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Abstract

Probing strategies have been shown to detect001
semantic features intermediate to certain frag-002
ments of NLI. In the case of natural logic, the003
relation between these features and the entail-004
ment label is explicitly known: as such, this005
provides a ripe setting for interventional studies006
on the NLI models’ representations, allowing007
for stronger causal conjectures and a deeper008
critical analysis of interventional probing meth-009
ods. In this work, we carry out new and exist-010
ing vector-level interventions to investigate the011
effect of these semantic features on NLI classi-012
fication: we perform amnesic probing (which013
removes features as directed by learned probes)014
and introduce the mnestic probing variation015
(which forgets all dimensions except the probe-016
selected ones). Furthermore, we delve into the017
limitations of these methods and outline pitfalls018
that have been obscuring the effectivity of such019
studies.020

1 Introduction021

The probing paradigm has emerged as a useful in-022

terpretability methodology which has been shown023

to have reasonable information-theoretic underpin-024

nings (Pimentel et al., 2020; Voita and Titov, 2020;025

Zhu and Rudzicz, 2020), indicating whether a given026

feature is captured in the intermediate vector rep-027

resentations of neural models. It has been noted028

many times that this does not generally imply that029

the models are using these learnt features, and they030

may represent vestigial information from earlier031

training steps (Ravichander et al., 2021; Elazar032

et al., 2020).033

Only through interventional analyses can we034

start to make claims about which modelled fea-035

tures are used for a given downstream task: this is036

the aim of works such as Elazar et al. (2020) and037

Geiger et al. (2021). We refer to the case where038

the interventions are guided by trained probes as039

interventional probing.040

It has been suggested in Elazar et al. (2020) that 041

if features are strongly detected by probes, one may 042

use debiasing methods such as iterative nullspace 043

projection (INLP) (Ravfogel et al., 2020) to inter- 044

vene on the corresponding vector representations 045

and effectively “remove" the features before re- 046

insertion into the given classifier. This methodol- 047

ogy is referred to as amnesic probing (Elazar et al., 048

2020). Investigating the effect of these intervention 049

operations on the classifier performance could al- 050

low for stronger causal claims about the role of the 051

probe-detected features. 052

In this work, we delve deeper into the amnesic 053

probing methodology with an NLI case study and 054

identify two key limitations. Firstly, there is an 055

issue of dimensionality: when the number of di- 056

mensions is high and the number of auxiliary fea- 057

ture classes is low, it seems that amnesic probing 058

is not sufficiently informative. In particular, we 059

cannot rely on the same control baselines to reach 060

the kind of conclusions discussed in (Elazar et al., 061

2020), as nulling out small numbers of random 062

directions consistently has no impact on the down- 063

stream performance. Secondly, in the linguistic 064

settings explored in Elazar et al. (2020), we do 065

not have expectations for exactly how or even if 066

the explored features should be affecting the down- 067

stream task. This makes it difficult to explore the 068

effectivity of the methodology itself. 069

To this end, we propose the use of a controlled 070

subset of NLI called Natural Logic (MacCartney 071

and Manning, 2007). In this setting, the interme- 072

diate linguistic features of context montonicity and 073

lexical relations are already known to be highly 074

extractable from certain NLI models’ hidden lay- 075

ers (Rozanova et al., 2021b), allowing us a certain 076

amount of understanding and control of these fea- 077

tures’ representations in the latent space. Using 078

the deterministic and well-understood nature of the 079

problem space where we have concrete expecta- 080

tions about the theoretical interaction between the 081
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Figure 1: Workflow for Interventional Probing For NLI
Models

intermediate features and the downstream label, we082

may critically analyse the effectivity of interven-083

tional probing.084

Through the application of probe-based interven-085

tions in this setting, we show that blindly applying086

the amnesic probing argument structure leads to087

unexpected and contradictory conclusions: the two088

features which the final label is known to depend089

on are shown to have no influence on the final clas-090

sification (both jointly and independently). This091

further calls into question the suitability of these092

methods for situations where a small number of093

feature label classes and high dimensionality of094

representations is concerned.095

As a consequence, we introduce and study a096

variation which we call mnestic probing, which097

we show to be more informative in the high-098

dimensional, low-class-count setting: the core idea099

is to keep only the directions identified by the it-100

eratively trained probes. This allows us to anal-101

yse much lower dimension subspaces, and leads102

to more informative observations in line with ex-103

pected behaviour for natural logic.104

In summary, the contributions of the paper are105

as follows:106

1. We propose the setting of natural logic to be107

ripe territory for exploration of interventional108

probing strategies.109

2. We note two limitations of the amnesic prob-110

ing methodology, demonstrating both dimen-111

sionality limitations for the control baselines112

4.4 and contradictory behaviour in the NLI 113

setting 4.2 (namely that that the expected ef- 114

fects of semantic features on the downstream 115

NLI task are notably absent). 116

3. Building upon previous interventional 117

methodologies, we introduce an additional 118

mnestic intervention operation based on probe 119

outputs, which uses the outputs of the INLP 120

process in the opposite way. 121

4. We contrast the mnestic probing strategy with 122

the amnesic probing results, and demonstrate 123

it presents more informative results which are 124

aligned with the constructed expectations in 125

our high dimensional, low label class count 126

setting. 127

2 Interventional Probing 128

We may summarise the general setup of interven- 129

tional probing as follows: suppose we start with 130

a classification model that may be decomposed as 131

f ◦ g : X → Rn, where g is an encoder module 132

which yields a representation that serves as an in- 133

put to the classifier head f , and n is the number 134

of output classes of the final classifier. We aim 135

to intervene on the output of g and observe the 136

change in the performance of f (usually in com- 137

parison with some kind of random control baseline 138

intervention). 139

Linear probes are able to identify subspaces in 140

which a given feature set is best represented: these 141

may be used as a guide for vector-level interven- 142

tion on the representation space. This is the class of 143

interventions we are concerned with here: in partic- 144

ular, when the interventions are vector projections 145

guided by the learned probes which are indicative 146

of a given auxiliary feature. 147

The exact nature of this intervention is inter- 148

changeable. We consider two in particular: the am- 149

nesic intervention introduced in Elazar et al. (2020) 150

(described further in section 2.2) and our mnes- 151

tic variation of the same INLP techniques (section 152

2.3). 153

2.1 What Should it Tell Us? 154

The interventional probing steps are performed on 155

exactly the representation that would have been an 156

input to the classifier head f . We may re-insert the 157

intervened representations and re-calculate the clas- 158

sifier accuracy (note that the iterative projections 159
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in sections 2.2 and 2.3 maintain the original dimen-160

sionality of the vector set but reduce the rank).161

We are looking to see if the downstream perfor-162

mance of the classifier f drops. If it does, the inter-163

ventions have removed information that was neces-164

sary for successful classification. However, as any165

projection would remove some information, these166

results must be viewed in the context of a control167

intervention: if the INLP process ends up removing168

n directions, a sample of n randomly chosen direc-169

tions is selected from the original representation,170

Elazar et al. (2020) argue that if the amnesic down-171

stream performance drops significantly more than172

the random removal control performance, we may173

conclude that the features were necessary for the174

final downstream classification. On the other hand,175

if the performance does not drop at all, the features176

were not useful for the classifier in the first place.177

In the ensuing sections and results, we demonstrate178

that this is not necessarily a valid conclusion.179

2.2 The Amnesic Intervention180

We follow the procedure in (Elazar et al.,
2020) (in turn based on iterative nullspace
projection (Ravfogel et al., 2020)): given a
set X of encoded representations for the tex-
tual input (with dimensions num_examples ×
embedding_dimension), we iteratively train
linear SVM classifiers according to a set of aux-
iliary feature labels. For each INLP step i, This
yields a linear transformation WiX + B, where
the vectors of Wi define directions onto which the
probe projects the representations for auxiliary la-
bel classification (i.e., these are the chosen direc-
tions most aligned with auxiliary class separation).
For each step i, an orthogonal basis denoted Ri

is found for this rowspace. The projection to the
intersection of the nullspaces is given by a matrix

PX = (I − (R0 + ...+Rn))X.

The matrix product PX is a matrix in the original181

dimensions of X , but with reduced rank by the182

number of iteration steps (as each projection "flat-183

tens out" the representation in these directions).184

Projection to the intersection of nullspaces is185

thus the removal of any information pertaining to186

the auxiliary feature labels (or at least, the infor-187

mation which allows high performance for a linear188

probe). The training terminates these auxiliary task189

classifiers start consistently performing at the ma-190

jority class baseline, indicating that there is no fur-191

ther linearly information to be extracted from the192

remaining representation. As such, the resulting 193

representation is treated as an altered representation 194

where this feature is removed or forgotten. 195

2.3 A Variation: The Mnestic Intervention 196

Elazar et al. (2020) perform a series of experi- 197

ments on various linguistic features which had pre- 198

viously been shown to be well-captured in language 199

model representations and use the amnesic prob- 200

ing methodology to distinguish between features 201

that are used by the model and those that are not 202

by comparing post-intervention downstream task 203

performance to a baseline of randomly removed 204

directions. 205

Rather than projecting the embedded representa- 206

tions to the intersection of nullspaces of the trained 207

probes (removing the target property), we project 208

them to the union of the rowspaces with the trans- 209

formation: 210

(I − P )X = (I − (I − (R0 + . . .+Rn)))X 211

= (R0 + . . .+Rn)X 212

This has the opposite effect: we use projection to 213

null out everything except the directions identified 214

by the probes as indicative of the target feature. As 215

such, we "remember" only that feature rather than 216

forgetting it. 217

3 Experimental Setup 218

In this study, we use interventional methods 1 219

to study the internal behaviour of NLI models. 220

We compare amnesic and mnestic variations of 221

the INLP strategy, evaluating intermediate feature 222

probing performance and downstream NLI perfor- 223

mance after every step of the intervention process. 224

For each auxiliary feature label and and model, 225

we perform the interventional probing as outlined 226

in figure 1. 227

3.1 Dataset 228

Our setting for this study is a fragment of NLI 229

called Natural Logic (MacCartney and Manning, 230

2007). In particular, we focus on single-step nat- 231

ural logic inferences in which entailment exam- 232

ples are generated by replacing a noun phrase in a 233

sentence with a hyponym, hypernym or unrelated 234

noun phrase. The context of the substituted term 235

1We reuse much of the code included with (Elazar et al.,
2020), but we include our data and reproducible experimental
code in anonymized github repo.
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is either upward or downward monotone, as de-236

termined by the composition of negation markers,237

generalized quantifiers or determiners present in238

the context. The entailment label of the example239

is a consequence of this feature and the lexical240

relation between the substituted terms.241

Context Monotonicity Lexical Relation

Entailment Label

Figure 2

We use the NLI_XY dataset from (Rozanova242

et al., 2021b,a). By construction, the NLI_XY243

dataset consists of NLI examples which rely on244

exactly these two abstract features: context mono-245

tonicity and the lexical relation of the substituted246

terms.247

We perform two flavours of probe-based inter-248

ventions (described fully in section 2) with four249

feature label sets (described next).250

Auxiliary Feature Labels We begin with the two251

relevant intermediate features (respectively, con-252

text monotonicity and lexical relation) which are253

already known to correlate with stronger perfor-254

mance on the downstream NLI_XY task (Rozanova255

et al., 2021b). We will refer to this as single-feature256

interventional probing, as the probing and inter-257

vention steps are only applied to one feature set258

at a time. Next, we combine the two features in259

a cross product, creating a new feature label set260

with all possible combinations of these interme-261

diate features (in the dataset, they are completely262

independent variables by construction (Rozanova263

et al., 2021a)). We refer to this as the composite264

feature label.265

Lastly, we also consider the entailment label266

itself (the downstream task label) as an input to267

the interventional probing process. The latter is268

particularly useful as a diagnostic sanity check,269

and aids the critical nature of our findings.270

3.2 NLI Models and Encoding271

We compare a selection of BERT (Devlin et al.,272

2019) and RoBERTa (Liu et al., 2019) models273

trained for NLI classification. Firstly, we include a274

pair of models trained respectively on the MNLI275

(Williams et al., 2018) and SNLI (Bowman et al.,276

2015) benchmark datasets. In (Rozanova et al.,277

2021b) and (Rozanova et al., 2021a), it is shown278

that when roberta-large-mnli (a model279

which performs well on benchmarks but poorly 280

on the targeted NLI_XY challenge set) receives 281

additional training on the adversarial HELP dataset 282

(Yanaka et al., 2019) it improves in NLI_XY 283

performance and begins to show high probing 284

performance for the relevant intermediate features, 285

context monotonicity and lexical relations: this is 286

the necessary precondition for doing interventional 287

probing. We include two of their models with this 288

property: roberta-large-mnli-help and 289

roberta-large-mnli-double-finetuning, 290

with the other models included for a contextual 291

comparison. 292

We perform probing and intervention on the final 293

representation that precedes the NLI classification 294

head: in the case of BERT and RoBERTa, this is 295

the [CLS] token of the final layer. 296

The initial input is a tokenized NLI exam- 297

ple from the NLI_XY dataset. The findings in 298

(Rozanova et al., 2021b) show that the intermedi- 299

ate feature labels (context monotonicity and lexical 300

relations) are detectable in the concatenated tokens 301

of the substituted noun phrases: however, for in- 302

terventional purposes, we perform the probing and 303

intervention steps on the [CLS] token which serves 304

as an input to the NLI classifier head: we have 305

found that the same features are detectable to a 306

comparable standard, and this is the only position 307

at which we are able to make a sensible interven- 308

tion that would allow conclusions about the final 309

classifier head only. 310

3.3 Evaluation 311

The significant metrics for these interventional 312

probing paradims are the probing accuracy before 313

and after the iterative nullspace projection steps (a 314

decline to random performance indicates the fea- 315

ture is being “removed" from the representation in 316

the sense that it is no longer detectable by linear 317

probes) and the downstream classification accu- 318

racy on the NLI task the model’s were trained for 319

(in our case, we report the accuracy on the NLI_XY 320

task). 321

For amnesic probing, we report the performance 322

deltas for both the probing and downstream tasks. 323

However, for mnestic probing, a slightly more nu- 324

anced and qualitative view is helpful: it can be 325

assumed that eventually mnestic probing will reach 326

comparable performance to the untouched vector 327

representations, but we are interested in the com- 328

parative rates at which this happens. As the inter- 329
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Probing Performance NLI-XY Performance
Model Feature Start Intervention ∆ Start Intervention ∆

roberta-large-mnli-help insertion relation 80.58 -40.35 79.79 0.06
context monotonicity 87.65 -46.22 79.79 -0.09
composite 64.48 -43.95 79.79 0.32
entailment label 78.05 -37.49 79.79 -1.57

roberta-large-mnli-double-finetuning insertion relation 62.7 -36.49 80.04 0.11
context monotonicity 89.79 -43.28 80.19 0
composite 57.64 -49.56 80.08 -1.67
entailment label 82.8 -24.94 80.19 -16.53

roberta-large-mnli insertion relation 80.39 -45.59 57.22 8.99
context monotonicity 75.44 -27.49 57.37 -0.43
composite 72.35 -53.51 57.24 -2.27
entailment label 73.6 -15.31 57.37 0.1

bert-base-uncased-snli-help insertion relation 59.53 -19.1 45.95 0.28
context monotonicity 82.72 -33.94 45.52 -2.35
composite 37.19 -17.08 45.76 13.68
entailment label 47.05 0.38 45.91 0

bert-base-uncased-snli insertion relation 60.26 -35.14 48.99 1.05
context monotonicity 81.09 -30.77 49.42 -6.25
composite 35.37 -17.83 50.73 7.45
entailment label 42.44 -0.24 49.42 0

Table 1: Amnesic probing performance deltas across models and target feature labels: first listed is the performance
on the probing task with respect to the indicated feature, and then the accuracy on the downstream NLI-XY task.
We note the results pre-intervention and the ensuing change in accuracy.

ventions are iterative, we may feed the intervened330

representations into the classifier head at each step331

of the intervention process - we use this to provide332

a step-wise presentation of results in linear plots in333

figure 3.334

While the tabulated deltas in table 1 results are335

sufficient to present our observations on amnesic336

probing, for comparison we also include the step-337

wise graphical presentations in the appendix.338

4 Results and Discussion339

4.1 Single Feature Amnesic Probing340

The results for the standard amnesic probing pro-341

cedure are in table 1. In particular, the single fea-342

ture results are in the rows with features labelled343

insertion relation and context monotonicity. The344

amnesic operation is successful - the respective345

probing accuracies approach and reach the majority346

class baseline. The length of this iterative process347

is indicative of the number of dimensions removed348

to reach this baseline: it can also be considered349

a proxy for the strength of the feature presence350

in the representations, or rather, the dimension of351

the semantic subspace corresponding to the target352

features.353

The second phase of this process, i.e. the resub-354

stitution of the modified representations as inputs 355

to the NLI classifier head, can be seen in the right 356

hand portion of table 1, labelled NLI-XY Perfor- 357

mance. The result is unexpected: for each of these 358

features, the downstream task performance appears 359

to be unaffected after their removal. This is surpris- 360

ing when the dataset is explicitly controlled to rely 361

only on these two features. 362

4.2 Multi Feature Amnesic Probing 363

The results for the amnesic probing procedure uti- 364

lizing both auxiliary feature label sets and the en- 365

tailment gold label are in the rows of table 1 with 366

labels composite and entailment label respectively. 367

We observe that once again, the downstream task 368

performance is mostly unaffected. Unlike the un- 369

expected result in the previous section, it’s difficult 370

to argue away the fact that this is somewhat con- 371

tradictory: while single feature removal may be 372

subject to some confounding bias, the removal of 373

both features exhausts the variables on which this 374

classification depends. This is highly unexpected, 375

and suggests a point of failure for the amnesic prob- 376

ing process. Naturally, we cannot be without doubt 377

that despite all our best efforts to work with a con- 378

trolled dataset that relies only on these two know 379

(but still complex) features, a model may yet find 380
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(a) Context Monotonicity Label (b) Lexical Relation Label

(c) Composite Label (d) Gold Label

Figure 3: Downstream Task Performance After Mnestic Intervention

Figure 4: Mnestic Probing Results

unrelated heuristics to exploit that may correlate381

so strongly with the downstream task label that it382

may perform well without representing and using383

these intermediate features. However, we imagine384

this to be a rather low probability scenario to be385

that the model simultaneously learns such heuris-386

tics but simultaneously learn representations that387

create strong clusters for the known intermediate388

features without using them at all. The models389

which we have observed to perform more less well390

on NLI-XY (such as roberta-large-mnli) are indeed391

estimated to be using sub-par heuristics, but this392

also comes with poor probing results for the inter-393

mediate features - naturally, this in itself does not394

imply anything conclusive, but certainly adds to395

our convictions.396

On a seprate note, it is noted in Elazar et al.397

(2020) that there is no control for the number of398

dimensions removed, while there is a clear correla-399

tion between downstream task performance and the400

number of label classes (and thus removed probe401

directions) are in play. Our feature sets have only 2402

and 3 classes respectively. In the most analagous403

result in (Elazar et al., 2020) where the auxiliary404

features had very few classes and no change on 405

the downstream performance was observed, it was 406

concluded that the features must have no effect on 407

the outcome. It is very likely that too little informa- 408

tion is being removed in this process to observe any 409

impact on the downstream task performance. This 410

could potentially be pointing to high redundancy in 411

the representations which the amnesic intervention 412

may struggle to remove appropriately. 413

4.3 Mnestic Probing 414

Given the possible dimensionality problem, the al- 415

ternative method of mnestic probing seems promis- 416

ing: many dimensions are removed and few remain, 417

so it appears to be a ripe setting for observing and 418

comparing effects on downstream NLI accuracy. 419

The results for the mnestic probing procedure are 420

in figure 3. There is a clear increase in NLI perfor- 421

mance with subsequent addition of probe-chosen 422

directions to the representations, but these results 423

especially need to be viewed in the context of sec- 424

tion 4.4, where we compare the performance to 425

random choices of included directions. 426

We observe that the composite label and the gold 427

6



entailment label are reflected as expected in the428

mnestic probing experiments: the inclusion of the429

probe-selected dimensions with respect to these la-430

bels introduces a sharp and immediate increase in431

the NLI classifier performance. This is significantly432

steeper than the baseline increase observed in ran-433

dom addition of representation directions. Simi-434

larly, the increase is nearly as sharp for the lexical435

relation label. However, although an increase is436

observed during the iterative mnestic probing in-437

tervention for context montonicity, this increase438

is not at a dramatically higher rate than adding439

subsequently more directions from the original rep-440

resentation. For monotonicity specifically, this is441

not enough to conclude that the feature (or at least,442

the corresponding probe-selected dimensions) are443

critical to the final classifier.444

Nevertheless, we have been able to make clearer445

observations than were possible in the amnesic446

probing setting.447

4.4 Control Comparison448

Figure 5: Amnesic control experiment: Downstream
NLI accuracy upon the removal of n random directions
of the original representation.

We contextualise all the preceding results with a449

set of control experiments both for amnesic (figure450

5) and mnestic (figure 6) probing. Note in partic-451

ular that even with very few random dimensions452

kept, downstream performance starts approaching453

comparable levels to the full representations. As454

such, a single random baseline as in Elazar et al.455

(2020) can be misleading: there is enough variabil-456

ity in the random direction results so as to allow457

for a false claim of feature irrelevance by simply458

getting lucky; as few as 3 dimensions can perform459

at the original model’s performance level or arbi-460

trarily lower.461

Figure 6: Mnestic control experiment: Downstream
NLI accuracy upon the selection of n random directions
of the original representation.

Lastly, we compare to the mnestic probing re- 462

sults in figure 3: with the probe-selected mnestic 463

dimension choices, the increase in downstream per- 464

formance does seem to happen faster and in a more 465

consistent fashion, while the selection of n ran- 466

domly chosen directions introduces very haphaz- 467

ard performance spikes. This suggests the probe- 468

selected dimensions are consistently adding to the 469

model’s access to the relevant information, amd 470

this may be stronger evidence for the usefulness of 471

the examined features for the final classification. 472

5 Related Work 473

The use of probing as an interpretability strategy 474

dates back as far as works such as Alain and Bengio 475

(2018) and (Conneau et al., 2018), but a core set of 476

work on the detailed development of the method- 477

ology includes Hewitt and Liang (2019); Belinkov 478

and Glass (2019); Voita and Titov (2020); Pimentel 479

et al. (2020). For a full survey, see Belinkov (2022). 480

The application of probing strategies to natural 481

logic components has been explored in Rozanova 482

et al. (2021b) and Geiger et al. (2020). In Rozanova 483

et al. (2021b), probing experiments have proven 484

effective in detecting the presence or absence of 485

features such as context monotonicity and phrase- 486

pair relations in the internal representations of NLI 487

models. 488

Regarding interventions as interpretability tools 489

for machine learning classifiers, there are two broad 490

categories: those that modify the raw input (such 491

as image or text) in a controlled way, and those that 492

modify the hidden/latent vector representations of 493

the data at various stages of the models’ input pro- 494

cessing. While input-level interventions are more 495

common as they are usually easier to control and 496
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Intervention Tested Effect Feature Characterisation
Requires Intermediate
Labels

Intervention Linked to
Concept Interpretation

Domain

Amnesic Probing / INLP (Elazar et al., 2020) Debiasing / Feature Removal Downstream Classifier Accuracy Linear Classifier Yes No Language Modelling
CausaLM: Causal Model Explanation
Through Counterfactual Language Models

(Feder et al., 2021)
Re-Training Model Copy
For Counterfactual Representation

Text representation-based individual
treatment effect (TReITE)

Retrained Base
Model

Yes Yes Sentiment Analysis

Causal Concept Effect Generative Modeling Average Causal Effect Measure VAE Yes Yes Vision Classification
Concept Activation Vectors (TCAV) (Kim et al., 2018) Value Shift in Vector Direction Custom Gradient Sensitivity Measure Linear Classifier Yes Yes Vision Classification
Latent Space Explanation
by Intervention

VAE Input Discretization
and Reconstruction

Reconstruction Quality VAE No
Qualitative Judgement
(Vision Only)

Vision Classification

Meaningfully Explaining Model Mistakes
Using Conceptual Counterfactuals

Weighted Combination of
Concept Vectors

Difference Between Concept
Addition and Removal Effect

Linear Classifier Yes Yes Vision Classification

Table 2: Related Work on Latent Concept Interventions

are strongly interpretable, they don’t allow us to497

explore and conjecture about exact high-level rep-498

resentational mechanisms in the latent space. We499

tabulate a few relevant interventional interpretabil-500

ity methods in table 2. Note in particular the varia-501

tion in the generation step for the intervened input;502

some use generative modelling for counterfactual503

examples, while we use cheaper linear probes.504

The only other work in which interventional505

methods have been applied to natural logic is506

Geiger et al. (2021): a similar problem setting is507

considered, but at a finer granularity. Our work508

focuses more on the summarised abstract notion509

of context monotonicity as a single feature, rather510

than the intermediate tree nodes that determine its511

final monotonicity profile. The interventions used512

in this work are vector interchange interventions;513

partial representations from transformed inputs are514

used, as opposed to direct manipulations of the515

encoded vectors.516

6 Conclusion and Future Work517

Our expiremental setting has shown significant lim-518

itations of amnesic probing in high-dimensional519

settings where there are few label classes (and con-520

sequently fewer dimension modified), even if these521

classes are strongly detectable. Our results point522

out that it is misguided to concluded that a given523

feature is not used when post-amnesic-intervention524

downstream performance fails to drop, especially525

in our example amnesic probing studies of a) the526

gold donwstream feature label and b) the compos-527

ite of two labels that jointly determine the entail-528

ment label. This may be due to a dimension/rank529

confounder variable and high redundancy of in-530

formation in the representations. It remains to be531

checked whether high performance in the random532

control directions corresponds to strong alignment533

with these probe-selected directions: we propose534

an analysis of the dot products with the fixed set535

of probe-selected dimensions, which indicates a536

shared directionality measure (0 for orthogonal vec-537

tors and 1 for codirectional ones).538

We have introduced a modification of the am- 539

nesic probing paradigm which we call mnestic prob- 540

ing which uses the same INLP process but consid- 541

ers the opposite intervention: using the union of 542

projection rowspaces to keep only the directions the 543

probes have identified to be modelling the target 544

information. This strategy presents results that are 545

more aligned with theoretical expectations, possi- 546

bly because we are now able to make comparisons 547

in a lower rank setting and also work with more 548

useful control baselines. 549
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Probing Accuracy

(a) Lexical Relation Probing Performance During Iterative
Amnesic Intervention Process

Downstream Task (NLI) Accuracy

(b) Downstream Performance On NLI_XY After Amnesic
Intervention (Removing Lexical Relation Information)

(c) Context Monotonicity Probing Performance During Itera-
tive Amnesic Intervention Process

(d) Downstream Performance On NLI_XY After Amnesic
Intervention (Removing Context Monotonicity Information)

Figure 7: Single Feature Amnesic Probing

Probing Accuracy

(a) Probing Performance On NLI_XY After Composite Label
Amnesic Intervention

Downstream Task (NLI) Accuracy

(b) Downstream Performance On NLI_XY After Composite
Label Amnesic Intervention

Figure 8: Composite Feature Label Amnesic Probing
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Probing Accuracy

(a) Probing Performance On NLI_XY After Entailment Label
Amnesic Intervention

Downstream Task (NLI) Accuracy

(b) Downstream Performance On NLI_XY After Entailment
Label Amnesic Intervention

Figure 9: Sanity Check: Entailment Gold Label Amnesic Probing
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