Meta-Adapter: Parameter Efficient Few-shot Fine-tuning through Meta-Learning

Anonymous

Anonymous Institution

Abstract Consistent improvements in the representational capacity of large pre-trained transformers has made it increasingly viable to serve these models as shared priors that can be fine-tuned on a large number of downstream tasks. However, fine-tuning the entire model for every task of interest makes a copy of all the model parameters, rendering such scenarios highly impractical. Recently introduced Adapter methods propose a promising alternative, one where only a small number of additional parameters are introduced per task specifically for fine-tuning. However, Adapter often require large amounts of task-specific data for good performance and don’t work well in data-scarce few-shot scenarios. In this paper, we approach parameter-efficient fine-tuning in few-shot settings from a meta-learning perspective. We introduce Meta-Adapter, which are small blocks of meta-learned adapter layers inserted in a pre-trained model that re-purpose a frozen pre-trained model into a parameter-efficient few-shot learner. Meta-Adapter perform competitively with state-of-the-art few-shot learning methods that require full fine-tuning, while only fine-tuning 0.6% of the parameters. We evaluate Meta-Adapter along with multiple transfer learning baselines on an evaluation suite of 17 classification tasks and find that they improve few-shot learning accuracy by a large margin over competitive parameter-efficient methods, while requiring significantly lesser parameters for fine-tuning.

1 Introduction

Pre-trained models in natural language processing (NLP) have consistently increased in size over time (Devlin et al., 2019; Raffel et al., 2019; Brown et al., 2020). These models are often used as initialization for transfer learning, where the initialized model is fine-tuned on a task of interest. However, when such pre-trained models are intended to be served for many downstream tasks at once, such as in a cloud-based machine learning (ML) service, then full fine-tuning necessitates keeping as many parameter copies as the number of tasks – rendering them extremely inefficient. An alternative to full fine-tuning is Adapter (Houlsby et al., 2019). Adapter add a small number of randomly initialized parameters to a pre-trained model such that fine-tuning only the Adapter, freezing the rest of the pre-trained model, still performs competitively with full fine-tuning.

In this paper, we consider the scenario where we want to deploy a shared model for a large number of tasks, in an online setting, such that models can be quickly adapted to target tasks without access to a lot of data. An example of such a setting is a cloud-based ML service which allows users to specialize models to their own NLP tasks with scarce training data. Adapter are particularly useful in such scenarios as they allow sharing a pre-trained model backbone across tasks. However, adapter are randomly initialized blocks of parameters which can perform poorly when the target task has few examples. Such scenarios pose a dual problem: one of enabling parameter efficient fine-tuning, and another of accurate few-shot learning.

Meta-learning (Schmidhuber, 1987; Bengio et al., 2003; Thrun and Pratt, 2012) is often employed to learn effective few-shot learning models, that can generalize to new unseen tasks with small amounts of labelled data by learning from a distribution of other related tasks. Within NLP, meta-learning models have been developed for few-shot learning on a diverse range of NLP tasks (Han...
et al., 2018; Brown et al., 2020; Bansal et al., 2020a). Of particular interest in this work are gradient-based methods (Finn et al., 2017) that learn a model initialization to enable few-shot learning with a few steps of gradient descent. By directly optimizing the training for few-shot fine-tuning, these methods help mitigate the train-test mismatch in few-shot learning and enable effective generalization to new few-shot tasks. However, existing applications of such meta-learning methods (Bansal et al., 2020a,b; Dou et al., 2019) don’t leverage existing pre-trained models and fine-tune the entire model making them inefficient when applied to many tasks.

We thus develop a meta-learning model that enables accurate and parameter-efficient few-shot learning – utilizing a shared, frozen pre-trained model backbone that can rapidly adapt to downstream tasks with only a handful of additional parameters and labeled data per new task. Our approach re-purposes an existing pre-trained transformer model into an efficient few-shot learner by introducing Meta-Adapter, a small number of meta-learned parameters that modulate the pre-trained models activations to make them effective for few-shot learning. Our objective is to enable parameter efficient few-shot learning at inference time; the Meta-Adapter are trained to “prime” the regular adapter towards this objective on a wide variety of few-shot tasks resembling the target tasks (Section 3). Moreover, Meta-Adapter are more efficient to train than contemporary meta-learning models as they only train a subset of the full model. On a suite of 17 few-shot classification tasks, our results indicate that Meta-Adapter are better than randomly initialized adapter (Houlsby et al., 2019) for few-shot learning, are more accurate and efficient than multi-task fusion adapter (Pfeiffer et al., 2021), and perform competitively with previous state-of-the-art meta-learning methods that involve full fine-tuning (Bansal et al., 2020b), while only adding 0.6% model parameters per task (Figure 1).

2 Background

Adapter (Houlsby et al., 2019) are blocks of feedforward layers, comprising of a downward projection followed by an upward projection, that are added between subsequent layers of a pre-trained transformer model. Let $\theta$ denote the parameters of the transformer and $\phi$ the parameters of the adapter. Then given a target task $T$, with some data, $D_T^{tr}$, and loss function, $L_T(\cdot)$, adapter minimize the following objective using a gradient descent routine, termed as fine-tuning:

$$\min_{\phi} L_T(\theta, \phi; D_T^{tr})$$

where adapter $\phi$ are often initialized randomly (Houlsby et al., 2019). Note that the size of $\phi \ll \theta$, leading to parameter savings when the same model parameters $\theta$ are re-used for many tasks $\{T\}$.

However, as $\phi$ are randomly initialized they may not perform well in the few-shot setting where $D_T^{tr}$ is very small, for instance when there are only 4 examples per label. Moreover, the original
pre-trained model is not optimized for few-shot learning and can lead to sub-optimal performance (Bansal et al., 2020b).

Alternatively, few-shot problems are often formulated as meta-learning problems. We refer the reader to Hospedales et al. (2020) for a comprehensive review. Our work builds on model agnostic meta-learning (MAML) (Finn et al., 2017) which, given a distribution over tasks, learns a model initialization for better few-shot learning with a few steps of gradient descent. This involves an inner loop of task-specific fine-tuning and an outer loop of optimizing the inner loop performance across tasks. Note that the inner loop corresponds directly to the inference method applied to any new task, that is, gradient-based fine-tuning. MAML-based methods have been explored in prior work for improving few-shot learning (Dou et al., 2019; Bansal et al., 2020b). However, these methods require fine-tuning the entire network at inference time and optimizing the entire model parameters at training time. This makes fine-tuning very inefficient when applied to many tasks at once and also doesn’t leverage existing self-supervised models pre-trained on large amounts of unlabeled data.

3 Meta-Adapter

Our goal for parameter efficient learning is two-fold: (1) leverage and re-purpose existing pre-trained model into a better few-shot learner; (2) make fine-tuning parameter efficient by sharing the pre-trained model backbone and introducing only a fraction of parameter overhead for each new task.

We thus introduce Meta-Adapter, which are meta-learned adapter layers inserted between layers of a frozen pre-trained model to improve performance in few-shot learning. Meta-Adapter have the same architecture as feed-forward adapter layers (Houlsby et al., 2019) and differ in their placement in the model architecture, their training and usage. Whereas adapter are randomly initialized and fine-tuned per task, Meta-Adapter are trained parameters that are not fine-tuned on new tasks but instead modulate the activations of the pre-trained model in the forward and backward pass during fine-tuning to allow better few-shot learning. Figure 2 shows an overview of the approach.

Meta-Adapter operate in conjunction with regular adapter and are trained to enable parameter-efficient few-shot learning. In particular, consider a transformer model layer with adapter added after the two sets of feed-forward blocks, as shown in Fig.2. The Meta-Adapter layers sandwich the adapter layers from above and below, and consist of a two-layer feed-forward network with a downward projection bottleneck. The bottleneck dimension is typically small, a hyper-parameter ≤ 32 in our experiments, that keeps the number of Meta-Adapter parameters manageable. During the Meta-Adapter training phase, it is optimized to improve the regular adapter fine-tuning with few-shot training task data. During inference, each few-shot target task is then solved by fine-tuning only the regular adapter, freezing the rest of the model to achieve parameter efficiency.

Denoting $\omega$ as the Meta-Adapter parameters, $\phi$ as the adapter parameters, and $\theta$ as the pre-trained transformer parameters, the objective for each individual task, $T$, remains similar to regular adapter:

$$\phi_T \leftarrow \arg \min_{\phi} L_T(\theta, \phi, \omega; D_T)$$

(2)
We use the episodic framework (Vinyals et al., 2016; Finn et al., 2017) for solving the problem in a few-shot setting. This leads to the following inner and outer loop updates for training the Meta-Adapter:

\[
\begin{align*}
\text{Inner:} & \quad \phi' \leftarrow \phi - \alpha \nabla_{\phi} L_T(\theta, \phi, \omega, D_T^{ir}) & \# \text{fine-tune Adapter} \\
\text{Outer:} & \quad \omega \leftarrow \omega - \beta \nabla_{\omega} E_T(\theta, \omega, D_T^{val}) & \# \text{train Meta-Adapter} \\
& \quad \phi \leftarrow \theta - \beta \nabla_{\phi} E_T(\theta, \omega, \phi', D_T^{val}) & \# \text{train Adapter initialization} \\
& \quad \alpha \leftarrow \theta - \beta \nabla_{\alpha} E_T(\theta, \omega, \phi', D_T^{val}) & \# \text{train fine-tuning learning-rates}
\end{align*}
\]

The inner loop (4) is carried out for multiple steps of gradient descent. Through these steps, note that we also learn an initialization of the adapter \(\phi\) in preparation for few-shot learning, in addition to training the Meta-Adapter \(\omega\). Thus, there is no random initialization for adapter, nor the selection of hyper-parameters for the initialization (like scale), that needs to be set for each downstream task. In addition, we also treat the inner loop learning rate \(\alpha\), in (4), as a learnable parameter. We use a different learning rate for each adapter in each layer. The inner loop directly corresponds to the fine-tuning procedure on any new task, thus this removes the requirement to set another crucial hyper-parameter for each new task as the learned learning rates are re-used for fine-tuning on new tasks.

**Training Tasks:** Meta-learning the Meta-Adapter (equation 4, 5) requires a distribution of tasks \(\mathcal{P}(T)\), as is typical in meta-learning methods (Vinyals et al., 2016; Finn et al., 2017). Tasks are sampled from this distribution to learn models for few-shot learning. Ideally, this distribution of tasks should be large and diverse to enable learning of effective models that can generalize to new tasks. We follow prior work (Bansal et al., 2020b) and use a combination of supervised and unsupervised tasks to provide a diverse distribution of training tasks. The supervised tasks come from the set of GLUE tasks (Wang et al., 2018) that comprise of 8 diverse tasks requiring sentence-level understanding. In addition we use the cloze-style SMLMT tasks proposed in Bansal et al. (2020a). These are self-supervised, blank-filling tasks (Devlin et al., 2019), that are automatically created from unlabeled text and were shown to be a useful source of meta-training tasks for few-shot learning. We thus create millions of such self-supervised tasks and combine them with supervised GLUE tasks for training the Meta-Adapter. In an episode of training, we sample a GLUE task with probability \(\lambda\) or a self-supervised task with probability \(1 - \lambda\).

**Summary:** Meta-Adapter are meta-learned adapter layers that are trained to enable parameter efficient few-shot learning. They are inserted in a pre-trained transformer and used alongside the regular adapter. The training of Meta-Adapter proceeds in meta-learning episodes. In each episode a training task is sampled, the adapter are fine-tuned on the task data (4) and the performance of the fine-tuned model, as evaluated by the loss on task’s validation data, is used as the error to train (5) the parameters of the Meta-Adapter. In addition, this training also learns the initialization of the adapter.
used for fine-tuning along with the learning rate to use for fine-tuning the adapter. At inference time, parameters of the pre-trained model and the Meta-Adapter are fixed, and the adapter are fine-tuned for each target task using the learned learning rates.

4 Experiments

In this section, we evaluate the Meta-Adapter for their utility in few-shot learning of new unseen tasks and compare them with contemporary methods that utilize adapter as well as meta-learning methods for few-shot learning.

4.1 Experimental Setup

Unlike existing applications of adapter (see section 5), our work evaluates the utility of adapter in a transfer learning setting where only few examples are available for each task. For this, we consider a suite of 17 downstream classification tasks. The tasks are obtained from the few-shot datasets released\(^1\) by prior work on few-shot learning (Bansal et al., 2020a), making our results comparable with previously published results on these tasks. All evaluations are in the \(k\)-shot setting, with \(k = 4, 8, 16\), where \(k\) is the number of examples per label.

**Evaluation Tasks.** The downstream classification tasks fall into the following categories: (1) Sentiment classification (4 tasks): 4 domains of sentiment classification on Amazon reviews; (2) Rating classification (5 tasks): 4 domains of ternary rating classification (high, medium, low) on Amazon reviews and classifying tweets about Airline into ternary sentiment; (3) Entity typing (2 tasks): two domains (news and restaurant queries) of classifying phrases in a sentence into entity types; (4) Natural language inference (1 task): scientific domain dataset for entailment classification; (5) Political classification (3 tasks): categorizing tweets into whether or not it has a political bias, classifying the intended audience for a political tweet (constituency, national), and classifying the substance of the text into fine-grained topics; (6) Other text classification (2 tasks): classifying tweets into whether or not they indicate a disaster and fine-grained classification into emotions.

**Models Evaluated.** We evaluate some state-of-the-art models for both parameter-efficient fine-tuning as well as few-shot learning in our experimental setup. We consider the following models:

1. Adapter (Houlsby et al., 2019): The original adapter that only fine-tunes the adapter parameters.
2. Adapter-Fusion (Pfeiffer et al., 2021): A recent approach that trains adapter on multiple tasks, e.g. GLUE tasks, and then learns to compose them using attention mechanism (see section 5).
3. Hybrid-SMLMT (Bansal et al., 2020b): A meta-learning approach for few-shot learning that fine-tunes almost all parameters and does not include any adapter.
4. Meta-Adapter: the proposed model

**Implementation Details.** Note that Adapter-Fusion (Pfeiffer et al., 2021) wasn’t evaluated in the few-shot setting, however, since it combines many trained multi-task adapter together, it can be a competitive alternative for few-shot scenarios. We use their released GLUE fusion adapter and their released code for evaluations. For fair comparisons, Adapter-Fusion and Hybrid-SMLMT only use GLUE supervised tasks for their training. All the compared methods use the same underlying BERT model, so that differences in performance are not due to using different models. We use the released Hybrid-SMLMT code to train this model as the released model used cased BERT model while all the other models used uncased BERT models. Our implementation results are comparable with those reported in Bansal et al. (2020b). Note that Hybrid-SMLMT fine-tunes about half of the

\(^1\)https://github.com/iesl/leopard
parameters, as they found it beneficial to freeze alternate layers during fine-tuning (Bansal et al., 2020b). Hyper-parameters for the Meta-Adapter are available in the Supplementary. We will publicly release our trained models and code.

4.2 Results

We evaluate the baseline models and the proposed approach on the evaluation tasks. Each task is evaluated using 10 random few-shot training sets for \(k = 4, 8, 16\), totalling 340 evaluations across the 17 tasks for each model. First, we summarize the overall results across all the tasks. Then we perform several ablations to better understand the performance of Meta-Adapter.

**Overall Results:** The overall results on all the tasks can be seen in Fig. 1. Here we analyze the overall average performance across the 17 tasks, to get an estimate of how the models compare on the two axes of few-shot accuracy and parameter efficiency. On parameter efficiency, the Meta-Adapter are orders of magnitude more efficient than both Adapter-Fusion (5%) and Hybrid-SMLMT (0.6%). Since we use a significantly smaller bottleneck size than Adapter, the Meta-Adapter are also more efficient than Adapter. We show in ablations later that Adapter perform worse when compared to similar size Meta-Adapter. This indicates that Meta-Adapter can enable increased parameter efficiency without compromising on accuracy. Now, lets look at the overall few-shot accuracy and first consider the 4-shot setting. Interestingly, not only are the Meta-Adapter most efficient, they perform just as accurately as the best performing baseline model, Hybrid-SMLMT, that does full fine-tuning. In the 8-shot setting, Meta-Adapter are still competitive with full fine-tuning, albeit slightly worse, and better than both the parameter-efficient baselines, Adapter and Adapter-Fusion, by a large margin. Note, that Adapter-Fusion are better at transfer learning than regular Adapter, however, they are less parameter-efficient than the other models.

**Results on Individual Tasks:** Table 1 shows the results on the individual tasks. For sentiment and rating classification tasks on Amazon reviews, we show the average results across the 4 domains to avoid repetition of related tasks. In the 4-shot setting, Meta-Adapter performance is better than all the other parameter-efficient methods on 9 out the 11 task types, and is competitive with the full fine-tuning approach. In the 8-shot setting, Meta-Adapter are better than Adapter or Adapter-Fusion in 7 out of the 11 task types. Overall, these results indicate that Meta-Adapter lead to accurate few-shot learning compared to other parameter-efficient alternatives. Compared to full fine-tuning, we see that Meta-Adapter perform competitively on most tasks, and the largest drop in accuracy is on the Scitail task.

**Summary:** Meta-Adapter are the most parameter-efficient (Figure 1), fine-tuning only 0.6% of total model parameters per task, and are more accurate at few-shot learning than competitive approaches of Adapter and Adapter-Fusion while using less parameters to fine-tune. Table 3, summarizes key properties of the various models evaluated. Meta-Adapter is also much faster in training time compared to Hybrid-SMLMT, a full fine-tuning based meta-learning approach, as Meta-Adapter have much lesser number of parameters to train.

4.3 Ablations

We analyze how the performance of Meta-Adapter and the baselines varies with some crucial hyperparameters. We consider validation data from 3 tasks: CoNLL, Scitail, and Amazon Electronics, to perform the ablations and report the overall average accuracy using 10 different few-shot training sets for each task.
<table>
<thead>
<tr>
<th>Task</th>
<th>N</th>
<th>k</th>
<th>Adapter 0.03x</th>
<th>Adapter-Fusion 0.41x</th>
<th>HSMLMT 1.00x</th>
<th>Meta-Adapter 0.01x</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoNLL</td>
<td>4</td>
<td>8</td>
<td>53.4 ± 7.8</td>
<td>41.6 ± 4.4</td>
<td>59.9 ± 5.4</td>
<td>64.1 ± 2.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>78.1 ± 3.5</td>
<td>78.4 ± 3.8</td>
<td>79.4 ± 1.5</td>
<td>77.9 ± 1.4</td>
</tr>
<tr>
<td>Restaurant</td>
<td>8</td>
<td>8</td>
<td>50.0 ± 4.3</td>
<td>36.5 ± 4.3</td>
<td>56.3 ± 3.7</td>
<td>55.9 ± 5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>70.6 ± 2.8</td>
<td>61.3 ± 8.6</td>
<td>70.0 ± 2.4</td>
<td>67.6 ± 2.5</td>
</tr>
<tr>
<td>Airline</td>
<td>3</td>
<td>8</td>
<td>61.1 ± 8.3</td>
<td>67.1 ± 4.6</td>
<td>66.9 ± 6.2</td>
<td>66.3 ± 3.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>68.3 ± 4.2</td>
<td>69.1 ± 3.0</td>
<td>70.1 ± 3.1</td>
<td>67.3 ± 2.6</td>
</tr>
<tr>
<td>Disaster</td>
<td>2</td>
<td>8</td>
<td>56.1 ± 6.4</td>
<td>66.6 ± 7.7</td>
<td>63.1 ± 8.0</td>
<td>61.6 ± 10.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>62.7 ± 6.5</td>
<td>60.8 ± 7.4</td>
<td>66.3 ± 4.9</td>
<td>66.1 ± 4.8</td>
</tr>
<tr>
<td>Political Audience</td>
<td>2</td>
<td>8</td>
<td>61.3 ± 4.5</td>
<td>57.0 ± 3.8</td>
<td>62.6 ± 3.7</td>
<td>62.7 ± 2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>51.9 ± 3.1</td>
<td>51.8 ± 3.1</td>
<td>55.9 ± 4.8</td>
<td>57.0 ± 4.9</td>
</tr>
<tr>
<td>Political Message</td>
<td>9</td>
<td>8</td>
<td>20.7 ± 1.8</td>
<td>20.9 ± 2.7</td>
<td>19.5 ± 2.0</td>
<td>19.8 ± 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>24.2 ± 2.2</td>
<td>23.6 ± 3.2</td>
<td>21.6 ± 2.5</td>
<td>20.6 ± 1.8</td>
</tr>
<tr>
<td>Emotion</td>
<td>13</td>
<td>8</td>
<td>14.3 ± 1.7</td>
<td>15.6 ± 2.7</td>
<td>13.7 ± 1.6</td>
<td>12.8 ± 0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>15.9 ± 1.0</td>
<td>16.4 ± 2.3</td>
<td>14.9 ± 0.9</td>
<td>13.2 ± 1.1</td>
</tr>
<tr>
<td>Scitail</td>
<td>2</td>
<td>8</td>
<td>53.8 ± 6.5</td>
<td>53.7 ± 0.59</td>
<td>80.0 ± 4.9</td>
<td>78.4 ± 4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>58.4 ± 4.3</td>
<td>57.4 ± 10.2</td>
<td>82.0 ± 1.0</td>
<td>78.1 ± 1.8</td>
</tr>
<tr>
<td>Amazon Sentiment</td>
<td>2</td>
<td>8</td>
<td>60.7 ± 6.3</td>
<td>80.7 ± 2.9</td>
<td>81.7 ± 2.9</td>
<td>81.7 ± 2.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>75.4 ± 4.5</td>
<td>82.7 ± 2.5</td>
<td>84.3 ± 1.1</td>
<td>83.5 ± 1.0</td>
</tr>
<tr>
<td>Amazon Rating</td>
<td>3</td>
<td>8</td>
<td>43.5 ± 8.3</td>
<td>52.9 ± 9.7</td>
<td>56.6 ± 8.0</td>
<td>55.8 ± 7.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>45.2 ± 7.2</td>
<td>58.0 ± 5.9</td>
<td>59.3 ± 5.4</td>
<td>57.8 ± 5.7</td>
</tr>
<tr>
<td>Overall Average</td>
<td>4</td>
<td>8</td>
<td>48.4</td>
<td>56.8</td>
<td>59.9</td>
<td>60.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
<td>61.1</td>
<td>64.2</td>
<td>66.7</td>
<td>65.3</td>
</tr>
</tbody>
</table>

Table 1: k-shot accuracy on downstream classification tasks not seen in training. 0.01x indicates that the model fine-tunes 1% parameters per task compared to Hybrid-SMLMT.
Meta-learning Adapter initialization without Meta-Adapter: First we consider whether Meta-Adapter contribute to improvements in few-shot learning. For this we consider a meta-learning model that skips the Meta-Adapter altogether but still learns an initialization of adapter modules for few-shot fine-tuning. This approach is akin to adding adapter to an existing model and using the MAML (Finn et al., 2017) approach to learn their initialization. Table 2 compares Meta-Adapter with this ablation, termed MAML-Adapter. We can see that this leads to a large drop in average accuracy in both 4-shot and 8-shot settings, while there is no other benefit in parameter-efficiency from this approach. This shows that Meta-Adapter help in improving the few-shot accuracy.

<table>
<thead>
<tr>
<th>Model</th>
<th>Vocab</th>
<th>Adapter Size</th>
<th>4-shot</th>
<th>8-shot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapter</td>
<td>Uncased</td>
<td>48</td>
<td>55.6</td>
<td>64.3</td>
</tr>
<tr>
<td>Adapter</td>
<td>Uncased</td>
<td>16</td>
<td>55.1</td>
<td>57.6</td>
</tr>
<tr>
<td>MAML-Adapter</td>
<td>Cased</td>
<td>16</td>
<td>66.1</td>
<td>72.5</td>
</tr>
<tr>
<td>Meta-Adapter</td>
<td>Cased</td>
<td>16</td>
<td>68.2</td>
<td>74.6</td>
</tr>
<tr>
<td>Meta-Adapter</td>
<td>Uncased</td>
<td>8</td>
<td>69.7</td>
<td>74.6</td>
</tr>
<tr>
<td>Meta-Adapter</td>
<td>Uncased</td>
<td>16</td>
<td>74.6</td>
<td>77.5</td>
</tr>
<tr>
<td>Meta-Adapter</td>
<td>Uncased</td>
<td>32</td>
<td>70.3</td>
<td>76.5</td>
</tr>
</tbody>
</table>

Table 2: Ablations for Meta-Adapter.

Size of Adapter and Meta-Adapter:. Next we consider how the sizes of the adapter effect accuracy. Prior work on Adapter have explored this in-depth (Houlsby et al., 2019; Pfeiffer et al., 2021), and larger adapter often work better. We consider two size of adapter, 48 and 16. We use size 48 as it is also the size that worked best for Adapter-Fusion and we use the smaller size 16 to compare with the Meta-Adapter. Note that in the few-shot setting, it is not feasible to find the best size for each given task, as in prior work (Houlsby et al., 2019), due to unavailability of validation data. Comparing the two Adapter sizes, in Table 2, we find that larger adapter performs better, specially in the 8-shot setting. However, Meta-Adapter allow comparatively better accuracy even with increased efficiency. We can see that at the same size of 16, Meta-Adapter is better by a large margin than Adapter. As we vary the size of the Meta-Adapter, we find that even at the smaller size of 8, they are still better than Adapter of size 16, 48. Interestingly, we observed better performance of Meta-Adapter at size 16 than at size 32.

Effect of model vocabulary. An interesting axis that affects overall performance is the choice of the pre-trained model vocabulary. We explored cased and uncased BERT-base models in conjunction with Meta-Adapter. We found that the uncased models consistently performed much better than the cased models (Table 2). This is likely because the downstream classification tasks often contain noisy user generated text. The choice of uncased BERT model also makes our results comparable with prior work (Pfeiffer et al., 2021).

<table>
<thead>
<tr>
<th>Model</th>
<th>Adapter Size</th>
<th>Trainable Params</th>
<th>Fine-tuned Params / Task</th>
<th>Meta-Training Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid-SMLMT</td>
<td>—</td>
<td>110,270,354</td>
<td>53,582,721</td>
<td>1.00x</td>
</tr>
<tr>
<td>Meta-Adapter</td>
<td>8</td>
<td>1,453,588</td>
<td>351,936</td>
<td>0.75x</td>
</tr>
<tr>
<td>Meta-Adapter</td>
<td>16</td>
<td>2,043,796</td>
<td>647,040</td>
<td>0.85x</td>
</tr>
<tr>
<td>Adapter-Fusion</td>
<td>48</td>
<td>7,457,853</td>
<td>21,844,226</td>
<td>—</td>
</tr>
<tr>
<td>Adapter-Fusion</td>
<td>48</td>
<td>—</td>
<td>1,486,658</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 3: Summary of sizes of adapter, trainable adapter parameters, fine-tuned adapter parameters and the speedup in training when using Meta-Adapter compared with Hybrid-SMLMT.

5 Related Work

Since their introduction, adapter (Houlsby et al., 2019) have been widely applied (Houlsby et al., 2019; Stickland and Murray, 2019; Bapna and Firat, 2019; Rücklé et al., 2020) as a parameter-efficient finetuning method for large transformer-based (Vaswani et al., 2017) pre-trained models, such as BERT (Devlin et al., 2019). Prefix-tuning (Li and Liang, 2021), also known as prompt-tuning (Lester et al., 2021), is another line of popular light-weight finetuning methods which fine-tune continuous task-specific representations while keeping the large pre-trained parameters untouched.
In contrast to adapter which insert task-specific parameters in between layers, these models pre-pend a trainable task-specific representations to either the input layer (Lester et al., 2021) or on every layer (Li and Liang, 2021). While these methods are promising in terms of parameter-efficient finetuning methods, with its active research progress in multi-task (Houlsby et al., 2019; Stickland and Murray, 2019) and transfer learning (Pfeiffer et al., 2020), we choose adapter framework to develop our proposed approach as prompt-tuning has been shown to only exceed fine-tuning at very large model scales (Lester et al., 2021).

Multi-task adapter (Stickland and Murray, 2019) is perhaps the first work that applied adapter to multi-task learning. In this framework, given $M$ tasks, pre-trained parameters $\theta$ are fine-tuned along with a set of $M$ task-specific parameters. However, in follow-up work, Adapter-Fusion (Pfeiffer et al., 2021) shows that a model that simply combines adapter from multiple tasks through attention, without updating the pre-trained model $\theta$, performs better than multi-task adapter. The idea in Adapter-Fusion is that rather than fine-tuning the shared $\theta$ parameters for multi-task, they instead learn an adapter-fusion layer that combines all $M$ source task adapter to benefit each of the tasks.

While Adapter-Fusion has the capability to transfer to unseen target tasks outside of the $N$ source tasks, Pfeiffer et al. (2021) only test it when target task is part of the source tasks. In this paper, by choosing Adapter-Fusion as our baseline, we test its efficacy in few-shot learning of new target tasks. While Adapter-Fusion is much more efficient than multi-task adapter, it uses a larger amount of parameters compared to standard adapter due to fusion layers working on the full dimension of the pre-trained model, e.g. 768 for BERT-base.

Within meta-learning literature (Hospedales et al., 2020), our work is related to methods (Kossaifi et al., 2019; Flennerhag et al., 2020) that embed tensor projections in convolution networks for improved gradient conditioning in a meta-learning model. Other approaches (Mishra et al., 2018; Zintgraf et al., 2019; Lee and Choi, 2018) have explored meta-learning with shared parameters across tasks with goals of better convergence or avoiding over-fitting. However, these prior methods don’t leverage pre-trained models and are not developed for parameter-efficient fine-tuning.

Meta-learning methods (Vinyals et al., 2016; Santoro et al., 2016; Finn et al., 2017) have often been employed to enable better few-shot learning on many NLP tasks (Han et al., 2018; Gao et al., 2019; Dou et al., 2019; Bansal et al., 2020a,b; Ye et al., 2021). We compare with a recent few-shot learning work in NLP (Bansal et al., 2020b) that uses the MAML (Finn et al., 2017) approach on self-supervised tasks for few-shot classification. Their approach isn’t parameter efficient whereas the proposed approach using Meta-Adapter performs comparably with a fraction of parameters for fine-tuning. Alternative methods for few-shot learning include very large pre-trained language models like GPT-3 (Brown et al., 2020) that don’t fine-tune any parameters and use natural language prompts for few-shot learning. However they can be sensitive to prompt-orders (Lu et al., 2021), have a limited context length due to which they don’t scale to larger datasets, and have high latency in inference due to their size. Extensions of Meta-Adapter to the soft-prompting approach (Li and Liang, 2021), in few-shot settings, can be a promising avenue for future work.

### 6 Limitations and Broader Impact

We introduced Meta-Adapter, a parameter-efficient fine-tuning method for few-shot learning that is competitive with contemporary transfer learning methods while only fine-tuning a fraction (0.6%) of the model parameters for each task. Thus, Meta-Adapter can be deployed to serve hundreds of tasks simultaneously with a shared pre-trained model, while only doubling the total number of parameters post fine-tuning. While the Meta-Adapter layers requires additional training, they make downstream fine-tuning more efficient, reducing the carbon footprint for fine-tuning which can quickly surpass the pre-training footprint when these models are served for millions of customers to fine-tune on their tasks.
References


Brian Lester, Rami Al-Rfou, and Noah Constant. 2021. The power of scale for parameter-efficient prompt tuning.


7 Reproducibility Checklist

1. For all authors...
   (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes]
   (b) Did you describe the limitations of your work? [Yes]
   (c) Did you discuss any potential negative societal impacts of your work? [Yes]
   (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? https://automl.cc/ethics-accessibility/ [Yes]

2. If you are including theoretical results...
   (a) Did you state the full set of assumptions of all theoretical results? [N/A]
   (b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
   (a) Did you include the code, data, and instructions needed to reproduce the main experimental results, including all requirements (e.g., requirements.txt with explicit version), an instructive README with installation, and execution commands (either in the supplemental material or as a URL)? [Yes] See Supplementary Materials
   (b) Did you include the raw results of running the given instructions on the given code and data? [Yes] All results are using the provided code.
   (c) Did you include scripts and commands that can be used to generate the figures and tables in your paper based on the raw results of the code, data, and instructions given? [Yes] See Code ReadMe
   (d) Did you ensure sufficient code quality such that your code can be safely executed and the code is properly documented? [Yes]
   (e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed hyperparameter settings, and how they were chosen)? [Yes] See Supplementary.
(f) Did you ensure that you compared different methods (including your own) exactly on the same benchmarks, including the same datasets, search space, code for training and hyperparameters for that code? [Yes] See 4.1

(g) Did you run ablation studies to assess the impact of different components of your approach? [Yes] See 4.3

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] See 4.1

(i) Did you compare performance over time? [Yes]

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] See 4.1

(k) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes] See Table 1

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A]

(m) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] See 4.3 and 3

(n) Did you report how you tuned hyperparameters, and what time and resources this required (if they were not automatically tuned by your AutoML method, e.g. in a NAS approach; and also hyperparameters of your own method)? [Yes] See Supplementary.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes]

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [N/A] We are using publicly released datasets.

(e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]