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Abstract Consistent improvements in the representational capacity of large pre-trained transformers
has made it increasingly viable to serve these models as shared priors that can be fine-tuned
on a large number of downstream tasks. However, fine-tuning the entire model for every
task of interest makes a copy of all the model parameters, rendering such scenarios highly
impractical. Recently introduced Adapter methods propose a promising alternative, one
where only a small number of additional parameters are introduced per task specifically for
fine-tuning. However, Adapters often require large amounts of task-specific data for good
performance and don’t work well in data-scarce few-shot scenarios. In this paper, we approach
parameter-efficient fine-tuning in few-shot settings from a meta-learning perspective. We
introduce Meta-Adapters, which are small blocks of meta-learned adapter layers inserted
in a pre-trained model that re-purpose a frozen pre-trained model into a parameter-efficient
few-shot learner. Meta-Adapters perform competitively with state-of-the-art few-shot learning
methods that require full fine-tuning, while only fine-tuning 0.6% of the parameters. We
evaluate Meta-Adapters along with multiple transfer learning baselines on an evaluation suite
of 17 classification tasks and find that they improve few-shot accuracy by a large margin
over competitive parameter-efficient methods, while requiring significantly lesser parameters
for fine-tuning. Moreover, when comparing few-shot prompting of GPT-3 against few-shot
fine-tuning with Meta-Adapters, we find that Meta-Adapters perform competitively while
working with pre-trained transformers that are many orders of magnitude (1590×) smaller in
size than GPT-3.

1 Introduction

Pre-trained models in natural language processing (NLP) have consistently increased in size over
time (Devlin et al., 2019; Raffel et al., 2019; Brown et al., 2020). These models are often used as
initialization for transfer learning, where the initialized model is fine-tuned on a task of interest.
However, when such pre-trained models are intended to be served for many downstream tasks at
once, such as in a cloud-based machine learning (ML) service, then full fine-tuning necessitates
keeping as many parameter copies as the number of tasks – rendering them extremely inefficient.
An alternative to full fine-tuning is Adapters (Houlsby et al., 2019). Adapters add a small number
of randomly initialized parameters to a pre-trained model such that fine-tuning only the Adapters,
freezing the rest of the pre-trained model, still performs competitively with full fine-tuning.

In this paper, we consider the scenario where we want to deploy a shared model for a large
number of tasks, in an online setting, such that models can be quickly adapted to target tasks without
access to a lot of data. An example of such a setting is a cloud-based ML service which allows users
to specialize models to their own NLP tasks with scarce training data. Adapters are particularly
useful in such scenarios as they allow sharing a pre-trained model backbone across tasks. However,
adapters are randomly initialized blocks of parameters which can perform poorly when the target
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task has few examples. Such scenarios pose a dual problem: one of enabling parameter efficient
fine-tuning, and another of accurate few-shot learning.

Meta-learning (Schmidhuber, 1987; Bengio et al., 2003; Thrun and Pratt, 2012) is often employed
to learn effective few-shot learning models, that can generalize to new unseen tasks with small
amounts of labelled data by learning from a distribution of other related tasks. Within NLP, meta-
learning models have been developed for few-shot learning on a diverse range of NLP tasks (Han
et al., 2018; Brown et al., 2020; Bansal et al., 2020a). Of particular interest in this work are gradient-
based methods (Finn et al., 2017) that learn a model initialization to enable few-shot learning with
a few steps of gradient descent. By directly optimizing the training for few-shot fine-tuning, these
methods help mitigate the train-test mismatch in few-shot learning and enable effective generalization
to new few-shot tasks. However, existing applications of such meta-learning methods (Bansal et al.,
2020a,b; Dou et al., 2019) don’t leverage existing pre-trained models and fine-tune the entire model
making them inefficient when applied to many tasks.
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Figure 1: Comparison of overall average accuracy across 17 tasks
vs the number of parameters fine-tuned per task (on a
log scale). Meta-Adapters fine-tune only 0.6% of total
model paramters per task, are more efficient and accurate
than other adapter alternatives, and competitive with a
meta-learning approach that requires full fine-tuning.

We thus develop a meta-learning
model that enables accurate and
parameter-efficient few-shot learning
– utilizing a shared, frozen pre-trained
model backbone that can rapidly adapt
to downstream tasks with only a hand-
ful of additional parameters and la-
beled data per new task. Our ap-
proach re-purposes an existing pre-
trained transformer model into an ef-
ficient few-shot learner by introduc-
ing Meta-Adapters, a small number of
meta-learned parameters that modu-
late the pre-trained models activations
to make them effective for few-shot
learning. Our objective is to enable pa-
rameter efficient few-shot learning at
inference time; the Meta-Adapters are
trained to “prime” the regular adapter
towards this objective on a wide vari-
ety of few-shot tasks resembling the
target tasks (Section 3). Moreover,
Meta-Adapters are more efficient to
train than contemporary meta-learning models as they only train a subset of the full model. On
a suite of 17 few-shot classification tasks, our results indicate that Meta-Adapters are better than
randomly initialized adapters (Houlsby et al., 2019) for few-shot learning, are more accurate and
efficient than multi-task fusion adapters (Pfeiffer et al., 2021), and perform competitively with
previous state-of-the-art meta-learning methods that involve full fine-tuning (Bansal et al., 2020b),
while only adding 0.6% model parameters per task (Figure 1). Comparing Meta-Adapters with the
alternative few-shot prompting approach of GPT-3 (Brown et al., 2020), we find that fine-tuning
with Meta-Adapters performs better on average than the largest GPT-3 model (175 Billion parameter
DaVinci) while operating on pre-trained models that are order of magnitude smaller in parameter
size (110 Million BERT-base).

2 Background
Adapters (Houlsby et al., 2019) are blocks of feedforward layers, comprising of a downward
projection followed by an upward projection, that are added between subsequent layers of a pre-
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trained transformer model. Let 𝜃 denote the parameters of the transformer and 𝜙 the parameters of
the adapters. Then given a target task 𝑇 , with some data, D𝑡𝑟

𝑇
, and loss function, L𝑇 (·), adapters

minimize the following objective using a gradient descent routine, termed as fine-tuning:

min
𝜙

L𝑇 (𝜃, 𝜙 ;D𝑡𝑟
𝑇 ) (1)

where adapters 𝜙 are often initialized randomly (Houlsby et al., 2019). Note that the size of 𝜙 ≪ 𝜃 ,
leading to parameter savings when the same model parameters 𝜃 are re-used for many tasks {𝑇 }.

However, as 𝜙 are randomly initialized they may not perform well in the few-shot setting where
D𝑡𝑟
𝑇

is very small, for instance when there are only 4 examples per label. Moreover, the original
pre-trained model is not optimized for few-shot learning and can lead to sub-optimal performance
(Bansal et al., 2020b).

Alternatively, few-shot problems are often formulated as meta-learning problems. We refer the
reader to Hospedales et al. (2020) for a comprehensive review. Our work builds on model agnostic
meta-learning (MAML) (Finn et al., 2017) which, given a distribution over tasks, learns a model
initialization for better few-shot learning with a few steps of gradient descent. This involves an inner
loop of task-specific fine-tuning and an outer loop of optimizing the inner loop performance across
tasks. Note that the inner loop corresponds directly to the inference method applied to any new
task, that is, gradient-based fine-tuning. MAML-based methods have been explored in prior work
for improving few-shot learning (Dou et al., 2019; Bansal et al., 2020b). However, these methods
require fine-tuning the entire network at inference time and optimizing the entire model parameters
at training time. This makes fine-tuning very inefficient when applied to many tasks at once and also
doesn’t leverage existing self-supervised models pre-trained on large amounts of unlabeled data.

3 Meta-Adapters

Figure 2: Meta-Adapters architecture.

Our goal for parameter efficient learning is two-fold: (1) lever-
age and re-purpose existing pre-trained model into a better
few-shot learner; (2) make fine-tuning parameter efficient by
sharing the pre-trained model backbone and introducing only
a fraction of parameter overhead for each new task.

We thus introduce Meta-Adapters, which are meta-learned
adapter layers inserted between layers of a frozen pre-trained
model to improve performance in few-shot learning. Meta-
Adapters have the same architecture as feed-forward adapter
layers (Houlsby et al., 2019) and differ in their placement
in the model architecture, their training and usage. Whereas
adapters are randomly initialized and fine-tuned per task, Meta-
Adapters are trained parameters that are not fine-tuned on new
tasks but instead modulate the activations of the pre-trained
model in the forward and backward pass during fine-tuning to
allow better few-shot learning. Figure 2 shows an overview of
the approach.

Meta-Adapters operate in conjunction with regular
adapters and are trained to enable parameter-efficient few-shot
learning. In particular, consider a transformer model layer
with adapters added after the two sets of feed-forward blocks,
as shown in Fig.2. The Meta-Adapters layers sandwich the
adapter layer from above and below, and consist of a two-layer
feed-forward network with a downward projection bottleneck.
The bottleneck dimension is typically small, a hyper-parameter ≤ 32 in our experiments, that keeps

3



the number of Meta-Adapters parameters manageable. During the Meta-Adapters training phase,
it is optimized to improve the regular adapter fine-tuning with few-shot training task data. During
inference, each few-shot target task is then solved by fine-tuning only the regular adapters, freezing
the rest of the model to achieve parameter efficiency.

Denoting 𝜔 as the Meta-Adapter parameters, 𝜙 as the adapter parameters, and 𝜃 as the pre-trained
transformer parameters, the objective for each individual task, T, remains similar to regular adapters:

𝜙𝑇 ← argmin
𝜙

L𝑇 (𝜃, 𝜙, 𝜔 ;D𝑇 ) (2)

Note that 𝜔 is not fine-tuned for individual task T but it still modulates the activations in the forward
pass as well as the backward pass. Thus, 𝜔 needs to be optimized to directly improve adapter
fine-tuning with few-shot data, which leads to the following objective, where 𝜙𝑇 is obtained from the
minimization in (2):

min
𝜔

E𝑇 [L𝑇 (𝜃, 𝜙𝑇 , 𝜔 ;D𝑇 )] (3)

Computing these nested minimization to convergence will be computationally infeasible. We thus
approximate these by few-steps of gradient descent. This can then be formulated as a meta-learning
problem involving bi-level optimization, and is related to model agnostic meta-learning (MAML).
We use the episodic framework (Vinyals et al., 2016; Finn et al., 2017) for solving the problem in
equation (3), where each episode samples a few-shot task with a training data D𝑡𝑟 and validation
data D𝑣𝑎𝑙 . D𝑡𝑟 is then used for the minimization in (2) and D𝑣𝑎𝑙 is used for the minimization in (3).
This leads to the following inner and outer loop updates for training the Meta-Adapters:

Inner: 𝜙 ′𝑇 ← 𝜙 − 𝛼∇𝜙L𝑇 (𝜃, 𝜙, 𝜔,D𝑡𝑟
𝑇 ) # fine-tune Adapters (4)

Outer: 𝜔 ← 𝜔 − 𝛽 ∇𝜔E𝑇∼P (T )
[
𝐿𝑇 (𝜃, 𝜔, 𝜙 ′𝑇 ,D𝑣𝑎𝑙

𝑇 )
]

# train Meta-Adapters (5)

𝜙 ← 𝜃 − 𝛽 ∇𝜙E𝑇∼P (T )
[
𝐿𝑇 (𝜃, 𝜔, 𝜙 ′𝑇 ,D𝑣𝑎𝑙

𝑇 )
]

# train Adapters initialization

𝛼 ← 𝜃 − 𝛽 ∇𝛼E𝑇∼P (T )
[
𝐿𝑇 (𝜃, 𝜔, 𝜙 ′𝑇 ,D𝑣𝑎𝑙

𝑇 )
]

# train fine-tuning learning-rates

The inner loop (4) is carried out for multiple steps of gradient descent. Through these steps, note
that we also learn an initialization of the adapters 𝜙 in preparation for few-shot learning, in addition
to training the Meta-Adapters 𝜔 . Thus, there is no random initialization for adapters, nor the selection
of hyper-parameters for the initialization (like scale), that needs to be set for each down-stream
task. In addition, we also treat the inner loop learning rate 𝛼 , in (4), as a learnable parameter. We
use different learning rates for each layer. The inner loop directly corresponds to the fine-tuning
procedure on any new task, thus this removes the requirement to set a crucial hyper-parameter for
each new task as the learned learning rates are re-used for fine-tuning on new tasks.

Training Tasks:. Meta-learning the Meta-Adapters (equation 4, 5) requires a distribution of tasks
P (T ), as is typical in meta-learning methods (Vinyals et al., 2016; Finn et al., 2017). Tasks are
sampled from this distribution to learn models for few-shot learning. Ideally, this distribution of tasks
should be large and diverse to enable learning of effective models that can generalize to new tasks. We
follow prior work (Bansal et al., 2020b) and use a combination of supervised and unsupervised tasks
to provide a diverse distribution of training tasks. The supervised tasks come from the set of GLUE
tasks (Wang et al., 2018) that comprise of 8 diverse tasks requiring sentence-level understanding.
In addition we use the cloze-style SMLMT tasks proposed in Bansal et al. (2020a). These are
self-supervised, blank-filling tasks (Devlin et al., 2019), that are automatically created from unlabeled
text and were shown to be a useful source of meta-training tasks for few-shot learning. In particular,
we followed the more recent approach of Bansal et al. (2021) and use their word-clustering approach
for creating cloze-style tasks. We thus create millions of such self-supervised tasks and combine
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them with supervised GLUE tasks for training the Meta-Adapters. In an episode of training, we
sample a GLUE task with probability 𝜆 or a self-supervised task with probability 1 − 𝜆.

Summary:. Meta-Adapters are meta-learned adapter layers that are trained to enable parameter
efficient few-shot learning. They are inserted in a pre-trained transformer and used alongside the
regular adapters. The training of Meta-Adapters proceeds in meta-learning episodes. In each episode
a training task is sampled, the adapters are fine-tuned on the task data (4) and the performance of
the fine-tuned model, as evaluated by the loss on task’s validation data, is used as the error to train
(5) the parameters of the Meta-Adapters. In addition, this training also learns the initialization of
the adapters used for fine-tuning along with the learning rate to use for fine-tuning the adapters. At
inference time, parameters of the pre-trained model and the Meta-Adapters are fixed, and the adapters
are fine-tuned for each target task using the learned learning rates.

4 Experiments

In this section, we evaluate the Meta-Adapters for their utility in few-shot learning of new unseen
tasks and compare them with contemporary methods that utilize adapters as well as meta-learning
methods for few-shot learning.

4.1 Experimental Setup

Unlike existing applications of adapters (see section. 5), our work evaluates the utility of adapters
in a transfer learning setting where only few examples are available for each task. For this, we
consider a suite of 17 downstream classification tasks. The tasks are obtained from the few-shot
datasets released* by prior work on few-shot learning (Bansal et al., 2020a), making our results
comparable with previously published results on these tasks. All evaluations are in the 𝑘-shot setting,
with 𝑘 = 4, 8, 16, where 𝑘 is the number of examples per label.

Evaluation Tasks:. The downstream classification tasks fall into the following categories: (1)
Sentiment classification (4 tasks): 4 domains of sentiment classification on Amazon reviews; (2)
Rating classification (5 tasks): 4 domains of ternary rating classification (high, medium, low) on
Amazon reviews and classifying tweets about Airline into ternary sentiment; (3) Entity typing (2
tasks): two domains (news and restaurant queries) of classifying phrases in a sentence into entity
types; (4) Natural language inference (1 task): scientific domain dataset for entailment classification;
(5) Political classification (3 tasks): categorizing tweets into whether or not it has a political bias,
classifying the intended audience for a political tweet (constituency, national), and classifying the
substance of the text into fine-graned topics; (6) Other text classification (2 tasks): classifying tweets
into whether or not they indicate a disaster and fine-grained classification into emotions.

Models Evaluated:. We evaluate some state-of-the-art models for both parameter-efficient fine-
tuning as well as few-shot learning in our experimental setup. We consider the following models:

1. Adapter (Houlsby et al., 2019): The original adapter that only fine-tunes the adapter parameters.

2. Adapter-Fusion (Pfeiffer et al., 2021): A recent approach that trains adapters on multiple tasks,
e.g. GLUE tasks, and then learns to compose them using attention mechanism (see section 5).

3. Hybrid-SMLMT (Bansal et al., 2020b): A meta-learning approach for few-shot learning that
fine-tunes almost all parameters and does not include any adapters.

4. Meta-Adapters: the proposed model

*https://github.com/iesl/leopard
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Implementation Details:. Note that Adapter-Fusion (Pfeiffer et al., 2021) wasn’t evaluated in the
few-shot setting, however, since it combines many trained multi-task adapters together, it can be
a competitive alternative for few-shot scenarios. We use their released GLUE fusion adapters and
their released code for evaluations. For fair comparisons, Adapter-Fusion and Hybrid-SMLMT only
use GLUE supervised tasks for their training. All the compared methods use the same underlying
BERT model, so that differences in performance are not due to using different models. We use the
released Hybrid-SMLMT code to train this model as the released model used cased BERT model
while all the other models used uncased BERT models. Our implementation results are comparable
with those reported in Bansal et al. (2020b). Note that Hybrid-SMLMT fine-tunes about half of the
parameters, as they found it beneficial to freeze alternate layers during fine-tuning (Bansal et al.,
2020b). Hyper-parameters for the Meta-Adapters are available in the Supplementary. Code and
trained models are available †.

4.2 Results

We evaluate the baseline models and the proposed approach on the evaluation tasks. Each task is
evaluated using 10 random few-shot training sets for 𝑘 = 4, 8, 16, totalling 510 evaluations across
the 17 tasks for each model. First, we summarize the overall results across all the tasks. Then we
perform several ablations to better understand the performance of Meta-Adapters.

Overall Results. The overall results on all the tasks can be seen in Fig. 1. Here we analyze the
overall average performance across the 17 tasks, to get an estimate of how the models compare on the
two axes of few-shot accuracy and parameter efficiency. On parameter efficiency, the Meta-Adapters
are orders of magnitude more efficient than both Adapter-Fusion (5%) and Hybrid-SMLMT (0.6%).
Since we use a significantly smaller bottleneck size than Adapter, the Meta-Adapters are also more
efficient than Adapter. We show in ablations later that Adapter perform worse when compared
to similar size Meta-Adapters. This indicates that Meta-Adapters can enable increased parameter
efficiency without compromising on accuracy. Now, lets look at the overall few-shot accuracy and
first consider the 4-shot setting. Interestingly, not only are the Meta-Adapters most efficient, they
perform just as accurately as the best performing baseline model, Hybrid-SMLMT, that does full
fine-tuning. In the 8-shot setting, Meta-Adapters are still competitive with full fine-tuning, albeit
slightly worse, and better than both the parameter-efficient baselines, Adapter and Adapter-Fusion,
by a large margin. Note, that Adapter-Fusion are better at transfer learning than regular Adapter,
however, they are less parameter-efficient than the other models.

Results on Individual Tasks. Table 1 shows the results on the individual tasks. For sentiment and
rating classification tasks on Amazon reviews, we show the average results across the 4 domains to
avoid repetition of related tasks. In the 4-shot setting, Meta-Adapters performance is better than all
the other parameter-efficient methods on 9 out the 11 task types, and is competitive with the full
fine-tuning approach. In the 8-shot setting, Meta-Adapters are better than Adapter or Adapter-Fusion
in 7 out of the 11 task types. Overall, these results indicate that Meta-Adapters lead to accurate
few-shot learning compared to other parameter-efficient alternatives. Compared to full fine-tuning,
we see that Meta-Adapters perform competitively on most tasks, and the largest drop in accuracy is
on the Scitail task.

Comparison with prompting (GPT-3). An alternative to fine-tuning for few-shot learning that
has been very successful is few-shot prompting (Radford et al., 2019; Brown et al., 2020). While
prompting saves on the cost of fine-tuning the model, it typically requires very large models to work
competitively (Brown et al., 2020) and suffers from poor inference cost due to the larger model size.
We compare fine-tuning Meta-Adapters with few-shot prompting the GPT-3 models. Since querying

†https://github.com/theTB/meta_adapters
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Task 𝑁 𝑘 Adapter Adapter-Fusion HSMLMT Meta-Adapters
0.03x 0.41x 1.00x 0.01x

CoNLL 4
4 53.4 ± 7.8 41.6 ± 4.4 59.9 ± 5.4 64.1 ± 2.9

8 69.2 ± 4.0 63.6 ± 5.8 70.4 ± 3.5 71.3 ± 3.1

16 78.1 ± 3.5 78.4 ± 3.8 79.4 ± 1.5 77.9 ± 1.4

Restaurant 8
4 50.0 ± 4.3 36.5 ± 4.3 56.3 ± 3.7 55.9 ± 5.0

8 70.6 ± 2.8 61.3 ± 8.6 70.0 ± 2.4 67.6 ± 2.5

16 76.6 ± 3.1 68.7 ± 6.2 76.8 ± 2.2 73.9 ± 1.7

Airline 3
4 51.2 ± 9.7 62.7 ± 6.1 60.6 ± 6.8 60.9 ± 5.8

8 61.1 ± 8.3 67.1 ± 4.6 66.9 ± 6.2 66.3 ± 3.1

16 68.3 ± 4.2 69.1 ± 3.0 70.1 ± 3.1 67.3 ± 2.6

Disaster 2
4 56.1 ± 6.4 56.6 ± 7.7 63.1 ± 8.0 61.6 ± 10.1

8 62.7 ± 6.5 60.8 ± 7.4 66.3 ± 4.9 66.1 ± 4.8

16 69.1 ± 3.0 65.5 ± 7.1 72.1 ± 3.2 70.7 ± 3.8

Political Audience 2
4 51.9 ± 3.1 51.8 ± 3.1 55.9 ± 4.8 57.0 ± 4.9

8 55.6 ± 2.7 57.1 ± 4.5 59.6 ± 4.6 59.9 ± 2.8

16 61.3 ± 4.5 57.0 ± 3.8 62.6 ± 3.7 62.7 ± 2.5

Political Bias 2
4 60.0 ± 6.0 56.3 ± 6.1 60.3 ± 7.6 61.2 ± 6.9

8 62.0 ± 4.8 61.9 ± 4.2 65.8 ± 4.9 62.7 ± 5.4

16 65.5 ± 3.3 65.5 ± 3.7 68.5 ± 2.1 66.4 ± 2.3

Political Message 9
4 17.6 ± 2.0 19.6 ± 2.2 17.5 ± 2.0 18.0 ± 1.8

8 20.7 ± 1.8 20.9 ± 2.7 19.5 ± 2.0 19.8 ± 2.0

16 24.2 ± 2.2 23.6 ± 3.2 21.6 ± 2.5 20.6 ± 1.8

Emotion 13
4 11.6 ± 1.3 11.7 ± 1.8 12.2 ± 1.3 12.3 ± 1.7

8 14.3 ± 1.7 15.6 ± 2.7 13.7 ± 1.6 12.8 ± 0.9

16 15.9 ± 1.0 16.4 ± 2.3 14.9 ± 0.9 13.2 ± 1.1

Scitail 2
4 53.8 ± 6.5 53.7 ± 05.9 80.0 ± 4.9 78.4 ± 4.3

8 58.4 ± 4.3 57.4 ± 10.2 82.0 ± 1.0 78.1 ± 1.8

16 64.3 ± 4.7 70.5 ± 4.4 82.8 ± 1.0 79.5 ± 2.2

Amazon Sentiment 2
4 60.7 ± 6.3 80.7 ± 2.9 81.7 ± 2.9 81.7 ± 2.7

8 66.5 ± 6.3 80.3 ± 4.9 83.9 ± 1.1 82.4 ± 2.1

16 75.4 ± 4.5 82.7 ± 2.5 84.3 ± 1.1 83.5 ± 1.0

Amazon Rating 3
4 43.5 ± 8.3 52.9 ± 9.7 56.6 ± 8.0 55.8 ± 7.3

8 45.2 ± 7.2 58.0 ± 5.9 59.3 ± 5.4 57.8 ± 5.7

16 53.7 ± 5.2 61.3 ± 3.1 62.0 ± 3.0 60.9 ± 3.8

Overall Average
4 48.4 56.8 59.9 60.0
8 54.2 59.9 64.0 62.7
16 61.1 64.2 66.7 65.3

Table 1: 𝑘-shot accuracy on downstream classification tasks not seen in training. 0.01x indicates that
the model fine-tunes 1% parameters per task compared to Hybrid-SMLMT.
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the GPT-3 models has non-trivial costs‡, especially for the largest model, we use a subset of the tasks
for comparison and only compute accuracy on 2 of the 10 random splits for each task. We compare
across all the four model sizes, all of which are orders of magnitude larger than the BERT-base
model used in Meta-Adapters. Prompts used for GPT-3 evaluations are given in the supplementary.
Note that the comparisons were done with the original GPT-3 model series – Ada, Babbage, Curie,
DaVinci (as of December 2021) and not with the newer models available in the OpenAI API. Results
are shown in Table 2. The fine-tuning based transfer-learning baselines considered here perform
better than the three smaller sized GPT-3 models and are competitive with the largest model. In
particular, on average, the meta-learning method HSMLMT which involves full fine-tuning performs
best, while only using a pre-trained transformer that is 1590× smaller than the GPT-3 DaVinci model.
Meta-Adapters retains that performance while only fine-tuning a fraction of the parameters. These
results show that fine-tuning Meta-Adapters is a promising alternative to prompting giant transformer
models which have significant latency and compute costs.

Task GPT-3 Adapter-Fusion HSMLMT Meta-AdapterAda Babbage Curie DaVinci
350M∗ 1300M∗ 6700M∗ 175000M 110M 110M 110M

CoNLL 36.9 39.5 68.4 80.0 67.8 71.2 72.0
Sentiment 75.2 71.5 90.0 94.3 83.4 82.7 84.2

Airline 52.5 48.2 68.9 67.1 69.7 64.9 68.4
Political Bias 50.3 50.3 65.8 62.9 66.9 67.2 63.9

Scitail 56.4 60.7 56.1 60.1 62.7 82.6 79.6

Overall Average 54.3 54.0 69.8 72.9 70.1 73.7 73.6

Table 2: Comparing fine-tuning with few-shot prompting. The GPT-3 models use few-shot prompting
while the others use fine-tuning. Sizes of the models are shown below their names. On average,
meta-learned models which fine-tune perform better while being much smaller in size. Meta-
Adapter performs competitively with the largest GPT-3 model that is 1590× its size. ∗sizes for
the smaller GPT-3 models are guess estimates from Gao (2021).

Model Adapter Trainable Fine-tuned Meta-Training
Size Params Params / Task Speedup

Hybrid-SMLMT — 110,270,354 53,582,721 1.00x
Meta-Adapters 8 1,453,588 351,936 0.75x
Meta-Adapters 16 2,043,796 647,040 0.85x

Adapter-Fusion 48 7,457,853 21,844,226 —
Adapter 48 — 1,486,658 —

Table 3: Summary of sizes of adapters, trainable adapter param-
eters, fine-tuned adapter parameters and the speedup
in training when using Meta-Adapters compared with
Hybrid-SMLMT.

Summary:. Meta-Adapters are the
most parameter-efficient (Figure 1),
fine-tuning only 0.6% of total model
parameters per task, and are more ac-
curate at few-shot fine-tuning than
competitive approaches of Adapter
and Adpater-Fusion while using less
parameters to fine-tune. Table 3, sum-
marizes key properties of the various
models evaluated. Meta-Adapters is
also faster in training time compared
to Hybrid-SMLMT, a full fine-tuning
based meta-learning approach, as Meta-Adapters have lesser number of parameters to train. We also
compared Meta-Adapters with few-shot prompting of a giant pre-trained transformer GPT-3 (Table 2)
and found that Meta-Adapters perform better while working with much smaller transformers.

4.3 Ablations

‡https://openai.com/api/pricing/
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Model Vocab Adapter Size 4-shot 8-shot
Adapter Uncased 48 55.6 64.3
Adapter Uncased 16 55.1 57.6

MAML-Adapters Cased 16 66.1 72.5
Meta-Adapters Cased 16 68.2 74.6
Meta-Adapters Uncased 8 69.7 74.6
Meta-Adapters Uncased 16 74.6 77.5
Meta-Adapters Uncased 32 70.3 76.5

Table 4: Ablations for Meta-Adapter.

We analyze how the performance
of Meta-Adapters and the base-
lines varies with some crucial hyper-
parameters. We consider validation
data from 3 tasks: CoNLL, Scitail,
and Amazon Electronics, to perform
the ablations and report the overall av-
erage accuracy using 10 different few-
shot training sets for each task.

Meta-learning Adapter initializa-
tion without Meta-Adapters. First we consider whether Meta-Adapters contribute to improvements
in few-shot learning. For this we consider a meta-learning model that skips the Meta-Adapters alto-
gether but still learns an initialization of adapter modules for few-shot fine-tuning. This approach is
akin to adding adapter to an existing model and using the MAML (Finn et al., 2017) approach to learn
their initialization. Table 4 compares Meta-Adapters with this ablation, termed MAML-Adapters.
We can see that this leads to a large drop in average accuracy in both 4-shot and 8-shot settings, while
there is no other benefit in parameter-efficiency from this approach. This shows that Meta-Adapters
help in improving the few-shot accuracy.

Size of Adapter and Meta-Adapters. Next we consider how the sizes of the adapters effect accuracy.
Prior work on Adapter have explored this in-depth (Houlsby et al., 2019; Pfeiffer et al., 2021), and
larger adapters often work better. We consider two size of adapters, 48 and 16. We use size 48 as it is
also the size that worked best for Adapter-Fusion and we use the smaller size 16 to compare with the
Meta-Adapters. Note that in the few-shot setting, it is not feasible to find the best size for each given
task, as in prior work (Houlsby et al., 2019), due to unavailability of validation data. Comparing
the two Adapter sizes, in Table 4, we find that larger adapter performs better, specially in the 8-shot
setting. However, Meta-Adapters allow comparatively better accuracy even with increased efficiency.
We can see that at the same size of 16, Meta-Adapters is better by a large margin than Adapter. As
we vary the size of the Meta-Adapters, we find that even at the smaller size of 8, they are still better
than Adapter of size 16, 48. Interestingly, we observed better performance of Meta-Adapters at size
16 than at size 32.

Effect of model vocabulary. An interesting axis that affects overall performance is the choice of the
pre-trained model vocabulary. We explored cased and uncased BERT-base models in conjunction
with Meta-Adapters. We found that the uncased models consistently performed much better than
the cased models (Table 4). This is likely because the downstream classification tasks often contain
noisy user generated text. The choice of uncased BERT model also makes our results comparable
with prior work (Pfeiffer et al., 2021).

5 Related Work
Since their introduction, adapters (Houlsby et al., 2019) have been widely applied (Houlsby et al.,
2019; Stickland and Murray, 2019; Bapna and Firat, 2019; Rücklé et al., 2020) as a parameter-
efficient finetuning method for large transformer-based (Vaswani et al., 2017) pre-trained models,
such as BERT (Devlin et al., 2019). Prefix-tuning (Li and Liang, 2021), also known as prompt-tuning
(Lester et al., 2021), is another line of popular light-weight finetuning methods which fine-tune
continuous task-specific representations while keeping the large pre-trained parameters untouched.
In contrast to adapters which insert task-specific parameters in between layers, these models pre-pend
a trainable task-specific representations to either the input layer (Lester et al., 2021) or on every layer
(Li and Liang, 2021). While these methods are promising in terms of parameter-efficient finetuning
methods, with its active research progress in multi-task (Houlsby et al., 2019; Stickland and Murray,
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2019) and transfer learning (Pfeiffer et al., 2020), we choose adapter framework to develop our
proposed approach as prompt-tuning has been shown to only exceed fine-tuning at very large model
scales (Lester et al., 2021).

Multi-task adapter (Stickland and Murray, 2019) is perhaps the first work that applied adapters to
multi-task learning. In this framework, given 𝑀 tasks, pre-trained parameters 𝜃 are fine-tuned along
with a set of 𝑀 task-specific parameters. However, in follow-up work, Adapter-Fusion (Pfeiffer
et al., 2021) shows that a model that simply combines adapters from multiple tasks through attention,
without updating the pre-trained model 𝜃 , performs better than multi-task adapters. The idea in
Adapter-Fusion is that rather than fine-tuning the shared 𝜃 parameters for multi-task, they instead
learn an adapter-fusion layer that combines all 𝑀 source task adapters to benefit each of the tasks.
While Adapter-Fusion has the capability to transfer to unseen target tasks outside of the 𝑁 source
tasks, Pfeiffer et al. (2021) only test it when target task is part of the source tasks. In this paper, by
choosing Adapter-Fusion as our baseline, we test its efficacy in few-shot learning of new target tasks.
While Adapter-Fusion is much more efficient than multi-task adapters, it uses a larger amount of
parameters compared to standard adapters due to fusion layers working on the full dimension of the
pre-trained model, e.g. 768 for BERT-base.

Within meta-learning literature (Hospedales et al., 2020), our work is related to methods (Kossaifi
et al., 2019; Flennerhag et al., 2020) that embed tensor projections in convolution networks for
improved gradient conditioning in a meta-learning model. Other approaches (Mishra et al., 2018;
Zintgraf et al., 2019; Lee and Choi, 2018; Raghu et al., 2019; Oh et al., 2020; Chen et al., 2021)
have explored meta-learning with shared paramaters across tasks with goals of better convergence
or avoiding over-fitting. However, these prior methods don’t leverage pre-trained models and are
not developed for parameter-efficient fine-tuning. In particular, Raghu et al. (2019) found that on
computer vision meta-learning benchmarks only adapting the classifier head is sufficient. Subsequent
work showed that this does not hold on more difficult benchmarks (Oh et al., 2020) or the NLP tasks
(Bansal et al., 2020a) considered here.

Meta-learning methods (Vinyals et al., 2016; Santoro et al., 2016; Finn et al., 2017) have often
been employed to enable better few-shot learning on many NLP tasks (Han et al., 2018; Gao et al.,
2019; Dou et al., 2019; Bansal et al., 2020a,b; Ye et al., 2021). We compare with a recent few-shot
learning work in NLP (Bansal et al., 2020b) that uses the MAML (Finn et al., 2017) approach on
self-supervised tasks for few-shot classification. Their approach isn’t parameter efficient whereas
the proposed approach using Meta-Adapters performs comparably with a fraction of parameters
for fine-tuning. Alternative methods for few-shot learning include very large pre-trained language
models like GPT-3 (Brown et al., 2020) that don’t fine-tune any parameters and use natural language
prompts for few-shot learning. However they can be sensitive to prompt-orders (Lu et al., 2021),
have a limited context length due to which they don’t scale to larger datasets, and have high latency
in inference due to their size. Extensions of Meta-Adapters to the soft-prompting approach (Li and
Liang, 2021), in few-shot settings, can be a promising avenue for future work.

6 Limitations and Broader Impact

We introduced Meta-Adapter, a parameter-efficient fine-tuning method for few-shot learning that is
competitive with contemporary transfer learning methods while only fine-tuning a fraction (0.6%) of
the model parameters for each task. Thus, Meta-Adapter can be deployed to serve hundreds of tasks
simultaneously with a shared pre-trained model, while only doubling the total number of parameters
post fine-tuning. While the Meta-Adapter layers requires additional training, they make downstream
fine-tuning more efficient, reducing the carbon footprint for fine-tuning which can quickly surpass
the pre-training footprint when these models are served for millions of customers to fine-tune on
their tasks.
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7 Reproducibility Checklist
1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]

(c) Did you discuss any potential negative societal impacts of your work? [Yes]

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?
https://automl.cc/ethics-accessibility/ [Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental
results, including all requirements (e.g., requirements.txt with explicit version), an
instructive README with installation, and execution commands (either in the supplemental
material or as a URL)? [Yes] See Supplementary Materials

(b) Did you include the raw results of running the given instructions on the given code and data?
[Yes] All results are using the provided code.

(c) Did you include scripts and commands that can be used to generate the figures and tables in
your paper based on the raw results of the code, data, and instructions given? [Yes] See Code
ReadMe

(d) Did you ensure sufficient code quality such that your code can be safely executed and the
code is properly documented? [Yes]

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed
hyperparameter settings, and how they were chosen)? [Yes] See Supplementary.

(f) Did you ensure that you compared different methods (including your own) exactly on
the same benchmarks, including the same datasets, search space, code for training and
hyperparameters for that code? [Yes] See 4.1
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(g) Did you run ablation studies to assess the impact of different components of your approach?
[Yes] See 4.3

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] See 4.1

(i) Did you compare performance over time? [Yes]

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] See 4.1

(k) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] See Table 1

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A]

(m) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [Yes] See 4.3 and 3

(n) Did you report how you tuned hyperparameters, and what time and resources this required
(if they were not automatically tuned by your AutoML method, e.g. in a NAS approach; and
also hyperparameters of your own method)? [Yes] See Supplementary.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes]

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] We are using publicly released datasets.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if applica-
ble? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

A Additional Implementation Details
Hyper-parameters used in the meta-training phase are given in Table 5.

For fine-tuning on target tasks we tune need to specify the number of steps. Instead of tuning the
number of steps for Meta-Adapter and Hybrid-SMLMT Bansal et al. (2020b), we found it better to
instead tune a training loss threshold and fine-tune until the loss reaches that threshold. The loss
thresholds for Meta-Adapter are as follows: (1) 4-shot: 1e-3 ; (2) 8-shot: 1e-2 ; (3) 16-shot: 1e-2.
Following Bansal et al. (2020b), we use a batch-size of 4 and scale the batch-size with the number of
labels per task.

Fine-tuning hyper-parameters for adapters and adapter-fusion include the learning rate and
number of epochs. We sweep over values for learning rates in {1𝑒 − 3, 1𝑒 − 4, 1𝑒 − 5} and epochs in
{10, 20, 50, 100, 150, 200} to pick the best hyper-parameters for each 𝑘-shot.
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Hyper-parameter Value
Tasks per batch 16

Attention dropout 0.1
Hidden Layer Dropout 0.1

Outer Loop Learning Rate 1e-05
Inner Loop Steps 6

Meta-training Steps 540k
Lowercase text True

Sequence Length 128
Learning-rate Warmup 10% of steps

Number of SMLMT Tasks 4 Million��D𝑡𝑟
𝑇

�� 60��D𝑣𝑎𝑙
𝑇

�� 10
Number of classes for SMLMT tasks [2,3,4,5]
GLUE vs SMLMT sampling ratio 𝜆 0.25

Table 5: Hyper-parameters used in meta-training.

B Datasets

All dataset sources used in meta-training or evaluations are publicly available.

Evaluation dataset splits were taken from Bansal et al. (2020a). Data statistics and original
sources are listed in Table 6.

Unsupervised meta-training tasks were constructed following Bansal et al. (2020b) from
the Wikipedia corpus dump at: https://www.tensorflow.org/datasets/catalog/
wikipedia. Example of a task is given in Fig. 3.

Figure 3: Example of a cloze-style task in
SMLMT from Bansal et al. (2020b).
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Dataset Labels Training Size Validation Size Testing Size Source
Amazon Review Domains 2 800 200 1000 Blitzer et al. (2007)

MRPC 2 3669 409 — Dolan and Brockett (2005)
RTE 2 2491 278 — Dagan et al. (2005); Haim et al. (2006); Giampiccolo et al. (2007, 2008)

Scitail 2 23,596 1,304 2,126 Khot et al. (2018)
Airline 3 7320 — 7320 https://www.figure-eight.com/data-for-everyone/
Disaster 2 4887 — 4887 https://www.figure-eight.com/data-for-everyone/

Political Bias 2 2500 — 2500 https://www.figure-eight.com/data-for-everyone/
Political Audience 2 2500 — 2500 https://www.figure-eight.com/data-for-everyone/
Political Message 9 2500 — 2500 https://www.figure-eight.com/data-for-everyone/

Emotion 13 20000 — 20000 https://www.figure-eight.com/data-for-everyone/
CoNLL 4 23499 5942 5648 Sang and De Meulder (2003)

MIT-Restaurant 8 12474 — 2591 Liu et al. (2013) https://groups.csail.mit.edu/sls/downloads/restaurant/

Table 6: Dataset statistics for all the datasets used in our analysis. "-" represent data that is either not
available or not used in this study.

C Prompts for GPT-3

SciTail
Please classify a piece of text into categories.

Text: Skin Mesh Human skin has a layered structure consisting of the dermis and epidermis.
Question: Most skin structures originate in the dermis. True or False?
Answer: False
---
Text: The four basic tissue types are epithelial tissue, connective tissues, nervous tissue, and muscle
tissue.
Question: Four types of tissue are found in animals. True or False?
Answer: True
---
Text: Trees produce oxygen as a byproduct through the photosynthesis process.
Question: Oxygen is made by trees and other plants during photosynthesis. True or False?
Answer:

Sentiment Electronics
Please classify a piece of text into categories.

Text: The mouse is perfect for games. I use it to play ET and is great. The software provided by
Logitech is configurable in all ways
Category: Positive
---
Text: I purchased this product and couldn’t get it to work on a PC, laptop, or pda ( cingular 8125 ).
Not only does it not register in any SD / MiniSD card reader, but the craftsmanship appears to be
suspect as well. I am currently pursuing a refund
Category: Negative
---
Text: Code length of this product is very small. I had to buy an extention cord. The sound quality is
not bad
Category:

Airline
Please classify a piece of text into categories.

Text: @SouthwestAir yall still fly in the cold right?
Category: Neutral
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---
Text: @SouthwestAir Great, thank you. Best of luck dealing with this horrible winter.
Category: Positive
---
Text: @united I was on UA3782 and it was Cancelled Flightled. I’m waiting at customer service.
Category: Negative
---
Text: @SouthwestAir please reply to my DM
Category:

Political Bias
Please classify a piece of text into categories.

Text: The 1st Amendment protects # ReligiousFreedom for everyone & amp ; no American should
be compelled to violate their convictions. #HobbyLobby
Category: Political
---
Text: Thanks for your support! MT SenOrrinHatch : Today is # NationalPediatricBrainCancer-
AwarenessDay. Hope you’ll join me in fighting this disease
Category: Neutral
---
Text: Regrettably, the House failed to approve its proposal for a new #FarmBill. Frankly, I was
shocked by the outcome.
Category:

CoNLL Entity Typing
Please classify a piece of text into categories.

Text: India. Classify: India.
Category: Location
---
Text: Leading rider Jason Weaver received a 21 - day ban from the disciplinary committee of the
Jockey Club on Wednesday. Classify: Jason Weaver.
Category: Person
---
Text: Balloting inside Bosnia is scheduled for September 14, when citizens are slated to elect
municipal and cantonal assemblies, separate Moslem - Croat and Serb parliaments, a national House
of Representatives and a three - man Presidency. Classify: House of Representatives.
Category: Organization
---
Text: Leading stories in the Greek financial press :. Classify: Greek.
Category: Other
---
Text: HELIBOR INTEREST RATES LARGELY UNCHANGED. Classify: HELIBOR.
Category:

Table 7: Prompts used for GPT-3 on the different tasks.
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