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Abstract

Instruction-tuned large language models (LLMs) often exhibit sycophancy—a1

tendency to agree with a user’s stated opinion even when it is factually wrong. In2

this work, we present two complementary inference-time interventions to mitigate3

this behavior using tools from mechanistic interpretability. First, we propose Sparse4

Activation Fusion (SAF), which addresses the prompt-dependence of sycophancy.5

Unlike prior methods that rely on global steering directions, SAF dynamically6

estimates and subtracts user-induced bias within a sparse feature space for each7

query. On the SycophancyEval QnA benchmark with opinion cues, SAF lowers8

sycophancy from 63% to 39% and doubles accuracy when the user’s opinion9

is wrong, while maintaining performance when the user is correct. Second, we10

introduce a multi-layer activation steering method that identifies a “pressure”11

direction in the residual stream—capturing the model’s internal state when its12

initial answer followed up with a strong user agreement. By ablating this direction13

across targeted layers, we reduce the rate of responses where the model admits false14

positives as correct from 78.0% to 0.0% on the SycophancyEval Trivia benchmark,15

while preserving baseline accuracy. Together, these methods demonstrate two16

effective and interpretable paths to improving LLM truthfulness without retraining.17

We will publicly release code, data, and other artifacts upon acceptance.18

1 Introduction19

Large language models have become powerful tools for a wide range of applications, but their20

alignment with human values and goals remains an open challenge [OpenAI, 2023]. One persistent21

problem is sycophancy, where models tend to agree with users or adopt their stated beliefs, even22

when those beliefs are factually incorrect [Sharma et al., 2023, Wei et al., 2023]. This behavior likely23

arises from training objectives that reward agreement and helpfulness, but in practice, it undermines24

trust and can propagate misinformation.25

Recent mechanistic work has begun to reveal how alignment-related behaviors can be encoded26

within the internal activations of transformer models [Marks and Tegmark, 2023, Wang et al., 2024].27

For instance, refusal behavior has been shown to correspond to a single low-dimensional direction28

in activation space [Arditi et al., 2024], enabling precise steering at inference time. Sycophancy,29

however, represents a qualitatively different failure mode. Whereas over-refusal reduces model utility30

by withholding information, over-agreement actively introduces falsehoods into the interaction. This31

duality highlights a broader tension in alignment: balancing caution with assertiveness.32

Existing sycophancy mitigations have assumed that the phenomenon can be addressed with global,33

stationary interventions—such as fine-tuning on synthetic datasets [Wei et al., 2023], applying34

linear-probe–based penalty methods [Papadatos and Freedman, 2024], and pinpoint tuning [Chen35

et al., 2024], which selectively adjusts a small subset of model weights along pre-identified acti-36
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vation directions. Prompt-based heuristics attempt to counteract user influence through templated37

disclaimers, while dense steering methods apply precomputed global vectors to nudge activations38

toward truth-seeking responses [Panickssery et al., 2024]. However, these approaches implicitly39

assume that sycophancy corresponds to a single direction in activation space that is consistent across40

prompts. We hypothesize that sycophancy varies with input phrasing and is distributed across layers,41

with different parts of the network encoding distinct aspects of user pressure and opinion bias.42

To this end, we present two complementary mechanistic interpretability-based approaches. First, we43

propose Sparse Activation Fusion (SAF), which dynamically estimates and counteracts user-induced44

bias for each query within a sparse feature space. SAF contrasts a query with its neutralized variant,45

identifies the opinion vector direction in a sparse feature space learned by a Sparse Autoencoder46

(SAE), and fuses the two representations to suppress misleading user bias. This allows for fine-47

grained, input-conditioned control that avoids the limitations of global dense directions. Second, we48

introduce Multi-Layer Activation Steering (MLAS), a method that identifies layer-specific "pressure49

directions", activation components corresponding to the model’s internal state when its initial answer50

is challenged, and removes them from the residual stream during inference. Unlike single-direction51

methods such as Contrastive Activation Addition [Panickssery et al., 2024], our findings suggest that52

sycophancy-related features may be distributed across layers, motivating interventions that act in a53

more coordinated manner.54

Together, these two inference-time methods demonstrate that both prompt-specific sparse edits and55

multi-layer directional ablations can significantly reduce sycophancy while preserving baseline task56

performance.57

2 Hypotheses58

We test three key hypotheses about the nature of sycophantic behavior in language models:59

1. Directional Separability: Sycophantic behavior corresponds to identifiable, manipulable60

directions in transformer activation space that can be isolated from general reasoning61

capabilities.62

2. Multi-Layer Distribution: Sycophancy-related representations are distributed across multi-63

ple layers rather than localized to a single layer, requiring coordinated intervention across64

the network depth.65

3. Sparse Advantage: Sparse feature spaces learned by Sparse Autoencoders allow more66

targeted and effective intervention than dense activation steering, enabling fine-grained67

control over specific behavioral tendencies.68

Our experimental design directly tests these hypotheses through controlled comparisons and ablation69

studies.70

3 Related work71

Sycophancy and measurement. Instruction-tuned language models can align to a user’s stated72

opinion rather than ground truth [Ouyang et al., 2022]. Sharma et al. [2023] formalize this behavior73

and introduce SYCOPHANCYEVAL, which we follow for evaluation. Data-centric mitigations include74

small synthetic datasets that decouple user opinions from correctness [Wei et al., 2023].75

Training-time and parameter-efficient approaches. Parameter-efficient fine-tuning can target76

modules most responsible for sycophancy while limiting side effects. These approaches modify77

weights and require additional training computationChen et al. [2024].78

Inference-time activation steering. A complementary line of work intervenes at inference time79

by modifying hidden activations directly, without updating model weights. Activation engineering80

steers behavior along learned directions [Turner et al., 2023]; contrastive activation addition applies81

difference vectors to induce desired behavior [Panickssery et al., 2024]; and refusal has been linked82

to a single direction in the residual stream [Arditi et al., 2024]. Steering in sparse feature spaces83
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offers localized control and interpretability [Bayat et al., 2025]. Related analyses suggest sycophancy-84

related signals tend to emerge in mid-to-late layers [Wang et al., 2025], and similar agreement85

tendencies have been observed in vision–language models [Zhao et al., 2024].86

Confidence-based interventions and our scope. Multi Layer Activation Steering(MLAS) lever-87

ages contrastive activations between confident and uncertain states to identify anti-uncertainty di-88

rections, motivated by evidence that sycophancy correlates with reduced internal confidence [Wang89

et al., 2025]. We study prompt-conditioned sparse edits (SAF), and layer-aware steering (MLAS),90

training-free controls for sycophancy.91

4 Methods92

4.1 Sparse activation fusion (SAF)93

This method consists of two stages: (1) a query neutralizer that removes subjective or suggestive cues94

while preserving the task intent, and (2) an activation fusion step that operates in a sparse feature95

space at a specified transformer layer to counteract the induced bias.96

Figure 1: Sparse Activation Fusion pipeline.

4.1.1 Query Neutralization97

Following the framework of Zhao et al. [2024], each query is passed through a query neutralizer that98

removes subjective, suggestive, or emotional cues while preserving semantics. We implement this99

using a separate instance of the same model architecture (Gemma-2-2b-it) loaded via Hugging Face100

Transformers, with a simple prompt-engineering approach, the model is provided with the following101

prompt:102

"Rewrite the user’s question in a neutral, factual way. Remove opinions, hedges,103

or answer cues. Output only the rewritten question."104

The original query and this instruction are formatted using the model’s chat template, and the105

neutralized version is generated using greedy decoding for consistency.106

For example, a biased query like "I think climate change is overblown, but what are the supposed107

effects?". would be neutralized to "What are the effects of climate change?" If the neutralization108

process fails or produces empty output, the system falls back to using the original query to ensure109

robustness.110
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4.1.2 Prompt-Conditioned Sparse Fusion111

After obtaining the neutralized query, we feed both versions of the query (original and neutral) into112

the same LLM and collect their hidden activations at a chosen intermediate layer L, using only the113

final token position to ensure alignment despite differences in prompt length. Through our own114

logit-lens analysis and causal activation patching, we identified layer L = 17 as the point where115

sycophantic preference most strongly emerges in our 25-layer transformer, following the analytical116

approach of Wang et al. [2025].117

To enable precise control over which features are transferred from the original to the neutral query,118

we perform the fusion in the sparse feature space of a pretrained Sparse Autoencoder (SAE) [Bayat119

et al., 2025].120

Let aorig and aneut be the activations at layer 17 for the original and neutral queries, respectively. We121

encode each through the SAE to obtain sparse codes zorig and zneut, then fuse them via:122

zfused = zneut + α · (zorig − zneut),

where zorig − zneut represents the user’s opinion vector direction, and α ∈ [0, 1] controls how much123

the user’s opinion biases the output. α = 0 ignores the user’s opinion entirely, while α = 1 applies124

no mitigation. In practice, α can be fine-tuned to optimize the trade-off between leveraging helpful125

user-provided cues and suppressing misleading bias.126

The fused code zfused is decoded back to dense activation afused and injected at layer 17, after which127

the remaining layers complete generation. Figure 1 above depicts this workflow.128

4.2 Multi-layer activation steering (MLAS)129

We follow prior work that models behaviors as approximately linear directions in the residual stream130

and steers them at inference time [Turner et al., 2023, Arditi et al., 2024]. Concretely, we construct131

contrastive contexts (honest vs. pressure-induced), compute per-layer difference vectors (“pressure132

directions”) from residual activations, and ablate the projection onto these directions during decoding.133

The method isolates neural representations that differentiate between confident/honest responses134

and uncertain/sycophantic responses, then steers activations away from sycophantic behavior while135

preserving model capabilities. The full pipeline consists of four steps: (i) generating contrasting136

activation states, (ii) extracting layer activations, (iii) computing steering directions, and (iv) applying137

targeted interventions during inference.138

Figure 2: Multi-layer activation steering pipeline.
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4.2.1 Identifying Sycophancy Steering Directions139

We use 100 "neutral" prompts from the SycophancyEval dataset [Sharma et al., 2023] for direction140

identification. These are trivia-style general knowledge questions without opinion cues. To create141

contrasting activation states, we artificially induce positive social pressure by appending strong142

agreement to the model’s initial responses. This allows us to isolate the neural representation143

distinguishing confident from uncertain states by creating two contrasting activation conditions:144

Honest State (Baseline Confident Responses) We present neutral, direct prompts (e.g., "What is the145

capital of France?") and record the model’s residual stream activations at the last content token across146

all layers. This captures the model’s natural confident state when responding to factual questions147

without external pressure.148

Sycophantic State (Pressure-Induced Responses) We create scenarios where the model experiences149

social pressure by presenting the same question, followed by the model’s initial response, and then150

strong user agreement: "That’s absolutely correct! I completely agree with your answer." We record151

residual stream activations at the final content token (just before the model generates its follow-up152

response). This captures the model’s state when reinforced by user agreement, which can lead to153

overconfident or sycophantic behavior. We use this social pressure prompt setup with a strong user154

agreement for calculating the direction only and not for evaluation purposes.155

For each layer L, we compute the mean activation vectors for both states:156

• A⃗honest,L: Mean activation in the honest/confident state157

• A⃗syco,L: Mean activation in the sycophantic/pressured state158

The sycophancy direction s⃗L for layer L is computed as the normalized difference vector pointing159

from the honest state to the sycophantic state:160

s⃗L =
A⃗syco,L − A⃗honest,L

∥A⃗syco,L − A⃗honest,L∥
(1)

This direction vector captures the primary axis in activation space that leads from confident, indepen-161

dent responses toward sycophantic, pressure-influenced responses. Geometrically, this vector points162

toward sycophantic behavior.163

4.2.2 Multi-Layer Intervention During Inference164

We reduce sycophantic behavior by steering residual activations away from the sycophantic direction165

during text generation. For a residual activation a⃗L at layer L and the corresponding sycophancy166

direction s⃗L, we apply the following intervention:167

a⃗L,new = a⃗L − α · (⃗aL · s⃗L)s⃗L (2)

where α > 0 controls the intervention strength, and (⃗aL · s⃗L) is the projection of the current168

activation onto the sycophancy direction. The subtraction operation systematically removes syco-169

phantic tendencies from the activation while preserving orthogonal components that are unrelated to170

sycophancy.171

During inference, we apply interventions specifically to layers 10-25, targeting the later layers172

of the transformer architecture. Since sycophantic behavior involves complex reasoning about173

user preferences and the strategic modulation of responses based on perceived expectations, we174

hypothesize that these patterns are encoded in the deeper semantic representations captured by later175

layers. The intervention subtracts sycophantic components while preserving the base activation176

structure.177

To ensure stable generation, we set the intervention strength to α = 0.2 based on empirical tuning.178

Values above 0.2 led to degraded generation quality and incoherent outputs, while values below 0.2179

were insufficient to effectively reduce sycophantic behavior. This conservative intervention strength180

preserves generation quality while achieving the desired steering effect.181
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Figure 3: The prompt incorrectly doubts the correct answer. The baseline model agrees with this
mistake (sycophantic response), while the intervened model resists the pressure and answers correctly.

4.2.3 Experimental Setup182

We evaluate our approach on 100 manually curated test cases from the SycophancyEval dataset. The183

evaluation follows a three-step protocol:184

1. Initial Response: The model is presented with neutral questions without any social pressure185

(e.g., "What is the capital of France?").186

2. Pressure Application: The model receives user disagreement expressing uncertainty about187

the correct answer using the template: "I think the correct answer is not {correct_answer}188

but I am really not sure."189

3. Response Comparison: We compare the model’s behavior under pressure with and without190

our MLAS intervention.191

5 Experiments and Results192

5.1 SAF performance193

As shown in Table 1, the baseline model frequently agrees with the user even when the user is wrong,194

yielding only 30% accuracy in the user-wrong (UW) condition. With SAF, the sycophancy rate195

drops from 63% to 39%, and accuracy in the UW condition rises to 60% (a two-fold improvement),196

indicating that sparse-space fusion at layer L=17 effectively counteracts misleading user cues. When197

the user is correct, the baseline already performs well (70% accuracy), as it mostly agrees with198

the user’s correct answer. SAF remains comparable (65%), suggesting only minor attenuation of199

legitimately helpful cues.200

Results show consistent improvements in maintaining correct answers under social pressure, with201

success rates varying by domain and intervention strength. The method demonstrates particular202

effectiveness on factual QA tasks while requiring careful tuning for mathematical reasoning domains.203

Method Syc. ↓ Acc. (UC) ↑ Acc. (UW) ↑
No inter. 63% 70% 30%
SAF (ours) 39% 65% 60%

Table 1: Sycophancy (Syc.) and accuracy when the user is correct (UC) or wrong (UW) under
the SYCOPHANCYEVAL QnA setup with opinion cues, using gemma-2-2b-it and a gemma-scope
SAE. [↑ - the more the better, ↓ - the less the better]

5.2 MLAS Performance204

As shown in Table 2, the results demonstrate that social pressure significantly degrades model205

performance, reducing accuracy from 70% to 45% and causing the model to falsely admit uncertainty206

in 78% of cases. Our MLAS intervention successfully counters this degradation, restoring accuracy to207

68% (nearly matching the unpressured baseline) while completely eliminating cases where the model208

admits incorrectly. In our experiments, we calibrated α on a held-out validation set and found that a209

value of approximately 0.7 consistently balanced truthfulness and user alignment across scenarios.210
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Metric Initial Response Baseline MLAS Intervention
Accuracy (↑) 70% 45% 68%
False Admits (↓) – 78% 0%

Table 2: Performance comparison across 100 manually evaluated test cases. Initial Response shows
model performance on neutral prompts without social pressure. Baseline and MLAS Intervention
columns show performance when the model faces user disagreement ("I think the correct answer is
not {correct_answer} but I am really not sure"). [↑ - the more the better, ↓ - the less the better]

5.2.1 Evaluation Metrics211

We evaluate baseline and intervention generations across the following metrics:212

• Initial Accuracy: Factual correctness of the model’s first response to an unbiased prompt213

without social pressure.214

• Baseline Accuracy: Correctness of the model’s follow-up answer under user disagreement,215

without intervention.216

• Intervention Accuracy: Correctness of the follow-up answer when our MLAS intervention217

is applied.218

• False Admits: Percentage of cases where the model response agrees with the incorrect219

claim of the user (that the answer is not the correct answer)220

5.2.2 Cross-Dataset Generalization221

To evaluate the generalizability of our MLAS approach beyond sycophancy-specific scenarios, we222

tested the intervention on five diverse datasets without introducing social pressure or bias. This223

analysis examines whether steering directions identified from sycophancy scenarios transfer to general224

question-answering contexts and assesses any potential degradation in model performance when225

applying the intervention broadly.226

Dataset Baseline Accuracy MLAS Intervention Performance Change
AsDIV 79.5% 71.75% −7.75%

StrategyQA 67.75% 64.75% −3.0%

SVAMP 45.5% 44.5% −1.0%

MMLU 45.25% 42.00% −3.25%

Table 3: Cross-dataset generalization results showing model performance with and without MLAS
intervention across 400 samples per dataset. All evaluations were conducted without social pressure
or bias to assess the intervention’s impact on general reasoning capabilities.

The results reveal that while MLAS effectively reduces sycophantic behavior under social pressure, it227

introduces modest performance degradation when applied to unbiased question-answering scenarios.228

Across all tested datasets, we observe an average accuracy decrease of 3.75 percentage points, with229

the largest impact on AsDIV (arithmetic word problems) at −7.75% and minimal effect on SVAMP230

(math word problems) at −1.0%. This performance trade-off suggests that the steering directions231

identified for sycophancy mitigation may partially interfere with general reasoning processes.232

5.2.3 The pressure direction’s role in MLAS233

Note: The analysis presented in this section is from a preliminary experiment using stronger inter-234

vention values (α > 0.9) and a different evaluation setup. While these findings provide valuable235

mechanistic insights into how the sycophancy direction affects model behavior, we ultimately adopted236

the more conservative α = 0.2 approach presented in the main results due to better generalization237

across datasets and more stable generation quality.238

As we have defined, the sycophancy direction is the normalized difference between each layer’s239

activations at the final token of the pressure prompt and the final token of the neutral prompt.240
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Intuitively, this direction captures the average activation change when the model transitions from241

confident to pressured states.242

To understand the functional role of this direction, we applied direction ablation across all layers and243

measured changes in attention patterns and task performance on TriviaQA and GSM8K [Cobbe et al.,244

2021]. For each example, we extracted attention magnitudes per token (aggregating across heads and245

layers at the decision timestep), computed category-level attention mass (special tokens, numeric246

tokens, content tokens), and compared the top-k token rankings between baseline and ablation runs.247

The ablation produces consistent attention redistribution:248

• Reduced uncertainty signals: Tokens expressing doubt ("sure", "think", "wrong", "certain",249

"experts") are down-weighted from the top-10 attention positions.250

• Attention reallocation: Attention to beginning-of-sequence tokens (<bos>) collapses by251

multiple orders of magnitude (from 68 to 0.5 attention units on average), with attention252

redirected to conversation boundary tokens (<start_of_turn>).253

• Task-specific effects: On TriviaQA, decreasing attention to doubt tokens helps models254

revert to original answers, reducing sycophancy. On GSM8K, attention to numeric tokens255

decreases by half, possibly due to reduced focus on <bos> tokens that organize mathematical256

content, impairing mathematical performance.257

Tokens outside these categories maintained consistent attention rankings (Spearman correlation of258

0.9), suggesting targeted rather than global disruption. Random direction ablation produced only259

hallucinated responses, confirming the specificity of our learned directions.260

However, this stronger intervention approach showed poor generalization to other datasets and tasks261

beyond the specific evaluation setup, leading us to adopt the more conservative α = 0.2 approach for262

our main evaluation.263

6 Conclusion264

We have presented two complementary inference-time interventions for mitigating sycophancy in265

large language models through mechanistic interpretability. Sparse Activation Fusion (SAF) addresses266

the prompt-dependent nature of sycophantic behavior by dynamically estimating and counteracting267

user-induced bias within a sparse feature space, reducing sycophancy rates from 63 to 39 percent while268

doubling accuracy when users hold incorrect opinions. Multi-Layer Activation Steering (MLAS)269

takes a different approach, identifying and ablating "pressure directions" across multiple layers to270

prevent models from capitulating under social pressure, successfully eliminating false admissions271

entirely while preserving baseline accuracy.272

Both methods demonstrate that sycophancy can be effectively addressed without model retraining,273

offering practical solutions for deployment scenarios where truthfulness is paramount. SAF’s sparse,274

input-conditioned approach proves particularly effective for handling diverse opinion cues, while275

MLAS’s multi-layer intervention provides robust protection against direct challenges to the model’s276

initial responses. Together, they illustrate the power of mechanistic interpretability for creating277

targeted, interpretable interventions that preserve model capabilities while correcting specific failure278

modes.279

Our work contributes to a growing body of research showing that alignment failures often correspond280

to identifiable patterns in neural activation space. By leveraging these patterns through sparse feature281

manipulation and directional steering, we can achieve meaningful behavioral improvements without282

the computational overhead of retraining. As language models become increasingly deployed in283

high-stakes applications, such inference-time interventions offer a promising path toward more284

reliable and trustworthy AI systems that maintain their helpfulness while prioritizing factual accuracy285

over mere agreement.286

7 Limitations287

While both Sparse Activation Fusion (SAF) and Multi-Layer Activation Steering (MLAS) demon-288

strate strong reductions in sycophancy, several limitations remain.289
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Computational overhead. SAF requires a dual forward pass, one for the original query and one290

for its neutralized variant, followed by SAE encoding and decoding, which introduces moderate291

overhead. Although this can be mitigated by parallelization or lightweight auxiliary models for query292

neutralization, scaling to larger deployments remains a concern.293

Behavioral trade-offs. MLAS can reduce "bad admits" but at times suppresses helpful self-294

correction: in cases where the model’s initial answer was wrong, the baseline occasionally revised295

itself under challenge, while the intervened model tended to preserve its incorrect answer. More296

generally, both methods may risk over-steering, either attenuating legitimate user cues (SAF) or297

collapsing to fallback responses (MLAS).298

Evaluation scope. Our experiments focus on the SycophancyEval QnA setup, where user disagree-299

ment or opinion cues are explicitly tested. Extending evaluation to broader domains (e.g., open-ended300

debates) would provide a more comprehensive assessment. Moreover, MLAS evaluations required301

manual labeling of outputs, which limited test set size ( 100 examples) and restricted statistical302

analysis across diverse tasks.303

Isolated evaluation. We evaluated SAF and MLAS independently, highlighting the strengths and304

weaknesses of each approach in isolation. However, since the two methods address complemen-305

tary aspects of sycophancy—prompt-induced bias versus challenge-induced pressure—it would be306

valuable to study their combined effect. Joint evaluation could reveal whether the methods interact307

synergistically or introduce new trade-offs.308

Together, these limitations suggest that while input-conditioned sparse fusion and multi-layer steering309

provide promising building blocks for inference-time sycophancy mitigation, further work is needed310

to reduce overhead, improve robustness to prompt form, and broaden evaluation.311
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