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Abstract
Recent advancements in multimodal large lan-
guage models have driven breakthroughs in visual
question answering. Yet, a critical gap persists,
‘conceptualization’—the ability to recognize and
reason about the same concept despite variations
in visual form, a basic ability of human reason-
ing. To address this challenge, we introduce the
Visual Graph Arena (VGA), a dataset featuring
six graph-based tasks designed to evaluate and im-
prove AI systems’ capacity for visual abstraction.
VGA uses diverse graph layouts (e.g., Kamada-
Kawai vs. planar) to test reasoning independent
of visual form. Experiments with state-of-the-
art vision models and multimodal LLMs reveal a
striking divide: humans achieved near-perfect ac-
curacy across tasks, while models totally failed on
isomorphism detection and showed limited suc-
cess in path/cycle tasks. We further identify be-
havioral anomalies suggesting pseudo-intelligent
pattern matching rather than genuine understand-
ing. These findings underscore fundamental limi-
tations in current AI models for visual understand-
ing. By isolating the challenge of representation-
invariant reasoning, the VGA provides a frame-
work to drive progress toward human-like concep-
tualization in AI visual models. The Visual Graph
Arena is available at: vga.csail.mit.edu.

1. Introduction
In recent years, the fields of object recognition (Girshick
et al., 2015) and visual question answering (Antol et al.,
2015; Goyal et al., 2017; Yang et al., 2022) have witnessed
remarkable progress, pushing the boundaries of artificial
intelligence. Despite these advancements, a gap remains
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between current AI capabilities and the goal of achieving
artificial general intelligence (AGI). One critical aspect of
this gap is the ability of AI models to engage in deep rea-
soning and understand fundamental concepts from visual
inputs (Gupta & Kembhavi, 2023), which is essential for
reaching human-like cognitive abilities (Han et al., 2019).
This gap is particularly evident in what we term ‘conceptual-
ization’ - the ability to recognize and reason about concepts
across different representations, even when their visual form
varies significantly.

Humans have a long history of developing various methods
of visual representation to simplify complex information
and enhance understanding. These representations span
across diverse domains, such as chemical structures, logic
circuits, flowcharts, and statistical data, each with its unique
set of visual conventions and abstractions. Figure 1 show-
cases the diversity and complexity of visual representations
that humans regularly encounter and interpret. In Figure 1-a,
two different visualizations of the same logic circuit are
presented, illustrating how identical functional relationships
can be conveyed through varied graphical styles. Similarly,
Figure 1-b depicts two representations of the same chemical
structure, highlighting the challenge of recognizing under-
lying molecular configurations when presented in different
visual forms. Figure 1-c features a graph drawn in two dis-
tinct layouts, both representing the same underlying data
structure and relationships. These examples underscore a
crucial aspect of visual reasoning and highlight the core
challenge of ‘conceptualization’: the ability to consistently
understand different visual representations of the same con-
cept, a task that is typically intuitive for humans but remains
challenging for AI.

Defining conceptualization: Undoubtedly, the ability to
generalize beyond superficial patterns lies at the heart of
human-like reasoning. While out-of-distribution generaliza-
tion encompasses various challenges, we focus specifically
on models’ ability to understand different representations of
the same underlying concept. To precisely characterize this
aspect, we use the term "Conceptualization".

Conceptualization is a specific subset of out-of-distribution
(OOD) generalization that examines a model’s ability to
recognize and reason about OOD data whose underlying
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(a) Two representations of a logic circuit. (b) Two depictions of a chemical structure. (c) A graph drawn in two different layouts.

Figure 1: Examples of different visual representations of identical concepts across different scientific and technical domains.
Each pair of images illustrates the challenge of recognizing identical relationships or structures when presented in varied
visual formats.

concept aligns with the training distribution, but whose
representation diverges in form, structure, or manifestation.

Unlike broader OOD generalization challenges—which may
involve shifts in spurious correlations, contextual biases, or
surface-level features—conceptualization isolates the capac-
ity to abstract and transfer core conceptual invariants across
representational variations. (Figure 1)

For instance, while understanding different accents in
speech recognition represents an OOD challenge, it falls
outside the scope of conceptualization, as the core linguistic
constructs remain consistent. Indeed, we would not attribute
an American’s difficulty in understanding a Scottish accent
to a lack of conceptual understanding of English.

Why Graphs? Among the various visual representations,
graphs, consisting of nodes and edges, offer an ideal test
case for studying conceptualization in AI systems. While
these graphical representations are easily interpreted by
humans, particularly when the graphs are simple and have
a limited number of nodes, they present a challenge for
AI models - the ability to abstract the underlying structure
regardless of visual layout.

It is worth noting that while computational algorithms exist
for solving graph problems through matrix operations or
adjacency list traversal, our focus here is fundamentally dif-
ferent. The challenge lies not in developing graph-theoretic
solvers, we aim to evaluate whether AI models can solve
these problems using only visual reasoning and conceptual
abstraction, without relying on algorithmic computation.
This distinction is crucial to align more closely with human-
like reasoning.

This insight led to the creation of the “Visual Graph Arena",
a dataset and benchmark consisting of six graph-based tasks.
These tasks are designed to evaluate and enhance the visual
reasoning and conceptualization capabilities of AI models
through various challenges. The datasets contain a diverse
range of training samples, from 27,000 to 150,000, ensuring
robust training environments. The graphs have 8-9 nodes,

small enough such that is easy to visually inspect their prop-
erties, but still large enough to create enough samples for
the datasets.

The tasks in the Visual Graph Arena revolve around three
main concepts: isomorphism, path, and cycle, with two sub-
tasks for each concept. The training sets are drawn using
specific layouts (Kamada-Kawai or random, depending on
the task), while the test sets employ different layouts to
assess whether models can learn and apply the concepts, re-
gardless of their visual presentation, similarly to the human
capabilities.

We evaluated several leading vision models, including
ViT (Dosovitskiy et al., 2020), Swin Transformers (Liu
et al., 2021), and ConvNeXt (Liu et al., 2022), on the Visual
Graph Arena datasets. The results were very revealing: All
models failed on the graph isomorphism detection tasks.
Additionally, these models underperformed relative to the
human capabilities on the other tasks, when tested with
graphs drawn differently than the layouts in their training
sets. Our investigation also revealed a fundamental reason-
ing gap in current state-of-the-art vision and multimodal
language models. When we tested advanced AI models,
such as GPT-o1 of OpenAI and Claude-3.5-Sonnet of An-
thropic, on tasks that humans handle intuitively based on
visual information alone, the results were striking. In a
graph isomorphism detection task, where pairs of graphs
were drawn in different layouts (Kamada-Kawai (Kamada
et al., 1989) and planar), all tested models failed to recog-
nize the identical underlying structures, while human sub-
jects achieved more than 90% accuracy. This stark contrast
between human and AI performance highlights a critical
challenge in AI conceptualization.

The Visual Graph Arena dataset helps identify AI systems’
limitations in processing conceptual visual data while pro-
viding a foundation for improvement. By testing models’
conceptual reasoning abilities, we work to bridge the gap be-
tween human and machine interpretation of abstract graph-
ics.
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(a) Random Layout (b) Kamada-Kawai Layout (c) Planar Layout

Figure 2: Illustration of a single graph displayed in three distinct visualization layouts to highlight the impact of graphical
representation on perceived structure and complexity.

2. Related Work
Graph Datasets. Graph datasets are a cornerstone in numer-
ous research domains (Hu et al., 2020), ranging from social
network analysis to protein micro molecules (Morris et al.,
2020). These datasets are typically divided into two main
types: those that represent real-world information in graph
form, like social media connections or road networks, and
synthetic graph datasets crafted for specific computational
experiments.

Among synthetic datasets, the variety is broad. For instance,
various works have introduced datasets aimed at tasks like
counting substructures within graphs (Chen et al., 2020) or
distinguishing between different families of non-isomorphic
graphs (Wang & Zhang, 2023; Abboud et al., 2020; Balcilar
et al., 2021; Murphy et al., 2019). These synthetic datasets
are primarily designed to benchmark and improve graph
neural networks (GNNs). They often include data of nodes,
edges, and additional features to facilitate computational
processing and analysis tailored to GNN architectures.

However, a gap exists in these offerings concerning visual
interpretation. Most existing graph datasets are structured
for algorithmic or GNN consumption and do not address the
challenge of visual graph reasoning directly. They are opti-
mized for models that process graphs as textual or abstract
data structures rather than as visual entities.

Visual Reasoning Datasets. Recent advancements in ma-
chine learning have seen a burgeoning interest in tasks that
interrogate visual scenes through question-answering (QA)
formats (Johnson et al., 2017; Antol et al., 2015).

Visual QA tasks have driven progress in multimodal reason-
ing, with datasets like CLEVR (spatial/relational reasoning)
and FigureQA (scientific plots) using synthetic data to iso-
late challenges (Johnson et al., 2017; Kahou et al., 2017).

Recent benchmarks address diverse aspects: long-context
document understanding (MMLONGBENCH-DOC), chain-

of-thought reasoning (Visual CoT), compositional robotic
reasoning (ClevrSkills), mathematical Olympiad problems
(Children’s Math Olympiads evaluation), commonsense
riddles (Visual Riddles), and multimodal math reasoning
(MATH-Vision) (Gong et al., 2024; Shao et al., 2024; Guetta
et al., 2024; Wang et al., 2024; Ma et al., 2024; Cherian et al.,
2024; Haresh et al., 2024). A recent study introduces Vision
Graph, a benchmark for visual reasoning in graph theory
problems (Li et al., 2024), with two key limitations: its
circular graph layouts become visually ambiguous with in-
creasing nodes, and its dataset size is insufficient for training
data-intensive models.

Our work introduces the "Visual Graph Arena" , a graph-
based dataset designed not only to evaluate AI model ca-
pabilities in solving graph theory problems but also, at
a higher level, to assess their conceptualization ability.
This is achieved by systematically varying graph layouts
during both training and testing, thereby avoiding over-
fitting to specific patterns and isolating reasoning chal-
lenges from perceptual artifacts. By emphasizing scalability
(27,500–155,718 samples per task) and layout diversity, we
ensure that all samples remain visually solvable while prob-
ing deeper cognitive processes. This focus on practical solv-
ability—validated through human evaluation—distinguishes
our benchmark as a robust tool for advancing visual graph
understanding and fostering models capable of generalizing
across different visual contexts.

3. Visual Graph Arena
This section introduces the Visual Graph Arena Dataset,
meticulously crafted to challenge and evaluate the visual
reasoning capabilities of AI models through a series of
graph-based tasks. The dataset is structured around three
primary concepts, each divided into two tasks, resulting in a
total of six distinct datasets. These datasets are designed to
rigorously test various aspects of graph understanding and
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Visual Graph Arena

Graph Isomorphism
Tasks

Task#1:
Easy Isomorphism

Yes-No question on
whether two given
graphs are isomorphic

In false labels
the graphs are
chosen randomly

Task#2:
Hard Isomorphism

Yes-No question on
whether two given
graphs are isomorphic

In false labels
the graphs are
degree equivalent

Graph Path
Finding Tasks

Task#1:
Hamiltonian Path

Yes-No question on
whether the given graph
has a Hamiltonian path

Task#2:
Shortest Path

Find the shortest
path length between
two marked nodes

The question has
four choices:
1, 2, 3, or 4

Graph Cycle
Finding Tasks

Task#1:
Hamiltonian Cycle

Yes-No question on
whether the given graph
has a Hamiltonian cycle

Task#2:
Biggest Chordless
Cycle

Find the biggest
chordless cycle in
the given graph

The question has
four choices:
3, 4, 5, or 6

Figure 3: Overview of the ’Visual Graph Arena Benchmark’ detailing the division of tasks into categories of Graph
Isomorphism, Graph Path Finding, and Graph Cycle Finding. Each category further breaks down into two subtasks.

reasoning.

In order to ensure that the graphs are both manageable and
visually interpretable, we have constrained the number of
nodes to range between 8 and 9. This node count strikes a
balance between maintaining visual simplicity and provid-
ing sufficient complexity for generating robust training and
test sets, which are suitable for deep learning applications.

The tasks are devised around core graph concepts that are
intuitively recognizable by humans when interacting with
small graphs:

1. Graph Isomorphism: Tests the ability to determine
the isomorphic nature of graph pairs.

2. Path Finding: Focuses on the capability to identify
various path types within the graphs.

3. Cycle Finding: Challenges the models to detect differ-
ent types of cycles.

Figure 3 shows an overview of the Visual-Graph-Arena
Benchmark tasks and datasets, and Table 1 shows the break-
down of the tasks with the number of samples in the training
and test set for each task.

In the subsequent subsections, we will describe each task in
detail.

3.1. Graph-Isomorphism Tasks

This task focuses on graph isomorphism, utilizing graphs
consisting of 8-9 nodes, to test the models’ capabilities
in recognizing isomorphic structures. Graph isomorphism
refers to the concept where two distinct graph representa-
tions share the same number of vertices, edges, and connec-
tivity patterns, essentially making them indistinguishable in
graph-theoretic terms despite their different visual layouts.
To assess this, the task presents pairs of graphs drawn in
different layouts, one in Kamada-Kawai and the other in
planar, and models must determine whether the graphs are
isomorphic.

The task is structured to ensure a balanced approach: each
set contains an equal number of isomorphic and non-
isomorphic graph pairs. This balance is crucial to prevent
models from learning and exploiting label distribution biases
instead of mastering the intended isomorphic detection.

Difficulty Levels: The graph-isomorphism-recognition task
demands quite sophisticated reasoning from the models, as
superficial attributes like edge count or node degree are in-
sufficient for determining isomorphism. The models must
engage in deeper analytical processes to also discern under-
lying structural equivalences or differences.

Easy: In the easier version of this task, the second graph
in each pair is selected randomly from the set of all possi-
ble graphs with 8-9 nodes. Given the vast diversity within
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this family, non-isomorphic pairs often exhibit clear, eas-
ily discernible differences, such as varying node degrees,
simplifying the detection of non-isomorphism.

Figure 4: Two non-isomorphic degree-equivalent graphs
with the degree sequence of {3, 3, 2, 2, 1, 1}.

Hard: The hard category intensifies the challenge by se-
lecting graph pairs that are degree-equivalent. These pairs
are visually different but share identical numbers of edges
and identical node degrees. Figure 4 shows an example of a
non-isomorphic degree-equivalent pair of graphs.

These varied levels of difficulty are designed to progres-
sively train and evaluate the AI’s depth of understanding
and its ability to perform complex visual reasoning, mir-
roring the cognitive processes humans use in interpreting
graphical data.

3.2. Graph-Path-Finding Tasks

The Graph-Path-Finding datasets explore the model’s ability
to understand the concept of a path within a graph, where
each graph contains 8-9 nodes. The task is divided into two
subtasks:

Figure 5: Example of a Hamiltonian path, a path that visits
each node a single time.

Haminltonian Path: The objective is to determine whether
a graph contains a Hamiltonian path—a path that visits each
vertex exactly once. Figure 5 shows an example of such a
path in a graph. This is essentially a binary classification
problem, with labels indicating the presence or absence of a
Hamiltonian path. To maintain balance, the dataset includes
an equal number of graphs with and without such paths.
The training-set graphs are drawn in Kamada-Kawai layout,
and the test-set graphs are drawn in planar layout. This
variation in the training and testing layouts helps to assess
the conceptualization ability of the models.

Shortest Path: This task presents graphs in which two

nodes are specifically marked. The goal is to find the length
of the shortest path between these nodes, with potential
answers of 1, 2, 3, or 4. This setup frames the task as
a classification problem with four classes. The training
dataset contains graphs drawn from the random layout. The
test set samples are drawn from random, Kamada-Kawai,
and planar layouts, forming three testing variations.

3.3. Graph-Cycle-Finding Tasks

These tasks and associated datasets test the ability of a
model to understand the notion of cycles within graphs,
where each graph consists of 8-9 nodes. As before, these
tasks also feature two levels of difficulty, to assess different
aspects of the models’ capabilities.

Hamiltonian Cycle: The goal here is to determine whether
the graph contains a Hamiltonian cycle, that is, a cycle
which visits each vertex exactly once. The dataset is bal-
anced between graphs that do and do-not contain a Hamil-
tonian cycle. To evaluate the models’ ability to generalize
their learning, similar to the Hamiltonian path task, the train-
ing set graphs are visualized in the Kamada-Kawai layout,
whereas the test set is drawn in a planar layout.

Figure 6: An example for the biggest-chordless-cycle prob-
lem in a graph with 10 nodes.

Biggest Chordless Cycle: In this challenging scenario, the
task involves identifying the size of the largest chordless
cycle in a graph. A chordless cycle is defined as one where
no two vertices of the cycle are connected by an edge that
is not part of the cycle itself. Figure 19 shows an example
of the biggest chordless cycle in a graph with 10 nodes.
The possible answers are 3, 4, 5, or 6, effectively making
this a classification task with four options. Similar to the
previous task, the training and testing samples are drawn in
the Kamada-Kawai and planar layouts, respectively.

The detailed process of the creation of the Visual-Graph-
Arena datasets and example samples of each of the tasks
they include is presented in the Appendix.

4. Experiments
In order to rigorously evaluate the effectiveness of Visual
Graph Arena, we conducted a series of experiments, aimed
at benchmarking both human and AI performance on the
graph-based tasks. Initially, we established a baseline by
testing human subjects, providing a comparative standard
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Table 1: Number of samples in the training and test sets of the Visual Graph Arena tasks.

Isomorphism Path Cycle

Easy Hard Hamiltonian Shortest Hamiltonian Biggest Chordless

# Training Samples 140,000 127,374 25,000 80,000 69,935 80,000
# Testing Samples 15,718 14,298 2,480 8,672 7,740 6,484

Table 2: Comparative performance of humans, vision models, and MLLMs on Visual Graph Arena tasks. Human participants
achieved near-perfect accuracy (88.2-100%), excelling in shortest path identification. Vision models failed isomorphism tasks
with ConvNeXt outperforming transformer-based models in non-failing tasks. MLLMs showed near-random performance
except GPT-o1, which achieved limited success in shortest path (55%) and Hamiltonian cycle (66.6%) tasks.

Isomorphism Path Cycle

easy hard hamiltonian1 shortest path2 hamiltonian1 chordless1

random kawai planar

human 95.0 91.6 96.6 98.3 100 100 93.3 88.2

Vit Base FAIL3 FAIL 57 67.4 66.7 64.4 67.8 32.3
Swin-T Base FAIL FAIL 65.8 68.6 65.7 65.4 71.1 34.4
ConvNext Base FAIL FAIL 72.9 73.3 82.4 73.3 74.9 36.3

SigLIP Base 54.4 FAIL 59.5 25.2 - - 63.5 28.0
DINov2 Base FAIL FAIL 56.8 36.4 - - FAIL 31.1

GPT-o1 FAIL FAIL FAIL 55.0 - - 66.0 FAIL
GPT-4o FAIL FAIL FAIL FAIL - - FAIL FAIL
Claude 3.5 Sonnet FAIL FAIL FAIL FAIL - - FAIL FAIL

1 These tasks are trained on kawai layout and tested on planar layout.
2 Shortest path task is trained on random layout, and tested on random, kawai and planar layouts.
3 We use FAIL to indicate near-random performance, borrowing the term from (Tay et al., 2021).

for assessing AI capabilities in similar conditions. Follow-
ing this, we moved on to evaluate advanced multimodal-llms
including GPT-o1 and Claude 3.5 Sonnet, to test their profi-
ciency in visual reasoning tasks that demand an integration
of visual and textual analysis. Subsequently, we focused
on the performance of leading vision models, which were
specifically trained on our datasets and then tested on the
designated test sets containing a different graph layout.

We detail each experiment, and discuss the methodologies
employed, the models tested, and the results obtained.

Humans: To establish a baseline of human performance on
the VGA tasks, we conducted experiments with 15 subjects
with a total of 24 questions, distributing four questions per
task. Participants were drawn from the student and staff
population of the engineering faculty, possessing a general
understanding of graph concepts, though not specifically
in graph isomorphism, Hamiltonian paths and cycles, or
chordless cycles—most requested definition and clarity of
these concepts. More detail is provided in the Appendix.

Vision Models: We tested three categories of vision models:

• Supervised Pre-trained Models: ViT, ConvNeXt, and
Swin-T Base, each pre-trained on the ImageNet dataset
using supervised learning with labeled data.

• Multimodal Vision-Language Model: SigLIP Base, pre-
trained on image-text pairs.

• Self-Supervised Vision Model: DINOv2 Base, trained
on unlabeled image data.

All models were fine-tuned on our tasks across 10 epochs.
Details regarding the training parameters, settings, and addi-
tional considerations are provided in the Appendix.

MLLMs: We evaluated GPT-4o and o1, Claude 3 Opus and
3.5 Sonnet, and Google Gemini on 100 random samples
per task to determine their ability to handle graph-based vi-
sual reasoning. Unfortunately, all models performed poorly
across tasks, with o1 being the only exception, showing
higher than random performance in shortest path and Hamil-
tonian cycle problems.
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4.1. Results

Table 3: Confusion matrix for GPT-o1 performance on the
shortest path task. Rows represent ground-truth shortest
path lengths (1–4), columns show model predictions. Val-
ues indicate prediction percentages (diagonal = correct clas-
sifications). The model performs best on length 2 (69%
accuracy) but frequently confuses lengths 1→2 (67%), sug-
gesting difficulty distinguishing adjacent node path lengths.)

Label
Output

1 2 3 4

Length 1 28.0 67.0 5.0 0.0
Length 2 18.0 69.0 13.0 0.0
Length 3 0.0 40.0 60.0 0.0
Length 4 0.0 5.0 40.0 55.0

Table 2 presents the results of the experiments conducted
on human subjects, vision models, and MLLMs for the
Visaul Graph Arena tasks. The human participants demon-
strated strong performance across all tasks, achieving 100%
accuracy in finding the shortest path length and over 90%
accuracy in the other tasks. Finding the length of the biggest
chordless cycle proved to be the most challenging for human
subjects, with an accuracy of 88.2%, which was their lowest
performance among all tasks.

For the vision models, we report the best validation accuracy
achieved during the training epochs. Notably, all models
except SigLIP failed in the isomorphism tasks, with SigLIP
achieving 54.4% accuracy on the easy isomorphism task
while still failing on the hard variant. This indicates a sig-
nificant limitation in most models’ ability to reason about
graph isomorphism from visual inputs. In the other tasks,
the models exhibited relatively poor performance, consid-
ering that the labels were either binary or limited to four
choices. The chordless cycle task emerged as the most chal-
lenging for all vision models, with the ConvNeXt model
achieving the highest accuracy of 36.3%. An interesting
observation is that the ConvNeXt model consistently outper-
formed the Vision Transformer (ViT) and Swin Transformer
(Swin-T) models on all tasks where the models did not com-
pletely fail. This performance gap was most significant in
the task of finding the shortest path length in the Kawai
layout, where ConvNeXt achieved an accuracy of 82.4%,
surpassing ViT and Swin-T by 17.7 and 16.7 percentage
points, respectively. The newer models, SigLIP and DINov2,
showed mixed results, with SigLIP demonstrating some ca-
pability in isomorphism detection but both models generally
underperforming compared to ConvNeXt. This finding sug-
gests that convolutional architectures may be more effective
than transformer-based models in capturing and reasoning
about visual concepts in graph representations.

Isomorphism
Easy

Isomorphism
Hard

Hamiltonian Path

Shortest Path
Random

Shortest Path
Kawai

Shortest Path
Planar

Hamiltonian Cycle

Biggest
Chordless Cycle

20
40

60
80

100

Random Agent

Human
ViT Base
Swin-T Base
ConvNeXt Base

Figure 7: Breakdown of the performance comparison of
the VIT, Swin, and ConvNeXt models to humans on the
Visual Graph Arena tasks. The central area displays the
performance of a random agent.

Figure 7 illustrates the performance comparison of the
trained models on the tasks of the VGA benchmark. The
performance of a random agent is in gray. On the graph iso-
morphism tasks all models performed like a random agent.

Furthermore, we evaluated the performance of advanced
MLLMs on the Visual Graph Arena tasks. Quite surpris-
ingly, most tested MLLMs, including GPT-4o, Claude 3.5
Sonnet, 3 Opus, and Google Gemini, failed to solve any
of the given tasks. However, GPT-o1 demonstrated partial
success, achieving non-random accuracy on two specific
tasks: shortest path (55% accuracy) and Hamiltonian cy-
cle (67% accuracy). Our analysis reveals that GPT-o1’s
above-random performance on the Hamiltonian cycle task is
primarily attributed to the model’s ability to identify graphs
with leaf nodes, which trivially cannot contain Hamiltonian
cycles. When cases involving leaf nodes are excluded, GPT-
o1’s performance drops to near-random levels, which may
also explain its failure on the related Hamiltonian path task.
This suggests that the model relies on specific structural
cues rather than a deeper understanding of graph theory.

For the shortest path task, GPT-o1 exhibited varying per-
formance across different path lengths, as shown in Ta-
ble 3. The confusion matrix highlights that the model
performs best when the shortest path length is 2 (69% ac-
curacy) but frequently misclassifies adjacent nodes, such
as confusing lengths 1 and 2. These observations under-
score the limitations of current MLLMs in handling basic
graph-reasoning tasks, particularly when visual reasoning
on graph-structured data is required.

The results of our experiments reveal significant challenges
and limitations in the current state of the art vision mod-
els and MLLMs when it comes to reasoning about graph-
structured visual data. While human participants exhibit
strong performance on the Visual Graph Arena benchmark
tasks, the AI models struggle to match human-level rea-
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soning capabilities. These findings emphasize the need for
further research and development of AI systems that can
effectively understand and reason about abstract graphical
representations, bridging the gap between human-like vi-
sual understanding and current AI capabilities. Our Visual
Graph Arena may help to overcome these limitations.

5. Conceptualization Analysis in GPT-o1
In our evaluation, we observe behavioral patterns in
MLLMs, particularly o1, that fundamentally diverge from
mature human intelligence, that questions the capability of
these models to conceptualize. Specifically, we identified
two distinct anomalies.

5.1. The Middle-Score Anomaly

The Middle-Score Anomaly emerges in atomic-task as-
sessments of intelligent agents where only extreme perfor-
mances (perfect or minimal) are expected, while intermedi-
ate performance is anomalous.

Consider identifying numbers ending in zero—an atomic
task. For a human, we expect performance to be near either
100% or near 50% (indicating guessing, not having task
knowledge). An 80% score would be anomalous because
this task cannot be partially known—one either knows to
check the last digit or doesn’t.

5.2. The Easier-Worse Anomaly

The Easier-Worse Anomaly emerges in atomic-task assess-
ments of intelligent agents where performance on simpler
instances is unexpectedly inferior to performance on more
complex variants of the same task. This pattern contradicts
fundamental assumptions about cognitive capabilities.

Consider finding the shortest path between two nodes in a
graph. For genuine intelligence, performing considerably
better at finding shortest paths with 3 or 4 length than finding
shortest path between adjacent nodes would be anomalous.
Such inverted performance within a single atomic task can-
not be reconciled with genuine understanding.

5.3. From Anomalies to Pseudo-Intelligence

Our experiments with GPT-o1 strongly demonstrate both
anomalies. In Table 3, when tasked with finding shortest
paths in graphs, the model achieves 29% accuracy for adja-
cent nodes (path length 1) compared to 70% accuracy for
paths of length 2, a clear case of the Easier-Worse Anomaly.

The presence of both anomalies defies explanation in terms
of low intelligence, but rather suggests the existence of a
pseudo-intelligence (likely result of imitative-probabilistic
reasoning)—a form of capability that mimics intelligence in

its above-chance success rate while failing to demonstrate
the conceptualization of genuine intelligence.

This limitation becomes particularly significant given the
scale of contemporary training. As noted by Sutskever,
current models have been trained on nearly the entire inter-
net (Sutskever, 2024), and our investigations confirm sub-
stantial exposure to graph-related content. This brings into
question whether current probabilistic training approaches
are inherently incapable of achieving conceptualization. Be-
ing said, other training methods like reinforcement learning,
due to their foundations in biological learning processes,
may serve as a path forward for solving this challenge.

6. Conclusions
In this paper, we introduced the Visual Graph Arena, a col-
lection of six datasets designed designed to evaluate AI
models’ capacity for visual reasoning and conceptual un-
derstanding through graph-based tasks. By focusing on iso-
morphism detection, path finding, and cycle analysis across
diverse visual layouts, our work isolates the challenge of
conceptualization—the ability to recognize invariant con-
ceptual properties despite variations in representation.

Our experiments revealed performance gap between hu-
mans and state-of-the-art AI models. Humans achieved
near-perfect accuracy (88–100%) across tasks, while vision
models struggled significantly, especially when presented
with graphs drawn using different layouts. MLLMs (GPT-
o1, Claude 3.5 Sonnet) struggled to perform even basic
graph reasoning tasks often performing no better than ran-
dom chance. This finding highlights the need for further
research of AI systems that can effectively conceptualize
and reason about abstract graphical representations.

The Visual Graph Arena serves as a valuable resource for
the AI research community, providing a foundation for ad-
vancing the field of visual reasoning on graph-structured
data. By addressing the challenges posed by this dataset,
researchers can work towards developing more robust and
flexible AI systems that can bridge the gap between human-
like conceptual understanding and reasoning and machine
interpretation of abstract graphical information.

Future Work. Expanding visual conceptualization bench-
marks to domains like chemical structures and logic circuits,
where reasoning over structural invariants is critical, rep-
resents a vital next step. While developing such datasets
demands domain expertise, precise annotation, and rigorous
validation to ensure fidelity, these efforts will deepen our
understanding of AI’s conceptualization capabilities. Such
datasets will accelerate progress toward AI systems capable
of human-like generalization across representations.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Dataset Description
The Visual Graph Arena (VGA) Benchmark is a collection of six datasets designed to evaluate and enhance the visual
reasoning capabilities of AI models on graph-based tasks. The benchmark aims to bridge the gap between human-like
understanding and machine interpretation of abstract graphical information. The datasets are intended for research purposes
in the field of artificial intelligence, specifically focusing on advancing visual reasoning on graph-structured data.

The benchmark datasets are hosted on the Visual Graph Arena website at visualgrapharena.com. The website provides
access to the datasets, along with documentation and usage guidelines.

Figure 8 illustrates the directory structure of the Visual Graph Arena (VGA) dataset. The VGA dataset is structured to
facilitate easy access to various graph analysis tasks including isomorphism, path problems, and cycle detection. Each
category is further subdivided into training and testing datasets with detailed sample counts and label files. For each input
data, ’image_{i}.png’ corresponds to the i-th row of it’s ’label.txt’. For more information and to access the dataset, please
visit the VGA dataset website at visualgrapharena.com.

Author Statement: We, the authors, take full responsibility for any potential violation of rights related to the Visual Graph
Arena dataset and its materials. We confirm that the dataset is our original work and grant the hosting platform permission
to distribute it under the CC BY 4.0 license. We will ensure proper access and maintenance of the dataset.

B. Dataset Creation
To create the datasets, we utilized the collection of connected graphs with 8 and 9 nodes from https://users.cecs.
anu.edu.au/~bdm/data/graphs.html. This collection comprises 11,117 connected graphs with 8 nodes and
261,080 connected graphs with 9 nodes. The Python library NetworkX was employed to visualize the graphs in plots for
the datasets. Each sample was plotted within a square canvas of 700× 700 pixels. The following details the specific steps
involved in creating each task:

B.1. Isomorphism Tasks

Easy Isomorphism: For the easy isomorphism tasks, we plotted two graphs in a single plot, with the graph on the right
using the Kamada-Kawai layout and the graph on the left using the planar layout. As not all graphs are planar, we first
identified and selected all planar graphs from the set of connected graphs. We then split these planar graphs into separate
test and train sets, ensuring that no graph from the training set appeared in the test set. The true and false samples were
created as follows:

• True Labels: For each true label, we took a graph and plotted it using both the Kamada-Kawai and planar layouts.

• False Labels: For each false label, we plotted one graph using the Kamada-Kawai layout and then plotted another
randomly selected graph from the set using the planar layout.

To maintain a balanced dataset, we ensured an equal number of true and false labels in both the training and test sets. Figure
9 presents examples of the easy isomorphism task with both true and false labels.

Hard Isomorphism: For this task, we proceeded similarly to the previous one, but with a key difference in the selection
of graphs for false labels. Instead of picking a random graph from the set, we searched for graphs within the set that are
degree-equivalent to the first graph. From these degree-equivalent graphs, we randomly chose one and plotted it using the
planar layout. In cases where no degree-equivalent graphs were found for the first graph within the set, we discarded that
sample. As a result, the number of samples in this task is smaller compared to the easy isomorphism task. Figure 10 presents
examples of the hard isomorphism task with both true and false labels.

B.2. Path Finding Tasks

Shortest Path: For the shortest path task, we created a balanced set of graphs with shortest paths of lengths 1, 2, 3, and 4
between two marked nodes. We opted not to include graphs with shortest paths of length 5 or longer, as the number of such
graphs within the 8-9 node graph set was too small to maintain a balanced dataset with an equal number of samples for each
path length. We began by separating the planar graphs for the test set. From the remaining non-planar graphs, which were
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used for the training set, we identified pairs of nodes with shortest paths of lengths 1, 2, 3, and 4. These nodes were marked
with squares in the plot, while the rest of the nodes were represented as circles. The training set graphs were plotted using
the Kamada-Kawai layout. For each path length, we plotted 20,000 samples, resulting in a total of 80,000 samples for the
training set. For the test set, we created a similarly balanced set of graphs with different path lengths and plotted them using
the planar layout. Figure 11 shows examples of the shortest path task.

Hamiltonian Paths: For this task, we first identified the graphs that contain a Hamiltonian path from the entire set of 8-9
connected graphs. To create a balanced dataset with an equal number of true and false labels, we then randomly selected the
same number of graphs from the remaining non-Hamiltonian graphs as the number of Hamiltonian graphs found. This step
was necessary since Hamiltonian graphs are fewer in count compared to non-Hamiltonian graphs. After creating the balanced
dataset, we split the set into train and test subsets. For the training set, we plotted the graphs using the Kamada-Kawai
layout, while for the test set, we used the planar layout. Figure 12 shows examples of the Hamiltonian path task.

B.3. Cycle Finding Tasks

Hamiltonian Cycles: The task of finding Hamiltonian cycles was approached in a similar manner to the Hamiltonian path
task. We first identified graphs that contain a Hamiltonian cycle from the entire set of 8-9 connected graphs. To create a
balanced dataset with an equal number of true and false labels, we randomly selected the same number of graphs from the
remaining non-Hamiltonian cycle graphs as the number of Hamiltonian cycle graphs found. After creating the balanced
dataset, we split the set into train and test subsets. For the training set, we plotted the graphs using the Kamada-Kawai
layout, while for the test set, we used the planar layout. Figure 13 presents examples of the Hamiltonian cycle task.

Chordless Cycles: The chordless cycle task was similar to the shortest path task, but instead focused on the largest chordless
cycle lengths of 3, 4, 5, and 6. We chose not to include graphs with no chordless cycles (trees) because the number of such
graphs was too small to maintain a balanced set.

We first separated the planar graphs for the test set. From the remaining non-planar graphs, which were used for the training
set, we identified the largest chordless cycles of lengths 3, 4, 5, and 6. For each chordless cycle length, we plotted an equal
number of samples, resulting in a balanced dataset. The training set graphs were plotted using the Kamada-Kawai layout.

For the test set, we created a similarly balanced set of graphs with different chordless cycle lengths and plotted them using
the planar layout. Figure 19 shows examples of the chordless cycles task.

C. Training the Vision Models
For training the vision models on the Visual Graph Arena benchmark tasks, we utilized three state-of-the-art architectures:
ConvNeXt base, Swin Transformer base, and ViT (Vision Transformer) base. All models were initially pre-trained on
the ImageNet dataset and then fine-tuned on our specific graph-based tasks. The training process was implemented using
PyTorch, with the Adam optimizer and a learning rate of 1e− 4. The batch size was set to 32, and the models were trained
for 10 epochs on each task. The CrossEntropyLoss was used as the loss function, as the tasks were formulated as either
binary or multi-class classification problems. We used 2 NVIDIA TITAN RTX GPUs for training the models.

The input images were preprocessed using transformations from the PyTorch transforms module. The images were
resized to 384× 384 pixels, and the pre-trained models were trained on the same size of images on ImageNet.

To handle the different output requirements of the tasks, the number of output classes in the final layer of the models was
adjusted accordingly. For the isomorphism tasks and the Hamiltonian path/cycle tasks, the number of output classes was
set to 2 (binary classification). For the shortest path and chordless cycle tasks, the number of output classes was set to 4,
corresponding to the different path lengths or cycle sizes.

During training, the model’s performance was evaluated on the test set at the end of each epoch. The test set consisted of
graphs drawn using different layouts than those used in the training set, allowing us to assess the model’s ability to generalize
to different visual representations. After the training process, the best-performing model on the test set was selected for each
task and architecture combination. The code for training the vision models, written in Python using PyTorch, is provided in
the supplementary materials and will be publicly available in a GitHub repository.
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Graph Arena

isomorphism

easy

inputs
train 140,000 samples

test 15,718 samples

labels
train labels.txt

test labels.txt

hard

inputs
train 127,374 samples

test 14,298 samples

labels
train labels.txt

test labels.txt

path

hamiltonian

inputs
train 25,000 samples

test
kawai 2,480 samples

planar 2,480 samples

labels
train labels.txt

test labels.txt

shortest

inputs

train 80,000 samples

test

random 8,672 samples

kawai 8,672 samples

planar 8,672 samples

labels
train labels.txt

test labels.txt

cycle

hamiltonian

inputs
train 69,935 samples

test
kawai 7,740 samples

planar 7,740 samples

labels
train labels.txt

test labels.txt

cordless

inputs
train 80,000 samples

test
kawai 6,484 samples

planar 6,484 samples

labels
train labels.txt

test labels.txt

Figure 8: Overview of the directory structure of the Visual Graph Arena benchmark.
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(a) True (b) False

Figure 9: Examples of the easy isomorphism task with true and false labels.

(a) True (b) False

Figure 10: Examples of the easy isomorphism task with true and false labels.
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(a) The shortest path is of length 3. (b) The shortest path is of length 4.

Figure 11: Examples of the shortest path task between marked nodes.

(a) True (b) False

Figure 12: Examples of the Hamiltonian path task with true and false labels.
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(a) True (b) False

Figure 13: Examples of the Hamiltonian cycle task with true and false labels.

(a) The biggest chordless cycle is of length 6. (b) The biggest chordless cycle is of length 4.

Figure 14: Examples of the biggest chordless cycle task.
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D. MLLMs adjacency matrix creation
In this section, we evaluate the performance of GPT-4o and o1, Claude 3 Opus, and Claude 3.5 Sonnet in transcribing graph
structures. We presented these models with three graph images and provided the prompt: "The image presented contains
a graph. Please transcribe this graph’s adjacency matrix." We then analyzed their ability to generate accurate adjacency
matrices from the visual input. Our results reveal that all models struggle to correctly transcribe the graphs, with varying
degrees of accuracy in extracting basic graph properties. GPT-4 comes close to accurately identifying the number of nodes
but struggles with edge counts. Claude 3.5 Sonnet shows the best performance, closely approximating both the number of
nodes and edges. In contrast, Claude 3 Opus performs poorly across all metrics. We visualized the graphs transcribed by
these models to assess their accuracy. Although Claude 3.5 Sonnet was not available at the time of our initial submission,
we have incorporated its responses into our analysis, because it demonstrates superior performance compared to both GPT-4
and Claude 3 Opus, showing a marked improvement over Opus in particular.

prompt: The image presented contains a graph. Please transcribe this graph’s adjacency matrix.

(a) Graph a (b) Graph b (c) Graph c

Figure 15: The three graphs we asked the LLMs to generate the adjacency matrix.

(a) Graph a (b) Graph b (c) Graph c

Figure 16: reconstructed graphs from the generated adjacency matrix by GPT-4o.

E. LLMs Prompts and Responses Samples
In this section, we present one example of each task, along with the prompts used and the responses from GPT-o1, GPT-4,
Claude 3 Opus, and Claude 3.5 Sonnet. We highlight correct final answers in green and incorrect ones in red. The results
demonstrate that these models can analyze graphs, provide chains of thought, and attempt to track nodes and edges. However,
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(a) Graph a (b) Graph b (c) Graph c

Figure 17: reconstructed graphs from the generated adjacency matrix by Claude 3.5 Sonnet.

(a) Graph a (b) Graph b (c) Graph c

Figure 18: reconstructed graphs from the generated adjacency matrix by Claude 3 Opus.

they often fail to solve the problems accurately. In the example in three cases, while the final yes/no responses are correct,
closer inspection of the analysis reveals obvious mistakes, such as incorrectly counting the number of nodes. The correct
responses are not surprising given the yes/no nature of some tasks. Notably, in the shortest-path task, all models unexpectedly
fail to detect that the two marked nodes are connected by a single edge.

E.1. Isomorphism - Easy

prompt: The image presented contains two side-by-side graphs. Without using code, please answer whether the two
given graphs are isomorphic. Please report your final answer as ’Yes’ or ’No’ as your very last word.
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0

1

2

3

4

5

6

(a) Graph a

0

1
2

3

4

5
6

7

(b) Graph b

0

1

2

3

4
5

6

7

(c) Graph c

Figure 19: reconstructed graphs from the generated adjacency matrix by GPT o1.

GPT-4o Output:

To determine if the two graphs are isomorphic, we need to check whether there is a one-to-one correspondence
between the vertices of the two graphs that preserves the adjacency relationships.
Looking at the two graphs in the image:

1. Number of vertices: Both graphs have the same number of vertices.

2. Number of edges: Both graphs also have the same number of edges.

3. Vertex degrees: The degrees of corresponding vertices (number of edges connected to each vertex) should be
the same.

However, upon visual inspection, the structure of the graphs seems to differ significantly. The graph on the right has
a more symmetrical structure, while the graph on the left appears more irregular. Specifically, the arrangement of
connections and the overall shape of the graphs suggest that their connectivity patterns differ. This implies that there
isn’t a one-to-one correspondence that preserves the adjacency relationships between the vertices of the two graphs.
Therefore, the final answer is No .

19



Visual Graph Arena

Figure 20: The input image, the answer is ’Yes’

Claude 3.5 Sonnet Output:

To determine if these graphs are isomorphic, I’ll analyze their structures: Left graph:

• 9 vertices

• 10 edges

• Degree sequence: 3, 3, 3, 2, 2, 2, 2, 2, 1

Right graph:

• 9 vertices

• 10 edges

• Degree sequence: 4, 3, 2, 2, 2, 2, 2, 2, 1

While both graphs have the same number of vertices and edges, their degree sequences are different. The left graph
has a maximum degree of 3, while the right graph has a vertex with degree 4.
Isomorphic graphs must have identical degree sequences. Since these graphs have different degree sequences, they
cannot be isomorphic.
No

20



Visual Graph Arena

Claude 3 Opus Output:

To determine if the two graphs are isomorphic, I’ll check if there exists a bijective mapping between their vertex sets
that preserves adjacency.
Both graphs have 5 vertices. Let’s label the vertices of the left graph L1 to L5 from top to bottom, and the vertices of
the right graph R1 to R5 from top to bottom.
Comparing vertex degrees:
L1, L2, L4, L5 have degree 3. L3 has degree 4.
R1, R3, R5 have degree 3. R2, R4 have degree 4.
Since the degree sequences don’t match, there cannot be an adjacency-preserving bijection between the vertex sets.
Therefore, the two graphs are not isomorphic.
No .

GPT-o1 Output:

Thought about isomorphic graphs for 3m 21s
A quick way to see they cannot match is by comparing vertex-degrees. In the right-hand graph, the “apex” vertex
(the topmost point) clearly has degree 5 (it has edges to five other vertices). In the left-hand graph, no vertex has that
many incident edges (each has degree at most 3 or 4). Since an isomorphism would require a one-to-one match of
vertices with the same degree, the two graphs cannot be isomorphic.
No

E.2. Isomorphism - Hard

prompt: The image presented contains two side-by-side graphs. Without using code, please answer whether the two
given graphs are isomorphic. Please report your final answer as ’Yes’ or ’No’ as your very last word.
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Figure 21: The input image, the answer is ’No’

GPT-4o Output:

To determine if the two graphs are isomorphic, I will analyze the structural properties of each graph, such as the
number of vertices, edges, and the degree of each vertex, and compare them.
Step 1: Count the vertices and edges.

• Left graph:

– Number of vertices: 10
– Number of edges: 13

• Right graph:

– Number of vertices: 10
– Number of edges: 13

Step 2: Compare the degree of each vertex.

• Both graphs should have the same degree sequence if they are isomorphic. The degree of each vertex is the
number of edges connected to it.

Step 3: Visual inspection.

• Compare the overall structure and connectivity to see if a one-to-one correspondence exists between the vertices
and edges of the two graphs.

Upon close inspection, I can conclude that both graphs have the same number of vertices and edges, and they appear
to have a similar degree sequence and connectivity structure. Given these observations, the graphs seem to be
isomorphic.
Final answer: Yes .
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Claude 3.5 Sonnet Output:

To determine if the two graphs are isomorphic, I’ll analyze their structures:
Left graph:

• 11 vertices

• 15 edges

• Complex structure with multiple triangles and intersecting lines

Right graph:

• 11 vertices

• 15 edges

• More elongated structure, fewer triangles, more “tree-like” in parts

While both graphs have the same number of vertices and edges, their structures appear quite different:

1. The left graph is more densely interconnected, with multiple triangles and a more compact shape.

2. The right graph has a more stretched out, less symmetrical structure.

3. The degree distribution (number of edges connected to each vertex) seems different between the two graphs.

4. The left graph appears to have more cycles than the right graph.

These structural differences suggest that there is no one-to-one mapping that could transform one graph into the other
while preserving all connections.
Given these observations, my conclusion is that these graphs are not isomorphic.
No
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Claude 3 Opus Output:

Okay, let’s carefully analyze the two graphs to determine if they are isomorphic. To be isomorphic, the two graphs
must have:

1. The same number of vertices

2. The same number of edges

3. Equivalent connectivity between corresponding pairs of vertices

Comparing the two given graphs:

1. Number of vertices: Both graphs appear to have 6 vertices each. So this condition is satisfied.

2. Number of edges: I count 9 edges in the graph on the left, and 9 edges in the graph on the right as well. Edge
count matches.

3. Vertex connectivity: This is trickier to verify visually. We’d need to find a one-to-one mapping between the
vertices of the two graphs, such that the edge connections are preserved.

One potential mapping: Left graph vertex (from top) 1 → 1, 2 → 2, 3 → 6, 4 → 5, 5 → 4, 6 → 3 on right graph
This mapping appears to preserve all the edge connections between corresponding vertex pairs. Since there exists
a valid mapping, and the two graphs have an equal number of vertices and edges, the two graphs are isomorphic.
Therefore, my final answer is Yes .

GPT-o1 Output:

Thought about graph isomorphism for 3m 45s
A quick way to see they differ is by looking at how each drawing “uses” its outer boundary.
In the right-hand graph, all vertices lie on or inside a single large triangular boundary; in the left-hand graph, the

outer boundary clearly has more than three vertices. That alone forces a mismatch in adjacency that no relabeling can
fix.
Hence, the two graphs are not isomorphic.
No

E.3. Cycle - Hamiltonian

prompt: The image presented contains a graph. Without using code, please answer whether the graph has a
Hamiltonian cycle. Please report your final answer as ’Yes’ or ’No’ as your very last word.
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Visual Graph Arena

Figure 22: The input image, the answer is ’Yes’

GPT-4o Output:

To determine whether the graph has a Hamiltonian cycle (a cycle that visits every vertex exactly once and returns to
the starting vertex), we need to consider the structure of the graph and see if such a cycle can be traced.
Upon inspecting the graph visually, it is clear that the graph does not include a Hamiltonian cycle because there is
no possible way to visit every vertex exactly once and return to the starting point without either missing vertices or
retracing edges.
The final answer is No .
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Visual Graph Arena

Claude 3.5 Sonnet Output:

To determine if this graph has a Hamiltonian cycle, we’ll examine if there’s a path that visits each vertex exactly once
and returns to the starting vertex.
The graph has 9 vertices connected by lines.
A Hamiltonian cycle would need to:

1. Visit all 9 vertices

2. Use only existing edges

3. Return to the starting point

4. Visit each vertex only once (except the start/end)

Looking at the graph structure:

• There are several vertices with only two connections, which limits path options.

• The graph is not fully connected - it has a “pinched” middle section.

• There’s no obvious circular path that covers all vertices.

Attempting to trace potential paths:

• Starting from any outer vertex, it’s impossible to reach all other vertices and return without revisiting some.

• The central “pinched” area forces any potential cycle to cross over itself, which isn’t allowed in a Hamiltonian
cycle.

Given these observations, it’s not possible to create a path that meets all the criteria for a Hamiltonian cycle in this
graph.
No

Claude 3 Opus Output:

To determine if the given graph has a Hamiltonian cycle, we need to check if there exists a cycle that visits each vertex
exactly once and returns to the starting vertex. Looking at the graph, we can observe the following:

1. The graph has 6 vertices.

2. Each vertex has a degree (number of edges connected to it) of at least 2.

3. It appears that we can trace a path that visits each vertex exactly once and returns to the starting point.

One possible Hamiltonian cycle in this graph could be:
Start at any vertex, move to an adjacent vertex, then continue moving to unvisited adjacent vertices until all vertices
have been visited once, and finally return to the starting vertex.
Therefore, based on the observation that a cycle visiting each vertex exactly once exists in the given graph, my final
answer is Yes .
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Visual Graph Arena

GPT-o1 Output:

Thought about Hamiltonian cycle in graph for 3m 47s
From a purely visual/graph-theoretic inspection (tracking each vertex and checking that we can “thread” a single
cycle through all of them exactly once), one finds that there is indeed a way to visit all vertices in a cycle. In other
words, the graph is Hamiltonian.
Yes

E.4. Cycle - Biggest Chordless

prompt: The image presented contains a graph. Without using code, please answer what is the biggest chordless cycle
in this graph. Please report your final answer as number in your very last word.

Figure 23: The input image, the answer is ’3’
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Visual Graph Arena

GPT-4o Output:

To find the biggest chordless cycle in the given graph, let’s analyze the connections between the vertices step by step.
A chordless cycle, also known as an "induced cycle," is a cycle in a graph that does not have any chords, where a
chord is an edge that is not part of the cycle but connects two vertices of the cycle.
Steps to Analyze the Graph:

1. Identify all cycles: We need to identify all the possible cycles in the graph.

2. Determine if they are chordless: For each cycle, check if there are any extra edges (chords) connecting
non-consecutive vertices in the cycle.

Observation from the Image: Looking at the graph, a few potential cycles stand out:

• Cycle 1: Going through five points that seem to form a pentagon shape without any internal edges connecting
non-adjacent vertices.

• Cycle 2: A cycle involving four vertices.

Upon inspecting the graph:

1. The cycle involving the five vertices appears to be the largest cycle.

2. There are no additional edges (chords) connecting non-consecutive vertices in this cycle, making it a chordless
cycle.

Conclusion: The biggest chordless cycle in this graph consists of 5 vertices.
Thus, the final answer is 5 .

Claude 3.5 Sonnet Output:

To find the biggest chordless cycle in this graph, I’ll examine the structure carefully:

1. First, I’ll identify all cycles in the graph.

2. Then, I’ll check each cycle to see if it has any chords (edges connecting non-adjacent vertices within the cycle).

3. Among the chordless cycles, I’ll determine the largest one.

After analyzing the graph:

• There are several triangles (3-cycles), but these are too small to be the answer.

• I can see a few 4-cycles, but upon closer inspection, they all have chords.

• The largest cycle I can find without chords is a 5-cycle.

This 5-cycle can be traced through five points that form a pentagon-like shape in the graph. Any larger cycles I try to
form end up having chords connecting vertices within the cycle.
Therefore, the biggest chordless cycle in this graph contains 5 vertices.
To express my final answer as requested: 5
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Claude 3 Opus Output:

To find the largest chordless cycle in the given graph, I’ll analyze the graph visually. The graph consists of 6 vertices
connected by 9 edges in a triangular pattern. I can see several cycles:

• The outermost cycle connecting all 6 vertices

• Two smaller cycles, each connecting 4 vertices, sharing one edge of the outer cycle

• Four cycles connecting 3 vertices each (the smallest cycles possible)

The 3-vertex cycles all have chords (edges connecting non-adjacent vertices in the cycle), so they are not chordless.
The 4-vertex cycles don’t have any chords. These are the largest chordless cycles in the graph. While the 6-vertex
outer cycle is larger, it has multiple chords (the inner edges), so it’s not chordless. Therefore, the largest chordless
cycle in this graph connects 4 vertices. 4

GPT-o1 Output:

Thought about chordless cycle size for 2m 30s
A succinct way to spot the largest chord-free (“induced”) cycle is to look around the “outer rim” of the drawing and
check whether any diagonals cut across those vertices. By inspection, you will see that all 6 vertices forming the
perimeter loop in the lower and middle/top portions can be traversed in a cycle without encountering an internal chord.
Any attempt to include the interior edges or to form a 7-cycle will run into an extra cross-edge (a chord).
Hence the longest chordless cycle in this graph has length 6 .
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Visual Graph Arena

E.5. Path - Hamiltonian

prompt: The image presented contains a graph. Without using code, please answer whether the graph has a
Hamiltonian path. Please report your final answer as ’Yes’ or ’No’ as your very last word.

Figure 24: The input image, the answer is ’Yes’

GPT-4o Output:

To determine if the given graph has a Hamiltonian path, I will visually inspect the graph. A Hamiltonian path is a
path in a graph that visits each vertex exactly once.
Upon inspecting the graph:

1. I identified the vertices and observed the connections between them.

2. I checked if there’s a path that visits every vertex exactly once.

Given the structure of the graph, it appears that there is no such path that visits every vertex exactly once without
retracing any edge or missing any vertex.
Final answer: No
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Visual Graph Arena

Claude 3.5 Sonnet Output:

To determine if this graph has a Hamiltonian path, we’ll examine whether there’s a path that visits each vertex exactly
once.
The graph has 8 vertices connected by edges forming a network of triangles and lines.
Starting from any vertex, it’s possible to traverse the graph visiting each vertex once:

1. Begin at the leftmost point

2. Move right to the next point

3. Go up to the top of the leftmost triangle

4. Move right to the center point of the graph

5. Go down to the bottom point of the rightmost triangle

6. Move up to the right point of that triangle

7. Go to the top point of the rightmost triangle

8. End at the uppermost point of the graph

This path visits all 8 vertices exactly once, without repeating any vertex.
Therefore, the graph does have a Hamiltonian path.
Yes

Claude 3 Opus Output:

To determine whether the given graph has a Hamiltonian path, I’ll analyze its structure and properties. The graph
appears to have 6 vertices, connected by 8 edges in a triangular mesh pattern. Every vertex has a degree (number of
edges connected to it) of either 2 or 4.
For a graph to have a Hamiltonian path, it must be possible to visit every vertex exactly once in a continuous path.
One necessary condition is that the graph must be connected, meaning there are no isolated vertices or separate
components. This graph is indeed connected - you can trace a path from any vertex to any other vertex through the
edges. This satisfies the connectivity requirement.
However, the graph’s structure poses a challenge. The triangular arrangement means that certain vertices, especially
the central ones with degree 4, will likely need to be visited more than once to cover all vertices in a single path.
After mentally tracing potential paths, I haven’t found a successful Hamiltonian path that visits each vertex exactly
once. The graph’s layout seems to necessitate revisiting some vertices. Therefore, based on this analysis, my
conclusion is that this particular graph does not have a Hamiltonian path. No .

GPT-o1 Output:

Thought about Hamiltonian path in graph for 2m 49s
From inspection, one can find a route that visits each vertex exactly once (in particular, the “lone” degree-1 vertex at
the top can serve as one end of such a path). Therefore the graph does indeed admit a Hamiltonian path.
Yes
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E.6. Path - Shortest

prompt: The image presented contains a graph. Two nodes are marked by square. Without using code, please answer
what is the shortest path between the two square nodes in this graph. Please report your final answer as number in your
very last word.

Figure 25: The input image, the answer is ’1’

GPT-4o Output:

To find the shortest path between the two square nodes in the graph, we can visually inspect the connections between
the nodes.
Looking at the image:

1. Start from the square node on the left side of the graph.

2. There is a direct connection to the node above it.

3. From this node, there is a connection to the square node on the right side.

Therefore, the shortest path consists of two edges.
The final answer is 2 .
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Visual Graph Arena

Claude 3.5 Sonnet Output:

To find the shortest path between the two square nodes in this graph, I’ll count the minimum number of edges that
need to be traversed to get from one square node to the other. Looking at the graph, I can see that there are two
potential paths:

1. A direct path that goes through the center node of the graph.

2. A path that follows the outer edges of the graph.

The direct path through the center is clearly shorter. It requires traversing only 2 edges:

1. From the first square node to the center node

2. From the center node to the second square node

The path along the outer edges would require traversing at least 3 edges. Therefore, the shortest path between the two
square nodes in this graph is 2 .

Claude 3 Opus Output:

The image shows a graph with 6 nodes, where 2 nodes are marked by squares. To find the shortest path between the
two square nodes:

1. Starting from the top square node, there are two possible paths: down-left or down-right.

2. Following the down-left path:

Square → Circle → Square

This path has a length of 2 edges.

3. Following the down-right path:

Square → Circle → Circle → Circle → Square

This path has a length of 4 edges.

Therefore, the shortest path between the two square nodes goes through the down-left path, with a length of 2 edges.
The shortest path between the two square nodes is 2 .

GPT-o1 Output:

Thought about shortest path in graph for 3m 21s
From inspection of the diagram’s edges, there is no direct edge connecting the two square-marked nodes; however,
they lie exactly two edges apart (via a single intermediate vertex).
2
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