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Abstract

We examine the consequences of positing that the weight function α in the classical ran-
dom feature model formulation f(x) = Ew∼p [α(w)ϕ(w, x)] belongs to a reproducing kernel
Hilbert space. Depending on the choices of parameters of the random feature model, this as-
sumption grants the ability to exactly calculate the model instead of relying on the random
kitchen sinks method of approximation. We present several such examples. Additionally,
using this form of the model, the functional gradient of the loss can be approximated in
an unbiased way through sampling of the random features. This allows using a stochas-
tic functional gradient descent to learn the weight function. We show that convergence is
guaranteed under mild assumptions. Further theoretical analysis shows that the empirical
risk minimizer converges with the same O

(
1√
m

+ 1√
T

)
rate as Rahimi & Recht (2009). We

also present two other algorithms for learning the weight function. We run experiments to
compare these three learning algorithms, and to compare this random feature model variant
to the original random kitchen sinks and other state of the art algorithms.

1 Introduction

The simplest but not the least important kind of machine learning models consists of linear predictors.
They are easy to optimize, and simple to analyze, i.e. it is easy to derive theoretical guarantees on their
performance. Kernel methods, such as support vector machines (SVMs) (Steinwart & Christmann, 2008),
and kernel ridge regression (Vovk, 2013), build upon linear predictors using the kernel trick to produce
highly complex predictors. These methods are powerful, but have an algorithmic complexity which is at
least quadratic in the amount of training data, meaning that they scale poorly to Big Data.

A popular way of circumventing this shortcoming of kernel methods is to approximate the kernel via random
features. Such random feature methods include random Fourier features (Rahimi & Recht, 2008), random
kitchen sinks (Rahimi & Recht, 2009), extreme learning machines (Huang et al., 2006), Fastfood (Le et al.,
2013), orthogonal random features (Yu et al., 2016) and others. The algorithm proposed in Rahimi & Recht
(2009), for instance, trades the quadratic dependency in the number of training examples for a quadratic
dependency in the number of random features, a quantity that can be easily controlled.

A downside of this approach is the loss of the original exact kernel, and therefore of the intended predictor
class, which consists of functions of the form (Bach, 2017):

f(x) = E
w∼p

[α(w)ϕ(w, x)]. (1)

In this equation, ϕ is a base predictor or feature function, each w is a feature, p is a feature distri-
bution, and α is a weight function over the feature space. In this paper, we investigate a variation of
random feature methods which maintains an exact formulation for the model. The key is to consider weight
functions which belong to a reproducing kernel Hilbert space (RKHS). Such spaces are well-behaved, and we
show that the choices of RKHS, feature function ϕ, and feature distribution p sometimes allow Equation 1 to
have an analytical form. The model can then be used directly, and exactly. The purpose of this paper is to
determine whether this provides advantages, such as improved theoretical guarantees or improved empirical
performance.
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Acronym Meaning Relevant link

erf Error function, erf(x) := 2√
π

∫ x

0 e−t2dt
MSE Mean square error
PAC Probably approximately correct
R2 Coefficient of determination
ReLU Rectified linear unit, ReLU(z) := max(0, z)
RKHS Reproducing kernel Hilbert space Berlinet & Thomas-Agnan (2011)
RKS Random kitchen sinks Rahimi & Recht (2009)
RWExpRelu RKHS weighting using ReLU and exponential kernel Table 2
RWExpSign RKHS weighting using sign function and exponential kernel Table 2
RWReLU RKHS weighting using ReLU and gaussian kernel Table 2
RWSign RKHS weighting using sign function and gaussian kernel Table 2
RWStumps RKHS weighting using decisions stumps Table 2
SFGD Stochastic functional gradient descent Algorithm 3
SVM Support vector machine Pedregosa et al. (2011)
SVR Support vector regressor Pedregosa et al. (2011)
SVC Support vector classifier Pedregosa et al. (2011)

Table 1: Acronyms used in this paper.

We provide three different algorithms for learning the model in this form. The most theoretically grounded
is called stochastic functional gradient descent (SFGD). It is an iterative algorithm with convergence rate
of O(1/

√
m) with respect to the number m of examples needed for learning (under mild assumptions). We

also provide multiple bounds on the generalization gap based on the Rademacher complexity of the proposed
class of predictors. These theoretical results are obtained using less stringent assumptions than Rahimi &
Recht (2009).

Finally, we run experiments to compare this approach to other classic machine learning algorithms. Our
approach compares favorably to random kitchen sinks (Rahimi & Recht, 2009) when the number of random
features is small, often reaching higher prediction accuracies, but the performance evens out quickly as the
number of random features increases. In our experiments, both RKHS weightings and random kitchen sinks
also perform fairly similarly to AdaBoost and SVM. These results clearly show that the model and algorithm
are viable machine learning tools, though further work is needed to extract the full potential of the model.

The paper is structured as follows. We begin in Section 2 by recalling basic notions and notations of
functional analysis and machine learning. This includes a short introduction to reproducing kernel Hilbert
spaces. We summarize two meaningful prior works on this topic, by Rahimi & Recht (2009) and Bach
(2017), in Section 3. We define the model and our assumptions explicitly in Section 4. We include several
examples of model instantiations in Section 4.4, complete with the analytical form for the model calculation.
We present three learning algorithms in Section 5. We prove several theoretical guarantees in Section 6:
two bounds on the generalization gap in Section 6.1, based on the Rademacher complexity of the class of
predictors; a bound on the rate of convergence of Algorithm 3 in Section 6.2, using the stability properties
of this algorithm; and a bound on the true risk of the empirical risk minimizer in Section 6.3. We compare
these results to those of Rahimi & Recht (2009) and Bach (2017) in Section 6.4. We present experimental
results in Section 7, demonstrating the soundness of our approach. Finally, we discuss the limitations of our
approach and future work in Section 8.

2 Basic notions

We begin in Section 2.1 by recalling the main notions and definitions of supervised machine learning, and
establishing the notation to be used in the remainder of the paper. Then, we recall core definitions of
functional analysis in Section 2.2, and give a summary description of reproducing kernel Hilbert spaces in
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Section 2.3. In Section 2.5, we present the notion of the functional gradient, which is crucial to the working
of one of the learning algorithms.

2.1 Machine learning

Consider an instance space X , and a label space Y ⊆ R. A predictor, hypothesis or model is a
function h : X → Y (we will equivalently write h ∈ YX , where YX is the space of all functions from X to Y).
We also refer to a set of predictors F as a class of predictors. We are in the presence of a classification
problem when Y is a finite set. We are, instead, in the regression setting when Y = R. The most basic
and important type of classification problem is binary classification, which denotes the situation when Y
contains only two labels. In that case, we can write Y = {−1, 1} without loss of generality.

We call a pair (x, y) ∈ X × Y an example. A sample or training set is a sequence or set of examples
S = {(xi, yi)}m

i=1 ⊂ (X × Y)m. A learning algorithm A takes a sample S as input and outputs a predictor
A(S) ∈ RX . The goal is for this predictor to satisfy some notion of accuracy, and the algorithm will achieve
this by optimizing a criterion defined with respect to the training set. To this end, we define a loss to
be a function ℓ : R × Y → [0,∞). Given a predictor h, we can calculate the loss’s value on example
(x, y) as ℓ(h(x), y). This value can be seen as a penalty for predicting h(x) when the correct value is
y. Common examples are the 0-1 loss ℓ(h(x), y) := 1[ sign(h(x)) ̸= y] and the square loss, defined by
ℓ(h(x), y) := (h(x)− y)2.

We define the empirical risk of the predictor h on the sample S by

LS(h) := 1
m

m∑
i=1

ℓ(h(xi), yi). (2)

Furthermore, we suppose that all examples have been sampled i.i.d. from a data-generating probability
distribution D over X × Y. This allows us to define the true risk of the predictor h by

LD(h) := E
(x,y)∼D

[ℓ(h(x), y)]. (3)

In the binary classification setting, the classification error of h is its expected 0-1 loss:

L01
D (h) := E

(x,y)∼D
1[ sign(h(x)) ̸= y], (4)

and its empirical classification error is the average 0-1 loss on the training set:

L01
S (h) := 1

m

m∑
i=1

1[ sign(h(xi)) ̸= yi]. (5)

The generalization gap of a predictor h is the difference LD(h) − LS(h) between its true risk and its
empirical risk. A generalization gap bound (or guarantee) for a class of predictors F ensures, with high
probability over the sampling of the training set S, that the generalization gap will be small. Typically, a
generalization gap bound holds for all models in the class simultaneously, meaning that, with high probability
over the choice of S, LD(h)− LS(h) is small for all h ∈ F . Such guarantees improve as the training size m
increases.

2.2 Functional analysis

A normed space is a vector space X equipped with a norm ∥·∥, often written as a pair (X , ∥·∥). For
example, Rn with the euclidean norm ∥·∥2 is a normed space. An important category of normed spaces are
the Lp spaces.1 For p ∈ [1,∞) and a measure µ over X , we define

Lp(µ) :=
{
f : X → R

∣∣∣∣∣ ∥f∥Lp(µ) :=
(∫

X
|f(x)|p dµ(x)

)1/p

<∞

}
. (6)

1The definition of Lp spaces that we provide is an oversimplification. Technically, an element of an Lp space is an equivalence
class of almost-everywhere-equal functions, since the p-norm, being defined by an integral, does not distinguish functions which
differ on a null set. We do not need this level of detail, and so leave it to this footnote.
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For the special case p =∞, we define:

L∞(X ) :=
{
f : X → R

∣∣∣∣ ∥f∥∞ := sup
x∈X
|f(x)| <∞

}
. (7)

We will often call ∥·∥∞ the supremum norm or the sup-norm. We denote scalar (or inner, or dot)
products on a vector space X by ⟨·, ·⟩ : X × X → R. Given an operator Λ : X → Y, we usually write Λx
instead of Λ(x). The norm of a linear operator is defined by

∥Λ∥ = ∥Λ∥X →Y := sup
x∈X :∥x∥X =1

∥Λx∥Y . (8)

The operator is said to be bounded if its norm is finite. Note that a linear operator is bounded if and
only if it is continuous. An operator Λ : X → R is called a functional. The following theorem applies to
bounded (i.e. continuous) linear functionals.
Theorem 2.1 (Riesz representation theorem). Consider a Hilbert space H, and a bounded linear functional
L : H → R. There exists a unique h ∈ H such that, for all α ∈ H, Lα = ⟨α, h⟩H. This element h is called
the representative of the functional L.

This theorem states that bounded linear functionals on a Hilbert space can be written as scalar products.
It is a surprisingly powerful result. It forms the basis for understanding reproducing kernel Hilbert spaces,
as we will see in the next section.

(See e.g. Atkinson & Han (2005) for more details on functional analysis.)

2.3 Reproducing kernel Hilbert spaces

Formally, a reproducing kernel Hilbert space on a set W is a Hilbert space H ⊂ RW which has the
property that the evaluation functionals are continuous. This means that for any w ∈ W, the evaluation
functional Lw : H → R defined by Lw(α) := α(w) is continuous. By the Riesz representation theorem, for
each w ∈ W, there exists a unique element Kw ∈ H such that

α(w) = Lw(α) = ⟨α,Kw⟩H for all α ∈ H. (9)

Because Kw is itself a function with domain W, the Riesz representation theorem gives us that

Kw(u) = Lu(Kw) = ⟨Kw,Ku⟩H . (10)

The reproducing kernel of the RKHS H is the function defined by

K(w, u) := Kw(u) = ⟨Kw,Ku⟩H . (11)

As we can see from the definition of the kernel, the element Kw corresponds exactly to the function K(w, ·) :
W → R. For clarity, we use this new notation from now on.

The reproducing kernel calculates the scalar product between two elements w, u ∈ W following the embedding
w 7→ K(w, ·) into H. Importantly, it is not necessary to calculate this embedding explicitly, which would be
impossible in general ifH was infinite-dimensional. In fact, the Moore–Aronszajn theorem (see e.g. Berlinet &
Thomas-Agnan (2011)) states that any symmetric positive definite kernel K :W×W → R is the reproducing
kernel of an RKHS H of real-valued functions with domain W, and every function α ∈ H can be written as
a sum or a convergent series of the form:

α =
∞∑

i=1
aiK(wi, ·), (12)

for some real coefficients ai and some wi ∈ W. Finally, given this representation for the elements in
H, the scalar product can also be written as a sum (or series). For α, β ∈ H that can be written as
α =

∑∞
i=1 aiK(wi, ·) and β =

∑∞
i=1 biK(ui, ·), the scalar product is given by:

⟨α, β⟩H =
∞∑

i=1

∞∑
j=1

aibjK(wi, uj). (13)
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2.4 Kernel methods

Suppose that we have a positive definite kernel K : X × X → R over the instance space. As we explained
above, this kernel computes the dot product in its corresponding reproducing kernel Hilbert space H,

K(xi, xj) = ⟨K(xi, ·),K(xj , ·)⟩H , (14)

after the mapping x 7→ K(x, ·). This is highly useful in the context of machine learning. The training
examples {(xi, yi)}m

i=1 might not be linearly separable in their original space, but can well be after being
embedded into the (usually) infinite-dimensional RKHS. And despite the infinite dimensionality of the RKHS,
this dot product can easily be computed in finite time through the kernel. A kernel method is a machine
learning algorithm that learns a predictor using this trick. The predictor will belong to the RKHS, and be
a weighted sum of the mappings of the examples:

f(x) =
m∑

i=1
aiK(xi, x). (15)

More precisely, we have:
f(x) = ⟨α,K(x, ·)⟩H , (16)

where α =
∑m

i=1 aiK(xi, ·) ∈ H. This is a linear predictor (linear in the weight function α), and ben-
efits from all the advantages of linear models. The most well-known kernel methods are support vector
machines (Steinwart & Christmann, 2008) and kernel ridge regression (Vovk, 2013).

2.5 Functional gradient

The usual notion of gradient (crucial for gradient descent algorithms) can be generalized to functionals.
Consider normed spaces X and Y. An operator Λ : X → Y is Fréchet differentiable at x ∈ X if and only
if there exists a bounded linear operator A : X → Y such that:

Λ(x+ z) = Λx+Az + o(∥z∥), z → 0. (17)

See Definition 5.3.1 of Atkinson & Han (2005). We call A the Fréchet derivative of Λ at x. If Λ is a
bounded linear operator, then it is its own Fréchet derivative.

Notice that when Λ is a functional, that is when Y = R, the Fréchet derivative A is a bounded linear
functional. If X is a Hilbert space, then the Riesz representation theorem is applicable, allowing us to write
A as a scalar product of the form:

Az = ⟨z,∇xΛx⟩X , (18)
for a unique element ∇xΛx ∈ X . Equation (17) becomes:

Λ(x+ z) = Λx+ ⟨z,∇xΛx⟩X + o(∥z∥), z → 0. (19)

We call ∇xΛx the functional gradient of Λ at x.

The functional gradient is a well-defined mathematical object, but it often cannot be calculated in practice.
A notable exception is when the input space X is an RKHS, in which case the functional gradient sometimes
admits an analytical form that can be calculated exactly in finite time. The following lemmas calculate the
functional gradient of the evaluation functionals and the squared norm in an RKHS.
Lemma 2.1. Consider an RKHS H of kernel K over a vector space W. The functional gradient of the
evaluation functional Lw(α) := α(w) for some fixed point w ∈ W is:

∇αLw(α) = ∇αα(w) = K(w, ·).

Proof. Notice that α(w) = Lw(α) = ⟨α,K(w, ·)⟩ is a bounded linear functional. As mentioned above, a
bounded linear functional is its own Fréchet derivative. By comparing to Equation (18), we can immediately
conclude that the functional gradient of the evaluation functional must be its representer K(w, ·).
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Lemma 2.2. Consider an RKHS H and α ∈ H. Then ∇α∥α∥2
H = 2α.

Proof. Let ε > 0 and β ∈ H, with ∥β∥H = 1. We have:

∥α+ εβ∥2
H = ⟨α+ εβ, α+ εβ⟩H

= ⟨α, α⟩H + 2 ⟨α, εβ⟩H + ⟨εβ, εβ⟩H
= ∥α∥2

H + ⟨2α, εβ⟩H + ε2∥β∥2
H

= ∥α∥2
H + ⟨2α, εβ⟩H + ε2.

Comparing this to Equation (19), we can conclude that the functional gradient is 2α.

3 Related work

Suppose that we have a parameter space W and feature function (or base predictor) ϕ : W ×X → R,
as well as a probability distribution p on W. In this paper, we are interested in models of the form:

x 7→ E
w∼p

[α(w)ϕ(w, x)], (20)

where α is a weight function over the parameter space. This is a well-known form, studied notably
by Rahimi & Recht (2009) and Bach (2017). In this work, we are particularly concerned with the assumptions
that can be made on the weight function, and the effect that these assumptions have on the approximation
capability of the model and the ability to learn the model algorithmically with good generalization gap
guarantees. Note that we will usually write these models as Λα, where Λ : RW → RX is the operator that
transforms a weight function α :W → R into a predictor with domain X according to Equation (20).

3.1 Random kitchen sinks

Rahimi & Recht (2009) define the following class of predictors (cf. Equation (6) of Rahimi & Recht (2009)):

Fp :=
{
x 7→ E

w∼p
[α(w)ϕ(w, x)]

∣∣∣∣ ∥α∥∞ ≤ B∞

}
. (21)

They assume that the weight function is bounded, so that |α(w)| ≤ B∞ for all w. Since the functions in Fp

cannot be evaluated exactly in general (because of the expectation), Rahimi & Recht (2009) also define the
following approximation class:

F̂w :=
{
x 7→ 1

T

T∑
t=1

atϕ(wt, x)
∣∣∣∣∣ ∀t, |at| ≤ B∞

}
, (22)

for (w1, . . . , wT ) which have been randomly sampled according to the distribution p. Assuming that
supw,x |ϕ(w, x)| ≤ 1, and that the loss is ρ-Lipschitz, the main result of Rahimi & Recht (2009) states
that the output f̂ of their Algorithm 1 is such that

LD(f̂)− min
f∈Fp

LD(f) ≤ O
((

1√
m

+ 1√
T

)
ρB∞

√
log 2

δ

)
, (23)

with probability 1− δ on the sampling of the training set and the features (w1, . . . , wT ). However, they use
a different, more convenient algorithm in their experiments to learn the weights a := (a1, . . . , aT ). For any
f ∈ F̂w with f(x) = 1

T

∑T
t=1 atϕ(wt, x), consider the ℓ2-regularized empirical risk:2

Lℓ2
S (f) := LS(f) + λ2

T
∥a∥2

2. (24)

2The atypical presence of 1
T

in the regularization term is explained in Section 3.2.
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If we also specifically use the squared loss, then the weights can be determined analytically. Defining the
m × T matrix Φ with elements Φit := ϕ(wt, xi), the vector of coefficients a which minimizes the above
expression is the solution of the following linear problem:(

Φ⊤Φ + mλ2

T
I

)
a = Φ⊤y, (25)

where y := (y1, . . . , ym). This yields the random kitchen sinks algorithm, summarized in Algorithm 1.

Algorithm 1 Random kitchen sinks
input Feature function ϕ, feature distribution p, λ2 > 0, number of features T , sample S of size m

Sample (w1, . . . , wT ) ∼ pT

Calculate the matrix Φ ∈ Rm×T , where Φit := ϕ(wt, xi)
Get (a1, . . . , aT ) by solving Equation (25)

output x 7→ 1
T

∑T
t=1 atϕ(wt, x)

Note that whenever we refer to the random kitchen sinks algorithm (or RKS algorithm), we refer to
Algorithm 1 rather than Algorithm 1 of Rahimi & Recht (2009). Finally, the ℓ2-regularization is also
sometimes replaced by an ℓ1-regularization. In other words, the optimization objective becomes:

Lℓ1
S (Λα) = LS(Λα) + λ1

T
∥a∥1 (26)

= 1
m
∥Φa − y∥2

2 + λ1

T
∥a∥1. (27)

Doing so yields a sparser predictor, where many of the coefficients (a1, . . . , aT ) are zero. Equation (27) can
be solved using the Lasso (Hastie et al., 2015). The pseudo-code for this version of the random kitchen sinks
can be found in Algorithm 2.

Algorithm 2 Random kitchen sinks (Lasso)
input Feature function ϕ, feature distribution p, λ1 > 0, number of features T , sample S of size m

Sample (w1, . . . , wT ) ∼ pT

Calculate the matrix Φ ∈ Rm×T , where Φit := ϕ(wt, xi)
Get (a1, . . . , aT ) by solving Equation (27) using the Lasso.

output x 7→ 1
T

∑T
t=1 atϕ(wt, x)

3.2 The link with kernel methods

It is not immediately evident from Equations (21) and (22) that the random kitchen sinks approximate a
kernel method. However, it is in fact a direct consequence of (a variant of) the representer theorem for kernel
methods (Schölkopf et al., 2001). First, notice that the model can be written as a scalar product in L2(p):

Λα(x) = E
w∼p

[α(w)ϕ(w, x)] = ⟨α, ϕ(·, x)⟩L2(p) . (28)

We will see in Section 6, specifically in Theorem 6.5, that the generalization gap of this predictor is bounded
by a function of the L2(p)-norm of α. In order to control this norm, we can minimize the L2(p)-regularized
empirical risk over the training dataset S:

LL2(p)
S (Λα) := LS(Λα) + λ2∥α∥2

L2(p)

= 1
m

m∑
i=1

ℓ(⟨α, ϕ(·, xi)⟩L2(p) , yi) + λ2∥α∥2
L2(p). (29)
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The weight function α which minimizes this expression must be a weighted sum of the form:

α =
m∑

i=1
biϕ(·, xi). (30)

(Any component of α outside of {
∑m

i=1 ciϕ(·, xi) | ∀i, ci ∈ R} adds to ∥α∥2
L2(p), but cannot affect the empirical

risk. That component must therefore be 0 in the weight function that minimizes the regularized empirical
risk.) Substituting this expression back into Equation (28), we get:

Λα(x) =
〈

m∑
i=1

biϕ(·, xi), ϕ(·, x)
〉

L2(p)

=
m∑

i=1
bi E

w∼p
[ϕ(w, xi)ϕ(w, x)]. (31)

We can define the following kernel:

k(xi, xj) = E
w∼p

[ϕ(w, xi)ϕ(w, xj)]. (32)

The optimal predictor is therefore an element of the RKHS of kernel k. Assuming that we cannot analytically
calculate the above expectation, we can sample (w1, . . . , wT ) from the distribution p to approximate the
kernel, the model, and the L2(p)-norm of α:

k(xi, xj) ≈ 1
T

T∑
t=1

ϕ(wt, xi)ϕ(wt, xj), (33)

Λα(x) ≈ 1
T

T∑
t=1

m∑
i=1

biϕ(wt, xi)ϕ(wt, x), (34)

∥α∥2
L2(p) ≈

1
T

T∑
t=1

m∑
i=1

m∑
j=1

bibjϕ(wt, xi)ϕ(wt, xj). (35)

We can simplify the expressions by noticing that at :=
∑m

i=1 biϕ(wt, xi) is constant with regard to x. Writing
a := (a1, . . . , aT ), we obtain:

Λα(x) ≈ 1
T

T∑
t=1

atϕ(wt, x), (36)

∥α∥2
L2(p) ≈

1
T

T∑
t=1

a2
t = 1

T
∥a∥2

2. (37)

Notice that the model in Equation (36) is precisely the form that functions in F̂w, the approximation class
of Rahimi & Recht (2009), take. Furthermore, using these approximations in the L2(p)-regularized empirical
risk, we get:

LL2(p)
S (Λα) = LS(Λα) + λ2∥α∥2

L2(p)

≈ 1
m

m∑
i=1

ℓ

(
1
T

T∑
t=1

atϕ(wt, x), yi

)
+ λ2

T
∥a∥2

2. (38)

The (squared) euclidean norm of the coefficients (∥a∥2
2) approximates the (squared) L2(p)-norm of the weight

function being learned. Note that this final expression differs slightly from the objective usually being
minimized by the random kitchen sinks algorithm: a factor 1

T has appeared in the regularization term. The
classical expressions are obtained by instead defining at :=

∑m
i=1 bi

ϕ(wt,xi)√
T

, and Λα(x) ≈
∑T

t=1 at
ϕ(wt,x)√

T
.
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The regularization term would then be λ2∥a∥2
2. We opt for the formulation Λα(x) ≈ 1

T

∑T
t=1 atϕ(wt, x)

for two main reasons. It directly highlights the Monte Carlo approximation being made, and also allows
directly correlating the sup-norm of the weight function α in Equation (21) to the maximal coefficient in the
approximation class (Equation (22)). Less importantly, it avoids the strange-looking and unintuitive

√
T in

the equations.

3.3 Square-integrable weight functions

Bach (2017) investigates the more general assumption that the weight function is simply square-integrable
with respect to the probability measure p. He considers two main model classes:

F1 :=
{
x 7→ E

w∼p
[α(w)ϕ(w, x)]

∣∣∣∣ α ∈ L2(p) and γ1(Λα) := ∥α∥L1(p) := E
w∼p

[
|α(w)|

]
≤ B1

}
, (39)

F2 :=
{
x 7→ E

w∼p
[α(w)ϕ(w, x)]

∣∣∣∣ α ∈ L2(p) and γ2(Λα) := ∥α∥L2(p) :=
√
E

w∼p

[
α(w)2

]
≤ B2

}
. (40)

He shows that γ1 and γ2 are norms, and refers to them as variational norms.3 The core result of Bach
(2017) is Proposition 6, reproduced here for convenience:

Proposition 6 of Bach (2017) (Approximation of Lipschitz-continuous functions) For δ larger
than a constant that depends only on d and α, for any function f : Rd → R such that for all x, y such
that ∥x∥q ≤ R and ∥y∥q ≤ R, |f(x)| ≤ η and |f(x) − f(y)| ≤ ηR−1∥x − y∥q, there exists g ∈ F2 such that
γ2(g) ≤ δ and

sup
∥x∥q≤R

|f(x)− g(x)| ≤ C(d, α)η
(
δ

η

)−1/(α+(d−1)/2)
log
(
δ

η

)
. (41)

Here, ϕ(w, x) is assumed to be the rectified linear unit (ReLU) ReLU(w, x) := max(0, ⟨w, x⟩) to the
power α, that is, ϕ(w, x) = ReLU(w, x)α, and p is assumed to be the uniform distribution on the unit sphere in
Rn. This Proposition 6 shows that the class F2 can successfully approximate Lipschitz-continuous functions.
By making more specific assumptions on the target predictor f , for example that it is affine or a projection
pursuit, he refines this result, yielding tighter approximation guarantees. He also proves corresponding
generalization gap guarantees for the class F2. He combines both approximation and generalization bounds
in his Table 2, showing the best tradeoff that can be achieved between the two (a larger class will have better
approximation capabilities, but worse generalization gap guarantees). In the best cases, these guarantees are
in O(1/

√
m), as in Rahimi & Recht (2009). However, if the target function f is more complex than affine,

the guarantees are no better than O(1/ 4
√
m). Note that these are still meaningful results, as Theorem 1

of Rahimi & Recht (2009) does not include an approximation guarantee. On the other hand, Bach (2017)
does not provide algorithms that can achieve these rates, and defers to Rahimi & Recht (2009) for practical
applications.

4 RKHS weightings of functions

In this section, we describe the random feature method variation which we call RKHS weightings. It takes
the form of an operator Λ that takes as input an RKHS element α, which is a function with domain W, and
outputs a predictor Λα that has domain X . The model and hypothesis classes are defined in Section 4.1.
Because of the importance of the operator norm in the theoretical guarantees of Section 6, we examine the
operator norm of Λ in detail in Section 4.2. Then, we define all the assumptions that we make in Section 4.3.
We give explicit examples of instantiations of the model, complete with formulas for calculating the model
output, in Section 4.4. We explain the link between RKHS weightings and kernel methods in Section 4.5.
Finally, Section 4.6 provides a method for selecting the model hyperparameters that takes into account the
curse of dimensionality.

3We simplified the definition of the variational norms. Since multiple weight functions α can potentially yield the same
predictor f = Λα, up to almost-everywhere equality, the variational norm is actually defined as the infimum of the L1(p) or
L2(p)-norm of these weight functions. This detail will not come into play in this paper, and is thus relegated to this footnote.
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4.1 Model definition

As we alluded to in Section 3, in this paper we are interested in functions of the form:

Λα(x) := E
w∼p

[α(w)ϕ(w, x)]. (42)

Making a prediction for a given x requires calculating the expectation in Equation (42), which can be difficult
to do. In this paper, we explore the case where the weight function α is assumed to belong to an RKHS.
We will see that this can lead to analytically solvable integrals, meaning that we can evaluate Equation (42)
exactly. Let us therefore consider K :W ×W → R, a positive definite kernel over W. Denote the RKHS of
kernel K by H. We call the tuple (W, ϕ,K, p) an instantiation of the model, and define the following class
of predictors:

ΛH :=
{

Λα
∣∣∣ α ∈ H} =

{
x 7→ Λα(x) := E

w∼p
[α(w)ϕ(w, x)]

∣∣∣∣ α ∈ H} . (43)

We call functions in ΛHRKHS weightings. Similarly to Rahimi & Recht (2009), who bound the supremum
norm of the weight function, and to Bach (2017), who limits the variational norm of the predictor, it will be
necessary to limit the norm of the weight function α ∈ H. Therefore, for a constant BH > 0, we define the
set

HB :=
{
α ∈ H

∣∣∣ ∥α∥H ≤ BH

}
, (44)

and the following class of predictors:

ΛHB :=
{

Λα
∣∣∣ α ∈ H, ∥α∥H ≤ BH

}
. (45)

In order to algorithmically control the norm ∥α∥H, we will typically add the regularization term λH∥α∥2
H

(with λH > 0) to the empirical risk. Hence we define the regularized empirical risk by:

Lreg
S (Λα) := LS(Λα) + λH∥α∥2

H. (46)

Furthermore, since weight functions α ∈ H take the form α =
∑∞

t=1 atK(wt, ·) for real coefficients at and
wt ∈ W, we can rewrite the model as

Λα(x) := E
w∼p

[α(w)ϕ(w, x)]

= E
w∼p

[ ∞∑
t=1

atK(wt, w)ϕ(w, x)
]

=
∞∑

t=1
at E

w∼p
[K(wt, w)ϕ(w, x)]. (47)

(Note that swapping the sum and integral in the expressions above is non-trivial. The proof is in Ap-
pendix A.3.) In practice, a finite number of features {wt}T

t=1 will be sampled from distribution p, and the
coefficients (at)T

t=1 will be learned. The model will then take the form

Λα(x) =
T∑

t=1
at E

w∼p
[K(wt, w)ϕ(w, x)]. (48)

To calculate this expression exactly, the expectation

E
w∼p

[K(u,w)ϕ(w, x)] (49)

must admit an analytical form for all u ∈ W and x ∈ X . We give examples in Section 4.4.

So far, we have simply assumed that the model is well-defined (the expectation converges). In the next
section, we explore under what conditions the operator Λ is continuous. This will ensure that the model is
well-defined, and give us useful results for deriving our theoretical guarantees in Section 6.

10
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4.2 Norm of the operator

A crucial quantity, which appears in some way in all guarantees that we prove in Section 6, is the operator
norm of Λ. The following theorem upper bounds that norm.
Theorem 4.1. Consider an instance space X , a parameter space W, a function ϕ :W×X → R, an RKHS
H ⊂ RW of kernel K, a distribution p over W and the operator Λ defined by

Λα := E
w∼p

[α(w)ϕ(w, ·)].

Consider the constant κ defined by

κ := sup
x∈X

√
E

w∼p

[
∥ϕ(w, x)K(w, ·)∥2

H

]
= sup

x∈X

√
E

w∼p
[K(w,w)ϕ(w, x)2]. (50)

Suppose that κ is finite. Then Λα ∈ L∞(X ) for all α ∈ H. Furthermore, the constant

θ := sup
x∈X

∥∥∥∥ Ew∼p
[ϕ(w, x)K(w, ·)]

∥∥∥∥
H

= sup
x∈X

√
E

w∼p
E

u∼p
[K(u,w)ϕ(u, x)ϕ(w, x)] (51)

is well-defined and we have:
∥Λ∥ := ∥Λ∥H→L∞(X ) ≤ θ ≤ κ. (52)

Proof. The ultimate goal is to prove that ∥Λ∥ ≤ θ ≤ κ. This can be achieved by showing that ∥Λα∥∞ ≤
θ∥α∥H ≤ κ∥α∥H for any α ∈ H. To do this, we prove that |Λα(x)| ≤ θ∥α∥H ≤ κ∥α∥H for all x. We begin
by showing that ∥Λ∥ ≤ κ. Consider any α ∈ H and x ∈ X . We have:

|Λα(x)| =
∣∣∣∣ Ew∼p

[α(w)ϕ(w, x)]
∣∣∣∣

≤ E
w∼p

[
|α(w)ϕ(w, x)|

]
= E

w∼p

[
|⟨α,K(w, ·)⟩H ϕ(w, x)|

]
(Reproducing property)

≤ E
w∼p

[
∥α∥H∥K(w, ·)∥H|ϕ(w, x)|

]
(Cauchy–Schwartz inequality)

= E
w∼p

[
∥K(w, ·)∥H|ϕ(w, x)|

]
∥α∥H

≤
√
E

w∼p

[
∥ϕ(w, x)K(w, ·)∥2

H

]
∥α∥H (Jensen inequality)

≤ κ∥α∥H.

Therefore Λα is a bounded function of x, and we have ∥Λ∥ := ∥Λ∥H→L∞(X ) ≤ κ. Additionally, we can
observe that α 7→ Λα(x), seen as an operator from H to R, is a bounded linear functional of norm at most κ.
The Riesz representation theorem tells us that we can write

Λα(x) = ⟨α,ψ(x)⟩H , (53)

for some ψ(x) ∈ H. In fact, we have that

ψ(x) = E
w∼p

[ϕ(w, x)K(w, ·)], (54)

since, by the reproducing property of the RKHS, we can write, for all u ∈ W,

ψ(x)(u) = ⟨K(u, ·), ψ(x)⟩H
= ΛK(u, ·)(x) (Equation (53))
= E

w∼p
[K(w, u)ϕ(w, x)].

11
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Using the Cauchy–Schwartz inequality, we have that

|Λα(x)| ≤ ∥α∥H∥ψ(x)∥H = ∥α∥H

∥∥∥∥ Ew∼p
[ϕ(w, x)K(w, ·)]

∥∥∥∥
H
≤ θ∥α∥H. (55)

This shows that ∥Λ∥ ≤ θ. Finally, we need to show that θ ≤ κ. This is a direct consequence of Jensen’s
inequality:

θ = sup
x∈X

∥∥∥∥ Ew∼p
[ϕ(w, x)K(w, ·)]

∥∥∥∥
H

≤ sup
x∈X

E
w∼p

[
∥ϕ(w, x)K(w, ·)∥H

]
≤ sup

x∈X

√
E

w∼p

[
∥ϕ(w, x)K(w, ·)∥2

H

]
= κ.

We give examples of the values (or upper bounds) of θ and κ for different instantiations of the model in
Section 4.4. A recurring pattern is that θ is more difficult to calculate, but yields a much tighter bound on
the operator norm of Λ.

Under the more general condition that α ∈ L2(p), satisfied in the works of Rahimi & Recht (2009) and Bach
(2017), we can derive a similar bound on the operator norm of Λ. We do so in the next lemma.
Lemma 4.1. Consider an instance space X , a parameter spaceW, a function ϕ :W×X → R, a distribution
p over W and the operator Λ : L2(p)→ RX defined by

Λα(x) = E
w∼p

[α(w)ϕ(w, x)].

Define the constant
τ := sup

x∈X
∥ϕ(·, x)∥L2(p) = sup

x∈X

√
E

w∼p
[ϕ(w, x)2]. (56)

Suppose that τ <∞. Then Λα ∈ L∞(X ) for all α ∈ L2(p), and ∥Λ∥L2(p)→L∞(X ) ≤ τ .

Proof. Consider any α ∈ L2(p). We need to show that |Λα(x)| ≤ τ∥α∥L2(p) for all x. We have that

|Λα(x)| =
∣∣∣∣ Ew∼p

[α(w)ϕ(w, x)]
∣∣∣∣

=
∣∣∣⟨α, ϕ(·, x)⟩L2(p)

∣∣∣
≤ ∥α∥L2(p)∥ϕ(·, x)∥L2(p) (Cauchy–Schwartz)
≤ τ∥α∥L2(p).

Lemma4.1 also applies to RKHS weightings if the weight function is square-integrable. Because we always
have the inequality

∥α∥2
L2(p) = E

w∼p

[
α(w)2] ≤ ∥α∥2

H E
w∼p

[K(w,w)], (57)

we can ensure that ∥α∥L2(p) ≤ ∞ by adding the assumption that Ew∼p [K(w,w)] <∞.

4.3 Assumptions

The theoretical results in this paper use some or all of the following assumptions.

Assumption 1 (A1). Consider an instance space X , an instantiation (W, ϕ,K, p) of the model such that
the constants κ defined in Equation (50) and τ defined in Equation (56) are finite, H the RKHS of kernel K,
the operator Λ defined by Equation (42) and the predictor class ΛHB defined by Equation (45). Additionally
suppose that Ew∼p [K(w,w)] <∞.

12
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RWSign RWExpSign RWRelu RWExpRelu RWStumps
W Rn Rn Rn Rn {1, . . . , n}× R
p N (0, σ2I) N (0, σ2I) N (0, σ2I) N (0, σ2I) U({1, . . . , n}) ×N (0, σ2)
ϕ(w, x) sign(⟨w, x⟩) sign(⟨w, x⟩) ReLU(w, x) ReLU(w, x) sign(xw1 − w2)
K(u,w) exp

(
−∥u−w∥2

2
2γ2

)
exp

(
⟨u,w⟩
2γ2

)
exp

(
−∥u−w∥2

2
2γ2

)
exp

(
⟨u,w⟩
2γ2

)
1[u1 = w1] exp

(
− (u2−w2)2

2γ2

)
θ ≤

(
1 + 2σ2

γ2

)− n
4

(
1− σ2

2γ2

)− n
2 σ√

2π
supx ∥x∥

(
1 + 2σ2

γ2

) 1−n
4 σ√

2π
supx ∥x∥

(
1− σ2

2γ2

) 1−n
2 1√

n

(
1 + 2σ2

γ2

)− 1
4

κ = 1
(

1− σ2

γ2

)− n
4 σ√

2 supx ∥x∥ σ√
2 supx ∥x∥

(
1− σ2

γ2

)− n+2
4 1

Table 2: Five RKHS weighting instantiations. For RWStumps, each w is a tuple (w1, w2), where w1 is an
integer, indicating which variable the decision stump considers, and w2 is the threshold, a real number.

Ew∼p [K(u,w)ϕ(w, x)] Proof

RWSign
(

1 + σ2

γ2

)−n/2
e

−∥u∥2
2

2σ2+2γ2 erf
(
⟨u′,x⟩√
2ζ∥x∥2

)
Appendix B.1

RWExpSign e
σ2

8γ4 ∥u∥2
erf
(

σ√
8πγ2

⟨u,x⟩
∥x∥

)
Appendix B.2

RWRelu
(

1 + σ2

γ2

)−n/2
e

−∥u∥2
2

2σ2+2γ2 ∥x∥
2

√
π

(
√

2ζe− ⟨u′,x⟩2

2ζ2∥x∥2 +
√
π
⟨u′,x⟩

∥x∥

[
1 + erf

(
⟨u′,x⟩√

2ζ∥x∥

)])
Dubé & Marchand (2025)

RWExpRelu
(

1√
2πσ2

)
e

σ2
8γ4 ∥u∥2

2

[
σ∥x∥√

2

(√
2σe− ⟨u,x⟩2

2σ2∥x∥2 +
√
π ⟨u,x⟩

∥x∥

[
1 + erf

(
⟨u,x⟩√
2σ∥x∥

)])]
Appendix B.3

RWStumps ζ
σne

−u2
2

2σ2+2γ2 erf
(

xu1 −u′
2√

2ζ

)
Appendix B.4

Table 3: Analytical form for the expectation. The constant ζ is defined by the relationship 1
2ζ2 = 1

2γ2 + 1
2σ2 ,

and u′ :=
(

1 + γ2

σ2

)−1
u.

Assumption 2 (A2). The loss ℓ : R × R→ [0,∞) is ρ-Lipschitz in the first argument (the output of the
model).

Assumption 3 (A3). The loss ℓ : R × R → [0,∞) is convex and differentiable in its first argument. We
write ℓ′(z, y) := ∂ℓ

∂z (z, y) for the partial derivative with regard to the first argument.

4.4 Examples of instantiations of the model

An instantiation of the model defined in Equation (42) is a tuple (W, ϕ,K, p). This is a highly flexible model
family. Table 2 contains several examples of instantiations of the model, along with their constants θ and κ.
Additionally, Table 3 provides the analytical form for the expectation

E
w∼p

[K(u,w)ϕ(w, x)], (58)

which is required to evaluate the model (see Equation (48)). All of the calculations can be found in the
appendix, except for the instantiation RWRelu, which was introduced by Dubé & Marchand (2025).

4.5 RKHS weightings are implicitly a kernel method

Using the representer theorem for kernel methods, we showed in Section 3 that random feature methods
approximate kernel methods. That assumed that we were minimizing the L2(p)-norm-regularized empirical
risk. By considering an RKHS-norm regularization with RKHS weightings, a similar reasoning applies. We
show below that choosing an instantiation (W, ϕ,K, p) implicitly defines an RKHS over the instance space X ,
and that the optimal predictor belongs to that RKHS. Indeed, by selecting a valid instantiation (W, ϕ,K, p),
we get Equation (53):

Λα(x) = ⟨α,ψ(x)⟩H ,

13
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where ψ(x) := Ew∼p [ϕ(w, x)K(w, ·)] ∈ H. Using this form for Λα(x) in the expression of the regularized
empirical risk, we get:

Lreg
S (Λα) = LS(Λα) + λH∥α∥2

H

= 1
m

m∑
i=1

ℓ(Λα(xi), yi) + λH∥α∥2
H

= 1
m

m∑
i=1

ℓ(⟨α,ψ(xi)⟩H , yi) + λH∥α∥2
H. (59)

The representer theorem for kernel methods (Schölkopf et al., 2001) tells us that the optimal weight function
αS which minimizes the previous expression must be a linear combination of the {ψ(xi)}m

i=1. We define

HS :=
{

m∑
i=1

aiψ(xi)
}
. (60)

Inserting this form for the optimal predictor back into Equation (53), we obtain:

ΛαS(x) = ⟨αS , ψ(x)⟩H

=
〈

m∑
i=1

aiψ(xi), ψ(x)
〉

H

=
m∑

i=1
ai ⟨ψ(xi), ψ(x)⟩H . (61)

If we define the kernel KX : X × X → R as:

KX (xi, xj) := ⟨ψ(xi), ψ(xj)⟩H (62)

=
〈
E

w∼p
[ϕ(w, xi)K(w, ·)], E

w∼p
[ϕ(w, xj)K(w, ·)]

〉
H

= E
u∼p

E
w∼p

[ϕ(w, xi)ϕ(u, xj) ⟨K(u, ·),K(w, ·)⟩H]

= E
u∼p

E
w∼p

[K(u,w)ϕ(u, xi)ϕ(w, xj)], (63)

then Equation (53) becomes:

ΛαS(x) =
m∑

i=1
aiKX (xi, x), (64)

or, equivalently:

ΛαS =
m∑

i=1
aiKX (xi, ·). (65)

We call KX the implicit kernel of the instantiation (W, ϕ,K, p). We can also show that KX is a posi-
tive definite kernel. Given any set of instances {xi}m

i=1, we need to prove that the following holds for all
(c1, . . . , cm) ∈ Rm:

m∑
i=1

m∑
j=1

cicjKX (xi, xj) ≥ 0. (66)

14
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This immediately follows from the definition of KX , as we can write:
m∑

i=1

m∑
j=1

cicjKX (xi, xj) =
m∑

i=1

m∑
j=1

cicj ⟨ψ(xi), ψ(xj)⟩H

=
〈

m∑
i=1

ciψ(xi),
m∑

j=1
cjψ(xj)

〉
H

=
∥∥∥∥∥

m∑
i=1

ciψ(xi)
∥∥∥∥∥

2

H

≥ 0.

In fact, this shows that the norm ∥Λα∥HX
of the predictor Λα, with α =

∑m
i=1 ciψ(xi) is equal to the RKHS

norm ∥α∥H = ∥
∑m

i=1 ciψ(xi)∥H of the weight function. We encapsulate this fact in the following lemma.
Lemma 4.2. Assume A1. Suppose we have a dataset S ⊂ X × Y. If α ∈ HS , then Λα ∈ HX , and
∥Λα∥HX

= ∥α∥H.

By the Moore–Aronsajn theorem, KX is the reproducing kernel of an RKHS HX , which contains functions
precisely of the form of Equation (65). This means that ΛαS ∈ HX .

To conclude this section, we address the obvious idea of pairing the implicit kernel KX with a standard kernel
method in order to learn the model. This can only be done if there is an analytical form for Equation (63).
It requires solving a highly difficult integral even for simple instantiations. We do not pursue that avenue
in this paper. Alternatively, Equation (63) can be approximated via Monte Carlo sampling. We will cover
that possibility in a subsequent paper.

4.6 Curse of dimensionality and choice of parameters

RKHS Weightings suffer from the curse of dimensionality. This can be seen explicitly in the value of the
constants θ and κ in Table 2, and in the analytical expectations in Table 3. For example, we have the upper
bound:

θ ≤
(

1 + 2σ2

γ2

)−n/4

for RWSign, where σ2 and γ2 are the variances of the Gaussian distribution and kernel, respectively. Because
the output of the model is upper bounded as follows:

|Λα(x)| ≤ θ∥α∥H, (Theorem 4.1)

the predictions Λα(x) will quickly vanish to zero as the dimensionality n grows and θ goes to 0 exponentially
fast. To compensate, the RKHS norm of the weight function α would need to be exponentially large.
However, as we will see in the theoretical guarantees in Section 6, for example Theorem 6.7, this would
require an exponential number of examples to ensure generalization.

We can work around the curse of dimensionality by choosing the model hyperparameters adequately. To see
this, let us continue with our example of RWSign, which uses the Gaussian kernel (see Table 2). If γ is too
large, then the kernel value K(w, u) will be close to 1 for most pairs (w, u). The weight functions, of the
form α =

∑
t=1 atK(wt, ·), will be roughly constant. This yields a non-expressive predictor class ΛHB . If γ

is too small, then the model vanishes to a constant value of 0, as we explained above.

What we propose is a way to find the small range of values for the hyperparameters where the constants θ
and κ take on reasonable values. For RWSign and RWRelu, where

θ ∝
(

1 + 2σ2

γ2

)−n/4
,

we can choose θ and σ, and then find γ using the following relationship:

γ2 = 2σ2

θ−4/n − 1 . (67)
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Formula for γ Allowed values

RWSign γ2 = 2σ2

θ−4/n−1 θ ∈ (0, 1)
RWRelu γ2 = 2σ2

θ−4/n−1 θ ∈ (0, 1)
RWExpSign γ2 = σ2

1−κ−4/n κ > 1
RWExpRelu γ2 = σ2

1−κ−4/n κ > 1
RWStumps N/A N/A

Table 4: Formulas for finding reasonable kernel parameter values from the distribution parameter.

For RWExpSign and RWExpRelu, the problem is the opposite; the model explodes to infinity with the
dimensionality. Instead of controlling the smallest constant θ, we need to limit the largest constant κ, which
also comes into play in Section 6 guarantees. In both cases, we have that

κ ∝

(
1

1− σ2

γ2

)n/4

.

We can therefore take

γ2 = σ2

1− κ−4/n
. (68)

Finally, RWStumps is an exception. It has no exponential dependency on dimensionality, since the distri-
bution is only over a 2-dimensional space. The hyperparameters can be chosen freely. Table 4 summarizes
how to set the hyperparameters for all the instantiations of Table 2.

It is clear that the curse of dimensionality must be taken into account when choosing an instantiation to model
a given problem. One way to avoid the problem entirely is to use a smaller parameter space. RWStumps is
such an example. The parameter space W is not Rn; it is instead a two-dimensional space, regardless of the
dimensionality of the instance space X . In return, it does not exhibit an exponential behavior in n. Indeed,
we have the simple upper bound θ ≤ 1√

n

(
1 + 2σ2

γ2

)−1/4
.

RWStumps represents a form of prior knowledge applied to the model. By using RWStumps, we assume
that decision stumps on individual variables are sufficient for good prediction. For problems on which that
assumption is true, RWStumps will provide better learning guarantees, and avoid the curse of dimensionality.

5 Learning the model

Learning the model of Equation (42) consists in finding the weight function α which minimizes an optimiza-
tion objective, such as the regularized empirical risk. We present three such algorithms in this paper.

5.1 Stochastic functional gradient descent

The first algorithm is a stochastic gradient descent in RKHS space. This requires calculating the functional
gradient of the empirical risk functional (Equation (2)) with regard to weight function. We start with the
following lemma, which gives the functional gradient of the evaluation functionals.
Lemma 5.1. Assume A1. Then ∇αΛα(x) = ψ(x) := Ew∼p [ϕ(w, x)K(w, ·)].

Proof. See Equation (53).

We can use Lemma 5.1, the linearity of the gradient, as well as the chain rule, to calculate the gradient of
the empirical risk functional. We do this in the next theorem.
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Theorem 5.1. Assume A1, A2 and A3. Suppose we have a sample S ⊆ (X × Y)m. Then:

∇α(LS(Λα)) = E
w∼p

[
1
m

m∑
i=1

ℓ′(Λα(xi), yi)ϕ(w, xi)K(w, ·)
]
. (69)

Proof. We have:

∇α(LS(Λα)) = 1
m

m∑
i=1

∇αℓ(Λα(xi), yi) (Linearity of the gradient)

= 1
m

m∑
i=1

ℓ′(Λα(xi), yi)∇αΛα(xi) (Chain rule)

= 1
m

m∑
i=1

ℓ′(Λα(xi), yi) E
w∼p

[ϕ(w, xi)K(w, ·)] (Lemma 5.1)

= E
w∼p

[
1
m

m∑
i=1

ℓ′(Λα(xi), yi)ϕ(w, xi)K(w, ·)
]
. (Linearity of the expectation)

By the linearity of the gradient and Lemma 2.2, we have that:

∇αLreg
S (Λα) = ∇αLS(Λα) + ∇αλH∥α∥2

H = ∇αLS(Λα) + λHα. (70)

Because the functional gradients of Equations (69) and (70) are expectations over the choice of w, they are
difficult objects to work with in practice. However, we can easily extract unbiased approximations of the
gradients through simple random sampling. By sampling a feature u according to the distribution p, and a
data batch B of size b uniformly (with replacement) from S (we denote the uniform distribution over S by
U(S)), we can define the following unbiased approximation for the functional gradient ∇αLreg

S (Λα):

v(α, u,B) :=

1
b

∑
(x,y)∈B

ℓ′(Λα(x), y)ϕ(u, x)

K(u, ·) + λHα. (71)

This approximation is indeed unbiased since, by Equations (69) and (70), we get that:

E
u∼p

E
B∼U(S)b

[v(α, u,B)] = ∇αLreg
S (Λα). (72)

Assuming that the loss ℓ is convex, we can apply a stochastic gradient descent algorithm using this approx-
imation, with an update at iteration t of the form

α← α− ηtv(α,wt,Bt), (73)

for a given stepsize ηt, and be guaranteed to converge to the optimal solution. In fact, Lreg
S (Λα) is λH-strongly

convex in α, by convexity of ℓ and linearity of Λα. We therefore propose using a stochastic functional gradient
descent algorithm for λH-strongly convex functions, similar to the one found in Section 14.4.4 of Shalev-
Shwartz & Ben-David (2014). See Algorithm 3 for the pseudocode and Theorem 6.7 for a convergence
guarantee.

To analyse the algorithmic complexity of Algorithm 3, we can notice that the bottleneck is the projection
step. This requires calculating the norm

∥∥∥α(t− 1
2 )
∥∥∥

H
, which can be done in O(t2), as it involves doing a

matrix multiplication using the t × t Gram matrix of the parameters at iteration t. Over T iterations, the
projection step therefore costs O(T 3) in computation time. However, a simple optimization can reduce this
cost by a factor of T to O(T 2), in line with the rest of the algorithm. Indeed, notice that the update formula
is:

α(t− 1
2 ) ← α(t−1) − ηtvt. (74)
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Algorithm 3 Stochastic functional gradient descent for learning the weight function
input Instantiation (W, ϕ,K, p), λH > 0, BH > 0, number of iterations T , sample S, batch size b
α(0) ← 0 ∈ H
for t = 1, . . . , T do

Sample Bt ∼ U(S)b

Sample wt ∼ p
ηt ← 1

λHt

vt ← v
(
α(t−1), wt,Bt

)
(see Equation (71))

α(t− 1
2 ) ← α(t−1) − ηtvt

α(t) ← min

1, BH∥∥∥α(t− 1
2 )
∥∥∥

H

α(t− 1
2 ) (projection step)

end for
output ᾱ := 1

T +1
∑T

t=0 α
(t)

Referring back to Equation (71) and using the shorthand ct :=
(

1
b

∑
(x,y)∈Bt

ℓ′(Λα(x), y)ϕ(wt, x)
)

, this can
be rewritten as:

α(t− 1
2 ) ← α(t−1) − ηt

(
ctK(wt, ·) + λHα

(t−1)
)

= (1− ηtλH)α(t−1) − ηtctK(wt, ·). (75)

Considering the squared norm, we have:∥∥∥α(t− 1
2 )
∥∥∥2

H
=
∥∥∥(1− ηtλH)α(t−1) − ηtctK(wt, ·)

∥∥∥2

H

= (1− ηtλH)2
∥∥∥α(t−1)

∥∥∥2

H
− 2(1− ηtλH)ηtct

〈
α(t−1),K(wt, ·)

〉
H

+ η2
t c

2
t∥K(wt, ·)∥2

H

= (1− ηtλH)2
∥∥∥α(t−1)

∥∥∥2

H
− 2(1− ηtλH)ηtctα

(t−1)(wt) + η2
t c

2
tK(wt, wt). (76)

Calculating α(t−1)(wt) is in O(t), and K(wt, wt) takes constant time to compute (with regard to t). We can
therefore reduce the learning time of the algorithm from O(T 3) to O(T 2) by simply keeping in memory the
norm of each iterate, and using Equation (76) to calculate the norm of the next one.

5.2 Least squares fit of the random features

Many random feature methods first generate a large number of random parameters according to the sampling
distribution, then learn the weight coefficients by analytically solving a convex optimization problem (Rahimi
& Recht, 2009; Huang et al., 2006). This is possible when using the squared loss ℓ(h(x), y) := (h(x) − y)2.
This idea works for RKHS Weightings as well. We can define the operator φ which, given (w1, . . . , wT )
sampled from the distribution p, embeds an instance x into a higher dimensional space:

φ(x) :=
(
E

w∼p
[K(w1, w)ϕ(w, x)], . . . , E

w∼p
[K(wT , w)ϕ(w, x)]

)⊤

.

The output of the model is then simply a linear function in the embedding space:

Λα(x) :=
T∑

t=1
at E

w∼p
[K(wt, w)ϕ(w, x)] = ⟨a, φ(x)⟩ , (77)

For some sample S = {(xi, yi)}m
i=1, the regularized empirical squared loss is:

Lreg
S (Λα) := 1

m

m∑
i=1

(⟨a, φ(xi)⟩ − yi)2 + λH∥α∥2
H. (78)
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Denoting Φ := (φ(x1), . . . , φ(xm))⊤ ∈ Rm×T , so that Φi,t = Ew∼p [K(wt, w)ϕ(w, xi)], also denoting y :=
(y1, . . . , ym)⊤ the vector of labels and a := (a1, . . . , aT ) the vector of coefficients, and finally denoting
G ∈ RT ×T the matrix defined by Gi,j := K(wi, wj), we can simplify:

Lreg
S (Λα) = 1

m
∥Φa − y∥2

2 + λHa⊤Ga. (79)

The minimizer a ∈ RT of this expression is the solution to the linear problem:(
Φ⊤Φ +mλHG

)
a = Φ⊤y. (80)

Solving the linear system of Equation 80 requires O(T 3) operations, which is slower than the O(T 2) required
by Algorithm 3. On the other hand, solving the linear system yields the optimal weights, requiring fewer
sampled parameters to get the same accuracy. See Figure 1 in Section 7. Algorithm 4 summarizes this
section.4

Algorithm 4 Least squares fit of the weight function coefficients
input Instantiation (W, ϕ,K, p), λH > 0, number of features T , sample S of size m

Sample (w1, . . . , wT ) ∼ pT

Calculate the matrix Φ ∈ Rm×T , where Φit := Ew∼p [K(wt, w)ϕ(w, xi)]
Calculate the matrix G ∈ RT ×T , where Gij := K(wi, wj)
Get (a1, . . . , aT ) by solving Equation (80)

output α :=
∑T

t=1 atK(wt, ·)

5.3 Lasso fit of the random features

We can replace the Tikhonov regularizer λH∥α∥2
H in Equation (79) by the ℓ1-regularizer on the norm of the

coefficients, λ1∥a∥1, giving us the new minimization objective:

Lℓ1
S (Λα) = 1

m
∥Φa − y∥2

2 + λ1∥a∥1. (83)

The solution a of this problem can be obtained by applying the Lasso algorithm (Hastie et al., 2015). By the
nature of minimizing with an ℓ1-regularizer, the vector of coefficients a obtained this way will be sparse, which
is an interesting advantage. Smaller models have a faster inference time and lower memory requirements,
and are more readily interpretable.

Algorithm 5 Lasso fit of the weight function coefficients
input Instantiation (W, ϕ,K, p), λ1 > 0, number of features T , sample S of size m

Sample (w1, . . . , wT ) ∼ pT

Calculate the matrix Φ ∈ Rm×T , where Φit := Ew∼p [K(wt, w)ϕ(w, xi)]
Get (a1, . . . , aT ) by minimizing Equation (83) using the Lasso

output α :=
∑T

t=1 atK(wt, ·)

4In practice, rare numerical instability issues can arise when both the regularization parameter λH and the smallest eigenvalue
of the matrix G are too small. Our solution is to add a very small ℓ2-regularizer to the regularized empirical risk:

Lreg
S (Λα) =

1
m

∥Φa − y∥2
2 + λHa⊤Ga + ϵa⊤Ia. (81)

In our experiments, we used ϵ = 10−10. Equation (80) becomes:(
Φ⊤Φ +mλHG+mϵI

)
a = Φ⊤y. (82)
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6 Theoretical guarantees

In this section, we demonstrate various theoretical guarantees. Section 6.1 contains two bounds on the
generalization gap based on the Rademacher complexity of the class of predictors: one bound, valid only for
RKHS weightings, depends on the RKHS norm of the weight function; the other, valid in general, depends on
the L2(p)-norm of the weight function. Section 6.2 contains a single result, a guarantee on the convergence of
Algorithm 3. Section 6.3 provides a more elaborate analysis of the generalization gap of RKHS weightings,
relying on the implicit kernel formulation of the model (see Section 4.5). Afterward, we offer in Section 6.4
an in-depth comparison of these guarantees to Rahimi & Recht (2009) and Bach (2017).

6.1 Bounding the generalization gap using Rademacher complexity

A large generalization gap is the result of overfitting, which is usually a sign that the complexity of the
class of predictors is inappropriately high in relation to the amount of available training data. Knowing this
complexity allows us to choose model parameters adequately to limit overfitting. Our first theorem upper
bounds the empirical Rademacher complexity of class ΛHB :

R̂S(ΛHB) := 1
m

E
σ∼{±1}m

[
sup

Λα∈ΛHB

m∑
i=1

σiΛα(xi)
]
, (84)

and its expected Rademacher complexity:

Rm(ΛHB) := E
S∼Dm

[
R̂S(ΛHB)

]
. (85)

(See e.g. Shalev-Shwartz & Ben-David (2014) or Mohri et al. (2012) for a rigorous exposition of the
Rademacher theory for bounding the generalization gap.)
Theorem 6.1. Given assumptions A1 and A2, we have for any sample S := {(xi, yi)}m

i=1 ⊂ (X ×Y)m that:

R̂S(ΛHB) ≤ θBH√
m
, (86)

and:
Rm(ΛHB) ≤ θBH√

m
. (87)

The proof is in Appendix A.4.5

We see that the Rademacher complexity is characterized by two model-dependent constants. The first is θ,
which is defined by the instantiation of the model (Equation (51)). The second is BH, the maximal RKHS
norm for the weight function, which acts as a hyperparameter of the algorithm, and can be used to control
overfitting. We can convert the Rademacher complexity of ΛHB into the following uniform bound on the
generalization gap.
Theorem 6.2. Given assumptions A1, A2, and A3, we have with probability at least 1− δ over the choice
of S ∼ Dm that the following holds for all Λα ∈ ΛHB:

LD(Λα) ≤ LS(Λα) + 2ρθBH√
m

1 +

√
log 1

δ

2

. (88)

The proof is in Appendix A.5.

It will be useful in the proof of the next theorem to have a bound on LS(Λα) − LD(Λα) rather than
LD(Λα)− LS(Λα). This is the following corollary.

5To make navigation of the paper easier, all section and appendix numbers, as well as theorem numbers, are clickable. Every
proof in the appendix links back to its corresponding theorem.
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Corollary 6.2.1. Given assumptions A1, A2, and A3, we have with probability at least 1−δ over the choice
of S ∼ Dm that the following holds for all Λα ∈ ΛHB:

LS(Λα) ≤ LD(Λα) + 2ρθBH√
m

1 +

√
log 1

δ

2

. (89)

The proof is in Appendix A.6.

Using this corollary and Theorem 6.2, we can derive a Probably Approximately Correct bound which justifies
empirical risk minimization.
Theorem 6.3. Assume A1, A2, and A3. For any S ∈ (X × Y)m, denote:

αS := argmin
α∈HB

LS(Λα),

α∗ := argmin
α∈HB

LD(Λα).

Then with probability at least 1− δ over the choice S ∼ Dm, we have:

LD(ΛαS) ≤ LD(Λα⋆) + 4ρθBH√
m

1 +

√
log 2

δ

2

. (90)

Proof. We can write:

LD(ΛαS) =LD(ΛαS)− LS(ΛαS)
+LS(ΛαS)− LS(Λα⋆)
+LS(Λα⋆)− LD(Λα⋆). (91)

From Theorem 6.2, the first term is bounded by 2ρθBH√
m

(
1 +

√
log 1

δ

2

)
with probability at least 1− δ. From

Corollary 6.2.1, the third term is also bounded by 2ρθBH√
m

(
1 +

√
log 1

δ

2

)
with probability at least 1− δ. Both

inequalities hold together with probability at least 1− 2δ. The second term is smaller than 0, since ΛαS is
the empirical risk minimizer. We obtain the result by replacing δ by δ

2 .

The previous three theorems can be replicated with only minor differences using the condition that the
weight function α be square-integrable with respect to the distribution p. In other words, the condition is
now that ∥α∥L2(p) ≤ B2 rather than that α belongs to an RKHS. We can therefore derive the Rademacher
complexity of class F2 of Bach (2017). This will apply by extension to the class Fp of Rahimi & Recht
(2009), since ∥α∥∞ ≤ B∞ implies that ∥α∥L2(p) ≤ B∞.
Theorem 6.4. Given assumptions A1 and A2, we have for any sample S := {(xi, yi)}m

i=1 ⊂ (X ×Y)m that:

R̂S(F2) ≤ τB2√
m
, (92)

and:
Rm(F2) ≤ τB2√

m
. (93)

(The proof is in Appendix A.7.) This implies a very similar generalization bound as Theorem 6.2.
Theorem 6.5. Given assumptions A1, A2, and A3, we have with probability at least 1− δ over the choice
of S ∼ Dm that the following holds for all α ∈ L2(p) with ∥α∥L2(p) ≤ B2:

LD(Λα) ≤ LS(Λα) + 2ρτB2√
m

1 +

√
log 1

δ

2

. (94)
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Note also that since H ⊂ L2(p), this previous theorem also applies for weight functions taken from H. We
can take the minimum of {θ∥α∥H, τ∥α∥L2(p)} in the Rademacher bound for the tightest possible guarantee.
We then have the following corollary:
Corollary 6.5.1. Given assumptions A1, A2, and A3, we have with probability at least 1−δ over the choice
of S ∼ Dm that the following holds for all α ∈ L2(p) with ∥α∥L2(p) ≤ B:

LS(Λα) ≤ LD(Λα) + 2ρτB2√
m

1 +

√
log 1

δ

2

. (95)

Finally, we have also have the PAC bound:
Theorem 6.6. Assume A1, A2, and A3. For any S ∈ (X × Y)m, denote:

ΛαS := argmin
Λα∈F2

LS(Λα),

Λα∗ := argmin
Λα∈F2

LD(Λα).

Then with probability at least 1− δ over the choice S ∼ Dm, we have:

LD(ΛαS) ≤ LD(Λα⋆) + 4ρτB2√
m

1 +

√
log 1

δ

2

. (96)

6.2 Stability analysis of the stochastic functional gradient descent

The following theorem describes the convergence in expectation of Algorithm 3 with regard to the number
of examples in the sample, and the number of iterations. (The proof is in appendix A.8.)
Theorem 6.7. Assume A1, A2, A3. The output ᾱ of Algorithm 3 is such that:

E [LD(Λᾱ)]− min
Λα∈ΛHB

LD(Λα) ≤ 2ρθBH√
m

+ λHB
2
H + 8ρ2

λHm
+ (ρκ+ λHBH)2

2λHT
(1 + log(T )), (97)

where the expectation is taken over the choice of sample and all sampled parameters and batches, that is
S ∼ Dm, (w1, . . . , wT ) ∼ pT , and (B1, . . . ,BT ) ∼ U(S)T ×b. By choosing λH =

√
8ρ2

B2
Hm

, we obtain:

E [LD(Λᾱ)]− min
Λα∈ΛHB

LD(Λα) ≤ ρBH√
m

√32 + 2θ + m√
32T

(
κ+

√
8
m

)2

(1 + log(T ))

 (98)

∈ O
(

1√
m

+
√
m

T
log T

)
.

This bound guarantees convergence to the optimal given enough data and iterations. While it is a result
on the expected risk, it can be turned into a probabilistic bound via Markov’s inequality or other more
sophisticated methods, such as the one given in exercise 13.1 of Shalev-Shwartz & Ben-David (2014).

Note also that, in practice, it is easier to use Equation (97) rather than Equation (98), since it allows using
an arbitrary value for λH (chosen by cross-validation, for instance). It is also slightly less constraining, due
to the ability to calculate the bound a posteriori with BH replaced by the largest iterate norm. This avoids
needing to specify the maximal norm BH before learning, and skips the projection step of Algorithm 3.

6.3 Near-optimality of the empirical risk minimizer

As we argued in Section 4.5, the weight function which minimizes the regularized empirical risk Lreg
S belongs

to the space HS := {
∑m

i=1 aiψ(xi)} ⊂ H, where ψ(xi) = Ew∼p [ϕ(w, xi)K(w, ·)] ∈ H. Furthermore, the
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space ΛHS is a subset of the RKHS HX . However, our inability to exactly evaluate the kernel KX means
that we do not directly have access to ΛHS . In practice, the weight function will instead take the form∑T

t=1 atK(wt, ·), where the set U := {w1, . . . , wT } has been sampled from pT . This is the case for all the
learning algorithms laid out in Section 5. We denote the space of available weight functions as:

HU :=
{

T∑
t=1

atK(wt, ·)
}
. (99)

In this section, we derive a theoretical guarantee for the empirical risk minimizer in ΛHU . We show that
the predictor class ΛHU allows approximating ΛHS , with this approximation increasing in quality with the
sampling size T .

As will become clear further below, the magnitude of the coefficients (a1, . . . , am) defining the optimal weight
function

∑m
i=1 aiψ(xi) ∈ HS is important. Specifically, the theorem that we prove in this section depends on

the ℓ1-norm of the vector of coefficients. Instead of bounding the RKHS norm of the weight function, as in
Theorem 6.2, we consider in this section weight functions with this ℓ1-norm at most B1. To justify this, we
prove the following lemma, which shows that a version of the representer theorem still applies in this case;
the optimal weight function still belongs to HS .
Lemma 6.1. Assume A1 and A2. Define hi := ψ(xi) for i ∈ {1, . . . ,m}, and suppose that {hm+1, hm+2, . . . }
is some orthonormal basis for H⊥

S , so that we can write H = HS + H⊥
S . For some α =

∑∞
i=1 aihi ∈ H,

define a := (a1, a2, . . . ) the (infinite) vector of coefficients, and JαK := ∥a∥1 =
∑∞

i=1 |ai|.6 For any B1 > 0,
there exists αS ∈ HS with JαSK ≤ B1 which minimizes the empirical risk:

LS(ΛαS) = min
α∈H:JαK≤B1

LS(Λα). (100)

Furthermore, for any α ∈ HS , we have ∥α∥H ≤ θJαK ≤ θB1.

The proof is in Appendix A.9

This next lemma shows that, with high probability, the approximation class HU contains a weight function
which is close, in both RKHS norm and risk, to the optimal αS guaranteed to exist by Lemma 6.1.
Lemma 6.2 (Approximation error). Assume A1, A2. For any S ∈ (X × Y)m, take:

αS ∈ HS ∩ argmin
α∈H:JαK≤B1

LS(Λα), (101)

where HS , defined in Equation (60), is the span of {ψ(xi)}m
i=1. With probability at least 1− δ over S ∼ Dm

and U ∼ pT , there exists some αS,U ∈ HU with ∥αS,U∥H ≤ θB1 + B1κ√
T

(
1 + 2

√
2 log 1

δ

)
such that:

∥αS,U − αS∥H ≤
B1κ√
T

(
1 + 2

√
2 log 1

δ

)
, (102)

and:

|LD(ΛαS,U )− LD(ΛαS)| ≤ B1ρθκ√
T

(
1 + 2

√
2 log 1

δ

)
, (103)

and:

|LS(ΛαS,U )− LS(ΛαS)| ≤ B1ρθκ√
T

(
1 + 2

√
2 log 1

δ

)
. (104)

The proof is in Appendix A.10

Combining the previous results with Theorem 6.2, our bound on the generalization gap, will yield a bound
on the true risk of the predictor returned by an empirical risk minimization algorithm.

6If an α ∈ HS has multiple writings, i.e. α =
∑m

i=1 aiψ(xi) =
∑m

i=1 biψ(xi), we choose the one with the lowest ℓ1-norm of
the vector of coefficients. Also, note that J·K is not a norm, thus the altered notation.
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Theorem 6.8. Under the same conditions as Lemma 6.2, consider ΛᾱS,U the minimizer of the empirical
risk LS(ΛᾱS,U ) within ΛHU , with the constraint that ∥ᾱS,U∥H ≤ θB1 + κB1√

T

(
1 + 2

√
2 log 1

δ

)
=: B′:

ᾱS,U := argmin
α∈HU :∥α∥H≤B′

LS(Λα). (105)

Then we have with probability at least 1− δ over the choices of S ∼ Dm and U ∼ pT that:

LD(ΛᾱS,U ) ≤ LS(ΛαS) + ρθB1

 κ√
T

1 + 2√
m

1 +

√
log 2

δ

2

(1 + 2
√

2 log 2
δ

)

+ 2θ√
m

1 +

√
log 2

δ

2

 (106)

= LS(ΛαS) + Õ
(
ρθB1

(
κ√
T

+ 2θ√
m

))
. (107)

The proof is in Appendix A.11.

Theorem 6.8 is similar to Theorem 6.3, the PAC bound that we obtained through classical Rademacher
complexity theory, but differs in a few meaningful ways. The most important difference is that Theorem 6.8
concerns the empirical risk minimizer in ΛHU (with RKHS norm at most B′), a predictor to which we have
access in practice, while Theorem 6.3 concerns the empirical risk minimizer in ΛHB , which we usually cannot
find in practice.7 In other words, minimizing over HU is possible, while minimizing over H is not. Therefore
Theorem 6.8 is much more relevant to practical applications and algorithms. It is also more informative, as
it ties into the bound the number of terms T used to write the weight function. As we see in Equation (107),
the dataset size m is tied to the constant θ, and the number of sampled features T is tied to κ. Since we
know that θ ≤ κ (Theorem 4.1), the bound suggests that having large T is slightly more important than
having large m.

The second important difference is to what LD(ΛᾱS,U ) is being compared. Interestingly, Theorem 6.8
looks at the empirical risk of the empirical risk minimizer ΛαS (with ℓ1-norm at most B1), as opposed to
Theorem 6.3, which looks at the true risk of the true risk minimizer Λα⋆ (with RKHS norm at most BH).
We usually expect the empirical risk to be lower than the true risk, since the model only has to succesfully
label a finite number of samples, rather than generalize to the entire population, an unambiguously harder
task. To be noted that this comparison is not quite so straightforward, as the two theorems apply a different
norm constraint on the weight function. We proved the relationship ∥αS∥H ≤ θJαSK, which means that
constraining the ℓ1-norm is a more restrictive assumption. This can degrade the term LS(ΛαS).

6.4 Comparison to other work

In this section, we compare our hypothesis class, assumptions and theoretical results to Rahimi & Recht
(2009) and Bach (2017), two major contributions in the domain of random feature methods. Recall from
Section 3 the two prediction classes from Rahimi & Recht (2009), the class F2 from Bach (2017), and the
class ΛHB introduced in this paper:

Fp :=
{
x 7→ Λα(x) := E

w∼p
[α(w)ϕ(w, x)]

∣∣∣∣ ∥α∥∞ ≤ B∞

}
, (21)

F̂w :=
{
x 7→ 1

T

T∑
t=1

atϕ(wt, x)
∣∣∣∣∣ ∀t, |at| ≤ B∞

}
, (22)

F2 :=
{
x 7→ Λα(x) = E

w∼p
[α(w)ϕ(w, x)]

∣∣∣∣ α ∈ L2(p), ∥α∥L2(p) ≤ B2

}
, (40)

7The empirical risk minimizer in ΛHB can be found in practice if the implicit kernel KX can be computed exactly.
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ΛHB :=
{
x 7→ Λα(x) := E

w∼p
[α(w)ϕ(w, x)]

∣∣∣∣ α ∈ H, ∥α∥H ≤ BH

}
. (45)

The difference between the three main classes (Fp, F2 and ΛHB) lies in the condition on the weight function.
Where Rahimi & Recht (2009) assume that the weight function is bounded, and RKHS weightings assume
that it belongs to an RKHS, Bach (2017) simply postulate that it is a square-integrable function with regard
to the distribution p. Note that this last assumption is the most general: any bounded function α or RKHS
function is square-integrable with respect to a probability measure. 8

Boundedness (the random kitchen sinks assumption) limits the subspace of L2(p) available for selecting a
weight function. However, we can show that such is not the case for RKHS weightings when the kernel K is
universal. Note that a positive definite kernel K : W ×W → R is universal on L2(p) if its corresponding
RKHS H is dense in L2(p):

∀ε > 0,∀f ∈ L2(p),∃h ∈ H such that ∥f − h∥L2(p) < ε. (108)

Lemma 6.3. Assume A1, A2. Further assume that K is a universal kernel on L2(p) (the Gaussian or
exponential kernels, for example, satisfy this condition; see Steinwart & Christmann (2008)). Consider any
αp ∈ L2(p). Then for all ε > 0, there exists αH ∈ H such that:

∥αH∥L2(p) ≤ ∥αp∥L2(p) + ε

ρτ
, (109)

and:
|LD(Λαp)− LD(ΛαH)| < ε. (110)

Proof. Since K is universal, its RKHS H is dense in L2(p). Therefore, because αp ∈ L2(p), we can find
αH ∈ H such that:

∥αp − αH∥L2(p) <
ε

ρτ
, (111)

where ρ is the Lipschitz constant of the loss. Equation (109) follows immediately from the triangle inequality,
and we obtain Equation (110) because:

|LD(Λαp)− LD(ΛαH)| =
∣∣∣∣ E
(x,y)∼D

[
ℓ(Λαp(x), y)− ℓ(Λα(x), y)

]∣∣∣∣
≤ ρ E

(x,y)∼D

[
|Λαp(x)− Λα(x)|

]
(ℓ is ρ-Lipschitz)

≤ ρτ∥αp − α∥L2(p) (Lemma 4.1)
< ε.

The implication of this lemma is that any predictor Λαp ∈ F2 (this includes predictors in Fp) can be
successfully approximated by an RKHS weighting ΛαH, where αH has an L2(p)-norm almost equal to that
of αp. Therefore, the approximation capability of RKHS weightings is in theory equivalent to the unrestricted
assumption that the weight function simply be square-integrable. And as Bach (2017) showed (Proposition
6 and its derivatives), the approximation capability of F2 is high, and generalization is guaranteed by
Theorem 6.5.

However, there is no guarantee that ∥αH∥H will be small. In fact, ∥αH∥H can be arbitrarily high despite
its small L2(p)-norm.9 This is a problem, since the learning algorithms that we presented all regularize the
RKHS norm, either directly (Algorithms 3 and Algorithm 4) or indirectly (Algorithm 5).10 By setting any

8RKHS weightings weight functions are square-integrable because we assume that Ew∼p [K(w,w)] < ∞. (See assump-
tion A1.) By Equation (57) in Section 4.2, we have ∥α∥2

L2(p) ≤ ∥α∥2
H Ew∼p [K(w,w)].

9For example, take K(w, u) = exp
(

−∥w − u∥2), and α = cK(cw, ·) for some w ∈ Rn and c ∈ R, and p the standard normal
distribution. The RKHS norm of α is equal to c, and is therefore linear in c. However, p(cw) decreases exponentially in c. The
L2(p)-norm of α therefore decreases exponentially in c. As ∥α∥H tends to infinity, ∥α∥L2(p) tends to 0.

10The Lasso fit of the coefficients regularizes the ℓ1-norm of the coefficients. We have ∥α∥2
H =

∑T

i=1

∑T

j=1 aiajK(wi, wj) ≤
∥a∥2

1 maxi K(wi, wi). The ℓ1-regularization is therefore implicitly an RKHS-norm regularization as well.
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regularization parameter larger than 0, we set an implicit upper bound on the RKHS norm of the weight
function that can be returned by these algorithms. If this implicit upper bound is smaller than the unknown,
and potentially extremely large, ∥αH∥H, then the algorithm will not find this αH ∈ H close to αp. This
suggests that the RKHS norm regularization, as well as Theorems 6.2, 6.7, 6.8, which depend on the RKHS
norm of the weight function, are not best suited to ensure finding the best possible RKHS weighting weight
function. Ideally, the RKHS norm regularization should be replaced by an L2(p)-norm regularization. Since
this is not a trivial task, we leave this for future work.

In principle, however, there exists a combination of a distribution p, (universal) kernel K, and base predictor
ϕ which optimizes the tradeoff between the risk LD(ΛαH), and the RKHS norm ∥αH∥H of the optimal weight
function αH ∈ H of norm at most BH. This suggests trying as many instantiations as possible, and using
cross-validation to choose the best parameters for the distribution and kernel, with the goal of finding the
best possible combination of (W, ϕ,K, p) for a given problem.

This highlights a key difference with Bach (2017). Proposition 6 of Bach (2017), their core result, provides
a powerful approximation guarantee, but is limited to one specific instantiation: the ReLU as the base
predictor ϕ (or an integer power of the ReLU), and the uniform distribution p on the sphere. Proposition 6
of Bach (2017) does not preclude the existence of an RKHS weighting instantiation (W, ϕ,K, p) which can
perform better on a given problem. The generality of our results, which apply to any valid instantiation,
allows searching through the space of instantiations for the best one for the problem at hand.

Additionally, Bach (2017) is mostly concerned with the theory of learning with random features, and defers
to Rahimi & Recht (2009) for practical applications. We therefore take the time to make a few more
observations comparing RKHS weightings to random kitchen sinks.

The most meaningful difference concerns the weight functions allowed by the assumptions. If the kernel K is
unbounded, then the weight functions inH can also be unbounded11. Such a choice of kernel therefore gives us
access to weight functions that are disallowed in Rahimi & Recht (2009). This has the potential of increasing
the expressivity of the predictor class, thus improving the best predictor in the class. We investigate this
possibility in our experiments (Section 7.2), where we test the performance of all the instantiations of Table 2.
This includes RWExpSign and RWExpRelu, which use the unbounded exponential kernel.

Another potentially meaningful difference between RKHS weightings and random kitchen sinks is that RKHS
weighting algorithms yield an actual weight function. One advantage that this has is the ability to approxi-
mate the L2(p)-norm of the weight function, yielding better bound values. By contrast, the RKS algorithm
only learns the coefficients (a1, . . . , aT ) for the sampled features (w1, . . . , wT ). Since these coefficients corre-
spond to the weight function values α(wt) at those features, the L2(p)-norm must be loosely upper bounded
by the maximal coefficient (the sup-norm).12 (Note that we do not leverage the existence of the weight
function further in this paper. It would be interesting to explore in further work other potential uses for the
weight function.)

Finally, let us directly compare the theoretical guarantees that we proved in this Section to those of Rahimi &
Recht (2009) and Bach (2017). Theorem 6.7 shows a convergence rate ofO

(
1√
m

+
√

m
T log T

)
for Algorithm 3,

where m is the number of samples and T is the number of random features, compared to O
(

1√
m

+ 1√
T

)
for

Algorithm 1 of Rahimi & Recht (2009). When T is large (commensurate to m), these bounds have the same
complexity, up to a log factor. Theorem 6.8 reveals the same O

(
1√
m

+ 1√
T

)
rate as Rahimi & Recht (2009),

but with much more explicit constants. Indeed, the simple assumption that |ϕ(w, x)| ≤ 1 of Rahimi & Recht
(2009) is replaced by the two much tighter instantiation-dependent constants θ and κ.

To summarize this long comparison of RKHS weightings with previous work on random features, the pre-
dictor class ΛHB examined in this work appears expressive and flexible, but obtaining good performance
in practical applications will likely require trying many instantiations, through the choices of the building
blocks (W, ϕ,K, p) and their hyperparameters.

11Take for example K(w, u) := exp(⟨w, u⟩), and α = K(w, ·) for some w ∈ W = Rn. Then α is not bounded as a function of
W, since α(cw) = exp

(
c∥w∥2

2
)

→ ∞ when c → ∞.
12To be more precise, we have from Equation (22) that maxt |at| ≤ B∞. We can approximate ∥α∥L2(p) ≤ B∞ ≈ maxt |at|.
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7 Experiments

We perform various experiments on a variety of binary classification and regression datasets taken from the
UC Irvine Machine Learning Repository (Dua & Graff, 2017), Scikit-learn (Pedregosa et al., 2011), as well as
MNIST (Deng, 2012). Dataset information is summarized in Tables 5 and 6. (Note that mnist17 consists
of only the digits 1 and 7 of the MNIST dataset.)

Table 5: Binary classification datasets used in this paper.

Training size Test size Dimensionality Source (clickable)
adults 32561 16281 108 UCI
cancer 426 143 30 Scikit-learn
marketing 33908 11303 47 UCI
mnist17 13007 2163 784 Kaggle
phishing 8291 2764 30 UCI
skin 183792 61265 3 UCI
telescope 14265 4755 10 UCI

In Section 7.1, we compare the three RKHS weightings learning algorithms that we presented in Section 5.
The quick takeaway is that the least squares fit (Algorithm 4) is both fast and accurate. The Lasso fit
(Algorithm 5) is accurate, but slow. The Stochastic Functional Gradient Descent (Algorithm 3) is slow and
inaccurate (in comparison to the other two).

In Section 7.2, we thoroughly compare RKHS weightings to random kitchen sinks. In that experiment,
RKHS weightings appear to have an edge, achieving slightly better performance on average than random
kitchen sinks.

In Section 7.3, we add other conventional algorithms (AdaBoost, SVM) to the comparison. All algorithms
perform quite similarly.

In Section 7.4, we observe that RKHS weightings perform significantly better than random kitchen sinks
when the number of random features is small, and the gap closes as the number of features increases.

Additional details about the experiments, such as the cross-validation parameters used, can be found in
Appendix C.

7.1 Comparison of learning algorithms for RKHS weightings

Our first order of business is to compare the three learning algorithms that we presented in Section 5:
the Stochastic Functional Gradient Descent (SFGD) (Algorithm 3), the least squares fit of the coefficients
(Algorithm 4), and the Lasso fit of the coefficients (Algorithm 5). The goal is to choose the best algorithm
for further experiments.

Table 6: Regression datasets used in this paper.

Training size Test size Dimensionality Source (clickable)
abalone 3132 1045 10 UCI
diabetes 331 111 10 Scikit-learn
housing 15480 5160 8 Scikit-learn
concrete 772 258 8 UCI
conductivity 15947 5316 81 UCI
wine 133 45 13 UCI
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https://archive.ics.uci.edu/dataset/2/adult
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Figure 1: Comparison of three algorithms for learning RKHS weightings: Stochastic Functional Gradient
Descent (Algorithm 3, with a batch size b = 100), least squares fit of the coefficients (Algorithm 4), and
Lasso fit of the coefficients (Algorithm 5). The random kitchen sinks algorithm (RKS) is included for
completeness. The regularization parameters were set to λH = λ2 = λ1 = 10−6. Each algorithm was tasked
with learning the model using the RWSign instantiation (simply using the sign base predictor for RKS) on
mnist17. Every point is the average of 10 independently seeded runs. The error bars represent one standard
deviation. The RKS, Lasso and least squares fit of the coefficients clearly provide the best performance. The
Least squares fit and RKS are by far the fastest methods.
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Figure 1 compares their training and test performance on a simple binary classification dataset (digits 1 and
7 of MNIST), as well as their training times. A fourth figure shows the number of nonzero coefficients of the
model after training to evaluate the sparsity of the models produced by the Lasso fit.

Performance-wise, Figures 1a and 1b show the least squares fit and Lasso fit to roughly equivalent, with
little to no difference in their test accuracies. They produce much higher quality predictors than the SFGD
algorithm, which has slow convergence, and high variance in its performance.

Despite their similar accuracies, the least squares fit was far faster than the Lasso fit algorithm (Figure 1c).
The Lasso fit was in fact the slowest algorithm, and also the one with the highest variance in training
time. The reason is that the running time of the Lasso algorithm is highly dependent on the regularization
parameter λ1; larger values of λ1 lead to sparser models and shorter training times, but potentially lower
accuracy. The variability of the training times in Figure 1c is due to different values of λ1 being chosen by
cross-validation.

Finally, Figure 1d shows how the Lasso fit can produce much smaller models when using an explicit ℓ1-
regularization on the coefficients. If the higher training cost is not deemed an issue in a given circumstance,
then it is an advantageous alternative to the least squares fit, as it should produce a smaller model with
similar performance.

To summarize, the Stochastic Functional Gradient Descent is theoretically interesting, but its practical
performance is much worse than the alternative algorithms. The Lasso can generate sparse predictors, but
at a high computational cost. Therefore, we will use the least squares fit (Algorithm 4) for the remaining
experiments.

7.2 Comparison to random kitchen sinks

This second experiment is an in-depth performance comparison of RKHS weightings and random kitchen
sinks. Both models were fitted on various datasets, using all the instantiations we presented in Table 2.
(For a given RKHS weighting instantiation (W, ϕ,K, p), the random kitchen sinks inherits all but the kernel
K.) These results can be found in Tables 7 and 8. These tables also include the values of the bounds
on the generalization gap found in Theorems 6.2 and 6.5. These latter bound values (Theorem 6.5) had
to be approximated, since the L2(p)-norm is not known exactly (as opposed to the RKHS norm required
by Theorem 6.2). For an RKHS weighting Λα, the L2(p)-norm squared of the weight function α was
approximated as ∥α∥2

L2(p) ≈
1
T

∑T
t=1 α(ut)2 for a newly sampled set of features (u1, . . . , uT ). The constant

τ := supx∈X
√
Ew∼p [ϕ(w, x)2] was approximated as the maximum over the test set of

√
1
T

∑T
t=1 ϕ(ut, x)2,

i.e. τ ≈ max(x,y)∈S

√
1
T

∑T
t=1 ϕ(ut, x)2.

On 6 of the 7 classification datasets (Table 7), one of the RKHS weighting instantiations has the lowest test
error. However, Table 13 in the appendix shows that the difference with random kitchen sinks is meaningful
on only one of those datasets (phishing).13 Likewise, RKS has the best performance on one dataset (skin).
On the regression datasets (Table 8), an RKHS weighting reaches the lowest mean squared error on 5 of the
6 datasets, but again with sometimes minimal margins. In fact, only one of those values (conductivity) is
meaningfully better than what the random kitchen sinks achieve. Combined, these two experiments suggest
that RKHS weightings have at most a slight edge over random kitchen sinks.

We can also look at the performance of RKHS weightings and random kitchen sinks when using the same
instantiation. In Table 7 we see that RKHS weightings have lower test error on 21 combinations of dataset
and instantiation (8 are significant), as opposed to 8 for random kitchen sinks (3 are significant). In Table 8,
RKHS weightings have lower test MSE on 19 combinations of dataset and instantiation (11 are significant),
as opposed to 9 for random kitchen sinks (5 are significant). This is a slightly more convincing argument for
RKHS weightings having an edge, on average, over random kitchen sinks.

13We define a difference as meaningful or significant if the lower value plus one standard deviation is smaller than the larger
value minus one standard deviation.
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Table 7: Classification performance comparison of RKHS weightings (RW) to random kitchen sinks (RKS).
For each combination of dataset and instantiation, an RKHS weighting was learned by cross-validation and
using Algorithm 4 (the least squares fit) in order to select the best model hyperparameters. The sampling
size T was 500, and each value in the table is the average of 10 independently seeded runs. Train error and
Test error are the proportion of incorrectly classified examples on the training and test sets. Th. 6.2 is the
95% generalization gap (the difference between Test MSE and Train MSE) guaranteed by Theorem 6.2. Th.
6.5 is the 95% generalization gap guaranteed by Theorem 6.5.

Train error Test error Train MSE Test MSE Th. 6.2 Th. 6.5 Train time (s)
RKS RW RKS RW RKS RW RKS RW RW RW RKS RW

Dataset Instantiation
adults RWExpRelu 0.152 0.150 0.155 0.152 0.430 0.425 0.442 0.437 >104 5.49 0.347 0.901

RWExpSign 0.191 0.194 0.198 0.198 0.553 0.579 0.570 0.581 >1012 >107 0.384 0.520
RWRelu 0.152 0.149 0.155 0.152 0.430 0.422 0.442 0.434 >108 >105 0.348 0.900
RWSign 0.191 0.216 0.198 0.220 0.553 0.649 0.570 0.649 >103 52.6 0.389 0.536
RWStumps 0.148 0.147 0.150 0.147 0.432 0.431 0.434 0.432 61.3 1.45 0.225 0.386

cancer RWExpRelu 0.014 0.013 0.029 0.030 0.131 0.109 0.200 0.186 >102 0.967 0.029 0.059
RWExpSign 0.011 0.012 0.041 0.048 0.074 0.108 0.157 0.172 >109 >105 0.033 0.048
RWRelu 0.014 0.015 0.029 0.026 0.131 0.136 0.200 0.198 >105 >102 0.031 0.063
RWSign 0.011 0.010 0.041 0.040 0.074 0.078 0.157 0.152 >106 >104 0.033 0.051
RWStumps 0.012 0.017 0.032 0.036 0.105 0.110 0.154 0.148 72.3 2.41 0.017 0.040

marketing RWExpRelu 0.094 0.093 0.100 0.100 0.268 0.264 0.286 0.281 >104 2.83 0.352 0.909
RWExpSign 0.139 0.103 0.148 0.110 0.458 0.328 0.482 0.349 >1011 >107 0.389 0.508
RWRelu 0.094 0.092 0.100 0.099 0.268 0.262 0.286 0.280 >107 >103 0.347 0.893
RWSign 0.139 0.132 0.148 0.138 0.458 0.516 0.482 0.528 >106 >104 0.388 0.537
RWStumps 0.097 0.097 0.102 0.101 0.280 0.277 0.291 0.288 28.1 0.657 0.306 0.521

mnist17 RWExpRelu 0.006 0.005 0.012 0.011 0.057 0.051 0.162 0.645 >103 6.8 0.303 0.578
RWExpSign 0.010 0.008 0.014 0.013 0.078 0.073 0.086 0.078 >108 >103 0.196 0.271
RWRelu 0.006 0.007 0.012 0.012 0.057 0.069 0.162 0.164 >105 >103 0.303 0.632
RWSign 0.010 0.008 0.014 0.013 0.078 0.074 0.086 0.078 >104 11.2 0.221 0.364
RWStumps 0.008 0.008 0.013 0.013 0.074 0.069 0.080 0.075 >102 5.44 0.151 0.226

phishing RWExpRelu 0.049 0.046 0.062 0.058 0.199 0.182 0.233 0.214 >103 1.7 0.094 0.232
RWExpSign 0.061 0.051 0.072 0.065 0.254 0.211 0.281 0.245 >109 >106 0.115 0.157
RWRelu 0.049 0.043 0.062 0.055 0.199 0.172 0.233 0.205 >106 >103 0.095 0.225
RWSign 0.061 0.056 0.072 0.067 0.254 0.228 0.281 0.251 >105 >103 0.112 0.165
RWStumps 0.069 0.069 0.075 0.075 0.241 0.241 0.249 0.249 18.4 0.634 0.094 0.151

skin RWExpRelu 0.015 0.023 0.016 0.023 0.088 0.121 0.090 0.121 >106 >104 1.601 4.641
RWExpSign 0.039 0.059 0.040 0.060 0.128 0.206 0.132 0.209 >107 >105 1.867 2.642
RWRelu 0.015 0.029 0.016 0.029 0.088 0.125 0.090 0.126 >105 >103 1.598 5.373
RWSign 0.039 0.049 0.040 0.050 0.128 0.144 0.132 0.147 >103 92.7 1.874 3.449
RWStumps 0.040 0.040 0.040 0.040 0.172 0.168 0.173 0.169 50.0 1.44 1.321 2.743

telescope RWExpRelu 0.131 0.125 0.137 0.135 0.415 0.397 0.442 0.428 >104 >102 0.121 0.348
RWExpSign 0.162 0.139 0.172 0.146 0.492 0.442 0.524 0.468 >1010 >107 0.169 0.243
RWRelu 0.131 0.127 0.137 0.135 0.415 0.401 0.442 0.426 >107 >105 0.131 0.340
RWSign 0.162 0.143 0.172 0.147 0.492 0.448 0.524 0.468 >104 >102 0.185 0.244
RWStumps 0.139 0.139 0.149 0.146 0.468 0.470 0.487 0.483 46.8 1.0 0.140 0.257

30



Under review as submission to TMLR

Table 8: Regression performance comparison of RKHS weightings (RW) to random kitchen sinks (RKS).
For each combination of dataset and instantiation, an RKHS weighting was learned by cross-validation and
using Algorithm 4 (the least squares fit) in order to select the best model hyperparameters. The sampling
size T was 500, and each value in the table is the average of 10 independently seeded runs. Th. 6.2 is the
95% generalization gap (the difference between Test MSE and Train MSE) guaranteed by Theorem 6.2. Th.
6.5 is the 95% generalization gap guaranteed by Theorem 6.5.

Train MSE Test MSE Th. 6.2 Th. 6.5 Train time (s)
RKS RW RKS RW RW RW RKS RW

Dataset Instantiation
abalone RWExpRelu 0.391 0.396 0.427 0.426 >103 14.4 0.053 0.120

RWExpSign 0.394 0.413 0.441 0.433 >106 >103 0.073 0.085
RWRelu 0.391 0.398 0.427 0.430 >105 >103 0.052 0.118
RWSign 0.394 0.406 0.441 0.431 >103 22.8 0.066 0.088
RWStumps 0.416 0.421 0.460 0.441 >103 68.9 0.066 0.089

california housing RWExpRelu 0.249 0.239 0.269 0.259 >105 >103 0.134 0.372
RWExpSign 0.317 0.281 0.337 0.298 >109 >107 0.182 0.265
RWRelu 0.249 0.243 0.269 0.261 >108 >106 0.135 0.363
RWSign 0.317 0.280 0.337 0.296 >104 >102 0.179 0.267
RWStumps 0.248 0.234 0.266 0.252 >102 10.8 0.141 0.255

concrete RWExpRelu 0.068 0.065 0.144 0.155 >104 51.7 0.033 0.087
RWExpSign 0.126 0.113 0.255 0.210 >1010 >107 0.037 0.051
RWRelu 0.068 0.087 0.144 0.153 >106 >104 0.034 0.082
RWSign 0.126 0.083 0.255 0.189 >105 >103 0.039 0.057
RWStumps 0.068 0.064 0.090 0.098 >103 60.2 0.024 0.058

conductivity RWExpRelu 0.176 0.167 0.193 0.185 >104 6.01 0.190 0.462
RWExpSign 0.207 0.217 0.224 0.222 >1011 >107 0.172 0.207
RWRelu 0.176 0.165 0.193 0.183 >107 >104 0.193 0.460
RWSign 0.207 0.268 0.224 0.270 >104 >102 0.174 0.221
RWStumps 0.187 0.182 0.198 0.193 >103 16.9 0.172 0.309

diabetes RWExpRelu 0.375 0.355 0.529 0.544 64.1 0.297 0.028 0.057
RWExpSign 0.391 0.452 0.514 0.530 >102 2.19 0.029 0.044
RWRelu 0.375 0.382 0.529 0.529 >104 26.1 0.027 0.055
RWSign 0.391 0.453 0.514 0.514 10.5 0.331 0.030 0.045
RWStumps 0.375 0.427 0.530 0.510 >102 3.36 0.016 0.033

wine RWExpRelu 0.032 0.032 0.113 0.101 52.2 0.305 0.028 0.038
RWExpSign 0.009 0.026 0.091 0.088 >106 >103 0.027 0.038
RWRelu 0.032 0.039 0.113 0.147 >104 45.0 0.027 0.049
RWSign 0.009 0.028 0.091 0.089 >105 >102 0.028 0.041
RWStumps 0.042 0.066 0.108 0.136 >102 5.46 0.012 0.031
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Another aspect we can analyse in Tables 7 and 8 is the performance with regard to the instantiation. A
throughline of both tables is that the ReLU appears to be a much better feature function than the sign. To
point out only a single example, the test error on adults (Table 7) is 0.155 for random kitchen sinks and
0.152 for RKHS weightings when using the ReLU as the base predictor, but climbs to 0.198 (or even 0.220)
when using the sign. This behavior is repeated, to various amplitudes, throughout both tables. The only
major exception is the dataset wine, where the sign function leads to lower test MSE.

Yet another interesting point of comparison is between the bounded and unbounded versions of the same
RKHS weighting instantiations: RWSign against RWExpSign, and RWRelu against RWExpRelu. RWExp-
Sign outperforms RWSign on 4 of 7 datasets in Table 7 (2 are significant), and 2 of 6 datasets in Table 8 (1
is significant). RWSign instead outperforms RWExpSign on 1 of 7 datasets in Table 7 (significant), and 4
of 6 datasets in Table 8 (2 are significant). Similarly, RWExpRelu outperforms RWRelu on 2 of 7 datasets
in Table 7 (1 is significant), and 3 of 6 datasets in Table 8 (2 are significant), while RWRelu outperforms
RWExpRelu on 3 of 7 datasets in Table 7 (but the differences are not significant), and 3 of 6 datasets in
Table 8 (1 is significant). Little conclusion can be reached from these observations.

As for the generalization bounds, it is clear that the Theorem 6.2 bound, based on the RKHS norm of
the weight function, is always much larger than the Theorem 6.5 bound, which depends instead on the
L2(p)-norm of the weight function. This indicates that the latter bound is probably much closer to the true
behavior of the model than the first. This means that the RKHS norm of the weight function can be quite
large, as what really matters is its L2(p)-norm. That said, the generalization gap is much smaller even than
the Theorem 6.5 bound. Therefore, Theorem 6.5 does not seem to closely capture the behavior of the model
either, at least in these experiments.

Finally, the training times for RKHS weightings are always a little slower than that of random kitchen sinks.
However, both algorithms have virtually identical algorithmic complexities, so the differences are mostly due
to implementation. Indeed, we used high level Python objects to represent the weight functions of RKHS
weightings, which introduces overhead that is absent from our more straightforward implementation of the
random kitchen sinks algorithm. A more optimized version of RKHS weightings would likely be as fast as
random kitchen sinks.

7.3 Comparison to other models

From Tables 7 and 8, we can extract for each dataset the instantiations which lead to the best prediction
performance. In Tables 9 and Tables 10, we compare the performance of RKHS weightings and random
kitchen sinks, using those instantiations, to AdaBoost and SVM, two meaningful state of the art algorithms:
AdaBoost is the algorithm to which Rahimi & Recht (2009) compare the random kitchen sinks, and SVM
is a state of the art kernel method, ideal for a comparison with RKHS Weightings, which are implicitly a
kernel method, and random kitchen sinks, which approximate a kernel method.

In Table 9, we compare all four algorithms on classification problems. AdaBoost has the best prediction
accuracy on 3 of the 7 datasets; RKHS Weightings on 2; RKS on 1; SVM on 5. The random kitchen sinks
and RKHS Weightings perform similarly on all datasets.

The story is much the same in Table 10, where we compare the four algorithms on regression problems.
AdaBoost has the best performance on 1 dataset; RKHS Weightings on 3; RKS on 3;14 SVM on 2. As in
Table 9, differences between RKHS Weightings and random kitchen sinks are small.

In short, the methods tested in these experiments are quite interchangeable in terms of prediction quality;
each can beat the others on some datasets. Where there is meaningful difference, however, is in the execution
time of the algorithms. The biggest offender is the SVM, which suffers greatly from its poor scaling with
regard to the dataset size (e.g. 533 seconds on skin). The AdaBoost training time can also be high depending
on the number of boosting rounds chosen by cross-validation (e.g. 90 seconds on mnist17). Algorithm 4 for

14The perceptive reader might notice that we bolded both 0.358 and 0.338 in Table 10 (RKHS weightings with RWStumps,
and RKS with RWStumps on diabetes) despite the seemingly large difference between the two values. However, we can see in
Table 16 in the appendix that the standard deviation for the value 0.338 is high, making it statistically equivalent.
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Table 9: Binary classification performance comparison of RKHS weightings to AdaBoost (AB), SVM and
the random kitchen sinks (RKS) on various datasets. Instantiations were chosen based on their performance
in Table 7. Algorithm 4 (the least squares fit of the coefficient) was used to learn RKHS weightings with
T = 2000 random features. Train error and Test error are the misclassification rates on the training and test
sets. Inference time is the computation time of the model on the training set and test sets combined. Every
line (except SVM, which is deterministic) is the average of 10 independent runs.

Train error Test error Train time (s) Inference time
Dataset Algorithm Instantiation

adults AdaBoost 0.141 0.140 15.225 3.663
RKHS Weighting RWExpRelu 0.137 0.148 3.967 4.473

RWRelu 0.138 0.147 3.984 4.357
RWStumps 0.146 0.145 2.163 1.824

RKS RWRelu 0.137 0.150 1.685 1.246
RWStumps 0.144 0.144 1.335 0.809

SVM 0.143 0.146 75.187 57.222
cancer AdaBoost 0.000 0.021 0.512 0.040

RKHS Weighting RWExpSign 0.011 0.045 0.259 0.032
RWSign 0.010 0.048 0.265 0.033

RKS RWSign 0.006 0.038 0.185 0.023
SVM 0.014 0.021 0.002 0.002

marketing AdaBoost 0.097 0.101 11.803 1.607
RKHS Weighting RWExpRelu 0.083 0.097 4.020 4.052

RWRelu 0.089 0.097 3.980 3.958
RWStumps 0.096 0.100 2.750 2.303

RKS RWRelu 0.085 0.097 1.700 1.113
RWStumps 0.096 0.100 1.692 1.069

SVM 0.077 0.097 28.927 17.778
mnist17 AdaBoost 0.000 0.004 90.048 9.455

RKHS Weighting RWExpRelu 0.002 0.008 2.066 1.686
RWRelu 0.003 0.010 3.470 1.642

RWStumps 0.006 0.009 1.085 0.711
RKS RWRelu 0.003 0.009 1.015 0.585

RWStumps 0.006 0.010 0.734 0.410
SVM 0.000 0.008 6.370 3.935

phishing AdaBoost 0.061 0.067 1.687 0.225
RKHS Weighting RWExpRelu 0.027 0.047 1.170 1.058

RWRelu 0.040 0.052 1.167 1.032
RKS RWRelu 0.025 0.045 0.519 0.276
SVM 0.024 0.043 0.709 0.824

skin AdaBoost 0.043 0.043 10.941 1.287
RKHS Weighting RWExpRelu 0.020 0.020 21.153 21.928

RWRelu 0.022 0.022 23.677 25.434
RKS RWRelu 0.012 0.013 8.424 5.763
SVM 0.000 0.000 533.843 53.736

telescope AdaBoost 0.144 0.157 10.140 0.234
RKHS Weighting RWExpRelu 0.119 0.133 1.790 1.726

RWRelu 0.120 0.131 1.768 1.689
RKS RWRelu 0.120 0.135 0.779 0.465
SVM 0.095 0.130 3.298 4.067
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Table 10: Regression performance comparison of RKHS weightings to AdaBoost (AB), SVM and the
random kitchen sinks (RKS) on various datasets. Instantiations were chosen based on their performance
in Table 8. Algorithm 4 (the least squares fit of the coefficient) was used to learn RKHS weightings with
T = 2000 random features. Inference time is the computation time of the model on the training set and test
sets combined. Every line (except SVM, which is deterministic) is the average of 10 independent runs.

Train R2 Test R2 Train time (s) Inference time
Dataset Algorithm Instantiation
abalone AdaBoost 0.440 0.444 0.067 0.003

RKHS Weighting RWExpRelu 0.604 0.583 0.601 0.420
RWRelu 0.603 0.576 0.574 0.403
RWSign 0.591 0.576 0.457 0.223

RKS RWRelu 0.618 0.581 0.314 0.100
RWSign 0.647 0.578 0.343 0.139

SVM 0.579 0.571 0.350 0.400
concrete AdaBoost 0.819 0.767 0.129 0.017

RKHS Weighting RWExpRelu 0.955 0.836 0.314 0.114
RWRelu 0.925 0.836 0.297 0.105

RWStumps 0.960 0.912 0.311 0.058
RKS RWRelu 0.959 0.850 0.193 0.024

RWStumps 0.945 0.910 0.148 0.025
SVM 0.957 0.851 0.025 0.020

conductivity AdaBoost 0.731 0.723 2.239 0.028
RKHS Weighting RWExpRelu 0.877 0.849 2.068 1.957

RWRelu 0.870 0.845 2.095 1.903
RWStumps 0.867 0.848 1.493 1.154

RKS RWRelu 0.878 0.849 0.896 0.517
RWStumps 0.876 0.852 0.882 0.533

SVM 0.903 0.871 13.384 11.280
diabetes AdaBoost 0.669 0.286 0.101 0.013

RKHS Weighting RWExpRelu 0.692 0.300 0.287 0.061
RWRelu 0.618 0.334 0.261 0.055

RWStumps 0.573 0.358 0.228 0.018
RKS RWRelu 0.628 0.335 0.181 0.017

RWStumps 0.626 0.338 0.140 0.016
SVM 0.609 0.343 0.008 0.010

housing AdaBoost 0.569 0.546 0.323 0.010
RKHS Weighting RWExpRelu 0.770 0.743 1.977 1.809

RWRelu 0.753 0.735 1.925 1.747
RWStumps 0.787 0.764 1.290 0.955

RKS RWRelu 0.779 0.741 0.846 0.437
RWStumps 0.788 0.759 0.725 0.401

SVM 0.815 0.775 9.278 8.181
wine AdaBoost 1.000 0.956 0.160 0.026

RKHS Weighting RWExpSign 0.979 0.893 0.259 0.019
RWSign 0.978 0.894 0.244 0.019

RKS RWSign 1.000 0.904 0.167 0.013
SVM 0.990 0.942 0.004 0.002
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learning RKHS Weightings and random kitchen sinks have consistent, moderate execution times, and can
be made faster by lowering the number of random features T , at the cost of performance.

Note that we reproduced Tables 9 and 10 in the appendix with added standard deviations. These are
Tables 15 and 16.

7.4 New section RKHS weightings with few random features

Tables 7 and 8 suggest that RKHS weightings have a performance advantage over random kitchen sinks.
Tables 9 and 10 suggest that the two methods are quite interchangeable. The major difference between those
two experiments, which can explain the apparent contradiction, is that the number of random features T
increased from 500 to 2000 between the two experiments. We surmise that RKHS weightings have better
performance than random kitchen sinks when the number of random features is small. We test this hypothesis
in this section.

In Figure 2, we test the classification performance of the models with the RWRelu instantiation while varying
the number T of random features. In Figure 3, we test the regression performance instead. We observe a
clear pattern. RKHS weightings perform significantly better on average than random kitchen sinks when the
number T of random features is small. Another observation that we can make, especially in the regression
experiments of Figure 3, is that the variance of the prediction quality of RKHS weightings often seems
smaller than that of random kitchen sinks.

We conjecture that the explanation for these two phenomenons is the higher expressivity (and thus quality)
of individual terms in an RKHS weighting compared to a random kitchen sinks. In random kitchen sinks
and RKHS weightings, the model is a sum of the form:

f(x) =
T∑

t=1
atft(x). (112)

For random kitchen sinks, we simply have ft(x) = ϕ(wt, x). For RKHS weighting, we instead have ft(x) :=
Ew∼p [K(wt, w)ϕ(w, x)], the expectation given for some instantiations in Table 3. All possible random
features w simultaneously contribute to this expectation (although to exceedingly small degree for most w’s).
This likely makes each individual random feature more useful on average for RKHS weightings. However,
as T increases, the Monte Carlo approximation converges, and the random kitchen sinks model converges to
the same random feature model expression f(x) = Ew∼p [α(w)ϕ(w, x)] as the RKHS weighting, making the
effect mostly disappear.

The better performance of RKHS weightings with few random features suggests that sparse RKHS weight-
ings can outperform sparse random kitchen sinks. To test this, we ran a similar experiment as Figures 2
and 3, but using Algorithms 2 and 5 (the Lasso fits) to learn random kitchen sinks and RKHS weightings
respectively. The results are found in Figures 4 and 5 of Appendix D. However, we do not observe the
expected phenomenon; both models perform fairly similarly. The likely reason for the absence of a distinct
advantage for either model in this experiment is that Algorithms 2 and 5 still sample a large number T of
features; the Lasso then chooses the most relevant ones. The advantage of RKHS weightings in Figures 2
and 3 comes (we conjecture) from the lower density of individually good base predictors being sampled in
random kitchen sinks. This is counteracted by sampling many features, and then selecting the best ones.

It is therefore not clear how to leverage this advantage of RKHS weightings over random kitchen sinks in
practice. After all, the performance of both methods will simply improve with a larger number of random
features, at only a small cost in training and inference time.

8 Future and limitations

This paper provides an initial exploration of the theory and practical aspects of RKHS weightings, especially
in relation to random kitchen sinks (Rahimi & Recht, 2009), its closest relative in the space of random
feature methods. Several directions merit further investigation. In particular, the following aspects appear
to us to be the most important issues.
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Figure 2: Comparison of the prediction performance of RKHS weightings (learned using Algorithm 4)
and random kitchen sinks (RKS) with regard to the number of random features. The RKHS weightings
instantiation is RWRelu. The random kitchen sinks used the same distribution (Gaussian) and base predictor
(ReLU). Every point is the average of 10 independently seeded runs. The error bars represent one standard
deviation.
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Figure 3: Comparison of the prediction performance of RKHS weightings (learned using Algorithm 4)
and random kitchen sinks (RKS) with regard to the number of random features. The RKHS weightings
instantiation is RWRelu. The random kitchen sinks used the same distribution (Gaussian) and base predictor
(ReLU). Every point is the average of 5 independently seeded runs.
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Difficult integrals. RKHS weightings are flexible in theory, allowing wide liberty in how to instantiate the
model. However, the expectation Ew∼p [K(u,w)ϕ(w, x)] must have an analytical form in order to calculate
the output of the model via Equation (48). (We provided several examples in Table 2.) However, these
integrals require hefty calculus to solve. The amount of work required to use a new instantiation is quite
large. In fact, the analytical form for the expectation might not even exist for a given instantiation. In that
case, the integrals can be approximated via Monte Carlo, at the cost of computation time and accuracy. We
will explore this in a subsequent paper.

Curse of dimensionality. As we have addressed in Section 4.6, the model has a tendency to either vanish
or explode (depending on the instantiation) when the dimensionality of the space W of random features
increases. The model hyperparameters must therefore be chosen carefully, and we have presented a method
for doing so. That method, however, requires knowing a meaningful upper bound on the constants θ and
κ of the model. This, again, requires solving integrals. It would be useful to devise a simpler approach for
selecting the model hyperparameters.

Instantiating the model. We saw in Tables 7 and 8 that different instantiations have different per-
formances on different datasets. This means that the choice of instantiation is crucial for solving a given
problem. How to choose or construct the best instantiation for the problem at hand is an important question
to solve. Until this is better understood, trial and error is the only option, which is computationally costly.

Unclear advantage over random kitchen sinks. Our experiments uncovered an interesting phenomenon:
RKHS weightings appear to perform better on average than random kitchen sinks when the number of random
features is small. We were however unable at this point to find a practical application for this observation.
Additionally, random kitchen sinks are simpler to use (requiring no calculus, and having one less moving
part — the kernel — to validate), and provide similar performance in a slightly faster manner. There is
therefore not yet a clear reason to use RKHS weightings over random kitchen sinks. While we think RKHS
weightings are promising, their practical usefulness is not yet apparent. Further work is warranted.

In summary, the model we have introduced in this paper appears capable in practice, similar to other
random feature methods, and has multiple valid learning algorithms, but its full potential has not yet been
fully realized. More work needs to be done in understanding how to choose or construct high performance
instantiations, especially in the case of high-dimensional data.

9 Conclusion

In this paper, we examined a new random feature method, RKHS weightings, in the context of both binary
classification and regression. We showed how the model can be learned using stochastic functional gradi-
ent descent or other algorithms, and proved convergence guarantees using the stability properties of the
algorithm. We proved theoretical bounds on the generalization gap of the proposed class of predictors via
Rademacher complexity theory. We ran experiments showing that the method compares well to the classical
random kitchen sinks and other well-known machine learning algorithms.

This by no means constitutes a complete exploration of the applications and theoretical properties of RKHS
weightings. Indeed, several challenges remain, such as understanding how to successfully instantiate the
model for a given problem, and how to leverage the flexibility of the model despite the requirement of
solving difficult integrals. It is yet unclear what family of problems this model will excel at solving. We hope
to use it in particular to build interpretable predictors, which is crucial for the safe and widespread adoption
of artificial intelligence solutions.
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A Proofs

A.1 Concentration inequalities

The first of three concentration inequalities we use in our proofs is the well-known Hoeffding’s inequality.
We reproduce it below from Theorem D.1 of Mohri et al. (2012).
Theorem A.1. Let X1, . . . , Xm be independent random variables with Xi taking values in [ai, bi] for all
i ∈ [1,m]. Then for any ϵ > 0, the following inequalities hold for Sm =

∑m
i=1 Xi:

Pr[Sm − E[Sm] ≥ ϵ] ≤ e−2ϵ2/
∑m

i=1
(bi−ai)2

(113)

Pr[Sm − E[Sm] ≤ −ϵ] ≤ e−2ϵ2/
∑m

i=1
(bi−ai)2

(114)

The second inequality is McDiarmid’s. We copy it here as is from Theorem D.3 of Mohri et al. (2012).
Theorem A.2 (McDiarmid’s inequality). Let X1, . . . , Xm ∈ Xm be a set of m ≥ 1 independent random
variables and assume that there exist c1, . . . , cm > 0 such that f : Xm → R satisfies the following conditions:

|f(x1, . . . , xi, . . . , xm)− f(x1, . . . , x
′
i, . . . , xm)| ≤ ci, (115)

for all i ∈ [1,m] and any points x1, . . . , xm, x
′
i ∈ X . Let f(S) denote f(X1, . . . , Xm), then, for all ϵ > 0, the

following inequalities hold:

Pr [f(S)− E[f(S)] ≥ ϵ] ≤ exp
(
−2ϵ2∑m

i=1 c
2
i

)
, (116)

Pr [f(S)− E[f(S)] ≤ −ϵ] ≤ exp
(
−2ϵ2∑m

i=1 c
2
i

)
. (117)

The second concentration inequality, given in Exercise 6.1 of Boucheron et al. (2013), replaces the bounded
differences condition of McDiarmid’s inequality by the expected sum of squared differences. This condition
can sometimes be tighter.
Theorem A.3. Suppose that Z = f(X1, . . . , Xn) is a real-valued function of n independent random variables.
(Note that the variables need not be identically distributed.) Denote X = (X1, . . . , Xn). For any k ∈
{1, . . . , n}, denote X′

k := (X1, . . . , Xi−1, X
′
k, Xi+1, . . . , Xn) the vector X with Xi replaced by an identically

distributed copy X ′
k. Denote Z ′

k := f(X′
k). Additionally, denote X′ := (X ′

1, . . . , X
′
n) an identically distributed

copy of the entire vector X. Suppose that there exists some constant v > 0 such that:

E
X,X′

[
n∑

k=1
(Z − Z ′

k)2

]
≤ v. (118)

Then:
P
X

[
Z > E

X
[Z] + t

]
≤ e−t2/(2v). (119)

Equivalently, for δ ∈ (0, 1), we have:

P
X

[
Z ≤ E

X
[Z] +

√
2v log 1

δ

]
≥ 1− δ. (120)
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A.2 Useful lemmas

The proof of Lemma 6.2 uses the following simple lemma, which simply formalises the fact that if a result
holds with high probability over the sampling of a random variable for any fixed value of a second variable,
then it holds with high probability over the samplings of both variables. In our scenario, this means that we
can prove a bound on either the sampling of U ∼ pT or S ∼ Dm (with the other fixed), and the bound can
then trivially be extended to both samplings.
Lemma A.1. Suppose we have two independent random variables S and U , and a boolean valued function
Q(S,U) of those random variables. If we have PS [Q(S,U)| U ] ≥ c for some c ∈ [0, 1] and for all U , then
PS,U [Q(S,U)] ≥ c as well.

Proof. We have:

P
S,U

[Q(S,U)] = E
S,U

[
1[Q(S,U) is true]

]
= E

U

[
E
S

[
1[Q(S,U) is true]

∣∣∣∣U]] (Law of total expectations)

= E
U

[
P
S

[
Q(S,U)

∣∣∣∣U]]
≥ E

U
[c]

= c.

A.3 Proof of Equation (47)

We need to prove that

Λα(x) := E
w∼p

[α(w)ϕ(w, x)]

= E
w∼p

[ ∞∑
t=1

atK(wt, w)ϕ(w, x)
]

=
∞∑

t=1
at E

w∼p
[K(wt, w)ϕ(w, x)]. (121)

Assume A1. Let us write αT :=
∑T

t=1 atK(wt, ·). We will use the Dominated Convergence Theorem (see
e.g. Evans (2018)). In order to prove that we can interchange the expectation and the infinite summation,
we need to show that the partial series are dominated by an integrable function g(w), i.e.

|αT (w)ϕ(w, x)| ≤ g(w). (122)

Since the partial sums αT :=
∑T

t=1 atK(wt, ·) converge to α in the RKHS, there exists an M ∈ R such that
∥α− αT ∥H ≤M for all T . We assert that taking

g(w) := |α(w)ϕ(w, x)|+M
√
K(w,w)|ϕ(w, x)| (123)

satisfies our needs. Indeed, we have Equation (122) if and only if:

|αT (w)ϕ(w, x)| ≤ |α(w)ϕ(w, x)|+M
√
K(w,w)|ϕ(w, x)|. (124)

By the reverse triangle inequality, we have:

|αT (w)ϕ(w, x)| − |α(w)ϕ(w, x)| ≤ ||αT (w)ϕ(w, x)| − |α(w)ϕ(w, x)||
≤ |αT (w)ϕ(w, x)− α(w)ϕ(w, x)|.
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Using the reproducing property of the RKHS and the Cauchy–Schwartz inequality, we obtain:

|αT (w)ϕ(w, x)− α(w)ϕ(w, x)| = |⟨αT − α,K(w, ·)⟩H ϕ(w, x)|
≤ ∥αT − α∥H∥K(w, ·)∥H|ϕ(w, x)|
≤M

√
K(w,w)|ϕ(w, x)|.

This shows that we indeed have Equation (124). Finally, the function on the right is integrable, since:

E
w∼p

[
|α(w)ϕ(w, x)|+M

√
K(w,w)|ϕ(w, x)|

]
= E

w∼p

[
| ⟨α,K(w, ·)⟩H ϕ(w, x)|+M

√
K(w,w)|ϕ(w, x)|

]
≤ E

w∼p

[
∥α∥H

√
K(w,w)ϕ(w, x)|+M

√
K(w,w)|ϕ(w, x)|

]
= (∥α∥H +M) E

w∼p

[√
K(w,w)|ϕ(w, x)|

]
≤ (∥α∥H +M)

√
E

w∼p
[K(w,w)ϕ(w, x)2] (Jensen)

≤ (∥α∥H +M)κ.

Therefore the dominated convergence theorem is applicable, giving us the result.

A.4 Proof of Theorem 6.1

Starting from the definition of the sample Rademacher complexity of ΛHB , we have:

mR̂S(ΛHB) := E
σ∼{±1}m

[
sup

Λα∈ΛHB

m∑
i=1

σiΛα(xi)
]

= E
σ

[
sup

α∈HB

m∑
i=1

σi ⟨α,ψ(xi)⟩H

]
(Equation (53))

= E
σ

[
sup

α∈HB

〈
α,

m∑
i=1

σiψ(xi)
〉

H

]

≤ E
σ

[
sup

α∈HB

∥α∥H

∥∥∥∥∥
m∑

i=1
σiψ(xi)

∥∥∥∥∥
H

]
(Cauchy–Schwartz)

= BHE
σ

[∥∥∥∥∥
m∑

i=1
σiψ(xi)

∥∥∥∥∥
H

]
.
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We can then apply Jensen’s inequality to get:

mR̂S(ΛHB) ≤ BHE
σ

[∥∥∥∥∥
m∑

i=1
σiψ(xi)

∥∥∥∥∥
H

]

≤ BH

√√√√√E
σ

∥∥∥∥∥
m∑

i=1
σiψ(xi)

∥∥∥∥∥
2

H

 (Jensen)

= BH

√√√√√E
σ

〈 m∑
i=1

σiψ(xi),
m∑

i=1
σiψ(xi)

〉2

H


= BH

√√√√ m∑
i=1

m∑
j=1
⟨ψ(xi), ψ(xj)⟩HEσ [σiσj ]

= BH

√√√√ m∑
i=1
∥ψ(xi)∥2

H (Eσ [σiσj ] = 1[i = j])

≤
√
mθBH.

We get the expected Rademacher complexity of ΛHB by taking the expectation over the choice of sample.
(Note that Lemma 26.10 of Shalev-Shwartz & Ben-David (2014) is a more general result, valid for any linear
class in a Hilbert space.)

A.5 Proof of Theorem 6.2

The proof of this theorem (adapted from the proof of Theorem 3.1 of Mohri et al. (2012)) consists in applying
McDiarmid’s inequality to the random variable:

f(S) := sup
α∈HB

[LD(Λα)− LS(Λα)]. (125)

First, Lemma 26.2 of Shalev-Shwartz & Ben-David (2014) tells us that:

E
S∼Dm

[f(S)] ≤ 2Rm(ℓ ◦ ΛHB), (126)

where ℓ◦ΛHB := {(x, y) 7→ ℓ(Λα(x), y) |α ∈ HB} . By Theorem 6.1 and the contraction lemma (Lemma 26.9
of Shalev-Shwartz & Ben-David (2014)), we get:

Rm(ℓ ◦ ΛHB) = E
S∼Dm

[
R̂S(ℓ ◦ ΛHB)

]
≤ ρ E

S∼Dm

[
R̂S(ΛHB)

]
≤ ρ E

S∼Dm

[
θBH√
m

]
≤ ρθBH√

m
. (127)

Therefore, we have:

E
S∼Dm

[f(S)] ≤ 2ρθBH√
m

. (128)

To apply McDiarmid’s inequality, we need to bound the change in the value of f(S) resulting from exchanging
a single example in the sample S. Consider any (x′, y′) ∈ X×Y, and denote S(i) := (S\{(xi, yi)})∪{(x′, y′)}.
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We have:∣∣∣f(S)− f(S(i))
∣∣∣ =

∣∣∣∣ sup
α∈HB

[LD(Λα)− LS(Λα)]− sup
α∈HB

[LD(Λα)− LS(i)(Λα)]
∣∣∣∣

≤ sup
α∈HB

[
|LD(Λα)− LS(Λα)− LD(Λα) + LS(i)(Λα)|

]
= sup

α∈HB

[
|LS(Λα)− LS(i)(Λα)|

]
= 1
m

sup
α∈HB

[∣∣∣∣∣
m∑

i=1
ℓ(Λα(xi), y)−

m∑
i=1

ℓ(Λα(xi), y) + ℓ(Λα(xi), yi)− ℓ(Λα(x′), y′)
∣∣∣∣∣
]

= 1
m

sup
α∈HB

[
|ℓ(Λα(xi), yi)− ℓ(Λα(x′), y′)|

]
≤ ρ

m
sup

α∈HB

[
|Λα(xi)− Λα(x′)|

]
= 2ρθBH

m
. (129)

McDiarmid’s inequality gives us:

P
S∼Dm

[
f(S)− E

S∼Dm
[f(S)] ≥ ϵ

]
≤ exp

(
−2ϵ2m

(2ρθBH)2

)
. (130)

Setting:

δ := exp
(
−2ϵ2m

(2ρθBH)2

)
(131)

and rearranging, we get:

ϵ = 2ρθBH

√
log 1

δ

2m . (132)

We obtain:

P
S∼Dm

f(S)− E
S∼Dm

[f(S)] ≥ 2ρθBH

√
log 1

δ

2m

 ≤ δ. (133)

We can rewrite the previous probability as:

P
S∼Dm

f(S)− E
S∼Dm

[f(S)] ≤ 2ρθBH

√
log 1

δ

2m

 ≥ 1− δ. (134)

A final rearranging, and using Equation (128) to upper bound ES∼Dm [f(S)], we obtain:

P
S∼Dm

 sup
α∈HB

[LD(Λα)− LS(Λα)] ≤ 2ρθBH√
m

1 +

√
log 1

δ

2

 ≥ 1− δ. (135)

A.6 Proof of Corollary 6.2.1

The proof is highly similar to that of Theorem 6.2. We only need to define:

f(S) := sup
α∈HB

[LD(Λα)− LS(Λα)] (136)

rather than:
f(S) := sup

α∈HB

[LS(Λα)− LD(Λα)]. (137)

The proof of Lemma 26.2 of Shalev-Shwartz & Ben-David (2014) under this new definition will be virtually
identical, and yield the same result.
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A.7 Proof of Theorem 6.4

We have:

mR̂S(ΛF2) := E
σ∼{±1}m

[
sup

α∈F2

m∑
i=1

σiΛα(xi)
]

= E
σ

[
sup

α∈F2

m∑
i=1

σi ⟨α, ϕ(·, xi)⟩L2(p)

]

= E
σ

 sup
α∈F2

〈
α,

m∑
i=1

σiϕ(·, xi)
〉

L2(p)


≤ E

σ

 sup
α∈F2

∥α∥L2(p)

∥∥∥∥∥
m∑

i=1
σiϕ(·, xi)

∥∥∥∥∥
L2(p)

 (Cauchy–Schwartz)

= B2E
σ

∥∥∥∥∥
m∑

i=1
σiϕ(·, xi)

∥∥∥∥∥
L2(p)

.

As we did in the proof of Theorem 6.1, we can use Jensen to greatly simplify the expression. We will obtain:

mR̂S(ΛF2) ≤ B2E
σ

∥∥∥∥∥
m∑

i=1
σiϕ(·, xi)

∥∥∥∥∥
L2(p)


≤ B2

√√√√ m∑
i=1
∥ϕ(·, xi)∥2

L2(p)

≤ B2τ
√
m.

This gives us the desired empirical Rademacher complexity. The Rademacher complexity is obtained by
taking the expectation of S, which does not affect the expression.

A.8 Proof of Theorem 6.7

We first need to prove a simple lemma.

Lemma A.2. Consider some independent identically distributed variables (z1, . . . , zm) taken from a Hilbert
space. Then:

E

∥∥∥∥∥ 1
m

m∑
i=1

zi

∥∥∥∥∥
2
 ≤ E [∥z1∥2

]
.
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Proof. We have:

E

∥∥∥∥∥ 1
m

m∑
i=1

zi

∥∥∥∥∥
2
 = 1

m2 E

〈 m∑
i=1

zi,

m∑
j=1

zj

〉
= 1
m2

m∑
i=1

m∑
j=1

E
[
⟨zi, zj⟩

]
(Linearity)

≤ 1
m2

m∑
i=1

m∑
j=1

E
[
∥zi∥∥zj∥

]
(Cauchy–Schwartz)

= 1
m2

m∑
i=1

E [∥zi∥2
]

+
∑
j ̸=i

E
[
∥zi∥

]
E
[
∥zj∥

] (Independence)

= 1
m2

m∑
i=1

[
E
[
∥z1∥2

]
+ (m− 1)

(
E
[
∥z1∥

])2
]

(Identical distribution)

≤ 1
m2

m∑
i=1

[
E
[
∥z1∥2

]
+ (m− 1)E

[
∥z1∥2

]]
(Jensen)

= E
[
∥z1∥2

]
.

Now, consider any sample S and denote:

Aα(S) := argmin
α∈HB

(
LS(Λα) + λH∥α∥2

H

)
, (138)

and:
A(S) := ΛAα(S) = argmin

Λα∈ΛHB

(
LS(Λα) + λH∥α∥2

H

)
, (139)

the regularized empirical risk minimizer. Then, write:

E [LD(Λᾱ)] =E [LD(Λᾱ)− LS(Λᾱ)]
+E [LS(Λᾱ)− LS(A(S))]
+E [LS(A(S))− LD(A(S))]
+E [LD(A(S))]. (140)

(Every expectation in this proof is over the sample and all sampled parameters and batches, unless specified
otherwise.) We can bound each of these terms separately. First, Lemma 26.2 of Shalev-Shwartz & Ben-David
(2014) applied to Equation (127) gives us:

E
S∼Dm

[
sup

Λα∈ΛHB

(LD(Λα)− LS(Λα))
]
≤ 2ρθBH√

m
. (141)

Being a bound on the supremum, it is also valid for Λᾱ, independently of the sampled parameters and
batches, which gives us:

E [LD(Λᾱ)− LS(Λᾱ)] ≤ 2ρθBH√
m

. (142)

Next, the proof of Corollary 13.6 of Shalev-Shwartz & Ben-David (2014) can be modified by swapping the
two terms on the left-hand side of equation 13.11, which allows us to get :

E [LS(A(S))− LD(A(S))] = E
S∼Dm

[LS(A(S))− LD(A(S))] ≤ 4ρ2

λHm
. (143)
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Also, Corollary 13.8 of Shalev-Shwartz & Ben-David (2014) directly gives us :

E [LD(A(S))] = E
S∼Dm

[LD(A(S))] ≤ min
Λα∈ΛHB

LD(Λα) + λHB
2
H + 4ρ2

λHm
. (144)

Bounding the term E [LS(Λᾱ)− LS(A(S))] requires more work. We seek to apply Theorem 14.11 of Shalev-
Shwartz & Ben-David (2014) to the regularized empirical risk LS(Λα) + λH∥α∥2

H, which is λH-strongly
convex (by convexity of ℓ and linearity in α of Λα). At iteration t of Algorithm 3, the subgradient (unbiased
gradient approximation) is given by Equation (71):

vt := v(α(t−1), wt,Bt) :=

1
b

∑
(x,y)∈Bt

ℓ′(Λα(t−1)(x), y)ϕ(wt, x)

K(wt, ·) + λHα
(t−1).

We need to upper bound E
[
∥vt∥2

]
. First, write:

ut := vt − λHα
(t−1) = 1

b

∑
(x,y)∈Bt

ℓ′(Λα(t−1)(x), y)ϕ(wt, x)K(wt, ·).

For the purpose of finding an upper bound, we can assume that the batch size is 1, using Lemma A.2.
Writing Bt = {(xt, yt)}, we have:

E
[
∥ut∥2

]
= E


∥∥∥∥∥∥1
b

∑
(x,y)∈Bt

ℓ′(Λα(t−1)(x), y)ϕ(wt, x)K(wt, ·)

∥∥∥∥∥∥
2

H


= E

[∥∥∥ℓ′(Λα(t−1)(xt), yt)ϕ(wt, xt)K(wt, ·)
∥∥∥2

H

]
≤ E

[
ρ2∥K(wt, ·)ϕ(wt, xt)∥2

H

]
= ρ2E

[
K(wt, wt)ϕ(wt, xt)2]

≤ ρ2κ2. (145)

Next, because of the projection step in Algorithm 3, we have α(t−1) ∈ ΛHB for every t, i.e.
∥∥α(t−1)

∥∥
H ≤ B.

This allows us to write:

E
[
∥vt∥2

]
= E

[∥∥∥ut + λHα
(t−1)

∥∥∥2

H

]
≤ E

[(
∥ut∥H + λH

∥∥∥α(t−1)
∥∥∥

H

)2
]

(Triangle inequality)

= E

[
∥ut∥2

H + 2λH∥ut∥H

∥∥∥α(t−1)
∥∥∥

H
+ λ2

H

∥∥∥α(t−1)
∥∥∥2

H

]
≤ E

[
∥ut∥2

H

]
+ 2λHBE

[
∥ut∥H

]
+ λ2

HB
2
H

≤ ρ2κ2 + 2λHB

√
E
[
∥ut∥2

H

]
+ λ2

HB
2
H (Jensen)

≤ ρ2κ2 + 2λHBHρκ+ λ2
HB

2
H

= (ρκ+ λHBH)2.

Applying Theorem 14.11 of Shalev-Shwartz & Ben-David (2014), we get:

E [LS(Λᾱ)− LS(A(S))] ≤ E
[
λH∥ᾱ∥2

H − λH∥Aα(S)∥2
H

]
+ (ρκ+ λHBH)2

2λHT
(1 + log(T )). (146)
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We can simplify this expression by noticing that λH∥ᾱ∥2
H − λH∥Aα(S)∥2

H is at most λHB
2
H:

E [LS(Λᾱ)− LS(A(S))] ≤ λHB
2
H + (ρκ+ λHBH)2

2λHT
(1 + log(T )). (147)

Inserting Equations (142), (143), (144) and (147) into Equation (140), we obtain the first part of the theorem :

E [LD(Λᾱ)] ≤ min
Λα∈ΛHB

LD(Λα) + 2ρθBH√
m

+ λHB
2
H + 8ρ2

λHm
+ (ρκ+ λHBH)2

2λHT
(1 + log(T )). (148)

Taking λH =
√

8ρ2

B2
Hm

, we get the second part of the theorem :

E [LD(Λᾱ)] ≤ min
Λα∈ΛHB

LD(Λα) + 2ρθBH√
m

+ λHB
2
H + 8ρ2

λHm
+ (ρκ+ λHBH)2

2λHT
(1 + log(T ))

= min
Λα∈ΛHB

LD(Λα) + 2ρθBH√
m

+ 2
√

8ρ2B2
H

m
+

√
B2

Hm

32ρ2T 2

(
ρκ+

√
8ρ2

m

)2

(1 + log(T ))

= min
Λα∈ΛHB

LD(Λα) + 2ρθBH√
m

+
√

32ρ2B2
H

m
+
√
ρ2B2

H
m

 m√
32T

(
κ+

√
8
m

)2

(1 + log(T ))


= min

Λα∈ΛHB

LD(Λα) + ρBH√
m

√32 + 2θ + m√
32T

(
κ+

√
8
m

)2

(1 + log(T ))

.

A.9 Proof of Lemma 6.1

The optimal weight function α can be written α = αS +α⊥
S , with αS ∈ HS , and α⊥

S ∈ H⊥
S . Since ψ(xi) ∈ HS ,

we have
〈
α⊥

S , ψ(xi)
〉

H = 0 for all i. This allows us to write:

Λα(xi) = ⟨α,ψ(xi)⟩H
=
〈
αS + α⊥

S , ψ(xi)
〉

H

= ⟨αS , ψ(xi)⟩H +
〈
α⊥

S , ψ(xi)
〉

H

= ⟨αS , ψ(xi)⟩H
= ΛαS(xi).

In other words, α⊥
S does not contribute to the predictions on the training set S. This means that LS(Λα) =

LS(ΛαS). Furthermore, any nonzero coefficient ai, for i > m, adds to JαK (without improving the empirical
risk). Therefore, JαSK ≤ JαK.
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To upper bound ∥αS∥H, we can notice that ⟨ψ(xi), ψ(xj)⟩H ≤ ∥ψ(xi)∥H∥ψ(xj)∥H ≤ θ2 (by the Cauchy–
Schwartz inequality), which means that:

∥αS∥2
H =

〈
m∑

i=1
aiψ(xi),

m∑
i=1

aiψ(xi)
〉

H

=
m∑

i=1

m∑
j=1

aiaj ⟨ψ(xi), ψ(xj)⟩H = ∥ΛαS∥2
HX

≤
m∑

i=1

m∑
j=1
|aiaj |

∣∣⟨ψ(xi), ψ(xj)⟩H
∣∣

≤ θ2
m∑

i=1

m∑
j=1
|aiaj |

= θ2
m∑

i=1
|ai|

m∑
j=1
|aj |

≤ θ2∥a∥2
1

≤ θ2B2
1 .

A.10 Proof of Lemma 6.2

Given S ∼ Dm and U ∼ pT , we take:

αS,U = 1
T

T∑
t=1

αS,ut
, (149)

where
αS,ut :=

m∑
i=1

aiϕ(wt, xi)K(wt, ·). (150)

First, we can show that the difference in risk between two predictors is upper bounded as a function of the
RKHS norm of the difference of their weight function:

|LD(Λα)− LD(Λβ)| =
∣∣∣∣ E
(x,y)∼D

[ℓ(Λα(x), y)− ℓ(Λβ(x), y)]
∣∣∣∣

≤ E
(x,y)∼D

[
|ℓ(Λα(x), y)− ℓ(Λβ(x), y)|

]
≤ ρ E

(x,y)∼D

[
|Λα(x)− Λβ(x)|

]
(ℓ is ρ-Lipschitz)

≤ ρ E
(x,y)∼D

[
∥Λ(α− β)∥L∞(X )

]
≤ ρ∥Λ∥∥α− β∥H (Definition of ∥Λ∥)
≤ ρθ∥α− β∥H. (Theorem 4.1)

Applied to αS,U and αS , this means that:

|LD(ΛαS,U )− LD(ΛαS)| ≤ ρθ∥αS,U − αS∥H. (151)

The same result also applies to the empirical risk:

|LS(ΛαS,U )− LS(ΛαS)| ≤ ρθ∥αS,U − αS∥H. (152)

Therefore, ΛαS,U and ΛαS have similar predictions on the data distribution or training set if the weight
functions αS,U and αS are close in RKHS space. We can also see that, for a fixed sample S, αS is the
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expectation of αS,U with regard to the sampling of U ∼ pT :

E
U∼pT

[αS,U ] = E
U∼pT

[
1
T

T∑
t=1

m∑
i=1

aiϕ(wt, xi)K(wt, ·)
]

= 1
T

T∑
t=1

m∑
i=1

ai E
U∼pT

[ϕ(wt, xi)K(wt, ·)]

=
m∑

i=1
ai E

w∼p
[ϕ(w, xi)K(w, ·)]

=
m∑

i=1
aiψ(xi)

= αS .

We can derive an upper bound in high probability for ∥αS,U − αS∥H using Theorem A.3, which assures us
that:

P
U∼pT

[
∥αS,U − αS∥H ≤ EU

[
∥αS,U − αS∥H

]
+
√

2v log 1
δ

]
≥ 1− δ, (153)

where v is the expected sum of squared differences. Specifically, if U ′ = {u′
1, . . . , u

′
N} is an identically and

independently sampled copy of U , and denoting U ′
k := (U \ {uk}) ∪ {u′

k}, we have:

v = E
U,U ′

[
N∑
k

(f(U)− f(U ′
k))2

]
, (154)

where:
f(U) := ∥αS,U − αS∥H. (155)

For some k, we have:

E
U,U ′

[
(f(U)− f(U ′

k))2] = E
U,U ′

[(
∥αS,U − αS∥H −

∥∥∥αS,U ′
k
− αS

∥∥∥
H

)2
]

≤ E
U,U ′

[∥∥∥αS,U − αS,U ′
k

∥∥∥2

H

]
(Triangle inequality)

= E
U,U ′

∥∥∥∥∥ 1
T

m∑
i=1

ai(ϕ(uk, xi)K(uk, ·)− ϕ(u′
k, xi)K(u′

k, ·))
∥∥∥∥∥

2

H


= 1
T 2

m∑
i=1

m∑
j=1

aiaj E
U,U ′

[⟨ϕ(uk, xi)K(uk, ·)− ϕ(u′
k, xi)K(u′

k, ·),

ϕ(uk, xj)K(uk, ·)− ϕ(u′
k, xj)K(u′

k, ·)⟩]

≤ 1
T 2

m∑
i=1

m∑
j=1

aiaj E
U,U ′

[∥ϕ(uk, xi)K(uk, ·)− ϕ(u′
k, xi)K(u′

k, ·)∥H

× ∥ϕ(uk, xj)K(uk, ·)− ϕ(u′
k, xj)K(u′

k, ·)∥H
]

≤ 1
T 2

m∑
i=1

m∑
j=1

aiaj E
U,U ′

[(∥ϕ(uk, xi)K(uk, ·)∥H + ∥ϕ(u′
k, xi)K(u′

k, ·)∥H)

×
(
∥ϕ(uk, xj)K(uk, ·)∥H − ∥ϕ(u′

k, xj)K(u′
k, ·)∥H

)]
.

Expanding the previous expression will yield four similar terms. The first one is:

E
U,U ′

[
∥ϕ(uk, xi)K(uk, ·)∥H∥ϕ(uk, xj)K(uk, ·)∥H

]
. (156)
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This expectation in fact only depends on the sampling of uk, and can therefore be seen as an inner product
in L2(p). By Cauchy–Schwartz and the definition of κ in Equation (50), this expectation is upper bounded
by: √

E
uk∼p

[
∥ϕ(uk, xi)K(uk, ·)∥2

H

]√
E

uk∼p

[
∥ϕ(uk, xj)K(uk, ·)∥2

H

]
≤ κ2. (157)

The other three terms are upper bounded similarly, yielding:

E
U,U ′

[
(f(U)− f(U ′

k))2] ≤ 4κ2

T 2

m∑
i=1

m∑
j=1

aiaj = 4κ2∥a∥2
1

T 2 ≤ 4κ2B2
1

T 2 . (158)

Summing over all values of k, we get that:

v ≤ 4κ2B2
1

T
. (159)

The expectation of ∥αS,U − αS∥H can be upper bounded as:

E
U

[
∥αS,U − αS∥H

]
≤
√
E
U

[
∥αS,U − αS∥2

H

]
(Jensen)

=

√√√√√E
U

∥∥∥∥∥ 1
T

T∑
t=1

αS,ut
− αS

∥∥∥∥∥
2

H


=
√

1
T
E
U

[
∥αS,ut∥

2
H − ∥αS∥2

H

]
≤
√

1
T
E
U

[
∥αS,ut∥

2
H

]

=

√√√√√ 1
T
E
u

∥∥∥∥∥
m∑

i=1
aiϕ(u, xi)K(u, ·)

∥∥∥∥∥
2

H


≤
√

1
T
∥a∥2

1κ
2

≤ κB1√
T
.

We get the result by applying Theorem A.3 with these upper bounds on v and the expectation of our random
variable ∥αS,U − αS∥H, namely that with probability at least 1− δ over the sampling of U , we have:

∥αS,U − αS∥H ≤
κB1√
T

(
1 + 2

√
2 log 1

δ

)
, (160)

which implies the result. The fact that ∥αS,U∥H ≤ θB1 + κB1√
T

(
1 + 2

√
2 log 1

δ

)
immediately follows from the

triangle inequality (∥αS,U∥H ≤ ∥αS∥H +∥αS,U − αS∥H) and Lemma 6.1, and holds whenever Equation (160)
does. Finally, we can use Lemma A.1 to extend the result to also include the samplings of S.

A.11 Proof of Theorem 6.8

We seek a bound on LD(ΛᾱS,U )−LS(ΛαS). Using the weight function αS,U ∈ HU given to us by Lemma 6.2,
we break down the expression into three terms:

LD(ΛᾱS,U )− LS(ΛαS) =LD(ΛᾱS,U )− LS(ΛᾱS,U )
+ LS(ΛᾱS,U )− LS(ΛαS,U )
+ LS(ΛαS,U )− LS(ΛαS).
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Bounding LS(ΛαS,U )− LS(ΛαS). We know from Lemma 6.2 that:

P
S∼Dm,U∼pT

[
|LS(ΛαS,U )− LS(ΛαS)| ≤ ρθκB1√

T

(
1 + 2

√
2 log 1

δ

)]
≥ 1− δ. (161)

The inequality ∥αS,U∥H ≤ B
′ := θB1 + κB1√

T

(
1 + 2

√
2 log 1

δ

)
holds simultaneously.

Bounding LD(ΛᾱS,U )−LS(ΛᾱS,U ). Theorem 6.2 gives us that the following holds simultaneously for all
α ∈ HB′ with probability at least 1− δ over the choice of sample S:

LD(Λα)− LS(Λα) ≤ 2ρθB′
√
m

1 +

√
log 1

δ

2


≤ 2ρθ√

m

(
θB1 + κB1√

T

(
1 + 2

√
2 log 1

δ

))1 +

√
log 1

δ

2


= 2ρθB1√

m

(
θ + κ√

T

(
1 + 2

√
2 log 1

δ

))1 +

√
log 1

δ

2

. (162)

This result applies in particular to ΛᾱS,U .

Bounding LS(ΛᾱS,U ) − LS(ΛαS,U ). Since ΛᾱS,U minimizes the empirical risk, the term LS(ΛᾱS,U ) −
LS(ΛαS,U ) is smaller than 0, and can simply be ignored.

Assembling the ingredients. Equations (161) and (162) hold independently each with probability at
least 1−δ. Using Lemma A.1, we also know that they hold with probability at least 1−δ over the samplings
of both S and U . By the union bound, they hold together with probability at least 1− 2δ. Equation (106)
is obtained by replacing δ by δ

2 .

B Calculus

In this appendix, we present all the calculus required to calculate the expectation Ew∼p [K(u,w)ϕ(w, x)], as
well as constants θ and κ, for all instantiations. We begin with a few simple lemmas.
Lemma B.1. Consider a Hilbert space W. Let u,w ∈ W and a, b > 0. Then:

a∥w − u∥2 + b∥w∥2 = (a+ b)
∥∥∥∥w − a

a+ b
u

∥∥∥∥2
+ ab

a+ b
∥u∥2

.

Proof. We have:

a∥w − u∥2 + b∥w∥2 = a∥w∥2 − 2a ⟨w, u⟩+ a∥u∥2 + b∥w∥2

= (a+ b)∥w∥2 − 2a ⟨w, u⟩+ a∥u∥2

= (a+ b)∥w∥2 − 2a ⟨w, u⟩+ a2

a+ b
∥u∥2 − a2

a+ b
∥u∥2 + a∥u∥2

= (a+ b)
[
∥w∥2 − 2 a

a+ b
⟨w, u⟩+ a2

(a+ b)2 ∥u∥
2
]
− a2

a+ b
∥u∥2 + a∥u∥2

= (a+ b)
∥∥∥∥w − a

a+ b
u

∥∥∥∥2
+ ab

a+ b
∥u∥2

.
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Lemma B.2. Consider a Hilbert space W. Let u,w ∈ W and a, b > 0. Then:

a∥w − u∥2 + b∥w − w0∥2 = (a+ b)
∥∥∥∥w − au+ bw0

a+ b

∥∥∥∥2
+ a∥u∥2 + b∥w0∥2 − 1

a+ b
∥au+ bw0∥2

.

Proof. Same process as above.

Lemma B.3. Consider a Hilbert space W. Let u,w ∈ W and a, b > 0. Then:

∥w − u∥2

a
+ ∥w∥

2

b
=
(

1
a

+ 1
b

)∥∥∥∥w − 1
1 + a

b

u

∥∥∥∥2
+ 1
a+ b

∥u∥2
.

Proof. We have:

∥w − u∥2

a
+ ∥w∥

2

b
=
(

1
a

+ 1
b

)∥∥∥∥∥w − 1
a
( 1

a + 1
b

)u∥∥∥∥∥
2

+ 1
ab
( 1

a + 1
b

)∥u∥2 (Lemma B.1)

=
(

1
a

+ 1
b

)∥∥∥∥w − 1
1 + a

b

u

∥∥∥∥2
+ 1
a+ b

∥u∥2
.

Lemma B.4. We have: ∫
Rn

e−a∥w−u∥2
dw =

(π
a

)n
2
.

Proof. This is the unnormalized integral of a Gaussian density with variance 1
2aI and mean u.

B.1 Calculus for RWSign

Throughout this section, we assume that (W, ϕ,K, p) are those of instantiation RWSign. See Table 2 for
details. We work up to the full integral in Rn through a series of lemmas.

Lemma B.5. We have:

∫ ∞

−∞
e−(w−u)2/2γ2

sign(wx)dw =
√

2πγ sign(x) erf
(

u√
2γ

)
.
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Proof. Applying an adequate change of variable causes the error function to appear:∫ ∞

−∞
e−(w−u)2/2γ2

sign(wx)dw

= sign(x)
∫ ∞

−∞
e−(w−u)2/2γ2

sign(w)dw

= sign(x)
(∫ ∞

0
e−(w−u)2/2γ2

dw −
∫ 0

−∞
e−(w−u)2/2γ2

dw
)

=
√

2γ sign(x)
(∫ ∞

−u√
2γ

e−t2
dw −

∫ −u√
2γ

−∞
e−t2

dw
)

(t := w−u√
2γ

, dw = dw√
2γ

)

=
√

2γ sign(x)
(∫ ∞

0
e−t2

dw +
∫ 0

−u√
2γ

e−t2
dw −

∫ 0

−∞
e−t2

dw −
∫ −u√

2γ

0
e−t2

dw
)

=
√

2γ sign(x)
(∫ 0

−u√
2γ

e−t2
dw −

∫ −u√
2γ

0
e−t2

dw
)

=
√

2γ sign(x)
(∫ u√

2γ

0
e−t2

dw +
∫ u√

2γ

0
e−t2

dw
)

= 2
√

2γ sign(x)
∫ u√

2γ

0
e−t2

dw

= 2
√

2γ sign(x)
√
π

2 erf
(

u√
2γ

)
=
√

2πγ sign(x) erf
(

u√
2γ

)
.

Lemma B.6. We have:∫
Rn

e−∥w−u∥2/2γ2
sign(⟨w, x⟩)dw =

(√
2πγ

)n

erf
(
⟨u, x⟩√
2γ∥x∥

)
.

Proof. Calculate the integral using an orthonormal basis {v1, . . . , vn} of Rn such that vn := x
∥x∥ . Write

w = (w1, . . . , wn) in this new basis (i.e. wi := ⟨w, vi⟩ for all i), and similarly (u1, . . . , un) for u. Under this
change of coordinates, the integral becomes:∫

Rn

e−∥w−u∥2/2γ2
sign(⟨w, x⟩)dw

=
∫
R

∫
Rn−1

e
−
[∑n−1

i=1
(wi−ui)2+(wn−un)2

]
/2γ2

sign(wn∥x∥)dw1, . . . ,dwn−1dwn.

We are left with a product of n independent integrals:∫
Rn

e−∥w−u∥2/2γ2
sign(⟨w, x⟩)dw

=
∫
Rn−1

e−
∑n−1

i=1
(wi−ui)2/2γ2

dw1 . . . dwn−1

∫
R
e−(wn−un)2/2γ2

sign(wn∥x∥)dwn

=
∫
Rn−1

n−1∏
i=1

e−(wi−ui)2/2γ2
dw1 . . . dwn−1

∫
R
e−(wn−un)2/2γ2

sign(wn∥x∥)dwn

=
n−1∏
i=1

∫
R
e−(wi−ui)2/2γ2

dwi

∫
R
e−(wn−un)2/2γ2

sign(wn∥x∥)dwn.
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For each i, Lemma B.4 gives us: ∫
R
e−(wi−ui)2/2γ2

dwi =
√

2πγ.

Also, Lemma B.5 gives us:∫
R
e−(wn−un)2/2γ2

sign(wn∥x∥)dwn =
√

2πγ erf
(
un√
2γ

)
.

Finally, since un = ⟨u,x⟩
∥x∥ , we have the result.

Lemma B.7. Considering instantiation 1, we have:

E
w∼p

[K(u,w)ϕ(w, x)] =
(

1 + σ2

γ2

)−n/2
e

−∥u∥2
2

2σ2+2γ2 erf
(
⟨u′, x⟩√
2ζ∥x∥2

)
,

where ζ is defined by the relationship:

1
2ζ2 = 1

2γ2 + 1
2σ2 ,

and:

u′ :=
(

1 + γ2

σ2

)−1
u.

Proof. The proof is simply completing the square at the exponent and applying Lemma B.6. We have:

E
w∼p

[K(u,w)ϕ(w, x)] =
(

1√
2πσ2

)n ∫
Rn

e−∥w−u∥2/2γ2
e−∥w∥2/2σ2

sign(⟨w, x⟩)dw.

Lemma B.3 gives us:

−∥w − u∥2
/2γ2 − ∥w∥2

/2σ2 = − 1
2ζ2

∥∥∥∥∥w −
(

1 + γ2

σ2

)−1

u

∥∥∥∥∥
2

−
(

1
2σ2 + 2γ2

)
∥u∥2

= − 1
2ζ2 ∥w − u

′∥2 −
(

1
2σ2 + 2γ2

)
∥u∥2

.

Therefore, we have:

E
w∼p

[K(u,w)ϕ(w, x)] =
(

1√
2πσ2

)n

e−∥u∥2/(2γ2+2σ2)
∫
Rn

e−∥w−u′∥2
/2ζ2

sign(⟨w, x⟩)dw.

Applying Lemma B.6, we get:

E
w∼p

[K(u,w)ϕ(w, x)] =
(
ζ

σ

)n

e−∥u∥2/(2γ2+2σ2) erf
(
⟨u′, x⟩√
2ζ∥x∥

)
.

We obtain the final result by noticing that.(
ζ

σ

)n

=
(

1 + σ2

γ2

)−n/2
.

To calculate θ, we need a few more lemmas.
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Lemma B.8. Consider σ > 0 and γ > 0. Then:

∫
Rn

∫
Rn

e−∥u−w∥2/2γ2
e−⟨u,w⟩/σ2

dudw = (2π)n

(
γ2σ4

2σ2 − γ2

)n/2

. (163)

Proof. ∫
Rn

∫
Rn

e
− ∥u−w∥2

2γ2 e− ⟨u,w⟩
σ2 dudw =

∫
Rn

∫
Rn

e
− ∥t∥2

2γ2 e− ⟨t+w,w⟩
σ2 dtdw (t := u− w, dt = du)

=
∫
Rn

∫
Rn

e
− ∥t∥2

2γ2 e− ∥w∥2

σ2 e− ⟨t,w⟩
σ2 dtdw

=
∫
Rn

e− ∥w∥2

σ2

[∫
Rn

e
− ∥t∥2

2γ2 e− ⟨t,w⟩
σ2 dt

]
dw

=
∫
Rn

e− ∥w∥2

σ2

∫
Rn

e
−

∥∥∥t+ γ2w

σ2

∥∥∥2

2γ2 e

∥∥∥ γ2w

σ2

∥∥∥2

2γ2 dt

dw

=
∫
Rn

e− ∥w∥2

σ2 e

∥∥∥ γ2w

σ2

∥∥∥2

2γ2

∫
Rn

e
−

∥∥∥t+ γ2w

σ2

∥∥∥2

2γ2 dt

dw

=
(√

2πγ2
)n
∫
Rn

e− ∥w∥2

σ2 e

∥∥∥ γ2w

σ2

∥∥∥2

2γ2 dw.

Then, simplifying the exponent:

−∥w∥
2

σ2 +

∥∥∥γ2w
σ2

∥∥∥2

2γ2 = −∥w∥
2

2σ2

(
2− γ2

σ2

)
= −∥w∥

2

2σ2

(
2σ2 − γ2

σ2

)
= −∥w∥

2

2σ4

(
2σ2 − γ2),

we get: ∫
Rn

∫
Rn

e
− ∥u−w∥2

2γ2 e− ⟨u,w⟩
σ2 dudw =

(√
2πγ2

)n
∫
Rn

e− ∥w∥2

2σ4 (2σ2−γ2)dw

=
(√

2πγ2
)n
(√

2π σ4

2σ2 − γ2

)n

= (2π)n

(
γ2σ4

2σ2 − γ2

)n/2

.

Lemma B.9. Consider σ > 0 and γ > 0. Denote In the identity matrix in Rn. Then:

E
w∼N (0,σ2In)

E
u∼N (0,σ2In)

[
e−∥u−w∥2/2γ2

]
=
(

1 + 2σ2

γ2

)−n/2

. (164)
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Proof. The expectation is a straightforward integral:

E
w∼p

E
u∼p

[K(u,w)] =
(

1√
2πσ2

)2n ∫
Rn

∫
Rn

e
− ∥u−w∥2

2γ2 e− ∥u∥2

2σ2 e− ∥w∥2

2σ2 dudw

=
(

1√
2πσ2

)2n ∫
Rn

∫
Rn

e
− ∥u−w∥2

2γ2 e− ∥u∥2

2σ2 e
⟨u,w⟩

σ2 e− ∥w∥2

2σ2 e− ⟨u,w⟩
σ2 dudw

=
(

1√
2πσ2

)2n ∫
Rn

∫
Rn

e
− ∥u−w∥2

2γ2 e− ∥u−w∥2

2σ2 e− ⟨u,w⟩
σ2 dudw

=
(

1√
2πσ2

)2n ∫
Rn

∫
Rn

e
− ∥u−w∥2

2ζ2 e− ⟨u,w⟩
σ2 dudw ( 1

2ζ2 = 1
2γ2 + 1

2σ2 = σ2+γ2

2σ2γ2 )

=
(

1√
2πσ2

)2n

(2π)n

(
ζ2σ4

2σ2 − ζ2

)n/2

(Lemma B.8)

=
(

ζ2

2σ2 − ζ2

)n/2

=
(

2σ2

ζ2 − 1
)−n/2

=
(

2σ2

σ2 + 2σ2

γ2 − 1
)−n/2

=
(

1 + 2σ2

γ2

)−n/2

.

Lemma B.10. We have:
θ ≤

(
1 + 2σ2

γ2

)−n/4
. (165)

Proof. We have:

θ2 = sup
x∈X
∥ψ(x)∥2

H

= sup
x∈X

E
w∼p

E
u∼p

[K(u,w)ϕ(u, x)ϕ(w, x)]

≤ sup
x∈X

E
w∼p

E
u∼p

[|K(u,w)ϕ(u, x)ϕ(w, x)|]

= E
w∼p

E
u∼p

[K(u,w)]. (|ϕ(w, x)| = 1 for all w and x)

The result is given by Lemma B.9 (and taking the square root).

B.2 Calculus for RWExpSign

Throughout this section, we assume that (W, ϕ,K, p) are those of instantiation RWExpSign. See Table 2 for
details.
Lemma B.11. We have:

E
w∼p

[K(u,w)ϕ(w, x)] = e
σ2

8γ4 ∥u∥2
erf
(

σ√
8πγ2

⟨u, x⟩
∥x∥

)
. (166)

Proof. We have:

E
w∼p

[K(u,w)ϕ(w, x)] =
(

1√
2πσ2

)n ∫
Rn

e⟨u,w⟩/2γ2
e−∥w∥2/2σ2

sign(⟨w, x⟩)dw. (167)
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Completing the square, we get:

E
w∼p

[K(u,w)ϕ(w, x)] =
(

1√
2πσ2

)n ∫
Rn

e
−
∥∥w− σ2

2γ2 u
∥∥2

/2σ2+
∥∥ σ2

2γ2 u
∥∥2

/2σ2
sign(⟨w, x⟩)dw. (168)

Defining u′ := σ2

2γ2u and rearranging the terms, we get:

E
w∼p

[K(u,w)ϕ(w, x)] =
(

1√
2πσ2

)n

e
σ2

8γ4 ∥u∥2
∫
Rn

e−∥w−u′∥2
/2σ2

sign(⟨w, x⟩)dw. (169)

Applying Lemma B.6, we get the final results:

E
w∼p

[K(u,w)ϕ(w, x)] =
(

1√
2πσ2

)n

e
σ2

8γ4 ∥u∥2(√
2πσ2

)n

erf
(

1√
2πσ2

⟨u′, x⟩
∥x∥

)
= e

σ2
8γ4 ∥u∥2

erf
(

σ√
8πγ2

⟨u, x⟩
∥x∥

)
. (170)

Lemma B.12. We have:

θ ≤

(
1

1− σ2

2γ2

)n/2

. (171)

Proof. First, notice that we have:

θ := sup
x∈X

∥∥∥∥ Ew∼p
[ϕ(w, x)K(w, ·)]

∥∥∥∥
H

≤ sup
x∈X

E
w∼p

[
|ϕ(w, x)|

√
K(w,w)

]
=: ι.

We have:

ι := sup
x∈X

E
w∼p

[√
K(w,w)|ϕ(w, x)|

]
= E

w∼p

[√
K(w,w)

]
(|ϕ(w, x)| = | sign(⟨w, x⟩)| = 1)

=
(

1√
2πσ2

)n ∫
Rn

e∥w∥2/4γ2
e−∥w∥2/2σ2

dw

=
(

1√
2πσ2

)n ∫
Rn

e−∥w∥2(1/2σ2−1/4γ2)dw

=
(

1√
2πσ2

)n(√
2πζ2

)n

( 1
2ζ2 := 1

2σ2 − 1
4γ2 )

=
(
ζ

σ

)n

=
(

1
σ

√
1

1
σ2 − 1

2γ2

)n

=
(

1
1− σ2

2γ2

)n/2

.

Lemma B.13. We have:

κ =
(

1
1− σ2

γ2

)n/4

. (172)
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Proof. We have:

κ2 := sup
x∈X

E
w∼p

[
K(w,w)ϕ(w, x)2]

= E
w∼p

[K(w,w)] (ϕ(w, x)2 = sign(⟨w, x⟩)2 = 1)

=
(

1√
2πσ2

)n ∫
Rn

e∥w∥2/2γ2
e−∥w∥2/2σ2

dw

=
(

1√
2πσ2

)n ∫
Rn

e−∥w∥2(1/2σ2−1/2γ2)dw

=
(

1√
2πσ2

)n(√
2πζ2

)n

( 1
2ζ2 := 1

2σ2 − 1
2γ2 )

=
(
ζ

σ

)n

=
(

1
σ

√
1

1
σ2 − 1

γ2

)n

=
(

1
1− σ2

γ2

)n/2

.

We get the result by taking the square root.

B.3 Calculus for RWExpRelu

Throughout this section, we assume that (W, ϕ,K, p) are those of instantiation RWExpRelu. See Table 2
for details. The calculus for RWExpRelu relies on the calculus of Dubé & Marchand (2025) for instantiation
RWRelu.
Lemma B.14. We have:

E
w∼p

[K(u,w)ϕ(w, x)] =
(

1√
2πσ2

)
e

σ2
8γ4 ∥u∥2

2

[
σ∥x∥√

2

(√
2σe− ⟨u,x⟩2

2σ2∥x∥2 +
√
π
⟨u, x⟩
∥x∥

[
1 + erf

(
⟨u, x⟩√
2σ∥x∥

)])]
.

(173)

Proof. We have:

E
w∼p

[K(u,w)ϕ(w, x)] =
(

1√
2πσ2

)n ∫
Rn

e⟨u,w⟩/2γ2
e−∥w∥2/2σ2

max(0, ⟨w, x⟩)dw. (174)

Completing the square, we get:

E
w∼p

[K(u,w)ϕ(w, x)] =
(

1√
2πσ2

)n ∫
Rn

e
−
∥∥w− σ2

2γ2 u
∥∥2

/2σ2+
∥∥ σ2

2γ2 u
∥∥2

/2σ2
max(0, ⟨w, x⟩)dw. (175)

Defining u′ := σ2

2γ2u and rearranging the terms, we get:

E
w∼p

[K(u,w)ϕ(w, x)] =
(

1√
2πσ2

)n

e
σ2

8γ4 ∥u∥2
∫
Rn

e−∥w−u′∥2
/2σ2

max(0, ⟨w, x⟩)dw. (176)

We get the result by applying Lemma B.4 of Dubé & Marchand (2025), which solves the integral in the
previous equation.

Lemma B.15. We have:

θ ≤ σ supx ∥x∥√
2π

(
1− σ2

2γ2

)− (n−1)
2

. (177)
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Proof. First, notice that we have:

θ := sup
x∈X

∥∥∥∥ Ew∼p
[ϕ(w, x)K(w, ·)]

∥∥∥∥
H

≤ sup
x∈X

E
w∼p

[
|ϕ(w, x)|

√
K(w,w)

]
=: ι.

We have:

ι := sup
x∈X

E
w∼p

[√
K(w,w)|ϕ(w, x)|

]
= E

w∼p

[
e∥w∥2/4γ2

max(0, ⟨w, x⟩)
]

=
(

1√
2πσ2

)n ∫
Rn

e∥w∥2/4γ2
e−∥w∥2/2σ2

max(0, ⟨w, x⟩)dw

=
(

1√
2πσ2

)n ∫
Rn

e−∥w∥2(1/2σ2−1/4γ2) max(0, ⟨w, x⟩)dw

≤
(

1√
2πσ2

)n
√ π

1
2σ2 − 1

4γ2

n−1
supx ∥x∥

2
(

1
2σ2 − 1

4γ2

) . (Lemma B.4 of Dubé & Marchand (2025))

Rearranging this expression gives the result.

Lemma B.16. We have:

κ2 = σ2 supx ∥x∥
2

2

(
1− σ2

γ2

)− n
2 −1

. (178)

Proof. We have:

κ2 := sup
x∈X

E
w∼p

[
K(w,w)ϕ(w, x)2]

= E
w∼p

[
e∥w∥2/2γ2

max(0, ⟨w, x⟩)2
]

=
(

1√
2πσ2

)n ∫
Rn

e∥w∥2/2γ2
e−∥w∥2/2σ2

max(0, ⟨w, x⟩)2dw

=
(

1√
2πσ2

)n ∫
Rn

e−∥w∥2(1/2σ2−1/2γ2) max(0, ⟨w, x⟩)2dw

=
(

1√
2πσ2

)n
√ π

1
2σ2 − 1

2γ2

n

supx ∥x∥
2

2
(

1
σ2 − 1

γ2

) (Proof of Lemma C.3 of Dubé & Marchand (2025))

=
(

1√
2σ2

)n( 1
2σ2 −

1
2γ2

)− n
2 supx ∥x∥

2

4
(

1
2σ2 − 1

2γ2

)
= supx ∥x∥

2

4
(
2σ2)− n

2

(
1

2σ2 −
1

2γ2

)− n
2
(

1
2σ2 −

1
2γ2

)−1

= supx ∥x∥
2

4

(
1− σ2

γ2

)− n
2
(

1
2σ2 −

1
2γ2

)−1

= σ2 supx ∥x∥
2

2

(
1− σ2

γ2

)− n
2
(

1− σ2

γ2

)−1

= σ2 supx ∥x∥
2

2

(
1− σ2

γ2

)− n
2 −1

.
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B.4 Calculus for RWStumps

Throughout this section, we assume that (W, ϕ,K, p) are those of instantiation RWStumps. See Table 2 for
details.
Lemma B.17. We have:

E
w∼p

[K(u,w)ϕ(w, x)] = ζ

σn
e

−u2
2

2σ2+2γ2 erf
(
xu1 − u′

2√
2ζ

)
,

where ζ is defined by the relationship:

1
2ζ2 = 1

2γ2 + 1
2σ2 ,

and:

u′
2 :=

(
1 + γ2

σ2

)−1
u2.

Proof. We have:

E
w∼p

[K(u,w)ϕ(w, x)] = E
w1∼U({1,...,n})

E
w2∼N (0,σ2)

[K(u,w)ϕ(w, x)]

= 1
n

n∑
i=1

E
w2∼N (0,σ2)

[
1[i = u1]e−(w2−u2)2/2γ2

sign(xi − w2)
]

= 1
n

E
w2∼N (0,σ2)

[
e−(w2−u2)2/2γ2

sign(xu1 − w2)
]

= 1
n

1√
2πσ2

∫ ∞

−∞
e−(w2−u2)2/2γ2

e−w2/2σ2
sign(xu1 − w2)dw2

= 1
n
√

2πσ2
e

−u2
2

2σ2+2γ2

∫ ∞

−∞
e−(w2−u′

2)2/2ζ2
sign(xu1 − w2)dw2 (Lemma B.3)

= e
−u2

2
2σ2+2γ2

n
√

2πσ2

[∫ xu1

−∞
e−(w2−u′

2)2/2ζ2
dw2 −

∫ ∞

xu1

e−(w2−u′
2)2/2ζ2

dw2

]

= e
−u2

2
2σ2+2γ2

n
√

2πσ2

√
2ζ

∫ xu1 −u′
2√

2ζ

−∞
e−t2

dw −
∫ ∞

xu1 −u′
2√

2ζ

e−t2
dw

 (t := w2−u′
2√

2ζ
, dw = dw2√

2ζ
)

= ζ

σ

e
−u2

2
2σ2+2γ2

n
√
π

∫ 0

−∞
e−t2

dw +
∫ xu1 −u′

2√
2ζ

0
e−t2

dw −
∫ 0

xu1 −u′
2√

2ζ

e−t2
dw −

∫ ∞

0
e−t2

dw


= ζ

σ

e
−u2

2
2σ2+2γ2

n
√
π

∫ xu1 −u′
2√

2ζ

0
e−t2

dw −
∫ 0

xu1 −u′
2√

2ζ

e−t2
dw

.
Finally, we have:

E
w∼p

[K(u,w)ϕ(w, x)] = ζ

σ

e
−u2

2
2σ2+2γ2

n
√
π

∫ xu1 −u′
2√

2ζ

0
e−t2

dw −
∫ 0

xu1 −u′
2√

2ζ

e−t2
dw


= ζ

σ

e
−u2

2
2σ2+2γ2

n
erf
(
xu1 − u′

2√
2ζ

)
.
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Lemma B.18. We have:
θ ≤ 1√

n

(
1 + 2σ2

γ2

)−1/4
. (179)

Proof. We have:

θ2 = sup
x∈X
∥ψ(x)∥2

H

= sup
x∈X

E
w∼p

E
u∼p

[K(u,w)ϕ(u, x)ϕ(w, x)]

≤ sup
x∈X

E
w∼p

E
u∼p

[|K(u,w)ϕ(u, x)ϕ(w, x)|]

= E
w∼p

E
u∼p

[K(u,w)] (|ϕ(w, x)| = 1 for all w and x)

= 1
n2

n∑
i=1

n∑
j=1

E
w∼N (0,σ2)

E
u∼N (0,σ2)

[
1[i = j]e−(u−w)/2γ2

]
= 1
n2

n∑
i=1

E
w∼N (0,σ2)

E
u∼N (0,σ2)

[
e−(u−w)/2γ2

]
= 1
n2

n∑
i=1

(
1 + 2σ2

γ2

)−1/2
(See proof of Lemma B.10)

= 1
n

(
1 + 2σ2

γ2

)−1/2
.

C Details of experimentation

Preprocessing of the datasets

All datasets have been scaled to have mean 0 and standard deviation 1 on all variables, including the target
labels for regression datasets. Means and standard deviations were calculated on the training data, then the
transformation applied to both training and test datasets.

Hyperparameter selection

Table 11 contains the hyperparameters of all the algorithms and models used in this paper. All parameters
were crossvalidated using randomized search (rather than grid search) using 50 random combinations of
parameters.

Reproducing the results

The code for this paper can be found in the supplementary material. The repository contains a
requirements.txt file containing the particular Python packages that were used in our experiments. They
can be installed from the command line with the command pip install -r requirements.txt. Table 12
lists the commands to run the experiments of Section 7.

D Additional results

We present below a few additional tables and figures.
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Cross-validation parameters Source code (clickable)
AdaBoostClassifier number of estimators ∈ {10, 25, 50, 100, 150, 200, 250, 500} Scikit-learn
AdaBoostRegressor number of estimators ∈ {10, 25, 50, 100, 150, 200, 250, 500} Scikit-learn

SVR C ∼ loguniform(0.001, 1000)
gamma ∼ loguniform(0.001, 1000) Scikit-learn

SVC C ∼ loguniform(0.001, 1000)
gamma ∼ loguniform(0.001, 1000) Scikit-learn

Random kitchen sinks λ2 ∼ loguniform(10−5, 10−3) Supplementary material

All RKHS weightings σ ∼ loguniform(0.01, 10)
λH ∼ loguniform(10−12, 10−4)

RWSign max theta ∼ uniform{0.01, 0.9} Supplementary material
RWRelu max theta ∼ uniform{0.01, 0.9} Dubé & Marchand (2025)
RWExpSign max theta ∼ uniform{1.5, 50} Supplementary material
RWExpRelu max kappa ∼ uniform{1.5, 100} Dubé & Marchand (2025)
RWStumps γ ∼ loguniform(0.01, 10) Supplementary material

Table 11: Algorithms and models used in this paper and their cross-validation hyperparameters.

Experiment Command Execution time
Figure 1 python -m experiments.algo_time_compar --final 5.9 hours
Figures 2 and 3 python -m experiments.few_features --final 85.4 hours
Figures 4 and 5 python -m experiments.few_features_lasso --final 197.3 hours
Tables 7 and 8 python -m experiments.rkhs_vs_rks --final 35.5 hours
Tables 9 and 10 python -m experiments.sota --final 90.2 hours
All (Linux, macOS) ./experiments/run.sh 414.3 hours = 17.26 days

Table 12: Commands to run the various experiments in this paper, from the root folder of the supplementary
material. The experiments were run on a machine equipped with an AMD Ryzen Threadripper 1900X 8-Core
Processor (2 threads per core), running Debian GNU/Linux 12 (bookworm) with 32GB of system memory.
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Table 13: (Train and test error columns of Table 7 with standard deviations.) Classification performance
comparison of RKHS weightings (RW) to random kitchen sinks (RKS). For each combination of dataset and
instantiation, an RKHS weighting was learned by cross-validation and using Algorithm 4 (the least squares
fit) in order to select the best model hyperparameters. The sampling size T was 500, and each value in
the table is the average of 10 independently seeded runs. Train error and Test error are the proportion of
incorrectly classified examples on the training and test sets.

Train error Test error
RKS RW RKS RW

Dataset Instantiation
adults RWExpRelu 0.152 ± 0.001 0.150 ± 0.001 0.155 ± 0.001 0.152 ± 0.001

RWExpSign 0.191 ± 0.002 0.194 ± 0.002 0.198 ± 0.004 0.198 ± 0.002
RWRelu 0.152 ± 0.001 0.149 ± 0.001 0.155 ± 0.001 0.152 ± 0.001
RWSign 0.191 ± 0.002 0.216 ± 0.000 0.198 ± 0.004 0.220 ± 0.000
RWStumps 0.148 ± 0.005 0.147 ± 0.005 0.150 ± 0.004 0.147 ± 0.004

cancer RWExpRelu 0.014 ± 0.001 0.013 ± 0.002 0.029 ± 0.006 0.030 ± 0.006
RWExpSign 0.011 ± 0.005 0.012 ± 0.002 0.041 ± 0.010 0.048 ± 0.008
RWRelu 0.014 ± 0.001 0.015 ± 0.002 0.029 ± 0.006 0.026 ± 0.006
RWSign 0.011 ± 0.005 0.010 ± 0.002 0.041 ± 0.010 0.040 ± 0.009
RWStumps 0.012 ± 0.004 0.017 ± 0.003 0.032 ± 0.011 0.036 ± 0.003

marketing RWExpRelu 0.094 ± 0.001 0.093 ± 0.001 0.100 ± 0.001 0.100 ± 0.001
RWExpSign 0.139 ± 0.003 0.103 ± 0.001 0.148 ± 0.004 0.110 ± 0.002
RWRelu 0.094 ± 0.001 0.092 ± 0.001 0.100 ± 0.001 0.099 ± 0.001
RWSign 0.139 ± 0.003 0.132 ± 0.002 0.148 ± 0.004 0.138 ± 0.003
RWStumps 0.097 ± 0.001 0.097 ± 0.000 0.102 ± 0.001 0.101 ± 0.001

mnist17 RWExpRelu 0.006 ± 0.000 0.005 ± 0.000 0.012 ± 0.002 0.011 ± 0.001
RWExpSign 0.010 ± 0.001 0.008 ± 0.001 0.014 ± 0.002 0.013 ± 0.001
RWRelu 0.006 ± 0.000 0.007 ± 0.000 0.012 ± 0.002 0.012 ± 0.001
RWSign 0.010 ± 0.001 0.008 ± 0.000 0.014 ± 0.002 0.013 ± 0.001
RWStumps 0.008 ± 0.001 0.008 ± 0.000 0.013 ± 0.002 0.013 ± 0.002

phishing RWExpRelu 0.049 ± 0.002 0.046 ± 0.002 0.062 ± 0.003 0.058 ± 0.002
RWExpSign 0.061 ± 0.003 0.051 ± 0.002 0.072 ± 0.003 0.065 ± 0.002
RWRelu 0.049 ± 0.002 0.043 ± 0.001 0.062 ± 0.003 0.055 ± 0.001
RWSign 0.061 ± 0.003 0.056 ± 0.001 0.072 ± 0.003 0.067 ± 0.002
RWStumps 0.069 ± 0.000 0.069 ± 0.001 0.075 ± 0.001 0.075 ± 0.001

skin RWExpRelu 0.015 ± 0.000 0.023 ± 0.001 0.016 ± 0.001 0.023 ± 0.001
RWExpSign 0.039 ± 0.002 0.059 ± 0.001 0.040 ± 0.001 0.060 ± 0.001
RWRelu 0.015 ± 0.000 0.029 ± 0.000 0.016 ± 0.001 0.029 ± 0.000
RWSign 0.039 ± 0.002 0.049 ± 0.000 0.040 ± 0.001 0.050 ± 0.000
RWStumps 0.040 ± 0.000 0.040 ± 0.000 0.040 ± 0.000 0.040 ± 0.000

telescope RWExpRelu 0.131 ± 0.001 0.125 ± 0.001 0.137 ± 0.002 0.135 ± 0.002
RWExpSign 0.162 ± 0.003 0.139 ± 0.001 0.172 ± 0.003 0.146 ± 0.003
RWRelu 0.131 ± 0.001 0.127 ± 0.001 0.137 ± 0.002 0.135 ± 0.001
RWSign 0.162 ± 0.003 0.143 ± 0.002 0.172 ± 0.003 0.147 ± 0.002
RWStumps 0.139 ± 0.002 0.139 ± 0.001 0.149 ± 0.003 0.146 ± 0.001
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Table 14: (Train and test MSE columns of Table 8 with standard deviations.) Regression performance
comparison of RKHS weightings (RW) to random kitchen sinks (RKS). For each combination of dataset and
instantiation, an RKHS weighting was learned by cross-validation and using Algorithm 4 (the least squares
fit) in order to select the best model hyperparameters. The sampling size T was 500, and each value in the
table is the average of 10 independently seeded runs.

Train MSE Test MSE
RKS RW RKS RW

Dataset Instantiation
abalone RWExpRelu 0.391 ± 0.003 0.396 ± 0.004 0.427 ± 0.002 0.426 ± 0.001

RWExpSign 0.394 ± 0.007 0.413 ± 0.003 0.441 ± 0.006 0.433 ± 0.000
RWRelu 0.391 ± 0.003 0.398 ± 0.002 0.427 ± 0.002 0.430 ± 0.001
RWSign 0.394 ± 0.007 0.406 ± 0.002 0.441 ± 0.006 0.431 ± 0.001
RWStumps 0.416 ± 0.008 0.421 ± 0.000 0.460 ± 0.008 0.441 ± 0.000

california housing RWExpRelu 0.249 ± 0.003 0.239 ± 0.003 0.269 ± 0.002 0.259 ± 0.001
RWExpSign 0.317 ± 0.003 0.281 ± 0.001 0.337 ± 0.004 0.298 ± 0.001
RWRelu 0.249 ± 0.003 0.243 ± 0.001 0.269 ± 0.002 0.261 ± 0.001
RWSign 0.317 ± 0.003 0.280 ± 0.001 0.337 ± 0.004 0.296 ± 0.001
RWStumps 0.248 ± 0.009 0.234 ± 0.008 0.266 ± 0.009 0.252 ± 0.007

concrete RWExpRelu 0.068 ± 0.007 0.065 ± 0.015 0.144 ± 0.008 0.155 ± 0.012
RWExpSign 0.126 ± 0.009 0.113 ± 0.050 0.255 ± 0.009 0.210 ± 0.033
RWRelu 0.068 ± 0.007 0.087 ± 0.015 0.144 ± 0.008 0.153 ± 0.009
RWSign 0.126 ± 0.009 0.083 ± 0.005 0.255 ± 0.009 0.189 ± 0.012
RWStumps 0.068 ± 0.007 0.064 ± 0.013 0.090 ± 0.004 0.098 ± 0.023

conductivity RWExpRelu 0.176 ± 0.002 0.167 ± 0.002 0.193 ± 0.003 0.185 ± 0.002
RWExpSign 0.207 ± 0.003 0.217 ± 0.001 0.224 ± 0.005 0.222 ± 0.002
RWRelu 0.176 ± 0.002 0.165 ± 0.001 0.193 ± 0.003 0.183 ± 0.001
RWSign 0.207 ± 0.003 0.268 ± 0.001 0.224 ± 0.005 0.270 ± 0.001
RWStumps 0.187 ± 0.004 0.182 ± 0.002 0.198 ± 0.003 0.193 ± 0.003

diabetes RWExpRelu 0.375 ± 0.007 0.355 ± 0.001 0.529 ± 0.008 0.544 ± 0.002
RWExpSign 0.391 ± 0.012 0.452 ± 0.000 0.514 ± 0.011 0.530 ± 0.000
RWRelu 0.375 ± 0.007 0.382 ± 0.000 0.529 ± 0.008 0.529 ± 0.000
RWSign 0.391 ± 0.012 0.453 ± 0.000 0.514 ± 0.011 0.514 ± 0.001
RWStumps 0.375 ± 0.036 0.427 ± 0.000 0.530 ± 0.028 0.510 ± 0.000

wine RWExpRelu 0.032 ± 0.004 0.032 ± 0.000 0.113 ± 0.010 0.101 ± 0.002
RWExpSign 0.009 ± 0.006 0.026 ± 0.006 0.091 ± 0.011 0.088 ± 0.004
RWRelu 0.032 ± 0.004 0.039 ± 0.003 0.113 ± 0.010 0.147 ± 0.004
RWSign 0.009 ± 0.006 0.028 ± 0.008 0.091 ± 0.011 0.089 ± 0.006
RWStumps 0.042 ± 0.006 0.066 ± 0.000 0.108 ± 0.012 0.136 ± 0.000
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Table 15: (Table 9 with standard deviations.) Binary classification performance comparison of RKHS weight-
ings to AdaBoost (AB), SVM and the random kitchen sinks (RKS) on various datasets. Instantiations
were chosen based on their performance in Table 7. Algorithm 4 (the least squares fit of the coefficient)
was used to learn RKHS weightings with T = 2000 random features. Train error and Test error are the
misclassification rates on the training and test sets. Inference time is the computation time of the model on
the training set and test sets combined. Every line (except SVM, which is deterministic) is the average of
10 independent runs.

Train error Test error Train time (s) Inference time
Dataset Algorithm Instantiation

adults AdaBoost 0.141 ± 0.0 0.14 ± 0.0 15.225 ± 0.242 3.663 ± 0.058
RKHS Weighting RWExpRelu 0.137 ± 0.002 0.148 ± 0.001 3.967 ± 0.032 4.473 ± 0.041

RWRelu 0.138 ± 0.002 0.147 ± 0.001 3.984 ± 0.054 4.357 ± 0.054
RWStumps 0.146 ± 0.001 0.145 ± 0.001 2.163 ± 0.196 1.824 ± 0.291

RKS RWRelu 0.137 ± 0.002 0.15 ± 0.001 1.685 ± 0.036 1.246 ± 0.007
RWStumps 0.144 ± 0.001 0.144 ± 0.001 1.335 ± 0.043 0.809 ± 0.013

SVM 0.143 0.146 75.187 57.222
cancer AdaBoost 0.0 ± 0.0 0.021 ± 0.0 0.512 ± 0.017 0.04 ± 0.0

RKHS Weighting RWExpSign 0.011 ± 0.002 0.045 ± 0.008 0.259 ± 0.01 0.032 ± 0.007
RWSign 0.01 ± 0.002 0.048 ± 0.006 0.265 ± 0.006 0.033 ± 0.008

RKS RWSign 0.006 ± 0.005 0.038 ± 0.009 0.185 ± 0.012 0.023 ± 0.009
SVM 0.014 0.021 0.002 0.002

marketing AdaBoost 0.097 ± 0.0 0.101 ± 0.0 11.803 ± 0.19 1.607 ± 0.014
RKHS Weighting RWExpRelu 0.083 ± 0.003 0.097 ± 0.001 4.02 ± 0.034 4.052 ± 0.051

RWRelu 0.089 ± 0.001 0.097 ± 0.001 3.98 ± 0.058 3.958 ± 0.053
RWStumps 0.096 ± 0.0 0.1 ± 0.001 2.75 ± 0.111 2.303 ± 0.149

RKS RWRelu 0.085 ± 0.002 0.097 ± 0.001 1.7 ± 0.024 1.113 ± 0.006
RWStumps 0.096 ± 0.001 0.1 ± 0.001 1.692 ± 0.043 1.069 ± 0.028

SVM 0.077 0.097 28.927 17.778
mnist17 AdaBoost 0.0 ± 0.0 0.004 ± 0.0 90.048 ± 2.329 9.455 ± 0.3

RKHS Weighting RWExpRelu 0.002 ± 0.0 0.008 ± 0.001 2.066 ± 0.033 1.686 ± 0.024
RWRelu 0.003 ± 0.0 0.01 ± 0.001 3.47 ± 0.055 1.642 ± 0.024

RWStumps 0.006 ± 0.001 0.009 ± 0.001 1.085 ± 0.073 0.711 ± 0.082
RKS RWRelu 0.003 ± 0.001 0.009 ± 0.002 1.015 ± 0.019 0.585 ± 0.011

RWStumps 0.006 ± 0.0 0.01 ± 0.001 0.734 ± 0.021 0.41 ± 0.008
SVM 0.0 0.008 6.37 3.935

phishing AdaBoost 0.061 ± 0.0 0.067 ± 0.0 1.687 ± 0.025 0.225 ± 0.003
RKHS Weighting RWExpRelu 0.027 ± 0.002 0.047 ± 0.002 1.17 ± 0.016 1.058 ± 0.009

RWRelu 0.04 ± 0.001 0.052 ± 0.001 1.167 ± 0.011 1.032 ± 0.01
RKS RWRelu 0.025 ± 0.002 0.045 ± 0.002 0.519 ± 0.012 0.276 ± 0.004
SVM 0.024 0.043 0.709 0.824

skin AdaBoost 0.043 ± 0.0 0.043 ± 0.0 10.941 ± 0.267 1.287 ± 0.016
RKHS Weighting RWExpRelu 0.02 ± 0.0 0.02 ± 0.001 21.153 ± 0.311 21.928 ± 0.164

RWRelu 0.022 ± 0.0 0.022 ± 0.001 23.677 ± 0.264 25.434 ± 0.21
RKS RWRelu 0.012 ± 0.0 0.013 ± 0.0 8.424 ± 0.244 5.763 ± 0.043
SVM 0.0 0.0 533.843 53.736

telescope AdaBoost 0.144 ± 0.0 0.157 ± 0.0 10.14 ± 0.096 0.234 ± 0.004
RKHS Weighting RWExpRelu 0.119 ± 0.003 0.133 ± 0.002 1.79 ± 0.018 1.726 ± 0.02

RWRelu 0.12 ± 0.001 0.131 ± 0.001 1.768 ± 0.031 1.689 ± 0.021
RKS RWRelu 0.12 ± 0.003 0.135 ± 0.002 0.779 ± 0.014 0.465 ± 0.006
SVM 0.095 0.13 3.298 4.067
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Table 16: (Table 10 with standard deviations.) Regression performance comparison of RKHS weightings
to AdaBoost (AB), SVM and the random kitchen sinks (RKS) on various datasets. Instantiations were
chosen based on their performance in Table 8. Algorithm 4 (the least squares fit of the coefficient) was used
to learn RKHS weightings with T = 2000 random features. Inference time is the computation time of the
model on the training set and test sets combined. Every line (except SVM, which is deterministic) is the
average of 10 independent runs.

Train R2 Test R2 Train time (s) Inference time
Dataset Algorithm Instantiation
abalone AdaBoost 0.44 ± 0.019 0.444 ± 0.016 0.067 ± 0.021 0.003 ± 0.0

RKHS Weighting RWExpRelu 0.604 ± 0.0 0.583 ± 0.0 0.601 ± 0.008 0.42 ± 0.006
RWRelu 0.603 ± 0.001 0.576 ± 0.0 0.574 ± 0.007 0.403 ± 0.007
RWSign 0.591 ± 0.0 0.576 ± 0.0 0.457 ± 0.007 0.223 ± 0.01

RKS RWRelu 0.618 ± 0.001 0.581 ± 0.001 0.314 ± 0.018 0.1 ± 0.005
RWSign 0.647 ± 0.011 0.578 ± 0.003 0.343 ± 0.011 0.139 ± 0.004

SVM 0.579 0.571 0.35 0.4
concrete AdaBoost 0.819 ± 0.004 0.767 ± 0.011 0.129 ± 0.038 0.017 ± 0.007

RKHS Weighting RWExpRelu 0.955 ± 0.006 0.836 ± 0.01 0.314 ± 0.009 0.114 ± 0.013
RWRelu 0.925 ± 0.0 0.836 ± 0.002 0.297 ± 0.009 0.105 ± 0.007

RWStumps 0.96 ± 0.0 0.912 ± 0.001 0.311 ± 0.01 0.058 ± 0.003
RKS RWRelu 0.959 ± 0.007 0.85 ± 0.005 0.193 ± 0.012 0.024 ± 0.006

RWStumps 0.945 ± 0.001 0.91 ± 0.002 0.148 ± 0.009 0.025 ± 0.006
SVM 0.957 0.851 0.025 0.02

conductivity AdaBoost 0.731 ± 0.005 0.723 ± 0.004 2.239 ± 0.02 0.028 ± 0.0
RKHS Weighting RWExpRelu 0.877 ± 0.001 0.849 ± 0.001 2.068 ± 0.021 1.957 ± 0.015

RWRelu 0.87 ± 0.001 0.845 ± 0.001 2.095 ± 0.015 1.903 ± 0.018
RWStumps 0.867 ± 0.003 0.848 ± 0.003 1.493 ± 0.012 1.154 ± 0.008

RKS RWRelu 0.878 ± 0.001 0.849 ± 0.001 0.896 ± 0.016 0.517 ± 0.002
RWStumps 0.876 ± 0.002 0.852 ± 0.003 0.882 ± 0.018 0.533 ± 0.006

SVM 0.903 0.871 13.384 11.28
diabetes AdaBoost 0.669 ± 0.013 0.286 ± 0.018 0.101 ± 0.066 0.013 ± 0.01

RKHS Weighting RWExpRelu 0.692 ± 0.001 0.3 ± 0.001 0.287 ± 0.012 0.061 ± 0.013
RWRelu 0.618 ± 0.0 0.334 ± 0.0 0.261 ± 0.011 0.055 ± 0.012

RWStumps 0.573 ± 0.0 0.358 ± 0.0 0.228 ± 0.007 0.018 ± 0.0
RKS RWRelu 0.628 ± 0.002 0.335 ± 0.003 0.181 ± 0.003 0.017 ± 0.002

RWStumps 0.626 ± 0.03 0.338 ± 0.021 0.14 ± 0.007 0.016 ± 0.006
SVM 0.609 0.343 0.008 0.01

housing AdaBoost 0.569 ± 0.009 0.546 ± 0.009 0.323 ± 0.021 0.01 ± 0.0
RKHS Weighting RWExpRelu 0.77 ± 0.001 0.743 ± 0.001 1.977 ± 0.021 1.809 ± 0.031

RWRelu 0.753 ± 0.002 0.735 ± 0.001 1.925 ± 0.025 1.747 ± 0.029
RWStumps 0.787 ± 0.002 0.764 ± 0.002 1.29 ± 0.018 0.955 ± 0.007

RKS RWRelu 0.779 ± 0.004 0.741 ± 0.003 0.846 ± 0.02 0.437 ± 0.022
RWStumps 0.788 ± 0.005 0.759 ± 0.002 0.725 ± 0.022 0.401 ± 0.012

SVM 0.815 0.775 9.278 8.181
wine AdaBoost 1.0 ± 0.0 0.956 ± 0.0 0.16 ± 0.08 0.026 ± 0.012

RKHS Weighting RWExpSign 0.979 ± 0.002 0.893 ± 0.001 0.259 ± 0.01 0.019 ± 0.011
RWSign 0.978 ± 0.0 0.894 ± 0.0 0.244 ± 0.006 0.019 ± 0.01

RKS RWSign 1.0 ± 0.0 0.904 ± 0.008 0.167 ± 0.012 0.013 ± 0.006
SVM 0.99 0.942 0.004 0.002
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Figure 4: Comparison of the classification performance of RKHS weightings (learned using Algorithm 5)
and random kitchen sinks (RKS, learned using Algorithm 2). The number of sampled features was T = 1000.
The x-axis values are the number of features retained by the Lasso. On the y-axis is the test classification
error. The RKHS weightings instantiation is RWRelu. The random kitchen sinks used the same distribution
(Gaussian) and base predictor (ReLU). Each point was obtained by randomly sampling a regularization
parameter for the Lasso, then selecting other parameters through cross-validation.
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Figure 5: Comparison of the regression performance of RKHS weightings (learned using Algorithm 5) and
random kitchen sinks (RKS, learned using Algorithm 2). The number of sampled features was T = 1000.
The x-axis values are the number of features retained by the Lasso. On the y-axis is the test mean squared
error. The RKHS weightings instantiation is RWRelu. The random kitchen sinks used the same distribution
(Gaussian) and base predictor (ReLU). Each point was obtained by randomly sampling a regularization
parameter for the Lasso, then selecting other parameters through cross-validation.
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