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Abstract Popular few-shot Meta-learning (ML) methods presume that a task’s support and query data
are drawn from a common distribution. A recent work relaxed this assumption to propose a
few-shot setting where the support and query distributions differ, with disjoint yet related
meta-train and meta-test support-query shifts (SQS). We relax this assumption further to a
more pragmatic SQS setting (SQS+) where the meta-test SQS is unknown and need not be
related to the meta-train SQS. The state-of-the-art solution to address SQS is transductive,
requiring unlabelled meta-test query data to bridge the support and query distribution
gap. In contrast, we propose a theoretically grounded inductive solution - Adversarial
Query Projection (AQP) for addressing SQS+ and SQS. AQP can be easily integrated into
the popular ML frameworks. Exhaustive empirical investigations on benchmark datasets
and their extensions, different ML approaches, and architectures establish AQP’s efficacy in
handling SQS+ and SQS.

1 Introduction
Meta-learning (ML) approaches assume that the meta-train and meta-test tasks are drawn from a
common distribution. The shared distribution assumption prevents the use of meta-learned models
in evolving test environments deviating from the training set. Recent ML works attempt at relaxing
this assumption [15, 13]. However, these ML approaches assume a common distribution inside the
tasks, i.e., the task-train and task-test data come from the same distribution. But a distribution
shift may exist between the task-train data (support set) and task-test data (query set) because of
the evolving or deteriorating nature of real-world objects or environments, differences in the data
acquisition techniques from support to query sets, extreme data deficiency from one distribution,
etc. Addressing support query shift (SQS) inside a task has gained attention very recently [3].
However, this pioneering work assumes the prior knowledge of SQS in the meta-test set and induces
a related although disjoint SQS in the meta-train set. The model trained on such a meta-train
set is accustomed to handle the SQS and, to some extent, becomes robust to the related unseen
meta-test SQS. In this paper, we consider, SQS+, a more generic SQS problem where the prior
knowledge of the meta-test SQS is absent. We expect an unknown SQS in the meta-test set and
therefore cannot induce any related SQS in the meta-train set. The earlier work on addressing
SQS [3] is a limiting case of SQS+. The solution to SQS proposed by Bennequin et al., [3] uses
optimal transport (OT) to bridge the gap between support and query distributions, but assumes
the availability of unlabelled query during testing. While this solution can be adopted for our
proposed problem, access to unlabelled query data during meta-test may be unrealistic in many
real-world scenarios. Our solution to address the support query (SQ) shift problem - Adversarial
Query Projection (AQP), does not require transduction during meta-testing and thus is applicable
in such real-world scenarios.

Overall, we make the following contributions:

• We propose, SQS+, a practical SQS setting for few-shot meta-learning. The shift between support
and query sets during meta-testing is unknown while meta-training the model.
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• We contribute to the FewShiftBed [3] realistic datasets for evaluating methods that address SQS
and SQS+. In these datasets, meta-train data lacks SQS while meta-test data contains SQS.

• We design an inductive solution for tackling SQS+ using adversarial query projections (AQP).
The AQP module is standalone and could be integrated with any few-shot ML episodic training
regimen. We verify this capability by integrating AQP into Prototypical (ProtoNet) and Matching
Networks (MatchingNet).

• Exhaustive empirical investigation validates the effectiveness of the AQP on various settings and
datasets, preventing a negative impact even in the absence of SQS.

2 Related Work

Transductive meta-learning approaches that utilize unlabeled query data in the training process
are effective baselines for handling SQS in few-shot learning (FSL). Ren et al., [12] introduce a
transductive prototypical network that refines the learned prototypes with cluster assignments
of unlabelled query examples. Boudiaf et al. [4] induce transduction by maximizing the mutual
information between query features and their predicted labels in conjunction with minimizing
cross-entropy loss on the support set. Minimizing the entropy of the unlabeled query instance
predictions during adaptation [5] also achieves a similar goal. Liu et al., [10] propose a graph
based label propagation from the support to the unlabeled query set that exploits the data manifold
properties to improve the efficiency of adaptation . Antoniou et al., [1] show that minimizing a
parameterized label-free loss function that utilizes unlabelled query data during training can also
bridge SQS. Inspired from learning invariant representations [7, 2, 6], Bennequin et al. [3] use
Optimal Transport (OT) [11] during meta-training and meta-testing to address SQS. In contrast, we
propose an inductive method to tackle SQS in FSL where access to the unlabelled meta-test query
instances is not required. Inductive approaches to tackle train-test domain shifts have relied on
adversarial methods for data/task augmentations. Goldblum et al., [8] propose adversarial data
augmentation for FSL setup and demonstrate the robustness of the model trained on augmented
tasks to adversarial attacks at meta-test time. Wang et al. [15] bridge the shift between meta-train
and meta-test domains by adversarial augmentation by constructing virtual tasks learned through
adversarial perturbations. A model trained on such virtual tasks becomes resilient to meta-train
and meta-test domain shifts. While adversarial perturbations are central to our approach, we use it
to tackle a different problem, support query distribution shifts inside a task for FSL.

3 Methodology

3.1 Preliminaries

3.1.1 Notations. A typical ML setup has three phases - meta-train𝑀 , meta-validation𝑀𝑣 and meta-test
𝑀𝑡 . A model is trained on 𝑀 and evaluated on 𝑀𝑡 . 𝑀𝑣 is used for hyperparameter tuning and
model selection. The dataset (𝐶,D) comprising of classes and domains is partitioned into (𝐶𝑀 ,D𝑀 ),
(𝐶𝑀𝑣

,D𝑀𝑣
), and (𝐶𝑀𝑡

,D𝑀𝑡
) corresponding to the phases𝑀 ,𝑀𝑣 and𝑀𝑡 , respectively. Each phase

is a collection of tasks and every task 𝑇0 is composed of a support set 𝑇𝑆0 and a query set 𝑇𝑄0 . The
support set 𝑇𝑆0 and query set 𝑇𝑄0 contain (example 𝑥 , label 𝑦) pairs from 𝑁 -classes with 𝐾 and 𝑄
examples per class, with the label of meta-test query instances being used only for evaluation.

3.1.2 Support-Query Distribution Shift. In a classical few-shot learning setup, the domain is constant
across 𝑀,𝑀𝑣, 𝑀𝑡 phases and within the tasks. So, in addition to a common distribution T0 over
tasks, a shared distribution exists even at the task composition level, i.e., T𝑆0 = T𝑄0 , where T𝑆0 and
T𝑄0 are the distributions on support and query sets respectively. A more pragmatic case is that of
SQS, wherein a distribution mismatch occurs between the support and query sets within a task.
Let D𝑀 and D𝑀𝑡

be the set of domains for the𝑀 and𝑀𝑡 phases. We skip𝑀𝑣 for convenience, but
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it follows the same characteristics as𝑀 and𝑀𝑡 . We define our version of the support query shift
problem termed SQS+ as follows.
Definition 1. (SQS+) The support and query sets of every meta-train task come from the domain D𝑀

and share a common distribution T𝑆0 = T𝑄0 . Let 𝐷
𝑀𝑡

𝑆
, 𝐷

𝑀𝑡

𝑄
∈ D𝑀𝑡

be the support and query domains
for a meta-test task. The SQS+ setting is characterized by an unknown shift in the support and query
domains of a meta-test task, 𝐷𝑀𝑡

𝑆
≠ 𝐷

𝑀𝑡

𝑄
(introducing a shift in the support and query distributions

T𝑆0 ≠ T𝑄0), along with the standard SQS assumption of disjoint meta-train and meta-test domains -
D𝑀 ∩D𝑀𝑡

= ∅.

3.2 Adversarial Query Projection (AQP)
Without leveraging unlabelled meta-test query instances, our solution induces the hardest distribu-
tion shift for the meta-model’s current state. For a task 𝑇0, we simulate the worst distribution shift
by adversarially perturbing its query set 𝑇𝑄0 such that the model’s query loss 𝐿∗ maximizes. Let 𝐻
be the task composition space, i.e., 𝐻 is the distribution of support and query distributions such
that T𝑄0 ∼ 𝐻 and T𝑄 ∼ 𝐻 . Let 𝑇𝑄0 and 𝑇𝑄 be the samples belonging to T𝑄0 and T𝑄 respectively
(we occasionally denote 𝑇𝑄 ∼ 𝐻 because 𝑇𝑄 ∼ T𝑄 ∼ 𝐻 , to improve readability). Also, let Θ be
the parameter space with 𝜃, 𝜙 ∼ Θ, and 𝑑 : 𝐻 × 𝐻 → 𝑅+ be the distance metric that satisfies
𝑑 (𝑇𝑄0,𝑇𝑄0) = 0 and 𝑑 (𝑇𝑄 ,𝑇𝑄0) ≥ 0. We consider a Wasserstein ball 𝐵 centered at T𝑄0 with radius 𝜌
denoted by 𝐵𝜌 (T𝑄0) such that:

𝐵𝜌 (T𝑄0) = {T𝑄 ∈ 𝐻 :𝑊𝑑 (T𝑄 , T𝑄0) ≤ 𝜌}
where𝑊𝑑 (T𝑄 , T𝑄0) = inf

𝑀 ∈𝜋 (T𝑄 ,T𝑄0 )
E𝑀

[
𝑑 (𝑇𝑄 ,𝑇𝑄0)

]
is the Wasserstein distance that measures the

minimum transportation cost required to transform T𝑄0 to T𝑄 , and 𝜋 (T𝑄 , T𝑄0) denotes all joint
distributions for (T𝑄 , T𝑄0) with marginals T𝑄 and T𝑄0 . AQP aims to find the most challenging
query distribution T𝑄 for an original query distribution T𝑄0 that lies within or on the Wasserstein
ball 𝐵𝜌 (T𝑄0). The hardest perturbation to the query distribution T𝑄0 is the one that maximizes the
model’s query loss 𝐿∗. Updating the model using such difficult query distribution T𝑄 improves its
generalizability. Further, the transformation of T𝑄0 into T𝑄 induces a distributional disparity in a
new virtual task comprising of the original support set from T𝑆0 and the projected query set from
T𝑄 . A model adapted to such virtual tasks is compelled to extract the shift-invariant representations
from𝑇𝑆0 ∼ T𝑆0 transferable to𝑇𝑄 ∼ T𝑄 to reduce the query loss 𝐿∗. As adversarial perturbations are
adaptive to the model’s state, they do not have a monotonic structure throughout the meta-training
phase. The evolving augmentations expose the model to diverse SQS. A model meta-trained on
such virtual tasks with different SQ shifts learns to extract diverse shift-invariant representations
increasing the model’s endurance to unknown meta-test SQS. The simultaneous restrain of T𝑄 to a
Wasserstein ball radius 𝜌 ensures T𝑄 does not deviate extensively from T𝑄0 , and T𝑄 , T𝑄0 share the
label space, and T𝑄0, T𝑄 ∈ 𝐻 is maintained. Thus the newly-framed meta-objective is:

min
𝜃 ∈Θ

sup
𝑊𝑑 (T𝑄 ,T𝑄0 ) ≤𝜌

E(𝑇𝑄∼ T𝑄 )
[
𝐿∗(𝜙,𝑇𝑄 )

]
(1)

where 𝜙 ← 𝜃 − 𝛼∇𝜃𝐿(𝜃 ;𝑇𝑆0). Note that ML approaches such as ProtoNet [9] and MatchingNet [14]
do not require adaptation, and hence 𝜃 = 𝜙 . As equation 1 is intractable for an arbitrary 𝜌 , we use
Langragian relaxation for a fixed penalty parameter 𝛾 ≥ 0 to convert this constrained objective to
an unconstrained objective.

min
𝜃 ∈Θ

sup
T𝑄

{
ET𝑄 [𝐿∗(𝜙,𝑇𝑄 )] − 𝛾𝑊𝑑 (T𝑄 , T𝑄0)

}
(2)

This unconstrained objective (equation 2) is strongly concave and hence easy to optimize. It involves
maximizing the loss 𝐿∗ on adversarial query projections 𝑇𝑄 while simultaneously restraining 𝑇𝑄 to
a 𝜌 distance from 𝑇𝑄0 .
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Table 1: Comparison of ML methods with their Ind_OT and AQP counterparts across Cifar 100,
miniImagenet, tieredImagenet, FEMNIST datasets, and their SQS and SQS+ variants. The
results are obtained on 5-way tasks with 5 support and 8 query instances per class except for
FEMNIST and its variants, which contains only one support and one query instance per class.
The ± represents the 95% confidence intervals over 2000 tasks. AQP outperforms classic, and
Ind_OT-based ML approaches approximately on all datasets.

Method
Test Accuracy

No SQS SQS SQS+ No SQS SQS SQS+

Cifar 100 miniImagenet
ProtoNeT 48.07 ± 0.44 43.15 ± 0.48 40.59 ± 0.69 64.56 ± 0.42 41.68 ± 0.76 35.17 ± 0.78
Ind_OT+
ProtoNeT 48.62 ± 0.44 43.62 ± 0.49 41.74 ± 0.65 63.74 ± 0.42 39.84 ± 0.78 34.75 ± 0.80

AQP+
ProtoNeT 48.70 ± 0.42 45.09 ± 0.46 45.06 ± 0.46 66.81 ± 0.42 42.65 ± 0.57 40.61 ±0.60

MatchingNet 46.03 ± 0.42 39.89 ± 0.44 36.63 ± 0.45 59.68 ± 0.43 39.66± 0.54 35.40 ±0.52
Ind_OT+

MatchingNet 45.77 ± 0.42 40.82 ± 0.45 37.13 ± 0.47 59.64 ± 0.44 38.25± 0.54 33.22± 0.50

AQP+
MatchingNet 46.53 ± 0.43 42.40 ± 0.46 41.26 ± 0.46 62.29 ± 0.42 42.32 ± 0.52 37.90 ± 0.53

tieredImagenet FEMNIST
ProtoNeT 71.04 ± 0.45 41.59 ± 0.57 38.57 ± 0.65 93.09 ± 0.51 84.36 ± 0.74 82.67 ± 0.77
Ind_OT+
ProtoNeT 69.56 ± 0.46 40.08 ± 0.56 35.81 ± 0.58 91.66 ± 0.55 79.64 ± 0.80 76.37 ± 0.84

AQP+
ProtoNeT 69.62 ± 0.45 45.34 ± 0.60 40.94 ± 0.66 94.61 ± 0.45 85.92 ± 0.69 84.42 ± 0.74

MatchingNet 67.85 ± 0.46 43.30 ± 0.56 37.57 ± 0.57 93.69 ± 0.49 85.88 ± 0.69 83.48 ± 0.74
Ind_OT+

MatchingNet 67.79 ± 0.46 44.27 ± 0.56 39.24 ± 0.59 93.76 ± 0.48 84.08 ± 0.71 83.09 ± 0.74

AQP+
MatchingNet 68.40 ± 0.45 45.26 ± 0.56 39.39 ± 0.58 93.69 +- 0.49 87.24 ± 0.67 84.98 ± 0.72

3.2.1 Estimation of AQP. We employ gradient ascent with early stopping on the query set instances
𝑋 ∗ to find their corresponding adversarial query projections 𝑋 ∗𝑤 . Specifically, we perform an
iterative gradient ascent on 𝑋 ∗ using 𝐿∗, resulting in an augmented query set 𝑋 ∗𝑤 . This augmented
query set 𝑋 ∗𝑤 has distributional disparity with original support set 𝑋 . Early stopping regularizes
(−𝛾𝑑 (𝑇𝑄 ,𝑇𝑄0)) and ensures 𝑋 ∗𝑤 does not deviate extensively from 𝑋 ∗.

4 Experiments and Results

We design experiments to investigate the challenging nature of our proposed SQS+ benchmark and
empirically validate the efficacy of the proposed AQP over the state-of-the-art approach to address
SQS in inductive settings. We consider Cifar 100, miniImagenet, tieredImagenet, FEMNIST, and
their state-of-the-art SQS variants for evaluation. We also demonstrate the AQP’s efficiency on our
proposed SQS+ versions of benchmark datasets. The SQS+ versions of Cifar 100, miniImagenet,
and tieredImagenet datasets are constructed from their SQS counterparts [3] by removing pertur-
bations from the meta-train datasets. Similarly, the SQS+ variant of FEMNIST also follows its SQS
counterpart, but the meta-train set contains alpha-numerals from users randomly. We add these
SQS+ versions of benchmark datasets to the FewShiftBed [3]. We used Conv4 models [3] for Cifar
100, FEMNIST and their variants, and ResNet-18 [9] for miniImagenet, tieredImagenet, and their
extensions. We use 32× 32 images for Cifar 100, 28× 28 for FEMNIST, and 84× 84 for miniImagenet
and tieredImagenet. The modified FewShiftBed, which includes the proposed solution, details of
SQS+ versions of datasets, and implementation details, is publicly available.1

4.1 Evaluation of SQS+

We first validate that SQS+ is more challenging than the SQS problem [3]. We train Prototypical and
Matching networks on Cifar 100, miniImagenet, tieredImagenet, and FEMNIST on all three settings
- No SQS, SQS, and SQS+. We report the results in Table 1 and observe that for all the datasets,
models trained with both the approaches (ProtoNet and MatchingNet) perform best in the No SQS

1https://github.com/Few-Shot-SQS/adversarial-query-projection
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setting, followed by SQS and SQS+. In the classical few-shot setting, meta-train and meta-test
phases share the domain, due to which the meta-knowledge is easily transferable across the phases.
However, in SQS, each task’s support and query set represent different domains, but share a latent
structure, during the meta-train and meta-test phases. In SQS versions of Cifar 100, miniImagenet,
and tieredImagenet, both meta-train and meta-test SQS are characterized by different types of data
perturbations. However, in FEMNIST’s SQS variant, meta-train and meta-test SQS is induced due
to different writers. A meta-model trained in this setup becomes partially resilient to the related
but disjoint SQS during meta-testing. A common SQS structure across meta-train and meta-test
sets may not exist. Thus, SQS+ datasets are more challenging, which is empirically validated by the
baseline approach’s poor performance.

4.2 Evaluation of AQP

We compare the efficiency of the proposed AQP and OT based state-of-the-art solution in handling
vanilla SQS and SQS+ on the benchmark datasets. A strong baseline for SQS+ is the inductive
version of OT (Ind_OT), where we employ OT only in the meta-train phase to generate projected
support sets using support and query instances of a task. We evaluate ProtoNet and MatchingNet
versions of Ind_OT and AQP. Table 1 presents the results for this evaluation. We observe that the
models learned on projected support data obtained by Ind_OT are less robust to both SQS and SQS+
than the models learned on AQP for all approaches and datasets. Hence, AQP is better at addressing
SQS+ (and SQS), when meta-test unlabeled query instances are unavailable. To inspect whether the
proposed AQP negatively impacts the models’ generalization in the absence of meta-test SQS, we
evaluate the ML approaches and their Ind_OT and AQP counterparts on classic datasets containing
no support query shifts (No SQS). We observe from Table 1 that AQP does not lead to degradation
in the performance in the absence of SQS, instead improves the generalizability of the model even
when SQS is absent. The use of different architectures across the datasets shows the robustness of
a model trained via AQP across architectures.

5 Conclusion and Future Directions

This paper proposes SQS+ - a more challenging distribution shift between the support and query
sets of a task in a few-shot meta-learning setup. SQS+ includes an unknown SQ shift in the meta-test
tasks, and empirical evidence suggests SQS+ is a complex problem than the prevalent SQS notion.
We propose Adversarial Query Projection (AQP) to address SQS+ without leveraging unlabelled
meta-test query instances. Exhaustive experiments involving AQP on multiple benchmark datasets
(Cifar 100, miniImagenet, tieredImagenet, and FEMNIST - their SQS and proposed SQS+ variants),
different architectures, and ML approaches demonstrate its effectiveness. We incorporate proposed
AQP and SQS+ versions of Cifar 100, miniImagenet, tieredImagenet, and FEMNIST to FewShiftBed
and make it publicly available to encourage research in this direction. The future work includes
verifying the effectiveness of AQP in complex SQ shifts, e.g., shift from real to sketch images and
creating datasets corresponding to these difficult SQ shifts.

6 Limitations and Broader Impact Statement

We evaluated AQP in the cases where the perturbations in data characterize SQS, and for FEMNIST
dataset, different writers characterize SQS. More complex SQ shifts may exist in real-world problems
- drastic changes may occur in data acquisition from support to query, or a shift from sketch images
in support outlined by a domain expert to real query pictures may exist. AQP’s performance is
not verified for these cases yet. Nevertheless, AQP is a baseline for addressing SQS+, and the
publically available resources will help the ML community. We declare that our work has no ethical
implications and contains no human subject experiments.
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