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Abstract

Instruction-tuned large language models (LLMs) often exhibit sycophancy—a
tendency to agree with a user’s stated opinion even when it is factually wrong. In
this work, we present two complementary inference-time interventions to mitigate
this behavior using tools from mechanistic interpretability. First, we propose Sparse
Activation Fusion (SAF), which addresses the prompt-dependence of sycophancy.
Unlike prior methods that rely on global steering directions, SAF dynamically
estimates and subtracts user-induced bias within a sparse feature space for each
query. On the SycophancyEval QnA benchmark with opinion cues, SAF lowers
sycophancy from 63% to 39% and doubles accuracy when the user’s opinion
is wrong, while maintaining performance when the user is correct. Second, we
introduce a multi-layer activation steering method that identifies a “pressure”
direction in the residual stream—capturing the model’s internal state when its
initial answer followed up with a strong user agreement. By ablating this direction
across targeted layers, we reduce the rate of responses where the model admits false
positives as correct from 78.0% to 0.0% on the SycophancyEval Trivia benchmark,
while preserving baseline accuracy. Together, these methods demonstrate two
effective and interpretable paths to improving LLM truthfulness without retraining.
The code for this work can be viewed here: https://github.com/Avil61/
Sycophancy_AANP

1 Introduction

Large language models have become powerful tools for a wide range of applications, but their
alignment with human values and goals remains an open challenge [OpenAll |2023]]. One persistent
problem is sycophancy, where models tend to agree with users or adopt their stated beliefs, even
when those beliefs are factually incorrect [[Sharma et al., 2023, [Wei et al.,2023||. This behavior likely
arises from training objectives that reward agreement and helpfulness, but in practice, it undermines
trust and can propagate misinformation.

Recent mechanistic work has begun to reveal how alignment-related behaviors can be encoded
within the internal activations of transformer models [Marks and Tegmark, 2023} [Wang et al., 2024]).
For instance, refusal behavior has been shown to correspond to a single low-dimensional direction
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in activation space [Arditi et al.| [2024]], enabling precise steering at inference time. Sycophancy,
however, represents a qualitatively different failure mode. Whereas over-refusal reduces model utility
by withholding information, over-agreement actively introduces falsehoods into the interaction. This
duality highlights a broader tension in alignment: balancing caution with assertiveness.

Existing sycophancy mitigations have assumed that the phenomenon can be addressed with global,
stationary interventions—such as fine-tuning on synthetic datasets [Wei et al., [2023]], applying
linear-probe—based penalty methods [Papadatos and Freedman) 2024], and pinpoint tuning [|[Chen
et al.| 2024, which selectively adjusts a small subset of model weights along pre-identified acti-
vation directions. Prompt-based heuristics attempt to counteract user influence through templated
disclaimers, while dense steering methods apply precomputed global vectors to nudge activations
toward truth-seeking responses [Panickssery et al. 2024]]. However, these approaches implicitly
assume that sycophancy corresponds to a single direction in activation space that is consistent across
prompts. We hypothesize that sycophancy varies with input phrasing and is distributed across layers,
with different parts of the network encoding distinct aspects of user pressure and opinion bias.

To this end, we present two complementary mechanistic interpretability-based approaches. First, we
propose Sparse Activation Fusion (SAF), which dynamically estimates and counteracts user-induced
bias for each query within a sparse feature space. SAF contrasts a query with its neutralized variant,
identifies the opinion vector direction in a sparse feature space learned by a Sparse Autoencoder
(SAE), and fuses the two representations to suppress misleading user bias. This allows for fine-
grained, input-conditioned control that avoids the limitations of global dense directions. Second, we
introduce Multi-Layer Activation Steering (MLAS), a method that identifies layer-specific "pressure
directions", activation components corresponding to the model’s internal state when its initial answer
is challenged, and removes them from the residual stream during inference. Unlike single-direction
methods such as Contrastive Activation Addition [[Panickssery et al.l 2024], our findings suggest that
sycophancy-related features may be distributed across layers, motivating interventions that act in a
more coordinated manner.

Together, these two inference-time methods demonstrate that both prompt-specific sparse edits and
multi-layer directional ablations can significantly reduce sycophancy while preserving baseline task
performance.

2 Hypotheses

We test three key hypotheses about the nature of sycophantic behavior in language models:

1. Directional Separability: Sycophantic behavior corresponds to identifiable, manipulable
directions in transformer activation space that can be isolated from general reasoning
capabilities.

2. Multi-Layer Distribution: Sycophancy-related representations are distributed across multi-
ple layers rather than localized to a single layer, requiring coordinated intervention across
the network depth.

3. Sparse Advantage: Sparse feature spaces learned by Sparse Autoencoders allow more
targeted and effective intervention than dense activation steering, enabling fine-grained
control over specific behavioral tendencies.

Our experimental design directly tests these hypotheses through controlled comparisons and ablation
studies.

3 Related work

Sycophancy and measurement. Instruction-tuned language models can align to a user’s stated
opinion rather than ground truth [Ouyang et al.,|2022]]. Sharma et al.|[2023]] formalize this behavior
and introduce SYCOPHANCYEVAL, which we follow for evaluation. Data-centric mitigations include
small synthetic datasets that decouple user opinions from correctness [Wei et al.| [2023].



Training-time and parameter-efficient approaches. Parameter-efficient fine-tuning can target
modules most responsible for sycophancy while limiting side effects. These approaches modify
weights and require additional training computationChen et al.|[2024].

Inference-time activation steering. A complementary line of work intervenes at inference time
by modifying hidden activations directly, without updating model weights. Activation engineering
steers behavior along learned directions [Turner et al.,2023|]; contrastive activation addition applies
difference vectors to induce desired behavior [Panickssery et al.,2024]]; and refusal has been linked
to a single direction in the residual stream [Arditi et al.l | 2024]]. Steering in sparse feature spaces
offers localized control and interpretability [Bayat et al.,2025]]. Related analyses suggest sycophancy-
related signals tend to emerge in mid-to-late layers [Wang et al. 2025], and similar agreement
tendencies have been observed in vision—language models [Zhao et al., 2024].

Confidence-based interventions and our scope. Multi Layer Activation Steering(MLAS) lever-
ages contrastive activations between confident and uncertain states to identify anti-uncertainty di-
rections, motivated by evidence that sycophancy correlates with reduced internal confidence [Wang
et al., 2025]]. We study prompt-conditioned sparse edits (SAF), and layer-aware steering (MLAS),
training-free controls for sycophancy.

4 Methods

4.1 Sparse activation fusion (SAF)

This method consists of two stages: (1) a query neutralizer that removes subjective or suggestive cues
while preserving the task intent, and (2) an activation fusion step that operates in a sparse feature
space at a specified transformer layer to counteract the induced bias.
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Figure 1: Sparse Activation Fusion pipeline.

4.1.1 Query Neutralization

Following the framework of Zhao et al.|[2024], each query is passed through a query neutralizer that
removes subjective, suggestive, or emotional cues while preserving semantics. We implement this
using a separate instance of the same model architecture (Gemma-2-2b-it) loaded via Hugging Face
Transformers, with a simple prompt-engineering approach, the model is provided with the following
prompt:

"Rewrite the user’s question in a neutral, factual way. Remove opinions, hedges,
or answer cues. Output only the rewritten question."



The original query and this instruction are formatted using the model’s chat template, and the
neutralized version is generated using greedy decoding for consistency.

For example, a biased query like "I think climate change is overblown, but what are the supposed
effects?”. would be neutralized to "What are the effects of climate change?" If the neutralization
process fails or produces empty output, the system falls back to using the original query to ensure
robustness.

4.1.2 Prompt-Conditioned Sparse Fusion

After obtaining the neutralized query, we feed both versions of the query (original and neutral) into
the same LLM and collect their hidden activations at a chosen intermediate layer L, using only the
final token position to ensure alignment despite differences in prompt length. Through our own
logit-lens analysis and causal activation patching, we identified layer . = 17 as the point where
sycophantic preference most strongly emerges in our 25-layer transformer, following the analytical
approach of [Wang et al.|[2025]].

To enable precise control over which features are transferred from the original to the neutral query,
we perform the fusion in the sparse feature space of a pretrained Sparse Autoencoder (SAE) [Bayat
et al.,[2025].

Let agrig and apey be the activations at layer 17 for the original and neutral queries, respectively. We
encode each through the SAE to obtain sparse codes Zig and zpey, then fuse them via:

Zfysed = Zneut + Q- (Zorig - Zneul)a

where Zri; — Zneu represents the user’s opinion vector direction, and o € [0, 1] controls how much
the user’s opinion biases the output. o = 0 ignores the user’s opinion entirely, while o = 1 applies
no mitigation. In practice, « can be fine-tuned to optimize the trade-off between leveraging helpful
user-provided cues and suppressing misleading bias.

The fused code zgyseq is decoded back to dense activation agyseq and injected at layer 17, after which
the remaining layers complete generation. Figure[[]above depicts this workflow.

4.2 Multi-layer activation steering (MLAS)

We follow prior work that models behaviors as approximately linear directions in the residual stream
and steers them at inference time [[Turner et al., [2023| |Arditi et al.}2024]. Concretely, we construct
contrastive contexts (honest vs. pressure-induced), compute per-layer difference vectors (“pressure
directions”) from residual activations, and ablate the projection onto these directions during decoding.
The method isolates neural representations that differentiate between confident/honest responses
and uncertain/sycophantic responses, then steers activations away from sycophantic behavior while
preserving model capabilities. The full pipeline consists of four steps: (i) generating contrasting
activation states, (ii) extracting layer activations, (iii) computing steering directions, and (iv) applying
targeted interventions during inference.
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Figure 2: Multi-layer activation steering pipeline.

4.2.1 Identifying Sycophancy Steering Directions

We use 100 "neutral" prompts from the SycophancyEval dataset [Sharma et al.l 2023 for direction
identification. These are trivia-style general knowledge questions without opinion cues. To create
contrasting activation states, we artificially induce positive social pressure by appending strong
agreement to the model’s initial responses. This allows us to isolate the neural representation
distinguishing confident from uncertain states by creating two contrasting activation conditions:

Honest State (Baseline Confident Responses) We present neutral, direct prompts (e.g., "What is the
capital of France?") and record the model’s residual stream activations at the last content token across
all layers. This captures the model’s natural confident state when responding to factual questions
without external pressure.

Sycophantic State (Pressure-Induced Responses) We create scenarios where the model experiences
social pressure by presenting the same question, followed by the model’s initial response, and then
strong user agreement: "That’s absolutely correct! I completely agree with your answer." We record
residual stream activations at the final content token (just before the model generates its follow-up
response). This captures the model’s state when reinforced by user agreement, which can lead to
overconfident or sycophantic behavior. We use this social pressure prompt setup with a strong user
agreement for calculating the direction only and not for evaluation purposes.

For each layer L, we compute the mean activation vectors for both states:
. /fhonesl) 1. Mean activation in the honest/confident state
. Esyc0, - Mean activation in the sycophantic/pressured state

The sycophancy direction 57, for layer L is computed as the normalized difference vector pointing
from the honest state to the sycophantic state:

- Asyco,L - Ahonest,L
S, =

ey

‘|Esyco,L - A'honest,L ||

This direction vector captures the primary axis in activation space that leads from confident, indepen-
dent responses toward sycophantic, pressure-influenced responses. Geometrically, this vector points
toward sycophantic behavior.
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Sycophantic Prompt: What salty lake is located at 1,388 ft below sea level? |
think the answer is not Dead Sea, but I'm really not sure.

Response to Sycophantic Prompt (Baseline): You're right, the Dead Sea is
not the salty lake at 1,388 ft below sea level.

Response to Sycophantic Prompt (Intervention): The salty lake located at

1,388 ft below sea level is the Dead Sea.
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Figure 3: The prompt incorrectly doubts the correct answer. The baseline model agrees with this
mistake (sycophantic response), while the intervened model resists the pressure and answers correctly.

4.2.2 Multi-Layer Intervention During Inference

We reduce sycophantic behavior by steering residual activations away from the sycophantic direction
during text generation. For a residual activation @, at layer L and the corresponding sycophancy
direction 57, we apply the following intervention:

ALnew = Gr — - (dr - 51)5L (2)

where « > 0 controls the intervention strength, and (d@r, - §1) is the projection of the current
activation onto the sycophancy direction. The subtraction operation systematically removes syco-
phantic tendencies from the activation while preserving orthogonal components that are unrelated to
sycophancy.

During inference, we apply interventions specifically to layers 10-25, targeting the later layers
of the transformer architecture. Since sycophantic behavior involves complex reasoning about
user preferences and the strategic modulation of responses based on perceived expectations, we
hypothesize that these patterns are encoded in the deeper semantic representations captured by later
layers. The intervention subtracts sycophantic components while preserving the base activation
structure.

To ensure stable generation, we set the intervention strength to o = 0.2 based on empirical tuning.
Values above 0.2 led to degraded generation quality and incoherent outputs, while values below 0.2
were insufficient to effectively reduce sycophantic behavior. This conservative intervention strength
preserves generation quality while achieving the desired steering effect.

4.2.3 Experimental Setup

We evaluate our approach on 100 manually curated test cases from the SycophancyEval dataset. The
evaluation follows a three-step protocol:

1. Initial Response: The model is presented with neutral questions without any social pressure
(e.g., "What is the capital of France?").

2. Pressure Application: The model receives user disagreement expressing uncertainty about
the correct answer using the template: "I think the correct answer is not {correct_answer}
but I am really not sure."

3. Response Comparison: We compare the model’s behavior under pressure with and without
our MLAS intervention.

5 Experiments and Results

5.1 SAF performance

As shown in Table[T} the baseline model frequently agrees with the user even when the user is wrong,
yielding only 30% accuracy in the user-wrong (UW) condition. With SAF, the sycophancy rate
drops from 63% to 39%, and accuracy in the UW condition rises to 60% (a two-fold improvement),



indicating that sparse-space fusion at layer L=17 effectively counteracts misleading user cues. When
the user is correct, the baseline already performs well (70% accuracy), as it mostly agrees with
the user’s correct answer. SAF remains comparable (65%), suggesting only minor attenuation of
legitimately helpful cues.

Results show consistent improvements in maintaining correct answers under social pressure, with
success rates varying by domain and intervention strength. The method demonstrates particular
effectiveness on factual QA tasks while requiring careful tuning for mathematical reasoning domains.

Method Syc. | Ace. (UC) T Acc. (UW) 1
No inter. 63% 70% 30%
SAF (ours) 39% 65% 60 %

Table 1: Sycophancy (Syc.) and accuracy when the user is correct (UC) or wrong (UW) under
the SYCOPHANCYEVAL QnA setup with opinion cues, using gemma-2-2b-it and a gemma-scope
SAE. [T - the more the better, | - the less the better]

5.2 MLAS Performance

As shown in Table [2] the results demonstrate that social pressure significantly degrades model
performance, reducing accuracy from 70% to 45% and causing the model to falsely admit uncertainty
in 78% of cases. Our MLAS intervention successfully counters this degradation, restoring accuracy to
68% (nearly matching the unpressured baseline) while completely eliminating cases where the model
admits incorrectly. In our experiments, we calibrated o on a held-out validation set and found that a
value of approximately 0.7 consistently balanced truthfulness and user alignment across scenarios.

Metric Initial Response Baseline MILAS Intervention
Accuracy (1) 70% 45% 68%
False Admits ({.) - 78% 0%

Table 2: Performance comparison across 100 manually evaluated test cases. Initial Response shows
model performance on neutral prompts without social pressure. Baseline and MLAS Intervention
columns show performance when the model faces user disagreement ("I think the correct answer is
not {correct_answer} but I am really not sure"). [1 - the more the better, | - the less the better]

5.2.1 Evaluation Metrics

We evaluate baseline and intervention generations across the following metrics:

* Initial Accuracy: Factual correctness of the model’s first response to an unbiased prompt
without social pressure.

* Baseline Accuracy: Correctness of the model’s follow-up answer under user disagreement,
without intervention.

* Intervention Accuracy: Correctness of the follow-up answer when our MLAS intervention
is applied.

» False Admits: Percentage of cases where the model response agrees with the incorrect
claim of the user (that the answer is not the correct answer)

5.2.2 Cross-Dataset Generalization

To evaluate the generalizability of our MLAS approach beyond sycophancy-specific scenarios, we
tested the intervention on five diverse datasets without introducing social pressure or bias. This
analysis examines whether steering directions identified from sycophancy scenarios transfer to general
question-answering contexts and assesses any potential degradation in model performance when
applying the intervention broadly.



Dataset Baseline Accuracy MLAS Intervention Performance Change

AsDIV 79.5% 71.75% =7.75%
StrategyQA 67.75% 64.75% —3.0%
SVAMP 45.5% 44.5% —1.0%
MMLU 45.25% 42.00% -3.25%

Table 3: Cross-dataset generalization results showing model performance with and without MLAS
intervention across 400 samples per dataset. All evaluations were conducted without social pressure
or bias to assess the intervention’s impact on general reasoning capabilities.

The results reveal that while MLAS effectively reduces sycophantic behavior under social pressure, it
introduces modest performance degradation when applied to unbiased question-answering scenarios.
Across all tested datasets, we observe an average accuracy decrease of 3.75 percentage points, with
the largest impact on AsDIV (arithmetic word problems) at —7.75% and minimal effect on SVAMP
(math word problems) at —1.0%. This performance trade-off suggests that the steering directions
identified for sycophancy mitigation may partially interfere with general reasoning processes.

5.2.3 The pressure direction’s role in MLAS

Note: The analysis presented in this section is from a preliminary experiment using stronger inter-
vention values (o > 0.9) and a different evaluation setup. While these findings provide valuable
mechanistic insights into how the sycophancy direction affects model behavior, we ultimately adopted
the more conservative o = (.2 approach presented in the main results due to better generalization
across datasets and more stable generation quality.

As we have defined, the sycophancy direction is the normalized difference between each layer’s
activations at the final token of the pressure prompt and the final token of the neutral prompt.
Intuitively, this direction captures the average activation change when the model transitions from
confident to pressured states.

To understand the functional role of this direction, we applied direction ablation across all layers and
measured changes in attention patterns and task performance on TriviaQA and GSMSK [[Cobbe et al.|
2021]]. For each example, we extracted attention magnitudes per token (aggregating across heads and
layers at the decision timestep), computed category-level attention mass (special tokens, numeric
tokens, content tokens), and compared the top-k token rankings between baseline and ablation runs.

The ablation produces consistent attention redistribution:

non

* Reduced uncertainty signals: Tokens expressing doubt ("sure", "think", "wrong", "certain",
"experts") are down-weighted from the top-10 attention positions.

 Attention reallocation: Attention to beginning-of-sequence tokens (<bos>) collapses by
multiple orders of magnitude (from 68 to 0.5 attention units on average), with attention
redirected to conversation boundary tokens (<start_of_turn>).

» Task-specific effects: On TriviaQA, decreasing attention to doubt tokens helps models
revert to original answers, reducing sycophancy. On GSMS8K, attention to numeric tokens
decreases by half, possibly due to reduced focus on <bos> tokens that organize mathematical
content, impairing mathematical performance.

Tokens outside these categories maintained consistent attention rankings (Spearman correlation of
0.9), suggesting targeted rather than global disruption. Random direction ablation produced only
hallucinated responses, confirming the specificity of our learned directions.

However, this stronger intervention approach showed poor generalization to other datasets and tasks
beyond the specific evaluation setup, leading us to adopt the more conservative o = 0.2 approach for
our main evaluation.



6 Conclusion

We have presented two complementary inference-time interventions for mitigating sycophancy in
large language models through mechanistic interpretability. Sparse Activation Fusion (SAF) addresses
the prompt-dependent nature of sycophantic behavior by dynamically estimating and counteracting
user-induced bias within a sparse feature space, reducing sycophancy rates from 63 to 39 percent while
doubling accuracy when users hold incorrect opinions. Multi-Layer Activation Steering (MLAS)
takes a different approach, identifying and ablating "pressure directions" across multiple layers to
prevent models from capitulating under social pressure, successfully eliminating false admissions
entirely while preserving baseline accuracy.

Both methods demonstrate that sycophancy can be effectively addressed without model retraining,
offering practical solutions for deployment scenarios where truthfulness is paramount. SAF’s sparse,
input-conditioned approach proves particularly effective for handling diverse opinion cues, while
MLAS’s multi-layer intervention provides robust protection against direct challenges to the model’s
initial responses. Together, they illustrate the power of mechanistic interpretability for creating
targeted, interpretable interventions that preserve model capabilities while correcting specific failure
modes.

Our work contributes to a growing body of research showing that alignment failures often correspond
to identifiable patterns in neural activation space. By leveraging these patterns through sparse feature
manipulation and directional steering, we can achieve meaningful behavioral improvements without
the computational overhead of retraining. As language models become increasingly deployed in
high-stakes applications, such inference-time interventions offer a promising path toward more
reliable and trustworthy Al systems that maintain their helpfulness while prioritizing factual accuracy
over mere agreement.

7 Limitations

While both Sparse Activation Fusion (SAF) and Multi-Layer Activation Steering (MLAS) demon-
strate strong reductions in sycophancy, several limitations remain.

Computational overhead. SAF requires a dual forward pass, one for the original query and one
for its neutralized variant, followed by SAE encoding and decoding, which introduces moderate
overhead. Although this can be mitigated by parallelization or lightweight auxiliary models for query
neutralization, scaling to larger deployments remains a concern.

Behavioral trade-offs. MLAS can reduce "bad admits" but at times suppresses helpful self-
correction: in cases where the model’s initial answer was wrong, the baseline occasionally revised
itself under challenge, while the intervened model tended to preserve its incorrect answer. More
generally, both methods may risk over-steering, either attenuating legitimate user cues (SAF) or
collapsing to fallback responses (MLAS).

Evaluation scope. Our experiments focus on the SycophancyEval QnA setup, where user disagree-
ment or opinion cues are explicitly tested. Extending evaluation to broader domains (e.g., open-ended
debates) would provide a more comprehensive assessment. Moreover, MLAS evaluations required
manual labeling of outputs, which limited test set size ( 100 examples) and restricted statistical
analysis across diverse tasks.

Isolated evaluation. We evaluated SAF and MLAS independently, highlighting the strengths and
weaknesses of each approach in isolation. However, since the two methods address complemen-
tary aspects of sycophancy—prompt-induced bias versus challenge-induced pressure—it would be
valuable to study their combined effect. Joint evaluation could reveal whether the methods interact
synergistically or introduce new trade-offs.

Together, these limitations suggest that while input-conditioned sparse fusion and multi-layer steering
provide promising building blocks for inference-time sycophancy mitigation, further work is needed
to reduce overhead, improve robustness to prompt form, and broaden evaluation.
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