Under review as a conference paper at ICLR 2026

IN-CONTEXT ALGORITHM EMULATION IN
FIXED-WEIGHT TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We prove that a minimal Transformer with frozen weights emulates a broad class
of algorithms by in-context prompting. We formalize two modes of in-context algo-
rithm emulation. In the task-specific mode, for any continuous function f : R — R,
we show the existence of a single-head softmax attention layer whose forward pass
reproduces functions of the form f(w 'z — y) to arbitrary precision. This gen-
eral template subsumes many popular machine learning algorithms (e.g., gradient
descent, linear regression, ridge regression). In the prompt-programmable mode,
we prove universality: a single fixed-weight two-layer softmax attention module
emulates all algorithms from the task-specific class (i.e., each implementable by a
single softmax attention) via only prompting. Our key idea is to construct prompts
that encode an algorithm’s parameters into token representations, creating sharp
dot-product gaps that force the softmax attention to follow the intended computa-
tion. This construction requires no feed-forward layers and no parameter updates.
All adaptation happens through the prompt alone. Numerical results corroborate
our theory. These findings forge a direct link between in-context learning and algo-
rithmic emulation, and offer a simple mechanism for large Transformers to serve as
prompt-programmable interpreters of algorithms. They illuminate how GPT-style
foundation models may swap algorithms via prompts alone, and establish a form
of algorithmic universality in modern Transformer models.

1 INTRODUCTION

We show that a minimal Transformer architecture with frozen weights is capable of emulating a broad
class of algorithms through prompt design alone. This stylized problem setting isolates the core of in-
context computation and provides an analytic lens on fundamental questions in Transformer models:
How do fixed-weight models execute diverse tasks from context alone? How does a prompt turn into
an algorithmic procedure? How do prompt-encoded parameters and query-key routing realize task
identification and stepwise execution? What minimal architectural ingredients suffice for general in-
context capability? As foundation models rise to prominence in modern Al (Bommasani, 2021), these
questions are central, since much of their practical utility comes from in-context learning (prompting)
rather than explicit retraining (Brown et al., 2020; Liu et al., 2023). Against this backdrop, this work
offers a rigorous basis for in-context task learning', supplies a simple mechanism for Transformers
to act as prompt-programmable algorithm libraries, and shows how GPT-style models may swap
algorithms via prompts alone, shedding light on their general-purpose capabilities.

Large Transformer models exhibit ability to adapt to a new task by conditioning on examples or
instructions provided in the prompt without any gradient updates. This capability is known as In-
Context Learning (ICL) (Min et al., 2022; Brown et al., 2020). Prior work on Transformer in-context
learning falls into two strands. One trains models that learn in context for a specific function class
(Garg et al., 2022; Akyiirek et al., 2023; Li et al., 2023; Ahn et al., 2023; Zhang et al., 2024). The
other hand-engineers Transformers to enact particular algorithms with fixed weights (Bai et al., 2023;
Von Oswald et al., 2023; Wu et al., 2025). In particular, Bai et al. (2023) demonstrate that task-specific
attention layers — attention mechanisms with weights designed for a given task — implement a

'We use “task” to highlight algorithm-level adaptation (to diverse tasks), not mere pattern completion.



Under review as a conference paper at ICLR 2026

{ Gradient Descent } — Concatenated — { Gradient Descent }
Input and Weights
{ Linear Regression }* { Linear Regression }
Frozen Softmax
, X : ,
{ Lasso Regression }— Attention Layer { Lasso Regression }

[ Ridge Regression }% H[ Ridge Regression }

Figure 1: Prompt-Programmable In-Context Algorithm Emulation Overview. X denotes the data input,
and W™ encodes the instructions of the algorithm we aim to emulate. We show that even a 2-layer softmax
attention module suffices to emulate a broad class of algorithms by changing prompt (Theorem 4.1), i.e., the
W™ in the prompt. This separates algorithm information (in the prompt) from “model parameters” (frozen). By
sending the algorithm-specific information (e.g., instructions + data) to a fixed-weight model, the prompt acts as
the program and the frozen transformer as the interpreter. This makes the “weights-as-data” mechanism explicit
and is the core mechanism of prompt-programmability: a minimal frozen Transformer serves as a modular
interface in which swapping the prompt swaps the algorithm with no retraining.

variety of algorithms without gradient updates. For example, a single Transformer with fixed, task-
tailored attention weights achieves near-optimal performance on algorithms such as least-squares
regression, ridge regression, lasso, and gradient descent (Bai et al., 2023; Wu et al., 2025). These
results suggest that Transformers are capable of in-context algorithm emulation. Yet these approaches
retrain per task or hard-wire per algorithm. They do not give a single fixed architecture that is
prompt-programmable across many algorithms with explicit guarantees and minimal components.

To combat this, we advance this line of research by omitting the need for designing a new Transformer
block for every algorithm. We propose a frozen Transformer architecture to emulate a library of
attention-based algorithms in context without weight updates. We achieve this by embedding
algorithm-specific information into input prompts. Specifically, we formalize two emulation modes,
and establish explicit guarantees and constructive minimal designs for both. In the task-specific
mode (Section 3), a dedicated attention module with fixed weights (single- or multi-head) executes
one algorithm in context. In the prompt-programmable mode (Section 4), by contrast, a single
Transformer module with fixed weights re-programs itself through different prompts to execute
multiple algorithms on the fly. These constructions yield universality and minimality results for
in-context algorithm emulation. Specifically, we demonstrate a minimalist model of internal algorithm
swapping, where prompts serve as the context carrying algorithmic instructions.

Contributions. We establish a new form of in-context learning universality for algorithm emulation,
limited to attention-implementable algorithms. Our contributions are four-fold:

+ Task-Specific Emulation of f(w 2 — y)z. A single-head, single-layer softmax attention with
a linear map universally approximates functions of the form f(w "z — y)x for any continuous f,
with frozen weights and a suitable prompt. This general result subsumes, for example, computing
per-sample gradients and performing gradient descent updates (by choosing f as a loss derivative),
as well as solving linear and ridge regression in one forward pass.

* Constructive, Interpretable Prompt Design for Algorithm Emulation. We give an explicit
prompt design strategy that encodes the target task’s parameters and induces large query-key
margins so softmax follows the intended pattern, furnishing an interpretable, verifiable recipe for
prompt-programming a fixed attention-only module.

* A Simple Mechanism for Internal Algorithm Swapping of Transformer Models. Changing
only the prompt-encoded algorithm weights swaps the algorithm executed by the fixed attention-
only module, without retraining. Theory (finite libraries) and experiments (e.g., Lasso, ridge,
linear regression) confirm high-fidelity swapping. Altogether, these results shed light on the
general-purpose capability of GPT-style Transformer models to select and swap internal routines
via prompts (our formal proofs concern attention-only modules).

In conclusion, we show a minimalist transformer architecture serve as a general-purpose algorithm
emulator in context through prompt design. Our findings contribute to a sharp theoretical foundation
for viewing in-context learning as in-context algorithm emulation. They suggest that large pretrained
softmax attention models (such as GPT-style Transformers) encode a library of algorithms, and swap



Under review as a conference paper at ICLR 2026

among them based on prompts. This is achieved within a unified attention architecture and without
any parameter updates. We believe this perspective opens new opportunities for understanding the
emulation ability of Transformer models.

Organization. Section 2 presents ideas we build on. Section 3 presents illustrative examples of
learning statistical models in-context with fask-specific attention heads. Section 4 presents our main
results. Appendix A presents our proof strategies. Section 5 presents numerical validations.

Related Work. Due to page limits, we defer related work discussions to Appendix B.

Notations. We denote the index set {1,...,1} by [I]. We use lowercase letters for vectors and
uppercase letters for matrices. The vector egn) € R™ denotes the one-hot vector with 1 in the j-th

position and 0 elsewhere. We write X € R*" for the input sequence, where d is the token dimension
and n is the sequence length. We denote the number of attention heads by H. We use || - || and
|| - ||2 for the vector co-norm and 2-norm, respectively.

2 PRELIMINARIES: ATTENTION, IN-CONTEXT LEARNING AND EMULATION
Softmax Attention. We define a multi-layer self-attention layer with softmax activation as follows.

Definition 2.1 (Softmax Attention Layer). For any input sequence X € R?*", the multi-head
attention output (with H heads) is

H
Attnm(X> = Z W‘(/h)X SOftmax((WI((h)X)TWéh)X) Wéh) c Rdo Xno’
h=1 ~——

doXn nxn nXne

where Wf((h),Wégh) e Réwxd (M) ¢ Rdoxd and W € R™*"o for h € [H]. We use Attn, to
denote single-head self-attention.

Following the notation of (Hu et al., 2025a), we pick non-identical dimensions for weight matrices
Wy, Wgq, Wy for generality of our analysis.

In the common K := Wk X, Q := WgX, V := Wy X notation, a single-layer softmax attention
takes a set of key vectors K = {ki,...,k,}, value vectors V = {vy,...,v,}, and a query vector g,
to produce an output as a weighted sum of the value vectors. The weights on v; is Softmax(k, ¢),
emphasizing values whose keys are most similar to the query. That is, the softmax attention uses the
query as a cue to retrieve the most relevant information from the values (via their keys).

Linear Transformation Layer Linear(-). Throughout this paper, we sometimes compose attention
with an additional linear mapping for flexibility. Such a linear transformation layer uses learned
parameters to increase expressivity in attention-based constructions.

Definition 2.2. Let Z = [zy,..., 2,] € R?*" be the input sequence with columns z; € R%. We
use Linear : R¥™ — RPX™ (for some output length m) to denote column-wise linear affine maps.
Each output column depends only on one input column, possibly with replication or an additive bias.
We write Linear when dimensions are clear (input/output shapes chosen to match attention).

This layer is a generic column-wise affine operator. It preprocesses the input to an attention mech-
anism or post-processes its output. For example, Attn, o Linear(Z) applies a per-token affine
projection (optionally with replication, so m # n) before single-head attention. It subsumes the
practical per-token linear layer as the special case m = n with shared parameters and optional bias:
Linear(Z) = AZ + bl € RP*" with A € RP*? b € R? and 1,, the all-ones vector. In all cases,
columns are processed independently (no cross-column mixing).

In-Context Learning Setup. In in-context learning, a fixed model (e.g., a pretrained Transformer)
performs a new task without parameter updates. Formally, the model aims to approximate an unknown
function f : X — Y given a few examples of f in the input prompt. At inference, we provide n
exemplar pairs and a query x4, and concatenate them into a single sequence

— Ty T - Ty c R(d+1)><n and T, € RdXI. 2.1
yl y2 DR yn



Under review as a conference paper at ICLR 2026

Namely, the model receives (X, z,) as the input prompt. The goal of ICL is for the model, given
input prompt (X, z,), to (i) infer f from the exemplars and (ii) apply it to x, to predict y, = f(z,).
All the learning happens in the forward pass through the sequence X in an implicit fashion.

Task-Specific Attention. Task-specific attention uses fixed parameters to carry out a particular task
when the prompt follows the required structure (see (Bai et al., 2023) for examples.)

Definition 2.3. An attention layer is fask-specific if there exists a prompt family P such that, for
any prompt P € P constructed from task parameters/data, the attention’s forward pass implements
the task’s mapping on the query token(s), with no parameter change.

In particular, we embed the task’s defining transformations (e.g. a linear mapping corresponding to f
or part of f) into the attention weight matrices. Given a well-formed prompt of exemplar and query
tokens, the attention selects and combines these tokens to compute the correct output. Effectively,
this allows an attention layer to approximate diverse functions in context without weight updates.

Terminology: Task-Specific vs. Prompt-Programmable In-Context Emulation. In-context
algorithm emulation refers to executing an algorithm through a forward pass without weight updates.
The core contribution of this work is to formalize two in-context modes and study their scope:

 Task-Specific In-Context Emulation: for each algorithm A, there exists an attention module
(possibly multi-head) whose forward pass on a well-formed prompt implements .4 on the query
token(s). Each algorithm therefore requires its own dedicated parameters.

* Prompt-Programmable In-Context Emulation (via single frozen module): there exists a single
attention module with fixed weights Attn* such that, for every A in a target class, a suitable prompt
P, makes Attn* implement .4 on the query token(s). All adaptation occurs through the prompt
rather than through weight changes. Namely, one Attn* implements a library of algorithms.

These modes are complementary: the first reflects the conventional dedicated-module view (e.g.,
(Bai et al., 2023)), while the second is stronger — one fixed-weight attention module emulates many
algorithms via prompts (our contribution). In the remainder of the paper, Section 3 develops the
task-specific case. Section 4 establishes the prompt-programmable case by showing how the latter
subsumes the former via in-context simulation of task-specific modules.

3 TASK-SPECIFIC IN-CONTEXT ALGORITHM EMULATION

We present multiple examples demonstrating how softmax attention modules mimic behaviors of
various learning algorithms including gradient descent and linear regression. We begin with a very
general result showing that even a single-layer, single-head attention mechanism is a universal
approximator for a broad class of functions defined on the prompt.

In-Context Universal Approximation of f(w'z — y)z. Letx € R%, y € R, w € R, and let
f : R — R be continuous. We consider functions of the form f(w 'z — y)z, where f acts on
the residual w ' — y. This template is very general: many learning rules for linear models take
this form, including many residual/gradient-style updates’. Hence f(w 'z — y)x subsumes a wide
family of residual-driven updates central to machine learning. Thus, their in-context realization
explains much of in-context learning. To this end, showing that attention is capable of emulating any
continuous f(w 'z — y)z indicates a powerful and general capability. It means the attention module
implements any continuous adjustment or mapping based on the prediction w " - and the label 3. The

next theorem shows how a single-head attention approximates [f(w " z; — y;)z;]", arbitrarily well.

Theorem 3.1 (In-Context Emulation of f(w'z — y)z with Single-Head Attention). Let
[Linin, Limax) be a bounded interval containing all values of w "z — v, and let

— |T1 T2 Tn| Cp+)xn g We=w w - w]E]RdX"7
Yi Y2 - Yn

2For example, f(t) = t corresponds to the raw residual (w' 2 — y)z, f(-) = V.,£(-) corresponds to per-

sample gradients V., £(w " — y)x linear regression or classification with loss £(-), and nonlinear f (sigmoid,
step, etc.) corresponds to perceptron updates or other error-correcting rules.



Under review as a conference paper at ICLR 2026

where z; € R, y; € R, and w € R? is the coefficient vector. Define the input as:

:1:’1 1‘2 PRI xn X
Yio Y2 o YUn| = [W] e R(Zd+1)xn, 3.1
w w .« e w

7 =

Assume max{ || X ||oo, [W||oo} < B. For any continuously differentiable function f : R — R and
any € > 0, there exists a single-head attention Attng with a linear layer Linear such that

|Attns o Linear(Z) — [f(wTa1 —y1)z1 -+ f(w Zn — Yn)Tn] [l <€, forany e>0.

Proof. See Appendix D.1 for a detailed proof. O

Theorem 3.1 establishes that even the simplest softmax attention alone suffices to encode any
continuous function of the form f(w 2 — y)x by incorporating weights in the prompt. A direct
implication is by replacing f with the derivatives of differentiable loss function as follows.

Example 1: In-Context Emulation of Single-Step GD. Building on Theorem 3.1, we show that a
softmax attention layer emulates Gradient Descent (GD) in-context. Fristly, we replace the continuous
function f(-) in Theorem 3.1 with V{(-), where £ : R — R is any differentiable loss function. We
show that the softmax attention emulates per-sample gradients in context.

Corollary 3.1.1 (In-Context Emulation of Per-Sample Gradients). Let ¢ : R — R be differentiable
and ¢/ : R — R for its scalar derivative, ¢'(t) = 4/(t). For z := w'2z — y withz € R%, y € R,
w € RY, denote V,,£(z) := £'(z). Set f(-) = £'(-) in Theorem 3.1. With Z = [X; W] as in (3.1),
for any e > 0, there exist a single-head attention Attn,(-) and a linear map Linear(-) such that,

| Attng o Linear(Z) — W (wTzy —y))z1, - (W T — Yn)Zn] |loo < €

=:G approximated per-sample gradient matrix =:G target per-sample gradient matrix

Corollary 3.1.1 shows that a single-layer single-head softmax attention with a linear map approximates
the individual (per-sample) gradient terms {¢'(w " z; — y;)z; }?_,. Moreover, the layer outputs all
per-sample gradient terms in parallel. Next, we extend Corollary 3.1.1 to show that a fixed attention
layer implements the full gradient-descent update across all samples in-context.

Aggregating the per-sample gradients gives one GD step
1 — ~ 1 <&
== lw'zi—y), VIp(w)==Y l(w z—y)z; =g
ST ), VR = LS =g

From Corollary 3.1.1, let G be the attention output and choose the readout v := 1n e R”
(equivalently, right- multlply by Wo = wu in Definition 2.1). Define the attention estlmate of the

average gradient as g := Gu. Then § g ~ g, and the target update is wgD =w— nVL ,(w). Feeding
w in the prompt and applying the same readout produces a single d-dimensional update vector from
the layer. The next corollary states the precise approximation guarantee.

Corollary 3.1.2 (In-Context Emulation of a Single GD Step). Let ¢ : R — R be differentiable
and define L, (w) :== 1 S°"  ¢(w a; — y;). For any step size 77 > 0 and any ¢ > 0, there exist
a single-head attention Attn and a linear map Linear such that, with Z = [X; W] as in (3.1),
choosing the readout v := %ln (equivalently, right-multiply by W = w in Definition 2.1), we have

@cp = (Attn, o Linear(Z))u € R? and |@gp — (w — 7V Ly (w)) [leo < €.
N————
+
Wep

Proof. See Appendix D.2 for a detailed proof. O

Corollary 3.1.2 shows that a single-layer, single-head softmax attention with a linear map aggregates
the per-sample gradients via the output projection. It produces a d-vector wWap that approximates the

GD update wED = w — nV L, (w). Notably, each output column encodes a copy of w together with

a scaled per-sample gradient term. Averaging via the readout © = %1n then recovers wng up to €.



Under review as a conference paper at ICLR 2026

Example 2: In-Context Emulation of Multi-Step GD. We extend the single-step construction to
show that a multi-layer softmax attention network emulates multi-step gradient descent. In particular,
an (L+1)-layer transformer approximates L steps of gradient descent.

Stack (L+1) copies of the single-head layer from Corollary 3.1.2. Atlayer ¢ (0 < ¢ < L), use the
readout u) = 11, and the prompt Z®) = [X; W] with W) := (@) - @), Define

@8)1)3 :=w, and @gSl) := Attn, o Linear(Z®)u®.
For the target iterates, set wg% = w and wggl) = wgl)j - ann(wg) ). By Corollary 3.1.2,
LemmaD.4 and || - ||oo < || - ||2, we arrive

~(t t
|@&h — wEbllw < te, te€ (L.
Example 3: In-Context Emulation of Linear Regression. We now present the construction for
squared loss. We show that a single-layer softmax attention emulates linear regression in-context.

Corollary 3.1.3 (In-Context Emulation of Linear Regression). For any dataset {(z;, y;)}7; with

z; € R%, y; € R and any € > 0, there exist a single-head attention Attng, a linear map Linear, and a
readout u € R™ such that, with Z = [X; W] as in (3.1) (for any fixed bounded w),

ﬂ)\linear = (Attns o Linear(Z))u S Rda and ||72)\linear - wlinear”oo S €,

where Wiinear := argmin , cpa ﬁ oo (w,z) — yi)2.
Proof. See Appendix D.3 for detailed proof. O

Example 4: In-Context Emulation of Ridge Regression. We add regularization term and show
that a single-layer softmax attention emulates ridge regression with Lo penalty.

Corollary 3.1.4 (In-Context Emulation of Ridge Regression). For any dataset {(z;, y;)}7, any
A > 0, and any € > 0, there exist a single-head attention Attng, a linear map Linear, and a readout
u € R™ such that, with Z = [X; W] as in (3.1) (and the regularization signal included in the prompt),

Wridge := (Attn, o Linear)(Z)u € R?,  and || Wridge — Wridge|loo < €,

1

where Wyigge 1= argming, cpa 5= 1, ((w, 2;) — ;)? + 5 ||w||3 with regularization term A > 0.

Proof. See Appendix D.4 for detailed proof. O

So far our constructions in Section 3 show that, given freedom to choose parameters per algorithm,
attention modules emulate gradient descent, linear regression, ridge regression, and related updates in
context. These results establish the expressive power of task-specific in-context emulation, akin to
(Bai et al., 2023). In Section 4, we build on this foundation and prove a stronger universality: a single
frozen attention module Attn*, via prompt programming, simulates all such task-specific modules.

4 PROMPT-PROGRAMMABLE IN-CONTEXT ALGORITHM EMULATION

This section presents our main results: softmax attention is capable of (i) emulating fask-specific
attention heads in-context (Section 4.1), (ii) emulating statistical models in-context (Section 4.2),
and (iii) emulating any network (with linear projections) in-context (Section 4.3). Unlike Section 3
requiring a separate task-specific module for each algorithm, here we fix one frozen module Attn* and
show that suitable prompts instruct it to emulate every algorithm in the target class. This establishes
universality: one set of weights executes a library of algorithms through prompt programming.

4.1 IN-CONTEXT EMULATION OF ATTENTION
We first specify the input prompt with weight encoding.

Definition 4.1 (Vectorization). For any matrix X € R% X9, we define X = vec(X) € R%*" such
that X;_1yq4; = Xi,j foralli € [dy] and j € [d].



Under review as a conference paper at ICLR 2026

Definition 4.2 (Input Prompt of In-Context Emulation of Attention). Let X € R?X™ be the input
sequence, and let W, Wqo, Wy, € R?»*d be the weight matrices of the target attention head to be
emulated. Define the vectorizations

Wy = vec(Wk) € R¥" | W, = vec(Wg) € R¥", W, := vec(Wy) € R,
and
w= W Weo; Wy ] € R34

where w is the concatenation of W ., EQ, W, . Finally, define the extended input X, for in-context
emulation of the attention head specified by Wi, Wq, Wy as

X
Xpiz [m] with Wi, = 0w lL-w 2w .- (n_l).w ERGddth.

Iy

In other words, Wi, is a 2 x n block matrix whose j-th column consists of j - w € R (in the first
block-row) and w € R%* (in the second block-row), for j = 0,1,...,n — 1. Appending W}, as
additional rows to X produces the prompt X, that encodes the target weights.

Using this weight-encoding prompt, we now design a two-layer attention mechanism to reproduces
the effect of the target attention head in-context.

Theorem 4.1 (In-Context Emulation of Attention). Let X € R%*" be an input sequence, and let
Wi, Wag, Wy € R? x4 be the weight matrices of the target attention head we wish to emulate
in-context. Assume ||[Wx X ||co, |[WoX| oo, [Wv X |lco < Brxgv With Bxgy > 0. Then, for any
€ > 0, there exists a two-layer attention network — a multi-head attention layer Attn,, followed by
a single-head attention layer Attns — such that

|| Attng o Attn,, (X,) — Wy XSoftmaxs (W X) TWoX) [l < ¢,

Emulator Target

where X, is the prompt defined in Definition 4.2.

Remark 4.1 (Permutation Equivariance). Our construction keeps the permutation equivariance of
attention in its approximation. This means changing the order of columns in X results in an identical
change in the order of the columns in Attn, o Attn,, (X,).

Proof. See Appendix A.1 for the proof sketch and Appendix D.5 for a detailed proof. O

We now provide an alternative formulation of the above result. In this variant, a single-head attention
layer comes first, followed by a multi-head layer with sequence-wise linear projections.

Theorem 4.2 (In-Context Emulation of Attention; Alternative Formulation). Let X € RX” be the
input sequence, and let Wy, W, Wy, € R™*¢ be the weight matrices of the target attention. Assume
B = max{|[X loe, [Wlloes [Walloo, 1T lloc} and [ W X l|oo, |Wo X locs Wy X||oo < Brav
for Bxgv > 0. Then, for any € > 0, there exists a single-head attention layer Attn, followed by a
multi-head attention layer with linear projections such that

3n VIAi(T
[[Attng o (Z Attn; o Linear; ( WI% )) — Wy X Softmaxs (Wg X)  WoX) [|e < e
: N——" —_——
Jj=1 W, nxn nxn
Proof. See Appendix A.2 for the proof sketch and Appendix D.6 for a detailed proof. O

Theorems 4.1 and 4.2 allow us to approximate arbitrary target one-layer attention using another
two-layer attention. This construction requires no feed-forward layers and no parameter updates. All
approximation happens through the prompt alone (by embedding target attention weights and input
X into the prompt).

Discussion: Target Attention Approximation for Algorithm Emulation. Theorems 4.1 and 4.2
present a general algorithm emulation result: a fixed-weight two-layer softmax attention mod-



Under review as a conference paper at ICLR 2026

ule emulates all algorithms implementable by softmax attention via only prompting. For exam-
ple, if we choose the input sequence X € R?*™ in Theorem 4.1 and Theorem 4.2 to be the
Linear(Z) € R2(d+n+2)xn(P+1) in Theorem 3.1, then we are able to approximate all one-layer
attentions implementing target algorithms of the f(w & — y)a class: Corollaries 3.1.1 to 3.1.4. Thus,
we achieve in-context emulation of the entire class of algorithms expressible as f(w 'z — y)z.

To the best of our knowledge, this provides the first constructive toy model of fixed-weight transformer
exhibiting general-purpose ability (i.e., one fixed-weight model for many tasks). Moreover, the
construction is explicit, interpretable, and softmax-native. A few remarks are in order.

Remark 4.2 (Differences between Theorems 4.1 and 4.2). Theorems 4.1 and 4.2 both establish that
a fixed multi-head attention network can approximate any given attention head in-context. We present
two versions of the construction using different formulations and analytical techniques. In particular,
Theorem 4.1 encodes the target algorithm into the token representations (keeping the sequence length
fixed), whereas Theorem 4.2 achieves a similar effect by encoding the weights as additional tokens in
the input sequence (keeping each token’s dimension fixed).

Remark 4.3. Our constructions may contain non-standard choices, including encoding information
along the embedding dimension and using 3n parallel attention heads. We emphasize that the methods
apply to approximate a more realistic attention with far fewer hidden dimensions and number of
heads in practice. Section 5 provides further details.

Remark 4.4 (Comparison with Prior Work). We remark that our results differ from prior work in
three key aspects. First, we study the practical softmax attention rather than linear or ReLU attention
(Bai et al., 2023; Von Oswald et al., 2023; Vladymyrov et al., 2024). Second, our results in Section 4
go beyond task-specific ICL and establish that fixed-weight Transformers are prompt-programmable
(Bai et al., 2023; Wu et al., 2025; Li et al., 2025). Third, our results are constructive, providing
concrete emulation examples in contrast to prior prompting expressivity (Wang et al., 2023; Furuya
et al., 2024) or Turing-completeness results (Pérez et al., 2021; Giannou et al., 2023; Qiu et al., 2024).
The closest works to ours are (Giannou et al., 2023; Bai et al., 2023). Bai et al. (2023) show that
Transformers can execute several standard algorithms in-context, but each algorithm uses its own
tailored attention layer. Our results show that a single fixed attention module can emulate a broad
set of algorithms through prompt changes. Giannou et al. (2023) study a fixed looped Transformers
that implement arbitrary programs. However, their results are “there exists”-type: their universal
Transformer is a conceptual Turing machine, not a fully specified numerical model. While our results
are also extensible to looped setting (i.e., Corollary 3.1.2), our focus is different: we use an attention-
only, FFN-free model and analyze its algorithmic universality constructively. This highlights the
power of softmax attention mechanism and offers a clean testbed for developing scientific theories
(interpretable, controllable and predictable like physics) of GPT-style foundation models.

Extension: Modern Hopfield Networks. We extend our results to in-context optimization ability of
dense associative memory models (Ramsauer et al., 2021) in Appendix E.

4.2 IN-CONTEXT EMULATION OF STATISTICAL METHODS

Theorem 4.2 shows that a frozen attention module approximates a target attention head by embedding
the head’s weights into its input prompt. We now leverage this idea to emulate a broader class of
algorithms. In essence, we replace the embedded target attention weights with the parameters of an
arbitrary statistical method that we aim to emulate. By the same principle, the fixed attention module
then mimics the behavior of diverse statistical models within the in-context learning framework.

Corollary 4.2.1 (In-Context Emulation of Statistical Methods). Let A be the set of all algorithms
implementable by a single-layer attention network in-context. For any finite collection of algorithms
{a1,as,...,ar} := Ao C A, there exists a two-layer attention network (a single-head layer Attn,
composed with a multi-head layer Attn,,,) such that for each a € Ay in the collection

3n
I Z Attng o Attn; o Linear; ([;4) —a(X)||eo <,

j=1
where W is the W defined as Definition 4.2 using Wi, W§, Wy.



Under review as a conference paper at ICLR 2026

Proof. See Appendix D.7 for detailed proof. O

We show that a fixed attention module emulates an arbitrary finite library of in-context algorithms by
varying its prompt. This result highlights the flexibility of softmax attention: unlike prior work that
requires re-training or fine-tuning of the model, here we provably achieve task-specific behavior by
modifying the input prompt. In effect, a pretrained Transformer internalizes a small set of fundamental
procedures and later deploys them, via prompting, across a wide range of data distributions. Since
the number of distinct algorithms is far smaller than the number of possible datasets, a model that
learns a handful of algorithms can leverage them to handle many different scenarios.

4.3 ATTENTION MAKES EVERY (LINEAR) NETWORK IN-CONTEXT

We now extend the above ideas to show that softmax attention emulates any network (comprised of
linear transformations) in-context. Consider any layer of a neural network that applies a trainable
linear map x — ©Ox with weight matrix ©. Our results imply that if © is provided as part of the
input sequence, a fixed attention module is capable of approximating this transformation to arbitrary
precision. Hence linear layers in standard architectures are replaceable with attention whose effective
weights are encoded in the prompt rather than learned. This substitution turns the network into an
in-context learner in place of, or alongside, conventional training.

Remark 4.5 (In-Context Emulation of Linear Layers). For example, suppose a model contains a
linear layer f(x) = Ox with weight matrix ©. By including © (appropriately encoded) in the input
as in our constructions above, a single softmax attention layer emulates f(z) in-context to arbitrary
precision. In other words, any trainable linear mapping in the original network is replicable with a
prompt-programmable attention layer whose parameters are set by the input sequence. This enables
the overall network to adjust that layer’s behavior on-the-fly via prompts, rather than having to learn
O through pre-training.
Number of Heads Plot

5 NUMERICAL STUDIES

This section provides numerical results to back
up our theory. We validate two building blocks
on synthetic data: (i) approximation of contin-
uous functions (Section 5.1); and (ii) approxi-
mation of attention heads (Section 5.2). These 2 4 6 3 10 12
studies quantify approximation error and its re- Number of Heads

lation to model size and the number of heads.

N WA

Mean Loss

Figure 2: Sensitivity of Attention Emulation to the
Number of Heads. We report loss (MSE) as the mean
5.1 PROOF-OF-CONCEPT and one standard deviation (shaded region) over 10 ran-
EXPERIMENT ON THEOREM 3.1 dom seed runs. We use synthetic data of 50000 data
points with sequence length being 20 and input dimen-
Objective: Verifying Attention Approximates sion being 24. We set batch size to be 32 and hidden
f(wT 2z — y)x. We investigate accuracy of soft- dimension to be 48. Each multi-head model and the
max attention approximating f(w' 2 — y)z by single-head softmax attention layer is trained for 50
training a single-head softmax attention with ~epochs. The optimizer used is Adam with learning rate
linear connection. 0.001. We visualize the performance (MSE =+ Std) for
1,2,4,6,8,12 heads.
Data Generation. We randomly generate X €
R™*4 drawn from a normal distribution, X ~ 10 - N(0,1) — 5. We also generate weight matrix
W e R™*4 and y € R™, both randomly drawn from a standard normal distribution, N (0, 1). Here, n
represents the sequence length and d represents input dimension. The true label is f(w 'z — y)z,
where we choose f(-) = tanh(-).

Model Architecture. We train a single-head attention network with linear transformation to approxi-
mate tanh (wTa; — y)x We first apply linear transformation to both [X; y] and W. We then train
the single-head attention model with the linear transformations to approximate our target function as
shown in the proof of Theorem 3.1.

Results. As shown in Figure 2, evaluated on Mean Square Error loss, the model approximates the
target tanh (w "z — y) with minimal error. This experiment proves our theory.



Under review as a conference paper at ICLR 2026

5.2 PROOF-OF-CONCEPT EXPERIMENT ON EMULATING ATTENTION HEADS

Objective: Verifying Approximation Rates. We investigate the affect of the number of attention
heads H on the accuracy of softmax attention approximating softmax attention head.

Data Generation. We randomly generate a sequence of tokens X = [z1, 29, - ,2,] € R¥X™,
where each entry x; is drawn independently from a normal distribution,

X ~2-N(0,1) — 1.

We also generate weight matrices K = Wx X' € RP" Q = WX T € RV and V =
Wy XT € R¥™, Each parameter matrix is randomly drawn from a standard normal distribution,
N(0,1). Here, n represents the sequence length, d represents token dimension, and h represents
hidden dimension. The true label Y € RX™ results from applying a single-layer softmax attention
mechanism on inputs X, K, @, and V.

Model Architecture. We train a multi-layer attention network to approximate softmax attention
function. We first train separate multi-head models with linear transformation to approximate K, @,
and V. Then, we use a single-head softmax attention layer to approximate softmax attention function
as in the proof.

Results. AS shown in Figur e 2and Table I, the  myple 1: Sensitivity to the Number of Heads. Emula-
result validates our claim that a multi-head soft-  jon MSE (mean + std) for multi-head softmax attention

max attention mimics a target softmax attention with 1, 2,4, 6, 8, and 12 heads.

head to arbitrary precision. Moreover, it demon-

strates the convergence of multi-head softmax at-  Heads 1 2 4 6 8 12
tention emulating softmax-based attention map- “\ieE” 3460 2802 1222 1012 0793 0.686
ping as the number of heads increases. The s 0381 0413 0603 0204 0.127 0.171
approximation rate is in the trend of O(1/H)
where H is the number of heads. The small and decreasing MSE error indicates that the simple
softmax attention model approximates softmax attention head with stability.

Additional Experiments. Due to page limits, we defer several experimental results to Appendix C.
These include simulations of statistical algorithms (Appendix C.1) and approximations of statistical
models on real-world datasets where the model does not have access to the true algorithm weights
(Appendix C.2). They further illustrate the approximation capabilities of Transformer in practice.

6 DISCUSSION AND CONCLUSION

We study in-context algorithm emulation in fixed-weight Transformers and formalize two modes:
task-specific (Section 3) and prompt-programmable algorithm emulation (Section 4). For the former,
we show that even a single-layer, single-head module suffices for emulating core families (of the form
f(wT 2 — y)x) such as one-step gradient descent and linear/ridge regression, achieving architectural
minimality (Theorem 3.1). For the latter, we show that a two-layer multi-head softmax attention
module emulates a broad class of algorithms by embedding the algorithm’s weights into the input
prompt (Theorem 4.1). Altogether, a fixed softmax attention module becomes a prompt-programmable

library of algorithms: weights remain frozen, and the prompt selects the routine.

Mechanism. The mechanism is constructive. By encoding target weights in the input and creating
large dot-product margins, softmax attention routes along the intended computation without weight
updates. Numerical studies support the theory: on synthetic data the model accurately approximates
continuous maps of the form f((w,x) — y) « and emulates attention heads. Approximation error
decreases as the number of heads grows. On a real dataset (Ames Housing), the frozen module-driven
by prompts rather than true algorithm weights-achieves low error against standard statistical models.

Implications. Our results tighten the link between in-context learning and algorithmic emulation.
Viewing prompts as callable subroutines that select and configure algorithms within a frozen model,
we draw three takeaways: (i) prompt engineering becomes interface design for algorithm selection,
(ii) pretraining objectives could, in future work, be designed to encourage learning compact libraries
of reusable procedures, and (iii) analyses of internal routing help clarify how foundation models select
among algorithms. This lens explains the breadth of in-context generalization, guides prompt design,
and motivates new pretraining objectives for more effective algorithm installation and utilization.

10



Under review as a conference paper at ICLR 2026

ETHIC STATEMENT

This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.

REPRODUCIBILITY STATEMENT

We ensure reproducibility on both theoretical and empirical fronts. For theory, we include all formal
assumptions, definitions, and complete proofs in the appendix. For experiments, we describe model
architectures, datasets, preprocessing steps, hyperparameters, and training details in the main text and
appendix. Code and scripts are provided in the supplementary materials to replicate the empirical
results.

REFERENCES

Jacob Abernethy, Alekh Agarwal, Teodor Vanislavov Marinov, and Manfred K Warmuth. A mecha-
nism for sample-efficient in-context learning for sparse retrieval tasks. In International Conference
on Algorithmic Learning Theory, pages 3—46. PMLR, 2024.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. Advances in Neural Information Processing
Systems, 36:45614-45650, 2023.

Ekin Akyiirek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2023.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. Advances in neural information
processing systems, 36:57125-57211, 2023.

Rishi Bommasani. On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Dean De Cock. Ames, iowa: Alternative to the boston housing data as an end of semester regression
project. Journal of Statistics Education, 19(3):1-13, 2011.

Takashi Furuya, Maarten V de Hoop, and Gabriel Peyré. Transformers are universal in-context
learners. arXiv preprint arXiv:2408.01367, 2024.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583-30598, 2022.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In International Conference on
Machine Learning, pages 11398-11442. PMLR, 2023.

Jerry Yao-Chieh Hu, Hude Liu, Hong-Yu Chen, Weimin Wu, and Han Liu. Universal approximation
with softmax attention. arXiv preprint arXiv:2504.15956, 2025a.

Jerry Yao-Chieh Hu, Wei-Po Wang, Ammar Gilani, Chenyang Li, Zhao Song, and Han Liu. Fun-
damental limits of prompt tuning transformers: Universality, capacity and efficiency. In The
Thirteenth International Conference on Learning Representations, 2025b.

Tokio Kajitsuka and Issei Sato. Are transformers with one layer self-attention using low-rank
weight matrices universal approximators? In The Twelfth International Conference on Learning
Representations, 2024.

11



Under review as a conference paper at ICLR 2026

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2021.

Gen Li, Yuchen Jiao, Yu Huang, Yuting Wei, and Yuxin Chen. Transformers meet in-context learning:
A universal approximation theory. arXiv preprint arXiv:2506.05200, 2025.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics (ACL),
2021.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International conference on
machine learning, pages 19565-19594. PMLR, 2023.

Hude Liu, Jerry Yao-Chieh Hu, Zhao Song, and Han Liu. Attention mechanism, max-affine partition,
and universal approximation. arXiv preprint arXiv:2504.19901, 2025.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM computing surveys, 55(9):1-35, 2023.

Sheng Liu, Haotian Ye, Lei Xing, and James Zou. In-context vectors: Making in context learning more
effective and controllable through latent space steering. In Forty-first International Conference on
Machine Learning, 2024.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning:
Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings of the 60th
Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages
61-68, 2022.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages
11048-11064, 2022.

Jorge Pérez, Pablo Barceld, and Javier Marinkovic. Attention is turing-complete. Journal of Machine
Learning Research, 22(75):1-35, 2021.

Ruizhong Qiu, Zhe Xu, Wenxuan Bao, and Hanghang Tong. Ask, and it shall be given: On the turing
completeness of prompting. arXiv preprint arXiv:2411.01992, 2024.

Hubert Ramsauer, Bernhard Schifl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas Adler,
Lukas Gruber, Markus Holzleitner, Milena Pavlovié, Geir Kjetil Sandve, et al. Hopfield networks
is all you need. 2021.

Max Vladymyrov, Johannes Von Oswald, Mark Sandler, and Rong Ge. Linear transformers are
versatile in-context learners. Advances in Neural Information Processing Systems, 37:48784-48809,
2024.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, Jodo Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pages 35151-35174. PMLR, 2023.

Yihan Wang, Jatin Chauhan, Wei Wang, and Cho-Jui Hsieh. Universality and limitations of prompt
tuning. Advances in Neural Information Processing Systems, 36:75623-75643, 2023.

Weimin Wu, Maojiang Su, Jerry Yao-Chieh Hu, Zhao Song, and Han Liu. In-context deep learning
via transformer models. In International Conference on Machine Learning. PMLR, 2025.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.
Are transformers universal approximators of sequence-to-sequence functions? In International
Conference on Learning Representations, 2020.

12



Under review as a conference paper at ICLR 2026

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1-55, 2024.

Yufan Zhuang, Chandan Singh, Liyuan Liu, Jingbo Shang, and Jianfeng Gao. Vector-icl: In-context
learning with continuous vector representations. In The Thirteenth International Conference on
Learning Representations, 2025.

13



Under review as a conference paper at ICLR 2026

Appendix

A Proof Sketches 15
A.1 Proof Sketch for Theorem 4.1 . . . . . . . . . . . .. .. . . . 15
A.2 Proof Sketch for Theorem 4.2 . . . . . . . ... ... ... . 17

B Related Work 18
B.1 CoreRelated Work . . . . . ... ... ... 18
B.2 Broader Discussion . . . . . . . . .. .. ... 18

C Additional Numerical Studies 19
C.1 Proof-of-Concept Experiment on Emulating Statistical Models . . . . . . ... .. 20
C.2 Real-World Experiment on Emulating Statistical Models . . . . . ... ... ... 20
C.3 Proof-of-Concept Experiment on Theorem4.2 . . . . . . . ... ... ....... 21

D Proofs of Main Text 22
D.1 Proof of Theorem 3.1 . . . . . . . . . . . . . . e 32
D.2 Proofof Corollary 3.1.2 . . . . . . . . . . e 41
D.3 Proofof Corollary 3.1.3 . . . . . . . . . . . e 42
D4 Proofof Corollary 3.1.4 . . . . . . . . o o e 42
D.5 Proofof Theorem 4.1 . . . . . . . . . . e 43
D.6 Proofof Theorem 4.2 . . . . . . . . . . . 53
D.7 Proofof Corollary 4.2.1 . . . . . . . . . . o e 69

E In-Context Application of Statistical Methods by Modern Hopfield Network 70

IMPACT STATEMENT

We prove that a single frozen softmax attention head emulates a broad library of attention-
implementable algorithms via prompt design, establishing pretrained Transformers as universal
algorithm stores and reducing the need for task-specific fine-tuning. This sharpens the theoretical
basis of in-context learning, offers a principled recipe for prompt engineering, and equips auditors
with a clear test for hidden prompt-encoded behaviors, all without releasing new models or data.
Therefore, the work advances foundational understanding, lowers compute and energy demands, and
introduces minimal societal risk.

LIMITATIONS AND FUTURE DIRECTION

Prompt length grows linearly with the weight dimension, which limits practicality. The proofs
assume exact real-valued softmax and ignore token discretizations or numerical noise. Prompts
are hand-crafted. Learning them automatically is open. Language and vision inputs are untested.
Weight encoding happens along embedding dimension. The construction is not permutation invariant,
but permutation equivariant of the input data. Lastly, we leave tighter constants, shorter prompts,
extensions to deeper models and connection with model pretraining to future work.

LLM USAGE DISCLOSURE

We used large language models (LLMs) to aid and polish writing, such as improving clarity, grammar,
and conciseness. We also used LLMs for retrieval and discovery, for example exhausting literature to
identify potential missing related work. All technical content, proofs, experiments, and results are
original contributions by the authors.

14



Under review as a conference paper at ICLR 2026

X Attn,, Concatenate
b Predicted Values
Input Data X
. K’ Softmax
Weight Encoding W Recovering Q’ Attns
Position Encoding 1, Wy X v
Approx.
Error
Concatenate
True Values
) K Softmax
Real Weight W i R
Calculating Q Attns
Wy X v

Figure 3: Visualization of Proof Sketch for Theorem 4.1. We visualize our proof technique. We combine
input data, weight encoding, and position encoding into X, as input to the multi-head attention Attn,, to recover
approximate key, query, and value representations. We then compare the single-head attention Attns outputs
from approximate values with ground truth values to obtain approximation error.

A PROOF SKETCHES

We present our proof strategies here.

A.1 PROOF SKETCH FOR THEOREM 4.1

We construct a two-layer Transformer (single-head layer Attng followed by multi-head layer Attn,,,)
that replicates the target attention to within any error € > 0. Recall from Theorem 4.1:

Step 3 Step 1
—~ =~ T
[l Attng o Attn,, ( X, ) — Wy XSoftmax((WkX) WoX)|le <e.

Step 2 Target

Emulator
The high-level idea is: (Step 1) augment the input with a prompt encoding of the target weights
Wi, Wg, Wy, (Step 2) use groups of heads in Attn,, to approximate the matrices K = WgX,
Q = WgX,V = WyX in-context (up to small error), and (Step 3) apply Attn, with fixed
weights to assemble the Attn,, output: the approximators K’  Q’, V'. We then argue in (Step 4) the
approximation error can be made < € via a stability bound on softmax attention.

Step 1: In-Context Weight Encoding. We augment the input X € R%*" by appending special
tokens encoding the matrices Wy, Wq, Wy-. We denote the augmented input as X,. This allows the
transformer Attn, o Attn,, to “read” the relevant weight parameters in its attention heads.

Explicitly, we embed both the data sequence and the target head into the input (Definition 4.2):

X
Xp = |Wi with Wi, := 0w 1w 2w -+ (n—1)-w |
1, w w w . w
where w = [W;W&W;]T concatenates every column of WI—(F, Wq} WJ following Defini-

tion 4.2. The block I,, provides token-position codes used in our construction.

The idea of this augmentation is to emulate the target computation Wy X Softmax((Wx X)W X)
with the emulator: a two-layer transformer Attng o Attn,,. To achieve this, Attns o Attn,, must
access the information of X, Wi, Wg and Wy, in-context. The augmentation above encodes these
parameters (target algorithm’s specifications) in the prompt.

15



Under review as a conference paper at ICLR 2026

Step 2: Multi-Head Decomposition for In-Context Recovery of K, Q,V. We devote the first
attention layer (Attn,,) to recovering the key, query, and value matrices that the target attention
would compute. By definition, each row in K, @, and V takes the form: kZT X, qiT X and viT X. Here
k:z , qZ and UZT are rows in Wy, Wg and Wy,. Our goal is, for each data token z; (the 4-th column of
X), to approximate k;raci, quxi, and Uiji. To do this, we design Attn,, to have a fixed number of
heads partitioned into three groups, corresponding to K, (), and V respectively. Combining heads’
outputs within each group yields approximations of K, ), and V. Explicitly, in the first multi-head
layer Attn,,,, we split the heads so that:

* A group of heads jointly approximates W X. By (Hu et al., 2025a, Theorem 3.2), the heads in this
group admit further subdivision into sub-groups. Each sub-group outputs a linear transformations
of X, namely &, X for rows k; X of K.

* Another group of heads approximates WX in a similar manner.

* A final group approximates Wy X.

Concatenate or combine these head outputs so that the final embedding from Attn,,(X,) contains
(up to small error) the blocks [K; Q; V] for all positions in X.

Explicitly, for each row kJT of Wy (and similarly for qu and UJT), we prepend the corresponding

heads with a token-wise linear map A(-). A(X}) pulls out the target row (i.e., k;) from w and repeats
it n times. The resulting sub-prompt A(X,,) has the form

X
0-kj 1k - (n—1)-k
ki ke kj ’
I’n,

so the corresponding softmax heads return ijX up to any error € by the truncated-linear interpolation

theorem (Theorem D.1). With H = [2(b — a)/((n — 2)eg)] heads per sub-group, we cover all dy,
rows in K (and similarly for @) and V). Altogether, the 3N = 3d;, H heads satisfy

2dh 3dh
[ ZAttn —Klloo <o, | Y Attnf —Qllse < €0, | Y. Attn) Voo < €0
j=dn+1 j=2dp+1
=K' =Q Vv

We collect these outputs column-wise into
K’ K’ K
Q, and [||Q|—|Q] s < co-
|4 4 v

Step 3: Single-Head Assembly for Emulated Map. We consider the second layer Attng as
a single-head attention with fixed weights chosen to “read” the K’,Q’, V"’ triples from Z :=
Attn,, (X,) and perform the “emulated” attention mechanism. Explicitly, apply a single-head
attention layer Attng whose parameters are set to read off the K, ), and V' sub-blocks in each token
embedding:

Attn,(Z) == Wi ZSoftmax(W 2)T (WS 2)).
For Z := Attn,, (X)), we choose fixed weights

W = [0apx2dn Lan] s W(S) U, Oanxoa], Wi = Oapxar Tan Odpxar],
so that
WOZxWiX, WS'Zx=WoX, WSZ~WyX.
Hence,
K/
Q

Attng(Z) = Attn, o Attn,, (X,) = Attng( ) = V’Softmax((K') " Q")

~ Wy X Softmax((Wx X)W X).

16



Under review as a conference paper at ICLR 2026

. K| .| AttnK Concatenate
Linear m Predicted Values
Input Data
/ Softmax
. | [ arn0 LS N
Linear? —| Attn§ A
7 ttng
Weight Encoding w Q
!’
] Vi . 4 4
Linear Attn,,

Approx.
Error

Concatenate
True Values

_ | Softmax
Attng

Calculating

Wy X

Real Weight

SO =

Figure 4: Visualization of Proof Sketch for Theorem 4.2. We visualize our proof technique. We combine
input data and weight encoding as input. Each key, query, and value has a unique set of linear transformation of
input (Linear) and multi-head attention (Attn,,). We feed the input into each set to attain the approximate key,
query, and value representations, respectively. We then compare the single-head attention Attns outputs from
approximate values with ground truth values to obtain approximation error.

To be precise, because K',Q’,V’ differ from K,Q,V by at most € (in || - ||oo), a first-order
perturbation argument for softmax (uniform Lipschitz in sup-norm) shows

K’ K
|Attng (| Q" |) — Attng (| Q |)|| < €0 + nBrover,
% \%

where B gy bounds X, Wi, Wg, Wy and €1 = O(e).

Step 4: Error Bound. Finally, we make the approximation arbitrarily precise. Because we are
capable of making each head’s linear approximation arbitrarily close, we ensure

| Attng o Attn,, ([X; W]) — Wy XSoftmax((Wx X) T WoX)|le < e,

for any € > 0. This completes the construction, proving in-context emulation of the target attention.
Please see Appendix D.5 for a detailed proof and Figure 3 for proof visualization.

A.2 PROOF SKETCH FOR THEOREM 4.2

We outline how to emulate the desired attention step-by-step with a fixed two-layer transformer.
Similar to Theorem 4.1 (and Theorem D.1), our construction ensures each token’s representation in
the intermediate layer carries an approximate copy of its key, query, and value vectors, which the
final layer uses to perform the softmax attention. All necessary components (including the weight
matrices Wy, Wq, Wy themselves) are encoded into the input, so the network’s weights remain
untrained and generic.

Step 1: Encoding Weights into the Input. Let X € R%*" be the input tokens. Append a “weight
encoding” matrix W that contains the rows of Wx, Wg, Wy, (the weight matrices of the target
attention head). This forms an extended input [X; W]. The entries of X and IV remain within a
bounded range [— B, B]. This bound ensures that all inner products remain finite.

Step 2: Multi-Head Approximation of K, (), V. The first layer has many heads. Partition them
into three groups. One group approximates K := Wy X; one approximates ) := W X; and one
approximates V := Wy X. Then

 Simulating Dot Products on a 1D Grid. Consider a single entry ij Zc. All entries in K, Q,V lie

between [—dB?, dB?], since the entries of X and W remain within a bounded range [— B, B]. We
create grid points Lo < - -+ < Lp covering [—dB?, dB?]. We design the head’s key and query so

17



Under review as a conference paper at ICLR 2026

that the softmax assigns each grid point L; a weight based on its distance to k]T x.. We set the value

vector to encode L;. Thus, the head output for token z. approximates k:JT z.. Fine grids reduce the
error.

* Reconstructing Full K, ), V. Repeat this idea for every entry in K, @), V. Each row uses one
head to approximate k:jTX , quX , or UJ-TX . Combine these approximations to obtain the matrices

K’',Q',V'. The sup norm

K’ K
I [Qi} — lQ] o, can be made arbitrarily small.
Vv 14

Step 3: Single-Head Assembly of the Attention Output. The second layer, Attng, has one head.

We set its weight matrices W]((S ), W(S), W‘(/S) to pick out K/, Q’, V' from each token’s embedding.
Then, Attng computes

V’'Softmax((K') " Q") ~ Wy X Softmax((Wx X)W X),
since K/ =~ K,Q ~Qand V' = V.

Step 4: Error Bound. Softmax and matrix multiplication are continuous. Small errors in K, Q’, V'
cause a small error in the final output. By refining the grid (and using enough heads), we make the
sup norm error below any € > 0. Please see Appendix D.6 for a detailed proof and Figure 4 for proof
visualization.

B RELATED WORK

Our results diverge from prior findings on Transformer universality and in-context learning.

B.1 CORE RELATED WORK

Universal Approximation. Prior studies establish that Transformers approximate arbitrary
sequence-to-sequence functions, but they do not address in-context learning and often assume
complex architectures. For example, Yun et al. (2020) prove that deep multi-head Transformers
with feed-forward layers are universal approximators of continuous sequence-to-sequence functions.
Subsequent advances tighten this finding: Kajitsuka and Sato (2024); Hu et al. (2025b) show that even
a single-layer Transformer realizes any continuous sequence function. However, these results treat
Transformers as parametric function approximators. The model requires re-training and re-prompting
to adapt to a new target function instead of handling multiple tasks through context. In contrast, we
prove that a minimal Transformer architecture, even a single-layer, single-head attention module with
no feed-forward network, emulates a broad class of algorithms without weight updates by varying
its prompt. This result achieves a new level of generality through context alone (i.e. prompt-based
conditioning) despite a fixed minimalist model.

In-Context Learning and Algorithm Emulation. Another line of recent theory bridges Trans-
formers with in-context learning by designing model components to carry out specific algorithms.
For example, Bai et al. (2023) show that Transformers execute a broad range of standard algorithms
in-context, but each algorithm requires a distinct, tailored attention head. In comparison, we extend
this approach by showing that one fixed attention mechanism emulates any specialized attention head
via prompt encoding. Rather than crafting a different attention module for each algorithm, a single
frozen softmax-based attention layer takes its instructions from the prompt to perform all tasks in
context. This minimal model thus becomes a unified and compact in-context algorithm emulator. It
switches behaviors by changing only its input prompt, setting it apart from earlier approaches that
required per-task reparameterization.

B.2 BROADER DISCUSSION

Universal Approximation and Expressivity of Transformers. Transformers exhibit strong ex-
pressive power as sequence models. Recent theory shows even minimal Transformer architectures
approximate broad classes of functions. Kajitsuka and Sato (2024); Hu et al. (2025b) prove a
single-layer, single-head Transformer can memorize any finite dataset perfectly. Kajitsuka and

18



Under review as a conference paper at ICLR 2026

Sato (2024) achieve this with low-rank attention matrices, while Hu et al. (2025b) use attention
matrices of any rank. Adding two small feed-forward layers makes it a universal approximator for
continuous sequence functions under permutation-equivariance. More recently, Hu et al. (2025a)
show self-attention layers alone are universal approximators. Specifically, two attention-only layers
approximate continuous sequence-to-sequence mappings, and even a single softmax-attention layer
suffices for universal approximation. Similarly, Liu et al. (2025) also demonstrate that one single-head
attention connected with linear transformations is sufficient to approximate any continuous function
in Lo, norm. These results eliminate the need for feed-forward networks, improving on earlier
constructions. Overall, these findings highlight the inherent expressiveness of minimal attention
mechanisms.

Transformers as In-Context Learners and Algorithm Emulators. Large Transformers also learn
in-context by conditioning on examples in their prompts, without updating weights (Brown et al.,
2020). Recent work formally explains this by showing attention-based models implement standard
learning algorithms internally. Bai et al. (2023) construct Transformer heads executing algorithms
such as linear regression, ridge regression, Lasso, and gradient descent steps, achieving near-optimal
predictions. Wu et al. (2025) further build Transformers explicitly simulating multiple gradient
descent iterations for training deep neural networks, with provable convergence guarantees. Empirical
and theoretical studies confirm Transformers internalize learning algorithms when meta-trained on
task families. Garg et al. (2022) show meta-trained Transformers mimic classical algorithms, such
as ordinary least squares regression, in-context. Similarly, Akyiirek et al. (2023); Von Oswald et al.
(2023); Zhang et al. (2024) analyze Transformers trained on linear regression tasks and demonstrate
their outputs mimic gradient descent steps precisely. Overall, existing literature shows that sufficiently
trained or carefully designed Transformers emulate step-by-step computations of standard algorithms
through prompt conditioning.

Prompt Tuning. Prompt-tuning adapts frozen models by learning a short continuous prefix (Lester
et al., 2021; Li and Liang, 2021; Liu et al., 2022). It keeps backbone weights fixed and updates only
prompt embeddings. Our setting is stricter: prompts are hand-designed, not learned, and we give
exact approximation bounds. Thus we expose the theoretical limit of prompt control: a single frozen
softmax head can mimic any task-specific head.

Encoding Context Along Embedding Dimension. Recent work in in-context learning explores
encoding and manipulating context in the embedding space rather than sequence dimension. For
example, Liu et al. (2024) propose In-Context Vectors for steering the model’s behavior by adding
task-specific vectors along the embedding space. Zhuang et al. (2025) extend this idea by showing
that manipulating embedding vectors such as interpolation makes in-context learning more control-
lable. Abernethy et al. (2024) showcase that appending additional information along the embedding
dimension allows the model to perform sample-efficient in-context learning.

Comparison to Our Work. The above results demonstrate the versatility of Transformer networks,
but they require task-specific weights, training, or learned prompts. For instance, Bai et al. (2023)
design a different task-specific head for each algorithm of interest, raising the question of whether
a single fixed attention mechanism could instead serve as a universal emulator for any algorithm
given the right prompt. Our work directly addresses this question. In contrast, we prove one fixed
softmax head emulates any specialized head through prompt encoding alone. No additional weights
or training are required. Even the simplest attention (one layer, one head) acts as a universal algorithm
emulator when given the right prompt, shifting focus from architecture to prompt design.

C ADDITIONAL NUMERICAL STUDIES

We extend the synthetic validation to statistical algorithms (Appendix C.1) and include a real-world
study (Appendix C.2). The frozen attention module emulates linear, ridge, and lasso on synthetic
data. On the Ames Housing dataset, the model operates without access to true algorithm weights and
achieves low approximation error. In addition, we validate Theorem 4.2 through handcrafted frozen
attention weights and parameters as constructed in the proof (Appendix C.3).

19



Under review as a conference paper at ICLR 2026

C.1 PROOF-OF-CONCEPT EXPERIMENT ON EMULATING STATISTICAL MODELS

Objective: Emulation of Statistical Models. We investigate the accuracy of a frozen softmax
attention approximating statistical models including Lasso, Ridge and linear regression by only
varying the input prompts.

Data Generation. We simulate an in-context dataset by randomly generating a sequence of input
tokens X = [z1,22,...,2Tp] € R™*4 where each x; is independently drawn from a scaled standard
normal distribution,

z; ~2-N(0,1) — 1.

A task-specific prompt vector w € RP*! is sampled from N (0, 1). In the case of Lasso, we randomly
zero out entries in w with probability 0.5 to induce sparsity. We generate the output sequence
Y € R™*! via a noisy linear projection: Y = Xw + ¢, where ¢ ~ N(0, 02) is Gaussian noise. For
Ridge, we calculate weights using (X "X + A;) !X TY with A = 5.

Model Architecture and Training. We use a mixture of statistical data to train a single-layer
attention network with linear transformation. Each input sample consists of X € R™*? and algorithm-
specific prompt w € RP. We replicate w across the sequence length and concatenate it with X
along the feature dimension to obtain an augmented input [X; w] € R™*(4+P) We pass it through
a multi-head attention layer. We train the model for 300 epochs using the Adam optimizer with a
learning rate of 0.001. We use 6 attention heads, a hidden dimension of 48, an input dimension of
24, a batch size of 32, and 50000 synthetic samples. After training, we freeze the attention weights,
resulting in a fixed softmax attention layer. We evaluate the frozen model on its ability to emulate
various statistical algorithms using test data.

Baseline Architecture. We train three separate attention models for Lasso, Ridge, and linear
regression. That is, each attention model weights are adaptive to its corresponding algorithm. We use
these models as baselines for comparison with the frozen attention model we propose. All baseline
models use the same hyper-parameters as the frozen model.

Results. As shown in Table 2, we compare mean MSE and standard deviation over 5 random
seed runs for the frozen attention model against baseline for Lasso, Ridge, and linear regression
on the synthetic data. The frozen attention model performs as well as the baseline models trained
individually on each algorithm. It achieves lower MSE on Lasso and linear regression tasks compared
to their corresponding baselines. It shows that a frozen attention mechanism generalizes across these
tasks given task-specific prompts. Moreover, the frozen model exhibits lower variance across all
tasks, suggesting increased stability and robustness. These results support our claim that a frozen
softmax attention layer, when conditioned on task-specific prompts, emulates statistical algorithms in
context without much performance degradation.

Table 2: Comparison Between Baseline and Frozen Attention Layer on Synthetic Dataset. We compare
loss (MSE) as the mean and one standard deviation over 5 random seed runs for baseline vs. frozen model
on different algorithms. We train on 50000 training data points evaluate on 10000 testing data points for each
algorithm.

Model Lasso Ridge Regression Linear Regression
Baseline 0.068+0.015 0.004+£0.0003 0.147+£0.067
Frozen Attention  0.059+0.001 0.071£0.0002 0.120+£0.003

C.2 REAL-WORLD EXPERIMENT ON EMULATING STATISTICAL MODELS

Objective: Real-World Emulation of Statistical Models. Building on Appendix C.1, we use
real-world data to investigate the accuracy of a frozen softmax attention emulating algorithms.

Data Collection and Processing. We collect data from Ames Housing Dataset (De Cock, 2011).
This dataset consists of 2930 observations and 79 features. We process the data by log-transforming

20



Under review as a conference paper at ICLR 2026

the target variable, encoding categorical variables with one-hot vectors, replacing missing entries
with median values, and standardizing numerical features. The resulting data consists of 262 features.
We fit the processed data to Lasso, Ridge, and linear regression models to obtain algorithm weights
as part of the input.

Model Architecture and Training. We use a mixture of statistical data to train a single-layer
attention network with linear transformation. The input is passed through a multi-head attention layer
with a linear transformation. We train the model for 300 epochs using the Adam optimizer with a
learning rate of 0.001. We use 8 attention heads, a hidden dimension of 524, and a batch size of 32.
After training, we freeze the attention weights, resulting in a fixed softmax attention layer. The frozen
model is then evaluated on its ability to emulate various statistical algorithms using test data. We
train the baseline models the same way as the synthetic experiment.

Table 3: Comparison Between Baseline and Frozen Attention Layer on Ames Housing Dataset. We
compare loss (MSE) as the mean and one standard deviation over 5 random seed runs for baseline vs. frozen
model on different algorithms. We train on 80% training data and evaluate on 20% testing data for each
algorithm.

Model Lasso Ridge Regression Linear Regression
Baseline 0.0354+0.0000  0.013240.0000 0.0288-+0.0000
Frozen Attention  0.0322+0.0000  0.0252+0.0000 0.0250=£0.0000

Results. As shown in Table 3, we compare mean MSE and standard deviation over 5 random seed
runs for the frozen attention model against baseline for Lasso, Ridge, and linear regression on Ames
Housing Data. The results shows the frozen attention model performs as well as the baseline models
trained individually. We use an auxiliary network to approximate the required weight encoding. Our
experiment validates that the mechanism works even when the exact weights are not supplied in real
world scenarios.

C.3 PROOF-OF-CONCEPT EXPERIMENT ON THEOREM 4.2

Objective: Verifying Handcrafted Frozen Attention Approximates Attention. We validate that
the frozen attention prescribed in Theorem 4.2 approximates softmax attention with low error. In
particular, we handcraft the weights as in the proof of Theorem 4.2.

Number of Interpolation Points Plot

Data Generation. We create a synthetic dataset. 0.6
We randomly generate X € R"*¢ drawn from a o
uniform distribution over [—1,1], X ~ U(-1,1). § 0.4
For each sample, we generate three weight matrices <
Wy, Wq, Wy € R™*4 drawn from standard nor- @ 0.2
mal distribution N (0,1). We then compute K = =
WrkXT,Q = WX,V = WyXT € R, 0.0

The true target attention output is therefore given 20 30 40 60 80
by Y = VSoftmaX(KTQ) c RnXn, Number of Interpolation Points

Figure 5: Sensitivity of Handcrafted Atten-

Model Architecture. Following the proof in Ap-
pendix D.6, we hard-wire the linear layer weights,
attention weights, and interpolation points for the
two-layer softmax attention module as our emulator.
The model operates in a zero-shot, one-pass setting
with no training or parameter updates.

Results.

tion Emulation to the Number of Interpolation
Points. We report loss (MSE) as the mean and one
standard deviation (shaded region) over 4 sample
data points. Each data point has sequence length
n = 12 and input dimension d = 24. We set soft-
max temperature 8 = 2. We visualize the perfor-
mance (MSE =+ Std) for P = 20, 30, 40, 60, 80.

We report the results in Table 4 and Figure 5. We compare the MSE loss between the

emulator output and the target attention output. Specifically, we fix the number of data points
n, input dimension d, softmax temperature 3, and number of samples for testing. We vary the
number of interpolation points P. The result validates our claim that the handcrafted frozen attention

21



Under review as a conference paper at ICLR 2026

approximates the target attention. Moreover, we show that as P increases, the approximation error
and standard deviation both further decrease.

Table 4: Sensitivity to the Number of Interpolation Points. We report MSE loss (mean+ std) between outputs
of handcrafted frozen attention and target attention varying number of interpolation points P over 4 samples.
We choose n = 12,d = 4, 8 = 2, samples = 4 for evaluation.

P 20 30 40 60 80
Mean MSE  4.002 x 10~! 2.442 x 1072 5.852x 10~* 5.770 x 1079 5.037 x 10~ 14
Std 2.393 x 1071 1451 x 1072 8.538x107° 1.994 x 1079 1.620 x 10~14

D PROOFS OF MAIN TEXT
To prepare our proofs, we state the following axillary definitions and lemmas.

Definition D.1 (Truncated Linear Function). We define the truncated linear function as follows:

a x<a,
Range|, ;j(z) = ¢z a<z <),
b b<u.

Intuitively, Rangey, ;(-) is the part of a linear function whose value is in [a, b)].

We then define the interpolation points in [a, b] that are used in later proofs.

Definition D.2 (Interpolation). Let [a, b] C R be an interval with a < b and let p € N* be a positive
integer. We define

Egl’b] = a, Zz[j“’b] = b, Ega’b] =+ Z% (b—a), i=[p—1].

Hence, Lo < Ly < -+ < Zp forms a uniform partition of [a, b]. We also write
Flap]  Flab]
AL := Ll Tl e ).
We often omit the superscript [a, b] when the context is clear.

We also propose the following lemma to show Hardmax property that is capable of being approximated
by Softmax.

Lemma D.1 (Lemma F.1 in (Hu et al., 2025a): Approximating Hardmax with Finite-Temperature
Softmax). Letz = [x1,%2,...,%,] € R", € > 0. Define Softmaxg(-) as

_e(fe) | exp(An)
Z;L:1 exp(Bz;)’ Z?:l exp(Bz;)”

Softmaxg(x) :

The following statements hold:
* Case of a Unique Largest Entry. Assume x1 = max;c[,) ; i$ unique, and To = max;ecn)\ {1} Ti-
Then, if 8 > (In(n — 1) — In(e))/(z1 — x2), we have

"SoftmaxB(x) — elH <k,
oo

where e; € R"™ is the one-hot vector corresponding to to the maximal entry of x (i.e., z;.)

* Case of Two Largest Entries (Tied or Separated by §). Assume x; and x5 are the first and
second largest entries, respectively, with § = z1 — x2 > 0. Let z3 be the third largest entry and is
smaller than 1 by a constant y > 0 irrelevant to the input. Then, if 8 > (In(n — 2) — ln€) /v, we
have

1 e P

T 14 e BT T em?

HSoftmaxlg(x) HOO <e.

The following technical lemma is used in the proof of Theorem D.1.

22



Under review as a conference paper at ICLR 2026

Lemma D.2 (Refined Version of Lemma F.2 in (Hu et al., 2025a): Cases of All Heads in Attn).
For a € [Lo, L (n—2)]. For any h € [H], define three cases of the relationship between a and h

* Casel:ac [;(hfl)(n72)azh(~n72)—1],

* Case2: a ¢ [Lin-1)(n-2)-1, Ln(n-2)- B ~

* Case3: a € [Linh—1)(n-2)-1, L(h—=1)(n=2)] U [Lh(n—2)—15 Lh(n—2)]-

These cases includes all possible situation. Then for all &, only two cases exists

* g falls in Case 1 for an h and Case 2 for all others.
* ¢ falls in Case 3 for two adjacent h and Case 2 for all others.

Proof. Because a € [EO, ZH(n,Q)} and
(Lo, Lrr(n—2)] = Uh—1 [L(n—1)(n—2)> Ln(n—2)),
we have
a € [Z(ha,fl)(an)vzha(nfﬂ] (D.D
for an arbitrary h,.

This leads to only two possible cases

e Case 1*: a € [E(ha—l)(n—Q)a Zha(n_g)_l}.
e Case2*: a € [Eha(n,m,l,iha(n,z)].

Case 1*: a € [E(ha—l)('rt—2)7 zha(n—Q)—l]‘ Because a € [E(ha—l)(n—Q)a E}LQ(TL—Q)—I]’ for h 7é ha,
we have

Lptn—2)—2, Lnn-2) < L(h,~1)(n—2)s, h <ha

Lh(n—2)+17 L(h—l)(n—2)—1 > Lha(n—Q)—h h> hg.
Thus

[L(ha=1)(n—2)> Lia(n-2)-1] N [L(h=1)(n—2)—1, Li(n—2)] = 0

[Lha—1)(n—2)s Lhog(n—2)—1] V[ L(h—1)(n—2)—1, Li(n—2)] = 0

for all h # h,.

This means that a does not fall into Case 1 nor Case 3 for other h € [H]. Thus a has to fall into Case
2 for other h.

Case 2%: a € [L(n,—1)(n—2): z(ha:l)(7l—2)+1] U [?h,a(n—Q)—la Li,(n—2)- Without loss of general-

ity, assume a to be in the left half [, _1)(n—2), L(h,—1)(n—2)+1]- Because
[z(hrl)(n%)’z(hafl)(n%)ﬂ] = [Z(hafl)(n72)flaz(hafl)(nf2)]> (Case 3 of hy — 1)
[Lhe-1)(n—2)» L(ha—1)(n=2)41] = [L(ha=1)(n-2)=1> L(hoa—1)(n—2)]s (Case 3 of ha)

this means « falls into Case 3 for h, and h, — 1.

This completes the proof. O

We are now ready to prove a refined version of (Hu et al., 2025a, Theorem 3.2).

Theorem D.1 (Multi-Head Attention Approximate Truncated Linear Models In-Context). Let

X € R¥*" be the input. Fix real numbers a < b, and let the truncation operator Rangey, ;(-) follow

Definition D.1. Let w, denote the linear coefficient of the in-context truncated linear model. Define
W, as

W, = 0-ws 1-ws -+ (n—1) ws € R2Axn.

Wg Wy PR Wg

For a precision parameter p > n with ¢ = O(1/p), number of head H = p/(n — 2) there exists a
single-layer, H-head self-attention Attn” with a linear transformation A : R4" — R(Bd+n)xn,

23



Under review as a conference paper at ICLR 2026

such that Attn? o A : R¥X" — R X" satisfies, for any i € [n],

b—a
|Aten' 0 A(X)..; ~ Rangel, (] zi)er, o < maxflal, b} -+ 5 -
—_————— =
finite-3 softmax error N——

interpolation error

Here ez, is the one-hot vector with a 1 at position Ei-th index and 0 elsewhere, and

Ei = G(k;) € [do], with k; = argmin (—2x;wi — 2 + Lo + Ek) -k,

ke{0,1,--- ,p—1}
where G : [p] — [d,] denotes any set-to-constant function sending each selected interpolation index
k; into an appropriate integer k; € [d,] for i € [n].

Proof. Define A : R¥*™ — R(B4+1)X7 for the input sequence X as

X

L I3d X 03d><n —
A(X) = [onxgd} [WJ* {1} _[vlvs
N\ / \ / n

e R(3d+n) xm

token-wise linear positional encoding

Thus, A is a token-wise linear layer augmented with positional encoding, as it applies a linear
projection to each token and then adds a unique per-token bias.

Let p be a precision parameter, without loss of generality, let it be divisible by n — 2 and denote
p/(n—2)as H.

Now we define the multi-head attention Attn of H heads. Denote ¢}, := k(Ly, + Lo) for k € [p]
following Definition D.2. We denote the h-th head as Attny,, and define the weight matrices as

wh — _g Odgxa —2Ig —2[(h—1)(n—2)—1]I4 0 0 0

K O1xd  O1xd O1xd Lh-1yn-2)-1 Lh—1)(n—2) Chin—2))|’
() _ | Ia Odx2da Odxn
W _|:01><d O1x24  lixn|’

N - - -
W = [Odox(3d+1) L) n-2% 1y nny L-D-2)11€7, ) a41 Lan-2)-1€, ., _, Odo} ;
for every h € [H].

Here 8 > 0 is a coefficient we use to control the precision of our approximation. The attention
reaches higher precision as [ gets larger.

With the construction of weights, we are also able to calculate the K, (), V matrices in Attn

KM =W A(X)
P
=W Ws]
L In
r T1 To . ( 1'73
) 0-ws 1-wy n—1)-ws
— WK : Wy W .. Wg
PR
_ B ded 72[,1 72[(h — 1)(71 - 2) - I]Id O O O
a O1xd  O1xa 014 Lih—1)tn—2)—1 L(h—1)(n—2) Ch(n—2))
X1 T2 Tn
0-ws 1-ws (n—1) ws
Wi Wi Wi
6§n) eén) €$Ln)

24



Under review as a conference paper at ICLR 2026

=2[(h—1)(n—-2)—1Nws —-2(h—1)(n—2)ws - - —2h(n—2)w; € R@+Dxn.

=-F Ch—1)(n—2)—1 Lih—1)(n—2) e Lh(n—2)

(D.2)

where the last equality comes from multiplying X with 0, thus this is a extraction of non-zero entries
in WK.

For , we have

QM =WhA(X)

[ i Ouax2a Odxn .
[01xd  O1x2d  lixn

X
Ws]
I,

_ [ Id’X+0d><2d'Ws+0d><n'In
_01><d - X + 01><2d . Ws + 11><n . In

— [ X | ertnxn (D.3)
_11><n
For V', we have
h
v = wMAX)
~ _ X
= {Odox(3d+1) L1251y nsy 7 Lhtm-2r6g, ., Odo]'h/s]
= 0 |jp |+ [oa I e o I e 00.] 1
Ws ° (h—1)(n—2) E(h—1)(n—2) h(n—2)—1 Eh(n—2)-1 do n
d,x3d
doXn
= {Odo Lin-1yn-2%, 1 ns L-Do-2115, o 0s1 0 Lam-2)-aeg, o, Og
€ Rioxn, (D.4)

Given that all Ej, where j € [p], share the same number in [d,], we denote this number by k¢.

Hence we rewrite V(") as
v = (04, E(h—l)(n—Z)ekG z(h—1)(n—2)+1€k(; a Eh(n—2)—1ek(; 0d,] -
We define m,, as
m, = max{|al,|b|}.
By the definition of V(h), we have
Voo < g[algi{ii} < my. D.5)

Remark D.1 (Intuition of the Construction of V(h)). As previously mentioned, Zi, fori € [p],
are all the interpolation points. In this context, V(") encompasses the (n — 2) elements of these
interpolations (i.e., (h — 1)(n — 2) to h(n — 2) — 1). Meanwhile, the value on the two ends of
V" are both set to 04, , because we suppress the head and let it output 0 when the input X is not
close enough to the interpolations of the head.

Now we are ready to calculate the output of each Attny

Attnp(A(X))
= VM Softmax((K)TQM)
.
— V" Softmax [ -3 =2[((h—1)(n—-2)—1lw —-2h-1)(n—-2)w --- —2h(n-—2)w X
h—1)(n—2)-1 Lih—1)(n—2) e Chin—2) Lixnl| )’

25



Under review as a conference paper at ICLR 2026

where last line is by plug in (D.2) and (D.3). Note the i-th column of the attention score matrix (the
Softmax nested expression) is equivalent to the following expressions

Softmax((K")TQM),

-
— Softmax | g |2 —D=2) —1jw =2(h-Dn-2w - -2h(n-2uw| [ X
Ch—1)(n-2)-1 Ch—1)(n—2) N Ch(n—2) Lixn] |
[—2[(h —1)(n — 2) — Tw " z; + £ —1)(n—2)—1
—2(h—1)(n— 2)wai + g(h,l)(n,g) . _
= Softmax | —f . (plck column )

—2h(n —2)w ' z; + Ch(n—2)

[(h—1)(n = 2) = 1)(=20T @ + Lu_1)(n2)—1 + Lo) — 2[(h — 1)(n — 2) — 1]t
(h — 1)(n - 2)(—2wa,» + L(hfl)(nfg) + LO) - 2(h — 1)(n - Q)t

= Softmax | —f3
i h(n —2)(=2w @ + Lyn_2) + Lo) — 2h(n — 2)t
(B) (/, = /\‘(/N,]‘ + Zl)) - 2/1’/,)
(=22 w =2t + Lo + Lp-1)(n-2)-1) - [(h — 1)(n — 2) — 1]AL]
= Softmax | 2 (=2x] w =2t + Lo + L(n—1y(n—2)) - (h = 1)(n — 2)AL
AL :

(=227 w — 2t + Lo + Lin_2)) - h(n — 2)AL

(By’ mutiplying and dividing by AL)
(=2 w =2t + Lo + Ln—1)(n-2-1) - (Lh—1)(n-2—1 — Lo)
B (=22 w—2t + Lo + L(h—1)(n—2)) - (L(h—1)(n—2) — Lo)

= Soft ——
Softmax AL :
L (—22] w — 2t + Lo + Lintn—2)) - (Lnn—2) — Lo) -
(B)’ /\AL = L;, — L(J)
(=22 w —2t) - Z(i}jl)(n72)fl + @(h71)(n72)71)2 + (z] w+t)?
 sottmax | - B | 2w =20 Loy + (L) + (@ w0 +1)?
B AL :
L (=22 w —2t) - Ly(n2) + (Li(n2))? + (2] w +1)?
[z w+t— Zgz—l)(nfz)fl)2
w4t —Li_1yn_2)?
= Softmax —% (= . (h-1)(n-2) (D.6)

(z7w+t — Lym_g))?

Here, the second-last equality arises from the fact that the softmax function is shift-invariant, allowing
us to subtract and add a constant across all coordinates. To be more precise, we first expand the
product for k-th coordinate of the column vector

(—=2z] w — 2t + Lo + L) (L — Lo)
= (—2x] w—2t)Ly + LoLy + L} — (—2x] w — 2t)Lo — L% — LoLy
= (—2x] w—2t)Ly + L} — (=22 w — 2t)Lo — L2.

constant across the column vector

Then, dropping the constant and adding another constant (x w + t)? across all coordinates, the
above equation becomes

(—2x] w—20)Ly + L2 4 (] w+1)? = (2] w +t — Li)%

26



Under review as a conference paper at ICLR 2026

Hence we finish the derivation of (D.6). Thus we have

(@] w+t = Lip—1)(n-2)-1)

2] w+t—Lip_1)(n_o)>
Attnp (A(X)).: = V®Softmax ‘% (@ :(h D(n-2) . (D.7)

(x;'—w +t— Eh(n_z))Q

For a specific h, we calculate the result of (D.7) column by column. Let X; denote any column
(token) of the matrix X. We partition the situation at each column (token) into three distinct cases:

e Case 1: w'X; + t is strictly within the interpolation range of Attn, (X €

[L(h 1)(n—2)> Lh(n 2)— 1)) This excludes the following range at the edge of the interpolation
range of

[Zh—1)(n—2)—1 Lh—1)(n—2)] U [Li(n—2)—1> Ln(n_2)]-
s Case 2: w' X; + t is not within the interpolation range of Attny:
w'X;+t¢ [E(hfl)(n72)fla Eh(n72)]~
* Case 3: w' X; + t is on the edge (region) of the interpolation range of Attny,:
W' Xi +t € [Lin-1yn-2)—1, Lth—1)(n—2)) U [Ln(n-2)—1: Ln(n—2))-

Two remarks are in order.

Remark D.2 (Cases of a Single Head Attention). The H heads split the approximation of the
truncated linear map across disjoint intervals. For head h,

[|Attng, (X) — Range[(HbfTa((hfl)(nfz)fl),aJrb;ah(nfz)](X)Hoo < e,

where € > 0 is arbitrarily small

With this understanding, w ' X; + ¢
« Case 1: falls into the interior of the interpolation range of the h-th head Attny, denoted as

Range, i (p—a)((h-1)(n-2)-1)/p.a+ (b-a)h(n—2)/p]-
 Case 2: remains outside of the interpolation range of the h-th head Attny,.
« Case 3: falls on the boundary of the interpolation range of the h-th head Attny,.

Remark D.3 (Cases of All Attention Heads). According to Lemma D.2, for all heads in

Attn™ , there are two possible cases:

e Case 1*: z falls into Case 1 for a head, and Case 2 for all other heads.

» Case 2*: ¢ falls into Case 3 for two heads with adjacent interpolation ranges, and Case 2 for
other heads.

This also means that when Case 1 appears in Attn®?, the situation of all head in Attn’ falls

into Case 1*. And when Case 3 appears in Attn”, the situation of all head in Attn’ falls into
Case 2*. Thus, We discuss Case 2* in the discussion of Case 3.

Casel: X; € [z(h,l)(n,% Zh(n,g),l]. In this case, our goal is to demonstrate this attention head
outputs a value close to Rangey, ; (w' X; + ).

Let ZS and Esﬂ be the two interpolants such that
w'X;+t € [Ly,Lot). (D.8)

27



Under review as a conference paper at ICLR 2026

Then, s and s + 1 are also the labels of the two largest entries in
(w'X; +t— E@—l)(n—Q)—l)2
B (W' X; 4+t — Lip—1)(n-2))*
AL :
(W X; +t— Lyn_2))?

since

argmax b (w' X; 4+t — Ly)?

ke{(h—1)(n—2)—1,h(n—2)} _E

= argmin (wTXi +t— Ek)z
ke{(h—1)(n—2)—1,h(n—2)}

= argmin lwT X; +t — Ly|.
ke{(h—1)(n—2)—1,h(n—2)}

We also note that the distance of w ' X; 4+t to interpolants beside Es and ES+1 differs from w ' X; +¢
foratleast Ly — Ls_1 = (b—a)/por Ly11 — Ly = (b—a)/p.

This is equivalent to the occasion when x; — x3 in Lemma D.1 is larger than

8 = = B = =

max {E(wTXz +t— LS,1)2 — (wTXi +1t— LS)Q, E(UITXZ‘ +t— L5+2)2 — (wTXi +1t— L5+1)2}
153 b—a

Z A 7 ( )23
AL P

which is invariant to X;.

Thus according to Lemma D.1 and the fact that the s and s + 1 are the two largest entries in the i-th
column of the attention score matrix, we have

(W Xi+t = L) (n-2)-1)?

ot | 2 | WK B L e
AL : Te Bl 14w ="
nx1 nxl1

(W X;+t— Zh(n—2))2
for any ez > 0.

This yields that
(w'X;+t— ZLh*l)(’fL*Q)fl)Q-
Ty. _ 2 —Bs
/8 (w Xz +1 L(h—l)(n—Q)) 1 e B
HVSoftmaX AL — Vmes - VWGSHHOO
(w'X; +t— Eh(n—2))2 i
(W' X; +t— th—l)(n—Z)—l)Q
T 2
B | (w X;+t—Li-1)n-2)) 1 e P
S HSoftmaX —E . - 1 T 6_ﬁ5€5 - 1 + 6_55 68+1H00 : ||VH00
(W' X; +t— Zh(n72))2
< Vlsc€2.

This is equivalent to

1 ~ e P~
|V Softmax(K ' Q).; — WL(h—l)(n—Q)—&-s—lekc - WL(h—l)(n—Q)-&-sekc [l oo
< Vilso - €2 (By [[AB]| < [|A]| - || BI])
< myea, (D.9)

where the last line is by (D.5).

28



Under review as a conference paper at ICLR 2026

From (D.8), we derive that

I 1 Al

WL(hfl)(n72)+sfl + m[’(hfl)(n72)+s — (W' X; + tere o
36

7 T e 7 T
< ||W(L(h—l)(n—2)+s—l —(w Xi+t)ers)lloo + ||m(L(h—1)(n_2)+s —(w X;+1))[l
(By convex combination of (w ' X; + t) and triangle inequality)
< 1 b—a e P b—a ,
S14e P p Ty p (By ©8)
h—
_2-e (D.10)
p
Combing (D.9) and (D.10) yields
||VSoftmax(KTQ):,i — (W Xi 4+ )]0
T 1 ~ e P -
< [|[VSoftmax(K ' Q). ; — WL(hfl)(nf%Jrsfl - WL(hfl)(nfmjtsHoo
- B .
+ I 14 B9 Ln—1)(n—2)+s-1 + 14+ e—BéL(h—l)(n—2)+S = (w Xi +t)ergllos
(By triangle inequality )
h—
<y + -, (D.11)
p

where the first inequality comes from adding and subtracting the interpolation points’ convex combi-
nation and then applying triangle inequality.

Case2: X ¢ [E(h_l)(n_z)_l, Eh(n_Q)]. In this case, X; falls out of the range of interpolation
covered by Attny,.

Without loss of generality, suppose w ' X; + t to lie left to the range of interpolation of Attny,.

This yields that E(h,l)(n,g),l is the closest interpolant within Attny, to w ' X; + t. Furthermore,

the second closest interpolant L j,_1)(,—2) is at least further for at least (b — a) /p, which is a constant
irrelevant to X;

Then by Lemma D.1, we have

(W' X; +t— E@q)(nfz)q)z
B | W'Xi+t—Lo_1)mn-2))>

Softmax | —— — e H < €3,
H AL : \/1/ oo 3
TX. _ Z 9 nx1
(w it h(n—2))
for any €3 > 0.
This yields that
(w'X; +1t— Z@4)(7%2)71)2
T 2
B | (W Xi+t—Lin_1yn-2)
VSoftmax | —— -V e |oo
|| = 3 |
~ nx
(wTXi +t— Lh(n_g))2
<Vlloo - €3 (By [|[AB|l < [|All - 1B]])
S my€s,

where the last line is by (D.5).

29



Under review as a conference paper at ICLR 2026

This is equivalent to

(w'X; +t— E@—U(n—Q)—l)z
B | wW'Xi+t—Lo—1)mn-2))°

HVSoftmax ——

— —odoHoo < myes. (D.12)

(W X; +t— Lyn_2)?

Case 1*. According to Lemma D.2, when Case 1 occurs for one head in the H heads of Attn™ , all
other head will be in Case 2.

Combining with the result in Case 2, we have the output of all heads as
1At (A(X))si = (W X; + tengloo

)

= D Attng, 0 AX).illeo + [[Attn, 0 AX).s — (0 X + t)erglloo

ho€[H]/{h}
b _
= (H — 1)my€ez + myea + @ (By (D.11) and (D.12))
b—a
= (H — 1)m, vEr + .
( )m es+m €2+H(n_2)
Setting €9, €3 to be
€0
€ = 5
ST oH - 1)m

yields the final result.

Case 3 (and Case 2*): X € [L(p—1)(n—2)-1, L(h—1)(n—2)] U [Lh(n—2)—1, Lh(n—2)]. In this case,
w' X; +t is the boundary of the interpolation range of Attny,,. By Lemma D.2, it should also fall on
the boundary of a head with neighboring interpolation range. Without loss of generality, we set it to
be Attny,_1. Furthermore, Lemma D.2 indicates that w " X; + ¢ should fall on no other interpolation
range of any heads beside Attny, and Attng,_;.

Combining this with case 2, we have
H
Attn™ (A(X)).; = > Attny 0 A(X).;
h=1
€ [(—(H — 2)myes + Attng, 0 A(X). ; + Attng,—1 0 A(X).,),

((H — 2)myes + Attny, o A(X).; + Attng,—1 0 A(X). ;)]
(By (D.12))

By Lemma D.1, let § denote
§ = Lin-1yn-2+s — (W' Xi+t)erg — [Lip—n)mozyrs — (W Xi +t)ers),

we have
[|Softmax((K™)TQ") — ( ! e
TTema T Tpemalsa
and
HSoftmax((K(h_l))TQ(h_l)) - (#en,l + ien)|| <es
1+ e B9 14 e85 ’

for any e4, €5 > 0.

Thus we have
[V Softmax((K M) TQM) + V=N Softmax((K ") TQ"h—Y)

30



Under review as a conference paper at ICLR 2026

-V( ! er + < ez + ! i
e T Treme T Tygmont T el
< IVloo (€4 + €5).
This is equivalent to
VM Softmax((K ™M) TQM)) + V(=D Softmax((K D) TQ"—1)
1 e P9 ~ 1 ~ o—hB0
- (1 e 0+ 7 Fipr ke L(h—1)(n—2)+s mekcL(hﬂ)(na)ﬂq + mekc) 0[] oo

<Vloo - (€4 + €5)-

Thus we have
VM Softmax((K ™) TQM) + V(h=DSoftmax((K =) TQ—b)
e~ P ~ 1 ~
~ (Toemm ke Li-vm-2+s + T =5 ke Lin-nn-2)+s-1) oo
< Vlloo(ea +€5),

which implies

H o—B8 _ 1 ~

1) Attng (A(X)).i — (e e lt-nm-2+s T T g e Ln-nm-2+s-1)llee
h=1

< (H —2)myez + || V]| oo (€4 + €5). (D.13)

Finally, since

e P ~ 1 ~ T b—a
HmekcL(hfl)(nfﬂJrs + mekcL(hfl)(n72)+sfl —(w Xi+t)ers|loo < '
(By (D.10))

combining with (D.13), we have
H
137 Aty (A(X).s — (07 X + Derglloe
h=1

o= B8 -

T3 o po hal-nm-2+s —55 Cha Lih-1)(n-2)+5-1) oo

H
1
<1 Aty (A(X)). — ( Tirem
h=1
B8 - 1 =~ T
G emm e LD+ T T e Lin-nm-2+s-1) = (W Xi+ e [loo

(By triangle incquality)

b—a
< » + (H — 2)myez + ||V ]| oo (€4 + €5)
h—
< Hn gy + (0~ 2 max{lal, [fles + max{lal, ]} e +<s).
Setting €3, €4, €5 to be
ST 3(H - 2)
€0
€4 — €5 = §
yields the final result.
This completes the proof. O

Lemma D.3 (Attention Prepended with Token-Wise Linear Transformation is Still a Transformer).
For any attention Attn and any linear transformation A, Attn o A is still an attention.

31



Under review as a conference paper at ICLR 2026

Proof. We denote the transformation matrix of A also as M 4. Denote the attention Attn as
Attn(Z) := Wy ZSoftmax(Wx Z) "W Z).
Then we have
Attn o A(Z) = Wy MaZSoftmax(WxgMaZ) " WoMaZ).
It is a new attention with parameters Wi Ma,WoM 4 and Wy M y. O

Lemma D.4 (Lemma 14 in (Bai et al., 2023): Composition of Error for Approximating Convex GD).
Suppose f : R — R is a convex function. Let w* € argmin, cga f(w), R > 2|/w*||2, and assume
that V£ is L s-smooth on Bg(R). Let sequences {@*},>0 C R% and {w§p }e>0 C RY be given by
@° = wdp =0,

@ =@ — V@) +ef, |z <
wéh = whp — NV f(wEp),

forall £ > 0. Then as long as ) < 2/Ly, forany 0 < L < R/(2¢), it holds that | — w(L;DHQ < Le

and |@L|s < £ + Le < R.

Corollary D.1.1 (Corollary A.2 in (Bai et al., 2023): Gradient Descent for Smooth and Strongly

Convex Function). Suppose L : R? — R is a a-strongly convex and 3-smooth for som 0 < o < f3.

Then, the gradient descent iterates wSSl) = whp — nVL(wgp) with learning rage = 1/ and

initialization wQ, € R? satisfies for any ¢ > 1,
t
b — 0l < exp(~2) - o — w5,

Ié] t
L(wgp) — L(w*) < S exp( —— ) - wgp — w3,

where x := [/« is the condition number of L, and w* := argmin s L(w).
D.1 PROOF OF THEOREM 3.1

Definition D.3 (Interpolation Points). Define P + 1 interpolation points of the effective domain of
f.ie., the range of w'z — v, as

J
P
where [Lmin, Lmax) is a bounded interval containing all values of w "z — y.

Lj = Lmin+ (Lmax_Lmin)7 for _] S 0,17...,P,

Theorem D.2 (In-Context Emulation of f(w'x — y)z with Single-Head Attention; Theorem 3.1
Restate). Let [Lin, Lmax] be a bounded interval containing all values of wlz — vy, and let

X = r1 Xy - Tp ER(dJ,-l)Xn and W::[w W - w]ERdX",
y1 y2 P yn

where ; € R?, y; € R, and w € R? is the coefficient vector. Define the input as:
xr1 T2 .o T

Yy Y2 - Yn

woow W

Z = = {%}] € REdHxn, (D.14)

Assume max{|| X||co, ||W||s} < B. For any continuously differentiable function f : R — R and
any € > 0, there exists a single-head attention Attng with a linear layer Linear such that

|Attn, o Linear(Z) — [f(w'a1 —y1)z1 -+ f(w' Zn — Yn)Tn] [l <€, forany e>0.

32



Under review as a conference paper at ICLR 2026

Proof. We define the linear transformation of Z as a concatenation of two functions with some
manual padding of zeros:
Linear, (X)

Linear(Z7) = [Linearw(W) 0@d+n+2)xnP]’

2(2d+n+2)xn(P+1)
where we define Linear,, € R(24+n+2)xn(P+1) and Linear,, € R24H7+2)xn 54 pelow.

We define Linear,, as:

0al><n w
Id *11><n *llxn
Linear,, (W) := { } W + | Oixn | = | Odxn
w 0 n . ,
(d+n+2)xd dxn 11><n 11><n
(2d+n+2)xd In In
—_———

—_———
(2d+n+2)xn (2d4+n+2)xn

We define Linear, as:

Linear, (X)
N Lt (n) (n) (n)
. Z [O(d+1+n)x(d+1)] \)g-/ [O"X(i’l)(P“) 2Loe; " 2Lae;” - 2Lpe; O”X("*i)(P“)}
=1 (d+1)xn
(2d+n+2)x (d+1) nxn(P+1)

n | Ow+1)xd  O(d+1
D0 S o L™  FLe® o L o

d d <~ nx(i—1)(P+1) f( 0)61 f( 1)61 f( P)el nx(n—i)(P+1)

i=1 |Omt1)xd  Ont1 | (@41)xn

nxn(P-‘rl)
(2d+n+2)x (d+1)

Oa+1xp+1) - O@d+1)x(P4+D)
N S e S

(Jei”)hx(mn Ce;‘n)llx(PH)

(2d+n+2)xn(P+1)
= [Tl T2 T Tn]’

(2d4+n+2)xn(P+1)

where {L; }f:o are the P + 1 interpolation points (Definition D.3); eE”) € R" is the one-hot vector
with 1 at index 7 and O elsewhere; C is a constant to be determined later, and

11><(P+1) = [1 1 - 1],
N———
1x(P+1)
Si=[-13 —I1? ... I3],
1x(P+1)
2Loy; 2Lyy; -+ 2Lpy;
T, .= f(Lo)xs  f(Li)x; --- f(Lp)w;
—L2 —L? e 1%
Cel™ ce™ ... ceM™
(2d+n+2)x (P+1)

33



Under review as a conference paper at ICLR 2026

So our Linear(Z7) is:

[ 2Lz 2Lpx; 2Lo%n 2Lpx, ]
2Loyr -+ 2Lpyr -+ -+ 2Loyn -+ 2Lpy,
™ 1Ty --- T, f(L0)2$1 f(LPgﬂﬁ f(LO)an f(LP%%
Waxn  Odxnp _L(O) _LP) _[(10) _IEP)
. _ _]-1><n 01><nP _ C’e " Ce " C@nn C’enn
Llnear(Z) B Odxn Odxnp N ' Waixn ' Odxnp
11><n 01><nP _]-1><n 01><nP
I" Onxnp Odxn Odxnp
11><n O1><nP
2(2d4n+2)xn(P+1
(B2 L In OanP

2(2d4+n+2)xn(P+1)

Now we construct Wy, Wq, Wy, Wo to be:

Wk = [T2atn+2  O@d4n+2)x(2d4n+2)],

(2d+n+2)x2(2d+n+2)

Wq = [0@dtn+2)x(2d4n+2) T2dini2],

(2d4+n+2) x2(2d+n+2)

Wy = [de(d+1) 14 0d><(2d+2n+3)]7

dx2(2d+n+2)
1,
o o
n(P+1)xn
Thus,
WkLinear(Z) = [T1 T --- Ty), (Wi selects the T} blocks in Linear(Z))
(2d+n+2)xn(P+1)
Wasxn  Oaxnp
_]-1><n 01><nP
WQLinear(Z) = Odxn Odxnp |, (U'Q selects the bottom (2d + n + 2) rows in ]]inenr(Z))
11><n lenP
I, Onxnp
(2d+n+2)xn(P+1)
Wy Linear(Z) = [F1 Fo -+ F, (Wv selects the (d + 2)-th row in T;)
dxn(P+1)
where we define F; as:
Fi=[f(Lo)x; f(Li)xi -+ f(Lp)zi].
dx(P+1)

Therefore,
Attng o Linear(Z)
= Wy Linear(Z) - Softmaxg (W Linear(Z)) " WgLinear(Z)) - Wo
n(P+1)xn(P+1)

Wd><n OanP

T _11><n lenP I
—[F, F - F,Softmaxs((Ti To -+ Tu]" | Otxn  Ousxnp ){0 " } (D.15)
Lixn  Oixnp o
n n n N——
Ben(PH1) (P x(2dtn+2) I, Onxnp n(P+1)xn

(2d+n+2)xn(P+1)

34



Under review as a conference paper at ICLR 2026

For simplicity of presentation, we define

T=[T T, - T,

n(P+1)X (2d+n+2)

For the Softmaxg part in (D.15), we have:
Softmaxs ((WgLinear(Z)) " WgLinear(Z)) - Wo

Waixn  Oaxnp
- _]-1><n 01><nP I -~
= Softmaxg( \T/ Odxn  Ogxnp|) [0 n :| (By the definition of ’1')
n(P+1)x 2d+n+2) | Lixn  Oixnp i’;x_",
n Onxnp n(P+1)xn

(2d+n+2) xn(P+1)
Waxn Odxnp
| =lixn| _|Oixnp I
= Softmaxg( [T | Oaxn T | Odxnpr [ " ]
]-1><n OanP Oann
I, Opxnp n(P+1)xn

n(P+1)xn n(P+1)xXnP

(By distributivity of matrix multiplication over block concatcnution)

Waxn Odxnp
| —1lixn | O1xnp I
= |Softmaxg(T | Oaxrn |) Softmaxg(T |Oaxnp|) {0 n }
]-1><n 01><nP nbxn
In OanP n(P+1)xn
n(P+1)xn n(P+1)xnP
(By the column-wise operation nature of S(,)ftnlaxj)
den
T —llxn I
= SOftmaX@([Tl T, - T, Odxn | )- (L) r” } selects the first Softmaxg block)
nPXn
n(P+1)x (2d+n+2) Lixn
L,
—_———
(2d4+n+2)xn

Since our target is a token-wise approximation, we focus on a single token. We consider the c-th
column (¢ € [n]) in the Softmaxs part, and we have

T, w
1
T, ~1
(Softmaxs (W Linear(Z)) ' WgLinear(Z)) - Wo). . = Softmax( ) . 04
: 1
T, et
~—— ——
n(P+1)x(2d+n+2) (2d+n+2)x1
Ml,c
M2,c
= Softmaxg( | . |),
Mn,c
———
n(P+1)x1

35



Under review as a conference paper at ICLR 2026

where each sub-block M; . € RCFTUX1 for j € [n] is

w
-1
Mi,c = TiT . Oa
~~ 1
(P4+1)x(2d+n+2) e(n)
——
(2d+n+2)x1
_2L0.’E1—vr 2L0yl f(L())ﬂ?z —L% C(egn))—r w
2L1$C;r 2Ly; f(Ll)x;r _L% C(ez('n))T -1
= . . . . . 04 (By transpose of T;)
: : : : : 1 \
2Lp:);‘;r 2pri f(Lp)l‘zT —L% C(egn))—r egn)
- ——
(P+1) X (2d+n+2) (2d+n+2)x1
_ 2L0.’L‘;F’LU - 2L0yz - L(Q) + C]li:c
2L1.I‘;F’LU - 2L1yz - L% + C]li:c
_2priTw —2Lpy; — L% + C1,—,
(P+1)x1
where 1,—. denotes the indicator function of 7 = c.
For simplicity, let
ul’ =200l w 2Ly, — L2, for je{0,..., P}, (D.16)

such that
uy) + Clize
’Ulgl) + C]li:C

ie =

Wl + Ot
(P+1)x1

This means that
(Softmax s ((WgLinear(Z)) " WoLinear(Z)) - Wo). .

M .

MQ,(:
= Softmax (s

M,

——
n(P+1)x1

exp{ Blu + cni:c)}
=1 =0 2ir—q Zf/:o eXp{B(uy') + C]li/zc)}

(n(P+1))
(I=1)(P+1)+(j+1)
—_———

n(P+1)x1
(By the definition of So[‘tmaxﬁ
Thus we have
Attng o Linear(Z). .
= Wy Linear(Z) - (Softmaxs ((WgLinear(Z)) " WgLinear(Z)) - Wo). ...

n P (Z) Cl._ }
=[FR - F, Z eXp{B(uJ +Clizc) eET‘L(I;)El:)ll)H 1)
n P i’ = J
— O Zj,:[) exp{ﬁ(ug., ) 4 C]li':c)} —_—

dxn(P+1) n(P+1)x1

36



Under review as a conference paper at ICLR 2026

= [f(LO)xl R f(Lp)l‘l S f(Lo)xn Rk f(Lp).’L‘n] . (By the definitoin of I",)
dxn(P+1)
P (1) ,
) P ) S
n i i—1)(P+1)+(j+1
i=1 =0 D i1 fo:o eXp{B(u} )+ CILi/:C)} -
n(P+1)x1
n EP: exp{ﬁ(uy') + C]lizc)}
- n P i’
i=1 j=0 Zi’:l Zj'=0 EXP{B(UYI ) + C]].ilzc)}
n(P
F(Loar - f(Lpar -+ f(Lown - fLp)e]-ef00 L
—_— ———
dxn(P+1) n(P+1)x1

(By distributivity of matrix multiplication)

exp{ﬁ(ugi) —|-C]1izc)} L)

P ;!
i=15=0 2irm1 2o e><p{5(u§3 '+ Cﬂi':c)} e
(The one-hot vector retrieves the ((i — 1)(P + 1) + (j + 1))-th column)

Again, our goal is to approximate f(z]w — y.)z. with:
exp{ﬁ(u§i) + Cﬂi:c)}
i=1 j=0 Z?’:l Z;)’:O exp{ﬁ(ugf/) + C]li/:(:)

We start to analyze the summation of weights Zf:o (+-+) fori = cand i # c. We use the result of

Attng o Linear(Z2). . =

this analysis to bound our target approximation || Attng o Linear(Z). . — f(z) w — yc)7.| o later.

» For every i € [n), if i # ¢, we have

- (By Tize = 0fori # c)
Y-t Z]’*O eXP{B(UE/ - 0]11’26)}
(@)
_oexps Bu
S ey = j (D.18)
> i1=0 exp{ﬁ(uj3 + C)}

< €0, (D.19)
where (D.18) is by taking only the i’ = c term, and the last line is by the softmax-shift equality
Zf g€ _ Zf:o e"s
L AN
for any constant C' and choosing C' := M — %m €0 = (max; L;) - (2dB? + 2B) — ln €p with
€ > 0.7

*More explicitly, recall (D.16): um = 2Lz w— 2L;y; — L3. Since max{|| X ||oc, [|[W |} < B, we
have

[zillo < B, |ys| < B, [lw]les < B,

which implies ||w]]1 < dB. Let L, := max; |L;|. For a fixed pair of 4, i, we have

uf —uf) =2L; - (i —wi) 'w = (yi — yir))

<2|L;| - (|(zi — x) T w| + |(yi — yir))) (By triangle inequality )
<2L, - (J|lwi — zirlloo - lwlls + |(yi — yar)|) (By L. := max; |L;| and Holder’s inequality )
< 2L, - ((JJzilloo + l|xir]loo) - NJwll1 + |ys| + |yir)]) (By triangle inequality)
<2L,-((2B)-dB +2B) (By [|zilloe < B, |y| < Band ||w|: < dB)

37



Under review as a conference paper at ICLR 2026

Thus, the weight assigned to i # c is tiny.

* For i = ¢, we have
S exp{ Bl + C})
i g exp{ Al + Cliz,) |
e Yo eXp{B(uy) + C]lizc)}

S S exp{ Bl + Clu,) }
>1—(n—1e, (D.21)
where the last inequality follows from (i.e., (D.19))

Dize Zfzo exp{ﬁ(uy) + C’]lizc)}
PO D oexp{ (u §f')+cni,:c)}

and setting 0 < €9 < 1/(n — 1). Therefore, the weight concentrates at i = c.

- By X S )+ () =1)

< (n —1)eq,

From (D.19), (D.21), and our target approximation
[|Attn, o Linear(Z). . — flzlw—ye)ze| oo

exp{ﬁ(u@ + C]li:c)}
= ZZ )
i=1 =0 2y— 12 Oexp{ (ujr” + Clir=c)

we split (D.22) into two terms

exp{ﬁ(u@ + C’Ilizc)}
Iy .
=1 j=0 Zz’ 1 Z /= Oexp{ ( Uy + C]li/:c)

}f(Lmz- — flw—yo)rclo,  (D22)

}f(LJ)xl - f(x;rw - yc)xcHoo

ea{o)) .
—@; 5o S exp{( §%">+cni/_c>}f(L])x’
exp{B(” + )}

+ = f(Lj)x — f(x;rw —Ye)Zelloo
jzoz, 12 o Oexp{ﬁ(ug-z,) +C’]li/=,3)} !

(By splitting the summation over ¢ into two parts: ¢ = c and ¢ # (1)

e 50}
< ZZ - F(Li)illoo (D.23)
@y o1
iZe =0 D= 12 i'=0 €XP 6(“]'/ + Cli=c)
(I
<2L, - (2d32 +2B) = M.
Hence, we have u(” < u ) + M, which implies
(i) 1)
P < e*BMeB“J‘ , forall je{0,...,P}. (D.20)
Then, (D.18) becomes, for any constant C,
P () eBfM P (")
2j=0 eXp{ﬂuj } 2= OeXp{’Bu‘ } B(M—C)

v <
exp{BC} 31/ _, eXp{Bu(ﬁ )} efC0 eXp{ﬁu(, )}
Choosing C' := M — = ln €0 = (max; L;) - (2dB* +2B) — 1 ln €0, we obtain the desired bound .

38



Under review as a conference paper at ICLR 2026

exp{ﬂ(u@ + C’)}
HQ: W
=0 2ire 12/ Oexp{ (uy’ + Cly—c)

(I1)

}f(Lj)Ii - f(IcTw = Ye)Te |l oo

(By triangle inequality )
where we are capable of bounding term (/) with (D.19) and term (/1) as follows.
For term (7) in (D.23), we have

(1)

eXP{ﬁ(Ug-i))}
_'%2;) i o exp{ fug)” + Ol |

exp {8}

F(Lj)2ill oo

< Z Z I 7 f(Lj)wi|l o (By triangle inequality)
i#c j=0 EZ/ 1 Z i1—0 eXp{ (uj/ ) 4 O]li’:c)}
eXp{ﬁ (uy))}
= Z Z @) ||f( )xZHOO (By non-negativity ofexponential)
i#c j= OZ/ 12 L Oexp{ ( j/ +Cﬂi’:c)}
eXp{ﬁ (uy))}

-y

@) P Nilloo
e =0 2u_ 12, Oexp{ﬁ(uj, +C]1i/:6)}

By Il f(Lj)willoo = |fF(Lj)] - [lilloo)
S Sieexn{B)
a Zgzl ij:() exp{ﬁ(uj, + C]li’:c)}

Bs-B

(By By := max |f| and max{| X||sc, Wl } < B)
< (n—1)egBsB, (By (D.19))
where we define By := max | f| as the bound for f.
For term (I7) in (D.23), we have
(I1)
r exp{ﬂ(u(-c) + C)}

=1y
j=0 Z'L’ 1 Z =0 exp{ ( ;’ ) + C]li/:C)

| ZP: exp{ﬂ(ujC +C’)}
- =0 e Zkao exp{ﬂ(u(i/) +C1 ":c)}

dx1 dx1

}f(Lj)\rf;—f(wIw = ve) T lloe

(f(Lj)ze = f(chw = Ye)Te)

=0 €xpy B(u , 9 40)
DYy oeXP{/B o, ,_C)}
(BySS, & B;— D =Y, ¢ (B, - D)~ (1 - =)D)
P eXp{ﬁ(uE_C) + C)} Eﬁ:o exp{ﬁ(ugff) I C)}
=Y — .

=0 Zj’:O exp{ﬂ(ugf) + C)} ZZ:l ZkP:O exp{ﬁ(ug’) +C1l,=.)

39

} ’ (f(Lj)-Tc - f(x;rw —Ye

)xc)



Under review as a conference paper at ICLR 2026

Shoeexn{B? + )}

0 S 1Zk oeXp{ﬁ(U +C]l"—c)}

) f(chw —Ye)Zelloo

(m Z, /(H; D)—(1- =22 p =~ A B(p; — p)— (1 - L))
LS exp
<> e (f(Ly) = flalw = yo)z.
=0 Z g Oexp{ﬁ( C)}
= 0exp{ i —i—C’ }
- (- @ )+ el w = ye)ze]l o By Z < 1)
PO Zk 0 exp{ “ '+ o, ’—c)}
P exps B(u S 0)
<X =5 e @ b (L) = FlaTw =yl - el
=0 2j1—0 eXp{ﬁ(uj, + C)}
p ()
T exp{ B(w? +0) ) @l w =)l - e
n P () c Ye clloo
Zi':1 Zk:o exp{ﬂ(uk + C]li/:c)}
(By triangle inequality, and ||av||oc < |a| - ||v]|oc Where a € R and v € R?)
P exp{ﬂ(u? + C)}
< Z P (c) ~|f(Lj)—f(x;rw—yc)| ) ||$cHoo+(n—1)€oBfofc||oo
=0 2 ji=0 eXp{B(uj? + C)}
(By (D.21) and By := max | f|)

' ofn) T
=2 =7 = (@) = @l w =yl zelloe + (0 = Deo B B
i=0 2 ji—o eXp{ﬁuj/ }
(By exp{(ﬁ(uv(l{') + (/')} = exp{:)’u(/” } exp{BC} and max{|| X ||oc, [[W|s} < B)
B exp{ -zl w —y. - L;)’}
- P
j=0 Zj':o exp{—B(z/w —y. — L;j)?}

(L) = flafw =y - |Zelloo + (n — 1)eo By B,
——

=(I1-2)
=(11-1)
(D.24)
where the last equality follows from completing the square
uf? = 2Lialw = 2Ly~ L2 = —(L; — (@lw = o)) + (@l w - yo)?.
For term (I71-1) in (D.24), we have
(II-1)
P T 2
exp{—pf(z, w —y. — L;)
:Z P { T = ! } 2 '|f(Lj)*f(x:w*yc)"chnoo
j=0 Zj/:o eXp{*ﬁ(‘Tc W —=Yec — Lj’) }
P T 2
exp{—f(z, w —y. — L;)
- 3 { DY 4L) - faTw— o)l - el

P
JiLy— (el weyol<aL 2oji=o XP{=Alad w —ye — Lj)*}

P
exp{—B(z/w —y. — L;)?} T
|f<L)_f( c - C)‘H 6”007
2 oar S gep{—Bleiw -y —Lyyry 0 TR
(D.25)

where we define AL := (Lyax — Lmin)/ P and divide the interpolation points into two groups with
one group at least AL away from x] w — ., and the other within AL.

+
3Ly = (@l w=ye

40



Under review as a conference paper at ICLR 2026

For the first term in (D.25), we set AL to be sufficiently small (P large enough) such that,

|f(t) = f(t) < e, Ve >0,
when [t —¢/| < AL.

For the second term in (D.25), we set 3 to be sufficiently large such that
Z eXp{_ﬁ(xIw_yc_Lj)z}
P
JilLj—(zl w—ye)|>AL Zj’:o exp{—p(zfw —y. — Lj)?}

forany 0 < es < 1.

< e, (D.26)

Thus, for term (/7-1), we have
(I1-1)

_ ZP: exp{—ﬁ(x:w—yc—Lj)Q}

P
Ly — (@ weyo)<ar 2og'=0 XP{=B(d w = ye — Lj)?}

NF(Ly) = Flalw = ye)l - lzelloo

P T 2
expi—B(z, w —ye — L;)
+ > ol 0B - peT o - o)l ol
3L — (e w—ye)|>AL 2o xp{=flzw —ye — L)%}
P T 2
_ —yo— L,
< Z Pexp{ ﬂ(l‘c wT Y J) } e1-B
JilLj—(zf w=—yc)| <AL Zj’:o exp{—p(z;w—ye — Lj)*}
P T 2
expi—B@, w -y — L)
+ > = 0B () 4 e - ) - B
L@l ey >ar 2ag=0 XP{=Blz w —ye — L;1)?}
(By | f(L;) — f(zlw —yc)| < €1, max{|| X ||oc, [W|loo} < B, and triangle inequality)
P T 2
_ —yo— L,
< Z exp{ ﬁ(mcw Y j) } ey -

P
Ly — (@ meyo)<ar 2og'=0 XP{=B(zd w = ye — L)}

EP: exp{—B(z]w -y — L;)?}

+ P
Ji|Lj—(zT w—y.)|>AL Zj’zO exp{—ﬁ(x;rw —Ye — Lj’)z}

-2By - B (By By := max |f])

XP: exp{—B(z, w—y. — L;)*}

P
JiLi— et weyoi<ar 2ur=0 XP{=Al@lw —ye — L;)?}

IN

€1-B+e-2B;- B (By (D.26))

=K

§61'B+62‘2Bf'B. (Byh’,<l>
Combining (I), (II-1), and (II-2), we have:
|[Attng o Linear(Z). . — f(z w — yo)welloo < (n — 1)eoBfB+ €1 B + 2eaB; B+ (n — 1)eo By B .

c

from (1) from (I1-1) from (I1-2)

Since €, €1 and e, are arbitrarily small, we have
| Attn, o Linear(Z). . — f(x) w — ye)ze||oo < ¢,
for any € > 0.
This completes the proof. O

D.2 PROOF OF COROLLARY 3.1.2

Corollary D.2.1 (In-Context Emulation of a Single GD Step; Corollary 3.1.2 Restate). Let?: R —

R be differentiable and define L, (w) := £ " | ¢(w T x; — ;). For any step size > 0 and any € >

‘T n

0, there exist a single-head attention Attn, and a linear map Linear such that, with Z = [X; W] as
in (3.1), choosing the readout v := %ln (equivalently, right-multiply by W = w in Definition 2.1),

41



Under review as a conference paper at ICLR 2026

we have
@p = (Attn, o Linear(Z))u € R® and ||Gigp — (w — nV Ly (w)) |le < €.
—_——

Y
LED

Proof. From Corollary 3.1.1, we derive that ||(Attn, o Linear); — VA(w " 2; — y;)2;||oo < € for all
i€ [n].

Therefore,
_ 1 .
w=w+ - Z(Attns o Linear);
j=1
=w — g Z VZ(mej - yj)a:j +¢€
j=1
—w—nVL,(w)+¢€
= wgp + €
This completes the proof. O

D.3 PROOF OF COROLLARY 3.1.3

Theorem D.3 (In-Context Emulation of Linear Regression; Corollary 3.1.3 Restate). For any dataset
{(z4,y:)}, with x; € R, y; € R and any € > 0, there exist a single-head attention Attny, a linear
map Linear, and a readout v € R™ such that, with Z = [X; W] as in (3.1) (for any fixed bounded
w),

Winear := (Attng o Linear(Z))u € R?, and | @tinear — Wiinear||oo < €,

where Wiinear 1= argmin,, cpa % S ((w, ) — yi)2.

Proof. From Corollary 3.1.2, we know that ||@! — whp|lee < €/2 for all I € [L]. Note that
3" ((w, z;) — y;)* is convex and smooth which satisfies the precondition for Corollary D.1.1.

Therefore, from Corollary D.1.1, using || - [[oc < || - ||l2, We derive that ||whp — weollco < €/2.
Thus, [[Attn — Winear|[oo < [|@" — whplloo + [Whp — Whiealloo < € by triangle inequality. This
completes the proof. O

D.4 PROOF OF COROLLARY 3.1.4

Theorem D.4 (Restate of Corollary 3.1.4: In-Context Emulation of Ridge Regression). For any
input-output pair (z;,y;), where z; € R% y; € R, i € [n], and any € > 0, there exists a single-layer
Attention network with linear connection Attn such that

||Attn - wridge”oo <€

where Wyigge 1= argmin,, cpa 5= > o, ((w, 2;) — y;)? + 5 ||w||3 with regularization term A > 0.

Proof. From Corollary 3.1.2, we know that ||@' — whpllee < €/2 for all I € [L]. Note
that = >  ((w,z;) — y;)? + |lw|3 is convex and smooth which satisfies the precondition

for Corollary D.1.1. Therefore, from Corollary D.1.1, using || - ||oo < U - ||2, we derive that
[w6p — Wiggelloo < €/2. Thus, [[Attn — wrigge[loo < 18" — wiplloe + [Wep — Whggelloo < €Y
triangle inequality. This completes the proof. O

42



Under review as a conference paper at ICLR 2026

D.5 PROOF OF THEOREM 4.1

Theorem D.5 (In-Context Emulation of Attention; Theorem 4.1 Restate). Let X € R%*™ be an
input sequence, and let Wy, W, Wy € R% %4 be the weight matrices of the target attention head we
wish to emulate in-context. Assume ||Wx X ||, [|[WoX| oo, [Wv X |co < Brgv With Bxgy > 0.

Then, for any € > 0, there exists a two-layer attention network — a multi-head attention layer Attn,,
followed by a single-head attention layer Attns, — such that

ttng o Attn,, — Wy X Softmax K 0o Z €,
A A X,) — Wy X Softmaxs (Wr X) T Wo X

Emulator Target

where X, is the prompt defined in Definition 4.2.

Proof. We state our high-level proof sketch first.

Step 1: In-Context Weight Encoding. We define
K =Wk - X, Q =Wy X, V =Wy X .
~—~ NG \ , ~—~ ~— —~ =~
dpXn dpxd dXn dpxn dpxd dxn dpXn dpxd dxXn

We aim to approximate the attention mechanism V Softmaxs (K T Q) using a two-layer transformer
Attng o Attn,,. Therefore, the transformer Attng o Attn,, must have in-context access to the
information about W, W and Wy . This is equivalent to exposing the transformer Attn, o Attn,,
to the target algorithm’s specification.

To that end, we augment the input sequence X with two auxiliary blocks:

1. The weight encoding Wi, of the target algorithm. Wj, contains the vectorization of the target
weights Wi, Wg and Wy,

2. A positional encoding I,,. I, exposes token indices.

Concretely, following Definition 4.2, we form

X
Xp: [WI] with Wi, = O-w 1w 2-w --- (’fl—l)-w7
N——
(d+6ddp+n)xn 6ddy, xn
and

Wy
Wy

N——

3ddp x 1

Step 2: Multi-Head Decomposition for In-Context Recovery of K, (), V. In this step, we use
the multi-head layer Attn,, to build approximators of K, (), and V' from the prompt X,,. We denote
these approximators by K’, Q’, and V’, corresponding to K, 2, and V.

Explicitly, we have
Attn, (Xp)
—~

K’ K
T e
1% 1%

N—— ~——
3dp xXn 3dp xXn

Intuitively, this works as: X, contains the raw input X and the weight encodings of W, Wg and
Wy,. Then Attn,, “reads” X and the target weight parameters from X, within its attention heads to
form the desired approximation.

43



Under review as a conference paper at ICLR 2026

Step 3: Single-Head Assembly for Emulated Map. We use the single-head layer Attn, to perform
the attention computation. From K’, Q’, V', Attn, produces

V’Softmaxs((K’') " Q).

For reference, the target computation is V Softmaxg((K) " Q). This step aligns the output of Attn
with the target attention, using the approximated K’, ', V' as inputs.

Step 4: Error Bound. Finally, we bound the gap between the computed and target attention:
|[V'Softmaxs ((K') T Q') — VSoftmaxs((K) " Q)||ee < €0 + nBrove:.

Our proof starts here.

Step 1: In-Context Weight Encoding. For clarity and simplicity, we define

ki = (Wg).i € RY, (D.27)
g =(Wg).: €RY, (D.28)
v = (W ).. € RY, (D.29)
such that the vectorized weight matrices W ., EQ, W, in Definition 4.2 become
k1 q1 U1
ko qz U2
WK _ ) c ]Rddh, EQ — ) € Rddh7 EV — ) e Rddh,
kdh qdy, UV,
and w becomes
Cy T
kdh,
W q1
w= |Wqol=1":
WV qdh
vy
LVdp |
W;, remains as
Wi = 0w 1w 2w --- (n—1)~w] ¢ ROddnxn.

Then, for the input X, we append it with the target weights W;,, and the positional encoding I,, as in
Definition 4.2. We denote this result with X, and write it out as

X
X, = le] . (D.30)
I,

——
(d+6ddp+n)xn

Step 2: Multi-Head Decomposition for In-Context Recovery of K, ), V. In this part, we con-
struct approximators for K, and V' via Attn,,,. We construct the approximators by approximating
each row of K, @,V and then aggregating the results across rows. Each row in K, () and V" has the
form: k;' X, ¢ X, and v X. To approximate these rows in K, Q, V, we apply Theorem D.1 to each
row separately. Namely, we allocate an H-head attention to each row of K, () and V' to carry out
the row-wise approximations. Since K,Q,V € R%*" each of K, Q, V uses H - dj, heads. We
interpret H as the number of heads per row dimension, since each K, ), and V has dj, rows. Finally,
we define a multi-head attention Attn,,, as the union of these three groups of Hd}, heads. Therefore,
Attn,,, has 3Hdj, heads in total.

44



Under review as a conference paper at ICLR 2026

We label the 3Hd}, heads in Attn,, as:

Attnj{—ﬁ, J € [da], he {J+1,...,J+ H}; (Approximates K)
AttanE, J € [2dn] \ [dn], he {J+1,....,J+ H}; (Approximates Q)
Attn;,/}:, J € [3dn] \ [2d1], he {J+1,...,J+ H}, (Approximates V)

where we define J := (j — 1)H to simplify our notation. Each Attnfﬁ, Attnfﬁ, and Attn;./ﬁ is

a single-head attention. Index j identifies the target row, and index 1 identifies the head allocated
to that row. Here j € [2d] \ [dn] denotes the set difference. That is, j € [2dy] \ [dn] means
je{dn+1,...,2dp}.

Thus, Attn,, consists of three groups of attention heads:

dn, J+H 2dy, J+H 3dy, J+H
Attng, =Y Y AttnS; + >y Attn% + > Attn)7,
J=lh=J+1 J=dn+1h=g+1 J=2dn+1h=741
Approximates K Approximates Q Approximates V'

In the subsequent proof, we provide the constructions of Attnfﬁ, Attn;_gﬁ, Attnyﬁ from Theo-
rem D.1. ’

To apply Theorem D.1 to construct heads in Attn,,, let ¢ and b denote the minimum and maximum
of the inner products k,' ,,, ¢;' 1, and v, x,,, over all i € [dy] and m € [n]:

a < min{k?mm, qiTxm,UiT;Em} and max{ijm,q;xm,vyxm} <b.
Next, we choose
2(b—a) 1
(n — 2)60 ’
such that the interpolation error in Theorem D.1 is at most < for any €y > 0.

H=]

Third, Theorem D.1 requires a single map A : R4*" — R(34+7)xn shared across all H heads. In our
construction, we realize this augmentation by prepending each head of Attn” in Theorem D.1 with a
head-specific linear map A; : R(@+0ddntn)xn _y R(3d+n)xn The map A; maps the input X, to the
desired dimension and picks out the target k;, ¢; or v; (this is equivalent to the w, in Theorem D.1.)
to let Attn” perform the desired linear transformation k; X, v, X or ¢ X. Here h still identifies
the single head assigned to a specific row. By Lemma D.3, Attn” o Az remains an H-head attention.
Therefore, we use Attn’ o Aﬁ to build the heads in Attn,,.

We construct A; as

Ig  Ogx3dd, Oax3sdd, Odxn

A |Oixa By Odxzdd,  Odxn

h Oaxa E; Kz B Ogxn |’
Onxd Onx3sdd, Onxsda, In

(3d+n) x (d+6ddp+n)
where

By = Ousapiymy 1a Oux(aady—dpiyoi-a)

dx3ddy,
K7 = [(h%H —1)(n —2) — 1].

Here h%H denotes the remainder of dividing h by H. We define % such that instead of the common
(kHY%H =0,

kH%H = H, forall ke&NT.

45



Under review as a conference paper at ICLR 2026

Applying A; to X, yields

[ Ia  Ogx3ad, Odx3dd, Odxn e
— | Odxa E; Odx3dd,  Odxn e o
Ah - X, = Oy ETL KEEE O W, (B} the definition of Aj; and /\,))

L,

(d+6ddp+n)xn

_Onxd On><3ddh On><3dd;l In

(3d+n) x (d+6ddp+n)
r X

| [B; Oaxsda,]| - Wi
KGEp] - Wi |

L L,

(3d+n)xn

where [E; Odx3dd, | Win expands as

[E5 Odxsdd, ] Wi

Ow 1w 2w -+ (n—1)-w
= [ETL OdXdeh,] w w e ( w)
dx6ddy,
6ddy Xn
= E 0w 1w 2w - (n—=1) w4+ [0gx3da,] [w w w - w]
—~—
dx3ddp, 3ddp xn 3ddp xn
= [O-Eﬁw 1-Brw 2-Bpw - (n—1)~EEwL
dxn
and
C ey T
kq,
q1
Erw = [de(dfﬁ/H]—d) 1, 0d><(3ddh—(d[ﬁ/H1—d)—d)] (By the definition of Ej, and w)
dx3ddy, qdy,
U1
_vdh_
3ddp x1
k[ﬁ/H]’ 1§h§~Hdh
= q[ﬁ/H]—dh’ Hd, < h <2Hd, . (D31)
VT H 24, 2Hd;, < h < 3Hd,

The equality (D.31) holds since [; selects the [h/H-th block in w.
Similarly, [E; K7 E;] - Wi, expands as
(B KB Win

= [Eﬁ KEEE] Oiuw 11~Uw 2Q'Uw (n 711%) ) w:| (By the definition of Wiy )
dx6ddy,
6ddp xXn
= E 0w 1w 2w - (n=1)w+EKEWw w w - w
~~ S——
dx3ddp, 3ddp xn dx3ddp, 3ddy, xn

(By[A B {j)} — AB+CD)

46



Under review as a conference paper at ICLR 2026

= [KEEE’LU (Kﬁ + I)Eﬁw cee (Kﬁ +n— 1)Eﬁw},

dxn

Up to here, we are capable of selecting a target k;, g; or v;, and we start to build our heads in Attn,,.

When 1 < h < Hdy, we compute A;L - X, as

X
A - X, = 0-kgym kgm0 (n= 1) kg
kim  Fmm kg
n
(3d+n)xn

This means every hin {J + 1,...,.J + H} with j € [d},] has the same Az - Xy

X
O'kj lk'J (n—l)-k‘j
ki koo kj
I,
(3d+n)xn

For each j € [d}], by Theorem D.1, there exists an H-head attention Attn; : RGBdFn)xn —, R3dnxn,

such that the output satisfies

(3d+n)xn
| Attn’ (A - X, )0 — (kT ) e || oo < e (D.32)
J\ p /)i j Li) €5 co S €0, .
~——
Sdhxl 3d},,><1
for every i € [n] and any ¢y > 0.
From (D.32), we have
(3d+n)xn
—
| At (A7 - X)) — ePh X oo < co,
3dp xXn 3dpxXn
where
(B3dn) . Ty _ 3d 3dy, 3d
e Mkj X = [(ijl)eg 2 (k;-'—xg)eg- 2 (k:;rxn)eﬁ h)} .
3dpXn
We use Attn;(s) to label the heads in Attn’;, and we define AttanE(Z ) to be
Attnfﬁ(Z) = Attn;(h) (A5 - Z), (Z € RUHO4nTX" denotes any input)

where j € [dp] and h € {J+1,...,J+H}.
By Lemma D.3, Attn® (Z) is still an attention.
7,h
Thus
J+H
K .7 K
Attnf(Z) = ) Attn’(2),

h=J+1

is also an attention.

Thus, we have

| At (X,) = k] X [l < co.

3dp xXn 3dp Xn

47



Under review as a conference paper at ICLR 2026

This means that

dn

K

1~ Attnf(
j=1

3dp xXn

K
Xp) - |fl1;ﬂ<'nj| ||oo S €0-

(D.33)

dpXn

3dp xXn

Similarly for @, by (D.31), when Hdj, < h < 2Hd),, we have

Eyw = a5 114,
——

and

Ay - Xy = 0-j-ay

dx1
X
_ L-gj—ay, (n—1)-gj-a,
P qj—dy, qi—dy, Qj—dy, ’
n
(3d+n)xn

where j € [2dp] \ [dr]-

For each j € [2dj] \ [dp], by Theorem D.1, there exists an H-head attention Attn

R3dr X1 gych that

. R(3d+n) Xn _y

3dp,
| Attnf/ (A7 - X,) = ™ gy, X oo < 6o,
3dpxXn 3dpxXn
for any ¢g > 0.
Then we construct AtthjQE in a way similar to Attnjl.%
Q o n(h) 4 . _ m(d+6ddy,+n)xn o
AttnjE(Z) = Attn; (45 - 2), (Z eR denotes any input)
where j € [2d] \ [dp] and h € {J +1,...,J + H}.
By Lemma D.3, Attn?ﬁ(Z) is an attention.
Thus
J+H
Attn?(2) = ) Attn -
h=J+1
is also an attention.
Thus, we have
3d h T
| Attn? (X,) — e*™ gy X [loo < €o.
3dh Xn 3dh Xn
This means that
2dp Odh Xn
> AtmP(X) — | Q |l < o (D.34)
j=dn+1 Odh Xmn
———
3dp Xn 3dpxXn

For V, with analogous construction to that of K and @), there exists an H-head attention Attn}/ :

RBd+n)xn _y R3dnXxn gych that

| Attn} (X,) —

(3dh) T
€j

Vi_2d, X [Joo < €0,

3dp xXn

for each j € [3dp] \ [2d}] and any ¢y > 0.

3dp xXn

48



Under review as a conference paper at ICLR 2026

This means that

3dp Odh,XTL
I At} (Xp) = | 0d,xn | oo < €. (D.35)
j=2dn+1 Vv
3dy, xn 3dp xn
Combining (D.33), (D.34) and (D.35), we have
K
[|Attnp, (Xp) — lQ] [loo
Vv
dp, K 2dp 04, xn 3dp
= Attnf(X,) - [Odhm + ) At (X,) - [ Q |+ D Attn(X,) -
j=1 dpxn j=dn+1 dj, xn j=2d,+1
< €. (D.36)
We define
K/
Q| = Attn,, (X,).
V/
——
3dh><n
Thus, (D.36) becomes
K’ K
[ [Q’] - lQ] oo < €0, (D.37)
% \%

3dh Xn Sdh Xn

Step 3: Single-Head Assembly for Emulated Map. Our goal in this part is to reconstruct the
attention mechanism

V’Softmaxs((K')"Q'), and VSoftmaxs((K)'Q),
from K',Q', V' and K,Q,V via Attn,.
In order to achieve this, we construct Attn, to be
Attng(Z) == [0, x2d, 1a,] Z - Softmaxs(([Ia, Odyx2d] Z) " [Odypxdn  Lan  Odpxdy] Z),

=Wy, s =Wk, s ::WQ,S

where Z € R34»X" denotes any input.

Thus, we have

dpXn
K
Attng( | Q)= _V Softmaxs((K)'Q), (D.38)
v ~— S/
dpXn nxn
3dp xXn
and
dp Xn
K
Attng(|Q'|) = V' Softmaxs((K')TQ"). (D.39)
v’ dpxn nxn
——
3dp xXn

49

Odh Xn
Odh Xn
|4

-



Under review as a conference paper at ICLR 2026

Step 4: Error Bound. From (D.38) and (D.39), we have

K’ K
Attng(|Q'|) — Attng (| Q)
4 \%
= V' -Softmaxz(K'" Q') — V -Softmaxs(K'Q) (By (D.39) and (D.38))
dpXn nxn dpxn T
= V’'Softmaxs(K'"T Q') — VSoftmaxs(K'" Q') + VSoftmaxs(K'" Q') — VSoftmaxs(K ' Q)
= (V' — V)Softmaxs(K'T Q") + V(Softmaxs(K'T Q") — Softmaxs (K ' Q)), (D.40)

and the last equality follows from the distributivity of matrix multiplication.

Then, (D.40) yields
K/

K
[[Attng(| Q") — Attng( [Q] )l oo
%4 1%

= ||(V' — V)Softmaxg (K’ Q") + V(Softmaxs (K" Q') — Softmaxs(K ' Q))||e
< |[(V! — V)Softmaxs (K" Q)| e + ||V (Softmaxs (K’ Q") — Softmaxs(K ' Q))|ls, (D.41)

:(I) :(II)

and the last inequality follows from the triangle inequality.

For term (1) in (D.41), since each column in Softmaxs(K’" Q') sums up to 1, then
(V' = V) Softmaxs(K'" Q). ;,
———

dpXn nx1

is a weighted sum of the columns in (V' — V).

Thus we have
(V" = V)Softmaxg(K'T Q). jllee < IV = Vl|se < o,

and the first inequality holds since the column average of (V' — V') has a maximum entry no greater
than the maximum entry among the original columns in (V' — V). The second inequality holds since
(D.37).

Then we get
(I) < €. (D.42)

Term (1) in (D.41) is
(IT) = ||V (Softmaxs(K'" Q') — Softmaxs(K ' Q))]|cc-
For simplicity of presentation, we define
AS = Softmaxg (K'"Q") - SoftmaXB(KTQ),
such that for each entry in (/7), we have

n
‘(VAS)ij‘ = | Z Vik(AS)kj| (By the definition of matrix multiplication)
k=1

n
< Z [Vike| - [(AS) ;] (By triangle inequality and |ab| = |a| - |b| for all a, b € R)
k=1

n

< Voo - [1AS]oo (By [Vik| < [|V[|oo and |[(AS)i;| < [ AS]|oc)
k=1

=n|[V]oc - [|AS] oo,

and this leads to
() <nf[V]oo - [|AS]|co- (D.43)

50



Under review as a conference paper at ICLR 2026

For each entry in AS, we have

[(AS); ;] (D.44)
= |(Softmaxg(K'" Q') — Softmaxs(K ' Q)); ]

| ePEQ) eBKi-Q; |
= — — . K!, Q. K;, Q; denote the i-th columnin K', Q’, K, Q

T v T )
- ‘ eﬁKl{'Q; eBKi-Qj N eBKi-Qj eBKi-Qj |

I D S T A A ST LT SRy

BK[ Q) _ oBK:-Q; 1 1

e i—e
< —— | + |PK Qi — — By triangle inequality

| Sy €9 - (22:1 PR Qi YL PR Qs I )

BK-Q] BK;-Q; no 8K, -Q

I PR T e T S D B D D! S Ll |

Soi_, PR Qs |Z?/:1 PELQ;

(By non-negativity of cxp()ncnliul)

70"
Shoy €K

n G BKyQ;
’ ’ ., _4 € K3 J
< 1 — PECQKRQ 1 — Z,;l—l (D.45)
s P Q)
=(I1-1) iy
=(11-2)
and the last inequality holds since
eﬁKi'Q; ) eBKiQj )
= s o <L < —mgrao <L
Yooy 7 2oy €0
To bound term (/7-1) in (D.45), we recall
K’ K
Q] = Q] ll < e,
|4 Vv

R
3dp xn 3dpXn

SO
| K" — K || < €0,
dpXn
||Q/_QHOO §60~
——
dp Xn
Let K/, Q}, K;, Q; denote the i-th column in K’, @', K, @, then we have
AKl = Kz/ - Kz HAKz”oo < €0,
S~~~ N——

dpx1 dpx1

AQ; = Qi — Qi [[AQifx < €.
~—~— ——

dp x1 dpx1

Thus, for term (/7-1) in (D.45), we have
(I1-1)
=1 —exp{B(Ki-Q; — K; - Q) }|
= [1 - exp{B(K; - Q; — (K; + AK;) - (Q; + AQ;))}
(By Ki = K; + AK; and Q} = Q; + AQ;)
=|1—exp{—B(K; - AQ,; + Q; - AK; + AK, - AQ,)},
(By K; - Q; — (Ki + AK,) - (Qi + AQ)) = —(K, - AQ; + Q; - AK, + AK; - AQ;))
and we know
K;-AQ; +Q; - AK; + AK; - AQ;

<dp - [ Killoo [ AQjlloo + dn - |Qj lloc | AK | oo + di - [[AK oo | AQj oo
(By a- b < dnal|o]|b]|cc for all a, b € R")

51



Under review as a conference paper at ICLR 2026

< 2dpBrgveo + dheg.

Thus, we have

(IT-1) < |1 — e~ P (2Broveotey)|

For term (17-2) in (D.45), we have
(I1-2)
ZZ:1 eBKi-Qj

ir=1°¢
=1- S iy e |
S PRy AR )@ +AQ)
- Sy e ‘
S PR QK AQ+Q, AR, +AK,-AQ,)

and for all 7’ in the denominator, we have

S Ky Qi+ dn - [|Kir ool AQj lloo + dn - Q]| o0 | AK lloo + di - | AK s [|oo | AQj | 0o

(BY [1Killoo; [|Qjllo0 < Brov and [AK;]|oo, [AQ; I < €0)

(D.46)

(By the definition of (11-2))

(By K}, = Ky + AKy and Q) = Q; + AQ;)

(By a-b < dp|al|e]|b]|oc for all a, b € RI")
< Ky - Qj+2d,Brqveo +dneg.  (By [|K oo, Qe < Brov and [[AK ||, [|AQ, |« < €0)

Thus,
(11-2)
|1 Z?’:l eBKi/‘Qj |
ZZ:l 6,8(](1./~Qj+Ki/~AQj+Qj~AKi/+AKi/‘AQj)
< |1 Z?’:l eBKi-Qj

- n 77; 1 eB(Ki/'Qj+2thKQV€0+dh,€g) |
}:Z =
S eBKiQ

— eﬁdh(ZBKQV60+E%) Zn; 1 e'BK’i/'Qj |
=

_ |1 _ 6_5dh(QBKQV€0+€g)|
b)

and the last equality holds since the common factor >, _, ePKiQi cancels out.

Combining (D.45), (D.46), and (D.47), we have
|(Softmaxs (K’ Q') — Softmaxs (K ' Q)); ;|
< 21— e*ﬁdh(QBKQV€0+€g)|
< 2‘1 _ e*ﬁdh(QBKQVEO+€o)|.
Thus for any 0 < €1 < 2, when ¢ satisfies
(- %)

0 < e <min{l,
0= { Bdn(2Brgv + 1)

}

we have

|(Softmaxg (K’ Q') — Softmaxs(K 'Q)); ;| < €.
From (D.43) and (D.48), we have

(1) < n|V][xllAS]le < nBrqver,

since ||V ||oo < Brgy and ||AS]|s < €1.
Combining (D.41) with (D.42) and (D.49) yields
K/
q

K

[| Attn,( ) — Attng( lQ] Moo < €0 +nBrgver.
\%4

52

A 2B - , Le2y . . ..
((1‘?‘”’(“51*‘3‘ €0<0) is independent of //)

(D.47)

(By requiring 0 < ep < '1)

(D.48)

(D.49)



Under review as a conference paper at ICLR 2026

When we take €p and €; to be infinitely small, the right-hand side tends to 0.
This completes the proof. O

D.6 PROOF OF THEOREM 4.2

Theorem D.6 (Theorem 4.2 Restate). Let X € R?*" be the input sequence, and let
Wk, Wgo,Wy € R"™ % be the weight matrices of the target attention. Assume B =
maX{HXHomHWKHoovHWQ”oovHWV”oo} and [[Wk X||oo, [[WoX|loo, [Wv X |leo < Brqv for
Brgv > 0. Then, for any ¢ > 0, there exists a single-head attention layer Attn, followed by a
multi-head attention layer with linear projections such that

3n V{/XT
[|Attng o (Z Attn; o Linear; ( WI% )) — Wy X Softmaxg (Wr X) T WoX) [|e < e
J=1 mi% nxn nxn

Proof. Follow our proof sketch in Appendix A.2, our proof consists of four conceptual steps.

Step 1: Encoding Weights into the Input. For clarity and simplicity, we define
ki = (Wg).; € RY,
g =(Wg).: €RY,
v = (Wyh).; € RY,
such that Wy, W, Wy writes out as
Wg=[k ke - ki, Wo=Ilnn g - @), Wy =[1 v - v,].

dxn dxn dxn

Then, we express the input as

XT xl 1‘2 RS xn
W ki ke - k
= " D.50
Wé @aoa@ o (D-50)
Wy v vzt vy
4dxn

where z;, k;, ¢; and v; are all d dimensional vectors for ¢ € [n].

Step 2: Multi-Head Approximation of K, (), V. For the simplicity of presentation, we define
K = X = X = .
WK B) Q WQ \ B) |4 WV X
nxd dxn nxd dxn nxd dxn

Writing Wi, Wg, and Wy, row-wise as

T T T
o it o
kq ) Uy

Wg=1|.1|, Wo=1|.|, Wy=1|_],
T T T
k In Up
nxd nxd nxd
and X =[z1 --- ], weexpress K, Q, and V entry-wise as

kizy kjizg - kjz,

koxy kgxg - kg,
= )

T T T
k,x1 kpz2 - k,xn

53



Under review as a conference paper at ICLR 2026

r. T T T
g1 1 gy T2 q; Tn
T T T
s T1 (y T2 qg Tn
Q= ;
T T T
1dn L1 4p T2 qpn Tn
vl v Ty v Tp
Vg T1 Vg T Vg Tp
V =
vlxy v Ty vl T,

Here k', qiT , and vZ-T identify the i-th row of K, ) and V, while x; identifies the j-th column.

K2

In this section, our goal is to approximate K, (), and V. Our strategy is to approximate K, (), and V'
row by row, and within each row, entry by entry. More precisely, for each ¢ € [n], we approximate

KX gl X, X,
by approximating the scalar products
klx;, ¢z, wvla;, forallj € [n],
and then collecting these approximations to form approximations of the full matrices K, (), and V.

To approximate each scalar k,” zj, q; z;, and v, x;, we first determine their joint range over all
i,j € [n]. Within this joint range, we construct a set of uniform-space grid points. Then, we
approximate each target entry k,” T4, q; Z;, or v, x; by an entry-specific weighted sum of these grid
points, where grid points closer to the target entry value receive larger weights. In this way, we
represent every entry by its own set of interpolation weights, while all approximations share the same
global grid.

We introduce our notation for the uniform grid points used in our interpolation scheme.

‘We recall
B = max (|| X||oo, Wk |loo, [Walloos [Wv o)

Interpolations.

Thus, for all 4, j € [n],

fd~B2§k;rxj,q;xj,v;xj <d- B (D51
Namely, [~dB?, dB?] contains all entries of K, (), and V.
Then, we take Ly := —dB? and Lp := dB? as the two endpoints of our interpolation and define for
i€ {0}U[P]
L P—i)L
L; = M’ (D.52)

P

where P is the number of interpolation steps (the number of equal divisions of [Lg, Lp]). The points
{L;}£_, form our uniform grid over the target range.

We use AL to denote the length of the interval between two neighboring grid points. We have

. 2
_Lp—Lo _2dB> D0.53)

AL : 5 5

Now we have all the ingredients needed to approximate each entry using a weighted sum. However,
the input,

X xl :L'Q ... :L’n
125 I P S
Wé q1 q2 0 On ’
Wy, v V2 o Up

4dxn

contains information from all rows in the target K, (), and V, but does not contain the grid points.
We need a mechanism to select a specific k;, g;, or v; (corresponding to one row of K, (), or V') and
to include the grid points for us.

54



Under review as a conference paper at ICLR 2026

To address this, we introduce row-specific linear transformations Linear;, where j € [3n], since we
have n rows for each of K, @), and V. Each Linear; serves two purposes: it incorporates the input
and the uniform grid points, and selects the k;, g;, or v; associated with index ¢ (corresponding to one
row of K, Q,or V).

For the clarity of presentation, we relabel these 37 linear transformations according to whether they
are responsible for K, Q, or V

LinearJK = Linear;, j € [n], (Responsible for K)
LinearJQ = Linear,,;, j € [n], (Responsible for Q)
Linear}/ = Linearg, 1, J € [n]. (D.54)

Later in the proof, we specify the explicit form of these Linear;.

So far, Linear; allows us to combine the input with the uniform grid points and to select the desired
ki, qi, or v;. The next step is to implement the entry-specific weighted sums to approximate the
entries of K, ), and V.

For this, we use a row-specific single-head attention: for each i € [n], we assign one head to
approximate k; X using the weighted sum, one head to approximate g, X in the same manner, and
one head to approximate v;” X in the same manner. Each such head operates token-wise: given its
designated row i, the head approximates all scalars k' 2}, ¢;' z;, or v, x; across j € [n].
Since each of K, (), and V has n rows and we use a single-head for each row, we use a total of 3n
heads to approximate K, ), and V. We use Attn; to label these 3n heads and j € [3n).
Again, for the clarity of presentation, we provide another equivalent way, as Attn;, to label these 3n
heads
K . ;

Attn}' = Attn;, j € [n],

Attnf = Attn,y;, j € [n],

Attn) = Attno,yj, J € [n]. (D.55)
Later in our proof, we provide the construction of these Attn; explicitly.

Now we are ready to approximate each of K, (7, and V. We approximate K first to demonstrate our
procedure and deal with () and V' in a similar manner later.

In-Context Calculation of K. First, we define the linear transformation LinearjK : Réddxn
R2d+3)x(P+1) attached before Attnf as:

« Odxd Odxd Odx2d
Linear’ (Z) = |0axa  Ia  Oax2a| Z [QLOe(.") 9Lie™ ... 2Lpe(»")}+
<~ J J J
03xd  Osxa 0O3x2q 4dxn
nx(P+1)
(2d+3) x4d
(Z € R*4X™ denotes any inpul)
Is Odaxa Oaxad O2dx (P+1)
Odxd Odxd Odx2d| Z [In 0’n><(P+1—”L)]+ M,y )
<~
O3xd  Osxd Oszx2d] 4dxn My,
nX(P+1) N ,
(2d+3)x4d (2d+3)x (P+1)
where My, My, are
My = [Lixn Oixpii-m), (D.56)
1x(P+1)
| Lo Li - Lp
2x (P+1)

55



Under review as a conference paper at ICLR 2026

The Linear’ layer takes the input [XT Wi Wq Wy| " and outputs in the following way:

Lineaij( %T )

v
Odxd  Odxd Odx2d zi z; zn
= |Oaxa  Ia  Odxad o [2Loe§-") 2Lle§-") e 2Lpe§.")} +
O3xd  Osxa Ozxzal |10 9 dn
X< : Lv1 V2 - Up nx(P+1)
(2d43)x4d o
[ Ia Oixa Odx2a ii i; g" O24x (P+1)
Odxd Odaxa Odx2d o g q" [In Oux(pi1-my] +| M (By (D.50))
[03xd  O3xd  O3x24 (o1 va o U < (P4 1) My
(2d+3) x4d prem (2d43)x (P+1)
[Ogx1 Odax1 -+ Ogx1]
= |k ky ok {2Loe§"> 2Lyl ... 2Lp€§»n)} +
103x1 O3x1 -+ O3x1]
nx(P+1)
(2d+3)xn
[ 1 Ty o Ty ] O24x (P+1)
Oax1 Oax1 -+ Oaxi| [In Opx(py1i—n)| + 1
103x1 O3x1 -+ 0O3x1] P My,
(2d+3)xn (2d43)x (P+1)
(By selecting k; and x; with I for all © € {n_)
[O0dx1 Odax1 -+ Ogx1 T o o+ xp o Ogxr o0 Ogxa
2Lok; 2L1k; -+ 2Lpkj| 4+ |Ogx1 Oax1 -+ Ogxi Ogx1 -+ Ogxi|+
L O3x1 O3x1 -+ 0O3x1 O3x1 0O3x1 -+ O3x1 O3x1 --- Oszx1
(2d+3)x (P+1) (2d+3)x (P+1)
(By selecting k; with ('{/”'))
[024%x1  O2ax1 -+ O2ax1  O2gx1 -+ O2gx1
1 1 . 1 0 .. 0
L02 L12 . L”2_1 L”2 . LP2
|-y Ly - —Lp, —-Ly - —Lp
(2d+3) x (P+1)
(By the definition of My and M ;i.e., (D.56) and (D.57))
r xl mz .« . xn Od “ .. Od
9Lok; 2Lik; - 2Ln.1k; 2Lnk; - 2Lpk;
1 1 cee 1 0 S 0 . (D.58)
Lo Li - L, L, - Lp
e

(2d+3) x (P+1)

Next, we construct Attn]K s R(2d+3)x(P+1) _y R3nXn (5 he

K;j K;j K;j K;j
Attnj (D) == W7D - Softmaxg (W JD)TW@ ‘D). W57,

—— ——
3nx(P+1) (P+1)x (P+1) (P+1)xn
where D € R(24+3)x(P+1) denotes any input, and
Kij . |Oaxa  Ia Odax1 Oax1 Oaxi
Ve = oa 0 0 0 1) B39

(d+1)x(2d+3)

56



Under review as a conference paper at ICLR 2026

Wi {Id Odxa  Odx1 Odaxi Odxi

o Otxd O1xa 1 0 0] (D.60)
(d+1)X (2d+3)
WET = e [01x2a1y) 1 0], (D.61)
~—~—
3nx1 1x(2d+3)
whi = . D.62
o 0(P+1 n)><n:| ( )
T rroen
We define the KK of Attn to be:
X
>K K;j . K WI—(F
Kj* =Wz Linear} ( Wé )
Wy,
T ) e T Ve Od
~ 10axa  Ig Ogx1 Ogx1 Ogxi 2Loky 2Lk oo 2Lnaky oo 2Lpk
= 1o 0 0 0 E 1 1 1 0
1xd 1xd Ly Ly L1 Lp
(d+1)x (2d+3) -y -L¥ - Ly, - —Lp
(2d43)x (P+1)
(By (D.59) and (D.SS))
9Lok; 2Lik; -+ 2Ln_ik; -+ 2kaj]
_ , D.63
{—L% —L% _Li1 _L% ( )
(d+1)X(P+1)

and the last equality holds since I, selects the 2L;k; row, and 1 selects the —L? row where i €

{oyupl.
We define the QK of Attn to be:

X
-
NK . K : K WK
Qj = W@ 7 - Linear;’ ( Wé )
Wy
a;‘l x2 ... mn DY Od
2Logk; 2L1k; --- 2L,_1k; --- 2Lpk;
_ | o Oaxa Oaxi Oaxi Odgxi| f] 11] 117 (1)3]
Oixa O1xa 1 0 0 Lo L, -+ Ln, - Lp
(d+1)% (2d+3) - -3 - -L:, - -I%
(2d+3)x (P+1)
(By (D.60) and (D.58))
_ |71 22 o Zn Ogx(Pgi-n) D64
{1 T 1 Oigpr1-my|’ D64
(d+1)x (P+1)

and the last equality holds since I selects the x; row where 7 € [n], and 1 selects the 1, row.

We define the VK of Attn to be:

X
~ y Wi
VjK = Wé{’j -Lineaij( ng )
Wy

57



Under review as a conference paper at ICLR 2026

T T2 N Tn Od N Od
. 2Lok; 2L1k; --- 2L,_1k; 2Lnk; --- 2Lpk;
= e;‘ Y [Oixeasy 1 0| 1 L 1 o o0
~ Lo Ly s Lp_y L, T Lp
3nx1 1x(2d+3) -z - ... -r2, -1} ... -I3
(2d+3)x (P+1)
(By (D.61) and (D.58))
_ egi’m) (Lo Ly -+ L,y L, --- Lpl, (D.65)
3nx1 1x(P+1)

and the last equality holds since the 1 selects the L, row where i € {0} U [P].
Combining the results of K K and QX we calculate the Softmaxs((K K )T@f ) in Attn} as

Softmaxg((K/)T Q)

T
2Lok; 2L1k; --- 2L, _1k; --- 2Lpk; r1 Ty -+ xp O o
= Softmaxg( _%%] _i%] o —L21 13 _Efpj} { 11 12 1 ()ﬁﬁiiﬁii
(P4+1)x (d+1) . (d+1)x (P+1)
(By the definition of I\'v,/( and (A)vf(: i.e. (D.63) and (D.64)>
[2Lok] —L(Q)
2L1kjr LIy @ o oa Odx (P41 =
= Softmaxg( . ) 11 ... 1" OliEPil::;] ) (By the transpose of K )
2Lpk) —L% (d+1)x(P+1)
(P+1)x(d+1)
[ 2L0k—r$1 — L(z) 2L0kT{E2 - Lg ce 2L0kT$n - Lg 0dx(P+1—n)
_ Softmaxﬁ( 2L1k'j T, — L% 2L1kj T — L% s 2L1kj Ty — L% 0d><(P+17n)
2Lpkjay — Ly 2Lpkjxy— L3 -+ 2Lpk]xn —Lp  Ogx(pii—n)
(P4+1)x(P+1)
(By matrix multiplicution)
_7(kTI1 — L0)2 + (kTI1)2 ce 7(k;f£n - L0)2 + (k‘TIn)Q de(p+1_n)
Soft ( —(kj Ty — Ll)2 + (k] x1)2 —( b Tp — L1)2 + (k] l’n)2 0d><(P+1—n)
= Softmaxg . . .
|— (k21— Lp)? 4+ (kj21)* -+ —(kj@n — Lp)® + (k] 21)*  Ogx(p41-n)
(P+1)x(P+1)
(21‘,1;) Tm — L2 = —(kj Tm — L)%+ (i\'_/‘ 2m)? where i € {0} U [Pland m € [1[)
-—(kaL‘l — Lo)z s —(kaL'n - Lo)z 0d><(P+1—n)
—(kj oy —L1)* - —(kjzn—L1)* Ogx(Pti-n
= Softmaxg( ’ ) ’ ) x ) ) ), (D.66)
|—(kj @1 —Lp)? -+ —(kfxn—Lp)* Ogx(pii-n)

(P+1)x(P+1)
and the last line holds since the following property of Softmaxg
Softmaxg(v) = Softmaxs(v + C - 1(py1)x1),
for any vector v € RP*! and C € R.
From (D.66), we have
SoftmaXﬁ((I?jK)T@jK) . Wg;j

58



Under review as a conference paper at ICLR 2026

-—(k‘j:wl —Lo)? .- —(kl-Trmn —Lo)?  Ogx(P—nt1)
_(kj I O j Tn — Ly)? Odx (P—n+1) I,
= Softmaxg( ) . . ) 0
: : : (P+1—n)xn
_—(ijxl —Lp)* .- —(ijfn —Lp)? Ogx(P—nt1) (P+1)xn
(P+1)x(P+1)
-—(kzr—rl‘l — L0)2 e —(kT.’En — L0)2
—(k‘j xl—L1)2 —(]{)j J}n—Ll)Z
= Softmaxg( ) ) ), (D.67)
_—(ijxl —Lp)2 —(k;l‘n —LP)2
(P+1)xn

where the last line follows from the column-wise nature of the Softmaxg() function.
From (D.67), we have
e B(Lr—k] wc)?

ZP —B(Ls—k]xc)?’

(SoftmaxB((I?jK)T@jK) : Wg;j)r,c = .
s=0

for every r € {0} U [P] and ¢ € [n].
Thus, for each column in (D.67), we have

T A
(Softmaxs((K;*) Qj°) W5 e = Z
r=0

(P+1)
SN e e (D.68)

(P+1)x1

Combining I7jK and (Softmaxa((f(f)—r@f) - Wg;j):,c, we obtain

V}K : (SoftmaxB((KJK)TQJK) : Wg;j);,c

(3n) P o B(Lr—k] ) (P41)
= ej [Lo L1 Ln,1 Ln Lp] E P 7,8(L57k7:vc)2 €T+1
~~ r=0 Zs:o € 7
3nx1 1x(P+1)

(P+1)x1
(By (D.65) and (D.68))

T, N2
e—B(L,«—k:j Tc)

_ Bn) (P+1)
—G s g e D Do L Loy
angy =0 &=s=0 1x(P+1) (P+1)x1
(By the distributivity of matrix multiplication)
—B(Lr—k; z)?
. (3m) € ’ (P+1) \1a e S 1
=€ P AL ke L, (e,41  selects L, for every r € {0} U [P])
~~~r=0 Zs:() € !
3nx1
scalar
P —B(Lr—k] x.)?
e ; (3n)
= Z Lye; (D.69)
P _6 Ls_k—-r ‘e 2 " ’
70 2s=0 € ( s o)

for every c € [n].
Hence,
VIS - (Softmaxs(KI)TQK) W), .,
)

is a weighted average of the vectors LT€§3n , with weights depending on S and the distance between

L, and k] ..

59



Under review as a conference paper at ICLR 2026

We recall: XA/]-K - (Softmaxg (K K )T@f ) Wg 7). . gives the c-th column of Attn’. Therefore,

each column of AtthK stores a weighted sum as an approximator for each entry in ijX .
We show that (D.69) is close to k. x:

7 > A 17 3n

||V-K - (Softmax (KX)TQK) - W) . — bl ae - ™o

J
o= B(Lr—k] ) (3n) . (3n)
n n
= Z [RETSENE L, e — kj Te-e; Iloo (By (D.69))
=0 scalar
scalar
P —B(L,—k] z.)?
€ ’ T 3
= ||(Z P e_B(LS_kJTxC)Q Lr - kj CL‘C) . e; n)HOO
r=0 s=0
k}TJL’C)Q »
= ‘ Z —ﬂ(Lé—ka B L, k‘;rxc| (We have one non-zero entry in e{}‘j”))
_ T . 2 P —B(Ly —kT . 2
Y - TR
e B(Ls —kjxc)? ZP e 8L s—k]xc)? ¢
s=0
7 —B( —k] x.)? g — 7‘1:.\2 o
(By (r_ge Pk ve)y (g Phemhy wel™y — 1)
Lr—k wc)2
-
- ‘Z o B(Ls—k]zc) (Lr = kj )|
—B(Ly—k] x.)? —B(Lr—k] x.)*
o (& J T e J T
= Z 5P e (b k) + 3 et (L~ k)
s=0 s=0

r:|LTv7k:]Ta:c\<AL
(By dividing the L, into two groups: one within AL away from k; x., one at least AL away from /;,-‘ (L‘(»)

r:|Lr7k;rzc\ZAL

e B(Lr—k]zc)? o B(Lr—k] z0)?

T T
‘ Z Zf=0 efﬁ(Lsfk;.rxc)z (Lr - k'j IC)‘ + | Z ZSP . efﬁ(l‘s*k;xc)Q (LT — ]{1] xc)|

r:|Lr—k;xc\<AL r:|Lr—k;rxc\2AL
(By triangle inequality )

IN

_B(LT_kTwc)Z _/B(Lr_kTZC)Q
e J T e 3 T
< Z “B(La—kT z)? Ly — kj @e| + Z P B(L.—k  20)? Ly = kj |,
| Ly —k] zc|<AL Es:Oe 7| Ly—k] xe|>AL 25:06 J
=(I) =(I1)

(D.70)

and the last inequality holds due to the triangle inequality and the non-negativity of the exponential
function.

For term (I) in (D.70), we have

(1)
- ¥

—B(
'r:|LT7k;rzc\<AL Zs:O €

T 2
efﬁ(erk]‘ Ic) L
Ls—k;wc)"’ | r

— kJTxC| (By the definition of term (1) in (D.70))

e BLr—kj zc)?
< Z ZP efﬁ(Lsfk;rxc)"‘ AL (In this group of L, |L, — k'_,T;L'(.\ < AL)
i Lr—k] me| <AL £~4s=0
<AL, D.71)
and the last inequality holds since
—B(Lr—k] zc)*

Z'r:|L,,.7k;rzc|<AL €

<1. The numerator is part of the denominator
P e Ak e - ( l )
s=0

60



Under review as a conference paper at ICLR 2026

For term (I7) in (D.70), we have
(I1)
e B(Lr—k] wc)?

s=

r:|Lr7k]Tzc\2AL

i ‘LT - k;rxc| (By the definition of term (1) in (D.70))

e_B(Lr—k';rzc)z

< 2dB*
- Z ZP e*B(Lsfk‘;rxc)z
r:|Lr—k;racc\2AL s=0
(By (D.51) and (D.52), we have |L, — k; x| < 2dB?)
—BAL?
e
< 2dB?
= Z ZP e*B(Lsfijmc)z
r:|LT—k;mC\ZAL s=0
(By |L, — k; x| > AL, we have e i —Fi = ¥ <e ‘“"2)
—BAL?
e
< 2dB?
N Z max, {e P(Fe k] 2e)?y
r:|LT7k;rzc\2AL S
(Wc only keep the contribution from the nearest L to /ﬂ'JT:z:(.)
2
< 3 R ap? (D.72)
= BAL2 ) )
4

v Lo—k] @[ >AL €
and the last inequality holds since, by our construction of L, in (D.52), the distance from k]T T to
the nearest L is at most %. That is,

AL
|Ls, — k;rzc| < - for sp=argmin|Ls — k;rxc|
S

From (D.72), we have
S e i9ALgp? < pemi0AL 9432, (D.73)
|L,—k] ze|>AL

and the last inequality holds since, by our construction of L, in (D.52), at most P points satisfy
|L, — ij x| > AL. This P-point scenario occurs when the value of ijxc equals one of the L, grid
points.

Combining (D.70), (D.71), and (D.73), we have:
UK PEK\TAK K;j T (3n) -3pAL? 2
IV;* - (Softmaxs((K;*) Q5') - W5+ )ie —kj zc e o < AL +Pe 2dB2.

=(a) i=(b)
(D.74)
For term (a) in (D.74), we recall
2
AL — QdPB ) (By the definition of AL. i.e., (D.53))
To bound AL, we choose
2
P> 4dB 7
€1
for any €; > 0, such that
AL< S
2

For term (b) in (D.74), we set

4 1 4dB?%P
> — 1
Az 3 (AL)? n( €1 )’

61



Under review as a conference paper at ICLR 2026

such that

Pe—1PAL 942 < %1

Thus, from (D.74), we have
IV - (Softmaxs (KX)TQE) - WE?). o — k] we - el |loo < AL+ Pem 1721 2452
~——

scalar  3nx1

€1 €1
< =4 =
5 +
= €1,
and this leads to
i > A K;j 3n
IV - Softmaxs (Kf)TQK) - WA — e kT X || < e (D.75)
—~—

3nx1l 1xn

‘We recall
VJ.K . SoftmaxB((K]K)TQf) : Wé{”
X

X X
T T
K;jr - K w K;jr - K w T K;jr K w
=Wg ’Linear;" ( Wg ) - Softmaxs (W ’Linear;" ( Wg ) W@ ?Linear;" ( Wg ) - W5
Wy Wy AU
(By the definition of K*, @, and V;*)
X
K K WT ’
= Attnj o Linear; ( Wg ). (By the definition of Attn}")
WV

Thus, we write (D.75) as

X
WT
||Attan o Lineaij( WKF ) — eéS") ~I<;;FX lloo < e,
~—~—
WV 3nx1l 1xn
and we sum over the index j to obtain the approximation across rows
X
n . s K
I ZAttnj o Linear;" ( WKF )= | Onxn| Jloo < e, (D.76)
j=1 OnXTL
Wy

for any €; > 0.

In-Context Calculation of () and V. We approximate () and V' using the same procedure as that
of K.

We start with Q.

Again, we define Linear?2 preceding Attn?2 first. We construct Linear? similarly to Linearf . The

only difference is the position of the identity I; in the first term. Explicitly,

[Odxd  Odxd Odxa Oaxd

Linear?(Z) = |Odxa Oaxa la Oaxa| Z {2Loe§"> el 2Lpe§n)}+
_03><d O3><d O3><d 03><d 4dxn
nx(P+1)
(2d+3)x4d
[ Ia Oaxa Oaxo2d O2ax (P+1)
Oaxd Odaxd Oax2da| Z  [In Onx(pi-m)] + M,y
O3xa  Osxa  Ozx2dl 44 My,
_ xn nX(P+1) N ,
(2d+3) x 4d (2d+3)x (P+1)



Under review as a conference paper at ICLR 2026

Linear? takes (X1 Wx Wy Wy] " as input and outputs:

x T Ty - T, 04 --- 0Oy

o, Wi 2Loq; 2Liq; -+ 2Lp_1q; 2Lng; -+ 2Lpg;
Linear 7 ( Wf-f— )= 1 1 1 0 0
WQF Lo Li - L, L, --- Lp

1% -z - ... -2, -12 ... -I?

Next, we construct Attn? : R2A+3)X(PH1) _y R3nX71 (4 he

Attn? (D) == W'D .softmaxﬁ((wg%jD)ng;jD). w2
N—— ——
3nx(P+1) (P4+1)x (P+1) (P+1)xn

where D € R(24+3)x(P+1) denotes any input, and

Wi ::WE;j:{ded Is 0dx1 Oaxa del]
K )

K O1xd  O1xd 0 0 1
(d+1)x (2d+3)
wQi — ki — | fa Oaxa Oaxi Oaxi Oaxi
Q Q O1xa O1xgq 1 0 0 |’
(d+1)x (2d+3)
W7 = el O1xa Oixa 0 1 0],
~—~
3nx1 1x(2d+3)
i » I
WQ’J = /{(’j = n .
o o |:0(P+1—n)><n:|
(P+1)xn
We define the IA{JQ of A‘ctnjci2 to be
X
-
70 _ w1 Q| Wi |y _ |2Log; 2Lvg; -+ 2Lyp_1q; -+ 2Lpg;
Ky = Wf{ Linear; ( Wé )= {_L(Q) - T T S (D.77)
Wy (d+1)x (P+1)
We define the @? of Attn? to be
X
~ i WL Ty Ty - xy, O ,
Q._ w1, Q K|y_ |71 2 n  Ydx(P+1-n)
Qj =Wz - Linear] ( WQ?F ) [1 1 1 Oiipram| (D.78)
Wy (d+1)x (P+1)
We define the ‘A/]Q of Attnj-2 to be
X
P2 W Linear?(|VE ) = e 1, L L L L D.79
i =Wy 1nearj( W )_enJrj[O 1 n—1 n P]- (D.79)
o Rt
WV 3nx1 1x(P+1)
Then, by going through the same calculations as those of K, we have
X
n WT Onxn
I ZAttn]iQ o Linear?( WKF )= | @ |l <er. (D.80)
j=1 W‘Q/r nxn

63



Under review as a conference paper at ICLR 2026

To approximate V', we define

v [Odxd  Odxd Odxd Odxd
Linear; (Z) == |0dxa Oaxd Odxa Ia Z [QLOS(”) 2L1@(7L) ... 2Lpe(<”)} T
< J J J
[03xa  O3xd  Osxa  Osxdl 4axn
nx(P+1)
(2d+3) x4d
[ la Oaxa Odx2d O2ax (P+1)
Oaxa Oaxda Odax2a| Z  [In Onx(pii—n)]+ M
<~
[03xd  O3xa  O3x2d] adxn My,
nx(P+1) N .
(2d+3) x4d (2d+3) x (P+1)
Linear}/ outputs in a similar manner as LinearJK :
ml xz DY xn Od DY Od
2L01)j 2L11}j ce 2Ln_1’t}j 2Ln’Uj cee 2LP’Uj
Linear) (Z) = | 1 o 1 0o - 0
Lo Iy A L, v Lp
—L2 -2 ... L% -L: ... -I%

Next, we construct Attny s RRA+3)X(PH1) _y R3nX71 (g e

Vii Vi Vig Vi

Attny = WZD ~Softmax5((WRJD)TW@ ‘D) Wz,
N—_—— N——

3nx(P+1) (P+1)x(P+1) (P+1)xn

where D € R(24+3)x(P+1) denotes any input, and

Vii — 1K _ |Odxa  da Odgx1 Ogxi  Ogxi
We" =Wk —[olxd Oa 0 0 1]

(d+1)x (2d+3)
Vi _ ki _ | da Oaxa Oaxi Odx1 Oaxi
) Oixa Oixqg 1 0 0]

(d+1) x (2d+3)

Vi = es) [01xa O1xa 0 1 0],
——

3nx1 1% (2d+3)

» » I
WY’J = WK = n ]
o o 0(P+1—n)><n

(P+1)xn
We define the IA(JV to be
X
Sy Vi v v We |y [2Lov; 2Lyv; -+ 2L, 1v; oo 2Lpu,
Ky =W - Linear; ( Wé )= {_L(Q) 7 S —L%]' (D.81)
Wy (d+1) x (P+1)
We define the @}/ to be
X
QY = W9 - Linear! % )= [ﬁl T2 o 81553113] (D.82)
Wy (d+1)x (P+1)

64



Under review as a conference paper at ICLR 2026

We define the XA/]»V to be

X
SV Vi 1o v | Wi (3n)
V= o ~L1nearj( Wi ):62n+j[L0 Ly --- L,y L, --- Lp]. (D.83)
T
WV 3nx1 1x(P+1)

Similarly, by going through the same calculations as those of K, we have

X 0
n T nxn
I> " Attn] o Linear} ( %Kr ) = | Onsen | oo < €1 (D.84)
=1 4
LVV

Then, by combining (D.76), (D.80), and (D.84), we have
X

n T Onxn
+ Attn]QOLinear?( WKr ) — [ Q

n T K
I ZAttnf o LinearJK( %gr ) — [8an Wc% . +
j=1 nxn j=1 nxn
Wy Wy
X
n T Onxn
ZAttn}/ OLinear;/( %I§ ) — [O%n] loo < €.
j=1 Wﬁ—

As previously stated in (D.54), Linearf ,Linearin and Linear}/ denote Linear;, Linear,; and

Linears, 1 ; respectively. Also, as in (D.55), Attan , Attn? and Attn;/ denote Attn;, Attn,; and
Attngn_;'_j.

Thus, we have

3n WT K
I ZAttnj o Linear; ( WKF ) — ‘C; loo < €. (D.85)
,':1
! Wy ——
3nxn
We define
K/ 3n I/Ii(—r
Q;] = Z Attn; o Linear; ( WKr )s
v j=1
Wy
such that (D.85) becomes
K’ K
[ [Q’ — Q] oo < 1. (D.86)
14 \%4

Step 3: Single-Head Assembly of the Attention Output. Our goal in this part is to reconstruct the
attention mechanism

V'Softmaxs((K')TQ'), and VSoftmaxs((K)'Q),
from K',Q', V' and K,Q,V via Attn,.

To achieve the reconstruction of attention mechanisms, we build Attn, as
Attng(Z) = [Opx2n  In] Z - Softmaxs(([In  Onx2n] Z) " [Onxn In  Onxn] Z),

where Z € R3"X™ denotes any input.

65



Under review as a conference paper at ICLR 2026

Then, we have

nxn
K
Attng(|Q )=V Softmaxﬁ((K)TQ),
V nxn
nxn
3nxXn
and
nxn
K/
Attng (| Q") =V’ Softmax[g((K’)TQ/).
3 nxn
nXxn

Step 4: Error Bound From the results of Step 3, we have

K’ K
Attng(| Q') — Attng(| Q)
Vv’ Vv

= V'Softmaxs(K'"T Q') — VSoftmaxs(K ' Q)
= V’'Softmaxg(K'"T Q') — VSoftmaxs(K'" Q') + VSoftmaxs (K" Q') — VSoftmaxs(K ' Q)
= (V' — V)Softmaxs(K'T Q') + V(Softmaxs(K'T Q') — Softmaxs (K ' Q)).
Thus, we have
K

[[Attng(| Q'
V/

K
) — Attng( [Q‘| Moo
14

= ||(V' — V)Softmaxg (K’ Q") + V(Softmaxs(K'T Q') — Softmaxs(K ' Q))||e
< |[(V! = V)Softmaxs (KT Q)| e + ||V (Softmaxs (K’ Q") — Softmaxs(K ' Q))|s, (D.87)

i=(A) =(B)

and the last inequality follows from the triangle inequality.
For term (A) in (D.87), since each column in Softmaxz (K’ Q’) sums up to 1, then for each column
of (A),

(V' — V) Softmaxz(K'T Q). ;,

——

nxn nxl1

is a weighted sum of the columns from (V' — V).

Then, we have
(V' — V)Softmaxs(K'TQ'). ;
and the first inequality holds since the column average of (V’ — V') has a maximum entry no greater

than the maximum entry among the original columns in (V' — V). The second inequality holds since
(D.86). This conclusion holds for every column in term (A), so we obtain

(4) < er. (D.88)

K>S|H//—'V”m‘<61

Term (B) in (D.87) is
(B) = ||V (Softmaxs(K'" Q") — Softmaxs(K ' Q))sc-
For the simplicity of presentation, we define
AS = Softmaxz(K'" Q') — Softmaxs(K ' Q),

66



Under review as a conference paper at ICLR 2026

such that for each entry in (B), we have

n
(VAS);| = | Z Vik (AS) k5] (By the definition of matrix multiplication)
kn 1
< Z [Vik| - [(AS) ;] (By triangle inequality and |ab| = |a| - |b| for all a, b € R)
k=1
n
<D Vo - [AS]o (By [Vik| < [[V]loo and [(AS) ;] < |AS]|uc)
k=1

=n[|V]eo - [|AS]loo,
and this leads to

(B) <0Vl - |AS][oo- (D.89)
For each entry in AS, we have
[(AS)i4]
= |(Softmaxs(K'T Q") — Softmaxs(K ' Q)); ]
_‘ BBK;Q; eﬁKi'Qj | K O K. C e - the i-th col n K. 0. K.C
Z:L/:l R, — Z?El K. Q; (K7, Qi Ki, Q: denote the i-th column in K', Q, K, 2)
BK;-Qj BK;-Q; BK;-Qj BK;-Qj
(A K2 J (A J € J e J
- 7 7 7 7 + 7 7 ,
| PDIRE D SRR D DERY el D DA R |
BE;-Q; _ ,BKi-Qj
el —e g 1 1
<| —— | + |ePKQi( T — -)| (By triangle inequality)
ooy € Yoiy Dy e
BK[-Q" BKi-Q; S PR Qs
e J OO e J 11 €
= g1 - LT | SEEL e —
Zi’:l 6’3 i QJ Zi’:l ePK-Q; Zi’:l 63 i Q,
(By non-negativity of exponemiul)
< |1 - PR HLQ| y - Zerm O eiiZ k (D.90)
n !, /A .
=(B-1) 2o "
=(B-2)
and the last inequality holds since
eﬁKi'Q} eBKi-Qj
sk, < b s, <L
z:yzle ity }:Wzle il

To bound term (B-1) in (D.90), we recall

K’ K
H [Q/] - lQ‘| ||oo S €1,
V! \%4

—— =~

3nxn 3nxn
SO
1K — K| <e,
nxn
1Q" = Qllso < €1
——
nxn

Let K/, Q}, K;, Q; denote the i-th column in K’, Q’, K, @, then we have
——

~—~—~

nx1 nx1

AQi = Qi —Qi, [|AQillw < 1.
~—~— ——

nx1 nxl1

67



Under review as a conference paper at ICLR 2026

Thus, for term (B-1) in (D.90), we have
(B-1)
=1 —exp{B(K;-Q; — K]-Q))}|
=[1—exp{B(K; - Q; — (Ki + AK;) - (Qj + AQy))}H
(By K=K, +AK;and Q; = Q; + AQ,)
=1 —exp{—B(K; - AQ; + Q; - AK; + AK; - AQj)}H,
(By K; - (2, — ([&"; + A]&,) . ((2, =+ A(J/) = *(1{,‘, . A(g, + (2, -AK; +AK; - 3(21))
and we know
Ki-AQj+Q; - AK; + AK; - AQ;
<n- | Killol[AQjlloo + 1 Q]| [AK [loo + 1 - [AK ||oo[|AQ; || oo
(By a- b < nflal|s||bl|es forall a, b € R™)

< 2nBkqve +nel. (B [ Killoe, Qs 1o < Brav and | AK[|uo, [AQ; oo < 1)

Thus, we have

(B-1) < |1 — e #r@Braveatd)| (D.91)
For term (B-2) in (D.90), we have
(B-2)
7_1/ BK-Q;
=|1- ZL,J (By the definition of (B-2))
275 leﬁKi’.Qj
ir=
- 22:1 el By K/, = K AK; and Q' = AC
== s Ak @ aa) | (By Fy = Ko o+ Ay and Q1 = Qi + AQ1)
T PKSQ
_ _ =
=1 S PRy QK AQ QAR AR AQ;) k
/=

and for all 7’ in the denominator, we have

< Ki - Qi+ 1 1Ko o |AQs oo + 1 - Qs loc |AK oo + 1+ [ AK o |AQs oo
(By a-b < nllalles 0]l forall a, b € R")

<Ky - Qj+2nBgqver +nel.  (By [Killoo, [Qjllee < Brav and [|AK; [|oo, [|AQ,|o0 < €1)
Thus,

(B-2)
g 9
— _ =
= ij L eBK Qi+ Ky -AQ;+Q;-AK, +AK,; - AQj) |
i'=
<1 ZZ:I eBKi"Qj
- | o 2321 eB(Ki/-QjJrQ’I’LBKQvelJrne?) |
7_1 BKU‘QJ' ) 5
=1 D=1 (eP2Brqvertel) js independent of ')

 eBn(2Brqverted) S ePKQ |
=|1- 6—571(2131«9\/61-*-6?)|7 (D.92)

and the last equality holds since the common factor Z?Zl ePKiQi cancels out.

Combining (D.90), (D.91), and (D.92), we have

|(Softmaxs (K’ Q') — Softmaxg (K ' Q)|
<21- e*ﬁn(QBKQVEIJFE%”

<201 - e—,@n(2BKqu+61)|. (By requiring 0 < €1 < 1)

68



Under review as a conference paper at ICLR 2026

Thus, for any 0 < €y < 2, when ¢; satisfies

“ln(1- %)

0<e <min{l, —————
b= { 6n(2BKQv+1)

2

we have
|(Softmaxs(K'T Q') — Softmaxs (K ' Q))i ;| < €o- (D.93)
From (D.89) and (D.93), we have
(B) < n||V]|oo||AS|l 0o < nBrgveo, (D.94)

since ||V ||oo < Brgv and ||AS|s < €.

Combining (D.87), (D.88) and (D.94) yields

K’ K
|Attns (| Q' |) — Attng (| Q |)|leo < €1 + nBrgveo-
v’ |4

When we take €p and €; to be infinitely small, the right-hand side tends to 0.
This completes the proof. O

D.7 PROOF OF COROLLARY 4.2.1

Theorem D.7 (Restate of Corollary 4.2.1: In-Context Emulation of Statistical Methods). Let A
denote the set of all the in-context algorithms that a single-layer attention is able to approximate. For
an a € A (that is, a specific algorithm), let Wi, W§&, Wy, denote the weights of the attention that
implements this algorithm. For any € > 0 and any finite set .Aq € A, there exists a 2-layer attention
Attn o Attn,, such that
3n X

| ZAttns o Attn; o Linear; <[W“}) —a(X)|leo <€ a€ A,

j=1
where W is the W defined as Definition 4.2 using Wi, W§, Wy.

Proof. Without loss of generality, assume all Wi, W§, Wy to be of the same hidden dimension
since we are always able to pad them to the same size. According to Theorem 4.2, there exists a
network 37, Attn, o Attn; o Linear; that approximate a(X) with an error no larger than ¢ > 0
when given input of the form:

X

weT
aT

wir
14

Then for a set of a € Ay, define P, := maxge 4, Pe(a).

By Theorem 4.2, there exists a network consisting of a self-attention followed by a multi-head
attention with a linear layer and parameter P equals to P,,, such that for any a € Aj, we have

X
3n weT
I ZAttns o Attn; o Linear; W{‘{T —a(X)]|eo <€ a€ A
=1 WgT
This completes the proof. O

69



Under review as a conference paper at ICLR 2026

E IN-CONTEXT APPLICATION OF STATISTICAL METHODS BY MODERN
HOPFIELD NETWORK

Definition E.1 (Modern Hopfield Network). Define Y = (y1, -+ ,yn)' € R%*¥ as the raw

stored pattern, R = (r1,--- ,75)" € RfrX5 ag the raw state pattern, and W € R4 Wy €
R¥¥dy T}y, € R %4 a5 the projection matrices. A Hopfield layer Hopfield is defined as:
dX N
T dy xS
Hopfield(R; Y, Wg, Wk, Wy ) := Wy WgY Softmax(8(WkY)' WgR) € R*™*~,  (E.1)
N~~~ —_——————
dy, Xd NxS

where [ is a temperature parameter.
With K € RIxN denoting WY, Q € R4xS denoting WoR and V' € Rw XN denoting Wy, WY,
(E.1) writes out as:

Hopfield(R; Y, W, Wi, Wy/) := VSoftmax(8 - K Q) € R%*5,

Theorem E.1. Let Z = [21, 22, -+ , 2,] € R¥*™ denote the input from a compact input domain.
For any linear transformation /(2) = a2z + b : R? — R, and any continuous function f : R — R?
where o is the output dimension, there exists a Hopfield network Hopfield such that

|Hopfield(Z) — [f(i(z1)) f(l(22)) --- f(l(za))]lleo <¢,

for any € > 0.

Proof. We first perform a simple token-wise linear transformation on the input:

|:Od><n:| _ |: VA :| GR(d+1)Xn.

. Iixa
L Z) = Z
lnear( ) |: :| * 11><TL 11><n

led

We then construct W, to be:
Wq = Ly,
which is an identity matrix of dimension R(4+1)*(d+1),

This yields that

Q := WyLinear(Z) = { Z } c R+ xn.

11><n

Following the definition of Interpolations in Appendix D.6, K,V are constructed as (here we omit Y’
since it’s not the input):

K 2L0(l 2L1a s 2Lpa :| 7

T 2Lgb— L2 2Lb— L% .- 2Lpb— L%

Vi=[f(Lo) f(L1) --- f(Lp)].
By Definition E.1, we have

Hopfield(Z)
2l(21)L0 - Lg 2l(22)L0 - L% e 2l(Zn)L0 - L%
21(21).[/1 — L2 21(2’2)[/1 — L2 s QZ(Zn)Ll — L2
= [f(Lo) f(L1) -+ f(Lp)]Softmax | 5 S o S
(z1)Lp — L% 2(z)Lp—L% - 2(z)Lp— L

This is equivalent to:
Hopfield(Z)

70



Under review as a conference paper at ICLR 2026

(;(21) - éo)z (5(22) - éo)z (égzn) - éo)2
_ [f(Lo) f(Ll) f(Lp)]Softmax _3 (21)— 1) ((22):— 1) ( Zn) — 1)
(I(z1) = Lp)* (I(z2) — Lp)? (I(z0) = Lp)?

For any column ¢ € [n] in Hopfield(Z), we have
Hopfield(Z).. = [f(Lo) f(L1) --- f(Lp)]Softmax(—/3 : )

il e_ﬂ(l(zc)_Lr)z

= f(Lr)

r=1 25:1 e—B((zc)—L,)?

When f is large enough, we have

_ﬂ(l(zc)_Lr)z —BAL
= ‘ < Pe " < g,

< -
2y ST R a7 <

(I(ze)~L)2>AL (I(z:)—L,)?>AL ©

for any ¢; > 0.

This means that the proportion of the f(L,) in Hopfield(Z). . that deviates from [(z.) is no larger
than ¢;.

Since f and [ are continuous, and Z comes from a compact domain, {(z;) comes from a compact
domain for all ¢ € [n]. Thus f is uniformly continuous on its input domain. This means that for any
€2 > 0, there exists a § > 0 such that when(x — y)? < 6, || f(2) — f(¥)]|e < €2

Configuring AL < § yields:
|[Hopfield(2)... — f(I(z¢)) o
P e_ﬁ(l(zc)_Lr)z

Z S eBlz) Ly

r=1

IN

(L) = f(Uze)) |

=Bz~ L)

- Z 25=1 e—BU(ze)—L,s)? £ (Lr) = f(U(ze) oo

(I(ze)—Lr)?>AL

e—BU(ze)~Ly)?

e—B(ze)—L,1)?

(I(ze)—L)2<AL D
<é€ 2B+ (1—¢€1)ea,

where B := || f|| .. is the bound of f in infinite norm.

We set 2 < €/2, €1 < €¢/(4B). This yields:

|Hopfield(Z). . — f(I(zc))]|oo < €1-2B + (1 — €1)€2

€ €
<—-2B+1-=-=e.
S I1B + 2 €
This completes the proof. O
Theorem E.2. Define
Trod2 s dnl e REHDXR gpd Wi=[w w oo w] € R,

= Yyr Y2 o Yn

where z; € R? and y; € R are the input-output pairs. w € R? is the linear coefficient to optimize.
Suppose z;, y; and w are bounded by B in infinite norm.

71



Under review as a conference paper at ICLR 2026

For any continuous function f : R — R, there exists a Hopfield layer Hopfield with linear connec-

tions such that
|[Hopfield(W; X) — [f(wT:zzl —y)z1 fw e — y2)o
for any € > 0.

f(wTiEn - yn)xn] lo <€,

Proof. Before plugging input W to the Hopfield layer, we pass it through a linear transformation

Linear,,:
den w
I *]-1><n *11><n
Linear,, (W) := {0 ‘ } W+ | Oixn | = | Oaxn | € RGN,
(d+n—+2)xd 1y, 1
xn 1xn

We also pass X through a linear transformation Linear,,:

Linear, (X)
_N Lata (n) (n) (n)
B 2_:1 [0<d+1+n>x<d+1>] (dvfl‘; g Onxnpin 2Loel” 2L 2Lpe” Ouxniipan]

= ——— n

(2d4+n+2)x (d+1) nxn(P+1)
n | O@+1yxa  Oga+1) “ o »
+ Z P 0 | X [Onx(iq)(PH) f(Lo)e; " f(La)e; f(Lp)e; OnX(n*i)(PH)}
i=1 |O(nt1)xd  Ont1
(2d+n+2)x (d+1)
O2d+1)x(P+1) O2d+1)x(P+1)
+ S S
(2dB% + B —Ine)el™ 11 (py1) (2dB* + B —Ineg)el 11 (py)
(2d4+n+2)xn(P+1)

= [Tl T Tn]?
where

1] c RlX(P+1),
L?D] c RlX(P+1)7

Lixpyry :=[1 1
S:=[-L§ -L3

2Lox; 2Lz

2Loy; 2L1y;
T; = f(Lo)x; J(Ly)x;

—L2 —L?

(2dB% + B —Ineg)el™  (2dB%+ B — Ineg)el™

2Lp$i
2L py;
f(LP2)£17i
_LP
(2dB? + B — Ineg)el™

€ R(2d+n+2)x(P+1),

Here ¢ is a parameter that we will designate later according to e.

Now construct Wi, Wq, Wy to be:

Wo = Iratnto,
Wk = Iaqqynyo,
Wy o= [Oax(@+1) Ta Odx(n+1)]

Therefore, by Definition E.1, the output becomes:

c Rdx (2d+n+2)

Hopfield(Linear,, (W); Linear, (X)) = Wy Linear, (X )Softmax(SLinear, (X) TLinear,, (W),

72



Under review as a conference paper at ICLR 2026

where

—lixn
Softmax(Linear, (X ) ' Linear,,(W)) = Softmax(8[T1 T» --- Tn]T Odxn |)-

_11><n

n

This is equivalent to:

i w
7| |1
(Linear, (X) " Linear,,(W))..= | . |- | Od
: -1
T, ] [el™
_Ml,c
M2,c
_Mn,c
where
w
-1
Mi,c = TiT | Oa
-1
e

2Lox,] w — 2Loy; — L3 + (2dB? + B — In €)1
2L11‘ZTU) — 2L1yi - L% + (2d32 + B —1In 60)]1i:c

2Lpz]w—2Lpy; — L% + (2dB? + B — In€g)1;—.

where ¢ € [n] and ¢ € [n], and 1,_. represents the indicator function of i = c.

)

This means that
Softmax(SLinear, (X) " Linear,, (W)). ..

M .
My .

= Softmax(f8 | .
M.
_ an: ZP: exp{QLjac;-r;u —2L;y; _, L3+ (2dB*+ B —Ine€g)l;—c } 65?_131))1:_’_ )
i=1j=1 D=1 2ji=0 exp{uy )+ (2dB%? + B—In eo)]ll-:c} !

Thus we have (without loss of generality, we ignore the [ parameter in Softmax):
Hopfield(Linear,, (W); Linear, (X)). .
= Wy Linear, (X )Softmax(Linear, (X) " Linear,,(W)). ..
(W, only retrieves the (d + 2)-th row in T;)
o F i i exp{ZLja:iTw —2L;y; — L? +(2dB?* + B —In 60)]11':0} (nP)
S L S e 2L lw - 2Ly — 12, + (2482 + B-heo)tiee )

i exp{2L;z] w—2L;y; — L? + (2dB® + B —Ineg) 1. }
i DAND DN exp{QLj/x;',—w — 2Ly — L2 + (2dB? + B — Ineg) L,

where F'is:

f(Lj)xi7
}

F, = [f(Lo)x; f(Li)xy --- f(Lp)xi].

73



Under review as a conference paper at ICLR 2026

For every i € [n], if i # ¢, we have
EP: exp{2ng:.Tw —2L;y; — LJQ- + (2dB*>+ B — lneo)lli:c}
i Z o Oexp{QL gy w — 2Ly, — L3, + (2dB? 4+ B — lneo)]ll-zc}

zp: exp{?ij;rw —2L;y; — Lf}
=0 Yom_y Z;D,:O exp{2Lj/xiT,w —2Ljyy — L3 + (2dB? + B —In 60)]17;:6}

i exp{2L;z] w —2L;y; — L3}
Sy exp{2Lyalw — 2Ly — L2 + (2482 + B —Ineo) |

(only taking the i’ = ¢ purl)

A

EP: exp{2dB? + B}

Pexp(2dB?2 + B — In¢) -

=0
For i = c, since
exp{2L ;] w — 2L;y; — L? +(2dB? + B —Inep)Li— }
#ZCJZO i1 Z 1= Oexp{ZL iy w — 2Ly — L?/ +(2dB? + B — lneo)]lq;zc}

we have

S (n — ].)607

Zf Oexp{ (e) + (2dB*+ B — lneo)}
Sh_y ;3,:0 exp{QLj/xi,w — 2Ly — L?/ +(2dB?+ B—1n eo)]lizc}
S i g ep{2Lylw — 2Ly — 1+ (2482 + B~ lneo) i }
>1—(n—1eg.

exp{ugc) +(2dB*+ B — lneo)}

Thus for the parts in the weighted sum output that corresponds to rows in M. . in the attention score
matrix, we have

IIZ

P S Z ., Oexp{?L v w — 2Ly — L?, + (2dB? + B —Inep) 1=,

i exp{ () +(2dB?*+ B —1n eo)}
=0 Z 70 exp{u(,) + (2dB?+ B —In«¢)

exp{ () | (2dB2+B—1neo)}

}f(L])xc - f(chw - yc)xcHoo

} (f(LJ)xc - f(x::rw - yc)xc)

> exp{u(/) +(2dB% + B — lneo)}
. S S, exp{ugc ) 4+ (2dB2+ B — 1neo)]lizc}
25:0 exp{ugf) +(2dB?*+ B —In eo)}
Sh_y ZkP:O exp{ugl) +(2dB?+ B — ln¢p) 1=
exp{ug-c) + (2dB? + B —In eo)}
=0 ZP Oexp{u 7 +(2dB?*+ B —1In eo)} 785} = 11
>, exp{ug.?) +(2dB2+ B —In 60)}

>or_q ZkP:O exp{u,(fl) +(2dB? + B — Ineg) 1=

7(17 })f(xzwyc)xc|oo

xTw Ye)| - dl|ze oo

—(1-

})f(xjw—yc)llll‘clloc

74



Under review as a conference paper at ICLR 2026

=0 2_j1=0 eXP{uj/ + (2dB%+ B — Ine)
+(n = DeoBylzclloo
P exp{ug.c)}
) jz:;) =0 eXp{ugf)
_< e w v L) E )y faTu— gl + (00— DeoBrllalo
=Y rexp{—B@lw—y. — Ly)?}

where we define By := | f| as the bound for f.

}If(chw = ye)lllzello

<

} [F(L5) = flzlw = yo)llzelloe + (n = V)eo By lzeloo

For any €; > 0, set AL to be sufficiently small such that

[f(z) = f(y)l < e,
when |z — y| < AL.

Then when 3 is sufficiently large, we have
Z exp{—B(z]w —y. — L;)?}

P
|L;—(z] w—yc)|>AL Zj’:o exp{fﬂ(chw —Yc — Lj’)2}

S €2,

for any e > 0.

Thus
P T 2
expy =Bz, w —ye — L)
Z P { T ’ }2 |f(L])_f(xjw_yc)‘
=0 2jr—oexp{—B(zlw —yc — Lj)*}
B exp{—p(zw —y. — L;)*} T
= > P - (L) — Falw = o)
LT wyol>ar 2og=0 XP{=Blziw —ye — L)}
exp{—B(z]w —y. — L;)?
S A0 e L)Y b - paTw - )
|Li—(eT w—ye) | <AL 2uj=0 XP{=B(z¢ w —ye — Lj1)?}
<e€-2By +ey.
This completes the proof. O
Corollary E.2.1 (In-Context GD of Hopfield Layer). Define
X.= | 2 0 Il cRUEADXR and Wi=[w w --- w] € R,
Y Y2 - Yn

where z; € R? and y; € R are the input-output pairs. w € R? is the linear coefficient we aim to
optimize. For any differentiable loss function ¢ : R — R, There exists a Hopfield layer Hopfield
with linear connections such that

[Hopfield(W; X) — [Ve(w zy —y1)zr Ve(w za —y2)zs -+ VW' &n —yn)n] oo <,
for any € > 0.
Proof. Replacing the continuous function f in Theorem E.2 with V/ completes the proof. O

75



	Introduction
	Preliminaries: Attention, In-Context Learning and Emulation
	Task-Specific In-Context Algorithm Emulation
	Prompt-Programmable In-Context Algorithm Emulation
	In-Context Emulation of Attention
	In-Context Emulation of Statistical Methods
	Attention Makes Every (Linear) Network In-Context

	Numerical Studies
	Proof-of-Concept Experiment on 
	Proof-of-Concept Experiment on Emulating Attention Heads

	Discussion and Conclusion
	Proof Sketches
	Proof Sketch for 
	Proof Sketch for 

	Related Work
	Core Related Work
	Broader Discussion

	Additional Numerical Studies
	Proof-of-Concept Experiment on Emulating Statistical Models
	Real-World Experiment on Emulating Statistical Models
	Proof-of-Concept Experiment on 

	Proofs of Main Text
	Proof of 
	Proof of 
	Proof of 
	Proof of 
	Proof of 
	Proof of 
	Proof of 

	In-Context Application of Statistical Methods by Modern Hopfield Network

