∞ ≤ ϵ0

)
Thus, we have

(II-1) ≤ |1− e−βdh(2BKQV ϵ0+ϵ20)|. (D.46)

For term (II-2) in (D.45), we have
(II-2)

= |1−
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

|
(
By the definition of (II-2)

)
= |1−

∑n
i′=1 e

βKi′ ·Qj∑n
i′=1 e

β(Ki′+∆Ki′ )·(Qj+∆Qj)
|

(
By K′

i′ = Ki′ +∆Ki′ and Q′
i = Qi +∆Qi

)
= |1−

∑n
i′=1 e

βKi′ ·Qj∑n
i′=1 e

β(Ki′ ·Qj+Ki′ ·∆Qj+Qj ·∆Ki′+∆Ki′ ·∆Qj)
|,

and for all i′ in the denominator, we have
Ki′ ·Qj +Ki′ ·∆Qj +Qj ·∆Ki′ +∆Ki′ ·∆Qj

≤ Ki′ ·Qj + dh · ∥Ki′∥∞∥∆Qj∥∞ + dh · ∥Qj∥∞∥∆Ki′∥∞ + dh · ∥∆Ki′∥∞∥∆Qj∥∞(
By a · b ≤ dh∥a∥∞∥b∥∞ for all a, b ∈ Rdh

)
≤Ki′ ·Qj + 2dhBKQV ϵ0 + dhϵ

2
0.

(
By ∥Ki′∥∞, ∥Qj∥∞ ≤ BKQV and ∥∆Ki′∥∞, ∥∆Qj∥∞ ≤ ϵ0

)
Thus,

(II-2)

= |1−
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
β(Ki′ ·Qj+Ki′ ·∆Qj+Qj ·∆Ki′+∆Ki′ ·∆Qj)

|

≤ |1−
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
β(Ki′ ·Qj+2dhBKQV ϵ0+dhϵ20)

|

= |1−
∑n

i′=1 e
βKi′ ·Qj

eβdh(2BKQV ϵ0+ϵ20)
∑n

i′=1 e
βKi′ ·Qj

|
(
eβdh(2BKQV ϵ0+ϵ20) is independent of i′

)
= |1− e−βdh(2BKQV ϵ0+ϵ20)|, (D.47)

and the last equality holds since the common factor
∑n

i′=1 e
βKi′ ·Qj cancels out.

Combining (D.45), (D.46), and (D.47), we have

|(Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q))i,j |

< 2|1− e−βdh(2BKQV ϵ0+ϵ20)|
≤ 2|1− e−βdh(2BKQV ϵ0+ϵ0)|.

(
By requiring 0 < ϵ0 ≤ 1

)
Thus for any 0 < ϵ1 < 2, when ϵ0 satisfies

0 < ϵ0 ≤ min{1,
− ln

(
1− ϵ1

2

)
βdh(2BKQV + 1)

},

we have
|(Softmaxβ(K

′⊤Q′)− Softmaxβ(K
⊤Q))i,j | < ϵ1. (D.48)

From (D.43) and (D.48), we have
(II) ≤ n∥V ∥∞∥∆S∥∞ < nBKQV ϵ1, (D.49)

since ∥V ∥∞ ≤ BKQV and ∥∆S∥∞ < ϵ1.

Combining (D.41) with (D.42) and (D.49) yields

∥Attns(

[
K ′

Q′

V ′

]
)−Attns(

[
K
Q
V

]
)∥∞ < ϵ0 + nBKQV ϵ1.

52



2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

When we take ϵ0 and ϵ1 to be infinitely small, the right-hand side tends to 0.

This completes the proof.

D.6 PROOF OF THEOREM 4.2

Theorem D.6 (Theorem 4.2 Restate). Let X ∈ Rd×n be the input sequence, and let
WK ,WQ,WV ∈ Rn×d be the weight matrices of the target attention. Assume B =
max{∥X∥∞, ∥WK∥∞, ∥WQ∥∞, ∥WV ∥∞} and ∥WKX∥∞, ∥WQX∥∞, ∥WV X∥∞ ≤ BKQV for
BKQV ≥ 0. Then, for any ϵ > 0, there exists a single-head attention layer Attns followed by a
multi-head attention layer with linear projections such that

∥Attns ◦ (
3n∑
j=1

Attnj ◦ Linearj(


X
W⊤

K

W⊤
Q

W⊤
V

))−WV X︸ ︷︷ ︸
n×n

Softmaxβ ((WKX)⊤WQX)︸ ︷︷ ︸
n×n

∥∞ ≤ ϵ.

Proof. Follow our proof sketch in Appendix A.2, our proof consists of four conceptual steps.

Step 1: Encoding Weights into the Input. For clarity and simplicity, we define

ki := (W⊤
K ):,i ∈ Rd,

qi := (W⊤
Q ):,i ∈ Rd,

vi := (W⊤
V ):,i ∈ Rd,

such that W⊤
K ,W⊤

Q ,W⊤
V writes out as

W⊤
K = [k1 k2 · · · kn]︸ ︷︷ ︸

d×n

, W⊤
Q = [q1 q2 · · · qn]︸ ︷︷ ︸

d×n

, W⊤
V = [v1 v2 · · · vn]︸ ︷︷ ︸

d×n

.

Then, we express the input as 
X
W⊤

K

W⊤
Q

W⊤
V

 =

x1 x2 · · · xn

k1 k2 · · · kn
q1 q2 · · · qn
v1 v2 · · · vn


︸ ︷︷ ︸

4d×n

(D.50)

where xi, ki, qi and vi are all d dimensional vectors for i ∈ [n].

Step 2: Multi-Head Approximation of K,Q, V . For the simplicity of presentation, we define
K := WK︸︷︷︸

n×d

X︸︷︷︸
d×n

, Q := WQ︸︷︷︸
n×d

X︸︷︷︸
d×n

, V := WV︸︷︷︸
n×d

X︸︷︷︸
d×n

.

Writing WK , WQ, and WV row-wise as

WK =


k⊤1
k⊤2
...
k⊤n


︸ ︷︷ ︸
n×d

, WQ =


q⊤1
q⊤2
...
q⊤n


︸ ︷︷ ︸
n×d

, WV =


v⊤1
v⊤2
...
v⊤n


︸ ︷︷ ︸
n×d

,

and X = [x1 · · · xn], we express K, Q, and V entry-wise as

K =


k⊤1 x1 k⊤1 x2 · · · k⊤1 xn

k⊤2 x1 k⊤2 x2 · · · k⊤2 xn

...
...

...
...

k⊤n x1 k⊤n x2 · · · k⊤n xn

 ,

53



2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Q =


q⊤1 x1 q⊤1 x2 · · · q⊤1 xn

q⊤2 x1 q⊤2 x2 · · · q⊤2 xn

...
...

...
...

q⊤n x1 q⊤n x2 · · · q⊤n xn

 ,

V =


v⊤1 x1 v⊤1 x2 · · · v⊤1 xn

v⊤2 x1 v⊤2 x2 · · · v⊤2 xn

...
...

...
...

v⊤n x1 v⊤n x2 · · · v⊤n xn

 .

Here k⊤i , q⊤i , and v⊤i identify the i-th row of K,Q and V , while xj identifies the j-th column.

In this section, our goal is to approximate K, Q, and V . Our strategy is to approximate K, Q, and V
row by row, and within each row, entry by entry. More precisely, for each i ∈ [n], we approximate

k⊤i X, q⊤i X, v⊤i X,

by approximating the scalar products

k⊤i xj , q⊤i xj , v⊤i xj , for all j ∈ [n],

and then collecting these approximations to form approximations of the full matrices K, Q, and V .

To approximate each scalar k⊤i xj , q⊤i xj , and v⊤i xj , we first determine their joint range over all
i, j ∈ [n]. Within this joint range, we construct a set of uniform-space grid points. Then, we
approximate each target entry k⊤i xj , q⊤i xj , or v⊤i xj by an entry-specific weighted sum of these grid
points, where grid points closer to the target entry value receive larger weights. In this way, we
represent every entry by its own set of interpolation weights, while all approximations share the same
global grid.

We introduce our notation for the uniform grid points used in our interpolation scheme.

Interpolations. We recall
B = max(∥X∥∞, ∥WK∥∞, ∥WQ∥∞, ∥WV ∥∞).

Thus, for all i, j ∈ [n],

−d ·B2 ≤ k⊤i xj , q
⊤
i xj , v

⊤
i xj ≤ d ·B2. (D.51)

Namely, [−dB2, dB2] contains all entries of K, Q, and V .

Then, we take L0 := −dB2 and LP := dB2 as the two endpoints of our interpolation and define for
i ∈ {0} ∪ [P ]

Li :=
iLP + (P − i)L0

P
, (D.52)

where P is the number of interpolation steps (the number of equal divisions of [L0, LP ]). The points
{Li}Pi=0 form our uniform grid over the target range.

We use ∆L to denote the length of the interval between two neighboring grid points. We have

∆L :=
LP − L0

P
=

2dB2

P
. (D.53)

Now we have all the ingredients needed to approximate each entry using a weighted sum. However,
the input, 

X
W⊤

K

W⊤
Q

W⊤
V

 =

x1 x2 · · · xn

k1 k2 · · · kn
q1 q2 · · · qn
v1 v2 · · · vn


︸ ︷︷ ︸

4d×n

,

contains information from all rows in the target K, Q, and V , but does not contain the grid points.
We need a mechanism to select a specific ki, qi, or vi (corresponding to one row of K, Q, or V ) and
to include the grid points for us.

54



2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

To address this, we introduce row-specific linear transformations Linearj , where j ∈ [3n], since we
have n rows for each of K, Q, and V . Each Linearj serves two purposes: it incorporates the input
and the uniform grid points, and selects the ki, qi, or vi associated with index i (corresponding to one
row of K, Q, or V ).

For the clarity of presentation, we relabel these 3n linear transformations according to whether they
are responsible for K, Q, or V

LinearKj := Linearj , j ∈ [n],
(
Responsible for K

)
LinearQj := Linearn+j , j ∈ [n],

(
Responsible for Q

)
LinearVj := Linear2n+j , j ∈ [n]. (D.54)

Later in the proof, we specify the explicit form of these Linearj .

So far, Linearj allows us to combine the input with the uniform grid points and to select the desired
ki, qi, or vi. The next step is to implement the entry-specific weighted sums to approximate the
entries of K, Q, and V .

For this, we use a row-specific single-head attention: for each i ∈ [n], we assign one head to
approximate k⊤i X using the weighted sum, one head to approximate q⊤i X in the same manner, and
one head to approximate v⊤i X in the same manner. Each such head operates token-wise: given its
designated row i, the head approximates all scalars k⊤i xj , q⊤i xj , or v⊤i xj across j ∈ [n].

Since each of K, Q, and V has n rows and we use a single-head for each row, we use a total of 3n
heads to approximate K, Q, and V . We use Attnj to label these 3n heads and j ∈ [3n].

Again, for the clarity of presentation, we provide another equivalent way, as Attnj , to label these 3n
heads

AttnKj := Attnj , j ∈ [n],

AttnQj := Attnn+j , j ∈ [n],

AttnVj := Attn2n+j , j ∈ [n]. (D.55)
Later in our proof, we provide the construction of these Attnj explicitly.

Now we are ready to approximate each of K, Q, and V . We approximate K first to demonstrate our
procedure and deal with Q and V in a similar manner later.

In-Context Calculation of K. First, we define the linear transformation LinearKj : R4d×n →
R(2d+3)×(P+1) attached before AttnKj as:

LinearKj (Z) :=

[
0d×d 0d×d 0d×2d

0d×d Id 0d×2d

03×d 03×d 03×2d

]
︸ ︷︷ ︸

(2d+3)×4d

Z︸︷︷︸
4d×n

[
2L0e

(n)
j 2L1e

(n)
j · · · 2LP e

(n)
j

]
︸ ︷︷ ︸

n×(P+1)

+

(
Z ∈ R4d×n denotes any input

)[
Id 0d×d 0d×2d

0d×d 0d×d 0d×2d

03×d 03×d 03×2d

]
︸ ︷︷ ︸

(2d+3)×4d

Z︸︷︷︸
4d×n

[
In 0n×(P+1−n)

]︸ ︷︷ ︸
n×(P+1)

+

[
02d×(P+1)

M1

ML

]
︸ ︷︷ ︸
(2d+3)×(P+1)

,

where M1,ML are
M1 :=

[
11×n 01×(P+1−n)

]︸ ︷︷ ︸
1×(P+1)

, (D.56)

ML :=

[
L0 L1 · · · LP

−L2
0 −L2

1 · · · −L2
P

]
︸ ︷︷ ︸

2×(P+1)

. (D.57)

55



2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

The LinearKj layer takes the input
[
X⊤ WK WQ WV

]⊤
and outputs in the following way:

LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

)

=

[
0d×d 0d×d 0d×2d

0d×d Id 0d×2d

03×d 03×d 03×2d

]
︸ ︷︷ ︸

(2d+3)×4d

x1 x2 · · · xn

k1 k2 · · · kn
q1 q2 · · · qn
v1 v2 · · · vn


︸ ︷︷ ︸

4d×n

[
2L0e

(n)
j 2L1e

(n)
j · · · 2LP e

(n)
j

]
︸ ︷︷ ︸

n×(P+1)

+

[
Id 0d×d 0d×2d

0d×d 0d×d 0d×2d

03×d 03×d 03×2d

]
︸ ︷︷ ︸

(2d+3)×4d

x1 x2 · · · xn

k1 k2 · · · kn
q1 q2 · · · qn
v1 v2 · · · vn


︸ ︷︷ ︸

4d×n

[
In 0n×(P+1−n)

]︸ ︷︷ ︸
n×(P+1)

+

[
02d×(P+1)

M1

ML

]
︸ ︷︷ ︸
(2d+3)×(P+1)

(
By (D.50)

)

=

[
0d×1 0d×1 · · · 0d×1

k1 k2 · · · kn
03×1 03×1 · · · 03×1

]
︸ ︷︷ ︸

(2d+3)×n

[
2L0e

(n)
j 2L1e

(n)
j · · · 2LP e

(n)
j

]
︸ ︷︷ ︸

n×(P+1)

+

[
x1 x2 · · · xn

0d×1 0d×1 · · · 0d×1

03×1 03×1 · · · 03×1

]
︸ ︷︷ ︸

(2d+3)×n

[
In 0n×(P+1−n)

]︸ ︷︷ ︸
n×(P+1)

+

[
02d×(P+1)

M1

ML

]
︸ ︷︷ ︸
(2d+3)×(P+1)(

By selecting ki and xi with Id for all i ∈ [n]
)

=

[
0d×1 0d×1 · · · 0d×1

2L0kj 2L1kj · · · 2LP kj
03×1 03×1 · · · 03×1

]
︸ ︷︷ ︸

(2d+3)×(P+1)

+

[
x1 x2 · · · xn 0d×1 · · · 0d×1

0d×1 0d×1 · · · 0d×1 0d×1 · · · 0d×1

03×1 03×1 · · · 03×1 03×1 · · · 03×1

]
︸ ︷︷ ︸

(2d+3)×(P+1)

+

(
By selecting kj with e

(n)
j

)02d×1 02d×1 · · · 02d×1 02d×1 · · · 02d×1

1 1 · · · 1 0 · · · 0
L0 L1 · · · Ln−1 Ln · · · LP

−L2
0 −L2

1 · · · −L2
n−1 −L2

n · · · −L2
P


︸ ︷︷ ︸

(2d+3)×(P+1) (
By the definition of M1 and ML; i.e., (D.56) and (D.57)

)

=


x1 x2 · · · xn 0d · · · 0d

2L0kj 2L1kj · · · 2Ln−1kj 2Lnkj · · · 2LP kj
1 1 · · · 1 0 · · · 0
L0 L1 · · · Ln−1 Ln · · · LP

−L2
0 −L2

1 · · · −L2
n−1 −L2

n · · · −L2
P


︸ ︷︷ ︸

(2d+3)×(P+1)

. (D.58)

Next, we construct AttnKj : R(2d+3)×(P+1) → R3n×n to be

AttnKj (D) := WK;j

V̂
D︸ ︷︷ ︸

3n×(P+1)

·Softmaxβ((W
K;j

K̂
D)⊤WK;j

Q̂
D)︸ ︷︷ ︸

(P+1)×(P+1)

· WK;j

Ô︸ ︷︷ ︸
(P+1)×n

,

where D ∈ R(2d+3)×(P+1) denotes any input, and

WK;j

K̂
:=

[
0d×d Id 0d×1 0d×1 0d×1

01×d 01×d 0 0 1

]
︸ ︷︷ ︸

(d+1)×(2d+3)

, (D.59)

56



3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

WK;j

Q̂
:=

[
Id 0d×d 0d×1 0d×1 0d×1

01×d 01×d 1 0 0

]
︸ ︷︷ ︸

(d+1)×(2d+3)

, (D.60)

WK;j

V̂
:= e

(3n)
j︸︷︷︸

3n×1

[
01×(2d+1) 1 0

]︸ ︷︷ ︸
1×(2d+3)

, (D.61)

WK;j

Ô
:=

[
In

0(P+1−n)×n

]
︸ ︷︷ ︸

(P+1)×n

. (D.62)

We define the K̂K
j of AttnKj to be:

K̂K
j := WK;j

K̂
· LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

)

=

[
0d×d Id 0d×1 0d×1 0d×1

01×d 01×d 0 0 1

]
︸ ︷︷ ︸

(d+1)×(2d+3)

·


x1 x2 · · · xn · · · 0d

2L0kj 2L1kj · · · 2Ln−1kj · · · 2LP kj
1 1 · · · 1 · · · 0
L0 L1 · · · Ln−1 · · · LP

−L2
0 −L2

1 · · · −L2
n−1 · · · −L2

P


︸ ︷︷ ︸

(2d+3)×(P+1)(
By (D.59) and (D.58)

)
=

[
2L0kj 2L1kj · · · 2Ln−1kj · · · 2LP kj
−L2

0 −L2
1 · · · −L2

n−1 · · · −L2
P

]
︸ ︷︷ ︸

(d+1)×(P+1)

, (D.63)

and the last equality holds since Id selects the 2Likj row, and 1 selects the −L2
i row where i ∈

{0} ∪ [P ].

We define the Q̂K
j of AttnKj to be:

Q̂K
j := WK;j

Q̂
· LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

)

=

[
Id 0d×d 0d×1 0d×1 0d×1

01×d 01×d 1 0 0

]
︸ ︷︷ ︸

(d+1)×(2d+3)

·


x1 x2 · · · xn · · · 0d

2L0kj 2L1kj · · · 2Ln−1kj · · · 2LP kj
1 1 · · · 1 · · · 0
L0 L1 · · · Ln−1 · · · LP

−L2
0 −L2

1 · · · −L2
n−1 · · · −L2

P


︸ ︷︷ ︸

(2d+3)×(P+1)(
By (D.60) and (D.58)

)
=

[
x1 x2 · · · xn 0d×(P+1−n)

1 1 · · · 1 01×(P+1−n)

]
︸ ︷︷ ︸

(d+1)×(P+1)

, (D.64)

and the last equality holds since Id selects the xi row where i ∈ [n], and 1 selects the 1s row.

We define the V̂ K
j of AttnKj to be:

V̂ K
j := WK;j

V̂
· LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

)

57



3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

= e
(3n)
j︸︷︷︸

3n×1

[
01×(2d+1) 1 0

]︸ ︷︷ ︸
1×(2d+3)

·


x1 x2 · · · xn 0d · · · 0d

2L0kj 2L1kj · · · 2Ln−1kj 2Lnkj · · · 2LP kj
1 1 · · · 1 0 · · · 0
L0 L1 · · · Ln−1 Ln · · · LP

−L2
0 −L2

1 · · · −L2
n−1 −L2

n · · · −L2
P


︸ ︷︷ ︸

(2d+3)×(P+1) (
By (D.61) and (D.58)

)
= e

(3n)
j︸︷︷︸

3n×1

[L0 L1 · · · Ln−1 Ln · · · LP ]︸ ︷︷ ︸
1×(P+1)

, (D.65)

and the last equality holds since the 1 selects the Li row where i ∈ {0} ∪ [P ].

Combining the results of K̂K
j and Q̂K

j , we calculate the Softmaxβ((K̂
K
j )⊤Q̂K

j ) in AttnKj as

Softmaxβ((K̂
K
j )⊤Q̂K

j )

= Softmaxβ(

[
2L0kj 2L1kj · · · 2Ln−1kj · · · 2LP kj
−L2

0 −L2
1 · · · −L2

n−1 · · · −L2
P

]⊤
︸ ︷︷ ︸

(P+1)×(d+1)

[
x1 x2 · · · xn 0d×(P+1−n)

1 1 · · · 1 01×(P+1−n)

]
︸ ︷︷ ︸

(d+1)×(P+1)

)

(
By the definition of K̂K

j and Q̂K
j ; i.e. (D.63) and (D.64)

)

= Softmaxβ(


2L0k

⊤
j −L2

0

2L1k
⊤
j −L2

1
...

...
2LP k

⊤
j −L2

P


︸ ︷︷ ︸

(P+1)×(d+1)

[
x1 x2 · · · xn 0d×(P+1−n)

1 1 · · · 1 01×(P+1−n)

]
︸ ︷︷ ︸

(d+1)×(P+1)

)
(
By the transpose of K̂K

j

)

= Softmaxβ(


2L0k

⊤
j x1 − L2

0 2L0k
⊤
j x2 − L2

0 · · · 2L0k
⊤
j xn − L2

0 0d×(P+1−n)

2L1k
⊤
j x1 − L2

1 2L1k
⊤
j x2 − L2

1 · · · 2L1k
⊤
j xn − L2

1 0d×(P+1−n)

...
...

...
...

2LP k
⊤
j x1 − L2

P 2LP k
⊤
j x2 − L2

P · · · 2LP k
⊤
j xn − L2

P 0d×(P+1−n)


︸ ︷︷ ︸

(P+1)×(P+1)

)

(
By matrix multiplication

)

= Softmaxβ(


−(k⊤j x1 − L0)

2 + (k⊤j x1)
2 · · · −(k⊤j xn − L0)

2 + (k⊤j xn)
2 0d×(P+1−n)

−(k⊤j x1 − L1)
2 + (k⊤j x1)

2 · · · −(k⊤j xn − L1)
2 + (k⊤j xn)

2 0d×(P+1−n)

...
...

...
−(k⊤j x1 − LP )

2 + (k⊤j x1)
2 · · · −(k⊤j xn − LP )

2 + (k⊤j xn)
2 0d×(P+1−n)


︸ ︷︷ ︸

(P+1)×(P+1)

)

(
2Lik

⊤
j xm − L2

i = −(k⊤
j xm − Li)

2 + (k⊤
j xm)2 where i ∈ {0} ∪ [P ] and m ∈ [n]

)

= Softmaxβ(


−(k⊤j x1 − L0)

2 · · · −(k⊤j xn − L0)
2 0d×(P+1−n)

−(k⊤j x1 − L1)
2 · · · −(k⊤j xn − L1)

2 0d×(P+1−n)

...
...

...
−(k⊤j x1 − LP )

2 · · · −(k⊤j xn − LP )
2 0d×(P+1−n)


︸ ︷︷ ︸

(P+1)×(P+1)

), (D.66)

and the last line holds since the following property of Softmaxβ

Softmaxβ(v) = Softmaxβ(v + C · 1(P+1)×1),

for any vector v ∈ RP+1 and C ∈ R.

From (D.66), we have

Softmaxβ((K̂
K
j )⊤Q̂K

j ) ·WK;j

Ô

58



3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

= Softmaxβ(


−(k⊤j x1 − L0)

2 · · · −(k⊤j xn − L0)
2 0d×(P−n+1)

−(k⊤j x1 − L1)
2 · · · −(k⊤j xn − L1)

2 0d×(P−n+1)

...
...

...
−(k⊤j x1 − LP )

2 · · · −(k⊤j xn − LP )
2 0d×(P−n+1)


︸ ︷︷ ︸

(P+1)×(P+1)

)

[
In

0(P+1−n)×n

]
︸ ︷︷ ︸

(P+1)×n

= Softmaxβ(


−(k⊤j x1 − L0)

2 · · · −(k⊤j xn − L0)
2

−(k⊤j x1 − L1)
2 · · · −(k⊤j xn − L1)

2

...
...

−(k⊤j x1 − LP )
2 · · · −(k⊤j xn − LP )

2


︸ ︷︷ ︸

(P+1)×n

), (D.67)

where the last line follows from the column-wise nature of the Softmaxβ() function.

From (D.67), we have

(Softmaxβ((K̂
K
j )⊤Q̂K

j ) ·WK;j

Ô
)r,c =

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

,

for every r ∈ {0} ∪ [P ] and c ∈ [n].

Thus, for each column in (D.67), we have

(Softmaxβ((K̂
K
j )⊤Q̂K

j ) ·WK;j

Ô
):,c =

P∑
r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

e
(P+1)
r+1︸ ︷︷ ︸

(P+1)×1

. (D.68)

Combining V̂ K
j and (Softmaxβ((K̂

K
j )⊤Q̂K

j ) ·WK;j

Ô
):,c, we obtain

V̂ K
j · (Softmaxβ((K̂

K
j )⊤Q̂K

j ) ·WK;j

Ô
):,c

= e
(3n)
j︸︷︷︸

3n×1

[L0 L1 · · · Ln−1 Ln · · · LP ]︸ ︷︷ ︸
1×(P+1)

P∑
r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

e
(P+1)
r+1︸ ︷︷ ︸

(P+1)×1 (
By (D.65) and (D.68)

)
= e

(3n)
j︸︷︷︸

3n×1

P∑
r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

[L0 L1 · · · Ln−1 Ln · · · LP ]︸ ︷︷ ︸
1×(P+1)

e
(P+1)
r+1︸ ︷︷ ︸

(P+1)×1(
By the distributivity of matrix multiplication

)
= e

(3n)
j︸︷︷︸

3n×1

P∑
r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

Lr︸ ︷︷ ︸
scalar

(
e
(P+1)
r+1 selects Lr for every r ∈ {0} ∪ [P ]

)

=

P∑
r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

Lre
(3n)
j , (D.69)

for every c ∈ [n].

Hence,

V̂ K
j · (Softmaxβ((K̂

K
j )⊤Q̂K

j ) ·WK;j

Ô
):,c,

is a weighted average of the vectors Lre
(3n)
j , with weights depending on β and the distance between

Lr and k⊤j xc.

59



3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

We recall: V̂ K
j · (Softmaxβ((K̂

K
j )⊤Q̂K

j ) · WK;j

Ô
):,c gives the c-th column of AttnKj . Therefore,

each column of AttnKj stores a weighted sum as an approximator for each entry in k⊤j X .

We show that (D.69) is close to k⊤j xc:

∥V̂ K
j · (Softmaxβ((K̂

K
j )⊤Q̂K

j ) ·WK;j

Ô
):,c − k⊤j xc · e(3n)j ∥∞

= ∥
P∑

r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

Lr︸ ︷︷ ︸
scalar

·e(3n)j − k⊤j xc︸ ︷︷ ︸
scalar

·e(3n)j ∥∞
(
By (D.69)

)

= ∥(
P∑

r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

Lr − k⊤j xc) · e(3n)j ∥∞

= |
P∑

r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

Lr − k⊤j xc|
(
We have one non-zero entry in e

(3n)
j

)

= |
P∑

r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

Lr −
∑P

r=0 e
−β(Lr−k⊤

j xc)
2∑P

s=0 e
−β(Ls−k⊤

j xc)2
k⊤j xc|(

By (
∑P

r=0 e
−β(Lr−k⊤

j xc)
2

)/(
∑P

s=0 e
−β(Ls−k⊤

j xc)
2

) = 1
)

= |
P∑

r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

(Lr − k⊤j xc)|

= |
∑

r:|Lr−k⊤
j xc|<∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

(Lr − k⊤j xc) +
∑

r:|Lr−k⊤
j xc|≥∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

(Lr − k⊤j xc)|

(
By dividing the Lr into two groups: one within ∆L away from k⊤

j xc, one at least ∆L away from k⊤
j xc

)
≤ |

∑
r:|Lr−k⊤

j xc|<∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

(Lr − k⊤j xc)|+ |
∑

r:|Lr−k⊤
j xc|≥∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

(Lr − k⊤j xc)|

(
By triangle inequality

)
≤

∑
r:|Lr−k⊤

j xc|<∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

|Lr − k⊤j xc|

︸ ︷︷ ︸
:=(I)

+
∑

r:|Lr−k⊤
j xc|≥∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

|Lr − k⊤j xc|

︸ ︷︷ ︸
:=(II)

,

(D.70)
and the last inequality holds due to the triangle inequality and the non-negativity of the exponential
function.

For term (I) in (D.70), we have
(I)

=
∑

r:|Lr−k⊤
j xc|<∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

|Lr − k⊤j xc|
(
By the definition of term (I) in (D.70)

)

<
∑

r:|Lr−k⊤
j xc|<∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

∆L
(
In this group of Lr , |Lr − k⊤

j xc| < ∆L
)

≤ ∆L, (D.71)
and the last inequality holds since∑

r:|Lr−k⊤
j xc|<∆L e−β(Lr−k⊤

j xc)
2

∑P
s=0 e

−β(Ls−k⊤
j xc)2

≤ 1.
(
The numerator is part of the denominator

)

60



3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2026

For term (II) in (D.70), we have
(II)

=
∑

r:|Lr−k⊤
j xc|≥∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

|Lr − k⊤j xc|
(
By the definition of term (II) in (D.70)

)

≤
∑

r:|Lr−k⊤
j xc|≥∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

2dB2

(
By (D.51) and (D.52), we have |Lr − k⊤

j xc| ≤ 2dB2
)

≤
∑

r:|Lr−k⊤
j xc|≥∆L

e−β∆L2∑P
s=0 e

−β(Ls−k⊤
j xc)2

2dB2

(
By |Lr − k⊤

j xc| ≥ ∆L, we have e−β(Lr−k⊤
j xc)

2

≤ e−β∆L2)
≤

∑
r:|Lr−k⊤

j xc|≥∆L

e−β∆L2

maxs{e−β(Ls−k⊤
j xc)2}

2dB2

(
We only keep the contribution from the nearest Ls to k⊤

j xc

)
≤

∑
r:|Lr−k⊤

j xc|≥∆L

e−β∆L2

e−β ∆L2

4

2dB2, (D.72)

and the last inequality holds since, by our construction of Ls in (D.52), the distance from k⊤j xc to
the nearest Ls is at most ∆L

2 . That is,

|Ls0 − k⊤j xc| ≤
∆L

2
, for s0 = argmin

s
|Ls − k⊤j xc|.

From (D.72), we have ∑
|Lr−k⊤

j xc|≥∆L

e−
3
4β∆L2

2dB2 ≤ Pe−
3
4β∆L2

2dB2, (D.73)

and the last inequality holds since, by our construction of Lr in (D.52), at most P points satisfy
|Lr − k⊤j xc| ≥ ∆L. This P -point scenario occurs when the value of k⊤j xc equals one of the Lr grid
points.

Combining (D.70), (D.71), and (D.73), we have:

∥V̂ K
j · (Softmaxβ((K̂

K
j )⊤Q̂K

j ) ·WK;j

Ô
):,c − k⊤j xc · e(3n)j ∥∞ ≤ ∆L︸︷︷︸

:=(a)

+Pe−
3
4β∆L2

2dB2︸ ︷︷ ︸
:=(b)

.

(D.74)

For term (a) in (D.74), we recall

∆L =
2dB2

P
.

(
By the definition of ∆L. i.e., (D.53)

)
To bound ∆L, we choose

P ≥ 4dB2

ϵ1
,

for any ϵ1 > 0, such that

∆L ≤ ϵ1
2
.

For term (b) in (D.74), we set

β ≥ 4

3

1

(∆L)2
ln

(
4dB2P

ϵ1

)
,

61



3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2026

such that

Pe−
3
4β∆L2

2dB2 ≤ ϵ1
2
.

Thus, from (D.74), we have

∥V̂ K
j · (Softmaxβ((K̂

K
j )⊤Q̂K

j ) ·WK;j

Ô
):,c − k⊤j xc︸ ︷︷ ︸

scalar

· e(3n)j︸︷︷︸
3n×1

∥∞ ≤∆L+ Pe−
3
4β∆L2

2dB2

≤ ϵ1
2

+
ϵ1
2

= ϵ1,

and this leads to
∥V̂ K

j · Softmaxβ((K̂
K
j )⊤Q̂K

j ) ·WK;j

Ô
− e

(3n)
j︸︷︷︸

3n×1

· k⊤j X︸ ︷︷ ︸
1×n

∥∞ ≤ ϵ1. (D.75)

We recall
V̂ K
j · Softmaxβ((K̂

K
j )⊤Q̂K

j ) ·WK;j

Ô

=WK;j

V̂
LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

) · Softmaxβ((W
K;j

K̂
LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

))⊤WK;j

Q̂
LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

)) ·WK;j

Ô

(
By the definition of K̂K

j , Q̂K
j , and V̂ K

j

)
= AttnKj ◦ LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

). (
By the definition of AttnK

j

)
Thus, we write (D.75) as

∥AttnKj ◦ LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

)− e
(3n)
j︸︷︷︸

3n×1

· k⊤j X︸ ︷︷ ︸
1×n

∥∞ ≤ ϵ1,

and we sum over the index j to obtain the approximation across rows

∥
n∑

j=1

AttnKj ◦ LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

)−
[

K
0n×n

0n×n

]
∥∞ ≤ ϵ1, (D.76)

for any ϵ1 > 0.

In-Context Calculation of Q and V . We approximate Q and V using the same procedure as that
of K.

We start with Q.

Again, we define LinearQj preceding AttnQj first. We construct LinearQj similarly to LinearKj . The
only difference is the position of the identity Id in the first term. Explicitly,

LinearQj (Z) :=

[
0d×d 0d×d 0d×d 0d×d

0d×d 0d×d Id 0d×d

03×d 03×d 03×d 03×d

]
︸ ︷︷ ︸

(2d+3)×4d

Z︸︷︷︸
4d×n

[
2L0e

(n)
j 2L1e

(n)
j · · · 2LP e

(n)
j

]
︸ ︷︷ ︸

n×(P+1)

+

[
Id 0d×d 0d×2d

0d×d 0d×d 0d×2d

03×d 03×d 03×2d

]
︸ ︷︷ ︸

(2d+3)×4d

Z︸︷︷︸
4d×n

[
In 0n×(P+1−n)

]︸ ︷︷ ︸
n×(P+1)

+

[
02d×(P+1)

M1

ML

]
︸ ︷︷ ︸
(2d+3)×(P+1)

.

62



3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2026

LinearQj takes
[
X⊤ WK WQ WV

]⊤
as input and outputs:

LinearQj (


X
W⊤

K

W⊤
Q

W⊤
V

) =


x1 x2 · · · xn 0d · · · 0d
2L0qj 2L1qj · · · 2Ln−1qj 2Lnqj · · · 2LP qj
1 1 · · · 1 0 · · · 0
L0 L1 · · · Ln−1 Ln · · · LP

−L2
0 −L2

1 · · · −L2
n−1 −L2

n · · · −L2
P

 .

Next, we construct AttnQj : R(2d+3)×(P+1) → R3n×n to be

AttnQj (D) := WQ;j

V̂
D︸ ︷︷ ︸

3n×(P+1)

·Softmaxβ((W
Q;j

K̂
D)⊤WQ;j

Q̂
D)︸ ︷︷ ︸

(P+1)×(P+1)

· WQ;j

Ô︸ ︷︷ ︸
(P+1)×n

,

where D ∈ R(2d+3)×(P+1) denotes any input, and

WQ;j

K̂
:=WK;j

K̂
=

[
0d×d Id 0d×1 0d×1 0d×1

01×d 01×d 0 0 1

]
︸ ︷︷ ︸

(d+1)×(2d+3)

,

WQ;j

Q̂
:=WK;j

Q̂
=

[
Id 0d×d 0d×1 0d×1 0d×1

01×d 01×d 1 0 0

]
︸ ︷︷ ︸

(d+1)×(2d+3)

,

WQ;j

V̂
:= e

(3n)
n+j︸︷︷︸

3n×1

[01×d 01×d 0 1 0]︸ ︷︷ ︸
1×(2d+3)

,

WQ;j

Ô
:=WK;j

Ô
=

[
In

0(P+1−n)×n

]
︸ ︷︷ ︸

(P+1)×n

.

We define the K̂Q
j of AttnQj to be

K̂Q
j := WQ;j

K̂
· LinearQj (


X
W⊤

K

W⊤
Q

W⊤
V

) = [2L0qj 2L1qj · · · 2Ln−1qj · · · 2LP qj
−L2

0 −L2
1 · · · −L2

n−1 · · · −L2
P

]
︸ ︷︷ ︸

(d+1)×(P+1)

. (D.77)

We define the Q̂Q
j of AttnQj to be

Q̂Q
j :=WQ;j

Q̂
· LinearQj (


X
W⊤

K

W⊤
Q

W⊤
V

) = [x1 x2 · · · xn 0d×(P+1−n)

1 1 · · · 1 01×(P+1−n)

]
︸ ︷︷ ︸

(d+1)×(P+1)

. (D.78)

We define the V̂ Q
j of AttnQj to be

V̂ Q
j :=WQ;j

V̂
· LinearQj (


X
W⊤

K

W⊤
Q

W⊤
V

) = e
(3n)
n+j︸︷︷︸

3n×1

[L0 L1 · · · Ln−1 Ln · · · LP ]︸ ︷︷ ︸
1×(P+1)

. (D.79)

Then, by going through the same calculations as those of K, we have

∥
n∑

j=1

AttnQj ◦ LinearQj (


X
W⊤

K

W⊤
Q

W⊤
V

)−
[
0n×n

Q
0n×n

]
∥∞ ≤ ϵ1. (D.80)

63



3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2026

To approximate V , we define

LinearVj (Z) :=

[
0d×d 0d×d 0d×d 0d×d

0d×d 0d×d 0d×d Id
03×d 03×d 03×d 03×d

]
︸ ︷︷ ︸

(2d+3)×4d

Z︸︷︷︸
4d×n

[
2L0e

(n)
j 2L1e

(n)
j · · · 2LP e

(n)
j

]
︸ ︷︷ ︸

n×(P+1)

+

[
Id 0d×d 0d×2d

0d×d 0d×d 0d×2d

03×d 03×d 03×2d

]
︸ ︷︷ ︸

(2d+3)×4d

Z︸︷︷︸
4d×n

[
In 0n×(P+1−n)

]︸ ︷︷ ︸
n×(P+1)

+

[
02d×(P+1)

M1

ML

]
︸ ︷︷ ︸
(2d+3)×(P+1)

.

LinearVj outputs in a similar manner as LinearKj :

LinearVj (Z) =


x1 x2 · · · xn 0d · · · 0d

2L0vj 2L1vj · · · 2Ln−1vj 2Lnvj · · · 2LP vj
1 1 · · · 1 0 · · · 0
L0 L1 · · · Ln−1 Ln · · · LP

−L2
0 −L2

1 · · · −L2
n−1 −L2

n · · · −L2
P

 .

Next, we construct AttnVj : R(2d+3)×(P+1) → R3n×n to be

AttnVj := WV ;j

V̂
D︸ ︷︷ ︸

3n×(P+1)

·Softmaxβ((W
V ;j

K̂
D)⊤WV ;j

Q̂
D)︸ ︷︷ ︸

(P+1)×(P+1)

WV ;j

Ô︸ ︷︷ ︸
(P+1)×n

,

where D ∈ R(2d+3)×(P+1) denotes any input, and

WV ;j

K̂
:=WK;j

K̂
=

[
0d×d Id 0d×1 0d×1 0d×1

01×d 01×d 0 0 1

]
︸ ︷︷ ︸

(d+1)×(2d+3)

,

WV ;j

Q̂
:=WK;j

Q̂
=

[
Id 0d×d 0d×1 0d×1 0d×1

01×d 01×d 1 0 0

]
︸ ︷︷ ︸

(d+1)×(2d+3)

,

WV ;j

V̂
:= e

(3n)
2n+j︸ ︷︷ ︸
3n×1

[01×d 01×d 0 1 0]︸ ︷︷ ︸
1×(2d+3)

,

WV ;j

Ô
:=WK;j

Ô
=

[
In

0(P+1−n)×n

]
︸ ︷︷ ︸

(P+1)×n

.

We define the K̂V
j to be

K̂V
j :=WV ;j

K̂
· LinearVj (


X
W⊤

K

W⊤
Q

W⊤
V

) = [2L0vj 2L1vj · · · 2Ln−1vj · · · 2LP vj
−L2

0 −L2
1 · · · −L2

n−1 · · · −L2
P

]
︸ ︷︷ ︸

(d+1)×(P+1)

. (D.81)

We define the Q̂V
j to be

Q̂V
j :=WV ;j

Q̂
· LinearVj (


X
W⊤

K

W⊤
Q

W⊤
V

) = [x1 x2 · · · xn 0d×(P+1−n)

1 1 · · · 1 01×(P+1−n)

]
︸ ︷︷ ︸

(d+1)×(P+1)

. (D.82)

64



3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2026

We define the V̂ V
j to be

V̂ V
j := WV ;j

V̂
· LinearVj (


X
W⊤

K

W⊤
Q

W⊤
V

) = e
(3n)
2n+j︸ ︷︷ ︸
3n×1

[L0 L1 · · · Ln−1 Ln · · · LP ]︸ ︷︷ ︸
1×(P+1)

. (D.83)

Similarly, by going through the same calculations as those of K, we have

∥
n∑

j=1

AttnVj ◦ LinearVj (


X
W⊤

K

W⊤
Q

W⊤
V

)−
[
0n×n

0n×n

V

]
∥∞ ≤ ϵ1. (D.84)

Then, by combining (D.76), (D.80), and (D.84), we have

∥
n∑

j=1

AttnKj ◦ LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

)−
[

K
0n×n

0n×n

]
+

n∑
j=1

AttnQj ◦ LinearQj (


X
W⊤

K

W⊤
Q

W⊤
V

)−
[
0n×n

Q
0n×n

]
+

n∑
j=1

AttnVj ◦ LinearVj (


X
W⊤

K

W⊤
Q

W⊤
V

)−
[
0n×n

0n×n

V

]
∥∞ ≤ ϵ1.

As previously stated in (D.54), LinearKj ,LinearQj and LinearVj denote Linearj ,Linearn+j and
Linear2n+j respectively. Also, as in (D.55), AttnKj ,AttnQj and AttnVj denote Attnj ,Attnn+j and
Attn2n+j .

Thus, we have

∥
3n∑
j=1

Attnj ◦ Linearj(


X
W⊤

K

W⊤
Q

W⊤
V

)−
[
K
Q
V

]
︸︷︷ ︸
3n×n

∥∞ ≤ ϵ1. (D.85)

We define [
K ′

Q′

V ′

]
:=

3n∑
j=1

Attnj ◦ Linearj(


X
W⊤

K

W⊤
Q

W⊤
V

),
such that (D.85) becomes

∥

[
K ′

Q′

V ′

]
−

[
K
Q
V

]
∥∞ ≤ ϵ1. (D.86)

Step 3: Single-Head Assembly of the Attention Output. Our goal in this part is to reconstruct the
attention mechanism

V ′Softmaxβ((K
′)⊤Q′), and V Softmaxβ((K)⊤Q),

from K ′, Q′, V ′ and K,Q, V via Attns.

To achieve the reconstruction of attention mechanisms, we build Attns as
Attns(Z) := [0n×2n In]Z · Softmaxβ(([In 0n×2n]Z)⊤ [0n×n In 0n×n]Z),

where Z ∈ R3n×n denotes any input.

65



3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

Then, we have
n×n︷ ︸︸ ︷

Attns(

[
K
Q
V

]
︸︷︷ ︸
3n×n

) = V︸︷︷︸
n×n

Softmaxβ((K)⊤Q︸ ︷︷ ︸
n×n

),

and
n×n︷ ︸︸ ︷

Attns(

[
K ′

Q′

V ′

]
︸ ︷︷ ︸
3n×n

) = V ′︸︷︷︸
n×n

Softmaxβ((K
′)⊤Q′︸ ︷︷ ︸
n×n

).

Step 4: Error Bound From the results of Step 3, we have

Attns(

[
K ′

Q′

V ′

]
)−Attns(

[
K
Q
V

]
)

= V ′Softmaxβ(K
′⊤Q′)− V Softmaxβ(K

⊤Q)

= V ′Softmaxβ(K
′⊤Q′)− V Softmaxβ(K

′⊤Q′) + V Softmaxβ(K
′⊤Q′)− V Softmaxβ(K

⊤Q)

= (V ′ − V )Softmaxβ(K
′⊤Q′) + V (Softmaxβ(K

′⊤Q′)− Softmaxβ(K
⊤Q)).

Thus, we have

∥Attns(

[
K ′

Q′

V ′

]
)−Attns(

[
K
Q
V

]
)∥∞

= ∥(V ′ − V )Softmaxβ(K
′⊤Q′) + V (Softmaxβ(K

′⊤Q′)− Softmaxβ(K
⊤Q))∥∞

≤ ∥(V ′ − V )Softmaxβ(K
′⊤Q′)∥∞︸ ︷︷ ︸

:=(A)

+ ∥V (Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q))∥∞︸ ︷︷ ︸
:=(B)

, (D.87)

and the last inequality follows from the triangle inequality.

For term (A) in (D.87), since each column in Softmaxβ(K
′⊤Q′) sums up to 1, then for each column

of (A),

(V ′ − V )︸ ︷︷ ︸
n×n

Softmaxβ(K
′⊤Q′):,j︸ ︷︷ ︸

n×1

,

is a weighted sum of the columns from (V ′ − V ).

Then, we have
∥(V ′ − V )Softmaxβ(K

′⊤Q′):,j∥∞ ≤ ∥V ′ − V ∥∞ ≤ ϵ1,

and the first inequality holds since the column average of (V ′ − V ) has a maximum entry no greater
than the maximum entry among the original columns in (V ′ − V ). The second inequality holds since
(D.86). This conclusion holds for every column in term (A), so we obtain

(A) ≤ ϵ1. (D.88)

Term (B) in (D.87) is

(B) = ∥V (Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q))∥∞.

For the simplicity of presentation, we define

∆S := Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q),

66



3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2026

such that for each entry in (B), we have

|(V∆S)ij | = |
n∑

k=1

Vik(∆S)kj |
(
By the definition of matrix multiplication

)
≤

n∑
k=1

|Vik| · |(∆S)kj |
(
By triangle inequality and |ab| = |a| · |b| for all a, b ∈ R

)
≤

n∑
k=1

∥V ∥∞ · ∥∆S∥∞
(
By |Vik| ≤ ∥V ∥∞ and |(∆S)kj | ≤ ∥∆S∥∞

)
= n∥V ∥∞ · ∥∆S∥∞,

and this leads to
(B) ≤ n∥V ∥∞ · ∥∆S∥∞. (D.89)

For each entry in ∆S, we have
|(∆S)i,j |

= |(Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q))i,j |

= | eβK
′
i·Q

′
j∑n

i′=1 e
βK′

i′ ·Q
′
j

− eβKi·Qj∑n
i′=1 e

βKi′ ·Qj
|

(
K′

i, Q
′
i, Ki, Qi denote the i-th column in K′, Q′, K, Q

)
= | eβK

′
i·Q

′
j∑n

i′=1 e
βK′

i′ ·Q
′
j

− eβKi·Qj∑n
i′=1 e

βK′
i′ ·Q

′
j

+
eβKi·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

− eβKi·Qj∑n
i′=1 e

βKi′ ·Qj
|

≤ |e
βK′

i·Q
′
j − eβKi·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

|+ |eβKi·Qj (
1∑n

i′=1 e
βK′

i′ ·Q
′
j

− 1∑n
i′=1 e

βKi′ ·Qj
)|

(
By triangle inequality

)
=

eβK
′
i·Q

′
j∑n

i′=1 e
βK′

i′ ·Q
′
j

|1− eβ(Ki·Qj−K′
i·Q

′
j)|+ eβKi·Qj∑n

i′=1 e
βKi′ ·Qj

|
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

− 1|(
By non-negativity of exponential

)
< |1− eβ(Ki·Qj−K′

i·Q
′
j)|︸ ︷︷ ︸

:=(B-1)

+ |1−
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

|︸ ︷︷ ︸
:=(B-2)

, (D.90)

and the last inequality holds since

eβK
′
i·Q

′
j∑n

i′=1 e
βK′

i′ ·Q
′
j

< 1,
eβKi·Qj∑n

i′=1 e
βKi′ ·Qj

< 1.

To bound term (B-1) in (D.90), we recall

∥

[
K ′

Q′

V ′

]
︸ ︷︷ ︸
3n×n

−

[
K
Q
V

]
︸︷︷ ︸
3n×n

∥∞ ≤ ϵ1,

so
∥K ′ −K︸ ︷︷ ︸

n×n

∥∞ ≤ ϵ1,

∥Q′ −Q︸ ︷︷ ︸
n×n

∥∞ ≤ ϵ1.

Let K ′
i, Q

′
i, Ki, Qi denote the i-th column in K ′, Q′, K, Q, then we have

∆Ki︸︷︷︸
n×1

:= K ′
i −Ki︸ ︷︷ ︸
n×1

, ∥∆Ki∥∞ ≤ ϵ1,

∆Qi︸︷︷︸
n×1

:= Q′
i −Qi︸ ︷︷ ︸
n×1

, ∥∆Qi∥∞ ≤ ϵ1.

67



3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2026

Thus, for term (B-1) in (D.90), we have
(B-1)

= |1− exp
{
β(Ki ·Qj −K ′

i ·Q′
j)
}
|

= |1− exp{β(Ki ·Qj − (Ki +∆Ki) · (Qj +∆Qj))}|(
By K′

i = Ki +∆Ki and Q′
i = Qi +∆Qi

)
= |1− exp{−β(Ki ·∆Qj +Qj ·∆Ki +∆Ki ·∆Qj)}|,(

By Ki ·Qj − (Ki +∆Ki) · (Qi +∆Qi) = −(Ki ·∆Qj +Qj ·∆Ki +∆Ki ·∆Qj)
)

and we know
Ki ·∆Qj +Qj ·∆Ki +∆Ki ·∆Qj

≤ n · ∥Ki∥∞∥∆Qj∥∞ + n · ∥Qj∥∞∥∆Ki∥∞ + n · ∥∆Ki∥∞∥∆Qj∥∞(
By a · b ≤ n∥a∥∞∥b∥∞ for all a, b ∈ Rn

)
≤ 2nBKQV ϵ1 + nϵ21.

(
By ∥Ki∥∞, ∥Qj∥∞ ≤ BKQV and ∥∆Ki∥∞, ∥∆Qj∥∞ ≤ ϵ1

)
Thus, we have

(B-1) ≤ |1− e−βn(2BKQV ϵ1+ϵ21)|. (D.91)

For term (B-2) in (D.90), we have
(B-2)

= |1−
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

|
(
By the definition of (B-2)

)
= |1−

∑n
i′=1 e

βKi′ ·Qj∑n
i′=1 e

β(Ki′+∆Ki′ )·(Qj+∆Qj)
|

(
By K′

i′ = Ki′ +∆Ki′ and Q′
i = Qi +∆Qi

)
= |1−

∑n
i′=1 e

βKi′ ·Qj∑n
i′=1 e

β(Ki′ ·Qj+Ki′ ·∆Qj+Qj ·∆Ki′+∆Ki′ ·∆Qj)
|,

and for all i′ in the denominator, we have
Ki′ ·Qj +Ki′ ·∆Qj +Qj ·∆Ki′ +∆Ki′ ·∆Qj

≤ Ki′ ·Qj + n · ∥Ki′∥∞∥∆Qj∥∞ + n · ∥Qj∥∞∥∆Ki′∥∞ + n · ∥∆Ki′∥∞∥∆Qj∥∞(
By a · b ≤ n∥a∥∞∥b∥∞ for all a, b ∈ Rn

)
≤ Ki′ ·Qj + 2nBKQV ϵ1 + nϵ21.

(
By ∥Ki′∥∞, ∥Qj∥∞ ≤ BKQV and ∥∆Ki′∥∞, ∥∆Qj∥∞ ≤ ϵ1

)
Thus,

(B-2)

= |1−
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
β(Ki′ ·Qj+Ki′ ·∆Qj+Qj ·∆Ki′+∆Ki′ ·∆Qj)

|

≤ |1−
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
β(Ki′ ·Qj+2nBKQV ϵ1+nϵ21)

|

= |1−
∑n

i′=1 e
βKi′ ·Qj

eβn(2BKQV ϵ1+ϵ21)
∑n

i′=1 e
βKi′ ·Qj

|
(
eβn(2BKQV ϵ1+ϵ21) is independent of i′

)
= |1− e−βn(2BKQV ϵ1+ϵ21)|, (D.92)

and the last equality holds since the common factor
∑n

i′=1 e
βKi′ ·Qj cancels out.

Combining (D.90), (D.91), and (D.92), we have

|(Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q))i,j |

< 2|1− e−βn(2BKQV ϵ1+ϵ21)|
≤ 2|1− e−βn(2BKQV ϵ1+ϵ1)|.

(
By requiring 0 < ϵ1 ≤ 1

)

68



3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2026

Thus, for any 0 < ϵ0 < 2, when ϵ1 satisfies

0 < ϵ1 ≤ min{1,
− ln

(
1− ϵ0

2

)
βn(2BKQV + 1)

},

we have
|(Softmaxβ(K

′⊤Q′)− Softmaxβ(K
⊤Q))i,j | < ϵ0. (D.93)

From (D.89) and (D.93), we have
(B) ≤ n∥V ∥∞∥∆S∥∞ < nBKQV ϵ0, (D.94)

since ∥V ∥∞ ≤ BKQV and ∥∆S∥∞ < ϵ0.

Combining (D.87), (D.88) and (D.94) yields

∥Attns(

[
K ′

Q′

V ′

]
)−Attns(

[
K
Q
V

]
)∥∞ < ϵ1 + nBKQV ϵ0.

When we take ϵ0 and ϵ1 to be infinitely small, the right-hand side tends to 0.

This completes the proof.

D.7 PROOF OF COROLLARY 4.2.1

Theorem D.7 (Restate of Corollary 4.2.1: In-Context Emulation of Statistical Methods). Let A
denote the set of all the in-context algorithms that a single-layer attention is able to approximate. For
an a ∈ A (that is, a specific algorithm), let W a

K ,W a
Q,W

a
V denote the weights of the attention that

implements this algorithm. For any ϵ > 0 and any finite set A0 ∈ A, there exists a 2-layer attention
Attn ◦Attnm such that

∥
3n∑
j=1

Attns ◦Attnj ◦ Linearj
([

X
W a

])
− a(X)∥∞ ≤ ϵ, a ∈ A0,

where W a is the W defined as Definition 4.2 using W a
K ,W a

Q,W
a
V .

Proof. Without loss of generality, assume all W a
K ,W a

Q,W
a
V to be of the same hidden dimension

since we are always able to pad them to the same size. According to Theorem 4.2, there exists a
network

∑n
j=1 Attns ◦Attnj ◦ Linearj that approximate a(X) with an error no larger than ϵ > 0

when given input of the form: 
X

W a⊤
K

W a⊤
Q

W a⊤
V

 .

Then for a set of a ∈ A0, define Pm := maxa∈A0
P

(a)
ϵ .

By Theorem 4.2, there exists a network consisting of a self-attention followed by a multi-head
attention with a linear layer and parameter P equals to Pm, such that for any a ∈ A0, we have

∥
3n∑
j=1

Attns ◦Attnj ◦ Linearj




X
W a⊤

K

W a⊤
Q

W a⊤
V


− a(X)∥∞ ≤ ϵ, a ∈ A0.

This completes the proof.

69



3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2026

E IN-CONTEXT APPLICATION OF STATISTICAL METHODS BY MODERN
HOPFIELD NETWORK

Definition E.1 (Modern Hopfield Network). Define Y = (y1, · · · , yN )⊤ ∈ Rdy×N as the raw
stored pattern, R = (r1, · · · , rS)⊤ ∈ RRr×S as the raw state pattern, and WQ ∈ Rd×dr , WK ∈
Rd×dy , WV ∈ Rdv×d as the projection matrices. A Hopfield layer Hopfield is defined as:

Hopfield(R;Y,WQ,WK ,WV ) := WV︸︷︷︸
dv×d

d×N︷ ︸︸ ︷
WKY Softmax(β(WKY )⊤WQR︸ ︷︷ ︸

N×S

) ∈ Rdv×S , (E.1)

where β is a temperature parameter.
With K ∈ Rd×N denoting WKY , Q ∈ Rd×S denoting WQR and V ∈ Rdv×N denoting WV WKY ,
(E.1) writes out as:

Hopfield(R;Y,WQ,WK ,WV ) := V Softmax(β ·K⊤Q) ∈ Rdv×S .

Theorem E.1. Let Z = [z1, z2, · · · , zn] ∈ Rd×n denote the input from a compact input domain.
For any linear transformation l(z) = a⊤z + b : Rd → R, and any continuous function f : R → Ro

where o is the output dimension, there exists a Hopfield network Hopfield such that
∥Hopfield(Z)− [f(l(z1)) f(l(z2)) · · · f(l(zn))] ∥∞ ≤ ϵ,

for any ϵ > 0.

Proof. We first perform a simple token-wise linear transformation on the input:

Linear(Z) :=

[
Id×d

01×d

]
Z +

[
0d×n

11×n

]
=

[
Z

11×n

]
∈ R(d+1)×n.

We then construct WQ to be:
WQ := I(d+1),

which is an identity matrix of dimension R(d+1)×(d+1).

This yields that

Q := WQLinear(Z) =

[
Z

11×n

]
∈ R(d+1)×n.

Following the definition of Interpolations in Appendix D.6, K,V are constructed as (here we omit Y
since it’s not the input):

K :=

[
2L0a 2L1a · · · 2LPa

2L0b− L2
0 2L1b− L2

1 · · · 2LP b− L2
P

]
,

V := [f(L0) f(L1) · · · f(LP )] .

By Definition E.1, we have
Hopfield(Z)

= [f(L0) f(L1) · · · f(LP )] Softmax

β


2l(z1)L0 − L2

0 2l(z2)L0 − L2
0 · · · 2l(zn)L0 − L2

0

2l(z1)L1 − L2
1 2l(z2)L1 − L2

1 · · · 2l(zn)L1 − L2
1

...
...

...
2l(z1)LP − L2

P 2l(z2)LP − L2
P · · · 2l(zn)LP − L2

P


 .

This is equivalent to:
Hopfield(Z)

70



3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2026

= [f(L0) f(L1) · · · f(LP )] Softmax

−β


(l(z1)− L0)

2 (l(z2)− L0)
2 · · · (l(zn)− L0)

2

(l(z1)− L1)
2 (l(z2)− L1)

2 · · · (l(zn)− L1)
2

...
...

...
(l(z1)− LP )

2 (l(z2)− LP )
2 · · · (l(zn)− LP )

2


 .

For any column c ∈ [n] in Hopfield(Z), we have

Hopfield(Z):,c = [f(L0) f(L1) · · · f(LP )] Softmax(−β


(l(zc)− L0)

2

(l(zc)− L1)
2

...
(l(zc)− LP )

2

)
=

P∑
r=1

e−β(l(zc)−Lr)
2∑P

r′=1 e
−β(l(zc)−Lr′ )

2
f(Lr).

When β is large enough, we have∑
(l(zc)−Lr)2≥∆L

e−β(l(zc)−Lr)
2∑P

r′=1 e
−β(l(zc)−Lr′ )

2
≤

∑
(l(zi)−Lr)2≥∆L

e−β∆L

e−β ∆L
2

≤ Pe−
β∆L

2 ≤ ϵ1,

for any ϵ1 > 0.

This means that the proportion of the f(Lr) in Hopfield(Z):,c that deviates from l(zc) is no larger
than ϵ1.

Since f and l are continuous, and Z comes from a compact domain, l(zi) comes from a compact
domain for all i ∈ [n]. Thus f is uniformly continuous on its input domain. This means that for any
ϵ2 > 0, there exists a δ > 0 such that when(x− y)2 ≤ δ, ∥f(x)− f(y)∥∞ ≤ ϵ2.

Configuring ∆L ≤ δ yields:
∥Hopfield(Z):,c − f(l(zc))∥∞

≤
P∑

r=1

e−β(l(zc)−Lr)
2∑P

r′=1 e
−β(l(zc)−Lr′ )

2
∥f(Lr)− f(l(zc))∥∞

=
∑

(l(zc)−Lr)2≥∆L

e−β(l(zc)−Lr)
2∑P

r′=1 e
−β(l(zc)−Lr′ )

2
∥f(Lr)− f(l(zc))∥∞

+
∑

(l(zc)−Lr)2≤∆L

e−β(l(zc)−Lr)
2∑P

r′=1 e
−β(l(zc)−Lr′ )

2
∥f(Lr)− f(l(zc))∥∞

≤ ϵ1 · 2B + (1− ϵ1)ϵ2,

where B := ∥f∥L∞ is the bound of f in infinite norm.

We set ϵ2 ≤ ϵ/2, ϵ1 ≤ ϵ/(4B). This yields:
∥Hopfield(Z):,c − f(l(zc))∥∞ ≤ ϵ1 · 2B + (1− ϵ1)ϵ2

≤ ϵ

4B
· 2B + 1 · ϵ

2
= ϵ.

This completes the proof.

Theorem E.2. Define

X :=

[
x1 x2 · · · xn

y1 y2 · · · yn

]
∈ R(d+1)×n and W := [w w · · · w] ∈ Rd×n,

where xi ∈ Rd and yi ∈ R are the input-output pairs. w ∈ Rd is the linear coefficient to optimize.
Suppose xi, yi and w are bounded by B in infinite norm.

71



3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2026

For any continuous function f : R → R, there exists a Hopfield layer Hopfield with linear connec-
tions such that
∥Hopfield(W ;X)−

[
f(w⊤x1 − y1)x1 f(w⊤x2 − y2)x2 · · · f(w⊤xn − yn)xn

]
∥∞ ≤ ϵ,

for any ϵ > 0.

Proof. Before plugging input W to the Hopfield layer, we pass it through a linear transformation
Linearw:

Linearw(W ) :=

[
Id

0(d+n+2)×d

]
W +


0d×n

−11×n

0d×n

−11×n

In

 =


W

−11×n

0d×n

−11×n

In

 ∈ R(2d+n+2)×n.

We also pass X through a linear transformation Linearx:
Linearx(X)

:=

n∑
i=1

[
Id+1

0(d+1+n)×(d+1)

]
︸ ︷︷ ︸
(2d+n+2)×(d+1)

X︸︷︷︸
(d+1)×n

[
0n×(i−1)(P+1) 2L0e

(n)
i 2L1e

(n)
i · · · 2LP e

(n)
i 0n×(n−i)(P+1)

]
︸ ︷︷ ︸

n×n(P+1)

+

n∑
i=1

0(d+1)×d 0(d+1)

Id 0d
0(n+1)×d 0n+1


︸ ︷︷ ︸

(2d+n+2)×(d+1)

X
[
0n×(i−1)(P+1) f(L0)e

(i)
i f(L1)e

(i)
i · · · f(LP )e

(i)
i 0n×(n−i)(P+1)

]

+

 0(2d+1)×(P+1) · · · 0(2d+1)×(P+1)

S · · · S

(2dB2 +B − ln ϵ0)e
(n)
1 11×(P+1) · · · (2dB2 +B − ln ϵ0)e

(n)
n 11×(P+1)


︸ ︷︷ ︸

(2d+n+2)×n(P+1)

= [T1 T2 · · · Tn] ,

where
11×(P+1) := [1 1 · · · 1] ∈ R1×(P+1),

S :=
[
−L2

0 −L2
1 · · · L2

P

]
∈ R1×(P+1),

Ti :=


2L0xi 2L1xi · · · 2LPxi

2L0yi 2L1yi · · · 2LP yi
f(L0)xi f(L1)xi · · · f(LP )xi

−L2
0 −L2

1 · · · −L2
P

(2dB2 +B − ln ϵ0)e
(n)
i (2dB2 +B − ln ϵ0)e

(n)
i · · · (2dB2 +B − ln ϵ0)e

(n)
i

 ∈ R(2d+n+2)×(P+1).

Here ϵ0 is a parameter that we will designate later according to ϵ.

Now construct WK ,WQ,WV to be:
WQ := I2d+n+2,

WK := I2d+n+2,

W⊤
V :=

[
0d×(d+1) Id 0d×(n+1)

]
∈ Rd×(2d+n+2).

Therefore, by Definition E.1, the output becomes:

Hopfield(Linearw(W ); Linearx(X)) =WV Linearx(X)Softmax(βLinearx(X)⊤Linearw(W )),

72



3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

Under review as a conference paper at ICLR 2026

where

Softmax(Linearx(X)⊤Linearw(W )) = Softmax(β [T1 T2 · · · Tn]
⊤


W

−11×n

0d×n

−11×n

In

).
This is equivalent to:

(Linearx(X)⊤Linearw(W )):,c =


T⊤
1

T⊤
2
...

T⊤
n

 ·


w
−1
0d
−1

e
(n)
c



=


M1,c

M2,c

...
Mn,c

 ,

where

Mi,c := T⊤
i ·


w
−1
0d
−1

e
(n)
i



=

 2L0x
⊤
i w − 2L0yi − L2

0 + (2dB2 +B − ln ϵ0)1i=c

2L1x
⊤
i w − 2L1yi − L2

1 + (2dB2 +B − ln ϵ0)1i=c

· · ·
2LPx

⊤
i w − 2LP yi − L2

P + (2dB2 +B − ln ϵ0)1i=c

 ,

where i ∈ [n] and c ∈ [n], and 1i=c represents the indicator function of i = c.

This means that
Softmax(βLinearx(X)⊤Linearw(W )):,c

= Softmax(β


M1,c

M2,c

...
Mn,c

)
= β

n∑
i=1

P∑
j=1

exp
{
2Ljx

⊤
i w − 2Ljyi − L2

0 + (2dB2 +B − ln ϵ0)1i=c

}∑n
i′=1

∑P
j′=0 exp

{
u
(i′)
j′ + (2dB2 +B − ln ϵ0)1i=c

} e
(nP )
(i−1)P+j .

Thus we have (without loss of generality, we ignore the β parameter in Softmax):
Hopfield(Linearw(W ); Linearx(X)):,c

=WV Linearx(X)Softmax(Linearx(X)⊤Linearw(W )):,c(
Wv only retrieves the (d+ 2)-th row in Ti

)
= [F1 · · · Fn]

n∑
i=1

P∑
j=1

exp
{
2Ljx

⊤
i w − 2Ljyi − L2

j + (2dB2 +B − ln ϵ0)1i=c

}
∑n

i′=1

∑P
j′=0 exp

{
2Lj′x⊤

i′w − 2Lj′yi′ − L2
j′ + (2dB2 +B − ln ϵ0)1i=c

}e(nP )
(i−1)P+j

=

n∑
i=1

P∑
j=0

exp
{
2Ljx

⊤
i w − 2Ljyi − L2

j + (2dB2 +B − ln ϵ0)1i=c

}
∑n

i′=1

∑P
j′=0 exp

{
2Lj′x⊤

i′w − 2Lj′yi′ − L2
j′ + (2dB2 +B − ln ϵ0)1i=c

}f(Lj)xi,

where F is:
Fi := [f(L0)xi f(L1)xi · · · f(LP )xi] .

73



3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

Under review as a conference paper at ICLR 2026

For every i ∈ [n], if i ̸= c, we have
P∑

j=0

exp
{
2Ljx

⊤
i w − 2Ljyi − L2

j + (2dB2 +B − ln ϵ0)1i=c

}
∑n

i′=1

∑P
j′=0 exp

{
2Lj′x⊤

i′w − 2Lj′yi′ − L2
j′ + (2dB2 +B − ln ϵ0)1i=c

}
=

P∑
j=0

exp
{
2Ljx

⊤
i w − 2Ljyi − L2

j

}
∑n

i′=1

∑P
j′=0 exp

{
2Lj′x⊤

i′w − 2Lj′yi′ − L2
j′ + (2dB2 +B − ln ϵ0)1i=c

}
<

P∑
j=0

exp
{
2Ljx

⊤
i w − 2Ljyi − L2

j

}
∑P

j′=0 exp
{
2Lj′x⊤

i′w − 2Lj′yi′ − L2
j′ + (2dB2 +B − ln ϵ0)

}
(
only taking the i′ = c part

)
<

P∑
j=0

exp
{
2dB2 +B

}
P exp(2dB2 +B − ln ϵ0)

= ϵ0.

For i = c, since
n∑

i ̸=c

P∑
j=0

exp
{
2Ljx

⊤
i w − 2Ljyi − L2

j + (2dB2 +B − ln ϵ0)1i=c

}
∑n

i′=1

∑P
j′=0 exp

{
2Lj′x⊤

i′w − 2Lj′yi′ − L2
j′ + (2dB2 +B − ln ϵ0)1i=c

} ≤ (n− 1)ϵ0,

we have ∑P
j=0 exp

{
u
(c)
j + (2dB2 +B − ln ϵ0)

}
∑n

i′=1

∑P
j′=0 exp

{
2Lj′x⊤

i′w − 2Lj′yi′ − L2
j′ + (2dB2 +B − ln ϵ0)1i=c

}
=

P∑
j=0

exp
{
u
(c)
j + (2dB2 +B − ln ϵ0)

}
∑n

i′=1

∑P
j′=0 exp

{
2Lj′x⊤

i′w − 2Lj′yi′ − L2
j′ + (2dB2 +B − ln ϵ0)1i=c

}
≥ 1− (n− 1)ϵ0.

Thus for the parts in the weighted sum output that corresponds to rows in M:,c in the attention score
matrix, we have

∥
P∑

j=0

exp
{
u
(c)
j + (2dB2 +B − ln ϵ0)

}
∑n

i′=1

∑P
j′=0 exp

{
2Lj′x⊤

i′w − 2Lj′yi′ − L2
j′ + (2dB2 +B − ln ϵ0)1i=c

}f(Lj)xc − f(x⊤
c w − yc)xc∥∞

= ∥
P∑

j=0

exp
{
u
(c)
j + (2dB2 +B − ln ϵ0)

}
∑P

j′=0 exp
{
u
(c)
j′ + (2dB2 +B − ln ϵ0)

} (f(Lj)xc − f(x⊤
c w − yc)xc)

·

∑P
j′=0 exp

{
u
(c)
j′ + (2dB2 +B − ln ϵ0)

}
∑n

i′=1

∑P
k=0 exp

{
u
(i′)
k + (2dB2 +B − ln ϵ0)1i=c

}
− (1−

∑P
j′=0 exp

{
u
(c)
j′ + (2dB2 +B − ln ϵ0)

}
∑n

i′=1

∑P
k=0 exp

{
u
(i′)
k + (2dB2 +B − ln ϵ0)1i=c

} )f(x⊤
c w − yc)xc∥∞

≤
P∑

j=0

exp
{
u
(c)
j + (2dB2 +B − ln ϵ0)

}
∑P

j′=0 exp
{
u
(c)
j′ + (2dB2 +B − ln ϵ0)

} |f(Lj)− f(x⊤
c w − yc)| · d∥xc∥∞

− (1−

∑P
j′=0 exp

{
u
(c)
j′ + (2dB2 +B − ln ϵ0)

}
∑n

i′=1

∑P
k=0 exp

{
u
(i′)
k + (2dB2 +B − ln ϵ0)1i=c

} )|f(x⊤
c w − yc)|∥xc∥∞

74



3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049

Under review as a conference paper at ICLR 2026

≤
P∑

j=0

exp
{
u
(c)
j + (2dB2 +B − ln ϵ0)

}
∑P

j′=0 exp
{
u
(c)
j′ + (2dB2 +B − ln ϵ0)

} |f(x⊤
c w − yc)|∥xc∥∞

+ (n− 1)ϵ0Bf∥xc∥∞

=

P∑
j=0

exp
{
u
(c)
j

}
∑P

j′=0 exp
{
u
(c)
j′

} |f(Lj)− f(x⊤
c w − yc)|∥xc∥∞ + (n− 1)ϵ0Bf∥xc∥∞

=

P∑
j=0

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

|f(Lj)− f(x⊤
c w − yc)|∥xc∥∞ + (n− 1)ϵ0Bf∥xc∥∞,

where we define Bf := |f | as the bound for f .

For any ϵ1 > 0, set ∆L to be sufficiently small such that
|f(x)− f(y)| ≤ ϵ1,

when |x− y| ≤ ∆L.

Then when β is sufficiently large, we have∑
|Li−(x⊤

c w−yc)|>∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

≤ ϵ2,

for any ϵ2 > 0.

Thus
P∑

j=0

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

|f(Lj)− f(x⊤
c w − yc)|

=
∑

|Li−(x⊤
c w−yc)|>∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

|f(Lj)− f(x⊤
c w − yc)|

+
∑

|Li−(x⊤
c w−yc)|≤∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

|f(Lj)− f(x⊤
c w − yc)|

≤ ϵ2 · 2Bf + ϵ1.

This completes the proof.

Corollary E.2.1 (In-Context GD of Hopfield Layer). Define

X :=

[
x1 x2 · · · xn

y1 y2 · · · yn

]
∈ R(d+1)×n and W := [w w · · · w] ∈ Rd×n,

where xi ∈ Rd and yi ∈ R are the input-output pairs. w ∈ Rd is the linear coefficient we aim to
optimize. For any differentiable loss function ℓ : R → R, There exists a Hopfield layer Hopfield
with linear connections such that
∥Hopfield(W ;X)−

[
∇ℓ(w⊤x1 − y1)x1 ∇ℓ(w⊤x2 − y2)x2 · · · ∇ℓ(w⊤xn − yn)xn

]
∥∞ ≤ ϵ,

for any ϵ > 0.

Proof. Replacing the continuous function f in Theorem E.2 with ∇ℓ completes the proof.

75


	Introduction
	Preliminaries: Attention, In-Context Learning and Emulation
	Task-Specific In-Context Algorithm Emulation
	Prompt-Programmable In-Context Algorithm Emulation
	In-Context Emulation of Attention
	In-Context Emulation of Statistical Methods
	Attention Makes Every (Linear) Network In-Context

	Numerical Studies
	Proof-of-Concept Experiment on 
	Proof-of-Concept Experiment on Emulating Attention Heads

	Discussion and Conclusion
	Proof Sketches
	Proof Sketch for 
	Proof Sketch for 

	Related Work
	Core Related Work
	Broader Discussion

	Additional Numerical Studies
	Proof-of-Concept Experiment on Emulating Statistical Models
	Real-World Experiment on Emulating Statistical Models
	Proof-of-Concept Experiment on 

	Proofs of Main Text
	Proof of 
	Proof of 
	Proof of 
	Proof of 
	Proof of 
	Proof of 
	Proof of 

	In-Context Application of Statistical Methods by Modern Hopfield Network

