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LATENT DIFFUSION U-NET REPRESENTATIONS CON-
TAIN POSITIONAL EMBEDDINGS AND ANOMALIES

Jonas Loos1 Lorenz Linhardt1,2

ABSTRACT

Diffusion models have demonstrated remarkable capabilities in synthesizing re-
alistic images, spurring interest in using their representations for various down-
stream tasks. To better understand the robustness of these representations, we ana-
lyze popular Stable Diffusion models using representational similarity and norms.
Our findings reveal three phenomena: (1) the presence of a learned positional em-
bedding in intermediate representations, (2) high-similarity corner artifacts, and
(3) anomalous high-norm artifacts. These findings underscore the need to further
investigate the properties of diffusion model representations before considering
them for downstream tasks that require robust features. Project page: https:
//jonasloos.github.io/sd-representation-anomalies.

1 INTRODUCTION

Ever since diffusion models (Sohl-Dickstein et al., 2015b; Song & Ermon, 2019; Ho et al., 2020)
superseded generative adversarial networks (Goodfellow et al., 2020) in image generation (Dhariwal
& Nichol, 2021), diffusion methodology progressed steadily. Architectural and training improve-
ments, such as latent diffusion (Rombach et al., 2022), transformer-based architectures (Peebles
& Xie, 2023; Esser et al., 2024), and model distillation (Sauer et al., 2025; 2024) allow for more
efficient training and generation of higher quality images.

Improvements in efficiency, together with remarkable image generation abilities have led to inves-
tigations into image diffusion models as embedding models (e.g. (Xiang et al., 2023)). Similar to
DINO (Caron et al., 2021; Oquab et al., 2024) or CLIP (Radford et al., 2021) models, diffusion mod-
els may yield representations useful for downstream tasks (e.g. classification (Xiang et al., 2023) or
semantic correspondence (Zhang et al., 2023)). Yet, attempts to use pretrained diffusion models as
embedding models, as well as investigations of their general capabilities, have revealed limitations,
such as texture bias in higher layers (Zhang et al., 2023), insufficient linguistic binding (Rassin et al.,
2023), and left-right confusion (Zhang et al., 2024). We refer to Appx. A for additional related work.

In this work, we present three novel empirical phenomena in image diffusion model representa-
tions that do not encode spatially localized semantics and thus may deteriorate downstream task
performance. We focus on the popular U-Net-based Stable Diffusion (SD) models, as they have
been repeatedly investigated for their downstream utility (e.g. (Zhang et al., 2023; 2024; Tang et al.,
2023; Baranchuk et al., 2022; Zhao et al., 2023; Ke et al., 2024)). The main contributions of this
work are:

• (C1) We show that the representations of models of the SD family encode a positional em-
bedding. This embedding is linearly extractable from the representations of lower blocks.

• (C2) We show that representations of lower blocks often contain corner tokens of abnor-
mally high similarity to other corner tokens. This phenomenon is independent of the image
content and can even be observed between tokens of different images.

• (C3) We show that representations of lower blocks sometimes contain tokens of abnormally
high norm that do not appear to capture only the local image content.
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Figure 1: Cosine similarity and Euclidean norm across spatial positions of representations. Each
column shows an example of one of the three observations, or of meaningful similarities. Similarities
in each column are relative to the token highlighted by a marker of the matching color (×, ×, ×, ×)
in one of the images. Representations are extracted from SD-1.5 at the blocks indicated at the top.

2 METHODS

2.1 REPRESENTATION EXTRACTION

We extract intermediate representations from the U-Net layers of the evaluated models. The archi-
tecture consists of a series of four down-sampling (dn0-dn3) and four up-sampling (up0-up3)
blocks, connected by skip connections, as well as a resolution-preserving mid-block at the low-
est level. Each block consists of a combination of ResNet and attention layers, and a down- or
up-sampling operation where applicable. We extract representations after each layer by noising a
given image x in the latent space of the variational autoencoder E according to a given time step
t ∈ [1, 1000] and then recording the activations after each U-Net layer. More formally:

z0 = E(x), zt =
√
ᾱtz0 +

√
1− ᾱtϵ, rl = U-Net(zt, t, C)l, (1)

where ᾱ is defined by the noise scheduler and interpolates between the latent code z0 of the image
and the noise ϵ. We set conditioning C to an empty prompt and t = 50. The representation rl at a
layer l is of size Rwl×hl×cl , with wl, hl, and cl being the width, height, and number of channels,
respectively. The spatial dimensionality decreases in lower layers of the U-Net, while cl increases.
We refer to the representations at any spatial position as a token.

2.2 POSITION ESTIMATION

To quantify the observation of positional embeddings in the representations of SD models, we train
linear probe to estimate the token position. An estimator for layer l takes as input a token of dimen-
sionality cl and predicts the vertical and horizontal coordinate of the token, using labels formed by
concatenating two one-hot vectors of dimensionality wl + hl. We minimize the cross-entropy loss
using the Adam optimizer (Kingma & Ba, 2017) with learning rate 10−3 for 5 epochs.

3 EXPERIMENTS AND ANALYSIS

In this section, we present our findings on positional embeddings, the influence of corner and border
locations, and high norm anomalies. For each phenomenon, we provide a qualitative example, a
quantification of the observation, and a brief discussion of potential implications.

For all experiments, we extract representations from the U-Net-based latent diffusion models SD-
1.5, SD-2.1 (Rombach et al., 2022), and SD-Turbo (Sauer et al., 2025). For brevity, we show the
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Figure 2: Quantitative results for position estimation, border/corner artifacts, and high-norm anoma-
lies for SD-1.5. Top row: Linear probe accuracy for position estimation. Brighter shades indicate re-
duced resolution. Middle row: Relative similarity of tokens lying at a border/corner of the cropped
images w.r.t. their similarity before cropping. (log-2 scale). Bottom row: Relative average norm of
anomalous tokens w.r.t. to the mean norm of all tokens of the same representation (log-2 scale).

results for the latter two in Appx. B. We use a subset of ImageNet (Russakovsky et al., 2015),
containing 100 randomly chosen images for each of 5 classes (German shepherd (235), boxer (242),
tiger cat (282), pickup (717), volcano (980)), which were chosen to contain both concepts of high
as well as low similarity. All images are center-cropped and resized to 512 × 512 pixels to match
the default image size of SD-1.5.

3.1 SD U-NET REPRESENTATIONS CONTAIN POSITIONAL EMBEDDINGS

Qualitative observation. We observe that representations in SD models contain a positional em-
bedding, which is visible in the third column of Fig. 1, where tokens of similar spatial locations
show higher similarities, even across images. This implies that SD models saliently encode location
in their representations. We find that this phenomenon is most apparent after the up0 block and less
visible in higher blocks. The following quantitative results support this observation.

Quantitative results. To quantify the positional embedding uncovered by inspecting token simi-
larities, we train a linear probe to predict the spatial location of each token given a representation
token as input. We use a random 80% split of the images for training and evaluate on the remaining
20% by calculating the fraction of correct width and height predictions. As shown in the first row
of Fig. 2, the estimator achieves a test accuracy of over 90% for lower blocks (down2 to up1),
indicating that the positional information is more saliently encoded there. Part of the difference
in performance across layers is due to the lower spatial resolution of the lower blocks. Yet, even
when evaluating the performance of the higher blocks at a lower resolution by coarse-graining the
prediction target, lower blocks still yield significantly higher accuracy.

Implications. SD models saliently encode spatial locations in their representations to generate
images, which has immediate consequences for their use as representation learners. For exam-
ple, in semantic or dense correspondence tasks, similarity between representation tokens is used to
determine semantically matching image locations across two images. Saliently encoded position
information may interfere with semantic matching, undermining task performance.
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3.2 SD U-NET REPRESENTATIONS CONTAIN CORNER ARTIFACTS

Qualitative observation. We find that tokens located at the corners and borders often have unusu-
ally high cosine similarities to each other, even if there is no obvious correspondence of the image
content. This anomalous behavior of the border and corner tokens is visualized in fourth column
of Fig. 1, where all corners show a slightly increased similarity towards the reference token at the
upper left corner of the second image, independent of their image content.

Quantitative results. To quantify our observation, we compare similarities between tokens, when
they are at the border/corners and when they are not. To preclude confounding by image content,
we create two versions of the representations for all images: (1) we center-crop the image before
embedding, such that we arrive at a representation of shape (w − 2, h − 2, c); and (2) we embed
the original image and then discard the outermost tokens, arriving at the same shape. This allows us
to compare the tokens representing the same image regions but where the outermost tokens (1) do
and (2) do not lie on the border of the image during extraction. The second row of Fig. 2 shows the
average cosine similarity between all border tokens and all corner tokens for both representations. In
particular, the similarities for tokens at the image border/corners during extraction are shown relative
to the baseline, when they are not at the border during extraction. Relative similarity among corner
tokens is increased across multiple layers, while the results for border tokens are inconclusive.

Implications. The existence of corner artifacts may negatively affect dense prediction tasks that
are based on similarity, such as dense correspondence. Similar to position embeddings, similarity
caused by corner artifacts may obfuscate semantic (dis)similarity of image content at these locations.

3.3 SD U-NET REPRESENTATIONS CONTAIN HIGH-NORM ARTIFACTS

Qualitative observation. We identify anomalies, which consist of groups of neighboring tokens
with high norm, and high mutual similarity. Several such anomalies can be seen in the last two
columns of Fig. 1. They primarily consist of 2 × 2 token patches that have increased Euclidean
norm and high mutual cosine similarity.

Quantitative results. To analyze high-norm anomalies, we manually label their occurrences in
the L2 norm maps of the up1-block of all images in the datasets. We find that for SD-1.5, about
25% of the images contain at least one such anomaly. In the bottom row of Fig. 2, it can be seen that
the tokens at the location of the labeled anomalies have significantly higher norm in the layers of the
up1 and up2 blocks than the average of the tokens in the respective representations. We find the
locations of the anomalies to be consistent across different layers for the same image, but not across
different images, time steps, or models.

Implications. Similar to the border artifacts in Sec. 3.2, high-norm anomalies may negatively
affect dense prediction tasks. This includes tasks that are not similarity-based, such as depth esti-
mation. Moreover, the observed anomalies affect the up1 layer, commonly used for downstream
tasks, and are not exclusively located at the image borders, thus potentially interfering with the
representations of centered objects.

4 CONCLUSION

In this work, we presented idiosyncrasies of U-Net-based latent diffusion model representations
that may provide challenges when using these representations for downstream tasks. We reported
that these representations contain (1) a linearly extractable position embedding, (2) corner tokens
of abnormally high similarity, and (3) high-norm anomalies in the up-sampling blocks. All findings
are supported by both qualitative examples and quantitative analysis.

Future work may evaluate the concrete impact of these phenomena on large-scale and real-world
applications. Furthermore, the causes of these phenomena, as well as their role in the generative
process, should be established. For example, corner artifacts may be part of the position embed-
ding mechanism, and high-norm tokens may function as register-like storage of global informa-
tion (Darcet et al., 2024).
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A RELATED WORK

Initially inspired by the physical process of diffusion, diffusion models iteratively transform a dis-
tribution of noise into a desired target distribution through a sequence of learned reverse steps Sohl-
Dickstein et al. (2015a); Ho et al. (2020). Building on this, SD is a series of latent diffusion models
for image generation Rombach et al. (2022), most of which employ a U-Net Ronneberger et al.
(2015) in the latent space of a pretrained variational autoencoder. More recently, transformer-based
models have been added to the series (Esser et al., 2024).

Diffusion Models for Representation Learning. Diffusion models, and SD in particular, have
been analyzed and used for representation learning as a basis for a variety of downstream tasks.
While some works modify the model architecture or training process specifically for representation
learning (Hudson et al., 2024; Chen et al., 2024), many works use the intermediate representations
of pretrained models. Common SD versions used in the literature are SD-1.5 and SD-2.1 (Luo et al.,
2023; Zhao et al., 2023; Zhang et al., 2023; 2024; Stracke et al., 2024; Linhardt et al., 2024). Var-
ious works have investigated different aspects of the learned representations, finding that semantic
information is captured in the bottleneck layers of the U-Net (Kwon et al., 2023; Park et al., 2023).
Other works studied image diffusion models’ alignment to human representations and human-like
shape bias (Linhardt et al., 2024; Jaini et al., 2024).
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SD Representations for Downstream Tasks. In recent years, there has been substantial interest
in exploring the suitability of SD representations for downstream tasks, such as classification (Xi-
ang et al., 2023; Mukhopadhyay et al., 2023; Stracke et al., 2024), semantic correspondence (Zhang
et al., 2023; 2024; El Banani et al., 2024; Tang et al., 2023; Luo et al., 2023; Hedlin et al., 2023; Li
et al., 2024; Stracke et al., 2024; Fundel et al., 2024; Mariotti et al., 2024; Kim et al., 2025), semantic
segmentation (Baranchuk et al., 2022; Zhao et al., 2023; Ji et al., 2024; Couairon et al., 2024; Tian
et al., 2024; Zhang et al., 2025), and depth estimation (Chen et al., 2023; Zhao et al., 2023; Patni
et al., 2024; Stracke et al., 2024; Zhang et al., 2025).It has been observed that downstream task per-
formance tends to increase with the number of pre-training iterations (Zhao et al., 2023; Zhang et al.,
2025). Multiple works reported that up-blocks of the U-Net contain the most useful representations
for downstream tasks (Zhang et al., 2023; El Banani et al., 2024; Stracke et al., 2024). Tang et al.
(2023) suggest that up-blocks lower in the U-Net yield more semantically-aware representations,
while up-blocks higher in the U-Net focus more on more low-level details.

B RESULTS FOR SD-2.1 AND SD-TURBO

Complementary to the results on SD-1.5 presented in the main text, we here provide results for SD-
2.1 and SD-Turbo, which are based on the same model architecture (Rombach et al., 2022). Fig. 3
shows additional examples for the three phenomena described in the main text. Fig. 4 shows the
results for the quantitative experiments on SD-2.1, and Fig. 5 on SD-Turbo. The results are overall
consistent across all evaluated models, suggesting that our findings are not limited to a specific
model.
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Figure 3: Cosine similarity and Euclidean norm for representations of SD-2.1 and SD-Turbo. The
similarities are relative to the representation token at the image and location of the marker in the
respective image pair. Top left: Positional embedding for SD-2.1 (left), and SD-Turbo (right).
Top right: Corner/border anomalies for SD-2.1 (left), and SD-Turbo (right). Bottom: High-norm
anomalies for SD-2.1 (left), and SD-Turbo (right).
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Figure 4: Quantitative results for SD-2.1. Top row: Linear probe accuracy for position estimation.
Brighter shades indicate reduced resolution. Middle row: Relative similarity of tokens lying at a
border/corner of the cropped images w.r.t. their similarity before cropping. (log-2 scale). Bottom
row: Relative average norm of anomalous tokens w.r.t. to the mean norm of all tokens of the same
representation (log-2 scale).

Figure 5: Quantitative results for SD-Turbo. Top row: Linear probe accuracy for position estima-
tion. Brighter shades indicate reduced resolution. Middle row: Relative similarity of tokens lying at
a border/corner of the cropped images w.r.t. their similarity before cropping. (log-2 scale). Bottom
row: Relative average norm of anomalous tokens w.r.t. to the mean norm of all tokens of the same
representation (log-2 scale).
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