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Abstract Data pre-processing is one of the key steps in creating machine learning pipelines for tabular

data. One of the common data pre-processing operations implemented in AutoML systems

is to encode categorical features as numerical features. Typically, this is implemented using

a simple alphabetical sort on the categorical values, using functions such as OrdinalEncoder,
LabelEncoder in Scikit-Learn and H2O. However, often there exist semantic ordinal rela-

tionships among the categorical values, such as: quality level (i.e., [’very good’ > ’good’ >

’normal’> ’poor’]), or month (i.e., [’Jan’< ’Feb’ < ’Mar’]). Such semantic relationships are not

exploited by previous AutoML approaches. In this paper, we introduce BERT-Sort, a novel

approach to semantically encode ordinal categorical values via zero-shot Masked Language

Models (MLM) and apply it to AutoML for tabular data. We created a new benchmark of

42 features from 10 public data sets for sorting categorical ordinal values for the first time,

where BERT-Sort significantly improves semantic encoding of ordinal values in comparison

to the existing approaches with 27% improvement. We perform a comprehensive evalua-

tion of BERT-Sort on different public MLMs, such as RoBERTa, XLM and DistilBERT. We

also compare the performance of raw data sets against encoded data sets through BERT-

Sort in different AutoML platforms including AutoGluon, FLAML, H2O, and MLJAR to

evaluate the proposed approach in an end-to-end scenario, where BERT-Sort achieved a

performance close to a hard encoded feature. The artifacts of BERT-Sort is available at

https://github.com/marscod/BERT-Sort.

1 Introduction

An Automated-Machine Learning (AutoML) platform aims to automate the process of feature

engineering, data engineering, hyper-parameter optimization, training, prediction, and deployment,

where it minimizes human supervision in all stages (He et al., 2021). Each data set may contain

a variety of data types including ordinal values where the order of values is important. Let

C1 ≺ C2 ≺ ... ≺ C𝑛 denote a fixed set of arbitrary classes of C. For instance, UCI Audiology data
set (Porter, 2019) includes a feature of Air with a set of unique values of Normal ≺ Mild ≺ Moderate
≺ severe ≺ profound. Although this field is not a target feature, the order of the values carries

semantic meaning. AutoML platforms encode each feature based on their types and content of

values. Often AutoMLs encode categorical features as an integer array (Pedregosa et al., 2011)

function. For instance, H2O AutoML (LeDell et al., 2018) and Scikit-Learn use categorical_encoding
and OrdinalEncoder (SkL, 2021) functions, respectively, to transform categorical values to an integer

array. However, all categorical encoders rely on an alphabetical sort function such as Numpy
Sort (num, 2021) where the encoded values are based on the sorting results of categorical values

alphabetically (Oliphant, 2006) (LeDell et al., 2018). Such a simple method may fail to capture the

semantic relationships between values. For instance, the value ’profound’ in the Air feature of
UCI Audiology data set represents more serious level than the value ’severe’ but OrdinalEncoder
returns the opposite result. Similarly, alphabetically sorting values of num-of-cylinders feature
in UCI Automobile Data Set returns [’eight’ ≺ ’five’ ≺ ’four’ ≺ ’six’ ≺ ’three’ ≺ ’twelve’ ≺ ’two’] as
[C1 ≺ C2 ≺ ... ≺ C7], respectively, where the ordinal values have been misplaced. As a result, such
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incorrectly encoded values can pose more challenges to any machine-learning algorithms to predict

the target value of price based on increase/decrease value of cylinders.
One hypothesis to be verified in this paper is that AutoML platforms incorrectly encoding

ordinal categorical features might result in degraded performance. To address this issue, we propose

a novel approach BERT-Sort which utilizes pre-trained Masked Language Models (MLM) (Devlin

et al., 2018) in a zero-sot setting to semantically sort and encode ordinal values. The following are

our main contributions in this study.

(i) A zero-shot systematic sorting algorithm to sort ordinal values is introduced in Section 3;

(ii) We compose a benchmark of 10 real-world data sets with 42 ordinal features for the first time,

which is explained in Section 4 (detail in Appendix A);

(iii) We conduct a comprehensive performance evaluation of benchmarks by i) comparing the

results of BERT-Sort (with initialization on 4 different publicly available MLMs) and Ordina-

lEncoder (which is widely used in different AutoML platforms), and ii) evaluating between

raw data set and encoded data set through BERT-Sort in 4 different AutoML platforms of

AutoGluon, FLAML, H2O, MLJAR in Section 4.

2 Related Works

In the supervised approach, researchers and practitioners utilize existing limited data sets with

ordinal values to develop a model where it can encode ordinal values and predict unseen ordinal

values for encoding purposes. However, the adaptation of a trained model from one domain to

another is extremely limited. Therefore, most related works in the supervised approach can be

used in a set of selective domains/languages and it can be used in a form of training a model for

a particular domain. An early study by McCullagh (1980) and later other studies by Christensen

(2015) and Harrell (2015), introduced a general class of regression models for ordinal values where

it utilizes the ordinal values through various modes of stochastic ordering. In another recent study

by Lausser et al. (2020), the authors developed an ordinal subcascades detection and encoding

process, but the authors mentioned that their works have a limitation where analyzing suitable data

representations may give a better answer for ordinal encoding. Dahouda and Joe (2021) proposes a

deep-learned embedding technique for categorical features encoding. The proposed technique is

a distributed representation for categorical features where each category is mapped to a distinct

vector, and the properties of the vector are learned while training a neural network. In our proposed

approach, we utilize the semantic understanding of MLMs to overcome the supervision and the

limitation of ordinal subcascade encoding and other similar approaches.

In addition to the aforementioned studies, categorical encoders have also been widely applied

in AutoML platforms. Auto-sklearn provides ordinal encoding or one-hot encoding as choices for

categorical features (Feurer et al., 2020). MLJAR (mlj, 2022) (Płońska and Płoński, 2021) converts

categorical features into numeric with label encoder, one-hot encoder or target encoder, which is

automatically selected based on feature cardinality and AutoML training stage (mlj, 2022). As

explained by LeDell et al. (2018), H2O utilizes tree-based models (Gradient Boosting Machines,

Random Forests) to support group-splits on categorical variables, so categorical data can be handled

natively. However, as explained by Zhou and Hooker (2021), the default split-improvement method

is biased towards increasing the importance of features with more potential splits especially

when we are dealing with a large number of ordinal values. H2O also uses categorical_encoding,
which specifies the encoding scheme to use for handling categorical features. In AutoGluon, each

categorical feature is mapped to monotonically increasing integers (Aut, 2022a). AutoKeras defines
an argument categorical_encoding, which specifies whether to encode the categorical features to

numerical features (Aut, 2022b). However, these categorical encoders rely on purely alphabetically

sort functions such as Numpy Sort(num, 2021) where it rearranges the values by alphabetically
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Figure 1: An overall process of BERT-Sort approach

sorting values, then it assigns an integer value based on the index of sorted values (Oliphant,

2006) (LeDell et al., 2018). Although the method can encode the categorical data sets, it fails to

encode ordinal values by misplacing the values in incorrect orders. In this paper, we introduce an

approach that takes advantage of ordinal values, their semantic definitions to define an approach

that can be universally applied toward diverse domains/languages without any supervision.

3 BERT-Sort

The basic idea of BERT-Sort is to utilize the power of a pre-trained language model to recognize

the order of a given sequence of values. Language models learn from a large number of text

corpus where a language model processes the context of sentences and paragraphs. Masked-

Language Modeling (MLM) is a self-supervised learning of text representations where it computes

the probability distribution of a masked token from a given context. A masked language model can

be used across different down-stream tasks such as text generation. Each feature of a given data

set may contain categorical ordinal values. The tokens of ranked ordinal values could be seen in

many documents. For instance, we may find a large number of documents that includes ’February’
appearing after ’January’. In NLP down-stream tasks, such as text generation, we may replace a

subset of tokens of a given input string with a distinctive character of [MASK] and the objective is

predicting the masked token. We utilize this unmasking process to find the orders of a set of given

values based on their probability of orders according to a pre-trained MLM.

3.1 Problem Formulation

Figure 1 shows the overall process of the proposed approach, BERT-Sort, where it aims to find

the best order of ordinal values by computing the maximum probability of appearances of values

in a set of possible orders. First, BERT-Sort captures all categorical features (F ) of a given data

set, D. Let A𝑖 denotes all unique values of 𝑖th feature (F𝑖 ). If | |A𝑖 | | ≤ 𝜑 , where 𝜑 is a threshold of

the maximum number of unique values, BERT-Sort applies to A𝑖 (a candidate for ordinal feature).

In Section 4, we extend this rule-based approach to automate the detection of ordinal values by

applying BERT-Sort to detect if there is an ordinal relationship between values. BERT-Sort generates

𝑁 different possible permutation cases (different orders of ordinal values) fromA𝑖 , which is denoted

as C𝑖, 𝑗 where 𝑗 = [1, .., 𝑁 ]. C𝑘𝑖,𝑗 denotes 𝑘th element of C𝑖, 𝑗 . Since it is computationally expensive to

generate all possible permutations for a large number of elements, we explain a sequential approach

in Section 3.2 to process a fewer number of cases. BERT-Sort produces 𝑘 different masked patterns

for 𝑖th feature, and 𝑗th case as𝑀𝑘
𝑖,𝑗 where 𝑘 = 1..| |A𝑖 | |. In each iteration (𝑘) a single value of C𝑘𝑖,𝑗 is
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masked. Let S𝑘
𝑖,𝑗 denotes a generated sentence by applying each masked pattern of𝑀𝑘

𝑖,𝑗 to C𝑘𝑖,𝑗 where
it is masked 𝑘th element of C𝑖, 𝑗 . For instance, for a given three elements (𝑘 = [1, 2, 3]) ofA𝑖 [𝐴, 𝐵,𝐶],
it applies 𝑀1

1,1 = [1, 0, 0], and it generates a sentence of S1

1,1 = [CLS][MASK], B,C.[EOS]. In this

step, different sentence structures can be generated (i.e., replacing the comma between the ordinal

values with a blank space). We explain the performance of building different sentence structures in

Section 10.

Next, BERT-Sort performs a model inference on initiated MLM (i.e., RoBERTa) to unmask S𝑘
𝑖,𝑗

and MLM returns 𝜂 number of retrieved tokens, which is denoted by W𝜂 . if C𝑘𝑖,𝑗 ∈ W𝜂 , it indicates

that MLM returns a probability for the sequence of 𝐶𝑘
𝑖,𝑗 with the context of S𝑘

𝑖,𝑗 and it is denoted by

𝑃 (𝐶𝑘
𝑖,𝑗 |𝑆𝑘𝑖,𝑗 , 𝜂); otherwise it returns 0. Finally, it finds the average probability of all masked sentences

of 𝑖th feature for 𝑗th case (Θ𝑖, 𝑗 ) as follows.

Θ𝑖, 𝑗 =


| |A𝑖 | |∑
𝑘=1

𝑃 (C𝑘
𝑖,𝑗
|𝑆𝑘
𝑖,𝑗
,𝜂)

| |A𝑖 | | , if C𝑘𝑖,𝑗 ∈ W𝜂

0, otherwise

(1)

Θ𝑖, 𝑗 denotes the score of appearing a sentence (which is constructed from ordinal values) for 𝑖th

feature, and 𝑗th order (case). Θ𝑀𝑖
= max

| |𝐴 | |
𝑗=1
(Θ𝑖, 𝑗 ) which is selecting a case with the highest score

(the best order or sequences of input elements). Figure 3 shows an example of score computation for

3 elements. Intuitively, BERT-Sort finds the most likely correct order from all possible permutations

with utilizing a pre-trained MLM. Different MLMs can be applied under the same architecture

across different domains (i.e., medical domain) and languages (i.e., Chinese). We explain the boarder

impact of BERT-Sort in Section 12.

3.2 Handling a large number of ordinal values

Although BERT-Sort semantically ranks values instead of non-semantic approaches (i.e., alphabetical

sort), it is computationally intractable for BERT-Sort to directly support a large permutations of

ordinal values. BERT-Sort applies two approaches for handling a large number of ordinal values.

First, BERT-Sort uses a divide and conquer approach for sorting elements if there are any

repeated words among ordinal values. Let C𝑖 = [𝑊 𝑖
1
, ..,𝑊 𝑖

𝑛] denotes n-gram (Brown et al., 1992)

composition of 𝑖th ordinal value. The following shows five steps for this process. i) It generates

a set of groups where each group has a word (largest n-gram words) in common, and it denotes

common words. (i.e., define a group of [Lava Hot, Boiling Hot, Hot]). Note that in this step, if𝑊 𝑖
𝑚

of C𝑖 is selected for a group, then [𝑊 𝑖
1
, ..,𝑊 𝑖

𝑛] will be added into the group, and it will not repeat

the process on other words of [𝑊 𝑖
1
..𝑊 𝑖

𝑚−1,𝑊
𝑖
𝑚+1..𝑊

𝑖
𝑛]; ii) It selects a group leader word where it is

most frequent largest n-gram word among the group values (i.e., ’Hot’ is selected as group leader

in previous example); iii) It sorts elements within each group. (i.e., [Hot ≺ Boiling Hot ≺ Lava Hot]);
iv) It sorts elements of group leaders and unique values (i.e., [Cold ≺ Hot]); Finally, v) it replaces
each sorted group leaders with their sorted values of the group (i.e., [Cold ≺ Hot ≺ Boiling Hot ≺
Lava Hot]).

Second, BERT-Sort uses a sequential adding procedure by sorting 𝜁 number of elements, then

adds the rest of elements sequentially. It aims to avoid generating a large number of permutation

cases when 𝜁 < | |A| |. Figure 2 shows an example of sequential sorting values for 12 ordinal value

elements (months abbreviations). BERT-Sort uses a sequential approach in three steps as follows. i)

It finds the best candidate for 𝜁 blank spots (in the figure, it is initiated with 𝜁 = 5 spots); ii) Once it

finds the best candidates for 𝜁 blank spots as initial sorted elements (it finds [Jan ≺ Feb ≺ Apr ≺
Jun ≺ Sep] for 5 spots in the example), then it adds each remaining element to the initial sorted

elements (in the second iteration, it finds the best position for "Oct" in initial sorted 5 elements);

Finally, iii) it repeats step (ii) until all elements are added to the final sorted values. This process
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Figure 2: An example of sequential sorting elements for large number of ordinal values where 𝜁 = 5

reduces the computation time fromO(𝑛!) where 𝑛 = | |A| | to i) a combination function for selecting

𝜁 ordinal values from 𝑛 number of values with O(𝑛𝜁 ), and ii) a sequential adding function with

O(𝑛2) where the whole procedure can be completed in O(𝑛𝜁 + 𝑛2) s.t. 2 < 𝜁 < 𝑛
2
.

BERT-Sort aims to have a better accuracy with a higher probability score with lengthy contents

(larger 𝜁 have better accuracy, see Section 11). For instance, Θ𝑀 with 𝑈 ( [𝑀𝐴𝑆𝐾]) = 𝐽𝑎𝑛 where

𝑈 (𝑐) = 𝑡 returns the probability of a given masked context of 𝑐 if 𝑡 token exist in the list and

considering 𝑐 ="[CLS][MASK], Feb, Mar, Apr.[EOS]" is higher than 𝑈 ( [𝑀𝐴𝑆𝐾]) = 𝐽𝑎𝑛 where

𝑐 ="[CLS][MASK], Feb.[EOS]". Therefore, we recommend to keep maximum possible of 𝜁 elements

per available computation resources. For instance, 𝜁 = 5 if | |A| | ≤ 12, and 𝜁 = 3 if 12 < | |A| | ≤ 20.

Algorithm 1 shows the details of BERT-Sort procedures.

4 Experiments

Experimental Setup. We evaluate the proposed BERT-Sort approach under two cases: i) the

performance of BERT-Sort in detecting and encoding categorical ordinal features; ii) the effectiveness

of encoding applied to categorical ordinal features by BERT-Sort before input to various AutoMLs.

We use 10 different publicly available real-world data sets because it includes categorical ordinal

values. We annotate and generate 42 different categorical features (as explained in Appendix A),

where we compare the performance of Scikit-Learn OrdinalEncoder as a baseline against BERT-Sort

encoder. We initiate BERT-Sort algorithm with 4 different popular and publicly available MLMs:

DistilBERT, RoBERTa, XLM-RoBERTa and BERT-base-uncased (𝑀1..4 respectively) in a zero-shot

setting. The inference on MLM can be optimized on CPU to reach 2ms per case (Philipp Schmid,

2022) and further detail explained in Section 8. We compare the results of different MLMs and

recommend the best MLM to researchers and practitioners. The details of MLM, configurations and

BERT-Sort hyper-parameters with a link to reproduction are presented in Section 7 and Section 8.

Like other encoders, such as OrdinalEncoder, LabelEncoder, we use BERT-Sort to rank ordinal

values semantically (Altınel and Ganiz, 2018), then assign an integer for each element per their

orders. Since the orders of the values are principal factors in either ascending or descending, we

do not distinguish between two ranks. However, we expect that BERT-Sort returns ordinal values

ranked in ascending order (i.,e., ’low’ to ’high’ or ’Jan’ to ’Dec’) because most documents (which

has been used to train MLMs) are written in ascending format. For instance, we may find many

documents in Wikipedia that indicate ’Jan, Feb’ and fewer document that include ’Feb, Jan’.
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Algorithm 1 BERT-Sort Procedures
1: procedure BERT_Sort(D, 𝜁 )

⊲ Sorts each feature, F , of input data set, D with a given 𝜁 parameter.

2: for F in D do ⊲ process each feature of given data set

3: for U𝑓 in Unique(F ) do ⊲ capture pre-processed unique values

4: R(U𝑓 ) ←G(𝑟𝑒𝑝𝑒𝑎𝑡𝑒𝑑_𝑤𝑜𝑟𝑑𝑠) if ∃𝑔 else U𝑓 ⊲ grouping repeated words among unique values;

5: ⊲ otherwise generate a single group

6: for G inR(U𝑓 ) do
7: HG ← 𝐵𝐸𝑅𝑇 _𝐶𝑜𝑚𝑝𝑜𝑠𝑒_𝑆𝑜𝑟𝑡 (𝐺, 𝜁 ) ⊲ sort values within each group

8: ĤG ← ℎ𝑒𝑎𝑑𝑖𝑛𝑔_𝑤𝑜𝑟𝑑𝑠 (HG ) ⊲ replace sorted values of each group with their header group

9: return 𝐵𝐸𝑅𝑇 _𝐶𝑜𝑚𝑝𝑜𝑠𝑒_𝑆𝑜𝑟𝑡 (ĤG , 𝜁 ) ⊲ sort heading groups

10:

11: procedure BERT_Compose_Sort(A, 𝜁 )

⊲ Sort input array ofA through MLM

12: if | |A | | > 𝜁 then
13: C ← 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 (A, 𝜁 ) ⊲ initial combination case generator with length of 𝜁

14: I ← 𝐵𝐸𝑅𝑇 _𝐵𝑎𝑠𝑒_𝑆𝑜𝑟𝑡 (C) ⊲ sort initiated sequences

15: S ← I ⊲ sort initiated sequences

16: for E inA − I do ⊲ sequential adding the rest of elements

17: C ← 𝑆𝑒𝑞 (S, E) ⊲ generate new sequential cases by adding E in all 𝑝 positions of S (𝑝 = [1, ..., | |S | | + 1])
18: S ← 𝐵𝐸𝑅𝑇 _𝐵𝑎𝑠𝑒_𝑆𝑜𝑟𝑡 (C) ⊲ sort sequential cases

19: else
20: C ← 𝑃𝑒𝑟𝑚𝑢𝑡𝑒 (A, 𝜁 ) ⊲ generate all new cases with all permutations of A
21: S ← 𝐵𝐸𝑅𝑇 _𝐵𝑎𝑠𝑒_𝑆𝑜𝑟𝑡 (C) ⊲ sort all possible permutation of A
22: return S
23:

24: procedure BERT_Base_Sort(C)
⊲ Sort input cases of C through MLM

25: Init MLM(Model) ⊲ initialize a MLM model (i.e., Model="RoBERTa")

26: for C𝑖 in C do ⊲ process each case

27: for 𝑗 in range( |C𝑖 |) do
28: M𝑖,𝑗 ← 𝑀𝑎𝑠𝑘 (C𝑖,𝑗 ) ⊲ generate mask pattern

29: Θ𝑖 ← Θ𝑖 + [P̂𝑖 (M𝑖,𝑗 |𝑆𝑖 , 𝜂)] ⊲ collect probability of each unmasked pattern

30: Θ𝑖 =
∑(P̂𝑖 ) ⊲ calculate score of each case

31: if Θ𝑖 > Θ𝑚 then:
32: C𝑚 = C𝑖
33: Θ𝑚 = Θ𝑖 ⊲ keep the best case with highest score

return C𝑚

Table 1: Evaluation of ordinal value detection on 212 features of 10 data sets

Predicted

Positive Negative Total

Actual

Positive 42 0 42

Negative 6 164 170

Total 48 164 212

4.1 Evaluation of Detecting Ordinal Features

We defineOrdinal Value Detection function to apply BERT-Sort effectively, where it checks whether a
set of unique values of a given feature corresponds to a semantic order. We select the ordinal values

with length of 3 to 20, and remove numerical values in string format as part of pre-processing stage.

Then, we shuffle input unique values, and generate𝑚 number of sample cases. If𝐴𝑣𝑔(Θ1..𝑚) > 1𝑒−4,
BERT-Sort consider that there is an ordinal relationship between values. In our experiment, we use

benchmark that includes 10 data sets with 212 features. In this experiment,𝑚 = 3 and 𝜂 = 20, 000

in BERT_Base_Sort() and initiate MLM on RoBERTa model. As shown in Table 1, the ordinal value

detection function predicts ordinal values with 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 0.875, 𝑅𝑒𝑐𝑎𝑙𝑙 = 1 and 𝐹1 = 0.933. As

shown in Table 1 and Table 2-row#5, BERT-Sort detects 6 false-positive features out of 212 features

due to possibility of generating a probability score for a set of given values in zero-shot environment.
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Table 2: Five examples of the ordinal value detection

# Data set Unique Values Ground Truth Detection Status

1 uci-audiology-original [’Normal’, ’Moderate’, ’Mild’] Yes True-Positive

2 cat-in-the-dat-ii [’Warm’, ’Boiling Hot’, ’Freezing’, ’Lava Hot’, ’Hot’, ’Cold’] Yes True-Positive

3 uci-automobile [’Wagon’, ’Sedan’, ’Hatchback’, ’Hardtop’, ’Convertible’] No True-Negative

4 uci_automobile [’Blue Collar’, ’Management’, ’Entrepreneur’, ..., ’Admin’] No True-Negative

5 cat-in-the-dat-ii [’Circle’, ’Polygon’, ’Square’, ’Star’, ’Trapezoid’, ’Triangle’] No False-Positive

Table 3: A comparison between a classical accuracy metric (𝐴𝑐𝑐) and an ordinal accuracy metric

(𝑂𝑟𝑑𝐴𝑐𝑐 ) for ground truth ordinal values of [Jan ≺ Feb ≺ Mar ≺ Apr]

# Ranked Values 𝐴𝑐𝑐 𝑂𝑟𝑑𝐴𝑐𝑐

1 [Feb ≺ Jan ≺ Mar ≺ Apr] 0.5 0.87

2 [Mar ≺ Feb ≺ Jan ≺ Apr] 0.5 0.75

Even though BERT-Sort may encode those false-positive detected features, the encoded values may

not cause negative impacts to down-stream machine learning tasks.

4.2 Evaluation of Encoding Ordinal Values

In addition to classical evaluation of classification problem, such as Accuracy (Mosley, 2013)(Ur-

banowicz and Moore, 2015), we proposed a new metric based on ordinal value error rate where it

calculates the ordinal distance error between the ground truths and predictions as follows.

𝑂𝑟𝑑𝐴𝑐𝑐 =

∥𝐴 ∥∑︁
𝑖=1

∥𝐴∥ − |L𝑖 − L̂𝑖 |
∥𝐴∥2 (2)

Let ∥A∥ denotes the length of input array (unique values of a given feature, F ), |L𝑖 − L̂𝑖 | is the
absolute distance of 𝑖-th element in predicted order (L̂𝑖 ) from the actual position (L𝑖 ) in ground

truth data set, and 𝑂𝑟𝑑𝐴𝑐𝑐 represents the Ordinal Accuracy. For instance, as shown in Table 3,

row#1, both values of Jan and Feb have distance (error rate) of one to their actual positions and

thus 𝑂𝑟𝑑𝐴𝑐𝑐 = 0.87. On the other hand, the accuracy for this example is 0.5 because two of four

elements are incorrect. In contrast, another example shown in row #2 also has the same accuracy

equal to 0.5. However, the second example has worse Ordinal Accuracy where 𝑂𝑟𝑑𝐴𝑐𝑐 = 0.75 in

compared to the first one. As shown row #2 has a longer distance (higher error rate) for both Jan
and Mar to their ground truth positions. Although we evaluate the benchmark on both evaluation

metrics, we recommend 𝑂𝑟𝑑𝐴𝑐𝑐 for ordinal evaluation.

Table 4 shows the evaluation results on 10 different data sets for 42 distinctive features of

annotated ground truth of ordinal values where 𝜁 = 4, in our benchmark 𝐴𝑣𝑔( | |A| |) = 4. 𝑂𝑟𝑑𝐴𝑐𝑐
corresponds to ordinal accuracy and 𝐴𝑐𝑐 corresponds to classical accuracy metric. As part of

the pre-processing stage, we consider a set of special categories where it can be removed from

unique values due to general information or non-ordinal values, such as: "?", Null string, Null

value, "unknown", "unmeasured", etc. We remove special categories from both BERT-Sort and

OrdinalEncoder to have an unbiased comparison. As shown in this table, BERT-Sort improves the

performance in terms of both 𝑂𝑟𝑑𝐴𝑐𝑐 and 𝐴𝑐𝑐 on all four different initiated MLMs. BERT-Sort with

𝑀2 initialization (RoBERTa) achieves the best performance with significant improvements of 27%

and 55% against the baseline based on 𝑂𝑟𝑑𝐴𝑐𝑐 and 𝐴𝑐𝑐 metrics, respectively.

4.3 AutoML Evaluation.

We use 4 AutoML platforms including AutoGluon, FLAML, H2O, and MLJAR to evaluate the

effectiveness of encoded categorical ordinal features by using BERT-Sort to the ultimate machine

learning performance. We evaluate 5 different versions of 10 data sets, where each method encodes
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Table 4: A Comparisons of semantic ordinal value evaluation of BERT-Sort with initiation on 4 dif-

ferent MLMs of DistilBERT, RoBERTa, XLM, BERT-base-uncased (𝑀1..4, respectively), and

OrdinalEncoder with two metrics of Ordinal Accuracy (𝑂𝑟𝑑𝐴𝑐𝑐 ) and classical Accuracy (𝐴𝑐𝑐)

metrics on 10 different data sets and 42 distinctive features; (champions marked in bold;
3 indicates BERT-Sort feature champion in all models based on both metrics; 3 indicates

OrdinalEncoder feature champion against BERT-Sort based on both metrics)

Evaluation 𝑂𝑟𝑑𝐴𝑐𝑐 𝐴𝑐𝑐

Approach BERT-Sort OrdinalEncoder BERT-Sort OrdinalEncoder

Model 𝑀1 𝑀2 𝑀3 𝑀4 𝑀1 𝑀2 𝑀3 𝑀4

Feature

F1 0.92 1.00 0.76 0.84 0.76 0.60 1.00 0.40 0.40 0.00

F2 3 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 0.00

F3 3 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 0.00

F4 1.00 1.00 0.78 0.78 0.56 1.00 1.00 0.33 0.33 0.00

F5 3 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 0.00

F6 3 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 0.00

F7 3 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 0.00

F8 0.84 1.00 1.00 0.84 0.76 0.40 1.00 1.00 0.60 0.20

F9 0.76 0.76 0.76 0.84 0.68 0.00 0.00 0.20 0.40 0.20
F10 0.94 0.78 0.78 0.89 0.72 0.67 0.00 0.17 0.67 0.33
F11 0.78 0.78 0.78 1.00 0.56 0.33 0.33 0.33 1.00 0.33

F12 1.00 1.00 0.78 0.78 1.00 1.00 1.00 0.33 0.33 1.00

F13 0.74 0.93 0.72 0.82 0.72 1.00 0.50 0.00 0.25 0.00

F14 0.75 1.00 1.00 0.88 0.75 0.00 1.00 1.00 0.50 0.25

F15 3 1.00 1.00 1.00 0.88 0.75 1.00 1.00 1.00 0.50 0.25

F16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

F17 3 1.00 0.78 1.00 1.00 1.00 1.00 0.33 1.00 1.00 1.00
F18 3 1.00 1.00 1.00 0.78 0.56 1.00 1.00 1.00 0.33 0.33

F19 3 0.78 1.00 1.00 0.78 0.56 0.33 1.00 1.00 0.33 0.00

F20 0.75 1.00 1.00 0.88 0.75 0.00 1.00 1.00 0.50 0.25

F21 0.62 0.88 1.00 0.75 0.75 0.00 0.50 1.00 0.50 0.25

F22 3 1.00 1.00 1.00 1.00 0.56 1.00 1.00 1.00 1.00 0.33

F23 3 0.78 1.00 1.00 0.78 0.56 0.33 1.00 1.00 0.33 0.00

F24 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 0.00

F25 0.84 1.00 1.00 0.67 0.63 0.14 1.00 1.00 0.14 0.14

F26 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

F27 0.78 1.00 1.00 1.00 0.78 0.33 1.00 1.00 1.00 0.33

F28 0.78 0.78 0.78 1.00 0.56 0.33 0.33 0.33 1.00 0.33

F29 0.76 1.00 0.76 0.84 0.68 0.20 1.00 0.20 0.40 0.20

F30 0.75 1.00 0.75 0.75 0.50 0.25 1.00 0.50 0.00 0.00

F31 0.78 1.00 1.00 0.78 0.78 0.33 1.00 1.00 0.33 0.33

F32 0.78 0.78 0.78 0.78 0.78 0.33 0.33 0.33 0.33 0.33

F33 3 0.76 0.68 0.84 0.84 0.92 0.00 0.00 0.60 0.60 0.60
F34 3 1.00 1.00 1.00 0.78 0.56 1.00 1.00 1.00 0.33 0.00

F35 3 0.78 1.00 1.00 0.78 0.56 0.33 1.00 1.00 0.33 0.00

F36 0.78 1.00 1.00 0.78 0.56 0.33 1.00 1.00 0.33 0.00

F37 1.00 1.00 0.78 1.00 0.78 1.00 1.00 0.33 1.00 0.33

F38 1.00 1.00 0.78 0.78 0.78 1.00 1.00 0.33 0.33 0.33

F39 0.75 0.75 0.88 0.88 0.88 0.25 0.00 0.50 0.50 0.50
F40 0.78 1.00 1.00 0.78 0.56 0.33 1.00 1.00 0.33 0.33

F41 0.78 1.00 1.00 0.78 0.56 0.33 1.00 1.00 0.33 0.33

F42 3 1.00 1.00 1.00 1.00 0.56 1.00 1.00 1.00 1.00 0.33

#champions 30 35 31 32 3 23 31 27 28 5

w.r.t. OrdinalEncoder w.r.t. 𝑀2 w.r.t. OrdinalEncoder w.r.t. 𝑀2

Improvement 0.20 0.27 0.25 0.20 baseline 0.31 0.55 0.49 0.34 baseline
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Table 5: Overall average F1 score and average Accuracy score performance of 8 original data sets,

and its 4 other methods of ordinal value encoders on 4 AutoML platforms with 4 different

randomization experiences (4 seeds)

Method F1 Score Accuracy Score

Encoded BERT 0.520 0.728

OrdinalEncoder 0.615 0.764

Original 0.625 0.769

BERT-Sort 0.636 0.784

Human Annotation 0.637 0.785

only ordinal features and leave the rest of features as-is. The following shows 5 different methods

which transform the original data set to different encoded features as inputs to 4 AutoML platforms.

Original. It refers to the original data set without any changes (our baseline).

Encoded BERT. This method encodes the ordinal value by utilizing Sentence-BERT (Reimers and

Gurevych, 2019) to generate a high-dimension continuous vector representation with a size 238.

Then, we apply Scikit-Learn PCA (Szlam et al., 2014), a linear dimensionality reduction method

based on Singular Value Decomposition(Maćkiewicz and Ratajczak, 1993), to transform the high-

dimension vector into a low-dimension (a single value) that represents the ordinal feature.

Human Annotation. We manually assign the orders (i.e. integers) to ordinal values based on their

semantic meanings. The annotated values are considered as ground-truth.

OrdinalEncoder. where it uses Scikit-Learn OrdinalEncoder to encode the ordinal values.

BERT-Sort. which encodes ordinal value based on BERT-Sort approach.

We split each input data set (each version of data set) into 75% which is sent to each AutoML

platform, and 25% which is used to test the trained model. The experiments have been completed

with 4 different seeds of [108, 180, 234, 309] to split data sets for training and testing (see Section 9

for detail). We limit the execution time of AutoML platforms to 5 minutes. Note that the data sets

in our evaluation include all different features including numerical, text, etc. In this evaluation, we

use F1 metric and accuracy evaluation. F1 metric has more restriction in compared to accuracy

metric because it aggregates both Recall and Precision by considering the concept of harmonic

mean (Grandini et al., 2020) (Takahashi et al., 2021). We use F1-macro where it is computes the

average of F1 score of each class with weighting depends on the average parameter. All AutoML

platforms failed on two data sets (regressions task) of UCI_Coil_1999_Competition where it requires

7 features predictions (7 of Algae frequency distributions must be determined), and UCI-Automobile
which required additional pre-processing step. Although AutoGluon and H2O generate at least

a model for these data sets but returns a negative score value which indicates that the model fits

data poorly. We decided to remove these two data set to avoid bias evaluation across different

AutoMLs. All AutoML platforms successfully generated at least a model (success) for data sets

with classification task except H2O where it is failed on two data sets of UCI Bank and Kaggle
Cat-in-the-Dat-ii data sets due to time limitation. Table 5 shows the overall performance of all

data sets across 4 AutoML platforms. The performance results in this table indicates that human
annotation of ordinal values have the best performance and BERT-Sort was able to produce results
with F1 score and Accuracy score close to manually annotated version of data sets that has
highest performance. In addition, manually transformed ordinal values (human annotated) shows

that a correct encoding can improve ultimate end-to-end performance of machine-learning models.

Table 6 shows the details of our experiments per AutoML platform. Although nominal values

and other features (such as text, and numerical) may contributed to model prediction, BERT-Sort

improves the performance of 3 AutoML platforms. The fine-grained evaluation of this table per

AutoML platform per Data Set per Encoded Method is shown in Table 11 and Table 12.
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Table 6: A comparison evaluation between different AutoML platforms on 8 benchmark data sets by

using 5 methods of encoding for different experiments with 4 different random seeds

AutoML Method F1 Score Accuracy Score

AutoGluon Encoded BERT 0.560 0.766

OrdinalEncoder 0.632 0.790

Original 0.648 0.799

BERT-Sort 0.640 0.788

Human Annotation 0.614 0.774

FLAML Encoded BERT 0.480 0.727

OrdinalEncoder 0.632 0.772

Original 0.598 0.742

BERT-Sort 0.631 0.784

Human Annotation 0.648 0.787

H2O Encoded BERT 0.570 0.714

OrdinalEncoder 0.613 0.744

Original 0.666 0.768

BERT-Sort 0.679 0.780

Human Annotation 0.679 0.802

MLJAR Encoded BERT 0.480 0.702

OrdinalEncoder 0.582 0.746

Original 0.599 0.768

BERT-Sort 0.606 0.782

Human Annotation 0.617 0.780

5 Discussions
As shown in Table 4, encoding ordinal values by BERT-Sort with initialization of any MLM indicates

BERT-Sort is able to achieve the state-of-the-art semantic encoding performance on categorical

features. On the other hand, these results show that widely used categorical encoding functions

such as OrdinalEncoder will lead to diminish the semantic order of ordinal values.
Interestingly, BERT-Sort can go beyond expectation by sorting categorical data where it is

too complex for data scientists to rank elements manually. For instance, by initiating BERT-Sort

on BioClinical BERT (Alsentzer et al., 2019) it can sort the severity of cancer as [Melanoma ≻
Leukemia ≻ Cancer] without any supervision (a supervised approach used by Lausser et al. (2020)

to generate this order). More details about the broader impact of BERT-Sort usages across different

domains, languages (i.e., Chinese, Japanese and Spanish) and semantic image sorting are explained

in Section 12. Note that evaluated data sets contains many other non-ordinal features including

nominal, text, etc. Therefore, the evaluation results reflects only the generalization of BERT-Sort.

6 Conclusion
In this paper, we introduced BERT-Sort, a novel automated approach to detect and encode categorical

ordinal features.We introduced a benchmark that includes 10 different public data sets with 42

different ordinal features. We conducted an extensive evaluation on the benchmark where BERT-

Sort is initialized on four popular MLMs of DistilBERT, RoBERTa, XLM and BERT-base. BERT-Sort

significantly improves the performance of the state-of-the-art categorical encoders (i.e., Scikit-Learn

OrdinalEncoder) by 22%. We also evaluated the effectiveness of the encoded features by BERT-Sort

on 4 AutoML platforms. We compared the performances of encoded data sets via BERT-Sort against

4 different versions the original data sets. The evaluation results show that the trained model based

on BERT-Sort encoder achieved a performance close to a hard encoded feature by a data scientist.
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7 Appendix A: Experiment Setup
Configuration Environment. Our BERT-Sort encoder process is completed on a machine with

Ubuntu, an Intel(R) Xeon(R) Gold 5120 CPU @ 2.20GHz (56 cores) with 128 GB RAM and 2 TB

disk. AutoML experiments are completed on a machine with 4 Intel(R) Xeon(R) Silver 4114 CPU @

2.20GHz (total 40 cores) with 512 GB RAM and 2 TB disk. All experiments are developed in Python

with version ’3.8’. About 17 hours CPU computation is required to complete all experiments except

reported results in Figure 9 that required 50 hours.

Benchmark Data Sets. We use 10 publicly available data sets with 42 distinct features as listed

in Table 7. We select these data sets because i) each data set has at least a categorical ordinal value;

ii) data sets are publicly available.

Artifacts. In addition to provided link to the resources in Table 7, we provide the following

artifacts that allow researchers and practitioners to reproduce the results. i) a copy of raw data sets;

ii ) annotated categorical features (Human Annotation), which is used to evaluate BERT-Sort as the

results shown in Table 4; and iii) encoded raw data sets through BERT-Sort with each model (𝑀1..4).

The artifacts can be found at: https://github.com/marscod/BERT-Sort/blob/main/README.md.
In the repository, each folder in outputs/MLM contains a configuration file as ’config.json’

with a set of keys of [’model’, ’mask’, ’separator’, ’eta’, ’lower’, ’target_files’, ’ground_truth’, ’de-
fault_grouping’, ’default_zeta’, ’preprocess’]. The key of ’target_files’ represent task information

such as data set filename, a URL reference, type of task (classification or regression for AutoML

evaluation), type of evaluation metric (F1 or RMSE). The key of ’ground_truth’ is a dictionary where
the keys are representing the feature name (if any) or feature index, and the values are a list of

ranked ordinal values. As explained in Section 4.2, the values (such as "?", and null values) are

appended in the beginning of the list, and null values have been ignored for evaluation process.

8 Appendix B: BERT-Sort and MLMs hyper-parameters
We use four publicly available MLMs to evaluate the benchmark data sets based on their ranked

ordinal values as listed in Table 8. Since the majority of models outperformed in compared to

OrdinalEncoder, we may use DistilBERT which is 60% faster (Sanh et al., 2019). In addition, the

inference on MLM can be optimized on CPU to reach 2ms per case (Philipp Schmid, 2022).

In addition, we initiate BERT-Sort on diverse MLMs to demonstrate the broader impact of the

proposed approach across different domains and languages (see Appendix E - Section 12). The list

of MLMs and the parameters are listed in Table 9.

9 Appendix C: Evaluation Results Detail

9.1 Ordinal Encoding Evaluation
Figure 3 shows an example score computation for a given unique array of A1 = [𝐴, 𝐵,𝐶]. This
figure shows the average computation score for the first case with A = 0.4.

Figure 7 shows a heatmap plot of 4 initializedMLM for evaluation results of Table 4. In this figure,

X-axis represents (from left to right) 𝑂𝑟𝑑𝐴𝑐𝑐 of BERT-Sort, 𝑂𝑟𝑑𝐴𝑐𝑐 of OrdinalEncoder, Differences

of 𝑂𝑟𝑑𝐴𝑐𝑐 metric, 𝐴𝑐𝑐 metric of BERT-Sort, 𝐴𝑐𝑐 metric of OrdinalEncoder, and Differences of 𝐴𝑐𝑐

metric, respectively. Y-axis represents the data set name:feature name or feature index.

9.2 AutoML Evaluations
First, we use Scikit-Learn train_test_split function1 to split the given input data set of the benchmark

into 75%/25%. We use the following random seeds in all experiences: [108, 180, 234, 309]. Second, as
explained in Section 4, we use 4 different AutoML platforms which are publicly available to train a

model on training data sets and evaluate each AutoML platform on test data set. The configuration

and version of each tool is shown in Table 10.

1https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
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Table 7: Annotated 42 distinct features from 10 different public data sets for ordinal values evaluation

F𝑖 Data set Ordinal Feature (index/name) | |A | | Source

F1 uci_audiology-original 1 5 UCI Link

F2 uci_audiology-original 3 4

F3 uci_audiology-original 4 4

F4 uci_audiology-original 5 5

F5 uci_audiology-original 7 3

F6 uci_audiology-original 58 4

F7 uci_audiology-original 59 4

F8 uci_audiology-original 63 7

F9 kaggle_cat-in-the-dat-ii ord1 6 Kaggle Link

F10 kaggle_cat-in-the-dat-ii ord2 7

F11 uci_bank_marketing (bank) marital 3 UCI Link

F12 uci_bank_marketing (bank) education 4

F13 uci_bank_marketing (bank) month 12

F14 uci_car_evaluation vhigh 4 UCI link

F15 uci_car_evaluation vhigh.1 4

F16 uci_car_evaluation 2 4

F17 uci_car_evaluation 2.1 3

F18 uci_car_evaluation small 3

F19 uci_car_evaluation low 3

F20 uci_car_evaluation unacc 4

F21 uci_Coil_1999_Competition_Data 0 4 UCI link

F22 uci_Coil_1999_Competition_Data 1 3

F23 uci_Coil_1999_Competition_Data 2 3

F24 uci_automobile 5 3 UCI link

F25 uci_automobile 15 7

F26 uci_labor-relations 0 4 UCI link

F27 uci_labor-relations 11 4

F28 uci_Nursery 0 3 UCI link

F29 uci_Nursery 1 5

F30 uci_Nursery 2 4

F31 uci_Nursery 4 3

F32 uci_Nursery 6 3

F33 uci_Nursery 8 5

F34 uci_Post-Operative-Patient 0 3 UCI Link

F35 uci_Post-Operative-Patient 1 3

F36 uci_Post-Operative-Patient 3 3

F37 uci_Post-Operative-Patient 5 3

F38 uci_Post-Operative-Patient 6 3

F39 uci_Pittsburgh_Bridges 3 4 UCI link

F40 uci_Pittsburgh_Bridges 5 4

F41 uci_Pittsburgh_Bridges 9 4

F42 uci_Pittsburgh_Bridges 10 4

Average 4.186

Table 8: The list of Masked Language Models (MLM) which are used for the ordinal value evaluation

# 𝑀𝑖 Model Mask 𝜂 Hugging Face Model (link) Source

1 𝑀1 DistilBERT [MASK] 20,000 distilbert-base-uncased (Sanh et al., 2019)

2 𝑀2 RoBERTa <mask> 20,000 roberta-large (Liu et al., 2019a)

3 𝑀3 XLM <mask> 20,000 xlm-roberta-large (Conneau et al., 2019)

4 𝑀4 BERT-Base [MASK] 20,000 bert-base-uncased (Devlin et al., 2018)

Table 9: Additional public Masked Language Models (MLM) to present broader impacts of BERT-Sort

across different domains and languages

# 𝑀𝑖 Model Mask 𝜂 Hugging Face Model (link) Source

1 𝑀5 Bio_ClinicalBERT ([MASK]) 40,000 emilyalsentzer/Bio_ClinicalBERT (Alsentzer et al., 2019)

2 𝑀6 ChineseBERT [MASK] 20,000 hfl/chinese-bert-wwm-ext (Liu et al., 2019a)

2 𝑀7 JapaneseBERT [MASK] 20,000 ALINEAR/albert-japanese-v2 N/A

4 𝑀8 SpanishBERT [MASK] 20,000 dccuchile/bert-base-spanish-wwm-cased (Cañete et al., 2020)
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Figure 3: An example of score computation for a single feature with 3 ordinal values of A1 = [𝐴, 𝐵,𝐶]

# AutoML Version Parameters

1 MLJAR
2

0.11.2 ’total_time_limit’:3600
2 FLAML

3
1.0.0 ’time_budget’: 3600, ’metric’: ’f1’|’r2’

3 TPOT
4

0.11.7 scoring=’f1_macro’
4 H2O AutoML

5
3.36.1.1 ’max_models’: 20, and ’max_runtime_secs’: 3600

5 AutoGluon
6

0.4.0 eval_metric:"f1"(classification problem) , presets:’best_quality’, time_limit:3600

Table 10: AutoML Configurations

In addition to evaluation results in Table 6 (with 4 seeds and 5 minute time limitation), we

conducted extensive experiences with 1, 4 and 5 different randomized seeds to split each data set

with a time limitation of 30 minutes. The results are concluded in Figure 9. In overall, the average

F1 performance of all AutoML platforms on raw data sets is 0.346 versus F1 score of 0.377 on

encoded data sets via BERT-Sort.

Since there might be many features (i.e., numerical and text features beside ordinal features)

affect the overall performance of an end-to-end scenario for evaluating the encoded data sets, we

may use data sets that only rely on categorical features. As such example, we use UCI Car Evaluation
data set where all features are encoded through i) OrdinalEncoder, ii) BERT-Sort to produce two

versions of the original raw data set. Then, we apply 11 different machine-learning algorithms to

both data sets. In this experiment, we use CatBoostClassifier from CatBoost7 package with version

’1.0.5’ and other ML algorithms from Scikit-Learn package with version ’1.0.0’. Figure 10 shows the

results of this evaluation. This pure comparison shows that BERT-Sort encoder outperformed on

all algorithms with an average F1 score of 0.897 in comparison to OrdinalEncoder with an average

F1 score of 0.532.

9.3 Fine-grained AutoML Evaluation Results

Table 11 and Table 12 show the fine-grained evaluation results of Table 6with F1metric andAccuracy

metric, respectively. Note that a comparison between values in this fine-grained evaluation results

may not show a clear affect of semantic ordinal values since each experiment rely on many factors

such as characteristics of data set (i.e., the number of features, importance of ordinal features),

AutoML hyper-parameters, AutoML approach to train a model, etc.

10 Appendix D: MLM Input Structure

As discussed in Section 4, once a case (C𝑖 ), a set of ranked ordinal values, and its mask pattern (P𝑖,𝑘 )

have been generated, BERT-Sort produces an input similar to a sentence structure where it consists

of the ordinal value and masked element. The generated structure tokenized and submitted to

the initialized MLM for unmasking process. BERT-Sort may generate different sentences based

on different separators for the unique values of [Jan, Feb, Mar], such as "," or blank space " " or

combination of both (", ") to separate values. Similarly, "." can be added to the end of sentence or can

7http://catboost.ai/
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Table 11: F1 Score of AutoML evaluations per AutoML platform per data set per encoded method

F1 Score of Encoded Method
AutoML Data Set BERT-Sort Embeded Human Ordinal Original

BERT Annotation Encoder
AutoGluon Nursery 1.000 0.974 1.000 1.000 1.000

Pittsburgh_Bridges 0.511 0.384 0.418 0.495 0.535

Post-Operative 0.154 0.131 0.154 0.154 0.134

audiology 0.543 0.474 0.543 0.565 0.515

bank 0.715 0.701 0.702 0.714 0.721

car_eval 0.987 0.533 0.988 0.978 0.990

cat-in-the-dat-ii 0.451 0.458 0.461 0.449 0.462

labor-relations 0.762 0.828 0.647 0.699 0.828

FLAML Nursery 0.949 0.695 0.949 0.950 0.900

Pittsburgh_Bridges 0.415 0.220 0.393 0.419 0.295

Post-Operative 0.302 0.198 0.386 0.361 0.272

audiology 0.522 0.389 0.518 0.484 0.398

bank 0.661 0.669 0.676 0.673 0.657

car_eval 0.984 0.478 0.980 0.978 0.983

cat-in-the-dat-ii 0.568 0.562 0.587 0.564 0.567

labor-relations 0.646 0.629 0.697 0.625 0.715

H2O Nursery 1.000 0.913 0.950 0.950 0.950

Pittsburgh_Bridges 0.631 0.515 0.592 0.558 0.561

Post-Operative 0.295 0.268 0.359 0.257 0.379

audiology 0.568 0.445 0.530 0.503 0.560

car_eval 0.971 0.583 0.989 0.969 0.966

labor-relations 0.608 0.698 0.656 0.442 0.579

MLJAR Nursery 0.770 0.715 0.902 0.913 0.913

Pittsburgh_Bridges 0.439 0.233 0.454 0.279 0.411

Post-Operative 0.266 0.238 0.336 0.223 0.236

audiology 0.524 0.296 0.498 0.428 0.409

bank 0.695 0.676 0.711 0.687 0.708

car_eval 0.985 0.563 0.907 0.987 0.978

cat-in-the-dat-ii 0.551 0.500 0.510 0.515 0.515

labor-relations 0.621 0.621 0.621 0.621 0.621
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Table 12: Accuracy score of AutoML evaluations per AutoML platform per data set per encoded

method with 4 different 4 experiments (4 seeds)

Accuracy of Encoded Method
AutoML Data Set BERT-Sort Embeded Human Ordinal Original

BERT Annotation Encoder
AutoGluon Nursery 1.000 0.978 1.000 1.000 1.000

Pittsburgh_Bridges 0.648 0.546 0.583 0.630 0.667

Post-Operative 0.337 0.326 0.337 0.337 0.337

audiology 0.815 0.790 0.815 0.850 0.805

bank 0.899 0.900 0.899 0.901 0.897

car_eval 0.995 0.900 0.995 0.992 0.995

cat-in-the-dat-ii 0.813 0.813 0.814 0.813 0.814

labor-relations 0.800 0.875 0.750 0.800 0.875

FLAML Nursery 1.000 0.934 0.999 1.000 1.000

Pittsburgh_Bridges 0.481 0.333 0.407 0.444 0.361

Post-Operative 0.587 0.457 0.576 0.554 0.467

audiology 0.790 0.755 0.820 0.790 0.620

bank 0.897 0.900 0.899 0.896 0.895

car_eval 0.997 0.917 0.996 0.995 0.992

cat-in-the-dat-ii 0.822 0.823 0.824 0.824 0.822

labor-relations 0.700 0.700 0.775 0.675 0.775

H2O Nursery 1.000 0.922 1.000 1.000 1.000

Pittsburgh_Bridges 0.676 0.602 0.648 0.639 0.639

Post-Operative 0.565 0.511 0.685 0.554 0.554

audiology 0.820 0.785 0.805 0.830 0.820

car_eval 0.991 0.762 0.997 0.991 0.992

labor-relations 0.625 0.700 0.675 0.450 0.600

MLJAR Nursery 0.969 0.886 0.951 0.966 0.966

Pittsburgh_Bridges 0.463 0.343 0.537 0.315 0.528

Post-Operative 0.641 0.565 0.663 0.598 0.587

audiology 0.775 0.535 0.735 0.695 0.670

bank 0.892 0.890 0.884 0.887 0.888

car_eval 0.997 0.883 0.960 0.996 0.992

cat-in-the-dat-ii 0.816 0.811 0.809 0.810 0.810

labor-relations 0.700 0.700 0.700 0.700 0.700

18



Figure 4: DistillBERT Model Figure 5: RoBERTa Model

Figure 6: XLM Figure 7: BERT-base Model

Figure 8: BERT-Sort results with different MLM initialization

be dropped. For example, BERT-Sort can generate "Jan, [MASK], Mar." for a separator of ", " or "Jan
[MASK] Mar." for a separator of " "(blank space). We conduct an extensive empirical study to find

the best pattern to construct different inputs to MLM. As shown previously (Table 4) BERT-Sort

with initialization of RoBERTa is outperformed in compared to other MLMs. We construct different

input structures only on RoBERTa. Table 13 shows the results of this empirical study where it shows

the total number of champions based on𝑂𝑟𝑑𝐴𝑐𝑐 metric and𝐴𝑐𝑐 metric for 42 distinct features in our
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Figure 9: Performance of 5 AutoML tools on BERT-Sort-based encoded data sets and raw data sets

with 1, 4 and 5 different seeds

Figure 10: Performance of 11 ML algorithms on encoded the original UCI Car Evaluation data set

through: i) BERT-Sort Encoder and ii) OrdinalEncoder

benchmark data sets. The results show that adding a comma between values and adding "." at the

end construct best practice with 𝑂𝑟𝑑𝐴𝑐𝑐 = 0.27 and 𝐴𝑐𝑐 = 0.55 improvement over OrdinalEncoder.

Table 13: A comparison between BERT-Sort and OrdinalEncoder for sorting ordinal values with

different input structures using RoBERTa-MLM

#
Input Structure #Champions BERT-Sort

Separator End based on𝑂𝑟𝑑𝐴𝑐𝑐 based on 𝐴𝑐𝑐 Improvement
BERT-Sort OrdinalEncoder BERT-Sort OrdinalEncoder 𝑂𝑟𝑑𝐴𝑐𝑐 𝐴𝑐𝑐

1 ’, ’ (comma & blank space) ’.’ 34 3 30 5 0.26 0.51

2 ’ ’ (blank space) ’.’ 32 3 26 5 0.20 0.35

3 ’,’ (comma) ’.’ 35 3 31 5 0.27 0.55
4 ’, ’ (comma & blank space) ” (null string) 32 2 25 4 0.24 0.46

5 ’ ’ (blank space) "" (null string) 33 5 29 5 0.23 0.44

6 ’, ’ (comma) ” (null string) 29 4 25 3 0.23 0.44

11 Appendix E: BERT-Sort Acceleration Parameters

In Section 3.2, we introduce two scaling approaches for handling BERT-Sort with large number of

ordinal values for saving computation time. In an ideal case, the native BERT-Sort can generate the
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Figure 11: A comparison between BERT-Sort outputs on a feature with randomized values of 12 months

abbreviations ([’Jan’, ’Feb’, ..., ’Dec’]) with 𝜁 parameter in range of 2 to 5

best results without two scaling approaches because it finds the best ordinal values by checking

all different possibilities. Although most of the ordinal features do not have more than 15 values

(Table 7 indicates that the average number of ordinal values in our benchmark is 4), the native

BERT-Sort hasO(𝑛!) computation which makes the algorithm impossible to be executed for a large

number of ordinal values of a feature. The first approach of BERT-Sort acceleration is grouping

where it can be easily disabled as a hyper-parameter. In the second acceleration, we recommend

selecting maximum possible value for 𝜁 (based on available resources, i.e. CPU cores) where it

disables or postpone scaling algorithms as much as possible. As one example, Figure 11 shows

BERT-Sort results on a feature with randomized values of 12 months abbreviations ([’Jan’, ’Feb’, ...,
’Dec’]) with 𝜁 parameter in range of 2 to 5, where 𝜁 ≥ 5 sorts all elements correctly.

Scaling algorithmsmay reduce the performance of BERT-Sort, but it helps to reduce computation

time. An alternative approach for scaling BERT-Sort is parallel implementations because each case

does not rely on other cases, and all BERT-Sort agents may generate the score of their cases at the

same time.

12 Appendix F: Multilingual and Multi-domain Sorting

In this section, we demonstrate the broader impact of the zero-shot of BERT-Sort across different

domains (e.g., medical), different languages of ordinal values (i.e., English, Spanish, Japanese and

Chinese).

BERT-Sort approach finds the semantic orders of the ordinal values based the highest probability

(top 1) of cases as explained in Section 3. Therefore, BERT-Sort easily can be extended by initializing

the algorithm on different pre-trainedMLMs to sort elements across different domains and languages.

Table 14 showcases how easily the same algorithm applied toward multilingual and diverse domains.

For instance, the first row compares the output of BERT-Sort against OrdinalEncoder with top

score of BERT-Sort of 0.961205.

Different automated approaches can be used for switching between pre-trained MLMs in

BERT-Sort. We may automate selecting pre-trained MLM process by using a domain or language

classification (i.e., detecting English language vs Spanish) to select the best model for a specific set

of ordinal values. We may also use the score to easily switch between MLMs in BERT-Sort. For

instance, BERT-Sort which is initiated by English RoBERTa returns Θ𝑀 = 0 on a set of Spanish

ordinal values or on a specific domain (e.g., Θ𝑀 = 0 in row#6 where it is using generic English

MLM, RoBERTa). However, row#7 shows the same input on BioClinicalBERT(Alsentzer et al., 2019)

where BERT-Sort ranks values based on cancer’s severity correctly. The automated process of

switching between languages can be applied toward different domains. For example, BERT-Sort

returns Θ𝑀 = 0 score on a pre-trained English RoBERTa (Liu et al., 2019b) for input values of

[Leukemia, Cancer, Melanoma] but after switching the model to BioClinicalBERT(Alsentzer et al.,

2019) BERT-Sorts returns correctly sorted elements where Θ𝑀 > 0. Row#8 to 10 show the output of

BERT-Sort for given input in Japanese, Spanish, and Chinese languages where the same algorithm
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was able to sort all values accurately (𝑂𝑟𝑑𝐴𝑐𝑐 = 1.0) by initializing BERT-Sort on different MLMs.

The red color text highlights misplaced ordinal values in OrdinalEncoder.

Furthermore, BERT-Sort can be applied in multi modal environment. As such example, a set of

raw images can be annotated through CLIP (Radford et al., 2021) and the unique values of annotated

images can be sorted semantically without user’s annotation through BERT-Sort as shown in

Figure 12. As another example, BERT-Sort is capable of sorting any categorical information such as

number words (i.e., ["One","Two", "Four"]), that might be captured from an OCR process.

Table 14: A comparisons between outputs of BERT-Sort (with different initialized MLMs), and Ordina-

lEncoder across different domains and languages

# Input Model BERT-Sort (top 1) vs OrdinalEncoder Θ𝑀

1 [Mar, Jan, Feb, May] RoBERTa-large (Liu et al., 2019b) [Jan≺Feb≺Mar≺May]::[Feb≺Jan≺Mar≺May] 0.961205

2 [Lava Hot, Hot, Boiling Hot] RoBERTa-large [Hot ≺ Boiling Hot ≺ Lava Hot]::[Boiling Hot ≺ Hot ≺ Lava Hot] 0.977791

3 [Eight, Four, Two, Six, Twelve] RoBERTa-large [Two ≺ Four ≺ Six ≺ Eight ≺ Twelve]::[Eight ≺ Four ≺ Six ≺ Twelve ≺ Two] 0.774939

4 [Low, Medium, High] RoBERTa-large [Low ≺ Medium ≺ High] ::[High ≺ Low ≺ Medium] 0.927987

5 [Blue, Red, Green] RoBERTa-large [Red ≺ Green ≺ Blue] :: [Blue≺ Green ≺ Red] 0.742441

6 [Leukemia, Cancer, Melanoma] RoBERTa-large N/A::<Cancer ≺ Leukemia ≺ Melanoma> 0.0

7 [Leukemia, Cancer, Melanoma] BioClinical BERT(Alsentzer et al., 2019) [Melanoma≺ Leukemia ≺ Cancer]:: [Cancer ≺ Leukemia ≺ Melanoma] 0.001098

8 [優れた,貧しい,良い ] Japanese BERT-MLM
8

[貧しい ≺良い ≺優れた] :: [優れた ≺良い ≺貧しい] 0.000162

9 [Muy Buena, Normal, Buena] Spanish BERT-MLM(Canete et al., 2020) [Normal ≺ Buena ≺ Muy Buena] ::[Buena ≺ Muy Buena ≺ Normal] 0.000288

10 [差,好,优秀] Chinese BERT-WWM(Cui et al., 2019) [优秀 ≺好 ≺差] :: [优秀 ≺好 ≺差 ] 0.617564

Figure 12: An example of an unsupervised image semantic sorting, where the images are labeled

through CLIP (Radford et al., 2021) and ordinal values are sorted per sessions through

BERT-Sort

13 Appendix G: AutoML Failures

Assumptions. Our evaluation is based on fitting 75% of data sets into different AutoML platforms

and predicting 25% of the same test data set on all AutoMLs. Therefore, we did not consider any

update on any specific AutoML platform beside using the same hyper-parameters such as evaluation
metric and etc. The same configuration allows us to have a fair comparison between different

AutoML platforms according to given input data sets. Therefore, we assume that any small fixes

beside system configuration are out of scope in our evaluation. In addition, AutoML platforms are

evaluated based on our split test data set which has been used to test all AutoML platforms. We
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also use prediction function of each AutoML platform that possibly handle missing data, unknown

values and etc. We list the most frequent exception errors as follows.

We observed several issues where an AutoML platform was not able to produce any model

(failure cases). We explain the detail of errors for each AutoML platform as follows.

13.1 AutoGluon

AutoGluon failed to generate a model when it raises error of "ValueError(’AutoGluon did not

successfully train any models’)". The following shows different failure reasons to produce a

model.

ValueError: Target is multiclass but average=’binary’. AutoGluon could not set param-

eters automatically for multi-class classification and binary classification. It is required

to be set based on given input data set. This error has been raise in data sets Audi-
ology (seed=180), Pittsburgh_Bridges (seed=180) data sets. ValueError: cannot reshape

array of size X into shape (Y,newaxis) AutoGluon failed to generate model when it

is rely on ‘fold_fitting_strategy.py‘. This issue raised in "audiology (seed:108)" raise

value.as_instanceof_cause() -> ray.exceptions.RayTaskError(ValueError) This is a known

issue in Dask-on-Ray
9
despite we are using the latest version of Dask. RuntimeError: CUDA er-

ror: device-side assert triggered CUDA kernel errors might be asynchronously reported

at some other API call,so the stacktrace below might be incorrect. It is an issue when

there is inconsistency between the total number of outputs and the total number of classes.

Observed this issue in cat-in-the-dat-ii, bank, car_eval, uci-automobile data sets.

13.2 FLAML

The max_iter was reached which means the coef_ did not converge Training data normaliza-

tion is required.

13.3 H2O

failed: java.lang.ArrayIndexOutOfBoundsException: Index 64 out of bounds for length 6

Training data normalization is required.

13.4 MLJAR

failed: Skip mix_encoding because no parameters were generated. It is raised when there is

missing load of already trained models after training restore (a known issued
10
, despite using

the latest version.

9https://github.com/ray-project/ray/issues/10124
10https://github.com/mljar/mljar-supervised/issues/185
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14 Reproducibility Checklist

1.2.3.4.1.1.1.1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See Section 1 and Section 5

(b) Did you describe the limitations of your work? [Yes] See Section 5

(c) Did you discuss any potential negative societal impacts of your work? [N/A] The study

does not have any direct potential negative effect.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

https://automl.cc/ethics-accessibility/ [Yes]

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [Yes] All assumptions

are described in the paper as well as the detail in Appendix section.

(b) Did you include complete proofs of all theoretical results? [Yes] Explained in Section 3 and

4

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimen-

tal results, including all requirements (e.g., requirements.txt with explicit version), an

instructive README with installation, and execution commands (either in the supplemental

material or as a url)? [Yes] Added all required hyper-parameters, seeds, link to data sets,

link to publicly available MLMs; see Section 4, Appendix A to C, Algorithm 1, and GitHub

repository files for processed data sets.

(b) Did you include the raw results of running the given instructions on the given code and data?

[Yes] Configurations of each experiment saved as a JSON file that includes all parameters,

raw data sets, encoded data sets and it is available in GitHub Repository. We also provide

dumped pickle files of intermediate steps (.PKL) that the detail of sorted ordinal values.

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [Yes] We

added all detailed as JSON and CSV file in GitHub repository (the source of figures).

(d) Did you ensure sufficient code quality such that your code can be safely executed and the

code is properly documented? [Yes] We explained the detail in Algorithm 1, Appendix

A-C; we believe that based on all publicly available resources (as cited), the instructions

and explained algorithm, readers can reproduce our results. We also added raw/BERT-Sort

encoded data sets that submitted to AutoML tools among seeds and the evaluation results

(e.g., see outputsout_roberta) in GitHub Repository.

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed

hyperparameter settings, and how they were chosen)? [Yes] All details are explained in

Section 4 and Appendix section and it is linked to GitHub Repository. For instance, dumped

pickle file include the pre-processed ordinal values.

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] We strictly follow a fair comparison to compare our

proposed approach against others; see Section 4. As an example, we explain the pre-process
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that is added to both BERT-Sort encoder and OrdinalEncoder. (in a real-world scenario those

pre-process is not applied to OrdinalEncoder and BERT-Sort’s performance improvement

might be significantly higher).

(g) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] See Appendix D as an example where we consider different types of MLMs and

different input formats.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] We

ensured to report a fair comparison as explained in Section 3 and 4 (i.e., pre-process step is

conducted on both OrdinalEncoder and BERT-Sort encoder; however, we expect that those

pre-process step is not apply to OrdinalEncoder in a real-world scenario that increases the

performance improvement of BERT-Sort.

(i) Did you compare performance over time? [Yes] See Section 4.3.

(j) Did you perform multiple runs of your experiments and report random seeds? [Yes] The

random seeds for all figures are reported in GitHub repository.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [Yes] The detail of all results are reported in GitHub repository that

includes the ranges of outputs (all outputs of different seeds and input data sets).

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [Yes] All detailed

results and summary reports are available in GitHub Repository as pickle file, JSON and

CSV files.

(m) Did you include the total amount of compute and the type of resources used (e.g., type of

gpus, internal cluster, or cloud provider)? [Yes] See Section 4.3 and Appendix A where we

performed the experiment only on a CPU.

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your own method)? [Yes] All hyper-parameters are reported in

Section 4 and Appendix section as well as listed details in each experiment folder(outputs)
in GitHub Repository.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] Added reference and link

to the resources (MLMs and data sets); See Appendix Section

(b) Did you mention the license of the assets? [No] the licence of all data sets and pre-trained

MLMs are available in provided link as explained in Appendix section.

(c) Did you include any new assets either in the supplemental material or as a url? [N/A] We

did not develop a model or a data set, we use only publicly available resources and provide

the link to those resources.

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We used only publicly available resources and we expect that the

consent has been acquired by the provider, if it is applied.

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] Not applicable, we do not believe that the external

resources contains personally identifiable information or offensive content since has been

widely evaluated/used by ML community.

25



5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if ap-

plicable? [N/A] We did not use any crowdsourcing or conduct any research with human

subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] We did not use any crowdsourcing or conduct any

research with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] We did not use any crowdsourcing or conduct any

research with human subjects.
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