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ABSTRACT

We prove that a minimal Transformer with frozen weights emulates a broad class
of algorithms by in-context prompting. We formalize two modes of in-context algo-
rithm emulation. In the task-specific mode, for any continuous function f : R → R,
we show the existence of a single-head softmax attention layer whose forward pass
reproduces functions of the form f(w⊤x − y) to arbitrary precision. This gen-
eral template subsumes many popular machine learning algorithms (e.g., gradient
descent, linear regression, ridge regression). In the prompt-programmable mode,
we prove universality: a single fixed-weight two-layer softmax attention module
emulates all algorithms from the task-specific class (i.e., each implementable by a
single softmax attention) via only prompting. Our key idea is to construct prompts
that encode an algorithm’s parameters into token representations, creating sharp
dot-product gaps that force the softmax attention to follow the intended computa-
tion. This construction requires no feed-forward layers and no parameter updates.
All adaptation happens through the prompt alone. Numerical results corroborate
our theory. These findings forge a direct link between in-context learning and algo-
rithmic emulation, and offer a simple mechanism for large Transformers to serve as
prompt-programmable interpreters of algorithms. They illuminate how GPT-style
foundation models may swap algorithms via prompts alone, and establish a form
of algorithmic universality in modern Transformer models.

1 INTRODUCTION

We show that a minimal Transformer architecture with frozen weights is capable of emulating a broad
class of algorithms through prompt design alone. This stylized problem setting isolates the core of in-
context computation and provides an analytic lens on fundamental questions in Transformer models:
How do fixed-weight models execute diverse tasks from context alone? How does a prompt turn into
an algorithmic procedure? How do prompt-encoded parameters and query-key routing realize task
identification and stepwise execution? What minimal architectural ingredients suffice for general in-
context capability? As foundation models rise to prominence in modern AI (Bommasani, 2021), these
questions are central, since much of their practical utility comes from in-context learning (prompting)
rather than explicit retraining (Brown et al., 2020; Liu et al., 2023). Against this backdrop, this work
offers a rigorous basis for in-context task learning1, supplies a simple mechanism for Transformers
to act as prompt-programmable algorithm libraries, and shows how GPT-style models may swap
algorithms via prompts alone, shedding light on their general-purpose capabilities.

Large Transformer models exhibit ability to adapt to a new task by conditioning on examples or
instructions provided in the prompt without any gradient updates. This capability is known as In-
Context Learning (ICL) (Min et al., 2022; Brown et al., 2020). Prior work on Transformer in-context
learning falls into two strands. One trains models that learn in context for a specific function class
(Garg et al., 2022; Akyürek et al., 2023; Li et al., 2023; Ahn et al., 2023; Zhang et al., 2024). The
other hand-engineers Transformers to enact particular algorithms with fixed weights (Bai et al., 2023;
Von Oswald et al., 2023; Wu et al., 2025). In particular, Bai et al. (2023) demonstrate that task-specific
attention layers — attention mechanisms with weights designed for a given task — implement a

1We use “task” to highlight algorithm-level adaptation (to diverse tasks), not mere pattern completion.
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Figure 1: Prompt-Programmable In-Context Algorithm Emulation Overview. X denotes the data input,
and W ⋆ encodes the instructions of the algorithm we aim to emulate. We show that even a 2-layer softmax
attention module suffices to emulate a broad class of algorithms by changing prompt (Theorem 4.1), i.e., the
W ⋆ in the prompt. This separates algorithm information (in the prompt) from “model parameters” (frozen). By
sending the algorithm-specific information (e.g., instructions + data) to a fixed-weight model, the prompt acts as
the program and the frozen transformer as the interpreter. This makes the “weights-as-data” mechanism explicit
and is the core mechanism of prompt-programmability: a minimal frozen Transformer serves as a modular
interface in which swapping the prompt swaps the algorithm with no retraining.

variety of algorithms without gradient updates. For example, a single Transformer with fixed, task-
tailored attention weights achieves near-optimal performance on algorithms such as least-squares
regression, ridge regression, lasso, and gradient descent (Bai et al., 2023; Wu et al., 2025). These
results suggest that Transformers are capable of in-context algorithm emulation. Yet these approaches
retrain per task or hard-wire per algorithm. They do not give a single fixed architecture that is
prompt-programmable across many algorithms with explicit guarantees and minimal components.

To combat this, we advance this line of research by omitting the need for designing a new Transformer
block for every algorithm. We propose a frozen Transformer architecture to emulate a library of
attention-based algorithms in context without weight updates. We achieve this by embedding
algorithm-specific information into input prompts. Specifically, we formalize two emulation modes,
and establish explicit guarantees and constructive minimal designs for both. In the task-specific
mode (Section 3), a dedicated attention module with fixed weights (single- or multi-head) executes
one algorithm in context. In the prompt-programmable mode (Section 4), by contrast, a single
Transformer module with fixed weights re-programs itself through different prompts to execute
multiple algorithms on the fly. These constructions yield universality and minimality results for
in-context algorithm emulation. Specifically, we demonstrate a minimalist model of internal algorithm
swapping, where prompts serve as the context carrying algorithmic instructions.

Contributions. We establish a new form of in-context learning universality for algorithm emulation,
limited to attention-implementable algorithms. Our contributions are four-fold:

• Task-Specific Emulation of f(w⊤x − y)x. A single-head, single-layer softmax attention with
a linear map universally approximates functions of the form f(w⊤x− y)x for any continuous f ,
with frozen weights and a suitable prompt. This general result subsumes, for example, computing
per-sample gradients and performing gradient descent updates (by choosing f as a loss derivative),
as well as solving linear and ridge regression in one forward pass.

• Constructive, Interpretable Prompt Design for Algorithm Emulation. We give an explicit
prompt design strategy that encodes the target task’s parameters and induces large query-key
margins so softmax follows the intended pattern, furnishing an interpretable, verifiable recipe for
prompt-programming a fixed attention-only module.

• A Simple Mechanism for Internal Algorithm Swapping of Transformer Models. Changing
only the prompt-encoded algorithm weights swaps the algorithm executed by the fixed attention-
only module, without retraining. Theory (finite libraries) and experiments (e.g., Lasso, ridge,
linear regression) confirm high-fidelity swapping. Altogether, these results shed light on the
general-purpose capability of GPT-style Transformer models to select and swap internal routines
via prompts (our formal proofs concern attention-only modules).

In conclusion, we show a minimalist transformer architecture serve as a general-purpose algorithm
emulator in context through prompt design. Our findings contribute to a sharp theoretical foundation
for viewing in-context learning as in-context algorithm emulation. They suggest that large pretrained
softmax attention models (such as GPT-style Transformers) encode a library of algorithms, and swap
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among them based on prompts. This is achieved within a unified attention architecture and without
any parameter updates. We believe this perspective opens new opportunities for understanding the
emulation ability of Transformer models.

Organization. Section 2 presents ideas we build on. Section 3 presents illustrative examples of
learning statistical models in-context with task-specific attention heads. Section 4 presents our main
results. Appendix A presents our proof strategies. Section 5 presents numerical validations.

Related Work. Due to page limits, we defer related work discussions to Appendix B.

Notations. We denote the index set {1, . . . , I} by [I]. We use lowercase letters for vectors and
uppercase letters for matrices. The vector e(n)j ∈ Rn denotes the one-hot vector with 1 in the j-th
position and 0 elsewhere. We write X ∈ Rd×n for the input sequence, where d is the token dimension
and n is the sequence length. We denote the number of attention heads by H . We use ∥ · ∥∞ and
∥ · ∥2 for the vector ∞-norm and 2-norm, respectively.

2 PRELIMINARIES: ATTENTION, IN-CONTEXT LEARNING AND EMULATION

Softmax Attention. We define a multi-layer self-attention layer with softmax activation as follows.

Definition 2.1 (Softmax Attention Layer). For any input sequence X ∈ Rd×n, the multi-head
attention output (with H heads) is

Attnm(X) =

H∑
h=1

W
(h)
V X︸ ︷︷ ︸
do×n

Softmax((W
(h)
K X)⊤W

(h)
Q X︸ ︷︷ ︸

n×n

)W
(h)
O︸ ︷︷ ︸

n×no

∈ Rdo×no ,

where W
(h)
K ,W

(h)
Q ∈ Rdh×d, W (h)

V ∈ Rdo×d, and W
(h)
O ∈ Rn×no for h ∈ [H]. We use Attns to

denote single-head self-attention.

Following the notation of (Hu et al., 2025a), we pick non-identical dimensions for weight matrices
WK ,WQ,WV for generality of our analysis.

In the common K := WKX , Q := WQX , V := WV X notation, a single-layer softmax attention
takes a set of key vectors K = {k1, . . . , kn}, value vectors V = {v1, . . . , vn}, and a query vector q,
to produce an output as a weighted sum of the value vectors. The weights on vi is Softmax(k⊤i q),
emphasizing values whose keys are most similar to the query. That is, the softmax attention uses the
query as a cue to retrieve the most relevant information from the values (via their keys).

Linear Transformation Layer Linear(·). Throughout this paper, we sometimes compose attention
with an additional linear mapping for flexibility. Such a linear transformation layer uses learned
parameters to increase expressivity in attention-based constructions.

Definition 2.2. Let Z = [z1, . . . , zn] ∈ Rd×n be the input sequence with columns zi ∈ Rd. We
use Linear : Rd×n → Rp×m (for some output length m) to denote column-wise linear affine maps.
Each output column depends only on one input column, possibly with replication or an additive bias.
We write Linear when dimensions are clear (input/output shapes chosen to match attention).

This layer is a generic column-wise affine operator. It preprocesses the input to an attention mech-
anism or post-processes its output. For example, Attns ◦ Linear(Z) applies a per-token affine
projection (optionally with replication, so m ̸= n) before single-head attention. It subsumes the
practical per-token linear layer as the special case m = n with shared parameters and optional bias:
Linear(Z) = AZ + b1⊤

n ∈ Rp×n with A ∈ Rp×d, b ∈ Rp and 1n the all-ones vector. In all cases,
columns are processed independently (no cross-column mixing).

In-Context Learning Setup. In in-context learning, a fixed model (e.g., a pretrained Transformer)
performs a new task without parameter updates. Formally, the model aims to approximate an unknown
function f : X → Y given a few examples of f in the input prompt. At inference, we provide n
exemplar pairs and a query xq , and concatenate them into a single sequence

X :=

[
x1 x2 · · · xn

y1 y2 · · · yn

]
∈ R(d+1)×n and xq ∈ Rd×1. (2.1)

3
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Namely, the model receives (X,xq) as the input prompt. The goal of ICL is for the model, given
input prompt (X,xq), to (i) infer f from the exemplars and (ii) apply it to xq to predict yq = f(xq).
All the learning happens in the forward pass through the sequence X in an implicit fashion.

Task-Specific Attention. Task-specific attention uses fixed parameters to carry out a particular task
when the prompt follows the required structure (see (Bai et al., 2023) for examples.)

Definition 2.3. An attention layer is task-specific if there exists a prompt family P such that, for
any prompt P ∈ P constructed from task parameters/data, the attention’s forward pass implements
the task’s mapping on the query token(s), with no parameter change.

In particular, we embed the task’s defining transformations (e.g. a linear mapping corresponding to f
or part of f ) into the attention weight matrices. Given a well-formed prompt of exemplar and query
tokens, the attention selects and combines these tokens to compute the correct output. Effectively,
this allows an attention layer to approximate diverse functions in context without weight updates.

Terminology: Task-Specific vs. Prompt-Programmable In-Context Emulation. In-context
algorithm emulation refers to executing an algorithm through a forward pass without weight updates.
The core contribution of this work is to formalize two in-context modes and study their scope:

• Task-Specific In-Context Emulation: for each algorithm A, there exists an attention module
(possibly multi-head) whose forward pass on a well-formed prompt implements A on the query
token(s). Each algorithm therefore requires its own dedicated parameters.

• Prompt-Programmable In-Context Emulation (via single frozen module): there exists a single
attention module with fixed weights Attn⋆ such that, for every A in a target class, a suitable prompt
PA makes Attn⋆ implement A on the query token(s). All adaptation occurs through the prompt
rather than through weight changes. Namely, one Attn⋆ implements a library of algorithms.

These modes are complementary: the first reflects the conventional dedicated-module view (e.g.,
(Bai et al., 2023)), while the second is stronger — one fixed-weight attention module emulates many
algorithms via prompts (our contribution). In the remainder of the paper, Section 3 develops the
task-specific case. Section 4 establishes the prompt-programmable case by showing how the latter
subsumes the former via in-context simulation of task-specific modules.

3 TASK-SPECIFIC IN-CONTEXT ALGORITHM EMULATION

We present multiple examples demonstrating how softmax attention modules mimic behaviors of
various learning algorithms including gradient descent and linear regression. We begin with a very
general result showing that even a single-layer, single-head attention mechanism is a universal
approximator for a broad class of functions defined on the prompt.

In-Context Universal Approximation of f(w⊤x − y)x. Let x ∈ Rd, y ∈ R, w ∈ Rd, and let
f : R → R be continuous. We consider functions of the form f(w⊤x − y)x, where f acts on
the residual w⊤x − y. This template is very general: many learning rules for linear models take
this form, including many residual/gradient-style updates2. Hence f(w⊤x− y)x subsumes a wide
family of residual-driven updates central to machine learning. Thus, their in-context realization
explains much of in-context learning. To this end, showing that attention is capable of emulating any
continuous f(w⊤x− y)x indicates a powerful and general capability. It means the attention module
implements any continuous adjustment or mapping based on the prediction w⊤x and the label y. The
next theorem shows how a single-head attention approximates [f(w⊤xi − yi)xi]

n
i=1 arbitrarily well.

Theorem 3.1 (In-Context Emulation of f(w⊤x − y)x with Single-Head Attention). Let
[Lmin, Lmax] be a bounded interval containing all values of w⊤x− y, and let

X :=

[
x1 x2 · · · xn

y1 y2 · · · yn

]
∈ R(d+1)×n and W := [w w · · · w] ∈ Rd×n,

2For example, f(t) = t corresponds to the raw residual (w⊤x− y)x, f(·) = ∇wℓ(·) corresponds to per-
sample gradients ∇wℓ(w

⊤x− y)x linear regression or classification with loss ℓ(·), and nonlinear f (sigmoid,
step, etc.) corresponds to perceptron updates or other error-correcting rules.

4
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where xi ∈ Rd, yi ∈ R, and w ∈ Rd is the coefficient vector. Define the input as:

Z :=

[
x1 x2 · · · xn

y1 y2 · · · yn
w w · · · w

]
=

[
X
W

]
∈ R(2d+1)×n. (3.1)

Assume max{∥X∥∞, ∥W∥∞} ≤ B. For any continuously differentiable function f : R → R and
any ϵ > 0, there exists a single-head attention Attns with a linear layer Linear such that
∥Attns ◦ Linear(Z)−

[
f(w⊤x1 − y1)x1 · · · f(w⊤xn − yn)xn

]
∥∞ ≤ ϵ, for any ϵ > 0.

Proof. See Appendix D.1 for a detailed proof.

Theorem 3.1 establishes that even the simplest softmax attention alone suffices to encode any
continuous function of the form f(w⊤x − y)x by incorporating weights in the prompt. A direct
implication is by replacing f with the derivatives of differentiable loss function as follows.

Example 1: In-Context Emulation of Single-Step GD. Building on Theorem 3.1, we show that a
softmax attention layer emulates Gradient Descent (GD) in-context. Fristly, we replace the continuous
function f(·) in Theorem 3.1 with ∇ℓ(·), where ℓ : R → R is any differentiable loss function. We
show that the softmax attention emulates per-sample gradients in context.

Corollary 3.1.1 (In-Context Emulation of Per-Sample Gradients). Let ℓ : R → R be differentiable
and ℓ′ : R → R for its scalar derivative, ℓ′(t) = d

dtℓ(t). For z := w⊤x − y with x ∈ Rd, y ∈ R,
w ∈ Rd, denote ∇wℓ(z) := ℓ′(z). Set f(·) = ℓ′(·) in Theorem 3.1. With Z = [X;W ] as in (3.1),
for any ϵ > 0, there exist a single-head attention Attns(·) and a linear map Linear(·) such that,

∥ Attns ◦ Linear(Z)︸ ︷︷ ︸
=:Ĝ approximated per-sample gradient matrix

− [ℓ′(w⊤x1 − y1)x1, · · · , ℓ′(w⊤xn − yn)xn]︸ ︷︷ ︸
=:G target per-sample gradient matrix

∥∞ ≤ ϵ.

Corollary 3.1.1 shows that a single-layer single-head softmax attention with a linear map approximates
the individual (per-sample) gradient terms {ℓ′(w⊤xi − yi)xi}ni=1. Moreover, the layer outputs all
per-sample gradient terms in parallel. Next, we extend Corollary 3.1.1 to show that a fixed attention
layer implements the full gradient-descent update across all samples in-context.

Aggregating the per-sample gradients gives one GD step

L̂n(w) :=
1

n

n∑
i=1

ℓ(w⊤xi − yi), ∇L̂n(w) =
1

n

n∑
i=1

ℓ′(w⊤xi − yi)xi =: g.

From Corollary 3.1.1, let Ĝ be the attention output and choose the readout u := 1
n1n ∈ Rn

(equivalently, right-multiply by WO = u in Definition 2.1). Define the attention estimate of the
average gradient as ĝ := Ĝu. Then ĝ ≈ g, and the target update is w+

GD := w − η∇L̂n(w). Feeding
w in the prompt and applying the same readout produces a single d-dimensional update vector from
the layer. The next corollary states the precise approximation guarantee.

Corollary 3.1.2 (In-Context Emulation of a Single GD Step). Let ℓ : R → R be differentiable
and define L̂n(w) := 1

n

∑n
i=1 ℓ(w

⊤xi − yi). For any step size η > 0 and any ϵ > 0, there exist
a single-head attention Attns and a linear map Linear such that, with Z = [X;W ] as in (3.1),
choosing the readout u := 1

n1n (equivalently, right-multiply by WO = u in Definition 2.1), we have

ŵGD := (Attns ◦ Linear(Z))u ∈ Rd and ∥ŵGD − (w − η∇L̂n(w))︸ ︷︷ ︸
w+

GD

∥∞ ≤ ϵ.

Proof. See Appendix D.2 for a detailed proof.

Corollary 3.1.2 shows that a single-layer, single-head softmax attention with a linear map aggregates
the per-sample gradients via the output projection. It produces a d-vector ŵGD that approximates the
GD update w+

GD = w − η∇L̂n(w). Notably, each output column encodes a copy of w together with
a scaled per-sample gradient term. Averaging via the readout u = 1

n1n then recovers w+
GD up to ϵ.

5
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Example 2: In-Context Emulation of Multi-Step GD. We extend the single-step construction to
show that a multi-layer softmax attention network emulates multi-step gradient descent. In particular,
an (L+1)-layer transformer approximates L steps of gradient descent.

Stack (L+1) copies of the single-head layer from Corollary 3.1.2. At layer t (0 ≤ t < L), use the
readout u(t) = 1

n1n and the prompt Z(t) = [X;W (t)] with W (t) := [ŵ
(t)
GD · · · ŵ(t)

GD]. Define

ŵ
(0)
GD := w, and ŵ

(t+1)
GD := Attns ◦ Linear(Z(t))u(t).

For the target iterates, set w(0)
GD = w and w

(t+1)
GD = w

(t)
GD − η∇L̂n(w

(t)
GD). By Corollary 3.1.2,

Lemma D.4 and ∥ · ∥∞ ≤ ∥ · ∥2, we arrive

∥ŵ(t)
GD − w

(t)
GD∥∞ ≤ tϵ, t ∈ [L].

Example 3: In-Context Emulation of Linear Regression. We now present the construction for
squared loss. We show that a single-layer softmax attention emulates linear regression in-context.

Corollary 3.1.3 (In-Context Emulation of Linear Regression). For any dataset {(xi, yi)}ni=1 with
xi ∈ Rd, yi ∈ R and any ϵ > 0, there exist a single-head attention Attns, a linear map Linear, and a
readout u ∈ Rn such that, with Z = [X;W ] as in (3.1) (for any fixed bounded w),

ŵlinear := (Attns ◦ Linear(Z))u ∈ Rd, and ∥ŵlinear − wlinear∥∞ ≤ ϵ,

where wlinear := argminw∈Rd
1
2n

∑n
i=1(⟨w, xi⟩ − yi)

2.

Proof. See Appendix D.3 for detailed proof.

Example 4: In-Context Emulation of Ridge Regression. We add regularization term and show
that a single-layer softmax attention emulates ridge regression with L2 penalty.

Corollary 3.1.4 (In-Context Emulation of Ridge Regression). For any dataset {(xi, yi)}ni=1, any
λ ≥ 0, and any ϵ > 0, there exist a single-head attention Attns, a linear map Linear, and a readout
u ∈ Rn such that, with Z = [X;W ] as in (3.1) (and the regularization signal included in the prompt),

ŵridge := (Attns ◦ Linear)(Z)u ∈ Rd, and ∥ŵridge − wridge∥∞ ≤ ϵ,

where wridge := argminw∈Rd
1
2n

∑n
i=1(⟨w, xi⟩ − yi)

2 + λ
2 ∥w∥

2
2 with regularization term λ ≥ 0.

Proof. See Appendix D.4 for detailed proof.

So far our constructions in Section 3 show that, given freedom to choose parameters per algorithm,
attention modules emulate gradient descent, linear regression, ridge regression, and related updates in
context. These results establish the expressive power of task-specific in-context emulation, akin to
(Bai et al., 2023). In Section 4, we build on this foundation and prove a stronger universality: a single
frozen attention module Attn⋆, via prompt programming, simulates all such task-specific modules.

4 PROMPT-PROGRAMMABLE IN-CONTEXT ALGORITHM EMULATION

This section presents our main results: softmax attention is capable of (i) emulating task-specific
attention heads in-context (Section 4.1), (ii) emulating statistical models in-context (Section 4.2),
and (iii) emulating any network (with linear projections) in-context (Section 4.3). Unlike Section 3
requiring a separate task-specific module for each algorithm, here we fix one frozen module Attn⋆ and
show that suitable prompts instruct it to emulate every algorithm in the target class. This establishes
universality: one set of weights executes a library of algorithms through prompt programming.

4.1 IN-CONTEXT EMULATION OF ATTENTION

We first specify the input prompt with weight encoding.

Definition 4.1 (Vectorization). For any matrix X ∈ Rdh×d, we define X := vec(X) ∈ Rddh such
that X(i−1)d+j = Xi,j for all i ∈ [dh] and j ∈ [d].

6
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Definition 4.2 (Input Prompt of In-Context Emulation of Attention). Let X ∈ Rd×n be the input
sequence, and let WK ,WQ,WV ∈ Rdh×d be the weight matrices of the target attention head to be
emulated. Define the vectorizations

WK := vec(WK) ∈ Rddh , WQ := vec(WQ) ∈ Rddh , WV := vec(WV ) ∈ Rddh ,

and
w := [WK ;WQ;WV ] ∈ R3ddh ,

where w is the concatenation of WK ,WQ,WV . Finally, define the extended input Xp for in-context
emulation of the attention head specified by WK ,WQ,WV as

Xp :=

[
X
Win

In

]
with Win :=

[
0 · w 1 · w 2 · w · · · (n− 1) · w
w w w · · · w

]
∈ R6ddh×n.

In other words, Win is a 2× n block matrix whose j-th column consists of j · w ∈ Rddh (in the first
block-row) and w ∈ Rddh (in the second block-row), for j = 0, 1, . . . , n − 1. Appending Win as
additional rows to X produces the prompt Xp that encodes the target weights.

Using this weight-encoding prompt, we now design a two-layer attention mechanism to reproduces
the effect of the target attention head in-context.

Theorem 4.1 (In-Context Emulation of Attention). Let X ∈ Rd×n be an input sequence, and let
WK ,WQ,WV ∈ Rdh×d be the weight matrices of the target attention head we wish to emulate
in-context. Assume ∥WKX∥∞, ∥WQX∥∞, ∥WV X∥∞ ≤ BKQV with BKQV > 0. Then, for any
ϵ > 0, there exists a two-layer attention network — a multi-head attention layer Attnm followed by
a single-head attention layer Attns — such that

∥Attns ◦Attnm(Xp)︸ ︷︷ ︸
Emulator

−WV XSoftmaxβ((WKX)⊤WQX)︸ ︷︷ ︸
Target

∥∞ ≤ ϵ,

where Xp is the prompt defined in Definition 4.2.

Remark 4.1 (Permutation Equivariance). Our construction keeps the permutation equivariance of
attention in its approximation. This means changing the order of columns in X results in an identical
change in the order of the columns in Attns ◦Attnm(Xp).

Proof. See Appendix A.1 for the proof sketch and Appendix D.5 for a detailed proof.

We now provide an alternative formulation of the above result. In this variant, a single-head attention
layer comes first, followed by a multi-head layer with sequence-wise linear projections.

Theorem 4.2 (In-Context Emulation of Attention; Alternative Formulation). Let X ∈ Rd×n be the
input sequence, and let WK ,WQ,WV ∈ Rn×d be the weight matrices of the target attention. Assume
B = max{∥X∥∞, ∥WK∥∞, ∥WQ∥∞, ∥WV ∥∞} and ∥WKX∥∞, ∥WQX∥∞, ∥WV X∥∞ ≤ BKQV

for BKQV ≥ 0. Then, for any ϵ > 0, there exists a single-head attention layer Attns followed by a
multi-head attention layer with linear projections such that

∥Attns ◦ (
3n∑
j=1

Attnj ◦ Linearj(


X
W⊤

K

W⊤
Q

W⊤
V

))−WV X︸ ︷︷ ︸
n×n

Softmaxβ ((WKX)⊤WQX)︸ ︷︷ ︸
n×n

∥∞ ≤ ϵ.

Proof. See Appendix A.2 for the proof sketch and Appendix D.6 for a detailed proof.

Theorems 4.1 and 4.2 allow us to approximate arbitrary target one-layer attention using another
two-layer attention. This construction requires no feed-forward layers and no parameter updates. All
approximation happens through the prompt alone (by embedding target attention weights and input
X into the prompt).

Discussion: Target Attention Approximation for Algorithm Emulation. Theorems 4.1 and 4.2
present a general algorithm emulation result: a fixed-weight two-layer softmax attention mod-
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ule emulates all algorithms implementable by softmax attention via only prompting. For exam-
ple, if we choose the input sequence X ∈ Rd×n in Theorem 4.1 and Theorem 4.2 to be the
Linear(Z) ∈ R2(2d+n+2)×n(P+1) in Theorem 3.1, then we are able to approximate all one-layer
attentions implementing target algorithms of the f(w⊤x− y)x class: Corollaries 3.1.1 to 3.1.4. Thus,
we achieve in-context emulation of the entire class of algorithms expressible as f(w⊤x− y)x.

To the best of our knowledge, this provides the first constructive toy model of fixed-weight transformer
exhibiting general-purpose ability (i.e., one fixed-weight model for many tasks). Moreover, the
construction is explicit, interpretable, and softmax-native. A few remarks are in order.

Remark 4.2 (Differences between Theorems 4.1 and 4.2). Theorems 4.1 and 4.2 both establish that
a fixed multi-head attention network can approximate any given attention head in-context. We present
two versions of the construction using different formulations and analytical techniques. In particular,
Theorem 4.1 encodes the target algorithm into the token representations (keeping the sequence length
fixed), whereas Theorem 4.2 achieves a similar effect by encoding the weights as additional tokens in
the input sequence (keeping each token’s dimension fixed).

Remark 4.3. Our constructions may contain non-standard choices, including encoding information
along the embedding dimension and using 3n parallel attention heads. We emphasize that the methods
apply to approximate a more realistic attention with far fewer hidden dimensions and number of
heads in practice. Section 5 provides further details.

Remark 4.4 (Comparison with Prior Work). We remark that our results differ from prior work in
three key aspects. First, we study the practical softmax attention rather than linear or ReLU attention
(Bai et al., 2023; Von Oswald et al., 2023; Vladymyrov et al., 2024). Second, our results in Section 4
go beyond task-specific ICL and establish that fixed-weight Transformers are prompt-programmable
(Bai et al., 2023; Wu et al., 2025; Li et al., 2025). Third, our results are constructive, providing
concrete emulation examples in contrast to prior prompting expressivity (Wang et al., 2023; Furuya
et al., 2024) or Turing-completeness results (Pérez et al., 2021; Giannou et al., 2023; Qiu et al., 2024).
The closest works to ours are (Giannou et al., 2023; Bai et al., 2023). Bai et al. (2023) show that
Transformers can execute several standard algorithms in-context, but each algorithm uses its own
tailored attention layer. Our results show that a single fixed attention module can emulate a broad
set of algorithms through prompt changes. Giannou et al. (2023) study a fixed looped Transformers
that implement arbitrary programs. However, their results are “there exists”-type: their universal
Transformer is a conceptual Turing machine, not a fully specified numerical model. While our results
are also extensible to looped setting (i.e., Corollary 3.1.2), our focus is different: we use an attention-
only, FFN-free model and analyze its algorithmic universality constructively. This highlights the
power of softmax attention mechanism and offers a clean testbed for developing scientific theories
(interpretable, controllable and predictable like physics) of GPT-style foundation models.

Extension: Modern Hopfield Networks. We extend our results to in-context optimization ability of
dense associative memory models (Ramsauer et al., 2021) in Appendix E.

4.2 IN-CONTEXT EMULATION OF STATISTICAL METHODS

Theorem 4.2 shows that a frozen attention module approximates a target attention head by embedding
the head’s weights into its input prompt. We now leverage this idea to emulate a broader class of
algorithms. In essence, we replace the embedded target attention weights with the parameters of an
arbitrary statistical method that we aim to emulate. By the same principle, the fixed attention module
then mimics the behavior of diverse statistical models within the in-context learning framework.

Corollary 4.2.1 (In-Context Emulation of Statistical Methods). Let A be the set of all algorithms
implementable by a single-layer attention network in-context. For any finite collection of algorithms
{a1, a2, . . . , ak} := A0 ⊆ A, there exists a two-layer attention network (a single-head layer Attns
composed with a multi-head layer Attnm) such that for each a ∈ A0 in the collection

∥
3n∑
j=1

Attns ◦Attnj ◦ Linearj
([

X
W a

])
− a(X)∥∞ ≤ ϵ,

where W a is the W defined as Definition 4.2 using W a
K ,W a

Q,W
a
V .
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Proof. See Appendix D.7 for detailed proof.

We show that a fixed attention module emulates an arbitrary finite library of in-context algorithms by
varying its prompt. This result highlights the flexibility of softmax attention: unlike prior work that
requires re-training or fine-tuning of the model, here we provably achieve task-specific behavior by
modifying the input prompt. In effect, a pretrained Transformer internalizes a small set of fundamental
procedures and later deploys them, via prompting, across a wide range of data distributions. Since
the number of distinct algorithms is far smaller than the number of possible datasets, a model that
learns a handful of algorithms can leverage them to handle many different scenarios.

4.3 ATTENTION MAKES EVERY (LINEAR) NETWORK IN-CONTEXT

We now extend the above ideas to show that softmax attention emulates any network (comprised of
linear transformations) in-context. Consider any layer of a neural network that applies a trainable
linear map x → Θx with weight matrix Θ. Our results imply that if Θ is provided as part of the
input sequence, a fixed attention module is capable of approximating this transformation to arbitrary
precision. Hence linear layers in standard architectures are replaceable with attention whose effective
weights are encoded in the prompt rather than learned. This substitution turns the network into an
in-context learner in place of, or alongside, conventional training.

Remark 4.5 (In-Context Emulation of Linear Layers). For example, suppose a model contains a
linear layer f(x) = Θx with weight matrix Θ. By including Θ (appropriately encoded) in the input
as in our constructions above, a single softmax attention layer emulates f(x) in-context to arbitrary
precision. In other words, any trainable linear mapping in the original network is replicable with a
prompt-programmable attention layer whose parameters are set by the input sequence. This enables
the overall network to adjust that layer’s behavior on-the-fly via prompts, rather than having to learn
Θ through pre-training.

5 NUMERICAL STUDIES

2 4 6 8 10 12
Number of Heads

1

2

3

4

M
ea

n 
Lo

ss

Number of Heads Plot

Figure 2: Sensitivity of Attention Emulation to the
Number of Heads. We report loss (MSE) as the mean
and one standard deviation (shaded region) over 10 ran-
dom seed runs. We use synthetic data of 50000 data
points with sequence length being 20 and input dimen-
sion being 24. We set batch size to be 32 and hidden
dimension to be 48. Each multi-head model and the
single-head softmax attention layer is trained for 50
epochs. The optimizer used is Adam with learning rate
0.001. We visualize the performance (MSE ± Std) for
1, 2, 4, 6, 8, 12 heads.

This section provides numerical results to back
up our theory. We validate two building blocks
on synthetic data: (i) approximation of contin-
uous functions (Section 5.1); and (ii) approxi-
mation of attention heads (Section 5.2). These
studies quantify approximation error and its re-
lation to model size and the number of heads.

5.1 PROOF-OF-CONCEPT
EXPERIMENT ON THEOREM 3.1

Objective: Verifying Attention Approximates
f(w⊤x− y)x. We investigate accuracy of soft-
max attention approximating f(w⊤x− y)x by
training a single-head softmax attention with
linear connection.

Data Generation. We randomly generate X ∈
Rn×d drawn from a normal distribution, X ∼ 10 · N(0, 1) − 5. We also generate weight matrix
W ∈ Rn×d and y ∈ Rn, both randomly drawn from a standard normal distribution, N(0, 1). Here, n
represents the sequence length and d represents input dimension. The true label is f(w⊤x − y)x,
where we choose f(·) = tanh(·).
Model Architecture. We train a single-head attention network with linear transformation to approxi-
mate tanh

(
w⊤x− y

)
x. We first apply linear transformation to both [X; y] and W . We then train

the single-head attention model with the linear transformations to approximate our target function as
shown in the proof of Theorem 3.1.

Results. As shown in Figure 2, evaluated on Mean Square Error loss, the model approximates the
target tanh

(
w⊤x− y

)
x with minimal error. This experiment proves our theory.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5.2 PROOF-OF-CONCEPT EXPERIMENT ON EMULATING ATTENTION HEADS

Objective: Verifying Approximation Rates. We investigate the affect of the number of attention
heads H on the accuracy of softmax attention approximating softmax attention head.

Data Generation. We randomly generate a sequence of tokens X = [x1, x2, · · · , xn] ∈ Rd×n,
where each entry xi is drawn independently from a normal distribution,

X ∼ 2 ·N(0, 1)− 1.

We also generate weight matrices K = WKX⊤ ∈ Rh×n, Q = WQX
⊤ ∈ Rh×n, and V =

WV X
⊤ ∈ Rd×n. Each parameter matrix is randomly drawn from a standard normal distribution,

N(0, 1). Here, n represents the sequence length, d represents token dimension, and h represents
hidden dimension. The true label Y ∈ Rd×n results from applying a single-layer softmax attention
mechanism on inputs X , K, Q, and V .

Model Architecture. We train a multi-layer attention network to approximate softmax attention
function. We first train separate multi-head models with linear transformation to approximate K, Q,
and V . Then, we use a single-head softmax attention layer to approximate softmax attention function
as in the proof.

Table 1: Sensitivity to the Number of Heads. Emula-
tion MSE (mean ± std) for multi-head softmax attention
with 1, 2, 4, 6, 8, and 12 heads.

Heads 1 2 4 6 8 12
MSE 3.469 2.802 1.222 1.012 0.793 0.686
Std 0.381 0.413 0.603 0.204 0.127 0.171

Results. As shown in Figure 2 and Table 1, the
result validates our claim that a multi-head soft-
max attention mimics a target softmax attention
head to arbitrary precision. Moreover, it demon-
strates the convergence of multi-head softmax at-
tention emulating softmax-based attention map-
ping as the number of heads increases. The
approximation rate is in the trend of O(1/H)
where H is the number of heads. The small and decreasing MSE error indicates that the simple
softmax attention model approximates softmax attention head with stability.

Additional Experiments. Due to page limits, we defer several experimental results to Appendix C.
These include simulations of statistical algorithms (Appendix C.1) and approximations of statistical
models on real-world datasets where the model does not have access to the true algorithm weights
(Appendix C.2). They further illustrate the approximation capabilities of Transformer in practice.

6 DISCUSSION AND CONCLUSION

We study in-context algorithm emulation in fixed-weight Transformers and formalize two modes:
task-specific (Section 3) and prompt-programmable algorithm emulation (Section 4). For the former,
we show that even a single-layer, single-head module suffices for emulating core families (of the form
f(w⊤x− y)x) such as one-step gradient descent and linear/ridge regression, achieving architectural
minimality (Theorem 3.1). For the latter, we show that a two-layer multi-head softmax attention
module emulates a broad class of algorithms by embedding the algorithm’s weights into the input
prompt (Theorem 4.1). Altogether, a fixed softmax attention module becomes a prompt-programmable
library of algorithms: weights remain frozen, and the prompt selects the routine.

Mechanism. The mechanism is constructive. By encoding target weights in the input and creating
large dot-product margins, softmax attention routes along the intended computation without weight
updates. Numerical studies support the theory: on synthetic data the model accurately approximates
continuous maps of the form f(⟨w, x⟩ − y)x and emulates attention heads. Approximation error
decreases as the number of heads grows. On a real dataset (Ames Housing), the frozen module-driven
by prompts rather than true algorithm weights-achieves low error against standard statistical models.

Implications. Our results tighten the link between in-context learning and algorithmic emulation.
Viewing prompts as callable subroutines that select and configure algorithms within a frozen model,
we draw three takeaways: (i) prompt engineering becomes interface design for algorithm selection,
(ii) pretraining objectives could, in future work, be designed to encourage learning compact libraries
of reusable procedures, and (iii) analyses of internal routing help clarify how foundation models select
among algorithms. This lens explains the breadth of in-context generalization, guides prompt design,
and motivates new pretraining objectives for more effective algorithm installation and utilization.
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REPRODUCIBILITY STATEMENT
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results.
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IMPACT STATEMENT

We prove that a single frozen softmax attention head emulates a broad library of attention-
implementable algorithms via prompt design, establishing pretrained Transformers as universal
algorithm stores and reducing the need for task-specific fine-tuning. This sharpens the theoretical
basis of in-context learning, offers a principled recipe for prompt engineering, and equips auditors
with a clear test for hidden prompt-encoded behaviors, all without releasing new models or data.
Therefore, the work advances foundational understanding, lowers compute and energy demands, and
introduces minimal societal risk.

LIMITATIONS AND FUTURE DIRECTION

Prompt length grows linearly with the weight dimension, which limits practicality. The proofs
assume exact real-valued softmax and ignore token discretizations or numerical noise. Prompts
are hand-crafted. Learning them automatically is open. Language and vision inputs are untested.
Weight encoding happens along embedding dimension. The construction is not permutation invariant,
but permutation equivariant of the input data. Lastly, we leave tighter constants, shorter prompts,
extensions to deeper models and connection with model pretraining to future work.

LLM USAGE DISCLOSURE

We used large language models (LLMs) to aid and polish writing, such as improving clarity, grammar,
and conciseness. We also used LLMs for retrieval and discovery, for example exhausting literature to
identify potential missing related work. All technical content, proofs, experiments, and results are
original contributions by the authors.
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Figure 3: Visualization of Proof Sketch for Theorem 4.1. We visualize our proof technique. We combine
input data, weight encoding, and position encoding into Xp as input to the multi-head attention Attnm to recover
approximate key, query, and value representations. We then compare the single-head attention Attns outputs
from approximate values with ground truth values to obtain approximation error.

A PROOF SKETCHES

We present our proof strategies here.

A.1 PROOF SKETCH FOR THEOREM 4.1

We construct a two-layer Transformer (single-head layer Attns followed by multi-head layer Attnm)
that replicates the target attention to within any error ϵ > 0. Recall from Theorem 4.1:

∥
Step 3︷ ︸︸ ︷
Attns ◦Attnm(

Step 1︷︸︸︷
Xp )︸ ︷︷ ︸

Step 2︸ ︷︷ ︸
Emulator

−WV XSoftmax((WKX)⊤WQX)︸ ︷︷ ︸
Target

∥∞ ≤ ϵ.

The high-level idea is: (Step 1) augment the input with a prompt encoding of the target weights
WK ,WQ,WV , (Step 2) use groups of heads in Attnm to approximate the matrices K := WKX ,
Q := WQX , V := WV X in-context (up to small error), and (Step 3) apply Attns with fixed
weights to assemble the Attnm output: the approximators K ′, Q′, V ′. We then argue in (Step 4) the
approximation error can be made < ϵ via a stability bound on softmax attention.

Step 1: In-Context Weight Encoding. We augment the input X ∈ Rd×n by appending special
tokens encoding the matrices WK ,WQ,WV . We denote the augmented input as Xp. This allows the
transformer Attns ◦Attnm to “read” the relevant weight parameters in its attention heads.

Explicitly, we embed both the data sequence and the target head into the input (Definition 4.2):

Xp =

[
X
Win

In

]
with Win :=

[
0 · w 1 · w 2 · w · · · (n− 1) · w
w w w · · · w

]
,

where w = [W⊤
K ,W⊤

Q,W
⊤
V ]

⊤ concatenates every column of W⊤
K ,W⊤

Q ,W⊤
V following Defini-

tion 4.2. The block In provides token-position codes used in our construction.

The idea of this augmentation is to emulate the target computation WV XSoftmax((WKX)⊤WQX)
with the emulator: a two-layer transformer Attns ◦ Attnm. To achieve this, Attns ◦ Attnm must
access the information of X , WK ,WQ and WV in-context. The augmentation above encodes these
parameters (target algorithm’s specifications) in the prompt.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Step 2: Multi-Head Decomposition for In-Context Recovery of K,Q, V . We devote the first
attention layer (Attnm) to recovering the key, query, and value matrices that the target attention
would compute. By definition, each row in K,Q, and V takes the form: k⊤i X, q⊤i X and v⊤i X . Here
k⊤i , q

⊤
i and v⊤i are rows in WK ,WQ and WV . Our goal is, for each data token xi (the i-th column of

X), to approximate k⊤j xi, q⊤j xi, and v⊤j xi. To do this, we design Attnm to have a fixed number of
heads partitioned into three groups, corresponding to K, Q, and V respectively. Combining heads’
outputs within each group yields approximations of K, Q, and V . Explicitly, in the first multi-head
layer Attnm, we split the heads so that:

• A group of heads jointly approximates WKX . By (Hu et al., 2025a, Theorem 3.2), the heads in this
group admit further subdivision into sub-groups. Each sub-group outputs a linear transformations
of X , namely k⊤i X for rows k⊤i X of K.

• Another group of heads approximates WQX in a similar manner.

• A final group approximates WV X .

Concatenate or combine these head outputs so that the final embedding from Attnm(Xp) contains
(up to small error) the blocks [K;Q;V ] for all positions in X .

Explicitly, for each row k⊤j of WK (and similarly for q⊤j and v⊤j ), we prepend the corresponding
heads with a token-wise linear map A(·). A(Xp) pulls out the target row (i.e., kj) from w and repeats
it n times. The resulting sub-prompt A(Xp) has the form X

0 · kj 1 · kj · · · (n− 1) · kj
kj kj · · · kj

In

 ,

so the corresponding softmax heads return k⊤j X up to any error ϵ0 by the truncated-linear interpolation
theorem (Theorem D.1). With H = ⌈2(b− a)/((n− 2)ϵ0)⌉ heads per sub-group, we cover all dh
rows in K (and similarly for Q and V ). Altogether, the 3N = 3dhH heads satisfy

∥
dh∑
j=1

AttnKj (Xp)︸ ︷︷ ︸
:=K′

−K∥∞ ≤ ϵ0, ∥
2dh∑

j=dh+1

AttnQj (Xp)︸ ︷︷ ︸
:=Q′

−Q∥∞ ≤ ϵ0, ∥
3dh∑

j=2dh+1

AttnVj (Xp)︸ ︷︷ ︸
:V ′

−V ∥∞ ≤ ϵ0.

We collect these outputs column-wise into[
K ′

Q′

V ′

]
, and ∥

[
K ′

Q′

V ′

]
−

[
K
Q
V

]
∥∞ ≤ ϵ0.

Step 3: Single-Head Assembly for Emulated Map. We consider the second layer Attns as
a single-head attention with fixed weights chosen to “read” the K ′, Q′, V ′ triples from Z :=
Attnm(Xp) and perform the “emulated” attention mechanism. Explicitly, apply a single-head
attention layer Attns whose parameters are set to read off the K, Q, and V sub-blocks in each token
embedding:

Attns(Z) := W
(s)
V ZSoftmax((W

(s)
K Z)⊤(W

(s)
Q Z)).

For Z := Attnm(Xp), we choose fixed weights

W
(s)
K = [0dh×2dh

Idh ] , W
(s)
Q = [Idh

0dh×2dh ] , W
(s)
V = [0dh×dh

Idh
0dh×dh ] ,

so that
W

(s)
K Z ≈ WKX, W

(s)
Q Z ≈ WQX, W

(s)
V Z ≈ WV X.

Hence,

Attns(Z) = Attns ◦Attnm(Xp) = Attns(

[
K ′

Q′

V ′

]
) = V ′Softmax((K ′)⊤Q′)

≈ WV XSoftmax((WKX)⊤WQX).
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Figure 4: Visualization of Proof Sketch for Theorem 4.2. We visualize our proof technique. We combine
input data and weight encoding as input. Each key, query, and value has a unique set of linear transformation of
input (Linear) and multi-head attention (Attnm). We feed the input into each set to attain the approximate key,
query, and value representations, respectively. We then compare the single-head attention Attns outputs from
approximate values with ground truth values to obtain approximation error.

To be precise, because K ′, Q′, V ′ differ from K,Q, V by at most ϵ0 (in ∥ · ∥∞), a first-order
perturbation argument for softmax (uniform Lipschitz in sup-norm) shows

∥Attns(

[
K ′

Q′

V ′

]
)−Attns(

[
K
Q
V

]
)∥ ≤ ϵ0 + nBKQV ϵ1,

where BKQV bounds X,WK ,WQ,WV and ϵ1 = O(ϵ0).

Step 4: Error Bound. Finally, we make the approximation arbitrarily precise. Because we are
capable of making each head’s linear approximation arbitrarily close, we ensure

∥Attns ◦Attnm([X;W ])−WV XSoftmax((WKX)⊤ WQX)∥∞ ≤ ϵ,

for any ϵ > 0. This completes the construction, proving in-context emulation of the target attention.
Please see Appendix D.5 for a detailed proof and Figure 3 for proof visualization.

A.2 PROOF SKETCH FOR THEOREM 4.2

We outline how to emulate the desired attention step-by-step with a fixed two-layer transformer.
Similar to Theorem 4.1 (and Theorem D.1), our construction ensures each token’s representation in
the intermediate layer carries an approximate copy of its key, query, and value vectors, which the
final layer uses to perform the softmax attention. All necessary components (including the weight
matrices WK ,WQ,WV themselves) are encoded into the input, so the network’s weights remain
untrained and generic.

Step 1: Encoding Weights into the Input. Let X ∈ Rd×n be the input tokens. Append a “weight
encoding” matrix W that contains the rows of WK ,WQ,WV (the weight matrices of the target
attention head). This forms an extended input [X;W ]. The entries of X and W remain within a
bounded range [−B,B]. This bound ensures that all inner products remain finite.

Step 2: Multi-Head Approximation of K,Q, V . The first layer has many heads. Partition them
into three groups. One group approximates K := WKX; one approximates Q := WQX; and one
approximates V := WV X . Then

• Simulating Dot Products on a 1D Grid. Consider a single entry k⊤j xc. All entries in K,Q, V lie
between [−dB2, dB2], since the entries of X and W remain within a bounded range [−B,B]. We
create grid points L0 < · · · < LP covering [−dB2, dB2]. We design the head’s key and query so
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that the softmax assigns each grid point Li a weight based on its distance to k⊤j xc. We set the value
vector to encode Li. Thus, the head output for token xc approximates k⊤j xc. Fine grids reduce the
error.

• Reconstructing Full K,Q, V . Repeat this idea for every entry in K,Q, V . Each row uses one
head to approximate k⊤j X , q⊤j X , or v⊤j X . Combine these approximations to obtain the matrices
K ′, Q′, V ′. The sup norm

∥

[
K ′

Q′

V ′

]
−

[
K
Q
V

]
∥∞, can be made arbitrarily small.

Step 3: Single-Head Assembly of the Attention Output. The second layer, Attns, has one head.
We set its weight matrices W (s)

K ,W
(s)
Q ,W

(s)
V to pick out K ′, Q′, V ′ from each token’s embedding.

Then, Attns computes

V ′Softmax((K ′)⊤Q′) ≈ WV XSoftmax((WKX)⊤WQX),

since K ′ ≈ K, Q′ ≈ Q and V ′ ≈ V .

Step 4: Error Bound. Softmax and matrix multiplication are continuous. Small errors in K ′, Q′, V ′

cause a small error in the final output. By refining the grid (and using enough heads), we make the
sup norm error below any ϵ > 0. Please see Appendix D.6 for a detailed proof and Figure 4 for proof
visualization.

B RELATED WORK

Our results diverge from prior findings on Transformer universality and in-context learning.

B.1 CORE RELATED WORK

Universal Approximation. Prior studies establish that Transformers approximate arbitrary
sequence-to-sequence functions, but they do not address in-context learning and often assume
complex architectures. For example, Yun et al. (2020) prove that deep multi-head Transformers
with feed-forward layers are universal approximators of continuous sequence-to-sequence functions.
Subsequent advances tighten this finding: Kajitsuka and Sato (2024); Hu et al. (2025b) show that even
a single-layer Transformer realizes any continuous sequence function. However, these results treat
Transformers as parametric function approximators. The model requires re-training and re-prompting
to adapt to a new target function instead of handling multiple tasks through context. In contrast, we
prove that a minimal Transformer architecture, even a single-layer, single-head attention module with
no feed-forward network, emulates a broad class of algorithms without weight updates by varying
its prompt. This result achieves a new level of generality through context alone (i.e. prompt-based
conditioning) despite a fixed minimalist model.

In-Context Learning and Algorithm Emulation. Another line of recent theory bridges Trans-
formers with in-context learning by designing model components to carry out specific algorithms.
For example, Bai et al. (2023) show that Transformers execute a broad range of standard algorithms
in-context, but each algorithm requires a distinct, tailored attention head. In comparison, we extend
this approach by showing that one fixed attention mechanism emulates any specialized attention head
via prompt encoding. Rather than crafting a different attention module for each algorithm, a single
frozen softmax-based attention layer takes its instructions from the prompt to perform all tasks in
context. This minimal model thus becomes a unified and compact in-context algorithm emulator. It
switches behaviors by changing only its input prompt, setting it apart from earlier approaches that
required per-task reparameterization.

B.2 BROADER DISCUSSION

Universal Approximation and Expressivity of Transformers. Transformers exhibit strong ex-
pressive power as sequence models. Recent theory shows even minimal Transformer architectures
approximate broad classes of functions. Kajitsuka and Sato (2024); Hu et al. (2025b) prove a
single-layer, single-head Transformer can memorize any finite dataset perfectly. Kajitsuka and
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Sato (2024) achieve this with low-rank attention matrices, while Hu et al. (2025b) use attention
matrices of any rank. Adding two small feed-forward layers makes it a universal approximator for
continuous sequence functions under permutation-equivariance. More recently, Hu et al. (2025a)
show self-attention layers alone are universal approximators. Specifically, two attention-only layers
approximate continuous sequence-to-sequence mappings, and even a single softmax-attention layer
suffices for universal approximation. Similarly, Liu et al. (2025) also demonstrate that one single-head
attention connected with linear transformations is sufficient to approximate any continuous function
in L∞ norm. These results eliminate the need for feed-forward networks, improving on earlier
constructions. Overall, these findings highlight the inherent expressiveness of minimal attention
mechanisms.

Transformers as In-Context Learners and Algorithm Emulators. Large Transformers also learn
in-context by conditioning on examples in their prompts, without updating weights (Brown et al.,
2020). Recent work formally explains this by showing attention-based models implement standard
learning algorithms internally. Bai et al. (2023) construct Transformer heads executing algorithms
such as linear regression, ridge regression, Lasso, and gradient descent steps, achieving near-optimal
predictions. Wu et al. (2025) further build Transformers explicitly simulating multiple gradient
descent iterations for training deep neural networks, with provable convergence guarantees. Empirical
and theoretical studies confirm Transformers internalize learning algorithms when meta-trained on
task families. Garg et al. (2022) show meta-trained Transformers mimic classical algorithms, such
as ordinary least squares regression, in-context. Similarly, Akyürek et al. (2023); Von Oswald et al.
(2023); Zhang et al. (2024) analyze Transformers trained on linear regression tasks and demonstrate
their outputs mimic gradient descent steps precisely. Overall, existing literature shows that sufficiently
trained or carefully designed Transformers emulate step-by-step computations of standard algorithms
through prompt conditioning.

Prompt Tuning. Prompt-tuning adapts frozen models by learning a short continuous prefix (Lester
et al., 2021; Li and Liang, 2021; Liu et al., 2022). It keeps backbone weights fixed and updates only
prompt embeddings. Our setting is stricter: prompts are hand-designed, not learned, and we give
exact approximation bounds. Thus we expose the theoretical limit of prompt control: a single frozen
softmax head can mimic any task-specific head.

Encoding Context Along Embedding Dimension. Recent work in in-context learning explores
encoding and manipulating context in the embedding space rather than sequence dimension. For
example, Liu et al. (2024) propose In-Context Vectors for steering the model’s behavior by adding
task-specific vectors along the embedding space. Zhuang et al. (2025) extend this idea by showing
that manipulating embedding vectors such as interpolation makes in-context learning more control-
lable. Abernethy et al. (2024) showcase that appending additional information along the embedding
dimension allows the model to perform sample-efficient in-context learning.

Comparison to Our Work. The above results demonstrate the versatility of Transformer networks,
but they require task-specific weights, training, or learned prompts. For instance, Bai et al. (2023)
design a different task-specific head for each algorithm of interest, raising the question of whether
a single fixed attention mechanism could instead serve as a universal emulator for any algorithm
given the right prompt. Our work directly addresses this question. In contrast, we prove one fixed
softmax head emulates any specialized head through prompt encoding alone. No additional weights
or training are required. Even the simplest attention (one layer, one head) acts as a universal algorithm
emulator when given the right prompt, shifting focus from architecture to prompt design.

C ADDITIONAL NUMERICAL STUDIES

We extend the synthetic validation to statistical algorithms (Appendix C.1) and include a real-world
study (Appendix C.2). The frozen attention module emulates linear, ridge, and lasso on synthetic
data. On the Ames Housing dataset, the model operates without access to true algorithm weights and
achieves low approximation error. In addition, we validate Theorem 4.2 through handcrafted frozen
attention weights and parameters as constructed in the proof (Appendix C.3).
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C.1 PROOF-OF-CONCEPT EXPERIMENT ON EMULATING STATISTICAL MODELS

Objective: Emulation of Statistical Models. We investigate the accuracy of a frozen softmax
attention approximating statistical models including Lasso, Ridge and linear regression by only
varying the input prompts.

Data Generation. We simulate an in-context dataset by randomly generating a sequence of input
tokens X = [x1, x2, . . . , xn] ∈ Rn×d, where each xi is independently drawn from a scaled standard
normal distribution,

xi ∼ 2 ·N(0, 1)− 1.

A task-specific prompt vector w ∈ Rp×1 is sampled from N(0, 1). In the case of Lasso, we randomly
zero out entries in w with probability 0.5 to induce sparsity. We generate the output sequence
Y ∈ Rn×1 via a noisy linear projection: Y = Xw + ϵ, where ϵ ∼ N(0, σ2) is Gaussian noise. For
Ridge, we calculate weights using (X⊤X + λId)

−1X⊤Y with λ = 5.

Model Architecture and Training. We use a mixture of statistical data to train a single-layer
attention network with linear transformation. Each input sample consists of X ∈ Rn×d and algorithm-
specific prompt w ∈ Rp. We replicate w across the sequence length and concatenate it with X
along the feature dimension to obtain an augmented input [X;w] ∈ Rn×(d+p). We pass it through
a multi-head attention layer. We train the model for 300 epochs using the Adam optimizer with a
learning rate of 0.001. We use 6 attention heads, a hidden dimension of 48, an input dimension of
24, a batch size of 32, and 50000 synthetic samples. After training, we freeze the attention weights,
resulting in a fixed softmax attention layer. We evaluate the frozen model on its ability to emulate
various statistical algorithms using test data.

Baseline Architecture. We train three separate attention models for Lasso, Ridge, and linear
regression. That is, each attention model weights are adaptive to its corresponding algorithm. We use
these models as baselines for comparison with the frozen attention model we propose. All baseline
models use the same hyper-parameters as the frozen model.

Results. As shown in Table 2, we compare mean MSE and standard deviation over 5 random
seed runs for the frozen attention model against baseline for Lasso, Ridge, and linear regression
on the synthetic data. The frozen attention model performs as well as the baseline models trained
individually on each algorithm. It achieves lower MSE on Lasso and linear regression tasks compared
to their corresponding baselines. It shows that a frozen attention mechanism generalizes across these
tasks given task-specific prompts. Moreover, the frozen model exhibits lower variance across all
tasks, suggesting increased stability and robustness. These results support our claim that a frozen
softmax attention layer, when conditioned on task-specific prompts, emulates statistical algorithms in
context without much performance degradation.

Table 2: Comparison Between Baseline and Frozen Attention Layer on Synthetic Dataset. We compare
loss (MSE) as the mean and one standard deviation over 5 random seed runs for baseline vs. frozen model
on different algorithms. We train on 50000 training data points evaluate on 10000 testing data points for each
algorithm.

Model Lasso Ridge Regression Linear Regression
Baseline 0.068±0.015 0.004±0.0003 0.147±0.067
Frozen Attention 0.059±0.001 0.071±0.0002 0.120±0.003

C.2 REAL-WORLD EXPERIMENT ON EMULATING STATISTICAL MODELS

Objective: Real-World Emulation of Statistical Models. Building on Appendix C.1, we use
real-world data to investigate the accuracy of a frozen softmax attention emulating algorithms.

Data Collection and Processing. We collect data from Ames Housing Dataset (De Cock, 2011).
This dataset consists of 2930 observations and 79 features. We process the data by log-transforming
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the target variable, encoding categorical variables with one-hot vectors, replacing missing entries
with median values, and standardizing numerical features. The resulting data consists of 262 features.
We fit the processed data to Lasso, Ridge, and linear regression models to obtain algorithm weights
as part of the input.

Model Architecture and Training. We use a mixture of statistical data to train a single-layer
attention network with linear transformation. The input is passed through a multi-head attention layer
with a linear transformation. We train the model for 300 epochs using the Adam optimizer with a
learning rate of 0.001. We use 8 attention heads, a hidden dimension of 524, and a batch size of 32.
After training, we freeze the attention weights, resulting in a fixed softmax attention layer. The frozen
model is then evaluated on its ability to emulate various statistical algorithms using test data. We
train the baseline models the same way as the synthetic experiment.

Table 3: Comparison Between Baseline and Frozen Attention Layer on Ames Housing Dataset. We
compare loss (MSE) as the mean and one standard deviation over 5 random seed runs for baseline vs. frozen
model on different algorithms. We train on 80% training data and evaluate on 20% testing data for each
algorithm.

Model Lasso Ridge Regression Linear Regression
Baseline 0.0354±0.0000 0.0132±0.0000 0.0288±0.0000
Frozen Attention 0.0322±0.0000 0.0252±0.0000 0.0250±0.0000

Results. As shown in Table 3, we compare mean MSE and standard deviation over 5 random seed
runs for the frozen attention model against baseline for Lasso, Ridge, and linear regression on Ames
Housing Data. The results shows the frozen attention model performs as well as the baseline models
trained individually. We use an auxiliary network to approximate the required weight encoding. Our
experiment validates that the mechanism works even when the exact weights are not supplied in real
world scenarios.

C.3 PROOF-OF-CONCEPT EXPERIMENT ON THEOREM 4.2

Objective: Verifying Handcrafted Frozen Attention Approximates Attention. We validate that
the frozen attention prescribed in Theorem 4.2 approximates softmax attention with low error. In
particular, we handcraft the weights as in the proof of Theorem 4.2.

20 30 40 60 80
Number of Interpolation Points

0.0

0.2

0.4

0.6

M
ea

n 
Lo

ss

Number of Interpolation Points Plot

Figure 5: Sensitivity of Handcrafted Atten-
tion Emulation to the Number of Interpolation
Points. We report loss (MSE) as the mean and one
standard deviation (shaded region) over 4 sample
data points. Each data point has sequence length
n = 12 and input dimension d = 24. We set soft-
max temperature β = 2. We visualize the perfor-
mance (MSE ± Std) for P = 20, 30, 40, 60, 80.

Data Generation. We create a synthetic dataset.
We randomly generate X ∈ Rn×d drawn from a
uniform distribution over [−1, 1], X ∼ U(−1, 1).
For each sample, we generate three weight matrices
WK ,WQ,WV ∈ Rn×d drawn from standard nor-
mal distribution N(0, 1). We then compute K =
WKX⊤, Q = WQX

⊤, V = WV X
⊤ ∈ Rn×n.

The true target attention output is therefore given
by Y = V Softmax(K⊤Q) ∈ Rn×n.

Model Architecture. Following the proof in Ap-
pendix D.6, we hard-wire the linear layer weights,
attention weights, and interpolation points for the
two-layer softmax attention module as our emulator.
The model operates in a zero-shot, one-pass setting
with no training or parameter updates.

Results. We report the results in Table 4 and Figure 5. We compare the MSE loss between the
emulator output and the target attention output. Specifically, we fix the number of data points
n, input dimension d, softmax temperature β, and number of samples for testing. We vary the
number of interpolation points P . The result validates our claim that the handcrafted frozen attention
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approximates the target attention. Moreover, we show that as P increases, the approximation error
and standard deviation both further decrease.

Table 4: Sensitivity to the Number of Interpolation Points. We report MSE loss (mean± std) between outputs
of handcrafted frozen attention and target attention varying number of interpolation points P over 4 samples.
We choose n = 12, d = 4, β = 2, samples = 4 for evaluation.

P 20 30 40 60 80

Mean MSE 4.002× 10−1 2.442× 10−2 5.852× 10−4 5.770× 10−9 5.037× 10−14

Std 2.393× 10−1 1.451× 10−2 8.538× 10−5 1.994× 10−9 1.620× 10−14

D PROOFS OF MAIN TEXT

To prepare our proofs, we state the following axillary definitions and lemmas.

Definition D.1 (Truncated Linear Function). We define the truncated linear function as follows:

Range[a,b](x) =


a x ≤ a,

x a ≤ x ≤ b,

b b ≤ x.

Intuitively, Range[a,b](·) is the part of a linear function whose value is in [a, b].

We then define the interpolation points in [a, b] that are used in later proofs.

Definition D.2 (Interpolation). Let [a, b] ⊂ R be an interval with a ≤ b and let p ∈ N∗ be a positive
integer. We define

L̃
[a,b]
0 := a, L̃[a,b]

p := b, L̃
[a,b]
i := a+

i

p
(b− a), i = [p− 1].

Hence, L̃0 < L̃1 < · · · < L̃p forms a uniform partition of [a, b]. We also write

∆L := L̃
[a,b]
i − L̃

[a,b]
i−1 , i ∈ [p].

We often omit the superscript [a, b] when the context is clear.

We also propose the following lemma to show Hardmax property that is capable of being approximated
by Softmax.

Lemma D.1 (Lemma F.1 in (Hu et al., 2025a): Approximating Hardmax with Finite-Temperature
Softmax). Let x = [x1, x2, . . . , xn] ∈ Rn, ϵ > 0. Define Softmaxβ(·) as

Softmaxβ(x) := [
exp(βx1)∑n
j=1 exp(βxj)

, · · · , exp(βxn)∑n
j=1 exp(βxj)

].

The following statements hold:
• Case of a Unique Largest Entry. Assume x1 = maxi∈[n] xi is unique, and x2 = maxi∈[n]\{1} xi.

Then, if β ≥ (ln(n− 1)− ln(ϵ))/(x1 − x2), we have∥∥∥Softmaxβ(x)− e1

∥∥∥
∞

≤ ϵ,

where e1 ∈ Rn is the one-hot vector corresponding to to the maximal entry of x (i.e., x1.)
• Case of Two Largest Entries (Tied or Separated by δ). Assume x1 and x2 are the first and

second largest entries, respectively, with δ = x1 − x2 ≥ 0. Let x3 be the third largest entry and is
smaller than x1 by a constant γ > 0 irrelevant to the input. Then, if β ≥ (ln(n− 2)− ln ϵ)/γ, we
have ∥∥∥Softmaxβ(x)−

1

1 + e−βδ
e1 −

e−βδ

1 + e−βδ
e2

∥∥∥
∞

≤ ϵ.

The following technical lemma is used in the proof of Theorem D.1.
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Lemma D.2 (Refined Version of Lemma F.2 in (Hu et al., 2025a): Cases of All Heads in AttnH ).
For a ∈ [L̃0, L̃H(n−2)]. For any h ∈ [H], define three cases of the relationship between a and h

• Case 1: a ∈ [L̃(h−1)(n−2), L̃h(n−2)−1],
• Case 2: a /∈ [L̃(h−1)(n−2)−1, L̃h(n−2)].
• Case 3: a ∈ [L̃(h−1)(n−2)−1, L̃(h−1)(n−2)] ∪ [L̃h(n−2)−1, L̃h(n−2)].

These cases includes all possible situation. Then for all h, only two cases exists
• a falls in Case 1 for an h and Case 2 for all others.
• a falls in Case 3 for two adjacent h and Case 2 for all others.

Proof. Because a ∈ [L̃0, L̃H(n−2)] and

[L̃0, L̃H(n−2)] = ∪H
h=1[L̃(h−1)(n−2), L̃h(n−2)],

we have
a ∈ [L̃(ha−1)(n−2), L̃ha(n−2)] (D.1)

for an arbitrary ha.

This leads to only two possible cases

• Case 1*: a ∈ [L̃(ha−1)(n−2), L̃ha(n−2)−1].

• Case 2*: a ∈ [L̃ha(n−2)−1, L̃ha(n−2)].

Case 1*: a ∈ [L̃(ha−1)(n−2), L̃ha(n−2)−1]. Because a ∈ [L̃(ha−1)(n−2), L̃ha(n−2)−1], for h ̸= ha,
we have

L̃h(n−2)−2, L̃h(n−2) < L̃(ha−1)(n−2), h < ha

L̃h(n−2)+1, L̃(h−1)(n−2)−1 ≥ L̃ha(n−2)−1, h > ha.

Thus
[L̃(ha−1)(n−2), L̃ha(n−2)−1] ∩ [L̃(h−1)(n−2)−1, L̃h(n−2)] = ∅

[L̃(ha−1)(n−2), L̃ha(n−2)−1] ∩ [L̃(h−1)(n−2)−1, L̃h(n−2)] = ∅
for all h ̸= ha.

This means that a does not fall into Case 1 nor Case 3 for other h ∈ [H]. Thus a has to fall into Case
2 for other h.

Case 2*: a ∈ [L̃(ha−1)(n−2), L̃(ha−1)(n−2)+1] ∪ [L̃ha(n−2)−1, L̃ha(n−2)]. Without loss of general-
ity, assume a to be in the left half [L̃(ha−1)(n−2), L̃(ha−1)(n−2)+1]. Because

[L̃(ha−1)(n−2), L̃(ha−1)(n−2)+1] = [L̃(ha−1)(n−2)−1, L̃(ha−1)(n−2)],
(
Case 3 of ha − 1

)
[L̃(ha−1)(n−2), L̃(ha−1)(n−2)+1] = [L̃(ha−1)(n−2)−1, L̃(ha−1)(n−2)],

(
Case 3 of ha

)
this means a falls into Case 3 for ha and ha − 1.

This completes the proof.

We are now ready to prove a refined version of (Hu et al., 2025a, Theorem 3.2).

Theorem D.1 (Multi-Head Attention Approximate Truncated Linear Models In-Context). Let
X ∈ Rd×n be the input. Fix real numbers a < b, and let the truncation operator Range[a,b](·) follow
Definition D.1. Let ws denote the linear coefficient of the in-context truncated linear model. Define
Ws as

Ws :=

[
0 · ws 1 · ws · · · (n− 1) · ws

ws ws · · · ws

]
∈ R2d×n.

For a precision parameter p > n with ϵ = O(1/p), number of head H = p/(n − 2) there exists a
single-layer, H-head self-attention AttnH with a linear transformation A : Rd×n → R(3d+n)×n,
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such that AttnH ◦A : Rd×n → Rdo×n satisfies, for any i ∈ [n],

∥AttnH ◦A(X):,i − Range[a,b](w
⊤
s xi)ek̃i

∥∞ ≤ max{|a|, |b|} · ϵ0︸ ︷︷ ︸
finite-β softmax error

+
b− a

(n− 2)H︸ ︷︷ ︸
interpolation error

.

Here ek̃i
is the one-hot vector with a 1 at position k̃i-th index and 0 elsewhere, and

k̃i = G(ki) ∈ [do], with ki = argmin
k∈{0,1,··· ,p−1}

(−2x⊤
i wi − 2ti + L̃0 + L̃k) · k,

where G : [p] → [do] denotes any set-to-constant function sending each selected interpolation index
ki into an appropriate integer k̃i ∈ [do] for i ∈ [n].

Proof. Define A : Rd×n → R(3d+n)×n for the input sequence X as

A(X) :=

[
I3d

0n×3d

]
︸ ︷︷ ︸

token-wise linear

[
X
Ws

]
+

[
03d×n

In

]
︸ ︷︷ ︸

positional encoding

=

[
X
Ws

In

]
∈ R(3d+n)×n.

Thus, A is a token-wise linear layer augmented with positional encoding, as it applies a linear
projection to each token and then adds a unique per-token bias.

Let p be a precision parameter, without loss of generality, let it be divisible by n − 2 and denote
p/(n− 2) as H .

Now we define the multi-head attention Attn of H heads. Denote ℓk := k(L̃k + L̃0) for k ∈ [p]
following Definition D.2. We denote the h-th head as Attnh, and define the weight matrices as

W
(h)
K = −β

[
0d×d −2Id −2[(h− 1)(n− 2)− 1]Id 0 0 · · · 0
01×d 01×d 01×d ℓ(h−1)(n−2)−1 ℓ(h−1)(n−2) · · · ℓh(n−2))

]
,

W
(h)
Q =

[
Id 0d×2d 0d×n

01×d 01×2d 11×n

]
,

W
(h)
V =

[
0do×(3d+1) L̃(h−1)(n−2)ek̃(h−1)(n−2)

L̃(h−1)(n−2)+1ek̃(h−1)(n−2)+1 · · · L̃h(n−2)−1ek̃h(n−2)−1
0do

]
,

for every h ∈ [H].

Here β > 0 is a coefficient we use to control the precision of our approximation. The attention
reaches higher precision as β gets larger.

With the construction of weights, we are also able to calculate the K, Q, V matrices in Attn

K(h) :=W
(h)
K A(X)

=W
(h)
K ·

[
X
Ws

In

]

=W
(h)
K ·


x1 x2 · · · xn

0 · ws 1 · ws · · · (n− 1) · ws

ws ws · · · ws

e
(n)
1 e

(n)
2 · · · e

(n)
n


= − β

[
0d×d −2Id −2[(h− 1)(n− 2)− 1]Id 0 0 · · · 0
01×d 01×d 01×d ℓ(h−1)(n−2)−1 ℓ(h−1)(n−2) · · · ℓh(n−2))

]

·


x1 x2 · · · xn

0 · ws 1 · ws · · · (n− 1) · ws

ws ws · · · ws

e
(n)
1 e

(n)
2 · · · e

(n)
n


24
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= − β

[
−2[(h− 1)(n− 2)− 1]ws −2(h− 1)(n− 2)ws · · · −2h(n− 2)ws

ℓ(h−1)(n−2)−1 ℓ(h−1)(n−2) · · · ℓh(n−2)

]
∈ R(d+1)×n,

(D.2)

where the last equality comes from multiplying X with 0, thus this is a extraction of non-zero entries
in WK .

For Q, we have

Q(h) :=Wh
QA(X)

=

[
Id 0d×2d 0d×n

01×d 01×2d 11×n

]
·

[
X
Ws

In

]

=

[
Id ·X + 0d×2d ·Ws + 0d×n · In

01×d ·X + 01×2d ·Ws + 11×n · In

]
=

[
X

11×n

]
∈ R(d+1)×n. (D.3)

For V , we have

V (h) :=W
(h)
V A(X)

=
[
0do×(3d+1) L̃(h−1)(n−2)ek̃(h−1)(n−2)

· · · L̃h(n−2)−1ek̃h(n−2)−1
0do

]
·

[
X
Ws

In

]

= 0︸︷︷︸
do×3d

·
[
X
Ws

]
+
[
0do L̃(h−1)(n−2)ek̃(h−1)(n−2)

· · · L̃h(n−2)−1ek̃h(n−2)−1
0do

]
︸ ︷︷ ︸

do×n

·In

=
[
0do

L̃(h−1)(n−2)ek̃(h−1)(n−2)
L̃(h−1)(n−2)+1ek̃(h−1)(n−2)+1 · · · L̃h(n−2)−1ek̃h(n−2)−1

0do

]
∈ Rd0×n. (D.4)

Given that all k̃j , where j ∈ [p], share the same number in [do], we denote this number by kG.

Hence we rewrite V (h) as
V (h) =

[
0do L̃(h−1)(n−2)ekG

L̃(h−1)(n−2)+1ekG
· · · L̃h(n−2)−1ekG

0do

]
.

We define mv as
mv := max{|a|, |b|}.

By the definition of V (h), we have

∥V ∥∞ ≤ max
i∈[P ]

{L̃i} ≤ mv. (D.5)

Remark D.1 (Intuition of the Construction of V (h)). As previously mentioned, L̃i, for i ∈ [p],
are all the interpolation points. In this context, V (h) encompasses the (n− 2) elements of these
interpolations (i.e., (h− 1)(n− 2) to h(n− 2)− 1). Meanwhile, the value on the two ends of
V h are both set to 0do

, because we suppress the head and let it output 0 when the input X is not
close enough to the interpolations of the head.

Now we are ready to calculate the output of each Attnh

Attnh(A(X))

= V (h)Softmax((K(h))⊤Q(h))

= V (h)Softmax

(
−β

[
−2[(h− 1)(n− 2)− 1]w −2(h− 1)(n− 2)w · · · −2h(n− 2)w

ℓ(h−1)(n−2)−1 ℓ(h−1)(n−2) · · · ℓh(n−2)

]⊤ [
X

11×n

])
,
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where last line is by plug in (D.2) and (D.3). Note the i-th column of the attention score matrix (the
Softmax nested expression) is equivalent to the following expressions

Softmax((K(h))⊤Q(h)):,i

= Softmax

(
−β

[
−2[(h− 1)(n− 2)− 1]w −2(h− 1)(n− 2)w · · · −2h(n− 2)w

ℓ(h−1)(n−2)−1 ℓ(h−1)(n−2) · · · ℓh(n−2)

]⊤ [
X

11×n

])
:,i

= Softmax

−β


−2[(h− 1)(n− 2)− 1]w⊤xi + ℓ(h−1)(n−2)−1

−2(h− 1)(n− 2)w⊤xi + ℓ(h−1)(n−2)

...
−2h(n− 2)w⊤xi + ℓh(n−2)


 (

pick column i
)

= Softmax

−β


[(h− 1)(n− 2)− 1](−2w⊤xi + L̃(h−1)(n−2)−1 + L̃0)− 2[(h− 1)(n− 2)− 1]t

(h− 1)(n− 2)(−2w⊤xi + L̃(h−1)(n−2) + L̃0)− 2(h− 1)(n− 2)t
...

h(n− 2)(−2w⊤xi + L̃h(n−2) + L̃0)− 2h(n− 2)t




(
By ℓk = k(L̃k + L̃0)− 2kt

)

= Softmax

− β

∆L


(−2x⊤

i w − 2t+ L̃0 + L̃(h−1)(n−2)−1) · [(h− 1)(n− 2)− 1]∆L

(−2x⊤
i w − 2t+ L̃0 + L̃(h−1)(n−2)) · (h− 1)(n− 2)∆L

...
(−2x⊤

i w − 2t+ L̃0 + L̃h(n−2)) · h(n− 2)∆L




(
By mutiplying and dividing by ∆L

)

= Softmax

− β

∆L


(−2x⊤

i w − 2t+ L̃0 + L̃(h−1)(n−2)−1) · (L̃(h−1)(n−2)−1 − L̃0)

(−2x⊤
i w − 2t+ L̃0 + L̃(h−1)(n−2)) · (L̃(h−1)(n−2) − L̃0)

...
(−2x⊤

i w − 2t+ L̃0 + L̃h(n−2)) · (L̃h(n−2) − L̃0)




(
By k∆L = L̃k − L̃0

)

= Softmax

− β

∆L


(−2x⊤

i w − 2t) · L̃(h−1)(n−2)−1 + (L̃(h−1)(n−2)−1)
2 + (x⊤

i w + t)2

(−2x⊤
i w − 2t) · L̃(h−1)(n−2) + (L̃(h−1)(n−2))

2 + (x⊤
i w + t)2

...
(−2x⊤

i w − 2t) · L̃h(n−2) + (L̃h(n−2))
2 + (x⊤

i w + t)2




= Softmax

− β

∆L


(x⊤

i w + t− L̃(h−1)(n−2)−1)
2

(x⊤
i w + t− L̃(h−1)(n−2))

2

...
(x⊤

i w + t− L̃h(n−2))
2


 . (D.6)

Here, the second-last equality arises from the fact that the softmax function is shift-invariant, allowing
us to subtract and add a constant across all coordinates. To be more precise, we first expand the
product for k-th coordinate of the column vector

(−2x⊤
i w − 2t+ L̃0 + L̃k)(L̃k − L̃0)

= (−2x⊤
i w − 2t)Lk + L0Lk + L2

k − (−2x⊤
i w − 2t)L0 − L2

0 − L0Lk

= (−2x⊤
i w − 2t)Lk + L2

k − (−2x⊤
i w − 2t)L0 − L2

0︸ ︷︷ ︸
constant across the column vector

.

Then, dropping the constant and adding another constant (x⊤
i w + t)2 across all coordinates, the

above equation becomes

(−2x⊤
i w − 2t)Lk + L2

k + (x⊤
i w + t)2 = (x⊤

i w + t− Lk)
2.
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Hence we finish the derivation of (D.6). Thus we have

Attnh(A(X)):,i = V (h)Softmax

− β

∆L


(x⊤

i w + t− L̃(h−1)(n−2)−1)
2

(x⊤
i w + t− L̃(h−1)(n−2))

2

...
(x⊤

i w + t− L̃h(n−2))
2


 . (D.7)

For a specific h, we calculate the result of (D.7) column by column. Let Xi denote any column
(token) of the matrix X . We partition the situation at each column (token) into three distinct cases:

• Case 1: w⊤Xi + t is strictly within the interpolation range of Attnh (X ∈
[L̃(h−1)(n−2), L̃h(n−2)−1]). This excludes the following range at the edge of the interpolation
range of

[L̃(h−1)(n−2)−1, L̃(h−1)(n−2)] ∪ [L̃h(n−2)−1, L̃h(n−2)].

• Case 2: w⊤Xi + t is not within the interpolation range of Attnh:

w⊤Xi + t /∈ [L̃(h−1)(n−2)−1, L̃h(n−2)].

• Case 3: w⊤Xi + t is on the edge (region) of the interpolation range of Attnh:

w⊤Xi + t ∈ [L̃(h−1)(n−2)−1, L̃(h−1)(n−2)] ∪ [L̃h(n−2)−1, L̃h(n−2)].

Two remarks are in order.

Remark D.2 (Cases of a Single Head Attention). The H heads split the approximation of the
truncated linear map across disjoint intervals. For head h,

∥Attnh(X)− Range[a+ b−a
p ((h−1)(n−2)−1),a+ b−a

p h(n−2)](X)∥∞ ≤ ϵ1,

where ϵ > 0 is arbitrarily small.
With this understanding, w⊤Xi + t:
• Case 1: falls into the interior of the interpolation range of the h-th head Attnh, denoted as
Range[a+(b−a)((h−1)(n−2)−1)/p,a+(b−a)h(n−2)/p].

• Case 2: remains outside of the interpolation range of the h-th head Attnh.
• Case 3: falls on the boundary of the interpolation range of the h-th head Attnh.

Remark D.3 (Cases of All Attention Heads). According to Lemma D.2, for all heads in
AttnH , there are two possible cases:
• Case 1*: x falls into Case 1 for a head, and Case 2 for all other heads.

• Case 2*: x falls into Case 3 for two heads with adjacent interpolation ranges, and Case 2 for
other heads.

This also means that when Case 1 appears in AttnH , the situation of all head in AttnH falls
into Case 1*. And when Case 3 appears in AttnH , the situation of all head in AttnH falls into
Case 2*. Thus, We discuss Case 2* in the discussion of Case 3.

Case 1: Xi ∈ [L̃(h−1)(n−2), L̃h(n−2)−1]. In this case, our goal is to demonstrate this attention head
outputs a value close to Range[a,b](w

⊤Xi + t).

Let L̃s and L̃s+1 be the two interpolants such that

w⊤Xi + t ∈ [L̃s, L̃s+1]. (D.8)

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Then, s and s+ 1 are also the labels of the two largest entries in

− β

∆L


(w⊤Xi + t− L̃(h−1)(n−2)−1)

2

(w⊤Xi + t− L̃(h−1)(n−2))
2

...
(w⊤Xi + t− L̃h(n−2))

2

 ,

since

argmax
k∈{(h−1)(n−2)−1,h(n−2)}

− β

∆L
(w⊤Xi + t− L̃k)

2

= argmin
k∈{(h−1)(n−2)−1,h(n−2)}

(w⊤Xi + t− L̃k)
2

= argmin
k∈{(h−1)(n−2)−1,h(n−2)}

|w⊤Xi + t− L̃k|.

We also note that the distance of w⊤Xi+ t to interpolants beside L̃s and L̃s+1 differs from w⊤Xi+ t

for at least L̃s − L̃s−1 = (b− a)/p or L̃s+1 − L̃s = (b− a)/p.

This is equivalent to the occasion when x1 − x3 in Lemma D.1 is larger than

max
{ β

∆L
(w⊤Xi + t− L̃s−1)

2 − (w⊤Xi + t− L̃s)
2,

β

∆L
(w⊤Xi + t− L̃s+2)

2 − (w⊤Xi + t− L̃s+1)
2
}

≥ β

∆L
· (b− a

p
)2,

which is invariant to Xi.

Thus according to Lemma D.1 and the fact that the s and s+ 1 are the two largest entries in the i-th
column of the attention score matrix, we have

∥∥∥Softmax

− β

∆L


(w⊤Xi + t− L̃(h−1)(n−2)−1)

2

(w⊤Xi + t− L̃(h−1)(n−2))
2

...
(w⊤Xi + t− L̃h(n−2))

2


− 1

1 + e−βδ
es︸︷︷︸
n×1

− e−βδ

1 + e−βδ
es+1︸︷︷︸
n×1

∥∥∥
∞

≤ ϵ2,

for any ϵ2 > 0.

This yields that

∥∥∥V Softmax

− β

∆L


(w⊤Xi + t− L̃(h−1)(n−2)−1)

2

(w⊤Xi + t− L̃(h−1)(n−2))
2

...
(w⊤Xi + t− L̃h(n−2))

2


− V

1

1 + e−βδ
es − V

e−βδ

1 + e−βδ
es+1

∥∥∥
∞

≤
∥∥∥Softmax

− β

∆L


(w⊤Xi + t− L̃(h−1)(n−2)−1)

2

(w⊤Xi + t− L̃(h−1)(n−2))
2

...
(w⊤Xi + t− L̃h(n−2))

2


− 1

1 + e−βδ
es −

e−βδ

1 + e−βδ
es+1

∥∥∥
∞

· ∥V ∥∞

≤ ∥V ∥∞ϵ2.

This is equivalent to

∥V Softmax(K⊤Q):,i −
1

1 + e−βδ
L̃(h−1)(n−2)+s−1ekG

− e−βδ

1 + e−βδ
L̃(h−1)(n−2)+sekG

∥∞

≤ ∥V ∥∞ · ϵ2
(
By ∥AB∥ ≤ ∥A∥ · ∥B∥

)
≤ mvϵ2, (D.9)

where the last line is by (D.5).
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From (D.8), we derive that

∥ 1

1 + e−βδ
L̃(h−1)(n−2)+s−1 +

e−βδ

1 + e−βδ
L̃(h−1)(n−2)+s − (w⊤Xi + t)ekG

∥∞

≤ ∥ 1

1 + e−βδ
(L̃(h−1)(n−2)+s−1 − (w⊤Xi + t)ekG

)∥∞ + ∥ e−βδ

1 + e−βδ
(L̃(h−1)(n−2)+s − (w⊤Xi + t))∥∞(

By convex combination of (w⊤Xi + t) and triangle inequality
)

≤ 1

1 + e−βδ
· b− a

p
+

e−βδ

1 + e−βδ
· b− a

p

(
By (D.8)

)
=

b− a

p
. (D.10)

Combing (D.9) and (D.10) yields

∥V Softmax(K⊤Q):,i − (w⊤Xi + t)∥∞

≤ ∥V Softmax(K⊤Q):,i −
1

1 + e−βδ
L̃(h−1)(n−2)+s−1 −

e−βδ

1 + e−βδ
L̃(h−1)(n−2)+s∥∞

+ ∥ 1

1 + e−βδ
L̃(h−1)(n−2)+s−1 +

e−βδ

1 + e−βδ
L̃(h−1)(n−2)+s − (w⊤Xi + t)ekG

∥∞(
By triangle inequality

)
≤ mvϵ2 +

b− a

p
, (D.11)

where the first inequality comes from adding and subtracting the interpolation points’ convex combi-
nation and then applying triangle inequality.

Case 2: X /∈ [L̃(h−1)(n−2)−1, L̃h(n−2)]. In this case, Xi falls out of the range of interpolation
covered by Attnh.

Without loss of generality, suppose w⊤Xi + t to lie left to the range of interpolation of Attnh.

This yields that L̃(h−1)(n−2)−1 is the closest interpolant within Attnh to w⊤Xi + t. Furthermore,
the second closest interpolant L̃(h−1)(n−2) is at least further for at least (b−a)/p, which is a constant
irrelevant to Xi

Then by Lemma D.1, we have

∥∥∥Softmax

− β

∆L


(w⊤Xi + t− L̃(h−1)(n−2)−1)

2

(w⊤Xi + t− L̃(h−1)(n−2))
2

...
(w⊤Xi + t− L̃h(n−2))

2


− e1︸︷︷︸

n×1

∥∥∥
∞

≤ ϵ3,

for any ϵ3 > 0.

This yields that

∥V Softmax

− β

∆L


(w⊤Xi + t− L̃(h−1)(n−2)−1)

2

(w⊤Xi + t− L̃(h−1)(n−2))
2

...
(w⊤Xi + t− L̃h(n−2))

2


− V e1︸︷︷︸

n×1

∥∞

≤ ∥V ∥∞ · ϵ3
(
By ∥AB∥ ≤ ∥A∥ · ∥B∥

)
≤mvϵ3,

where the last line is by (D.5).
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This is equivalent to

∥∥∥V Softmax

− β

∆L


(w⊤Xi + t− L̃(h−1)(n−2)−1)

2

(w⊤Xi + t− L̃(h−1)(n−2))
2

...
(w⊤Xi + t− L̃h(n−2))

2


− 0do

∥∥∥
∞

≤ mvϵ3. (D.12)

Case 1*. According to Lemma D.2, when Case 1 occurs for one head in the H heads of AttnH , all
other head will be in Case 2.

Combining with the result in Case 2, we have the output of all heads as

∥AttnH(A(X)):,i − (w⊤Xi + t)ekG
∥∞

= ∥
∑

h0∈[H]/{h}

Attnh0
◦A(X):,i∥∞ + ∥Attnh ◦A(X):,i − (w⊤Xi + t)ekG

∥∞

= (H − 1)mvϵ3 +mvϵ2 +
b− a

p

(
By (D.11) and (D.12)

)
= (H − 1)mvϵ3 +mvϵ2 +

b− a

H(n− 2)
.

Setting ϵ2, ϵ3 to be

ϵ2 =
ϵ0
2

ϵ3 =
ϵ0

2(H − 1)m

yields the final result.

Case 3 (and Case 2*): X ∈ [L̃(h−1)(n−2)−1, L̃(h−1)(n−2)] ∪ [L̃h(n−2)−1, L̃h(n−2)]. In this case,
w⊤Xi + t is the boundary of the interpolation range of Attnh0 . By Lemma D.2, it should also fall on
the boundary of a head with neighboring interpolation range. Without loss of generality, we set it to
be Attnh0−1. Furthermore, Lemma D.2 indicates that w⊤Xi + t should fall on no other interpolation
range of any heads beside Attnh0 and Attnh0−1.

Combining this with case 2, we have

AttnH(A(X)):,i =

H∑
h=1

Attnh ◦A(X):,i

∈ [(−(H − 2)mvϵ3 +Attnh0
◦A(X):,i +Attnh0−1 ◦A(X):,i),

((H − 2)mvϵ3 +Attnh0
◦A(X):,i +Attnh0−1 ◦A(X):,i)].(

By (D.12)
)

By Lemma D.1, let δ denote

δ = L̃(h−1)(n−2)+s − (w⊤Xi + t)ekG
− [L̃(h−1)(n−2)+s − (w⊤Xi + t)ekG

],

we have

∥Softmax((K(h))⊤Q(h))− (
1

1 + e−βδ
e1 +

e−βδ

1 + e−βδ
e2)∥ ≤ ϵ4,

and

∥Softmax((K(h−1))⊤Q(h−1))− (
1

1 + e−βδ
en−1 +

e−βδ

1 + e−βδ
en)∥ ≤ ϵ5,

for any ϵ4, ϵ5 > 0.

Thus we have
∥V (h)Softmax((K(h))⊤Q(h)) + V (h−1)Softmax((K(h−1))⊤Q(h−1))
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− V (
1

1 + e−βδ
e1 +

e−βδ

1 + e−βδ
e2 +

1

1 + e−βδ
en−1 +

e−βδ

1 + e−βδ
en)∥∞

≤ ∥V ∥∞(ϵ4 + ϵ5).

This is equivalent to

∥V (h)Softmax((K(h))⊤Q(h)) + V (h−1)Softmax((K(h−1))⊤Q(h−1))

− (
1

1 + e−βδ
· 0 + e−βδ

1 + e−βδ
ekG

L̃(h−1)(n−2)+s +
1

1 + e−βδ
ekG

L̃(h−1)(n−2)+s−1 +
e−βδ

1 + e−βδ
ekG

) · 0∥∞

≤ ∥V ∥∞ · (ϵ4 + ϵ5).

Thus we have
∥V (h)Softmax((K(h))⊤Q(h)) + V (h−1)Softmax((K(h−1))⊤Q(h−1))

− (
e−βδ

1 + e−βδ
ekG

L̃(h−1)(n−2)+s +
1

1 + e−βδ
ekG

L̃(h−1)(n−2)+s−1)∥∞

≤ ∥V ∥∞(ϵ4 + ϵ5),

which implies

∥
H∑

h=1

Attnh(A(X)):,i − (
e−βδ

1 + e−βδ
ekG

L̃(h−1)(n−2)+s +
1

1 + e−βδ
ekG

L̃(h−1)(n−2)+s−1)∥∞

≤ (H − 2)mvϵ3 + ∥V ∥∞(ϵ4 + ϵ5). (D.13)

Finally, since

∥ e−βδ

1 + e−βδ
ekG

L̃(h−1)(n−2)+s +
1

1 + e−βδ
ekG

L̃(h−1)(n−2)+s−1 − (w⊤Xi + t)ekG
∥∞ ≤ b− a

p
,(

By (D.10)
)

combining with (D.13), we have

∥
H∑

h=1

Attnh(A(X)):,i − (w⊤Xi + t)ekG
∥∞

≤ ∥
H∑

h=1

Attnh(A(X)):,i − (
e−βδ

1 + e−βδ
ekG

L̃(h−1)(n−2)+s +
1

1 + e−βδ
ekG

L̃(h−1)(n−2)+s−1)∥∞

+ ∥( e−βδ

1 + e−βδ
ekG

L̃(h−1)(n−2)+s +
1

1 + e−βδ
ekG

L̃(h−1)(n−2)+s−1)− (w⊤Xi + t)ekG
∥∞(

By triangle inequality
)

≤ b− a

p
+ (H − 2)mvϵ3 + ∥V ∥∞(ϵ4 + ϵ5)

≤ b− a

H(n− 2)
+ (H − 2)max{|a|, |b|}ϵ3 +max{|a|, |b|}(ϵ4 + ϵ5).

Setting ϵ3, ϵ4, ϵ5 to be

ϵ3 =
ϵ0

3(H − 2)

ϵ4 = ϵ5 =
ϵ0
3

yields the final result.

This completes the proof.

Lemma D.3 (Attention Prepended with Token-Wise Linear Transformation is Still a Transformer).
For any attention Attn and any linear transformation A, Attn ◦A is still an attention.
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Proof. We denote the transformation matrix of A also as MA. Denote the attention Attn as

Attn(Z) := WV ZSoftmax((WKZ)⊤WQZ).

Then we have
Attn ◦A(Z) = WV MAZSoftmax((WKMAZ)⊤WQMAZ).

It is a new attention with parameters WKMA,WQMA and WV MA.

Lemma D.4 (Lemma 14 in (Bai et al., 2023): Composition of Error for Approximating Convex GD).
Suppose f : Rd → R is a convex function. Let w⋆ ∈ argminw∈Rd f(w), R ≥ 2∥w⋆∥2, and assume
that ∇f is Lf -smooth on Bd

2 (R). Let sequences {ŵℓ}ℓ≥0 ⊂ Rd and {wℓ
GD}ℓ≥0 ⊂ Rd be given by

ŵ0 = w0
GD = 0, {

ŵℓ+1 = ŵℓ − η∇f(ŵℓ) + ϵℓ, ∥ϵℓ∥2 ≤ ϵ,

wℓ+1
GD = wℓ

GD − η∇f(wℓ
GD),

for all ℓ ≥ 0. Then as long as η ≤ 2/Lf , for any 0 ≤ L ≤ R/(2ϵ), it holds that ∥ŵL −wL
GD∥2 ≤ Lϵ

and ∥ŵL∥2 ≤ R
2 + Lϵ ≤ R.

Corollary D.1.1 (Corollary A.2 in (Bai et al., 2023): Gradient Descent for Smooth and Strongly
Convex Function). Suppose L : Rd → R is a α-strongly convex and β-smooth for som 0 < α ≤ β.
Then, the gradient descent iterates w(t+1)

GD := wt
GD − η∇L(wL

GD) with learning rage η = 1/β and
initialization w0

GD ∈ Rd satisfies for any t ≥ 1,

∥wt
GD − w⋆∥22 ≤ exp

(
− t

κ

)
· ∥w0

GD − w⋆∥22,

L(wt
GD)− L(w⋆) ≤ β

2
exp

(
− t

κ

)
· ∥w0

GD − w⋆∥22,

where κ := β/α is the condition number of L, and w⋆ := argminw∈Rd L(w).

D.1 PROOF OF THEOREM 3.1

Definition D.3 (Interpolation Points). Define P + 1 interpolation points of the effective domain of
f , i.e., the range of w⊤x− y, as

Lj := Lmin +
j

P
(Lmax − Lmin), for j ∈ 0, 1, . . . , P ,

where [Lmin, Lmax] is a bounded interval containing all values of w⊤x− y.

Theorem D.2 (In-Context Emulation of f(w⊤x − y)x with Single-Head Attention; Theorem 3.1
Restate). Let [Lmin, Lmax] be a bounded interval containing all values of w⊤x− y, and let

X :=

[
x1 x2 · · · xn

y1 y2 · · · yn

]
∈ R(d+1)×n and W := [w w · · · w] ∈ Rd×n,

where xi ∈ Rd, yi ∈ R, and w ∈ Rd is the coefficient vector. Define the input as:

Z :=

[
x1 x2 · · · xn

y1 y2 · · · yn
w w · · · w

]
=

[
X
W

]
∈ R(2d+1)×n. (D.14)

Assume max{∥X∥∞, ∥W∥∞} ≤ B. For any continuously differentiable function f : R → R and
any ϵ > 0, there exists a single-head attention Attns with a linear layer Linear such that
∥Attns ◦ Linear(Z)−

[
f(w⊤x1 − y1)x1 · · · f(w⊤xn − yn)xn

]
∥∞ ≤ ϵ, for any ϵ > 0.
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Proof. We define the linear transformation of Z as a concatenation of two functions with some
manual padding of zeros:

Linear(Z) :=

[
Linearx(X)

Linearw(W ) 0(2d+n+2)×nP

]
︸ ︷︷ ︸

2(2d+n+2)×n(P+1)

,

where we define Linearx ∈ R(2d+n+2)×n(P+1) and Linearw ∈ R(2d+n+2)×n as below.

We define Linearw as:

Linearw(W ) :=

[
Id

0(d+n+2)×d

]
︸ ︷︷ ︸
(2d+n+2)×d

W︸︷︷︸
d×n

+


0d×n

−11×n

0d×n

11×n

In


︸ ︷︷ ︸
(2d+n+2)×n

=


W

−11×n

0d×n

11×n

In


︸ ︷︷ ︸
(2d+n+2)×n

.

We define Linearx as:
Linearx(X)

:=

n∑
i=1

[
Id+1

0(d+1+n)×(d+1)

]
︸ ︷︷ ︸
(2d+n+2)×(d+1)

X︸︷︷︸
(d+1)×n

[
0n×(i−1)(P+1) 2L0e

(n)
i 2L1e

(n)
i · · · 2LP e

(n)
i 0n×(n−i)(P+1)

]
︸ ︷︷ ︸

n×n(P+1)

+

n∑
i=1

0(d+1)×d 0(d+1)

Id 0d
0(n+1)×d 0n+1


︸ ︷︷ ︸

(2d+n+2)×(d+1)

X︸︷︷︸
(d+1)×n

[
0n×(i−1)(P+1) f(L0)e

(i)
i f(L1)e

(i)
i · · · f(LP )e

(i)
i 0n×(n−i)(P+1)

]
︸ ︷︷ ︸

n×n(P+1)

+

 0(2d+1)×(P+1) · · · 0(2d+1)×(P+1)

S · · · S

Ce
(n)
1 11×(P+1) · · · Ce

(n)
n 11×(P+1)


︸ ︷︷ ︸

(2d+n+2)×n(P+1)

= [T1 T2 · · · Tn]︸ ︷︷ ︸
(2d+n+2)×n(P+1)

,

where {Lj}Pj=0 are the P + 1 interpolation points (Definition D.3); e(n)i ∈ Rn is the one-hot vector
with 1 at index i and 0 elsewhere; C is a constant to be determined later, and

11×(P+1) := [1 1 · · · 1]︸ ︷︷ ︸
1×(P+1)

,

S :=
[
−L2

0 −L2
1 · · · L2

P

]︸ ︷︷ ︸
1×(P+1)

,

Ti :=


2L0xi 2L1xi · · · 2LPxi

2L0yi 2L1yi · · · 2LP yi
f(L0)xi f(L1)xi · · · f(LP )xi

−L2
0 −L2

1 · · · −L2
P

Ce
(n)
i Ce

(n)
i · · · Ce

(n)
i


︸ ︷︷ ︸

(2d+n+2)×(P+1)

.
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So our Linear(Z) is:

Linear(Z) =


T1 T2 · · · Tn

Wd×n 0d×nP

−11×n 01×nP

0d×n 0d×nP

11×n 01×nP

In 0n×nP


︸ ︷︷ ︸
2(2d+n+2)×n(P+1)

=



2L0x1 · · · 2LPx1 · · · · · · 2L0xn · · · 2LPxn

2L0y1 · · · 2LP y1 · · · · · · 2L0yn · · · 2LP yn
f(L0)x1 · · · f(LP )x1 · · · · · · f(L0)xn · · · f(LP )xn

−L2
0 · · · −L2

P · · · · · · −L2
0 · · · −L2

P

Ce
(n)
1 · · · Ce

(n)
1 · · · · · · Ce

(n)
n · · · Ce

(n)
n

Wd×n 0d×nP

−11×n 01×nP

0d×n 0d×nP

11×n 01×nP

In 0n×nP


︸ ︷︷ ︸

2(2d+n+2)×n(P+1)

.

Now we construct WK , WQ, WV , WO to be:

WK :=
[
I2d+n+2 0(2d+n+2)×(2d+n+2)

]︸ ︷︷ ︸
(2d+n+2)×2(2d+n+2)

,

WQ :=
[
0(2d+n+2)×(2d+n+2) I2d+n+2

]︸ ︷︷ ︸
(2d+n+2)×2(2d+n+2)

,

WV :=
[
0d×(d+1) Id 0d×(2d+2n+3)

]︸ ︷︷ ︸
d×2(2d+n+2)

,

WO :=

[
In

0nP×n

]
︸ ︷︷ ︸
n(P+1)×n

.

Thus,
WKLinear(Z) = [T1 T2 · · · Tn]︸ ︷︷ ︸

(2d+n+2)×n(P+1)

,
(
WK selects the Ti blocks in Linear(Z)

)

WQLinear(Z) =


Wd×n 0d×nP

−11×n 01×nP

0d×n 0d×nP

11×n 01×nP

In 0n×nP


︸ ︷︷ ︸
(2d+n+2)×n(P+1)

,
(
WQ selects the bottom (2d+ n+ 2) rows in Linear(Z)

)

WV Linear(Z) = [F1 F2 · · · Fn]︸ ︷︷ ︸
d×n(P+1)

,
(
WV selects the (d+ 2)-th row in Ti

)
where we define Fi as:

Fi := [f(L0)xi f(L1)xi · · · f(LP )xi]︸ ︷︷ ︸
d×(P+1)

.

Therefore,
Attns ◦ Linear(Z)

=WV Linear(Z) · Softmaxβ((WKLinear(Z))⊤WQLinear(Z)) ·WO

= [F1 F2 · · · Fn]︸ ︷︷ ︸
d×n(P+1)

Softmaxβ(

n(P+1)×n(P+1)︷ ︸︸ ︷
[T1 T2 · · · Tn]

⊤︸ ︷︷ ︸
n(P+1)×(2d+n+2)


Wd×n 0d×nP

−11×n 01×nP

0d×n 0d×nP

11×n 01×nP

In 0n×nP


︸ ︷︷ ︸
(2d+n+2)×n(P+1)

)

[
In

0nP×n

]
︸ ︷︷ ︸
n(P+1)×n

. (D.15)
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For simplicity of presentation, we define

T̃ := [T1 T2 · · · Tn]
⊤︸ ︷︷ ︸

n(P+1)×(2d+n+2)

.

For the Softmaxβ part in (D.15), we have:

Softmaxβ((WKLinear(Z))⊤WQLinear(Z)) ·WO

= Softmaxβ( T̃︸︷︷︸
n(P+1)×(2d+n+2)


Wd×n 0d×nP

−11×n 01×nP

0d×n 0d×nP

11×n 01×nP

In 0n×nP


︸ ︷︷ ︸
(2d+n+2)×n(P+1)

)

[
In

0nP×n

]
︸ ︷︷ ︸
n(P+1)×n

(
By the definition of T̃

)

= Softmaxβ(

T̃

Wd×n

−11×n

0d×n

11×n

In

 T̃


0d×nP

01×nP

0d×nP

01×nP

0n×nP


n(P+1)×n n(P+1)×nP


︸ ︷︷ ︸ ︸ ︷︷ ︸

)

[
In

0nP×n

]
︸ ︷︷ ︸
n(P+1)×n

(
By distributivity of matrix multiplication over block concatenation

)

=

Softmaxβ(T̃


Wd×n

−11×n

0d×n

11×n

In

) Softmaxβ(T̃


0d×nP

01×nP

0d×nP

01×nP

0n×nP

)
n(P+1)×n n(P+1)×nP


︸ ︷︷ ︸ ︸ ︷︷ ︸

[
In

0nP×n

]
︸ ︷︷ ︸
n(P+1)×n

(
By the column-wise operation nature of Softmaxβ

)

= Softmaxβ([T1 T2 · · · Tn]
⊤︸ ︷︷ ︸

n(P+1)×(2d+n+2)


Wd×n

−11×n

0d×n

11×n

In


︸ ︷︷ ︸
(2d+n+2)×n

).
([ In

0nP×n

]
selects the first Softmaxβ block

)

Since our target is a token-wise approximation, we focus on a single token. We consider the c-th
column (c ∈ [n]) in the Softmaxβ part, and we have

(Softmaxβ((WKLinear(Z))⊤WQLinear(Z)) ·WO):,c = Softmaxβ(


T⊤
1

T⊤
2
...

T⊤
n


︸ ︷︷ ︸

n(P+1)×(2d+n+2)

·


w
−1
0d
1

e
(n)
c


︸ ︷︷ ︸

(2d+n+2)×1

)

= Softmaxβ(


M1,c

M2,c

...
Mn,c


︸ ︷︷ ︸
n(P+1)×1

),
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where each sub-block Mi,c ∈ R(P+1)×1 for i ∈ [n] is

Mi,c := T⊤
i︸︷︷︸

(P+1)×(2d+n+2)

·


w
−1
0d
1

e
(n)
c


︸ ︷︷ ︸

(2d+n+2)×1

=


2L0x

⊤
i 2L0yi f(L0)x

⊤
i −L2

0 C(e
(n)
i )⊤

2L1x
⊤
i 2L1yi f(L1)x

⊤
i −L2

1 C(e
(n)
i )⊤

...
...

...
...

...
2LPx

⊤
i 2LP yi f(LP )x

⊤
i −L2

P C(e
(n)
i )⊤


︸ ︷︷ ︸

(P+1)×(2d+n+2)

·


w
−1
0d
1

e
(n)
c


︸ ︷︷ ︸

(2d+n+2)×1

(
By transpose of Ti

)

=


2L0x

⊤
i w − 2L0yi − L2

0 + C1i=c

2L1x
⊤
i w − 2L1yi − L2

1 + C1i=c

...
2LPx

⊤
i w − 2LP yi − L2

P + C1i=c


︸ ︷︷ ︸

(P+1)×1

,

where 1i=c denotes the indicator function of i = c.

For simplicity, let

u
(i)
j := 2Ljx

⊤
i w − 2Ljyi − L2

j , for j ∈ {0, . . . , P}, (D.16)
such that

Mi,c =


u
(i)
0 + C1i=c

u
(i)
1 + C1i=c

...
u
(i)
P + C1i=c


︸ ︷︷ ︸

(P+1)×1

.

This means that
(Softmaxβ((WKLinear(Z))⊤WQLinear(Z)) ·WO):,c

= Softmax(β


M1,c

M2,c

...
Mn,c


︸ ︷︷ ︸
n(P+1)×1

)

=

n∑
i=1

P∑
j=0

exp
{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

} e
(n(P+1))
(i−1)(P+1)+(j+1)︸ ︷︷ ︸

n(P+1)×1

.

(
By the definition of Softmaxβ

)
Thus we have

Attns ◦ Linear(Z):,c

= WV Linear(Z) · (Softmaxβ((WKLinear(Z))⊤WQLinear(Z)) ·WO):,c

= [F1 · · · Fn]︸ ︷︷ ︸
d×n(P+1)

·
n∑

i=1

P∑
j=0

exp
{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

} e
(n(P+1))
(i−1)(P+1)+(j+1)︸ ︷︷ ︸

n(P+1)×1
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= [f(L0)x1 · · · f(LP )x1 · · · f(L0)xn · · · f(LP )xn]︸ ︷︷ ︸
d×n(P+1)

·
(
By the definitoin of Fi

)
n∑

i=1

P∑
j=0

exp
{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

} e
(n(P+1))
(i−1)(P+1)+(j+1)︸ ︷︷ ︸

n(P+1)×1

=

n∑
i=1

P∑
j=0

exp
{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}
[f(L0)x1 · · · f(LP )x1 · · · f(L0)xn · · · f(LP )xn]︸ ︷︷ ︸

d×n(P+1)

· e(n(P+1))
(i−1)(P+1)+(j+1)︸ ︷︷ ︸

n(P+1)×1(
By distributivity of matrix multiplication

)
=

n∑
i=1

P∑
j=0

exp
{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj) xi︸︷︷︸
d×1

.

(
The one-hot vector retrieves the ((i− 1)(P + 1) + (j + 1))-th column

)
Again, our goal is to approximate f(x⊤

c w − yc)xc with:

Attns ◦ Linear(Z):,c =

n∑
i=1

P∑
j=0

exp
{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj)xi. (D.17)

We start to analyze the summation of weights
∑P

j=0(· · · ) for i = c and i ̸= c. We use the result of
this analysis to bound our target approximation ∥Attns ◦ Linear(Z):,c − f(x⊤

c w − yc)xc∥∞ later.

• For every i ∈ [n], if i ̸= c, we have∑P
j=0 exp

{
βu

(i)
j

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

} (
By 1i ̸=c = 0 for i ̸= c

)

<

∑P
j=0 exp

{
βu

(i)
j

}
∑P

j′=0 exp
{
β(u

(i′)
j′ + C)

} (D.18)

≤ ϵ0, (D.19)
where (D.18) is by taking only the i′ = c term, and the last line is by the softmax-shift equality∑P

j=0 e
uj∑P

j′=0 e
vj′+C

=

∑P
j=0 e

uj

eC
∑P

j′=0 e
vj′

,

for any constant C and choosing C := M − 1
β ln ϵ0 = (maxj Lj) · (2dB2 + 2B)− 1

β ln ϵ0 with
ϵ0 > 0.3

3More explicitly, recall (D.16): u(i)
j := 2Ljx

⊤
i w − 2Ljyi − L2

j . Since max{∥X∥∞, ∥W∥∞} ≤ B, we
have

∥xi∥∞ ≤ B, |yi| ≤ B, ∥w∥∞ ≤ B,

which implies ∥w∥1 ≤ dB. Let L⋆ := maxj |Lj |. For a fixed pair of i, i′, we have

u
(i)
j − u

(i′)
j = 2Lj · ((xi − xi′)

⊤w − (yi − yi′))

≤ 2|Lj | · (|(xi − xi′)
⊤w|+ |(yi − yi′)|)

(
By triangle inequality

)
≤ 2L⋆ · (∥xi − xi′∥∞ · ∥w∥1 + |(yi − yi′)|)

(
By L⋆ := maxj |Lj | and Hölder’s inequality

)
≤ 2L⋆ · ((∥xi∥∞ + ∥xi′∥∞) · ∥w∥1 + |yi|+ |yi′)|)

(
By triangle inequality

)
≤ 2L⋆ · ((2B) · dB + 2B)

(
By ∥xi∥∞ ≤ B, |y| ≤ B and ∥w∥1 ≤ dB

)
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Thus, the weight assigned to i ̸= c is tiny.

• For i = c, we have∑P
j=0 exp

{
β(u

(c)
j + C

}
)∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}
= 1−

∑n
i̸=c

∑P
j=0 exp

{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

} (
By

∑n
i ̸=c

∑P
j=0(· · · ) +

∑n
i=c

∑P
j=0(· · · ) = 1

)
≥ 1− (n− 1)ϵ0, (D.21)

where the last inequality follows from (i.e., (D.19))∑n
i ̸=c

∑P
j=0 exp

{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

} ≤ (n− 1)ϵ0,

and setting 0 < ϵ0 < 1/(n− 1). Therefore, the weight concentrates at i = c.

From (D.19), (D.21), and our target approximation

∥Attns ◦ Linear(Z):,c − f(x⊤
c w − yc)xc∥∞

= ∥
n∑

i=1

P∑
j=0

exp
{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj)xi − f(x⊤
c w − yc)xc∥∞, (D.22)

we split (D.22) into two terms

∥
n∑

i=1

P∑
j=0

exp
{
β(u

(i)
j + C1i=c)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj)xi − f(x⊤
c w − yc)xc∥∞

= ∥
n∑

i̸=c

P∑
j=0

exp
{
β(u

(i)
j )
}

∑n
i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj)xi

+

P∑
j=0

exp
{
β(u

(i)
j + C)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj)xi − f(x⊤
c w − yc)xc∥∞(

By splitting the summation over i into two parts: i = c and i ̸= c
)

≤ ∥
n∑

i ̸=c

P∑
j=0

exp
{
β(u

(i)
j )
}

∑n
i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj)xi∥∞

︸ ︷︷ ︸
(I)

(D.23)

≤ 2L⋆ · (2dB2 + 2B) =: M.

Hence, we have u
(i)
j ≤ u

(i′)
j +M , which implies

eβu
(i)
j ≤ eβMeβu

(i′)
j , for all j ∈ {0, . . . , P}. (D.20)

Then, (D.18) becomes, for any constant C,∑P
j=0 exp

{
βu

(i)
j

}
exp{βC}

∑P
j′=0 exp

{
βu

(i′)
j′

} ≤
eβM

∑P
j=0 exp

{
βu

(i′)
j

}
eβC

∑P
j′=0 exp

{
βu

(i′)
j′

} = eβ(M−C).

Choosing C := M − 1
β
ln ϵ0 = (maxj Lj) · (2dB2 + 2B)− 1

β
ln ϵ0, we obtain the desired bound ϵ0.
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+ ∥
P∑

j=0

exp
{
β(u

(i)
j + C)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj)xi − f(x⊤
c w − yc)xc∥∞

︸ ︷︷ ︸
(II)

,

(
By triangle inequality

)
where we are capable of bounding term (I) with (D.19) and term (II) as follows.

For term (I) in (D.23), we have
(I)

= ∥
n∑

i̸=c

P∑
j=0

exp
{
β(u

(i)
j )
}

∑n
i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj)xi∥∞

≤
n∑

i ̸=c

P∑
j=0

∥
exp
{
β(u

(i)
j )
}

∑n
i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj)xi∥∞
(
By triangle inequality

)

=

n∑
i ̸=c

P∑
j=0

exp
{
β(u

(i)
j )
}

∑n
i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}∥f(Lj)xi∥∞
(
By non-negativity of exponential

)

=

n∑
i ̸=c

P∑
j=0

exp
{
β(u

(i)
j )
}

∑n
i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

} |f(Lj)| · ∥xi∥∞(
By ∥f(Lj)xi∥∞ = |f(Lj)| · ∥xi∥∞

)
≤

∑n
i ̸=c

∑P
j=0 exp

{
β(u

(i)
j )
}

∑n
i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}Bf ·B

(
By Bf := max |f | and max{∥X∥∞, ∥W∥∞} ≤ B

)
≤ (n− 1)ϵ0BfB,

(
By (D.19)

)
where we define Bf := max |f | as the bound for f .

For term (II) in (D.23), we have
(II)

= ∥
P∑

j=0

exp
{
β(u

(c)
j + C)

}
∑n

i′=1

∑P
j′=0 exp

{
β(u

(i′)
j′ + C1i′=c)

}f(Lj) xc︸︷︷︸
d×1

−f(x⊤
c w − yc) xc︸︷︷︸

d×1

∥∞

= ∥
P∑

j=0

exp
{
β(u

(c)
j + C)

}
∑n

i′=1

∑P
k=0 exp

{
β(u

(i′)
k + C1i′=c)

} · (f(Lj)xc − f(x⊤
c w − yc)xc)

− (1−

∑P
j′=0 exp

{
β(u

(c)
j′ + C)

}
∑n

i′=1

∑P
k=0 exp

{
β(u

(i′)
k + C1i′=c)

} ) · f(x⊤
c w − yc)xc∥∞

(
By

∑
j

Aj

C
Bj −D =

∑
j

Aj

C
(Bj −D)− (1−

∑
j′ Aj′
C

)D
)

= ∥
P∑

j=0

exp
{
β(u

(c)
j + C)

}
∑P

j′=0 exp
{
β(u

(c)
j′ + C)

} ·

∑P
j′=0 exp

{
β(u

(c)
j′ + C)

}
∑n

i′=1

∑P
k=0 exp

{
β(u

(i′)
k + C1i′=c)

} · (f(Lj)xc − f(x⊤
c w − yc)xc)
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− (1−

∑P
j′=0 exp

{
β(u

(c)
j′ + C)

}
∑n

i′=1

∑P
k=0 exp

{
β(u

(i′)
k + C1i′=c)

} ) · f(x⊤
c w − yc)xc∥∞

(
By

∑
j

Aj

C
(Bj −D)− (1−

∑
j′ Aj′
C

)D =
∑

j

Aj

E
· E
C
(Bj −D)− (1−

∑
j′ Aj′
C

)D
)

≤ ∥
P∑

j=0

exp
{
β(u

(c)
j + C)

}
∑P

j′=0 exp
{
β(u

(c)
j′ + C)

} · (f(Lj)− f(x⊤
c w − yc))xc

− (1−

∑P
j′=0 exp

{
β(u

(c)
j′ + C)

}
∑n

i′=1

∑P
k=0 exp

{
β(u

(i′)
k + C1i′=c)

} ) · f(x⊤
c w − yc)xc∥∞

(
By E

C
< 1

)

≤
P∑

j=0

exp
{
β(u

(c)
j + C)

}
∑P

j′=0 exp
{
β(u

(c)
j′ + C)

} · |f(Lj)− f(x⊤
c w − yc)| · ∥xc∥∞

− (1−

∑P
j′=0 exp

{
β(u

(c)
j′ + C)

}
∑n

i′=1

∑P
k=0 exp

{
β(u

(i′)
k + C1i′=c)

} ) · |f(x⊤
c w − yc)| · ∥xc∥∞

(
By triangle inequality, and ∥av∥∞ ≤ |a| · ∥v∥∞ where a ∈ R and v ∈ Rd

)
≤

P∑
j=0

exp
{
β(u

(c)
j + C)

}
∑P

j′=0 exp
{
β(u

(c)
j′ + C)

} · |f(Lj)− f(x⊤
c w − yc)| · ∥xc∥∞ + (n− 1)ϵ0Bf∥xc∥∞(

By (D.21) and Bf := max |f |
)

=

P∑
j=0

exp
{
βu

(c)
j

}
∑P

j′=0 exp
{
βu

(c)
j′

} · |f(Lj)− f(x⊤
c w − yc)| · ∥xc∥∞ + (n− 1)ϵ0BfB

(
By exp

{
β(u

(c)
j + C)

}
= exp

{
βu

(c)
j

}
exp{βC} and max{∥X∥∞, ∥W∥∞} ≤ B

)
=

P∑
j=0

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· |f(Lj)− f(x⊤
c w − yc)| · ∥xc∥∞︸ ︷︷ ︸

:=(II-1)

+(n− 1)ϵ0BfB︸ ︷︷ ︸
:=(II-2)

,

(D.24)
where the last equality follows from completing the square

u
(c)
j = 2Ljx

⊤
c w − 2Ljyc − L2

j = −(Lj − (x⊤
c w − yc))

2 + (x⊤
c w − yc)

2.

For term (II-1) in (D.24), we have
(II-1)

=

P∑
j=0

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· |f(Lj)− f(x⊤
c w − yc)| · ∥xc∥∞

=

P∑
j:|Lj−(x⊤

c w−yc)|≤∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· |f(Lj)− f(x⊤
c w − yc)| · ∥xc∥∞

+

P∑
j:|Lj−(x⊤

c w−yc)|>∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· |f(Lj)− f(x⊤
c w − yc)| · ∥xc∥∞,

(D.25)

where we define ∆L := (Lmax − Lmin)/P and divide the interpolation points into two groups with
one group at least ∆L away from x⊤

c w − yc, and the other within ∆L.
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For the first term in (D.25), we set ∆L to be sufficiently small (P large enough) such that,
|f(t)− f(t′)| ≤ ϵ1, ∀ ϵ1 > 0,

when |t− t′| ≤ ∆L.

For the second term in (D.25), we set β to be sufficiently large such that∑
j:|Lj−(x⊤

c w−yc)|>∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

≤ ϵ2, (D.26)

for any 0 < ϵ2 < 1.

Thus, for term (II-1), we have
(II-1)

=

P∑
j:|Lj−(x⊤

c w−yc)|≤∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· |f(Lj)− f(x⊤
c w − yc)| · ∥xc∥∞

+

P∑
j:|Lj−(x⊤

c w−yc)|>∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· |f(Lj)− f(x⊤
c w − yc)| · ∥xc∥∞

≤
P∑

j:|Lj−(x⊤
c w−yc)|≤∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· ϵ1 ·B

+

P∑
j:|Lj−(x⊤

c w−yc)|>∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· (|f(Lj)|+ |f(x⊤
c w − yc)|) ·B(

By |f(Lj)− f(x⊤
c w − yc)| < ϵ1, max{∥X∥∞, ∥W∥∞} ≤ B, and triangle inequality

)
≤

P∑
j:|Lj−(x⊤

c w−yc)|≤∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· ϵ1 ·B

+

P∑
j:|Lj−(x⊤

c w−yc)|>∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

· 2Bf ·B
(
By Bf := max |f |

)

≤
P∑

j:|Lj−(x⊤
c w−yc)|≤∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}︸ ︷︷ ︸

:=κ

·ϵ1 ·B + ϵ2 · 2Bf ·B
(
By (D.26)

)

≤ ϵ1 ·B + ϵ2 · 2Bf ·B.
(
By κ < 1

)
Combining (I), (II-1), and (II-2), we have:

∥Attns ◦ Linear(Z):,c − f(x⊤
c w − yc)xc∥∞ ≤ (n− 1)ϵ0BfB︸ ︷︷ ︸

from (I)

+ ϵ1B + 2ϵ2BfB︸ ︷︷ ︸
from (II-1)

+(n− 1)ϵ0BfB︸ ︷︷ ︸
from (II-2)

.

Since ϵ0, ϵ1 and ϵ2 are arbitrarily small, we have

∥Attns ◦ Linear(Z):,c − f(x⊤
c w − yc)xc∥∞ ≤ ϵ,

for any ϵ > 0.

This completes the proof.

D.2 PROOF OF COROLLARY 3.1.2

Corollary D.2.1 (In-Context Emulation of a Single GD Step; Corollary 3.1.2 Restate). Let ℓ : R →
R be differentiable and define L̂n(w) :=

1
n

∑n
i=1 ℓ(w

⊤xi− yi). For any step size η > 0 and any ϵ >
0, there exist a single-head attention Attns and a linear map Linear such that, with Z = [X;W ] as
in (3.1), choosing the readout u := 1

n1n (equivalently, right-multiply by WO = u in Definition 2.1),
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we have
ŵGD := (Attns ◦ Linear(Z))u ∈ Rd and ∥ŵGD − (w − η∇L̂n(w))︸ ︷︷ ︸

w+
GD

∥∞ ≤ ϵ.

Proof. From Corollary 3.1.1, we derive that ∥(Attns ◦ Linear)i −∇ℓ(w⊤xi − yi)xi∥∞ ≤ ϵ for all
i ∈ [n].

Therefore,

ŵ = w +
1

n

n∑
j=1

(Attns ◦ Linear)j

= w − η

n

n∑
j=1

∇ℓ(w⊤xj − yj)xj + ϵ′

= w − η∇L̂n(w) + ϵ′

= wGD + ϵ′

This completes the proof.

D.3 PROOF OF COROLLARY 3.1.3

Theorem D.3 (In-Context Emulation of Linear Regression; Corollary 3.1.3 Restate). For any dataset
{(xi, yi)}ni=1 with xi ∈ Rd, yi ∈ R and any ϵ > 0, there exist a single-head attention Attns, a linear
map Linear, and a readout u ∈ Rn such that, with Z = [X;W ] as in (3.1) (for any fixed bounded
w),

ŵlinear := (Attns ◦ Linear(Z))u ∈ Rd, and ∥ŵlinear − wlinear∥∞ ≤ ϵ,

where wlinear := argminw∈Rd
1
2n

∑n
i=1(⟨w, xi⟩ − yi)

2.

Proof. From Corollary 3.1.2, we know that ∥ŵl − wl
GD∥∞ ≤ ϵ/2 for all l ∈ [L]. Note that

1
2n

∑n
i=1(⟨w, xi⟩ − yi)

2 is convex and smooth which satisfies the precondition for Corollary D.1.1.
Therefore, from Corollary D.1.1, using ∥ · ∥∞ ≤ ∥ · ∥2, we derive that ∥wl

GD − wl
linear∥∞ ≤ ϵ/2.

Thus, ∥Attn − wlinear∥∞ ≤ ∥ŵl − wl
GD∥∞ + ∥wl

GD − wl
linear∥∞ ≤ ϵ by triangle inequality. This

completes the proof.

D.4 PROOF OF COROLLARY 3.1.4

Theorem D.4 (Restate of Corollary 3.1.4: In-Context Emulation of Ridge Regression). For any
input-output pair (xi, yi), where xi ∈ Rd, yi ∈ R, i ∈ [n], and any ϵ > 0, there exists a single-layer
Attention network with linear connection Attn such that

∥Attn− wridge∥∞ ≤ ϵ,

where wridge := argminw∈Rd
1
2n

∑n
i=1(⟨w, xi⟩ − yi)

2 + λ
2 ∥w∥

2
2 with regularization term λ ≥ 0.

Proof. From Corollary 3.1.2, we know that ∥ŵl − wl
GD∥∞ ≤ ϵ/2 for all l ∈ [L]. Note

that 1
2n

∑n
i=1(⟨w, xi⟩ − yi)

2 + λ
2 ∥w∥

2
2 is convex and smooth which satisfies the precondition

for Corollary D.1.1. Therefore, from Corollary D.1.1, using ∥ · ∥∞ ≤ ∥ · ∥2, we derive that
∥wl

GD − wl
ridge∥∞ ≤ ϵ/2. Thus, ∥Attn − wridge∥∞ ≤ ∥ŵl − wl

GD∥∞ + ∥wl
GD − wl

ridge∥∞ ≤ ϵ by
triangle inequality. This completes the proof.
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D.5 PROOF OF THEOREM 4.1

Theorem D.5 (In-Context Emulation of Attention; Theorem 4.1 Restate). Let X ∈ Rd×n be an
input sequence, and let WK ,WQ,WV ∈ Rdh×d be the weight matrices of the target attention head we
wish to emulate in-context. Assume ∥WKX∥∞, ∥WQX∥∞, ∥WV X∥∞ ≤ BKQV with BKQV > 0.
Then, for any ϵ > 0, there exists a two-layer attention network — a multi-head attention layer Attnm
followed by a single-head attention layer Attns — such that

∥Attns ◦Attnm(Xp)︸ ︷︷ ︸
Emulator

−WV XSoftmaxβ((WKX)⊤WQX)︸ ︷︷ ︸
Target

∥∞ ≤ ϵ,

where Xp is the prompt defined in Definition 4.2.

Proof. We state our high-level proof sketch first.

Step 1: In-Context Weight Encoding. We define
K︸︷︷︸

dh×n

:= WK︸︷︷︸
dh×d

· X︸︷︷︸
d×n

, Q︸︷︷︸
dh×n

:= WQ︸︷︷︸
dh×d

· X︸︷︷︸
d×n

, V︸︷︷︸
dh×n

:= WV︸︷︷︸
dh×d

· X︸︷︷︸
d×n

.

We aim to approximate the attention mechanism V Softmaxβ(K
⊤Q) using a two-layer transformer

Attns ◦ Attnm. Therefore, the transformer Attns ◦ Attnm must have in-context access to the
information about WK ,WQ and WV . This is equivalent to exposing the transformer Attns ◦Attnm
to the target algorithm’s specification.

To that end, we augment the input sequence X with two auxiliary blocks:

1. The weight encoding Win of the target algorithm. Win contains the vectorization of the target
weights WK ,WQ and WV .

2. A positional encoding In. In exposes token indices.

Concretely, following Definition 4.2, we form

Xp =

[
X
Win

In

]
︸ ︷︷ ︸

(d+6ddh+n)×n

with Win =

[
0 · w 1 · w 2 · w · · · (n− 1) · w
w w w · · · w

]
︸ ︷︷ ︸

6ddh×n

,

and

w =

WK
WQ

WV


︸ ︷︷ ︸
3ddh×1

.

Step 2: Multi-Head Decomposition for In-Context Recovery of K,Q, V . In this step, we use
the multi-head layer Attnm to build approximators of K,Q, and V from the prompt Xp. We denote
these approximators by K ′, Q′, and V ′, corresponding to K, Q, and V .

Explicitly, we have

∥

Attnm(Xp)︷ ︸︸ ︷[
K ′

Q′

V ′

]
︸ ︷︷ ︸
3dh×n

−

[
K
Q
V

]
︸︷︷ ︸
3dh×n

∥∞ ≤ ϵ0.

Intuitively, this works as: Xp contains the raw input X and the weight encodings of WK ,WQ and
WV . Then Attnm “reads” X and the target weight parameters from Xp within its attention heads to
form the desired approximation.
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Step 3: Single-Head Assembly for Emulated Map. We use the single-head layer Attns to perform
the attention computation. From K ′, Q′, V ′, Attns produces

V ′Softmaxβ((K
′)⊤Q′).

For reference, the target computation is V Softmaxβ((K)⊤Q). This step aligns the output of Attns
with the target attention, using the approximated K ′, Q′, V ′ as inputs.

Step 4: Error Bound. Finally, we bound the gap between the computed and target attention:

∥V ′Softmaxβ((K
′)⊤Q′)− V Softmaxβ((K)⊤Q)∥∞ ≤ ϵ0 + nBKQV ϵ1.

Our proof starts here.

Step 1: In-Context Weight Encoding. For clarity and simplicity, we define

ki := (W⊤
K ):,i ∈ Rd, (D.27)

qi := (W⊤
Q ):,i ∈ Rd, (D.28)

vi := (W⊤
V ):,i ∈ Rd, (D.29)

such that the vectorized weight matrices WK , WQ, WV in Definition 4.2 become

WK =


k1
k2
...

kdh

 ∈ Rddh , WQ =


q1
q2
...

qdh

 ∈ Rddh , WV =


v1
v2
...

vdh

 ∈ Rddh ,

and w becomes

w =

WK
WQ

WV

 =



k1
...

kdh

q1
...

qdh

v1
...

vdh


.

Win remains as

Win :=

[
0 · w 1 · w 2 · w · · · (n− 1) · w
w w w · · · w

]
∈ R6ddh×n.

Then, for the input X , we append it with the target weights Win and the positional encoding In as in
Definition 4.2. We denote this result with Xp and write it out as

Xp :=

[
X
Win

In

]
︸ ︷︷ ︸

(d+6ddh+n)×n

. (D.30)

Step 2: Multi-Head Decomposition for In-Context Recovery of K,Q, V . In this part, we con-
struct approximators for K,Q and V via Attnm. We construct the approximators by approximating
each row of K,Q, V and then aggregating the results across rows. Each row in K,Q and V has the
form: k⊤i X, q⊤i X , and v⊤i X . To approximate these rows in K,Q, V , we apply Theorem D.1 to each
row separately. Namely, we allocate an H-head attention to each row of K,Q and V to carry out
the row-wise approximations. Since K,Q, V ∈ Rdh×n, each of K, Q, V uses H · dh heads. We
interpret H as the number of heads per row dimension, since each K, Q, and V has dh rows. Finally,
we define a multi-head attention Attnm as the union of these three groups of Hdh heads. Therefore,
Attnm has 3Hdh heads in total.
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We label the 3Hdh heads in Attnm as:

AttnK
j,h̃

, j ∈ [dh], h̃ ∈ {J + 1, . . . , J +H};
(
Approximates K

)
AttnQ

j,h̃
, j ∈ [2dh] \ [dh], h̃ ∈ {J + 1, . . . , J +H};

(
Approximates Q

)
AttnV

j,h̃
, j ∈ [3dh] \ [2dh], h̃ ∈ {J + 1, . . . , J +H},

(
Approximates V

)
where we define J := (j − 1)H to simplify our notation. Each AttnK

j,h̃
, AttnQ

j,h̃
, and AttnV

j,h̃
is

a single-head attention. Index j identifies the target row, and index h̃ identifies the head allocated
to that row. Here j ∈ [2dh] \ [dh] denotes the set difference. That is, j ∈ [2dh] \ [dh] means
j ∈ {dh + 1, . . . , 2dh}.

Thus, Attnm consists of three groups of attention heads:

Attnm :=

dh∑
j=1

J+H∑
h̃=J+1

AttnK
j,h̃︸ ︷︷ ︸

Approximates K

+

2dh∑
j=dh+1

J+H∑
h̃=J+1

AttnQ
j,h̃︸ ︷︷ ︸

Approximates Q

+

3dh∑
j=2dh+1

J+H∑
h̃=J+1

AttnV
j,h̃︸ ︷︷ ︸

Approximates V

,

In the subsequent proof, we provide the constructions of AttnK
j,h̃

, AttnQ
j,h̃

, AttnV
j,h̃

from Theo-
rem D.1.

To apply Theorem D.1 to construct heads in Attnm, let a and b denote the minimum and maximum
of the inner products k⊤i xm, q⊤i xm, and v⊤i xm, over all i ∈ [dh] and m ∈ [n]:

a ≤ min{k⊤i xm, q⊤i xm, v⊤i xm} and max{k⊤i xm, q⊤i xm, v⊤i xm} ≤ b.

Next, we choose

H := ⌈ 2(b− a)

(n− 2)ϵ0
⌉,

such that the interpolation error in Theorem D.1 is at most ϵ0
2 for any ϵ0 > 0.

Third, Theorem D.1 requires a single map A : Rd×n → R(3d+n)×n shared across all H heads. In our
construction, we realize this augmentation by prepending each head of AttnH in Theorem D.1 with a
head-specific linear map Ah̃ : R(d+6ddh+n)×n → R(3d+n)×n. The map Ah̃ maps the input Xp to the
desired dimension and picks out the target ki, qi or vi (this is equivalent to the ws in Theorem D.1.)
to let AttnH perform the desired linear transformation k⊤i X, v⊤i X or q⊤i X . Here h̃ still identifies
the single head assigned to a specific row. By Lemma D.3, AttnH ◦Ah̃ remains an H-head attention.
Therefore, we use AttnH ◦Ah̃ to build the heads in Attnm.

We construct Ah̃ as

Ah̃
:=

 Id 0d×3ddh
0d×3ddh

0d×n

0d×d Eh̃ 0d×3ddh
0d×n

0d×d Eh̃ Kh̃Eh̃ 0d×n

0n×d 0n×3ddh
0n×3ddh

In


︸ ︷︷ ︸

(3d+n)×(d+6ddh+n)

,

where
Eh̃

:=
[
0d×(d[h̃/H]) Id 0d×(3ddh−d[h̃/H]−d)

]︸ ︷︷ ︸
d×3ddh

,

Kh̃
:= [(h̃%H − 1)(n− 2)− 1].

Here h̃%H denotes the remainder of dividing h̃ by H . We define % such that instead of the common
(kH)%H = 0,

kH%H = H, for all k ∈ N+.
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Applying Ah̃ to Xp yields

Ah̃ ·Xp :=

 Id 0d×3ddh
0d×3ddh

0d×n

0d×d Eh̃ 0d×3ddh
0d×n

0d×d Eh̃ Kh̃Eh̃ 0d×n

0n×d 0n×3ddh
0n×3ddh

In


︸ ︷︷ ︸

(3d+n)×(d+6ddh+n)

·

[
X
Win

In

]
︸ ︷︷ ︸

(d+6ddh+n)×n

(
By the definition of Ah̃ and Xp

)

=


X[

Eh̃ 0d×3ddh

]
·Win[

Eh̃ Kh̃Eh̃

]
·Win

In


︸ ︷︷ ︸

(3d+n)×n

,

where
[
Eh̃ 0d×3ddh

]
Win expands as[

Eh̃ 0d×3ddh

]
Win

=
[
Eh̃ 0d×3ddh

]︸ ︷︷ ︸
d×6ddh

[
0 · w 1 · w 2 · w · · · (n− 1) · w
w w w · · · w

]
︸ ︷︷ ︸

6ddh×n

= Eh̃︸︷︷︸
d×3ddh

· [0 · w 1 · w 2 · w · · · (n− 1) · w]︸ ︷︷ ︸
3ddh×n

+ [0d×3ddh ] [w w w · · · w]︸ ︷︷ ︸
3ddh×n

=
[
0 · Eh̃w 1 · Eh̃w 2 · Eh̃w · · · (n− 1) · Eh̃w

]︸ ︷︷ ︸
d×n

,

and

Eh̃w =
[
0d×(d⌈h̃/H⌉−d) Id 0d×(3ddh−(d⌈h̃/H⌉−d)−d)

]︸ ︷︷ ︸
d×3ddh



k1
...

kdh

q1
...

qdh

v1
...

vdh


︸ ︷︷ ︸
3ddh×1

(
By the definition of Eh̃ and w

)

=


k⌈h̃/H⌉, 1 ≤ h̃ ≤ Hdh

q⌈h̃/H⌉−dh
, Hdh < h̃ ≤ 2Hdh

v⌈h̃/H⌉−2dh
, 2Hdh < h̃ ≤ 3Hdh

. (D.31)

The equality (D.31) holds since Eh̃ selects the ⌈h̃/H⌉-th block in w.

Similarly, [Eh̃ Kh̃Eh̃] ·Win expands as[
Eh̃ Kh̃Eh̃

]
Win

=
[
Eh̃ Kh̃Eh̃

]︸ ︷︷ ︸
d×6ddh

[
0 · w 1 · w 2 · w · · · (n− 1) · w
w w w · · · w

]
︸ ︷︷ ︸

6ddh×n

(
By the definition of Win

)

= Eh̃︸︷︷︸
d×3ddh

· [0 · w 1 · w 2 · w · · · (n− 1) · w]︸ ︷︷ ︸
3ddh×n

+Kh̃Eh̃︸ ︷︷ ︸
d×3ddh

[w w w · · · w]︸ ︷︷ ︸
3ddh×n(

By
[
A B

] [C
D

]
= AB + CD

)
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=
[
Kh̃Eh̃w (Kh̃ + 1)Eh̃w · · · (Kh̃ + n− 1)Eh̃w

]︸ ︷︷ ︸
d×n

,

Up to here, we are capable of selecting a target ki, qi or vi, and we start to build our heads in Attnm.

When 1 ≤ h̃ ≤ Hdh, we compute Ah̃ ·Xp as

Ah̃ ·Xp =


X

0 · k⌈h̃/H⌉ 1 · k⌈h̃/H⌉ · · · (n− 1) · k⌈h̃/H⌉
k⌈h̃/H⌉ k⌈h̃/H⌉ · · · k⌈h̃/H⌉

In


︸ ︷︷ ︸

(3d+n)×n

.

This means every h̃ in {J + 1, . . . , J +H} with j ∈ [dh] has the same Ah̃ ·Xp: X
0 · kj 1 · kj · · · (n− 1) · kj
kj kj · · · kj

In


︸ ︷︷ ︸

(3d+n)×n

For each j ∈ [dh], by Theorem D.1, there exists an H-head attention Attn′j : R(3d+n)×n → R3dh×n,
such that the output satisfies

∥Attn′j(
(3d+n)×n︷ ︸︸ ︷
Ah̃ ·Xp ):,i︸ ︷︷ ︸

3dh×1

−(k⊤j xi) e
(3dh)
j︸ ︷︷ ︸

3dh×1

∥∞ ≤ ϵ0, (D.32)

for every i ∈ [n] and any ϵ0 > 0.

From (D.32), we have

∥Attn′j(
(3d+n)×n︷ ︸︸ ︷
Ah̃ ·Xp )︸ ︷︷ ︸

3dh×n

− e
(3dh)
j k⊤j X︸ ︷︷ ︸
3dh×n

∥∞ ≤ ϵ0,

where

e
(3dh)
j k⊤j X =

[
(k⊤j x1)e

(3dh)
j (k⊤j x2)e

(3dh)
j · · · (k⊤j xn)e

(3dh)
j

]
︸ ︷︷ ︸

3dh×n

.

We use Attn
′(s)
j to label the heads in Attn′j , and we define AttnK

j,h̃
(Z) to be

AttnK
j,h̃

(Z) := Attn
′(h̃)
j (Ah̃ · Z),

(
Z ∈ R(d+6ddh+n)×n denotes any input

)
where j ∈ [dh] and h̃ ∈ {J + 1, . . . , J +H}.

By Lemma D.3, AttnK
j,h̃

(Z) is still an attention.

Thus

AttnKj (Z) :=

J+H∑
h̃=J+1

AttnK
j,h̃

(Z),

is also an attention.

Thus, we have

∥AttnKj (Xp)︸ ︷︷ ︸
3dh×n

− e
(3dh)
j k⊤j X︸ ︷︷ ︸
3dh×n

∥∞ ≤ ϵ0.
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This means that

∥
dh∑
j=1

AttnKj (Xp)︸ ︷︷ ︸
3dh×n

−

[
K

0dh×n

0dh×n

]
︸ ︷︷ ︸
3dh×n

∥∞ ≤ ϵ0. (D.33)

Similarly for Q, by (D.31), when Hdh < h̃ ≤ 2Hdh, we have
Eh̃w = q⌈h̃/H⌉−dh︸ ︷︷ ︸

d×1

,

and

Ah̃ ·Xp =

 X
0 · qj−dh

1 · qj−dh
· · · (n− 1) · qj−dh

qj−dh
qj−dh

· · · qj−dh

In


︸ ︷︷ ︸

(3d+n)×n

,

where j ∈ [2dh] \ [dh].

For each j ∈ [2dh] \ [dh], by Theorem D.1, there exists an H-head attention Attn′′j : R(3d+n)×n →
R3dh×n, such that

∥Attn′′j (Ah̃ ·Xp)︸ ︷︷ ︸
3dh×n

− e
(3dh)
j q⊤j−dh

X︸ ︷︷ ︸
3dh×n

∥∞ ≤ ϵ0,

for any ϵ0 > 0.

Then we construct AttnQ
j,h̃

in a way similar to AttnK
j,h̃

AttnQ
j,h̃

(Z) := Attn
′′(h̃)
j (Ah̃ · Z),

(
Z ∈ R(d+6ddh+n)×n denotes any input

)
where j ∈ [2dh] \ [dh] and h̃ ∈ {J + 1, . . . , J +H}.

By Lemma D.3, AttnQ
j,h̃

(Z) is an attention.

Thus

AttnQj (Z) :=

J+H∑
h̃=J+1

AttnQ
j,h̃

(Z),

is also an attention.

Thus, we have

∥AttnQj (Xp)︸ ︷︷ ︸
3dh×n

− e
(3dh)
j q⊤j−dh

X︸ ︷︷ ︸
3dh×n

∥∞ ≤ ϵ0.

This means that

∥
2dh∑

j=dh+1

AttnQj (Xp)︸ ︷︷ ︸
3dh×n

−

[
0dh×n

Q
0dh×n

]
︸ ︷︷ ︸
3dh×n

∥∞ ≤ ϵ0. (D.34)

For V , with analogous construction to that of K and Q, there exists an H-head attention AttnVj :

R(3d+n)×n → R3dh×n such that
∥AttnVj (Xp)︸ ︷︷ ︸

3dh×n

− e
(3dh)
j v⊤j−2dh

X︸ ︷︷ ︸
3dh×n

∥∞ ≤ ϵ0,

for each j ∈ [3dh] \ [2dh] and any ϵ0 > 0.
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This means that

∥
3dh∑

j=2dh+1

AttnVj (Xp)︸ ︷︷ ︸
3dh×n

−

[
0dh×n

0dh×n

V

]
︸ ︷︷ ︸
3dh×n

∥∞ ≤ ϵ0. (D.35)

Combining (D.33), (D.34) and (D.35), we have

∥Attnm(Xp)−

[
K
Q
V

]
∥∞

= ∥
dh∑
j=1

AttnKj (Xp)−

[
K

0dh×n

0dh×n

]
+

2dh∑
j=dh+1

AttnQj (Xp)−

[
0dh×n

Q
0dh×n

]
+

3dh∑
j=2dh+1

AttnVj (Xp)−

[
0dh×n

0dh×n

V

]
∥∞

≤ ϵ0. (D.36)

We define [
K ′

Q′

V ′

]
︸ ︷︷ ︸
3dh×n

:= Attnm(Xp).

Thus, (D.36) becomes

∥

[
K ′

Q′

V ′

]
︸ ︷︷ ︸
3dh×n

−

[
K
Q
V

]
︸︷︷ ︸
3dh×n

∥∞ ≤ ϵ0, (D.37)

Step 3: Single-Head Assembly for Emulated Map. Our goal in this part is to reconstruct the
attention mechanism

V ′Softmaxβ((K
′)⊤Q′), and V Softmaxβ((K)⊤Q),

from K ′, Q′, V ′ and K,Q, V via Attns.

In order to achieve this, we construct Attns to be
Attns(Z) := [0dh×2dh

Idh ]︸ ︷︷ ︸
:=WV,s

Z · Softmaxβ(([Idh
0dh×2dh ]︸ ︷︷ ︸

:=WK,s

Z)⊤ [0dh×dh
Idh

0dh×dh ]︸ ︷︷ ︸
:=WQ,s

Z),

where Z ∈ R3dh×n denotes any input.

Thus, we have
dh×n︷ ︸︸ ︷

Attns(

[
K
Q
V

]
︸︷︷ ︸
3dh×n

) = V︸︷︷︸
dh×n

Softmaxβ((K)⊤Q︸ ︷︷ ︸
n×n

), (D.38)

and
dh×n︷ ︸︸ ︷

Attns(

[
K ′

Q′

V ′

]
)︸ ︷︷ ︸

3dh×n

= V ′︸︷︷︸
dh×n

Softmaxβ((K
′)⊤Q′︸ ︷︷ ︸
n×n

). (D.39)
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Step 4: Error Bound. From (D.38) and (D.39), we have

Attns(

[
K ′

Q′

V ′

]
)−Attns(

[
K
Q
V

]
)

= V ′︸︷︷︸
dh×n

·Softmaxβ(K
′⊤Q′)︸ ︷︷ ︸

n×n

− V︸︷︷︸
dh×n

·Softmaxβ(K
⊤Q)︸ ︷︷ ︸

n×n

(
By (D.39) and (D.38)

)
= V ′Softmaxβ(K

′⊤Q′)− V Softmaxβ(K
′⊤Q′) + V Softmaxβ(K

′⊤Q′)− V Softmaxβ(K
⊤Q)

= (V ′ − V )Softmaxβ(K
′⊤Q′) + V (Softmaxβ(K

′⊤Q′)− Softmaxβ(K
⊤Q)), (D.40)

and the last equality follows from the distributivity of matrix multiplication.

Then, (D.40) yields

∥Attns(

[
K ′

Q′

V ′

]
)−Attns(

[
K
Q
V

]
)∥∞

= ∥(V ′ − V )Softmaxβ(K
′⊤Q′) + V (Softmaxβ(K

′⊤Q′)− Softmaxβ(K
⊤Q))∥∞

≤ ∥(V ′ − V )Softmaxβ(K
′⊤Q′)∥∞︸ ︷︷ ︸

:=(I)

+ ∥V (Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q))∥∞︸ ︷︷ ︸
:=(II)

, (D.41)

and the last inequality follows from the triangle inequality.

For term (I) in (D.41), since each column in Softmaxβ(K
′⊤Q′) sums up to 1, then

(V ′ − V )︸ ︷︷ ︸
dh×n

Softmaxβ(K
′⊤Q′):,j︸ ︷︷ ︸

n×1

,

is a weighted sum of the columns in (V ′ − V ).

Thus we have
∥(V ′ − V )Softmaxβ(K

′⊤Q′):,j∥∞ ≤ ∥V ′ − V ∥∞ ≤ ϵ0,

and the first inequality holds since the column average of (V ′ − V ) has a maximum entry no greater
than the maximum entry among the original columns in (V ′ − V ). The second inequality holds since
(D.37).

Then we get
(I) ≤ ϵ0. (D.42)

Term (II) in (D.41) is

(II) = ∥V (Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q))∥∞.

For simplicity of presentation, we define

∆S := Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q),

such that for each entry in (II), we have

|(V∆S)ij | = |
n∑

k=1

Vik(∆S)kj |
(
By the definition of matrix multiplication

)
≤

n∑
k=1

|Vik| · |(∆S)kj |
(
By triangle inequality and |ab| = |a| · |b| for all a, b ∈ R

)
≤

n∑
k=1

∥V ∥∞ · ∥∆S∥∞
(
By |Vik| ≤ ∥V ∥∞ and |(∆S)kj | ≤ ∥∆S∥∞

)
= n∥V ∥∞ · ∥∆S∥∞,

and this leads to
(II) ≤ n∥V ∥∞ · ∥∆S∥∞. (D.43)
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For each entry in ∆S, we have
|(∆S)i,j | (D.44)

= |(Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q))i,j |

= | eβK
′
i·Q

′
j∑n

i′=1 e
βK′

i′ ·Q
′
j

− eβKi·Qj∑n
i′=1 e

βKi′ ·Qj
|

(
K′

i, Q
′
i, Ki, Qi denote the i-th column in K′, Q′, K, Q

)
= | eβK

′
i·Q

′
j∑n

i′=1 e
βK′

i′ ·Q
′
j

− eβKi·Qj∑n
i′=1 e

βK′
i′ ·Q

′
j

+
eβKi·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

− eβKi·Qj∑n
i′=1 e

βKi′ ·Qj
|

≤ |e
βK′

i·Q
′
j − eβKi·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

|+ |eβKi·Qj (
1∑n

i′=1 e
βK′

i′ ·Q
′
j

− 1∑n
i′=1 e

βKi′ ·Qj
)|

(
By triangle inequality

)
=

eβK
′
i·Q

′
j∑n

i′=1 e
βK′

i′ ·Q
′
j

|1− eβ(Ki·Qj−K′
i·Q

′
j)|+ eβKi·Qj∑n

i′=1 e
βKi′ ·Qj

|
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

− 1|(
By non-negativity of exponential

)
< |1− eβ(Ki·Qj−K′

i·Q
′
j)|︸ ︷︷ ︸

:=(II-1)

+ |1−
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

|︸ ︷︷ ︸
:=(II-2)

, (D.45)

and the last inequality holds since

eβK
′
i·Q

′
j∑n

i′=1 e
βK′

i′ ·Q
′
j

< 1,
eβKi·Qj∑n

i′=1 e
βKi′ ·Qj

< 1.

To bound term (II-1) in (D.45), we recall

∥

[
K ′

Q′

V ′

]
︸ ︷︷ ︸
3dh×n

−

[
K
Q
V

]
︸︷︷ ︸
3dh×n

∥∞ ≤ ϵ0,

so
∥K ′ −K︸ ︷︷ ︸

dh×n

∥∞ ≤ ϵ0,

∥Q′ −Q︸ ︷︷ ︸
dh×n

∥∞ ≤ ϵ0.

Let K ′
i, Q

′
i, Ki, Qi denote the i-th column in K ′, Q′, K, Q, then we have

∆Ki︸︷︷︸
dh×1

:= K ′
i −Ki︸ ︷︷ ︸
dh×1

, ∥∆Ki∥∞ ≤ ϵ0,

∆Qi︸︷︷︸
dh×1

:= Q′
i −Qi︸ ︷︷ ︸
dh×1

, ∥∆Qi∥∞ ≤ ϵ0.

Thus, for term (II-1) in (D.45), we have
(II-1)

= |1− exp
{
β(Ki ·Qj −K ′

i ·Q′
j)
}
|

= |1− exp{β(Ki ·Qj − (Ki +∆Ki) · (Qj +∆Qj))}|(
By K′

i = Ki +∆Ki and Q′
i = Qi +∆Qi

)
= |1− exp{−β(Ki ·∆Qj +Qj ·∆Ki +∆Ki ·∆Qj)}|,(

By Ki ·Qj − (Ki +∆Ki) · (Qi +∆Qi) = −(Ki ·∆Qj +Qj ·∆Ki +∆Ki ·∆Qj)
)

and we know
Ki ·∆Qj +Qj ·∆Ki +∆Ki ·∆Qj

≤ dh · ∥Ki∥∞∥∆Qj∥∞ + dh · ∥Qj∥∞∥∆Ki∥∞ + dh · ∥∆Ki∥∞∥∆Qj∥∞(
By a · b ≤ dh∥a∥∞∥b∥∞ for all a, b ∈ Rdh

)
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≤ 2dhBKQV ϵ0 + dhϵ
2
0.

(
By ∥Ki∥∞, ∥Qj∥∞ ≤ BKQV and ∥∆Ki∥∞, ∥∆Qj∥∞ ≤ ϵ0

)
Thus, we have

(II-1) ≤ |1− e−βdh(2BKQV ϵ0+ϵ20)|. (D.46)

For term (II-2) in (D.45), we have
(II-2)

= |1−
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

|
(
By the definition of (II-2)

)
= |1−

∑n
i′=1 e

βKi′ ·Qj∑n
i′=1 e

β(Ki′+∆Ki′ )·(Qj+∆Qj)
|

(
By K′

i′ = Ki′ +∆Ki′ and Q′
i = Qi +∆Qi

)
= |1−

∑n
i′=1 e

βKi′ ·Qj∑n
i′=1 e

β(Ki′ ·Qj+Ki′ ·∆Qj+Qj ·∆Ki′+∆Ki′ ·∆Qj)
|,

and for all i′ in the denominator, we have
Ki′ ·Qj +Ki′ ·∆Qj +Qj ·∆Ki′ +∆Ki′ ·∆Qj

≤ Ki′ ·Qj + dh · ∥Ki′∥∞∥∆Qj∥∞ + dh · ∥Qj∥∞∥∆Ki′∥∞ + dh · ∥∆Ki′∥∞∥∆Qj∥∞(
By a · b ≤ dh∥a∥∞∥b∥∞ for all a, b ∈ Rdh

)
≤Ki′ ·Qj + 2dhBKQV ϵ0 + dhϵ

2
0.

(
By ∥Ki′∥∞, ∥Qj∥∞ ≤ BKQV and ∥∆Ki′∥∞, ∥∆Qj∥∞ ≤ ϵ0

)
Thus,

(II-2)

= |1−
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
β(Ki′ ·Qj+Ki′ ·∆Qj+Qj ·∆Ki′+∆Ki′ ·∆Qj)

|

≤ |1−
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
β(Ki′ ·Qj+2dhBKQV ϵ0+dhϵ20)

|

= |1−
∑n

i′=1 e
βKi′ ·Qj

eβdh(2BKQV ϵ0+ϵ20)
∑n

i′=1 e
βKi′ ·Qj

|
(
eβdh(2BKQV ϵ0+ϵ20) is independent of i′

)
= |1− e−βdh(2BKQV ϵ0+ϵ20)|, (D.47)

and the last equality holds since the common factor
∑n

i′=1 e
βKi′ ·Qj cancels out.

Combining (D.45), (D.46), and (D.47), we have

|(Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q))i,j |

< 2|1− e−βdh(2BKQV ϵ0+ϵ20)|
≤ 2|1− e−βdh(2BKQV ϵ0+ϵ0)|.

(
By requiring 0 < ϵ0 ≤ 1

)
Thus for any 0 < ϵ1 < 2, when ϵ0 satisfies

0 < ϵ0 ≤ min{1,
− ln

(
1− ϵ1

2

)
βdh(2BKQV + 1)

},

we have
|(Softmaxβ(K

′⊤Q′)− Softmaxβ(K
⊤Q))i,j | < ϵ1. (D.48)

From (D.43) and (D.48), we have
(II) ≤ n∥V ∥∞∥∆S∥∞ < nBKQV ϵ1, (D.49)

since ∥V ∥∞ ≤ BKQV and ∥∆S∥∞ < ϵ1.

Combining (D.41) with (D.42) and (D.49) yields

∥Attns(

[
K ′

Q′

V ′

]
)−Attns(

[
K
Q
V

]
)∥∞ < ϵ0 + nBKQV ϵ1.
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When we take ϵ0 and ϵ1 to be infinitely small, the right-hand side tends to 0.

This completes the proof.

D.6 PROOF OF THEOREM 4.2

Theorem D.6 (Theorem 4.2 Restate). Let X ∈ Rd×n be the input sequence, and let
WK ,WQ,WV ∈ Rn×d be the weight matrices of the target attention. Assume B =
max{∥X∥∞, ∥WK∥∞, ∥WQ∥∞, ∥WV ∥∞} and ∥WKX∥∞, ∥WQX∥∞, ∥WV X∥∞ ≤ BKQV for
BKQV ≥ 0. Then, for any ϵ > 0, there exists a single-head attention layer Attns followed by a
multi-head attention layer with linear projections such that

∥Attns ◦ (
3n∑
j=1

Attnj ◦ Linearj(


X
W⊤

K

W⊤
Q

W⊤
V

))−WV X︸ ︷︷ ︸
n×n

Softmaxβ ((WKX)⊤WQX)︸ ︷︷ ︸
n×n

∥∞ ≤ ϵ.

Proof. Follow our proof sketch in Appendix A.2, our proof consists of four conceptual steps.

Step 1: Encoding Weights into the Input. For clarity and simplicity, we define

ki := (W⊤
K ):,i ∈ Rd,

qi := (W⊤
Q ):,i ∈ Rd,

vi := (W⊤
V ):,i ∈ Rd,

such that W⊤
K ,W⊤

Q ,W⊤
V writes out as

W⊤
K = [k1 k2 · · · kn]︸ ︷︷ ︸

d×n

, W⊤
Q = [q1 q2 · · · qn]︸ ︷︷ ︸

d×n

, W⊤
V = [v1 v2 · · · vn]︸ ︷︷ ︸

d×n

.

Then, we express the input as 
X
W⊤

K

W⊤
Q

W⊤
V

 =

x1 x2 · · · xn

k1 k2 · · · kn
q1 q2 · · · qn
v1 v2 · · · vn


︸ ︷︷ ︸

4d×n

(D.50)

where xi, ki, qi and vi are all d dimensional vectors for i ∈ [n].

Step 2: Multi-Head Approximation of K,Q, V . For the simplicity of presentation, we define
K := WK︸︷︷︸

n×d

X︸︷︷︸
d×n

, Q := WQ︸︷︷︸
n×d

X︸︷︷︸
d×n

, V := WV︸︷︷︸
n×d

X︸︷︷︸
d×n

.

Writing WK , WQ, and WV row-wise as

WK =


k⊤1
k⊤2
...
k⊤n


︸ ︷︷ ︸
n×d

, WQ =


q⊤1
q⊤2
...
q⊤n


︸ ︷︷ ︸
n×d

, WV =


v⊤1
v⊤2
...
v⊤n


︸ ︷︷ ︸
n×d

,

and X = [x1 · · · xn], we express K, Q, and V entry-wise as

K =


k⊤1 x1 k⊤1 x2 · · · k⊤1 xn

k⊤2 x1 k⊤2 x2 · · · k⊤2 xn

...
...

...
...

k⊤n x1 k⊤n x2 · · · k⊤n xn

 ,
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Q =


q⊤1 x1 q⊤1 x2 · · · q⊤1 xn

q⊤2 x1 q⊤2 x2 · · · q⊤2 xn

...
...

...
...

q⊤n x1 q⊤n x2 · · · q⊤n xn

 ,

V =


v⊤1 x1 v⊤1 x2 · · · v⊤1 xn

v⊤2 x1 v⊤2 x2 · · · v⊤2 xn

...
...

...
...

v⊤n x1 v⊤n x2 · · · v⊤n xn

 .

Here k⊤i , q⊤i , and v⊤i identify the i-th row of K,Q and V , while xj identifies the j-th column.

In this section, our goal is to approximate K, Q, and V . Our strategy is to approximate K, Q, and V
row by row, and within each row, entry by entry. More precisely, for each i ∈ [n], we approximate

k⊤i X, q⊤i X, v⊤i X,

by approximating the scalar products

k⊤i xj , q⊤i xj , v⊤i xj , for all j ∈ [n],

and then collecting these approximations to form approximations of the full matrices K, Q, and V .

To approximate each scalar k⊤i xj , q⊤i xj , and v⊤i xj , we first determine their joint range over all
i, j ∈ [n]. Within this joint range, we construct a set of uniform-space grid points. Then, we
approximate each target entry k⊤i xj , q⊤i xj , or v⊤i xj by an entry-specific weighted sum of these grid
points, where grid points closer to the target entry value receive larger weights. In this way, we
represent every entry by its own set of interpolation weights, while all approximations share the same
global grid.

We introduce our notation for the uniform grid points used in our interpolation scheme.

Interpolations. We recall
B = max(∥X∥∞, ∥WK∥∞, ∥WQ∥∞, ∥WV ∥∞).

Thus, for all i, j ∈ [n],

−d ·B2 ≤ k⊤i xj , q
⊤
i xj , v

⊤
i xj ≤ d ·B2. (D.51)

Namely, [−dB2, dB2] contains all entries of K, Q, and V .

Then, we take L0 := −dB2 and LP := dB2 as the two endpoints of our interpolation and define for
i ∈ {0} ∪ [P ]

Li :=
iLP + (P − i)L0

P
, (D.52)

where P is the number of interpolation steps (the number of equal divisions of [L0, LP ]). The points
{Li}Pi=0 form our uniform grid over the target range.

We use ∆L to denote the length of the interval between two neighboring grid points. We have

∆L :=
LP − L0

P
=

2dB2

P
. (D.53)

Now we have all the ingredients needed to approximate each entry using a weighted sum. However,
the input, 

X
W⊤

K

W⊤
Q

W⊤
V

 =

x1 x2 · · · xn

k1 k2 · · · kn
q1 q2 · · · qn
v1 v2 · · · vn


︸ ︷︷ ︸

4d×n

,

contains information from all rows in the target K, Q, and V , but does not contain the grid points.
We need a mechanism to select a specific ki, qi, or vi (corresponding to one row of K, Q, or V ) and
to include the grid points for us.
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To address this, we introduce row-specific linear transformations Linearj , where j ∈ [3n], since we
have n rows for each of K, Q, and V . Each Linearj serves two purposes: it incorporates the input
and the uniform grid points, and selects the ki, qi, or vi associated with index i (corresponding to one
row of K, Q, or V ).

For the clarity of presentation, we relabel these 3n linear transformations according to whether they
are responsible for K, Q, or V

LinearKj := Linearj , j ∈ [n],
(
Responsible for K

)
LinearQj := Linearn+j , j ∈ [n],

(
Responsible for Q

)
LinearVj := Linear2n+j , j ∈ [n]. (D.54)

Later in the proof, we specify the explicit form of these Linearj .

So far, Linearj allows us to combine the input with the uniform grid points and to select the desired
ki, qi, or vi. The next step is to implement the entry-specific weighted sums to approximate the
entries of K, Q, and V .

For this, we use a row-specific single-head attention: for each i ∈ [n], we assign one head to
approximate k⊤i X using the weighted sum, one head to approximate q⊤i X in the same manner, and
one head to approximate v⊤i X in the same manner. Each such head operates token-wise: given its
designated row i, the head approximates all scalars k⊤i xj , q⊤i xj , or v⊤i xj across j ∈ [n].

Since each of K, Q, and V has n rows and we use a single-head for each row, we use a total of 3n
heads to approximate K, Q, and V . We use Attnj to label these 3n heads and j ∈ [3n].

Again, for the clarity of presentation, we provide another equivalent way, as Attnj , to label these 3n
heads

AttnKj := Attnj , j ∈ [n],

AttnQj := Attnn+j , j ∈ [n],

AttnVj := Attn2n+j , j ∈ [n]. (D.55)
Later in our proof, we provide the construction of these Attnj explicitly.

Now we are ready to approximate each of K, Q, and V . We approximate K first to demonstrate our
procedure and deal with Q and V in a similar manner later.

In-Context Calculation of K. First, we define the linear transformation LinearKj : R4d×n →
R(2d+3)×(P+1) attached before AttnKj as:

LinearKj (Z) :=

[
0d×d 0d×d 0d×2d

0d×d Id 0d×2d

03×d 03×d 03×2d

]
︸ ︷︷ ︸

(2d+3)×4d

Z︸︷︷︸
4d×n

[
2L0e

(n)
j 2L1e

(n)
j · · · 2LP e

(n)
j

]
︸ ︷︷ ︸

n×(P+1)

+

(
Z ∈ R4d×n denotes any input

)[
Id 0d×d 0d×2d

0d×d 0d×d 0d×2d

03×d 03×d 03×2d

]
︸ ︷︷ ︸

(2d+3)×4d

Z︸︷︷︸
4d×n

[
In 0n×(P+1−n)

]︸ ︷︷ ︸
n×(P+1)

+

[
02d×(P+1)

M1

ML

]
︸ ︷︷ ︸
(2d+3)×(P+1)

,

where M1,ML are
M1 :=

[
11×n 01×(P+1−n)

]︸ ︷︷ ︸
1×(P+1)

, (D.56)

ML :=

[
L0 L1 · · · LP

−L2
0 −L2

1 · · · −L2
P

]
︸ ︷︷ ︸

2×(P+1)

. (D.57)
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The LinearKj layer takes the input
[
X⊤ WK WQ WV

]⊤
and outputs in the following way:

LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

)

=

[
0d×d 0d×d 0d×2d

0d×d Id 0d×2d

03×d 03×d 03×2d

]
︸ ︷︷ ︸

(2d+3)×4d

x1 x2 · · · xn

k1 k2 · · · kn
q1 q2 · · · qn
v1 v2 · · · vn


︸ ︷︷ ︸

4d×n

[
2L0e

(n)
j 2L1e

(n)
j · · · 2LP e

(n)
j

]
︸ ︷︷ ︸

n×(P+1)

+

[
Id 0d×d 0d×2d

0d×d 0d×d 0d×2d

03×d 03×d 03×2d

]
︸ ︷︷ ︸

(2d+3)×4d

x1 x2 · · · xn

k1 k2 · · · kn
q1 q2 · · · qn
v1 v2 · · · vn


︸ ︷︷ ︸

4d×n

[
In 0n×(P+1−n)

]︸ ︷︷ ︸
n×(P+1)

+

[
02d×(P+1)

M1

ML

]
︸ ︷︷ ︸
(2d+3)×(P+1)

(
By (D.50)

)

=

[
0d×1 0d×1 · · · 0d×1

k1 k2 · · · kn
03×1 03×1 · · · 03×1

]
︸ ︷︷ ︸

(2d+3)×n

[
2L0e

(n)
j 2L1e

(n)
j · · · 2LP e

(n)
j

]
︸ ︷︷ ︸

n×(P+1)

+

[
x1 x2 · · · xn

0d×1 0d×1 · · · 0d×1

03×1 03×1 · · · 03×1

]
︸ ︷︷ ︸

(2d+3)×n

[
In 0n×(P+1−n)

]︸ ︷︷ ︸
n×(P+1)

+

[
02d×(P+1)

M1

ML

]
︸ ︷︷ ︸
(2d+3)×(P+1)(

By selecting ki and xi with Id for all i ∈ [n]
)

=

[
0d×1 0d×1 · · · 0d×1

2L0kj 2L1kj · · · 2LP kj
03×1 03×1 · · · 03×1

]
︸ ︷︷ ︸

(2d+3)×(P+1)

+

[
x1 x2 · · · xn 0d×1 · · · 0d×1

0d×1 0d×1 · · · 0d×1 0d×1 · · · 0d×1

03×1 03×1 · · · 03×1 03×1 · · · 03×1

]
︸ ︷︷ ︸

(2d+3)×(P+1)

+

(
By selecting kj with e

(n)
j

)02d×1 02d×1 · · · 02d×1 02d×1 · · · 02d×1

1 1 · · · 1 0 · · · 0
L0 L1 · · · Ln−1 Ln · · · LP

−L2
0 −L2

1 · · · −L2
n−1 −L2

n · · · −L2
P


︸ ︷︷ ︸

(2d+3)×(P+1) (
By the definition of M1 and ML; i.e., (D.56) and (D.57)

)

=


x1 x2 · · · xn 0d · · · 0d

2L0kj 2L1kj · · · 2Ln−1kj 2Lnkj · · · 2LP kj
1 1 · · · 1 0 · · · 0
L0 L1 · · · Ln−1 Ln · · · LP

−L2
0 −L2

1 · · · −L2
n−1 −L2

n · · · −L2
P


︸ ︷︷ ︸

(2d+3)×(P+1)

. (D.58)

Next, we construct AttnKj : R(2d+3)×(P+1) → R3n×n to be

AttnKj (D) := WK;j

V̂
D︸ ︷︷ ︸

3n×(P+1)

·Softmaxβ((W
K;j

K̂
D)⊤WK;j

Q̂
D)︸ ︷︷ ︸

(P+1)×(P+1)

· WK;j

Ô︸ ︷︷ ︸
(P+1)×n

,

where D ∈ R(2d+3)×(P+1) denotes any input, and

WK;j

K̂
:=

[
0d×d Id 0d×1 0d×1 0d×1

01×d 01×d 0 0 1

]
︸ ︷︷ ︸

(d+1)×(2d+3)

, (D.59)
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WK;j

Q̂
:=

[
Id 0d×d 0d×1 0d×1 0d×1

01×d 01×d 1 0 0

]
︸ ︷︷ ︸

(d+1)×(2d+3)

, (D.60)

WK;j

V̂
:= e

(3n)
j︸︷︷︸

3n×1

[
01×(2d+1) 1 0

]︸ ︷︷ ︸
1×(2d+3)

, (D.61)

WK;j

Ô
:=

[
In

0(P+1−n)×n

]
︸ ︷︷ ︸

(P+1)×n

. (D.62)

We define the K̂K
j of AttnKj to be:

K̂K
j := WK;j

K̂
· LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

)

=

[
0d×d Id 0d×1 0d×1 0d×1

01×d 01×d 0 0 1

]
︸ ︷︷ ︸

(d+1)×(2d+3)

·


x1 x2 · · · xn · · · 0d

2L0kj 2L1kj · · · 2Ln−1kj · · · 2LP kj
1 1 · · · 1 · · · 0
L0 L1 · · · Ln−1 · · · LP

−L2
0 −L2

1 · · · −L2
n−1 · · · −L2

P


︸ ︷︷ ︸

(2d+3)×(P+1)(
By (D.59) and (D.58)

)
=

[
2L0kj 2L1kj · · · 2Ln−1kj · · · 2LP kj
−L2

0 −L2
1 · · · −L2

n−1 · · · −L2
P

]
︸ ︷︷ ︸

(d+1)×(P+1)

, (D.63)

and the last equality holds since Id selects the 2Likj row, and 1 selects the −L2
i row where i ∈

{0} ∪ [P ].

We define the Q̂K
j of AttnKj to be:

Q̂K
j := WK;j

Q̂
· LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

)

=

[
Id 0d×d 0d×1 0d×1 0d×1

01×d 01×d 1 0 0

]
︸ ︷︷ ︸

(d+1)×(2d+3)

·


x1 x2 · · · xn · · · 0d

2L0kj 2L1kj · · · 2Ln−1kj · · · 2LP kj
1 1 · · · 1 · · · 0
L0 L1 · · · Ln−1 · · · LP

−L2
0 −L2

1 · · · −L2
n−1 · · · −L2

P


︸ ︷︷ ︸

(2d+3)×(P+1)(
By (D.60) and (D.58)

)
=

[
x1 x2 · · · xn 0d×(P+1−n)

1 1 · · · 1 01×(P+1−n)

]
︸ ︷︷ ︸

(d+1)×(P+1)

, (D.64)

and the last equality holds since Id selects the xi row where i ∈ [n], and 1 selects the 1s row.

We define the V̂ K
j of AttnKj to be:

V̂ K
j := WK;j

V̂
· LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

)
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= e
(3n)
j︸︷︷︸

3n×1

[
01×(2d+1) 1 0

]︸ ︷︷ ︸
1×(2d+3)

·


x1 x2 · · · xn 0d · · · 0d

2L0kj 2L1kj · · · 2Ln−1kj 2Lnkj · · · 2LP kj
1 1 · · · 1 0 · · · 0
L0 L1 · · · Ln−1 Ln · · · LP

−L2
0 −L2

1 · · · −L2
n−1 −L2

n · · · −L2
P


︸ ︷︷ ︸

(2d+3)×(P+1) (
By (D.61) and (D.58)

)
= e

(3n)
j︸︷︷︸

3n×1

[L0 L1 · · · Ln−1 Ln · · · LP ]︸ ︷︷ ︸
1×(P+1)

, (D.65)

and the last equality holds since the 1 selects the Li row where i ∈ {0} ∪ [P ].

Combining the results of K̂K
j and Q̂K

j , we calculate the Softmaxβ((K̂
K
j )⊤Q̂K

j ) in AttnKj as

Softmaxβ((K̂
K
j )⊤Q̂K

j )

= Softmaxβ(

[
2L0kj 2L1kj · · · 2Ln−1kj · · · 2LP kj
−L2

0 −L2
1 · · · −L2

n−1 · · · −L2
P

]⊤
︸ ︷︷ ︸

(P+1)×(d+1)

[
x1 x2 · · · xn 0d×(P+1−n)

1 1 · · · 1 01×(P+1−n)

]
︸ ︷︷ ︸

(d+1)×(P+1)

)

(
By the definition of K̂K

j and Q̂K
j ; i.e. (D.63) and (D.64)

)

= Softmaxβ(


2L0k

⊤
j −L2

0

2L1k
⊤
j −L2

1
...

...
2LP k

⊤
j −L2

P


︸ ︷︷ ︸

(P+1)×(d+1)

[
x1 x2 · · · xn 0d×(P+1−n)

1 1 · · · 1 01×(P+1−n)

]
︸ ︷︷ ︸

(d+1)×(P+1)

)
(
By the transpose of K̂K

j

)

= Softmaxβ(


2L0k

⊤
j x1 − L2

0 2L0k
⊤
j x2 − L2

0 · · · 2L0k
⊤
j xn − L2

0 0d×(P+1−n)

2L1k
⊤
j x1 − L2

1 2L1k
⊤
j x2 − L2

1 · · · 2L1k
⊤
j xn − L2

1 0d×(P+1−n)

...
...

...
...

2LP k
⊤
j x1 − L2

P 2LP k
⊤
j x2 − L2

P · · · 2LP k
⊤
j xn − L2

P 0d×(P+1−n)


︸ ︷︷ ︸

(P+1)×(P+1)

)

(
By matrix multiplication

)

= Softmaxβ(


−(k⊤j x1 − L0)

2 + (k⊤j x1)
2 · · · −(k⊤j xn − L0)

2 + (k⊤j xn)
2 0d×(P+1−n)

−(k⊤j x1 − L1)
2 + (k⊤j x1)

2 · · · −(k⊤j xn − L1)
2 + (k⊤j xn)

2 0d×(P+1−n)

...
...

...
−(k⊤j x1 − LP )

2 + (k⊤j x1)
2 · · · −(k⊤j xn − LP )

2 + (k⊤j xn)
2 0d×(P+1−n)


︸ ︷︷ ︸

(P+1)×(P+1)

)

(
2Lik

⊤
j xm − L2

i = −(k⊤
j xm − Li)

2 + (k⊤
j xm)2 where i ∈ {0} ∪ [P ] and m ∈ [n]

)

= Softmaxβ(


−(k⊤j x1 − L0)

2 · · · −(k⊤j xn − L0)
2 0d×(P+1−n)

−(k⊤j x1 − L1)
2 · · · −(k⊤j xn − L1)

2 0d×(P+1−n)

...
...

...
−(k⊤j x1 − LP )

2 · · · −(k⊤j xn − LP )
2 0d×(P+1−n)


︸ ︷︷ ︸

(P+1)×(P+1)

), (D.66)

and the last line holds since the following property of Softmaxβ

Softmaxβ(v) = Softmaxβ(v + C · 1(P+1)×1),

for any vector v ∈ RP+1 and C ∈ R.

From (D.66), we have

Softmaxβ((K̂
K
j )⊤Q̂K

j ) ·WK;j

Ô
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= Softmaxβ(


−(k⊤j x1 − L0)

2 · · · −(k⊤j xn − L0)
2 0d×(P−n+1)

−(k⊤j x1 − L1)
2 · · · −(k⊤j xn − L1)

2 0d×(P−n+1)

...
...

...
−(k⊤j x1 − LP )

2 · · · −(k⊤j xn − LP )
2 0d×(P−n+1)


︸ ︷︷ ︸

(P+1)×(P+1)

)

[
In

0(P+1−n)×n

]
︸ ︷︷ ︸

(P+1)×n

= Softmaxβ(


−(k⊤j x1 − L0)

2 · · · −(k⊤j xn − L0)
2

−(k⊤j x1 − L1)
2 · · · −(k⊤j xn − L1)

2

...
...

−(k⊤j x1 − LP )
2 · · · −(k⊤j xn − LP )

2


︸ ︷︷ ︸

(P+1)×n

), (D.67)

where the last line follows from the column-wise nature of the Softmaxβ() function.

From (D.67), we have

(Softmaxβ((K̂
K
j )⊤Q̂K

j ) ·WK;j

Ô
)r,c =

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

,

for every r ∈ {0} ∪ [P ] and c ∈ [n].

Thus, for each column in (D.67), we have

(Softmaxβ((K̂
K
j )⊤Q̂K

j ) ·WK;j

Ô
):,c =

P∑
r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

e
(P+1)
r+1︸ ︷︷ ︸

(P+1)×1

. (D.68)

Combining V̂ K
j and (Softmaxβ((K̂

K
j )⊤Q̂K

j ) ·WK;j

Ô
):,c, we obtain

V̂ K
j · (Softmaxβ((K̂

K
j )⊤Q̂K

j ) ·WK;j

Ô
):,c

= e
(3n)
j︸︷︷︸

3n×1

[L0 L1 · · · Ln−1 Ln · · · LP ]︸ ︷︷ ︸
1×(P+1)

P∑
r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

e
(P+1)
r+1︸ ︷︷ ︸

(P+1)×1 (
By (D.65) and (D.68)

)
= e

(3n)
j︸︷︷︸

3n×1

P∑
r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

[L0 L1 · · · Ln−1 Ln · · · LP ]︸ ︷︷ ︸
1×(P+1)

e
(P+1)
r+1︸ ︷︷ ︸

(P+1)×1(
By the distributivity of matrix multiplication

)
= e

(3n)
j︸︷︷︸

3n×1

P∑
r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

Lr︸ ︷︷ ︸
scalar

(
e
(P+1)
r+1 selects Lr for every r ∈ {0} ∪ [P ]

)

=

P∑
r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

Lre
(3n)
j , (D.69)

for every c ∈ [n].

Hence,

V̂ K
j · (Softmaxβ((K̂

K
j )⊤Q̂K

j ) ·WK;j

Ô
):,c,

is a weighted average of the vectors Lre
(3n)
j , with weights depending on β and the distance between

Lr and k⊤j xc.
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We recall: V̂ K
j · (Softmaxβ((K̂

K
j )⊤Q̂K

j ) · WK;j

Ô
):,c gives the c-th column of AttnKj . Therefore,

each column of AttnKj stores a weighted sum as an approximator for each entry in k⊤j X .

We show that (D.69) is close to k⊤j xc:

∥V̂ K
j · (Softmaxβ((K̂

K
j )⊤Q̂K

j ) ·WK;j

Ô
):,c − k⊤j xc · e(3n)j ∥∞

= ∥
P∑

r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

Lr︸ ︷︷ ︸
scalar

·e(3n)j − k⊤j xc︸ ︷︷ ︸
scalar

·e(3n)j ∥∞
(
By (D.69)

)

= ∥(
P∑

r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

Lr − k⊤j xc) · e(3n)j ∥∞

= |
P∑

r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

Lr − k⊤j xc|
(
We have one non-zero entry in e

(3n)
j

)

= |
P∑

r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

Lr −
∑P

r=0 e
−β(Lr−k⊤

j xc)
2∑P

s=0 e
−β(Ls−k⊤

j xc)2
k⊤j xc|(

By (
∑P

r=0 e
−β(Lr−k⊤

j xc)
2

)/(
∑P

s=0 e
−β(Ls−k⊤

j xc)
2

) = 1
)

= |
P∑

r=0

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

(Lr − k⊤j xc)|

= |
∑

r:|Lr−k⊤
j xc|<∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

(Lr − k⊤j xc) +
∑

r:|Lr−k⊤
j xc|≥∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

(Lr − k⊤j xc)|

(
By dividing the Lr into two groups: one within ∆L away from k⊤

j xc, one at least ∆L away from k⊤
j xc

)
≤ |

∑
r:|Lr−k⊤

j xc|<∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

(Lr − k⊤j xc)|+ |
∑

r:|Lr−k⊤
j xc|≥∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

(Lr − k⊤j xc)|

(
By triangle inequality

)
≤

∑
r:|Lr−k⊤

j xc|<∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

|Lr − k⊤j xc|

︸ ︷︷ ︸
:=(I)

+
∑

r:|Lr−k⊤
j xc|≥∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

|Lr − k⊤j xc|

︸ ︷︷ ︸
:=(II)

,

(D.70)
and the last inequality holds due to the triangle inequality and the non-negativity of the exponential
function.

For term (I) in (D.70), we have
(I)

=
∑

r:|Lr−k⊤
j xc|<∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

|Lr − k⊤j xc|
(
By the definition of term (I) in (D.70)

)

<
∑

r:|Lr−k⊤
j xc|<∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

∆L
(
In this group of Lr , |Lr − k⊤

j xc| < ∆L
)

≤ ∆L, (D.71)
and the last inequality holds since∑

r:|Lr−k⊤
j xc|<∆L e−β(Lr−k⊤

j xc)
2

∑P
s=0 e

−β(Ls−k⊤
j xc)2

≤ 1.
(
The numerator is part of the denominator

)
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For term (II) in (D.70), we have
(II)

=
∑

r:|Lr−k⊤
j xc|≥∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

|Lr − k⊤j xc|
(
By the definition of term (II) in (D.70)

)

≤
∑

r:|Lr−k⊤
j xc|≥∆L

e−β(Lr−k⊤
j xc)

2∑P
s=0 e

−β(Ls−k⊤
j xc)2

2dB2

(
By (D.51) and (D.52), we have |Lr − k⊤

j xc| ≤ 2dB2
)

≤
∑

r:|Lr−k⊤
j xc|≥∆L

e−β∆L2∑P
s=0 e

−β(Ls−k⊤
j xc)2

2dB2

(
By |Lr − k⊤

j xc| ≥ ∆L, we have e−β(Lr−k⊤
j xc)

2

≤ e−β∆L2)
≤

∑
r:|Lr−k⊤

j xc|≥∆L

e−β∆L2

maxs{e−β(Ls−k⊤
j xc)2}

2dB2

(
We only keep the contribution from the nearest Ls to k⊤

j xc

)
≤

∑
r:|Lr−k⊤

j xc|≥∆L

e−β∆L2

e−β ∆L2

4

2dB2, (D.72)

and the last inequality holds since, by our construction of Ls in (D.52), the distance from k⊤j xc to
the nearest Ls is at most ∆L

2 . That is,

|Ls0 − k⊤j xc| ≤
∆L

2
, for s0 = argmin

s
|Ls − k⊤j xc|.

From (D.72), we have ∑
|Lr−k⊤

j xc|≥∆L

e−
3
4β∆L2

2dB2 ≤ Pe−
3
4β∆L2

2dB2, (D.73)

and the last inequality holds since, by our construction of Lr in (D.52), at most P points satisfy
|Lr − k⊤j xc| ≥ ∆L. This P -point scenario occurs when the value of k⊤j xc equals one of the Lr grid
points.

Combining (D.70), (D.71), and (D.73), we have:

∥V̂ K
j · (Softmaxβ((K̂

K
j )⊤Q̂K

j ) ·WK;j

Ô
):,c − k⊤j xc · e(3n)j ∥∞ ≤ ∆L︸︷︷︸

:=(a)

+Pe−
3
4β∆L2

2dB2︸ ︷︷ ︸
:=(b)

.

(D.74)

For term (a) in (D.74), we recall

∆L =
2dB2

P
.

(
By the definition of ∆L. i.e., (D.53)

)
To bound ∆L, we choose

P ≥ 4dB2

ϵ1
,

for any ϵ1 > 0, such that

∆L ≤ ϵ1
2
.

For term (b) in (D.74), we set

β ≥ 4

3

1

(∆L)2
ln

(
4dB2P

ϵ1

)
,
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such that

Pe−
3
4β∆L2

2dB2 ≤ ϵ1
2
.

Thus, from (D.74), we have

∥V̂ K
j · (Softmaxβ((K̂

K
j )⊤Q̂K

j ) ·WK;j

Ô
):,c − k⊤j xc︸ ︷︷ ︸

scalar

· e(3n)j︸︷︷︸
3n×1

∥∞ ≤∆L+ Pe−
3
4β∆L2

2dB2

≤ ϵ1
2

+
ϵ1
2

= ϵ1,

and this leads to
∥V̂ K

j · Softmaxβ((K̂
K
j )⊤Q̂K

j ) ·WK;j

Ô
− e

(3n)
j︸︷︷︸

3n×1

· k⊤j X︸ ︷︷ ︸
1×n

∥∞ ≤ ϵ1. (D.75)

We recall
V̂ K
j · Softmaxβ((K̂

K
j )⊤Q̂K

j ) ·WK;j

Ô

=WK;j

V̂
LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

) · Softmaxβ((W
K;j

K̂
LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

))⊤WK;j

Q̂
LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

)) ·WK;j

Ô

(
By the definition of K̂K

j , Q̂K
j , and V̂ K

j

)
= AttnKj ◦ LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

). (
By the definition of AttnK

j

)
Thus, we write (D.75) as

∥AttnKj ◦ LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

)− e
(3n)
j︸︷︷︸

3n×1

· k⊤j X︸ ︷︷ ︸
1×n

∥∞ ≤ ϵ1,

and we sum over the index j to obtain the approximation across rows

∥
n∑

j=1

AttnKj ◦ LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

)−
[

K
0n×n

0n×n

]
∥∞ ≤ ϵ1, (D.76)

for any ϵ1 > 0.

In-Context Calculation of Q and V . We approximate Q and V using the same procedure as that
of K.

We start with Q.

Again, we define LinearQj preceding AttnQj first. We construct LinearQj similarly to LinearKj . The
only difference is the position of the identity Id in the first term. Explicitly,

LinearQj (Z) :=

[
0d×d 0d×d 0d×d 0d×d

0d×d 0d×d Id 0d×d

03×d 03×d 03×d 03×d

]
︸ ︷︷ ︸

(2d+3)×4d

Z︸︷︷︸
4d×n

[
2L0e

(n)
j 2L1e

(n)
j · · · 2LP e

(n)
j

]
︸ ︷︷ ︸

n×(P+1)

+

[
Id 0d×d 0d×2d

0d×d 0d×d 0d×2d

03×d 03×d 03×2d

]
︸ ︷︷ ︸

(2d+3)×4d

Z︸︷︷︸
4d×n

[
In 0n×(P+1−n)

]︸ ︷︷ ︸
n×(P+1)

+

[
02d×(P+1)

M1

ML

]
︸ ︷︷ ︸
(2d+3)×(P+1)

.
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LinearQj takes
[
X⊤ WK WQ WV

]⊤
as input and outputs:

LinearQj (


X
W⊤

K

W⊤
Q

W⊤
V

) =


x1 x2 · · · xn 0d · · · 0d
2L0qj 2L1qj · · · 2Ln−1qj 2Lnqj · · · 2LP qj
1 1 · · · 1 0 · · · 0
L0 L1 · · · Ln−1 Ln · · · LP

−L2
0 −L2

1 · · · −L2
n−1 −L2

n · · · −L2
P

 .

Next, we construct AttnQj : R(2d+3)×(P+1) → R3n×n to be

AttnQj (D) := WQ;j

V̂
D︸ ︷︷ ︸

3n×(P+1)

·Softmaxβ((W
Q;j

K̂
D)⊤WQ;j

Q̂
D)︸ ︷︷ ︸

(P+1)×(P+1)

· WQ;j

Ô︸ ︷︷ ︸
(P+1)×n

,

where D ∈ R(2d+3)×(P+1) denotes any input, and

WQ;j

K̂
:=WK;j

K̂
=

[
0d×d Id 0d×1 0d×1 0d×1

01×d 01×d 0 0 1

]
︸ ︷︷ ︸

(d+1)×(2d+3)

,

WQ;j

Q̂
:=WK;j

Q̂
=

[
Id 0d×d 0d×1 0d×1 0d×1

01×d 01×d 1 0 0

]
︸ ︷︷ ︸

(d+1)×(2d+3)

,

WQ;j

V̂
:= e

(3n)
n+j︸︷︷︸

3n×1

[01×d 01×d 0 1 0]︸ ︷︷ ︸
1×(2d+3)

,

WQ;j

Ô
:=WK;j

Ô
=

[
In

0(P+1−n)×n

]
︸ ︷︷ ︸

(P+1)×n

.

We define the K̂Q
j of AttnQj to be

K̂Q
j := WQ;j

K̂
· LinearQj (


X
W⊤

K

W⊤
Q

W⊤
V

) = [2L0qj 2L1qj · · · 2Ln−1qj · · · 2LP qj
−L2

0 −L2
1 · · · −L2

n−1 · · · −L2
P

]
︸ ︷︷ ︸

(d+1)×(P+1)

. (D.77)

We define the Q̂Q
j of AttnQj to be

Q̂Q
j :=WQ;j

Q̂
· LinearQj (


X
W⊤

K

W⊤
Q

W⊤
V

) = [x1 x2 · · · xn 0d×(P+1−n)

1 1 · · · 1 01×(P+1−n)

]
︸ ︷︷ ︸

(d+1)×(P+1)

. (D.78)

We define the V̂ Q
j of AttnQj to be

V̂ Q
j :=WQ;j

V̂
· LinearQj (


X
W⊤

K

W⊤
Q

W⊤
V

) = e
(3n)
n+j︸︷︷︸

3n×1

[L0 L1 · · · Ln−1 Ln · · · LP ]︸ ︷︷ ︸
1×(P+1)

. (D.79)

Then, by going through the same calculations as those of K, we have

∥
n∑

j=1

AttnQj ◦ LinearQj (


X
W⊤

K

W⊤
Q

W⊤
V

)−
[
0n×n

Q
0n×n

]
∥∞ ≤ ϵ1. (D.80)
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To approximate V , we define

LinearVj (Z) :=

[
0d×d 0d×d 0d×d 0d×d

0d×d 0d×d 0d×d Id
03×d 03×d 03×d 03×d

]
︸ ︷︷ ︸

(2d+3)×4d

Z︸︷︷︸
4d×n

[
2L0e

(n)
j 2L1e

(n)
j · · · 2LP e

(n)
j

]
︸ ︷︷ ︸

n×(P+1)

+

[
Id 0d×d 0d×2d

0d×d 0d×d 0d×2d

03×d 03×d 03×2d

]
︸ ︷︷ ︸

(2d+3)×4d

Z︸︷︷︸
4d×n

[
In 0n×(P+1−n)

]︸ ︷︷ ︸
n×(P+1)

+

[
02d×(P+1)

M1

ML

]
︸ ︷︷ ︸
(2d+3)×(P+1)

.

LinearVj outputs in a similar manner as LinearKj :

LinearVj (Z) =


x1 x2 · · · xn 0d · · · 0d

2L0vj 2L1vj · · · 2Ln−1vj 2Lnvj · · · 2LP vj
1 1 · · · 1 0 · · · 0
L0 L1 · · · Ln−1 Ln · · · LP

−L2
0 −L2

1 · · · −L2
n−1 −L2

n · · · −L2
P

 .

Next, we construct AttnVj : R(2d+3)×(P+1) → R3n×n to be

AttnVj := WV ;j

V̂
D︸ ︷︷ ︸

3n×(P+1)

·Softmaxβ((W
V ;j

K̂
D)⊤WV ;j

Q̂
D)︸ ︷︷ ︸

(P+1)×(P+1)

WV ;j

Ô︸ ︷︷ ︸
(P+1)×n

,

where D ∈ R(2d+3)×(P+1) denotes any input, and

WV ;j

K̂
:=WK;j

K̂
=

[
0d×d Id 0d×1 0d×1 0d×1

01×d 01×d 0 0 1

]
︸ ︷︷ ︸

(d+1)×(2d+3)

,

WV ;j

Q̂
:=WK;j

Q̂
=

[
Id 0d×d 0d×1 0d×1 0d×1

01×d 01×d 1 0 0

]
︸ ︷︷ ︸

(d+1)×(2d+3)

,

WV ;j

V̂
:= e

(3n)
2n+j︸ ︷︷ ︸
3n×1

[01×d 01×d 0 1 0]︸ ︷︷ ︸
1×(2d+3)

,

WV ;j

Ô
:=WK;j

Ô
=

[
In

0(P+1−n)×n

]
︸ ︷︷ ︸

(P+1)×n

.

We define the K̂V
j to be

K̂V
j :=WV ;j

K̂
· LinearVj (


X
W⊤

K

W⊤
Q

W⊤
V

) = [2L0vj 2L1vj · · · 2Ln−1vj · · · 2LP vj
−L2

0 −L2
1 · · · −L2

n−1 · · · −L2
P

]
︸ ︷︷ ︸

(d+1)×(P+1)

. (D.81)

We define the Q̂V
j to be

Q̂V
j :=WV ;j

Q̂
· LinearVj (


X
W⊤

K

W⊤
Q

W⊤
V

) = [x1 x2 · · · xn 0d×(P+1−n)

1 1 · · · 1 01×(P+1−n)

]
︸ ︷︷ ︸

(d+1)×(P+1)

. (D.82)
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We define the V̂ V
j to be

V̂ V
j := WV ;j

V̂
· LinearVj (


X
W⊤

K

W⊤
Q

W⊤
V

) = e
(3n)
2n+j︸ ︷︷ ︸
3n×1

[L0 L1 · · · Ln−1 Ln · · · LP ]︸ ︷︷ ︸
1×(P+1)

. (D.83)

Similarly, by going through the same calculations as those of K, we have

∥
n∑

j=1

AttnVj ◦ LinearVj (


X
W⊤

K

W⊤
Q

W⊤
V

)−
[
0n×n

0n×n

V

]
∥∞ ≤ ϵ1. (D.84)

Then, by combining (D.76), (D.80), and (D.84), we have

∥
n∑

j=1

AttnKj ◦ LinearKj (


X
W⊤

K

W⊤
Q

W⊤
V

)−
[

K
0n×n

0n×n

]
+

n∑
j=1

AttnQj ◦ LinearQj (


X
W⊤

K

W⊤
Q

W⊤
V

)−
[
0n×n

Q
0n×n

]
+

n∑
j=1

AttnVj ◦ LinearVj (


X
W⊤

K

W⊤
Q

W⊤
V

)−
[
0n×n

0n×n

V

]
∥∞ ≤ ϵ1.

As previously stated in (D.54), LinearKj ,LinearQj and LinearVj denote Linearj ,Linearn+j and
Linear2n+j respectively. Also, as in (D.55), AttnKj ,AttnQj and AttnVj denote Attnj ,Attnn+j and
Attn2n+j .

Thus, we have

∥
3n∑
j=1

Attnj ◦ Linearj(


X
W⊤

K

W⊤
Q

W⊤
V

)−
[
K
Q
V

]
︸︷︷ ︸
3n×n

∥∞ ≤ ϵ1. (D.85)

We define [
K ′

Q′

V ′

]
:=

3n∑
j=1

Attnj ◦ Linearj(


X
W⊤

K

W⊤
Q

W⊤
V

),
such that (D.85) becomes

∥

[
K ′

Q′

V ′

]
−

[
K
Q
V

]
∥∞ ≤ ϵ1. (D.86)

Step 3: Single-Head Assembly of the Attention Output. Our goal in this part is to reconstruct the
attention mechanism

V ′Softmaxβ((K
′)⊤Q′), and V Softmaxβ((K)⊤Q),

from K ′, Q′, V ′ and K,Q, V via Attns.

To achieve the reconstruction of attention mechanisms, we build Attns as
Attns(Z) := [0n×2n In]Z · Softmaxβ(([In 0n×2n]Z)⊤ [0n×n In 0n×n]Z),

where Z ∈ R3n×n denotes any input.
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Then, we have
n×n︷ ︸︸ ︷

Attns(

[
K
Q
V

]
︸︷︷ ︸
3n×n

) = V︸︷︷︸
n×n

Softmaxβ((K)⊤Q︸ ︷︷ ︸
n×n

),

and
n×n︷ ︸︸ ︷

Attns(

[
K ′

Q′

V ′

]
︸ ︷︷ ︸
3n×n

) = V ′︸︷︷︸
n×n

Softmaxβ((K
′)⊤Q′︸ ︷︷ ︸
n×n

).

Step 4: Error Bound From the results of Step 3, we have

Attns(

[
K ′

Q′

V ′

]
)−Attns(

[
K
Q
V

]
)

= V ′Softmaxβ(K
′⊤Q′)− V Softmaxβ(K

⊤Q)

= V ′Softmaxβ(K
′⊤Q′)− V Softmaxβ(K

′⊤Q′) + V Softmaxβ(K
′⊤Q′)− V Softmaxβ(K

⊤Q)

= (V ′ − V )Softmaxβ(K
′⊤Q′) + V (Softmaxβ(K

′⊤Q′)− Softmaxβ(K
⊤Q)).

Thus, we have

∥Attns(

[
K ′

Q′

V ′

]
)−Attns(

[
K
Q
V

]
)∥∞

= ∥(V ′ − V )Softmaxβ(K
′⊤Q′) + V (Softmaxβ(K

′⊤Q′)− Softmaxβ(K
⊤Q))∥∞

≤ ∥(V ′ − V )Softmaxβ(K
′⊤Q′)∥∞︸ ︷︷ ︸

:=(A)

+ ∥V (Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q))∥∞︸ ︷︷ ︸
:=(B)

, (D.87)

and the last inequality follows from the triangle inequality.

For term (A) in (D.87), since each column in Softmaxβ(K
′⊤Q′) sums up to 1, then for each column

of (A),

(V ′ − V )︸ ︷︷ ︸
n×n

Softmaxβ(K
′⊤Q′):,j︸ ︷︷ ︸

n×1

,

is a weighted sum of the columns from (V ′ − V ).

Then, we have
∥(V ′ − V )Softmaxβ(K

′⊤Q′):,j∥∞ ≤ ∥V ′ − V ∥∞ ≤ ϵ1,

and the first inequality holds since the column average of (V ′ − V ) has a maximum entry no greater
than the maximum entry among the original columns in (V ′ − V ). The second inequality holds since
(D.86). This conclusion holds for every column in term (A), so we obtain

(A) ≤ ϵ1. (D.88)

Term (B) in (D.87) is

(B) = ∥V (Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q))∥∞.

For the simplicity of presentation, we define

∆S := Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q),
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such that for each entry in (B), we have

|(V∆S)ij | = |
n∑

k=1

Vik(∆S)kj |
(
By the definition of matrix multiplication

)
≤

n∑
k=1

|Vik| · |(∆S)kj |
(
By triangle inequality and |ab| = |a| · |b| for all a, b ∈ R

)
≤

n∑
k=1

∥V ∥∞ · ∥∆S∥∞
(
By |Vik| ≤ ∥V ∥∞ and |(∆S)kj | ≤ ∥∆S∥∞

)
= n∥V ∥∞ · ∥∆S∥∞,

and this leads to
(B) ≤ n∥V ∥∞ · ∥∆S∥∞. (D.89)

For each entry in ∆S, we have
|(∆S)i,j |

= |(Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q))i,j |

= | eβK
′
i·Q

′
j∑n

i′=1 e
βK′

i′ ·Q
′
j

− eβKi·Qj∑n
i′=1 e

βKi′ ·Qj
|

(
K′

i, Q
′
i, Ki, Qi denote the i-th column in K′, Q′, K, Q

)
= | eβK

′
i·Q

′
j∑n

i′=1 e
βK′

i′ ·Q
′
j

− eβKi·Qj∑n
i′=1 e

βK′
i′ ·Q

′
j

+
eβKi·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

− eβKi·Qj∑n
i′=1 e

βKi′ ·Qj
|

≤ |e
βK′

i·Q
′
j − eβKi·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

|+ |eβKi·Qj (
1∑n

i′=1 e
βK′

i′ ·Q
′
j

− 1∑n
i′=1 e

βKi′ ·Qj
)|

(
By triangle inequality

)
=

eβK
′
i·Q

′
j∑n

i′=1 e
βK′

i′ ·Q
′
j

|1− eβ(Ki·Qj−K′
i·Q

′
j)|+ eβKi·Qj∑n

i′=1 e
βKi′ ·Qj

|
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

− 1|(
By non-negativity of exponential

)
< |1− eβ(Ki·Qj−K′

i·Q
′
j)|︸ ︷︷ ︸

:=(B-1)

+ |1−
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

|︸ ︷︷ ︸
:=(B-2)

, (D.90)

and the last inequality holds since

eβK
′
i·Q

′
j∑n

i′=1 e
βK′

i′ ·Q
′
j

< 1,
eβKi·Qj∑n

i′=1 e
βKi′ ·Qj

< 1.

To bound term (B-1) in (D.90), we recall

∥

[
K ′

Q′

V ′

]
︸ ︷︷ ︸
3n×n

−

[
K
Q
V

]
︸︷︷ ︸
3n×n

∥∞ ≤ ϵ1,

so
∥K ′ −K︸ ︷︷ ︸

n×n

∥∞ ≤ ϵ1,

∥Q′ −Q︸ ︷︷ ︸
n×n

∥∞ ≤ ϵ1.

Let K ′
i, Q

′
i, Ki, Qi denote the i-th column in K ′, Q′, K, Q, then we have

∆Ki︸︷︷︸
n×1

:= K ′
i −Ki︸ ︷︷ ︸
n×1

, ∥∆Ki∥∞ ≤ ϵ1,

∆Qi︸︷︷︸
n×1

:= Q′
i −Qi︸ ︷︷ ︸
n×1

, ∥∆Qi∥∞ ≤ ϵ1.
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Thus, for term (B-1) in (D.90), we have
(B-1)

= |1− exp
{
β(Ki ·Qj −K ′

i ·Q′
j)
}
|

= |1− exp{β(Ki ·Qj − (Ki +∆Ki) · (Qj +∆Qj))}|(
By K′

i = Ki +∆Ki and Q′
i = Qi +∆Qi

)
= |1− exp{−β(Ki ·∆Qj +Qj ·∆Ki +∆Ki ·∆Qj)}|,(

By Ki ·Qj − (Ki +∆Ki) · (Qi +∆Qi) = −(Ki ·∆Qj +Qj ·∆Ki +∆Ki ·∆Qj)
)

and we know
Ki ·∆Qj +Qj ·∆Ki +∆Ki ·∆Qj

≤ n · ∥Ki∥∞∥∆Qj∥∞ + n · ∥Qj∥∞∥∆Ki∥∞ + n · ∥∆Ki∥∞∥∆Qj∥∞(
By a · b ≤ n∥a∥∞∥b∥∞ for all a, b ∈ Rn

)
≤ 2nBKQV ϵ1 + nϵ21.

(
By ∥Ki∥∞, ∥Qj∥∞ ≤ BKQV and ∥∆Ki∥∞, ∥∆Qj∥∞ ≤ ϵ1

)
Thus, we have

(B-1) ≤ |1− e−βn(2BKQV ϵ1+ϵ21)|. (D.91)

For term (B-2) in (D.90), we have
(B-2)

= |1−
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
βK′

i′ ·Q
′
j

|
(
By the definition of (B-2)

)
= |1−

∑n
i′=1 e

βKi′ ·Qj∑n
i′=1 e

β(Ki′+∆Ki′ )·(Qj+∆Qj)
|

(
By K′

i′ = Ki′ +∆Ki′ and Q′
i = Qi +∆Qi

)
= |1−

∑n
i′=1 e

βKi′ ·Qj∑n
i′=1 e

β(Ki′ ·Qj+Ki′ ·∆Qj+Qj ·∆Ki′+∆Ki′ ·∆Qj)
|,

and for all i′ in the denominator, we have
Ki′ ·Qj +Ki′ ·∆Qj +Qj ·∆Ki′ +∆Ki′ ·∆Qj

≤ Ki′ ·Qj + n · ∥Ki′∥∞∥∆Qj∥∞ + n · ∥Qj∥∞∥∆Ki′∥∞ + n · ∥∆Ki′∥∞∥∆Qj∥∞(
By a · b ≤ n∥a∥∞∥b∥∞ for all a, b ∈ Rn

)
≤ Ki′ ·Qj + 2nBKQV ϵ1 + nϵ21.

(
By ∥Ki′∥∞, ∥Qj∥∞ ≤ BKQV and ∥∆Ki′∥∞, ∥∆Qj∥∞ ≤ ϵ1

)
Thus,

(B-2)

= |1−
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
β(Ki′ ·Qj+Ki′ ·∆Qj+Qj ·∆Ki′+∆Ki′ ·∆Qj)

|

≤ |1−
∑n

i′=1 e
βKi′ ·Qj∑n

i′=1 e
β(Ki′ ·Qj+2nBKQV ϵ1+nϵ21)

|

= |1−
∑n

i′=1 e
βKi′ ·Qj

eβn(2BKQV ϵ1+ϵ21)
∑n

i′=1 e
βKi′ ·Qj

|
(
eβn(2BKQV ϵ1+ϵ21) is independent of i′

)
= |1− e−βn(2BKQV ϵ1+ϵ21)|, (D.92)

and the last equality holds since the common factor
∑n

i′=1 e
βKi′ ·Qj cancels out.

Combining (D.90), (D.91), and (D.92), we have

|(Softmaxβ(K
′⊤Q′)− Softmaxβ(K

⊤Q))i,j |

< 2|1− e−βn(2BKQV ϵ1+ϵ21)|
≤ 2|1− e−βn(2BKQV ϵ1+ϵ1)|.

(
By requiring 0 < ϵ1 ≤ 1

)
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Thus, for any 0 < ϵ0 < 2, when ϵ1 satisfies

0 < ϵ1 ≤ min{1,
− ln

(
1− ϵ0

2

)
βn(2BKQV + 1)

},

we have
|(Softmaxβ(K

′⊤Q′)− Softmaxβ(K
⊤Q))i,j | < ϵ0. (D.93)

From (D.89) and (D.93), we have
(B) ≤ n∥V ∥∞∥∆S∥∞ < nBKQV ϵ0, (D.94)

since ∥V ∥∞ ≤ BKQV and ∥∆S∥∞ < ϵ0.

Combining (D.87), (D.88) and (D.94) yields

∥Attns(

[
K ′

Q′

V ′

]
)−Attns(

[
K
Q
V

]
)∥∞ < ϵ1 + nBKQV ϵ0.

When we take ϵ0 and ϵ1 to be infinitely small, the right-hand side tends to 0.

This completes the proof.

D.7 PROOF OF COROLLARY 4.2.1

Theorem D.7 (Restate of Corollary 4.2.1: In-Context Emulation of Statistical Methods). Let A
denote the set of all the in-context algorithms that a single-layer attention is able to approximate. For
an a ∈ A (that is, a specific algorithm), let W a

K ,W a
Q,W

a
V denote the weights of the attention that

implements this algorithm. For any ϵ > 0 and any finite set A0 ∈ A, there exists a 2-layer attention
Attn ◦Attnm such that

∥
3n∑
j=1

Attns ◦Attnj ◦ Linearj
([

X
W a

])
− a(X)∥∞ ≤ ϵ, a ∈ A0,

where W a is the W defined as Definition 4.2 using W a
K ,W a

Q,W
a
V .

Proof. Without loss of generality, assume all W a
K ,W a

Q,W
a
V to be of the same hidden dimension

since we are always able to pad them to the same size. According to Theorem 4.2, there exists a
network

∑n
j=1 Attns ◦Attnj ◦ Linearj that approximate a(X) with an error no larger than ϵ > 0

when given input of the form: 
X

W a⊤
K

W a⊤
Q

W a⊤
V

 .

Then for a set of a ∈ A0, define Pm := maxa∈A0
P

(a)
ϵ .

By Theorem 4.2, there exists a network consisting of a self-attention followed by a multi-head
attention with a linear layer and parameter P equals to Pm, such that for any a ∈ A0, we have

∥
3n∑
j=1

Attns ◦Attnj ◦ Linearj




X
W a⊤

K

W a⊤
Q

W a⊤
V


− a(X)∥∞ ≤ ϵ, a ∈ A0.

This completes the proof.
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E IN-CONTEXT APPLICATION OF STATISTICAL METHODS BY MODERN
HOPFIELD NETWORK

Definition E.1 (Modern Hopfield Network). Define Y = (y1, · · · , yN )⊤ ∈ Rdy×N as the raw
stored pattern, R = (r1, · · · , rS)⊤ ∈ RRr×S as the raw state pattern, and WQ ∈ Rd×dr , WK ∈
Rd×dy , WV ∈ Rdv×d as the projection matrices. A Hopfield layer Hopfield is defined as:

Hopfield(R;Y,WQ,WK ,WV ) := WV︸︷︷︸
dv×d

d×N︷ ︸︸ ︷
WKY Softmax(β(WKY )⊤WQR︸ ︷︷ ︸

N×S

) ∈ Rdv×S , (E.1)

where β is a temperature parameter.
With K ∈ Rd×N denoting WKY , Q ∈ Rd×S denoting WQR and V ∈ Rdv×N denoting WV WKY ,
(E.1) writes out as:

Hopfield(R;Y,WQ,WK ,WV ) := V Softmax(β ·K⊤Q) ∈ Rdv×S .

Theorem E.1. Let Z = [z1, z2, · · · , zn] ∈ Rd×n denote the input from a compact input domain.
For any linear transformation l(z) = a⊤z + b : Rd → R, and any continuous function f : R → Ro

where o is the output dimension, there exists a Hopfield network Hopfield such that
∥Hopfield(Z)− [f(l(z1)) f(l(z2)) · · · f(l(zn))] ∥∞ ≤ ϵ,

for any ϵ > 0.

Proof. We first perform a simple token-wise linear transformation on the input:

Linear(Z) :=

[
Id×d

01×d

]
Z +

[
0d×n

11×n

]
=

[
Z

11×n

]
∈ R(d+1)×n.

We then construct WQ to be:
WQ := I(d+1),

which is an identity matrix of dimension R(d+1)×(d+1).

This yields that

Q := WQLinear(Z) =

[
Z

11×n

]
∈ R(d+1)×n.

Following the definition of Interpolations in Appendix D.6, K,V are constructed as (here we omit Y
since it’s not the input):

K :=

[
2L0a 2L1a · · · 2LPa

2L0b− L2
0 2L1b− L2

1 · · · 2LP b− L2
P

]
,

V := [f(L0) f(L1) · · · f(LP )] .

By Definition E.1, we have
Hopfield(Z)

= [f(L0) f(L1) · · · f(LP )] Softmax

β


2l(z1)L0 − L2

0 2l(z2)L0 − L2
0 · · · 2l(zn)L0 − L2

0

2l(z1)L1 − L2
1 2l(z2)L1 − L2

1 · · · 2l(zn)L1 − L2
1

...
...

...
2l(z1)LP − L2

P 2l(z2)LP − L2
P · · · 2l(zn)LP − L2

P


 .

This is equivalent to:
Hopfield(Z)
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= [f(L0) f(L1) · · · f(LP )] Softmax

−β


(l(z1)− L0)

2 (l(z2)− L0)
2 · · · (l(zn)− L0)

2

(l(z1)− L1)
2 (l(z2)− L1)

2 · · · (l(zn)− L1)
2

...
...

...
(l(z1)− LP )

2 (l(z2)− LP )
2 · · · (l(zn)− LP )

2


 .

For any column c ∈ [n] in Hopfield(Z), we have

Hopfield(Z):,c = [f(L0) f(L1) · · · f(LP )] Softmax(−β


(l(zc)− L0)

2

(l(zc)− L1)
2

...
(l(zc)− LP )

2

)
=

P∑
r=1

e−β(l(zc)−Lr)
2∑P

r′=1 e
−β(l(zc)−Lr′ )

2
f(Lr).

When β is large enough, we have∑
(l(zc)−Lr)2≥∆L

e−β(l(zc)−Lr)
2∑P

r′=1 e
−β(l(zc)−Lr′ )

2
≤

∑
(l(zi)−Lr)2≥∆L

e−β∆L

e−β ∆L
2

≤ Pe−
β∆L

2 ≤ ϵ1,

for any ϵ1 > 0.

This means that the proportion of the f(Lr) in Hopfield(Z):,c that deviates from l(zc) is no larger
than ϵ1.

Since f and l are continuous, and Z comes from a compact domain, l(zi) comes from a compact
domain for all i ∈ [n]. Thus f is uniformly continuous on its input domain. This means that for any
ϵ2 > 0, there exists a δ > 0 such that when(x− y)2 ≤ δ, ∥f(x)− f(y)∥∞ ≤ ϵ2.

Configuring ∆L ≤ δ yields:
∥Hopfield(Z):,c − f(l(zc))∥∞

≤
P∑

r=1

e−β(l(zc)−Lr)
2∑P

r′=1 e
−β(l(zc)−Lr′ )

2
∥f(Lr)− f(l(zc))∥∞

=
∑

(l(zc)−Lr)2≥∆L

e−β(l(zc)−Lr)
2∑P

r′=1 e
−β(l(zc)−Lr′ )

2
∥f(Lr)− f(l(zc))∥∞

+
∑

(l(zc)−Lr)2≤∆L

e−β(l(zc)−Lr)
2∑P

r′=1 e
−β(l(zc)−Lr′ )

2
∥f(Lr)− f(l(zc))∥∞

≤ ϵ1 · 2B + (1− ϵ1)ϵ2,

where B := ∥f∥L∞ is the bound of f in infinite norm.

We set ϵ2 ≤ ϵ/2, ϵ1 ≤ ϵ/(4B). This yields:
∥Hopfield(Z):,c − f(l(zc))∥∞ ≤ ϵ1 · 2B + (1− ϵ1)ϵ2

≤ ϵ

4B
· 2B + 1 · ϵ

2
= ϵ.

This completes the proof.

Theorem E.2. Define

X :=

[
x1 x2 · · · xn

y1 y2 · · · yn

]
∈ R(d+1)×n and W := [w w · · · w] ∈ Rd×n,

where xi ∈ Rd and yi ∈ R are the input-output pairs. w ∈ Rd is the linear coefficient to optimize.
Suppose xi, yi and w are bounded by B in infinite norm.
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For any continuous function f : R → R, there exists a Hopfield layer Hopfield with linear connec-
tions such that
∥Hopfield(W ;X)−

[
f(w⊤x1 − y1)x1 f(w⊤x2 − y2)x2 · · · f(w⊤xn − yn)xn

]
∥∞ ≤ ϵ,

for any ϵ > 0.

Proof. Before plugging input W to the Hopfield layer, we pass it through a linear transformation
Linearw:

Linearw(W ) :=

[
Id

0(d+n+2)×d

]
W +


0d×n

−11×n

0d×n

−11×n

In

 =


W

−11×n

0d×n

−11×n

In

 ∈ R(2d+n+2)×n.

We also pass X through a linear transformation Linearx:
Linearx(X)

:=

n∑
i=1

[
Id+1

0(d+1+n)×(d+1)

]
︸ ︷︷ ︸
(2d+n+2)×(d+1)

X︸︷︷︸
(d+1)×n

[
0n×(i−1)(P+1) 2L0e

(n)
i 2L1e

(n)
i · · · 2LP e

(n)
i 0n×(n−i)(P+1)

]
︸ ︷︷ ︸

n×n(P+1)

+

n∑
i=1

0(d+1)×d 0(d+1)

Id 0d
0(n+1)×d 0n+1


︸ ︷︷ ︸

(2d+n+2)×(d+1)

X
[
0n×(i−1)(P+1) f(L0)e

(i)
i f(L1)e

(i)
i · · · f(LP )e

(i)
i 0n×(n−i)(P+1)

]

+

 0(2d+1)×(P+1) · · · 0(2d+1)×(P+1)

S · · · S

(2dB2 +B − ln ϵ0)e
(n)
1 11×(P+1) · · · (2dB2 +B − ln ϵ0)e

(n)
n 11×(P+1)


︸ ︷︷ ︸

(2d+n+2)×n(P+1)

= [T1 T2 · · · Tn] ,

where
11×(P+1) := [1 1 · · · 1] ∈ R1×(P+1),

S :=
[
−L2

0 −L2
1 · · · L2

P

]
∈ R1×(P+1),

Ti :=


2L0xi 2L1xi · · · 2LPxi

2L0yi 2L1yi · · · 2LP yi
f(L0)xi f(L1)xi · · · f(LP )xi

−L2
0 −L2

1 · · · −L2
P

(2dB2 +B − ln ϵ0)e
(n)
i (2dB2 +B − ln ϵ0)e

(n)
i · · · (2dB2 +B − ln ϵ0)e

(n)
i

 ∈ R(2d+n+2)×(P+1).

Here ϵ0 is a parameter that we will designate later according to ϵ.

Now construct WK ,WQ,WV to be:
WQ := I2d+n+2,

WK := I2d+n+2,

W⊤
V :=

[
0d×(d+1) Id 0d×(n+1)

]
∈ Rd×(2d+n+2).

Therefore, by Definition E.1, the output becomes:

Hopfield(Linearw(W ); Linearx(X)) =WV Linearx(X)Softmax(βLinearx(X)⊤Linearw(W )),
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where

Softmax(Linearx(X)⊤Linearw(W )) = Softmax(β [T1 T2 · · · Tn]
⊤


W

−11×n

0d×n

−11×n

In

).
This is equivalent to:

(Linearx(X)⊤Linearw(W )):,c =


T⊤
1

T⊤
2
...

T⊤
n

 ·


w
−1
0d
−1

e
(n)
c



=


M1,c

M2,c

...
Mn,c

 ,

where

Mi,c := T⊤
i ·


w
−1
0d
−1

e
(n)
i



=

 2L0x
⊤
i w − 2L0yi − L2

0 + (2dB2 +B − ln ϵ0)1i=c

2L1x
⊤
i w − 2L1yi − L2

1 + (2dB2 +B − ln ϵ0)1i=c

· · ·
2LPx

⊤
i w − 2LP yi − L2

P + (2dB2 +B − ln ϵ0)1i=c

 ,

where i ∈ [n] and c ∈ [n], and 1i=c represents the indicator function of i = c.

This means that
Softmax(βLinearx(X)⊤Linearw(W )):,c

= Softmax(β


M1,c

M2,c

...
Mn,c

)
= β

n∑
i=1

P∑
j=1

exp
{
2Ljx

⊤
i w − 2Ljyi − L2

0 + (2dB2 +B − ln ϵ0)1i=c

}∑n
i′=1

∑P
j′=0 exp

{
u
(i′)
j′ + (2dB2 +B − ln ϵ0)1i=c

} e
(nP )
(i−1)P+j .

Thus we have (without loss of generality, we ignore the β parameter in Softmax):
Hopfield(Linearw(W ); Linearx(X)):,c

=WV Linearx(X)Softmax(Linearx(X)⊤Linearw(W )):,c(
Wv only retrieves the (d+ 2)-th row in Ti

)
= [F1 · · · Fn]

n∑
i=1

P∑
j=1

exp
{
2Ljx

⊤
i w − 2Ljyi − L2

j + (2dB2 +B − ln ϵ0)1i=c

}
∑n

i′=1

∑P
j′=0 exp

{
2Lj′x⊤

i′w − 2Lj′yi′ − L2
j′ + (2dB2 +B − ln ϵ0)1i=c

}e(nP )
(i−1)P+j

=

n∑
i=1

P∑
j=0

exp
{
2Ljx

⊤
i w − 2Ljyi − L2

j + (2dB2 +B − ln ϵ0)1i=c

}
∑n

i′=1

∑P
j′=0 exp

{
2Lj′x⊤

i′w − 2Lj′yi′ − L2
j′ + (2dB2 +B − ln ϵ0)1i=c

}f(Lj)xi,

where F is:
Fi := [f(L0)xi f(L1)xi · · · f(LP )xi] .
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For every i ∈ [n], if i ̸= c, we have
P∑

j=0

exp
{
2Ljx

⊤
i w − 2Ljyi − L2

j + (2dB2 +B − ln ϵ0)1i=c

}
∑n

i′=1

∑P
j′=0 exp

{
2Lj′x⊤

i′w − 2Lj′yi′ − L2
j′ + (2dB2 +B − ln ϵ0)1i=c

}
=

P∑
j=0

exp
{
2Ljx

⊤
i w − 2Ljyi − L2

j

}
∑n

i′=1

∑P
j′=0 exp

{
2Lj′x⊤

i′w − 2Lj′yi′ − L2
j′ + (2dB2 +B − ln ϵ0)1i=c

}
<

P∑
j=0

exp
{
2Ljx

⊤
i w − 2Ljyi − L2

j

}
∑P

j′=0 exp
{
2Lj′x⊤

i′w − 2Lj′yi′ − L2
j′ + (2dB2 +B − ln ϵ0)

}
(
only taking the i′ = c part

)
<

P∑
j=0

exp
{
2dB2 +B

}
P exp(2dB2 +B − ln ϵ0)

= ϵ0.

For i = c, since
n∑

i ̸=c

P∑
j=0

exp
{
2Ljx

⊤
i w − 2Ljyi − L2

j + (2dB2 +B − ln ϵ0)1i=c

}
∑n

i′=1

∑P
j′=0 exp

{
2Lj′x⊤

i′w − 2Lj′yi′ − L2
j′ + (2dB2 +B − ln ϵ0)1i=c

} ≤ (n− 1)ϵ0,

we have ∑P
j=0 exp

{
u
(c)
j + (2dB2 +B − ln ϵ0)

}
∑n

i′=1

∑P
j′=0 exp

{
2Lj′x⊤

i′w − 2Lj′yi′ − L2
j′ + (2dB2 +B − ln ϵ0)1i=c

}
=

P∑
j=0

exp
{
u
(c)
j + (2dB2 +B − ln ϵ0)

}
∑n

i′=1

∑P
j′=0 exp

{
2Lj′x⊤

i′w − 2Lj′yi′ − L2
j′ + (2dB2 +B − ln ϵ0)1i=c

}
≥ 1− (n− 1)ϵ0.

Thus for the parts in the weighted sum output that corresponds to rows in M:,c in the attention score
matrix, we have

∥
P∑

j=0

exp
{
u
(c)
j + (2dB2 +B − ln ϵ0)

}
∑n

i′=1

∑P
j′=0 exp

{
2Lj′x⊤

i′w − 2Lj′yi′ − L2
j′ + (2dB2 +B − ln ϵ0)1i=c

}f(Lj)xc − f(x⊤
c w − yc)xc∥∞

= ∥
P∑

j=0

exp
{
u
(c)
j + (2dB2 +B − ln ϵ0)

}
∑P

j′=0 exp
{
u
(c)
j′ + (2dB2 +B − ln ϵ0)

} (f(Lj)xc − f(x⊤
c w − yc)xc)

·

∑P
j′=0 exp

{
u
(c)
j′ + (2dB2 +B − ln ϵ0)

}
∑n

i′=1

∑P
k=0 exp

{
u
(i′)
k + (2dB2 +B − ln ϵ0)1i=c

}
− (1−

∑P
j′=0 exp

{
u
(c)
j′ + (2dB2 +B − ln ϵ0)

}
∑n

i′=1

∑P
k=0 exp

{
u
(i′)
k + (2dB2 +B − ln ϵ0)1i=c

} )f(x⊤
c w − yc)xc∥∞

≤
P∑

j=0

exp
{
u
(c)
j + (2dB2 +B − ln ϵ0)

}
∑P

j′=0 exp
{
u
(c)
j′ + (2dB2 +B − ln ϵ0)

} |f(Lj)− f(x⊤
c w − yc)| · d∥xc∥∞

− (1−

∑P
j′=0 exp

{
u
(c)
j′ + (2dB2 +B − ln ϵ0)

}
∑n

i′=1

∑P
k=0 exp

{
u
(i′)
k + (2dB2 +B − ln ϵ0)1i=c

} )|f(x⊤
c w − yc)|∥xc∥∞
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≤
P∑

j=0

exp
{
u
(c)
j + (2dB2 +B − ln ϵ0)

}
∑P

j′=0 exp
{
u
(c)
j′ + (2dB2 +B − ln ϵ0)

} |f(x⊤
c w − yc)|∥xc∥∞

+ (n− 1)ϵ0Bf∥xc∥∞

=

P∑
j=0

exp
{
u
(c)
j

}
∑P

j′=0 exp
{
u
(c)
j′

} |f(Lj)− f(x⊤
c w − yc)|∥xc∥∞ + (n− 1)ϵ0Bf∥xc∥∞

=

P∑
j=0

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

|f(Lj)− f(x⊤
c w − yc)|∥xc∥∞ + (n− 1)ϵ0Bf∥xc∥∞,

where we define Bf := |f | as the bound for f .

For any ϵ1 > 0, set ∆L to be sufficiently small such that
|f(x)− f(y)| ≤ ϵ1,

when |x− y| ≤ ∆L.

Then when β is sufficiently large, we have∑
|Li−(x⊤

c w−yc)|>∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

≤ ϵ2,

for any ϵ2 > 0.

Thus
P∑

j=0

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

|f(Lj)− f(x⊤
c w − yc)|

=
∑

|Li−(x⊤
c w−yc)|>∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

|f(Lj)− f(x⊤
c w − yc)|

+
∑

|Li−(x⊤
c w−yc)|≤∆L

exp
{
−β(x⊤

c w − yc − Lj)
2
}∑P

j′=0 exp{−β(x⊤
c w − yc − Lj′)2}

|f(Lj)− f(x⊤
c w − yc)|

≤ ϵ2 · 2Bf + ϵ1.

This completes the proof.

Corollary E.2.1 (In-Context GD of Hopfield Layer). Define

X :=

[
x1 x2 · · · xn

y1 y2 · · · yn

]
∈ R(d+1)×n and W := [w w · · · w] ∈ Rd×n,

where xi ∈ Rd and yi ∈ R are the input-output pairs. w ∈ Rd is the linear coefficient we aim to
optimize. For any differentiable loss function ℓ : R → R, There exists a Hopfield layer Hopfield
with linear connections such that
∥Hopfield(W ;X)−

[
∇ℓ(w⊤x1 − y1)x1 ∇ℓ(w⊤x2 − y2)x2 · · · ∇ℓ(w⊤xn − yn)xn

]
∥∞ ≤ ϵ,

for any ϵ > 0.

Proof. Replacing the continuous function f in Theorem E.2 with ∇ℓ completes the proof.
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