
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

KOLMOGOROV–ARNOLD TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers are the cornerstone of modern deep learning. Traditionally, they use
multi-layer perceptron (MLP) layers to mix channel information. In this paper, we
introduce the Kolmogorov–Arnold Transformer (KAT), which replaces MLP layers
with Kolmogorov-Arnold Network (KAN) layers to enhance model expressiveness.
Integrating KANs into transformers, however, is no easy feat, especially when
scaled up. Specifically, we identify three key challenges: (C1) Base function. The
standard B-spline used in KANs is inefficient for parallel computing, slowing
inference. (C2) Parameter and Computation Inefficiency. KAN requires a unique
function for each input-output pair, leading to high computational cost. (C3) Weight
initialization. The initialization of KANs is particularly challenging due to their
learnable activation functions. To overcome the aforementioned challenges, we
propose three key solutions: (S1) Rational basis. We replace B-spline functions
with rational functions to improve compatibility with modern GPUs. By imple-
menting this in CUDA, we achieve faster computations. (S2) Group KAN. We
share activation weights across groups of neurons to reduce computation without
sacrificing performance. (S3) Variance-preserving initialization. We initialize
activation weights to maintain variance across layers. With these designs, KAT
scales effectively and readily outperforms traditional MLP-based transformers.
We demonstrate the advantages of KAT across various tasks, including image
recognition, segmentation, detection, table classification, and graph classification.
It consistently enhances performance over the standard transformer architectures
of different model sizes.

1 INTRODUCTION

Transformers have become the de facto architecture in deep learning, widely adopted in computer
vision (Dosovitskiy et al., 2021) and natural language processing (Vaswani et al., 2017). At their core,
transformers rely on two main components: attention modules and multi-layer perceptrons (MLPs).
Although significant research has explored replacing the attention mechanism (Liu et al., 2021; 2022;
Tolstikhin et al., 2021), most variants still rely heavily on MLPs. Surprisingly, there have been few
attempts (Shazeer, 2020) to improve MLPs themselves.

Opening up the box, MLPs consist of stacked linear layers with non-linear activations. Theoretically,
they can approximate any function given enough neurons (Hornik et al., 1989). However, MLPs come
with their own problems. They struggle to model complex functions, like fitting periodic patterns with
ReLU-like activations. Training these networks often results in slow convergence for high-frequency
components (Rahaman et al., 2019; Basri et al., 2020; Ronen et al., 2019). These limitations have
driven researchers to explore more expressive alternatives to MLPs.

Recently, Kolmogorov-Arnold Networks (KANs) emerged as a powerful alternative. KANs are noted
for their theoretical parameter efficiency, potentially requiring fewer parameters to model complex
functions (Liu et al., 2024b; Yu et al., 2024; Bozorgasl & Chen, 2024a; Liu et al., 2024a). The key
to such success is the learnable base functions for each input-output pair, often parameterized by
B-spline curves (Unser et al., 1993; Gordon & Riesenfeld, 1974). Given its potential, integrating
KANs into transformers (Vaswani et al., 2017) becomes an exciting topic.

Unfortunately, this ambition has been met with limited success. In particular, KANs have been
reported to be “10× slower than MLPs, given the same number of parameters”. Initial efforts in vision
recognition tasks have been disappointing. Even on a small scale, these studies have consistently

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Input
Emb.

Norm

Attention

Norm

MLP

Transformer

Input
Emb.

Norm

Attention

Norm

KAN

ViT + KAN

ViT

KAT*

DeiT

ViT + KAN

KAT

Input
Emb.

Norm

Attention

Norm

GR-KAN

KAT(Ours)

Figure 1: (Left) Architecture of standard transformer (e.g. ViT), ViT+KAN which replaces the MLP with a
KAN, and our KAT model. In KAT, the MLP layers are replaced with GR-KAN layers. (Right) Performance on
the ImageNet dataset. KAT∗ indicates that the model was initialized using a pre-trained ViT. Generally, KAT
outperforms both the ViT and DeiT models. ViT+KAN performs poorly on ImageNet-level training.

fallen short of matching, let alone surpassing, the performance of traditional architectures. This lack
of improvement is often attributed to the limited computational resources and ongoing scalability
problems (Cheon, 2024a; Bodner et al., 2024; Cheon, 2024a;b).

In a preliminary experiment, we replaced the MLP layers in the Vision Transformer (ViT) with KAN
layers, creating the ViT+KAN model. As shown in Figure 1 (Right), this straightforward substitution
led to significant challenges during ImageNet-scale training and resulted in poor performance.
Scalability, therefore, remains a major obstacle for KAN-based models.

Motivation and Challenges. Through dedicated analysis, we have identified several key challenges
that hinder the effectiveness of KANs in large-scale applications, ultimately limiting their scalability.

• (C1) Base function. Standard B-spline functions in KANs are incompatible with modern GPUs
because they rely on recursive computations. This recursive nature significantly slows down
performance, even in highly optimized implementations.

• (C2) Parameter and Computation Inefficiency. KANs require unique parameters and base functions
for each input-output pair. It leads to exponential growth in parameters and computation overhead
as the network scales.

• (C3) Weight initialization. KANs use the same weight initialization as MLPs. But this approach
does not ensure convergence, leading to instability and degraded performance.

Our Approach. In this paper, we introduce Kolmogorov–Arnold Transformer (KAT), which suc-
cessfully integrates KANs into transformers for large-scale training scenarios such as ImageNet.
Beyond simple replacement, We have developed three key innovations (S1-S3) to address these
challenges (C1-C3) respectively.

• (S1) Rational activation. We use rational functions as our base function with a full CUDA
implementation, improving efficiency and compatibility with modern GPUs.

• (S2) Group KAN. We share function coefficients and base functions among groups of edges. This
strategy reduces computational load significantly without sacrificing performance.

• (S3) Variance-preserving initialization. We carefully initialize the weights to keep the activation
variance consistent across layers. This ensures stability during training and improves performance.

By combining solutions S1–S3, we present a new variant of KAN, called Group-Rational KAN (GR-
KAN), to replace the MLP in transformer. GR-KAN is computationally efficient, easy to implement,
and seamlessly integrates into transformers. Furthermore, our designs allow KAT to load pre-trained
weights from ViT models and continue training to achieve even better results.

We empirically validate KAT across a range of vision tasks, including image recognition, object
detection, and semantic segmentation. The results demonstrate that KAT outperforms traditional
MLP-based transformers, with similar computational requirements. As shown in Figure 1, KAT-B
achieves 82.3% accuracy on ImageNet-1K, surpassing the ViT-B by 3.1%. When initialized with
pre-trained weights from ViT, the performance further improves to 82.7%.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

The contributions of our paper are threefold. First, we thoroughly analyze the challenges in scaling
KAN-based models, particularly focusing on inefficiencies in base functions, parameterization, and
weight initialization. Based on this analysis, we propose a set of solutions: rational activation
functions tailored for GPU efficiency, Group KAN to reduce computational overhead, and variance-
preserving initialization to ensure stable training. Second, leveraging these insights, we introduce the
Kolmogorov–Arnold Transformer (KAT) and scale it to ImageNet-level training. Third, we validate
our approach through extensive experiments, showing that KAT not only matches but surpasses the
performance of ViT models, all under similar computational requirements.

2 PRELIMINARY

2.1 KOLMOGOROV-ARNOLD REPRESENTATION THEOREM

The Kolmogorov-Arnold representation theorem (Hecht-Nielsen, 1987) states that any multivariate
continuous function f , defined in a bounded domain, can be expressed as a finite composition of
continuous univariate functions and addition. Specifically, for a smooth function f : [0, 1]n → R, it
can be represented as:

f(x1, . . . , xn) =

2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(xp)

)
Here, each function ϕq,p : [0, 1] → R and Φq : R → R are continuous. This means that the
(2d+1)(d+1) univariate functions Φq and ϕq,p are enough for an exact representation of a d-variate
function.

This theorem can be written in matrix form as follows:

f(x) = Φout ◦ Φin ◦ x (1)

where Φin and Φout are defined as:

Φin =

 ϕ1,1(·) · · · ϕ1,d(·)
...

. . .
...

ϕ2d+1,1(·) · · · ϕ2d+1,d(·)

 , Φout = [Φ1(·) · · · Φ2d+1(·)] (2)

This decomposition illustrates how f can be built from simpler functions, showcasing an essential
property of multivariate continuous functions.

2.2 KOLMOGOROV–ARNOLD NETWORKS

Inspired by the Kolmogorov-Arnold representation theorem, (Liu et al., 2024b) define a generalized
Kolmogorov-Arnold layer to learn a univariate non-linear function for each edge. By summing these
univariate functions, the layer can approximate any multivariate function. Formally, a Kolmogorov-
Arnold layer with din-dimensional inputs and dout-dimensional outputs is illustrated as

f(x) = Φ◦x =
[∑din

i=1 ϕi,1(xi) . . .
∑din

i=1 ϕi,dout
(xi)

]
,where Φ =

 ϕ1,1(·) · · · ϕ1,din(·)
...

. . .
...

ϕdout,1(·) · · · ϕdout,din(·)

(3)

Note that Eq 3 can be seen as a generalized form of Eq 1, such that Φ = Φin ◦ Φout. A general
KAN network is a stacking of L layers: given an input vector x0 ∈ Rd0 , the output of KAN is
KAN(x0) = ΦL−1 ◦ ΦL−2 · · · ◦ Φ0 ◦ x0.

In practice, (Liu et al., 2024b) parameterizes Φ use a linear combination of SiLU activation (Elfwing
et al., 2018) and a B-spline function

ϕ(x) = wbsilu(x) + wsspline(x),where silu(x) =
x

1 + e−x
, spline(x) =

∑
i

ciBi(x)

(4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 WHY ORIGINAL KAN FAILS TO SCALE?

This section examines the scalability of KAN. It is hindered by three factors: the choice of base
function, redundant parameters and computations, and initialization problems. These design choices
make the vanilla KAN resource-intensive and difficult to apply to large-scale models.

B-spline is not GPU Friendly. The use of B-spline functions in KAN layers introduces challenges
when implemented on GPUs. First, B-splines are not standard functions in CUDA, so using them via
PyTorch or NumPy lacks optimized support, resulting in slower performance. Second, the localized
computations of B-splines complicate parallel processing: each control point affects only a small
area, leading to sparse or recursive operations that GPUs handle less efficiently. While efficient
implementations exist for cubic B-splines (Ruijters & Thévenaz, 2012; Ruijters et al., 2008; Sigg &
Hadwiger, 2005), scaling these methods to higher orders is not straightforward.

Parameter and Computation Inefficiency. KAN differs from standard neural networks by using
a learnable base function for each input-output channel pair. This design increases the number of
parameters and computational demands, especially as the network’s width and depth grow.

In a typical KAN layer with din input and dout output channels, a B-spline function of order K over
G intervals is assigned to each input-output pair. This results in (din × dout)× (G+K + 3) + dout
learnable parameters. In contrast, a standard MLP requires only (din × dout) + dout parameters.

For computation (Yu et al., 2024), the FLOPs required to process one sample using the De Boor-Cox
iterative formulation (Boor, 1971) are

{
FLOPs of non-linear function× din+(din× dout)× [9K×

(G + 1.5K) + 2G − 2.5K + 3]
}

. In contrast, the FLOPs for an equivalent MLP layer is merely{
FLOPs of non-linear function × dout + 2× (din × dout)

}
.

Overall, KAN’s parameter size and computational effort are O(G+K) and O(GK) times greater
than those of a conventional MLP, respectively. This makes scaling up KAN challenging.

Weights are not Properly Initialized. Proper weight initialization is essential for training deep neural
networks. A fundamental principle is variance-preserving, meaning that the variance of the signal
should remain constant as it propagates through multiple layers, whether forward or backward (LeCun
et al., 2002; Glorot & Bengio, 2010; He et al., 2015). This variance-preserving principle stabilizes
activations and gradients.

However, the KAN paper’s initialization strategy violates this principle. Assuming an input x ∼
N (0, σ2

x) and using a zero-order spline, the output variance becomes V ar[ϕ(x)] ≈ 0.01 + 1.064σ2
x

1,
which differs from V ar[x]. Higher-order splines may exacerbate this variance instability. Therefore,
the default initialization contradicts the essential variance-preserving principle.

4 KOLMOGOROV–ARNOLD TRANSFORMER

As discussed earlier, the standard KAN faces three major challenges that limit its use in large, deep
neural networks. In this section, we refine its design to better suit modern transformers, allowing us
to replace MLP layers with KANs.

4.1 OVERALL ARCHITECTURE

Just as its name imply, Kolmogorov–Arnold Transformer (KAT) replaces the MLPs in vision trans-
former (Dosovitskiy et al., 2021) with KAN layers.

Specifically, for a 2D image x ∈ RH×W×C , we first flatten it into a 1D sequence, apply patch
embedding and positional encoding, and then pass it through a series of KAT layers. At layer ℓ, the
following operations are performed:

x
(ℓ)
0 = MSA(LN(xℓ−1)) + xℓ−1, ℓ = 1, . . . , L (5)

1full derivation in Appendix D.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

xℓ = MLP(LN(x
(ℓ)
0)) + x

(ℓ)
0 , [Transformer] (6) xℓ = KAN(LN(x

(ℓ)
0)) + x

(ℓ)
0 , [KAT] (7)

where xℓ stands for the output feature sequence at the ℓ layer. MSA and LN stand for the multi-head
self-attention and layer norm. As illustrated, we replace all two-layer MLPs with two-layer KANs
while keeping the attention layers unchanged. Although similar efforts have been made in specific
domains (Chen et al., 2024b;a), a simple replacement is not enough to achieve scalability in large
models.

Most importantly, here, we introduce a special kind Group-Rational KAN. We use rational functions as
the base function for KAN (Section 4.2) and share parameters between a group of edges (Section 4.3).
We also specify the weight initialization scheme to ensure stable training (Section 4.4). Together,
these enhancements make KAT more scalable and improve performance.

4.2 RATIONAL BASE FUNCTIONS

In our method, we use the rational function (Boullé et al., 2020; Telgarsky, 2017; Leung & Haykin,
1993; Aghaei, 2024) as the base function for the KAN layer, instead of the B-spline.

Specifically, we parameterize the function ϕ(x) on each edge as rational over polynomials P (x), Q(x)
of order m,n.

ϕ(x) = wF (x) = w
P (x)

Q(x)
= w

a0 + a1x+ · · ·+ amxm

b0 + b1x+ · · ·+ bnxn
(8)

an and bm are coefficient of the rational function and w is the scaling factor. This function is said to
have degree m/n. We hope to learn those an, bm and w through end-to-end backpropagation.

To avoid instability caused by poles, where Q(x) → 0 and ϕ(x) → ±∞, we employ a Safe Padé
Activation Unit (PAU) (Molina et al., 2020) as our basis, which is a modified form of the standard
rational function

F (x) =
a0 + a1x+ · · ·+ amxm

1 + |b1x+ · · ·+ bnxn|
(9)

Implement Rational Function on GPU. With the rational function, a core contribution in this paper
is to implement it efficiently on the GPU. Rather than using pytorch with automatic differentiation,
we implement it fully with CUDA (Nickolls et al., 2008).

• Similar to (Molina et al., 2020), we compute the explicit gradients of δF
δam

, δF
δbn

and δF
δx . The full

expression is shown in Appendix F.
• To optimize the evaluation of polynomials, we employ Horner’s method (Horner, 1815), which

reformulates a polynomial in a nested form to reduce the computation:

a0 + a1x+ · · ·+ amxm = a0 + x(a1 + x(a2 + x(. . .))) (10)

This allows the evaluation of a polynomial of degree n with only n multiplications and n additions.
By default, we use m = 5 and n = 4.

Through this efficient CUDA implementation, we largely reduce the computation for each evaluation
of the base function. As shown in Table 1, with a scalar input, the rational function with the Horner
method is much cheaper than the B-spline used in the KAN paper.

4.3 GROUP KAN

Instead of learning a unique base function for each input-output pair, we can share their parameters
within a group of edges. It reduces the number of parameters and computation. This kind of parameter
sharing (LeCun et al., 1995; 1989) and group-wise computation (Vaswani et al., 2017; Wu & He,
2018) have been key techniques in neural network design.

Specifically, we divide the input channels din into g groups, sharing parameters among din/g input
channels within each group. Figure 2 illustrates the distinctions between the original KAN, our Group
KAN, and a standard MLP. Unlike MLPs, which employ non-learnable activations, KAN assigns a
unique function to each input-output pair. Group KAN reduces the number of parameters by sharing
these functions among a group of edges.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

𝜙!,! 𝜙!,# 𝜙!,$ 𝜙!,%

𝜙#,! 𝜙#,# 𝜙#,$ 𝜙#,%

𝜙$,! 𝜙$,# 𝜙$,$ 𝜙$,%

𝜙%,! 𝜙%,# 𝜙%,$ 𝜙%,%

𝜙 𝜙 𝜙 𝜙

𝜙 𝜙 𝜙 𝜙

𝜙 𝜙 𝜙 𝜙

𝜙 𝜙 𝜙 𝜙

In
pu

t C
ha

nn
el

s

Output Channels

Vanilla KAN Pre-Act MLP

𝜙&! 𝜙&! 𝜙&! 𝜙&!

𝜙&! 𝜙&! 𝜙&! 𝜙&!

𝜙&# 𝜙&# 𝜙&# 𝜙&#

𝜙&# 𝜙&# 𝜙&# 𝜙&#

Group KAN (Ours, 𝑔 = 2)

Figure 2: Comparing our Group KAN with vanilla KAN and
MLPs. While KAN has unique function on each input-output
pair, Group KAN shares these functions with groups of edges.

Name FLOPs

B-Spline (G=3, K=3) 204
Rational (m=5, n=4) 28
Rational (m=5, n=4) w Horner 21

Table 1: One sample FLOPs comparison
of different non-linear functions at each
edge. Horner’s method with the Rational
function reduces FLOPs by approximately
9.3× compared to the B-Spline.

Name No. Params FLOPs

MLP din × dout + dout Func FLOPs × dout + 2 × (din × dout)
KAN din × dout × (G + K + 3) + dout Func FLOPs × din + (din × dout) × [9K × (G + 1.5K) + 2G − 2.5K + 3]
GR-KAN (Ours) din × dout + dout + (m + n × g) (2m + 2n + 3) × din + 2 × (din × dout)

Table 2: Comparison of parameter number and computation among different models. Func FLOPs refers to the
FLOPs of non-linear activation. In KAN, K is the order and G is the grid number. In GR-KAN, m and n are
the polynomial orders, and g is the number of groups. GR-KAN has a parameter size comparable to that of MLP,
while the original KAN has O(G+K) times more parameters and O(GK) times more FLOPs.

Group-Rational KAN. We combine the rational function of Section 4.2 with group-wise parameters
to implement our Group-Rational KAN (GR-KAN). In practice, we share the parameter for the
rational function F for each group; however, each edge retains a unique scalar w.

Suppose i is the index of the input channel. With g groups, each group contains dg = din/g channels,
where ⌊i/dg⌋ is the group index. The operation of GR-KAN on input vector x can be expressed as

GR-KAN(x) = Φ ◦ x =
[∑din

i=1 wi,1F⌊i/dg⌋(xi) . . .
∑din

i=1 wi,dout
F⌊i/dg⌋(xi)

]
(11)

With a simple rewrite, this can be expressed in matrix form as the product of a weight matrix
W ∈ Rdin×dout and a input-wise rational function F

GR-KAN(x) = WF(x) =

 w1,1 · · · w1,din

...
. . .

...
wdout,1 · · · wdout,din

×
[
F⌊1/dg⌋(x1) . . . F⌊din/dg⌋(xdin)

]⊤
(12)

As such, we can implement this GR-KAN layer as a group-wise rational function F followed by a
linear layer

GR-KAN(x) = linear(group rational(x)) (13)

In this form, sharing parameters across each input channel allows direct application of the rational
function to the input vector, equivalently applying it across each grouped edge. In this way, GR-KAN
functions as a specialized MLP, with 1) learnable non-linear functions, 2) activation preceding the
linear layer, and 3) unique activation functions tailored for each group of edges.

In experiments, we notice that for rational function, we share the denominator coefficient bn among
all groups and use different am for each group. It gets better performance.

Parameter and Computation Savings. The original KAN requires din × dout unique activation
functions. Through our grouping strategy, only g unique functions are needed, reducing the parameter
count to a constant overhead compared to a standard MLP.

Except the saving on parameter number, this grouping also reduces computational demands. Each
input channel computes the activation function ϕ once, shared across all corresponding output
channels. In contrast, the original KAN requires that each output channel j to independently compute
ϕi,j . This results in significant computational savings. The comparison of the number of parameters
and computation is listed in Table 2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: Example of fitted functions with rational form. We also show the
mean square error (MSE) for the fitting.

Name α = V ar[x]
E[F (x)2]

Identity 1
ReLU 2
GELU 2.3568
Swish/SiLU 2.8178
GEGLU 0.7112
SwishGLU 0.8434

Table 3: Expected values of
F (x)2 for various functions.

4.4 VARIANCE-PRESERVING INITIALIZATION

In this section, we aim to initialize the values for am, bn and w in Group-Rational KAN to ensure
variance-preserving behavior across the network. At its core, we prevent the growth or reduction of
activation magnitudes throughout the layers, thereby maintaining stability.

We revisit the analysis from (He et al., 2015) and adapt it to KANs. For a GR-KAN layer, the
computation for each output yj is given by yj =

∑din

i=1 ϕ(xi) =
∑din

i=1(wi,jF (xi)) + bj . We assume
that all xi are i.i.d (Glorot & Bengio, 2010) and uniformly distributed. Here, wi,j follows a normal
distribution N (0, σ2

w) and bj is initialized to zero. The variance of yj can then be described as:

V ar[y] = dinV ar[wF (x)] (14)

V ar[y] = dinV ar[w]E[F (x)2] (15)

where x, y, and w represent the random variables of each element in xi, yj , and wi,j respectively.
When layers are stacked, we aim for the variance of the input-output activations to remain consistent,
expressed as:

V ar[x] = dinV ar[w]E[F (x)2] (16)

Since F (x) is the rational function containing coefficients am and bn, the initialization of w and
these coefficients are interdependent—the form of F (x) influences the appropriate initialization of w.
The crucial step is to calculate V ar[x]

E[F (x)2] and adjust w to maintain consistent activation scaling.

For our rational function defined in Equation 9, computing E[F (x)2] involves evaluating:

E[F (x)2] =

∫ +∞

−∞
F 2(x)f(x)dx =

∫ +∞

−∞
(
a0 + a1x+ · · ·+ amxm

1 + |b1x+ · · ·+ bnxn|
)2f(x)dx (17)

where f(x) is the density function of x. Unlike activation functions such as ReLU, for which
E[F (x)2] = 1

2V ar[x], computing E[F (x)2] for the rational function is challenging due to the lack of
a closed-form solution.

Initialize a, b first, then initialize w. To make the process manageable, Instead of sampling w, a,
and b jointly, we proceed sequentially. Initially, we determine a and b such that F fits established
activations like ReLU, GELU, and Swish. Figure 3 illustrates the fitted functions.

Once a and b are set, we estimate the gain α = E[F (x)2]
V ar[x] numerically, assuming x ∼ N (0, 1)2. The

calculated gains, α, are documented in Table 3. We use the gain value to initialize w from N (0, α
din

).

Initialize KAT from ViT. In addition to random weight initialization, we can also transfer weights
from a pre-trained ViT to our KAT model. This transfer is straightforward for most layers, as KAT
can replicate the micro-architecture of ViT, except for the KAN layer.

2This assumption is justified as the inputs to the KAN layer are normalized using layer normalization as in
Equation 7. The LN layers are initialized to have zero bias and a scaling factor of one

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

FC1 FC2

Linear 2

σ

Group rational 2Linear 1Group rational 2

Identity

MLP

GR-KAN

Figure 4: One-to-one weight mapping between trained
MLP in ViT and GR-KAN in KAT.

For the GR-KAN, weight transfer is still feasi-
ble, as shown in Figure 4. Because the GR-KAN
also includes a linear layer, we can directly load
the weights of the linear layer from the MLP in
the trained ViT.

For rational layers in GR-KAN, the first one is
initialized to behave like an identity function,
while the second layer is set to approximate the non-linear function used in the original MLP. This
approach allows all the weights of the GR-KAN layer to be cloned from a ViT model, ensuring
compatibility and efficient initialization.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We modify the original ViT (Dosovitskiy et al., 2021) architecture by substituting its MLP layers
with GR-KAN layers. By default, these KAN layers employ a rational function with parameters
m = 5 and n = 4, and are organized into groups of 8 (g = 8). Each transformer block contains 2
KAN layers. The first GR-KAN layer’s am and bn are initialized to fit the identity function, while
the second is initialized to mimic the Swish function (Ramachandran et al., 2017). The attention
layers are initialized with Mimetic Initialization (Trockman & Kolter, 2023). The remainder of the
architecture remains unchanged. We intentionally do not use hierarchical architectures (Yu et al.,
2022) for simplicity. In the main paper, due to the page limit, we focus on vision tasks. But we also
extend the architecture for tabular and graph data, as detailed in Appendix A.

5.2 IMAGE RECOGNITION

Experiment Setup. We do experiments on ImageNet-1K [59] image classification benchmark.
ImageNet-1K is one of the most widely-used datasets in computer vision which contains about 1.3M
images of 1K classes on training set, and 50K images on validation set.

We mainly follow the hyper-parameters of DeiT (Touvron et al., 2021). Specifically, models are trained
for 300 epochs at 2242 resolution. The patch size is set to 16. Data augmentation and regularization
techniques include RandAugment (Cubuk et al., 2020), Mixup (Zhang et al., 2018), CutMix (Yun
et al., 2019), Random Erasing (Zhong et al., 2020), weight decay, Label Smoothing (Szegedy et al.,
2016) and Stochastic Depth (Huang et al., 2016). We adopt AdamW (Loshchilov & Hutter, 2019)
optimizer with batch size of 1024.

Figure 5: Comparative Analysis of Model Performance and Com-
putational Efficiency on ImageNet-1K. We measure the FLOPs
under 2242 using fvcore package. ∗ indicates that the model is
initialized using a pre-trained ViT model, otherwise trained from
scratch.

Model Channel Mixer #Param. FLOPs IN-1k Top-1

ViT-Ti/16 MLP 5.7M 1.08G 72.7
DeiT-T MLP 5.7M 1.08G 72.2
ViT-T + KAN KAN 12.8M 1.78G 64.9
KAT-T KAN 5.7M 1.13G 74.6
KAT-T∗ KAN 5.7M 1.13G 75.7

ViT-S/16 MLP 22.1M 4.25G 78.8
DeiT-S MLP 22.1M 4.25G 79.8
ViT-S + KAN KAN 50.4M 7.05G 62.9
KAT-S KAN 22.1M 4.35G 81.2
KAT-S∗ KAN 22.1M 4.35G 82.0

ViT-B/16 MLP 86.6M 16.87G 79.1
DeiT-B MLP 86.6M 16.87G 81.8
ViT-B + KAN KAN 199.8M 28.04G NAN
KAT-B KAN 86.6M 17.06G 82.3
KAT-B∗ KAN 86.6M 17.06G 82.8

We compare with ViT (Dosovitskiy
et al., 2021) and DeiT (Touvron et al.,
2021), as we share the same archi-
tecture, except for the channel mixer.
We also report the results of ViT +
KAN (Chen et al., 2024b), that simply
replacing MLP with standard KAN.

Results. Our experimental results
demonstrate that the KAT models con-
sistently outperform their counterparts
on the IN-1k dataset, as shown in Ta-
ble 5. Firstly, the integration of GR-
KAN in transformer demonstrates su-
perior performance over traditional
MLP-based mixers. For instance, the
KAT-S achieves an accuracy of 81.2%,
outperforming the DeiT-S model by
2.4%. This improvement underscores
the potential of KAN mixers to enhance model efficacy when properly integrated.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Secondly, the vanilla KAN layer faces scalability issues. ViT-T/S + KAN only achieved an accuracy
of around 63%, even with a much higher computational cost. ViT-B + KAN fails to converge,
resulting in NAN error. We addressed these scaling challenges as detailed in Section 3, enabling
our KAT models to scale successfully. These findings highlight the advantage of KAT models in
balancing computational efficiency with improved performance.

5.3 OBJECT DETECTION AND INSTANCE SEGMENTATION

Experimental Setup. We evaluate our approach on the MS-COCO2017 (Lin et al., 2014) dataset,
a standard benchmark for object detection and instance segmentation. In our setup, the KAT is
employed as the backbone within a ViTDet-based (Li et al., 2022) Mask R-CNN (He et al., 2017)
model, initialized with weights pre-trained on ImageNet. We followed the standard 3× training
schedule, which consists of 36 epochs. The training images were resized to 800× 1333 pixels. The
AdamW optimizer (Loshchilov & Hutter, 2019) was used with a learning rate of 0.0001 and a total
batch size of 16. Our implementation was based on the PyTorch and MMDetection (Chen et al.,
2019) libraries, and we use FP16 precision to reduce training costs. The experiments were carried out
on 4 NVIDIA H100 GPUs.

Results. Table 4 compares the performance of different backbones. KAT consistently outperformed
other models, particularly in object detection, where it achieved a 3.0 APbox gain on the S-sized
model and a 1.4 APbox gain on the L-sized model compared to ViTDet. The improvements were most
pronounced in smaller models, where computational cost increased by only 1 GFLOPs. This shows
that KAT offers better accuracy with minimal overhead.

Table 4: Performance of Mask-RCNN with different backbones on 3× schedule.

Backbone #Param. FLOPs APbox APbox
50 APbox

75 APmask APmask
50 APmask

75

PVT-Small 44.1M - 43.0 65.3 46.9 39.9 62.5 42.8
Swin-T 48M 267G 46.0 68.1 50.3 41.6 65.1 44.9
ConvNeXt-T 48M 262G 46.2 67.9 50.8 41.7 65.0 44.9
ViT-S 43.8M 423G 44.0 66.9 47.8 39.9 63.4 42.2
ViTDet-S 44.5M 423G 44.5 66.9 48.4 40.1 63.6 42.5
KATDet-S 44.5M 424G 47.5 69.0 51.2 41.5 65.7 44.0

ViT-B 113.6M 767G 45.8 68.2 50.1 41.3 65.1 44.4
ViTDet-B 113.6M 767G 46.3 68.6 50.5 41.6 65.3 44.5
KATDet-B 113.7M 770G 47.7 69.1 51.6 41.6 65.9 44.3

5.4 SEMANTIC SEGMENTATION

Experiment Setup. We evaluated our KAT model on the ADE20K dataset (Zhou et al., 2017).
This dataset comprises 150 semantic categories with 20,000 images in the training set and 2,000
in the validation set. For our experiments, we utilized KAT as the backbone for the UperNet
framework (Xiao et al., 2018), initializing it with ImageNet pre-trained weights. The training was
conducted using the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of 0.0001 and
a batch size of 16, across 160,000 iterations. Our implementation was carried out using the PyTorch
and mmsegmentation libraries, and the experiments were performed on two NVIDIA H100 GPUs.
For comparison, we evaluated UperNet with other backbones, including DeiT, Swin Transformer,
and ConvNeXt.

Results. Table 5 summarizes the segmentation results. Overall, KAT demonstrates a competitive
improvement over plain ViT-based architectures, achieving a 2.4% improvement over DeiT-S and
a 0.2% improvement over DeiT-B. This performance boost comes with a slight increase in com-
putational cost, reflected in the higher FLOPs. Similar to the detection results, KAT shows more
significant gains in smaller models. However, it still falls short compared to models with hierarchical
architectures, such as ConvNeXt, which benefit from more efficient structural design.

5.5 ABLATION STUDY AND ANALYSIS

GR-KAN v.s. Activation Function. As GR-KAN can be considered as a special kind of MLP
with group rational function, we do an ablation study to consider different types of activation for

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: Performance of Semantic segmentation with
UperNet on ADE20K validation set. Images are
cropped to 512 × 512 for training. The MACs are
measured with input size of 512× 2048.

Backbone #Param. FLOPs mIoU (%)

Swin-T 60M 945G 45.8
ConvNeXt-T 60M 939G 46.7
DeiT-S 57M 1217G 43.5
KAT-S 57M 1219G 46.1

Swin-B 121M 1188G 49.5
ConvNeXt-B 122M 1170G 49.6
DeiT-B 142M 2007G 47.2
KAT-B 142M 2011G 47.4

Table 6: Ablation on activation function, with ViT-
Ti/16 Variant.

Name Learnable? IN-1k Top-1

GELU (Default) No 72.7

ReLU No 72.8

SiLU No 69.8

PReLU Yes 73.2

PAU Yes 73.6

KAT-T Yes 74.6

MLP and compare with our GR-KAN. Superficially, we replace the activation function in MLP in
ViT-Ti/16 to different kinds, including GELU (Hendrycks & Gimpel, 2016), ReLU (Fukushima,
1969), SiLU (Elfwing et al., 2018), PReLU (He et al., 2015) and PAU (Molina et al., 2020), and
comparing them with KAT.

Table 6 summarizes the top-1 accuracy on the ImageNet-1k dataset for each activation function with
ViT-Ti/16. The results indicate that traditional activation functions like ReLU and GELU perform
similarly. Learnable activations like PReLU and PAU show an improvement. Notably, Our KAT-T
achieves the highest accuracy at 74.6%, outperforming GELU by 1.9%. This suggests that GR-KAN,
as used in KAT-T, can significantly enhance the expressiveness of MLPs in vision transformers.

In addition to accuracy, we analyzed the computational cost of different activations by measuring
throughput and peak memory usage on an NVIDIA A5000 GPU (Table 7). All activations had similar
peak memory usage. However, KAT-T showed slightly lower throughput compared to baseline
activations like ReLU, GELU, and SiLU. This suggests a trade-off between accuracy improvement
and computational efficiency due to the increased complexity of rational function computations.

Table 7: Throughput and Peak memory for different activa-
tions on A5000 GPU. Input size is fixed to [64, 1000, 512].

Activation ReLU GeLU SiLU PReLU Ours

Throughput (batch/s) 2654 2643 2668 2644 2313

Peak Memory (M) 1380 1380 1380 1380 1380

Table 8: Ablation on rational function initialization,
with KAT-T.

Rational 1 Init. Rational 2 Init. IN-1k Top-1

Random Random 53.2
Identity Identity 69.7
Swish Swish 74.4

Identity GeLU 74.5
Identity Swish 74.6

Initialization. We evaluate the KAT-T model using different initializations when training from
scratch. ‘Random‘ refers to initializing all am, bn values using Xavier initialization, without our
variance-preserving init. As shown in Table 8, the “Identity - Swish” initialization achieves the
best performance, which we have adopted as our default setting. ‘Random‘ initialization results in
significantly lower accuracy.

6 CONCLUSION

In this work, we introduced the Kolmogorov–Arnold Transformer (KAT), a novel architecture
that successfully integrates Kolmogorov-Arnold Networks (KANs) into transformers, addressing
key challenges associated with large-scale training scenarios. Our proposed Group-Rational KAN
(GR-KAN) variant, with its rational activation functions, group-based parameter sharing, and variance-
preserving initialization, demonstrated significant improvements in computational efficiency and
scalability. Through extensive experiments on vision tasks, including image recognition, object
detection, and semantic segmentation, KAT outperformed traditional MLP-based transformers,
achieving superior accuracy on ImageNet1K while maintaining comparable computational demands.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Emmanuel Abbe. Community detection and stochastic block models: recent developments. J.
Mach. Learn. Res., 18:177:1–177:86, 2017. URL https://api.semanticscholar.org/
CorpusID:9134861.

Alireza Afzal Aghaei. rkan: Rational kolmogorov-arnold networks. arXiv preprint arXiv:2406.14495,
2024.

K. Bache and M. Lichman. UCI machine learning repository, 2013. URL http://archive.
ics.uci.edu/ml.

George A Baker Jr and John L Gammel. The padé approximant. Journal of Mathematical Analysis
and Applications, 2(1):21–30, 1961.

Ronen Basri, Meirav Galun, Amnon Geifman, David Jacobs, Yoni Kasten, and Shira Kritchman.
Frequency bias in neural networks for input of non-uniform density. In International Conference
on Machine Learning, pp. 685–694. PMLR, 2020.

Alexander Dylan Bodner, Antonio Santiago Tepsich, Jack Natan Spolski, and Santiago Pourteau.
Convolutional kolmogorov-arnold networks. arXiv preprint arXiv:2406.13155, 2024.

C de Boor. Subroutine package for calculating with b-splines, 1971.

Nicolas Boullé, Yuji Nakatsukasa, and Alex Townsend. Rational neural networks. Advances in neural
information processing systems, 33:14243–14253, 2020.

Zavareh Bozorgasl and Hao Chen. Wav-kan: Wavelet kolmogorov-arnold networks. arXiv preprint
arXiv:2405.12832, 2024a.

Zavareh Bozorgasl and Hao Chen. Wav-kan: Wavelet kolmogorov-arnold networks, 2024b.

Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen
Feng, Ziwei Liu, Jiarui Xu, et al. Mmdetection: Open mmlab detection toolbox and benchmark.
arXiv preprint arXiv:1906.07155, 2019.

Yifei Chen, Zhu Zhu, Shenghao Zhu, Linwei Qiu, Binfeng Zou, Fan Jia, Yunpeng Zhu, Chenyan
Zhang, Zhaojie Fang, Feiwei Qin, et al. Sckansformer: Fine-grained classification of bone
marrow cells via kansformer backbone and hierarchical attention mechanisms. arXiv preprint
arXiv:2406.09931, 2024a.

Ziwen Chen, Gundavarapu, and WU DI. Vision-kan: Exploring the possibility of kan replacing mlp in
vision transformer. https://github.com/chenziwenhaoshuai/Vision-KAN.git,
2024b.

Minjong Cheon. Demonstrating the efficacy of kolmogorov-arnold networks in vision tasks. arXiv
preprint arXiv:2406.14916, 2024a.

Minjong Cheon. Kolmogorov-arnold network for satellite image classification in remote sensing.
arXiv preprint arXiv:2406.00600, 2024b.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 702–703, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
ICLR, 2021.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
ArXiv, abs/2012.09699, 2020. URL https://api.semanticscholar.org/CorpusID:
229298019.

11

https://api.semanticscholar.org/CorpusID:9134861
https://api.semanticscholar.org/CorpusID:9134861
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://github.com/chenziwenhaoshuai/Vision-KAN.git
https://api.semanticscholar.org/CorpusID:229298019
https://api.semanticscholar.org/CorpusID:229298019

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. ArXiv, abs/2003.00982, 2023. URL https://api.
semanticscholar.org/CorpusID:211677851.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Kunihiko Fukushima. Visual feature extraction by a multilayered network of analog threshold
elements. IEEE Transactions on Systems Science and Cybernetics, 5(4):322–333, 1969.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

William J Gordon and Richard F Riesenfeld. B-spline curves and surfaces. In Computer aided
geometric design, pp. 95–126. Elsevier, 1974.

Isabelle M Guyon, Lisheng Sun-Hosoya, Marc Boullé, Hugo Jair Escalante, Sergio Escalera, Zhengy-
ing Liu, Damir Jajetic, Bisakha Ray, Mehreen Saeed, Michèle Sebag, Alexander R. Statnikov,
Wei-Wei Tu, and Evelyne Viegas. Analysis of the automl challenge series 2015-2018. In Automated
Machine Learning, 2019. URL https://api.semanticscholar.org/CorpusID:
70088648.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Robert Hecht-Nielsen. Kolmogorov’s mapping neural network existence theorem. In Proceedings of
the international conference on Neural Networks, volume 3, pp. 11–14. IEEE press New York, NY,
USA, 1987.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

WG Horner. A new method of solving numerical equations of all orders, by continuous approximation.
In Abstracts of the Papers Printed in the Philosophical Transactions of the Royal Society of London,
volume 2, pp. 117–117. JSTOR, 1815.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pp. 646–661. Springer, 2016.

Xin Huang, Ashish Khetan, Milan Cvitkovic, and Zohar S. Karnin. Tabtransformer: Tabular
data modeling using contextual embeddings. CoRR, abs/2012.06678, 2020. URL https:
//arxiv.org/abs/2012.06678.

John J. Irwin, T. Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G. Coleman. Zinc: A free
tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52:1757 –
1768, 2012. URL https://api.semanticscholar.org/CorpusID:9759396.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series. The
handbook of brain theory and neural networks, 3361(10):1995, 1995.

12

https://api.semanticscholar.org/CorpusID:211677851
https://api.semanticscholar.org/CorpusID:211677851
https://api.semanticscholar.org/CorpusID:70088648
https://api.semanticscholar.org/CorpusID:70088648
https://arxiv.org/abs/2012.06678
https://arxiv.org/abs/2012.06678
https://api.semanticscholar.org/CorpusID:9759396

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In Neural
networks: Tricks of the trade, pp. 9–50. Springer, 2002.

Henry Leung and Simon Haykin. Rational function neural network. Neural Computation, 5(6):
928–938, 1993.

Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer
backbones for object detection. In European conference on computer vision, pp. 280–296. Springer,
2022.

Ziyao Li. Kolmogorov-arnold networks are radial basis function networks. ArXiv, abs/2405.06721,
2024. URL https://api.semanticscholar.org/CorpusID:269756823.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

Ziming Liu, Pingchuan Ma, Yixuan Wang, Wojciech Matusik, and Max Tegmark. Kan 2.0:
Kolmogorov-arnold networks meet science. arXiv preprint arXiv:2408.10205, 2024a.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint
arXiv:2404.19756, 2024b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Alejandro Molina, Patrick Schramowski, and Kristian Kersting. Padé activation units: End-to-end
learning of flexible activation functions in deep networks. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=BJlBSkHtDS.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel programming with
cuda: Is cuda the parallel programming model that application developers have been waiting for?
Queue, 6(2):40–53, 2008.

Gist Noesis. Fourierkan, 2024.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International conference
on machine learning, pp. 5301–5310. PMLR, 2019.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017.

Basri Ronen, David Jacobs, Yoni Kasten, and Shira Kritchman. The convergence rate of neural
networks for learned functions of different frequencies. Advances in Neural Information Processing
Systems, 32, 2019.

Daniel Ruijters and Philippe Thévenaz. Gpu prefilter for accurate cubic b-spline interpolation. The
Computer Journal, 55(1):15–20, 2012.

Daniel Ruijters, Bart M ter Haar Romeny, and Paul Suetens. Efficient gpu-based texture interpolation
using uniform b-splines. Journal of Graphics Tools, 13(4):61–69, 2008.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

13

https://api.semanticscholar.org/CorpusID:269756823
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://openreview.net/forum?id=BJlBSkHtDS

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Christian Sigg and Markus Hadwiger. Fast third-order texture filtering. GPU gems, 2:313–329, 2005.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Matus Telgarsky. Neural networks and rational functions. In International Conference on Machine
Learning, pp. 3387–3393. PMLR, 2017.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer: An
all-mlp architecture for vision. Advances in neural information processing systems, 34:24261–
24272, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé
Jégou. Training data-efficient image transformers & distillation through attention. In International
conference on machine learning, pp. 10347–10357. PMLR, 2021.

Asher Trockman and J Zico Kolter. Mimetic initialization of self-attention layers. In International
Conference on Machine Learning, pp. 34456–34468. PMLR, 2023.

Michael Unser, Akram Aldroubi, and Murray Eden. B-spline signal processing. i. theory. IEEE
transactions on signal processing, 41(2):821–833, 1993.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Joseph Leonard Walsh. Interpolation and approximation by rational functions in the complex domain,
volume 20. American Mathematical Soc., 1935.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
scene understanding. In Proceedings of the European conference on computer vision (ECCV), pp.
418–434, 2018.

Xingyi Yang, Daquan Zhou, Songhua Liu, Jingwen Ye, and Xinchao Wang. Deep model reassembly.
Advances in neural information processing systems, 35:25739–25753, 2022.

Runpeng Yu, Weihao Yu, and Xinchao Wang. Kan or mlp: A fairer comparison. arXiv preprint
arXiv:2407.16674, 2024.

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and
Shuicheng Yan. Metaformer is actually what you need for vision. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10819–10829, 2022.

Weihao Yu, Chenyang Si, Pan Zhou, Mi Luo, Yichen Zhou, Jiashi Feng, Shuicheng Yan, and Xinchao
Wang. Metaformer baselines for vision. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2023.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings
of the IEEE/CVF international conference on computer vision, pp. 6023–6032, 2019.

Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=r1Ddp1-Rb.

14

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=r1Ddp1-Rb

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmenta-
tion. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 13001–13008,
2020.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene
parsing through ade20k dataset. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 633–641, 2017.

A APPLICATION ON DOMAIN BEYOND VISION

In addition to the vision task we presented in the paper, in this appendix, we also provide experiments
on applying KAT to tabular data and graph data.

Tabular Experiment. We choose TabTransformer (Huang et al., 2020) as our baseline for tabular
classification. We test 15 publicly available binary classification datasets from UCI dataset (Bache &
Lichman, 2013), AutoML challenge (Guyon et al., 2019) and Kaggle. We keep all experiment setup
in the paper, but only modify architcture by replacing MLPs to GR-KANs.

The results are presented in Table 9. Our KAT, when integrated with TabTransformer, improves
the AUC score by an average of 0.9. This demonstrates the potential of KAT in enhancing the
performance of tabular data models.

Table 9: Comparison between KAT and the baseline TabTransformers on 15 datasets. The evaluation metric is
AUC in percentage.

Dataset TabTransformer TabTransformer+KAT

albert 75.7 76.9(+1.2)
1995 income 90.6 91.1(+0.5)
dota2games 63.3 64.1(+0.8)
hcdr main 75.1 76.2 (+1.1)
adult 73.7 75.3 (+1.6)
bank marketing 93.4 93.8 (+0.4)
blastchar 83.5 83.1(-0.4)
insurance co 74.4 75.9(+1.5)
jasmine 85.3 85.6(+0.3)
online shoppers 92.7 93.2(+0.5)
philippine 83.4 84.3 (+0.9)
qsar bio 91.8 92.6 (+0.8)
seismicbumps 75.1 77.8(+2.7)
shrutime 85.6 86.4(+0.8)
spambase 98.5 98.6(+0.1)
Average 82.8 83.7 (+0.9)

Graph Experiments. We apply our methods on top of Graph Transformer (Dwivedi & Bresson,
2020) and see if it improves the performance. We replicate its experiments on ZINC (Irwin et al.,
2012) for graph regression and PATTERN (Abbe, 2017) and CLUSTER (Dwivedi et al., 2023) for
node classification. We keep all setup the same as its original paper and only modify the MLP layers.
The results are shown in Table 10. KAT, again, demonstrates improved performance on the graph
datasets.

Table 10: Comparison of scores graph dataset against the Graph Transformer (Dwivedi & Bresson, 2020)
baseline with 500k model parameters.

Model ZINC CLUSTER PATTERN

Graph-Transformer 0.226± 0.014 73.169± 0.622 84.808± 0.068
Graph-Transformer + KAT 0.211 ± 0.013 74.089 ± 0.600 85.293 ± 0.065

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B GR-KAN OUT OF TRANSFORMER

Our proposed GR-KAN can be applied outside the scope of transformer. In this section we apply it
on two tasks. One on simple function fitting and the other on solving partial differential equation.

Function fitting. In our function fitting experiments, we selected functions based on examples
presented in the KAN paper. We adopted a simple neural network architecture consisting of three
layers: an input layer with 2 neurons, a hidden layer with 5 neurons, and an output layer with 1
neuron, denoted as a [2 → 5 → 1] structure. The models were trained for 1000 epochs using the
Adam optimizer with a learning rate of 0.001.

The performance of each method is evaluated using the mean squared error (MSE), where lower
values indicate better function approximation. We compare the results for three models: a standard
Multi-Layer Perceptron (MLP), the KAN model, and our proposed GR-KAN model. The MSE
values for each function are presented in Table 11.

Table 11: Mean Squared Error (MSE) for Function Fitting. Lower values indicate better performance.

Method exp{sin(x2 + y2)} exp{sin(πx) + y2} exp{J0(20x) + x2
2} xy x

y (x + y) + xy

MLP 0.4307 180.3786 43.4192 80.8309 0.0766 0.0503
KAN 0.6618 403.9234 194.7122 83.8479 1.8517 4.5709

GR-KAN 0.0034 19.3789 20.0403 90.5357 0.0016 0.0221

The results clearly show that our GR-KAN model achieves significantly lower MSE values in most
cases compared to both the MLP and KAN models. This demonstrates the improved ability of
GR-KAN to fit complex functions effectively, highlighting its robustness and accuracy in regression
tasks.

PDE Solving. For solving the PDE, we focus on a one-dimensional damped harmonic oscillator.
This system is governed by the equation:

m
d2u

dt2
+ µ

du

dt
+ ku = 0, (18)

where m represents the mass, set to 1 in our experiments. The term µ denotes the damping coefficient,
while k corresponds to the stiffness constant. We define the initial conditions as u(0) = 1 and
u′(0) = 0, providing a complete setup for the problem.

The exact analytical solution of this oscillator can be expressed as:

u(t) = e−d·t (A cos(ωt+ ϕ)) ,

where d = µ/2w0 =
√
k,w =

√
w2

0 − d2, ϕ = arctan(−d/w) are derived from the parameters
of the equation and the initial conditions. To approximate this solution, we use three methods: a
standard Multi-Layer Perceptron (MLP), the KAN model, and our proposed GR-KAN model.

Our experimental results, presented in Table 12, compare the performance of different methods based
on the L2 error and training loss between predicted and true solutions over a specified time interval.

The KAN model achieves the best performance but requires more parameters and significantly longer
training time (20 minutes). In contrast, the GR-KAN model trains much faster (4 minutes) while
outperforming the pure MLP in solving this type of PDE problem.

C DETAILED ABLATION STUDY

We conducted a detailed ablation study to evaluate the contributions of three key components and
parameter grouping in KAN. These experiments were performed using the KAT-Tiny model on
ImageNet, training for 300 epochs. Specifically, we analyzed:

• Base Function: Replacing the rational base function with the B-spline used in KAN.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 12: Comparison of L2 Loss and Predictions for MLP and KAN

Type L2 error (last step) Prediction Loss Curve

w0 = 10

MLP (GELU) 2.0216× 10−4

GR-KAN 6.3909× 10−6

KAN 1.6125× 10−8

w0 = 50

MLP (GELU) 1.1805× 10−1

GR-KAN 5.2515× 10−2

KAN 3.7762× 10−2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

• Group-wise Computation: Replacing group-wise weight sharing with distinct parameters
for each channel.

• Initialization: Replacing the proposed initialization with PyTorch’s default random initial-
ization.

The results of the ablation study are summarized in Table 13, including Top-1 accuracy, training time,
and MACs

Ablation 1: Base Function We replaced the rational base function with B-splines, implemented
using the De Boor-Cox algorithm in PyTorch, as no CUDA implementation is available.

The results show that the base function slightly impacts performance but significantly affects runtime.
According to Exp 3 and Exp 6, the rational function provides a small performance improvement
over B-splines. Although the MACs differ only slightly, the PyTorch-based B-spline implementation
is much slower than the CUDA-optimized rational function.

Ablation 2: Group-wise Computation We replaced group-wise weight sharing with distinct
parameters for each channel.

As shown in Exp 4 and Exp 6, group-wise computation is critical for efficiency. While it results
in a minor accuracy drop from 74.8% to 74.6%, it reduces training time drastically from 38 hours to
12 hours, making it the most significant factor for efficiency improvements.

Ablation 3: Initialization We replaced the proposed initialization with PyTorch’s default initializa-
tion.

As shown in Exp 6 and Exp 5, proper initialization is crucial for achieving fast and reliable
convergence and improving performance, particularly for rational functions with higher-order terms.
Without proper initialization, terms of different orders are initialized at similar scales, leading to
instability. This issue is more severe for rational functions compared to B-splines, as highlighted by
the comparison between Exp 2 and Exp 5.

KAN with Parameter Grouping In Exp 2, we explored parameter sharing in KAN by applying
parameter grouping to the original ViT+KAN architecture. This modification significantly improved
the training speed, reducing the time from 43 hours to 20 hours. However, it resulted in a performance
drop of 2.7%.

Exp ID Rational Group Initialization Top-1 (%) Train Time MAC
1 ✗ ✗ ✗ 64.9 43h 1.78G
2 ✗ ✓ ✗ 62.2 20h 1.15G
3 ✗ ✓ ✓ 73.0 20h 1.15G
4 ✓ ✗ ✓ 74.8 38h 1.76G
5 ✓ ✓ ✗ 53.2 12h 1.13G
6 ✓ ✓ ✓ 74.6 12h 1.13G

Table 13: Ablation study on KAT-Tiny with different components.

D VARIANCE ANALYSIS OF THE KAN LAYERS

In this section, we discuss why the original initialization in KAN fails to maintain activation variance
across layers.

Specifically, the B-spline coefficients ci are initialized as N (0, σ2) with σ = 0.1, and ws = 1 and
wb ∼ U [− 6√

din+dout
, 6√

din+dout
] are initialized according to the Xavier initialization (Glorot &

Bengio, 2010). The combined output variance of the model can be expressed as:

V ar[ϕ(x)] = V ar[wbsilu(x)]+V ar[wsspline(x)] = 3E[silu2(x)]+E[spline2(x)] (19)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Zero-th Order Case. If we assume the input x is normally distributed, x ∼ N (0, σ2
x) and consider a

zero-th order spline, the variance of spline(x) at any point x is simply:

E[spline2(x)] =
∑
i

c2iV ar[Bi(x)] = σ2
∑
i

V ar[Bi(x)] = σ2 = 0.01 (20)

For the SiLU activation function, although exact variance calculations are complex, numerical
estimations indicates E[silu2(x)] ≈ 0.355σ2

x. Combining these, we find V ar[ϕ(x)] ≈ 0.01 +
1.064σ2

x ̸= V ar[x].

This indicates that, under zero-th order spline, V ar[ϕ(x)] ̸= V ar[x].

Higer Order Case. With higher-order splines, the variance instability might increase. This because,
increasing the order of a spline leads to excessive smoothing. This smoothing effect reduces the
variation in the function values, causing V ar[ϕ(x)] to become smaller.

The B-spline is defined recursively as:

Bi,p(t) =
t− ti

ti+p − ti
Bi,p−1(t) +

ti+p+1 − t

ti+p+1 − ti+1
Bi+1,p−1(t)

shows that each higher-order basis function Bi,p(t) a weighted summation of a weighted average of
two lower-order basis functions Bi,p−1(t) and Bi+1,p−1(t). as the order p increases, the B-spline
becomes wider and smoother.

In the extreme case, as p → ∞, the smoothing effect causes the basis functions to become nearly
uniform across the domain, i.e., Bi,p(t) ≈ C, a constant. Consequently, as, when p → ∞, the
variance of the output converges to zero, V ar[ϕ(x)] → 0. This excessive smoothing leads to
instability in the activation variance, effectively flattening all variations. Regardless of weight
initialization, the function becomes unstable for use in neural networks.

Based on all analysis above, the default initialization opposes the essential variance-preserving
principle.

E DISCUSSION ON DENOMINATOR SENSITIVITY AND SCALE DIFFERENCES

Assume we have multiple groups of embeddings, E1,E2, . . . ,En, each of dimension d1, d2, . . . , dn.
When we apply a division operation involving a denominator coefficient for each group, the operation
can be written as:

E′
i =

Ei

ci

where E′
i is the normalized embedding for group i, and ci is the denominator coefficient specific to

that group.

Sensitivity Analysis The division operation is sensitive to changes in ci. Mathematically, the
sensitivity of E′

i to small perturbations in ci can be analyzed using the derivative:

∂E′
i

∂ci
= −Ei

c2i

This derivative indicates that a small change ∆ci in ci will result in a change in E′
i proportional to:

∆E′
i = −Ei∆ci

c2i

As ci becomes smaller, the impact of any perturbation ∆ci becomes disproportionately large, high-
lighting the instability in the division operation.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Stability Argument Using a shared coefficient c across all groups reduces the degrees of freedom
and ensures a more consistent scaling effect. Mathematically, we have:

E′
i =

Ei

c

This uniform approach ensures that variations in scale between different embeddings are minimized,
thereby improving numerical stability and consistency across groups.

The mathematical reasoning highlights that division operations are inherently sensitive to the value of
the denominator. When embedding groups have different dimensions or scales, varying ci coefficients
can exacerbate this sensitivity, causing unstable or inconsistent behavior. Using a shared coefficient
c mitigates this issue by providing uniform scaling, enhancing the stability and robustness of the
normalization process.

F EXPLICIT GRADIENT CALCULATION

n our CUDA implementation, we compute the gradients δF
δam

, δF
δbn

and δF
δx using the following ap-

proach:

δF

δam
=

xm

Q(x)
,

δF

δbn
= axn A(x)

|A(x)|
P (x)

Q(x)2
, and

δF

δx
=

δP (x)

δx

1

Q(x)
− δQ(x)

δx

P (x)

Q2(x)
(21)

where A(x) = b1x+ · · ·+ bnx
n, δP (x)

δx = a1+2a2x+mamxm−1 and δQ(x)
x = A(x)

|A(x)| (b1+2b2x+

nbnx
n−1).

G INITIALIZING am, bn

Given a ground-truth function g(·) and a parameterized rational function F (·; {am}, {bn}), we run a
linear least square to determine {am}, {bn}. Specifically, we optimize the following function:

min
{am},{bn}

1

2

N∑
i=1

(g(xi)− F (xi; {am}, {bn}))2

We uniformly sample 1000 points xi from the interval [−3, 3]. {am}, {bn} are randomly initialized.
In practice, we solve this using the Levenberg-Marquardt algorithm, available in the MINPACK
package.

In the end, this is easily done by calling scipy.optimize.curve fit.

H WHY USING RATIONAL FUNCTION?

In this section, we explain why we chose rational functions as our base function. The main reasons
are efficiency, prior successful use, and strong theoretical properties.

Efficiency Perspective. Evaluating polynomials involves simple operations that are well-suited for
parallel computing. This makes rational functions computationally efficient for large-scale models.

Practical Perspective. Rational activations have already been successfully used as activation
functions in neural networks (Boullé et al., 2020; Molina et al., 2020).

Theoretical Advantage. Rational functions can approximate a wider range of functions—including
those with singularities or sharp variations—more efficiently and accurately than polynomials (Walsh,
1935; Baker Jr & Gammel, 1961). Since B-splines are essentially sums of local polynomials, rational
functions offer a theoretical advantage over B-splines for modeling complex behaviors.

Given these reasons, we adopt rational functions as the base functions in our KAN layers to enhance
the model’s expressiveness, stability, and computational efficiency.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

I DERIVATION AND CALCULATION OF FLOPS

Given the function:
F (x) =

a0 + a1x+ · · ·+ amxm

1 + |b1x+ · · ·+ bnxn|

I.1 PLAIN COMPUTATION

NUMERATOR

The numerator is a polynomial of degree m:

• Multiplications: There are m(m−1)
2 multiplications for computing powers of x and m

multiplications for coefficients ai, giving m(m−1)
2 +m.

• Additions: There are m additions to sum up the polynomial terms.

DENOMINATOR

The denominator involves the absolute value of a polynomial of degree n:

• Multiplications: There are n(n−1)
2 multiplications for powers of x and n multiplications for

coefficients bi, giving n(n−1)
2 + n.

• Additions: There are n additions for polynomial terms and 1 additional addition after the
absolute value operation.

• Absolute value operation: 1 absolute value calculation.

Division. There is 1 division operation for the final computation of F (x).

Total FLOPs. The total FLOPs for any m and n are:

Multiplications:
m(m− 1)

2
+

n(n− 1)

2
+m+n+1, Additions: m+n+1, Absolute Value: 1, Division: 1

In case m = 5 and n = 4, there are totally 16 multiplications, 10 summations, 1 absolute value and 1
division. In total 28.

I.2 HORNER’S METHOD

Using horner’s method, for a polynomial of order m, we need m summations and m multiplications.

Thus, for numerator, we need m summations and m multiplications. For denominator, we need n+ 1
summations and n multiplications. In total, we need m+ n+ 1 summation, m+ n multiplications, 1
absolute value, and 1 division.

In case m = 5 and n = 4, there are a total of 21 FLOPs, comprising 9 multiplications, 10 summations,
1 absolute value, and 1 division.

J HYPER-PARAMETERS FOR KAT MODEL

The hyper-parameter for training KAT model on ImageNet-1k is shown in Table 14.

Model Variant. We select the configurations of KAT to be identical with those used in ViT (Dosovit-
skiy et al., 2021), as summarized in Table 15. All variants use an input patch size of 16× 16.

J.1 ABLATION AND ANALYSIS

This section outlines the key hyperparameter settings used for KAT, determined through ablation
studies and preliminary experiments.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 14: Hyper-parameters of KAT on ImageNet image classification.

KAT
Tiny Small Base

Input resolution 2242

Epochs 300
Batch size 1024
Optimizer AdamW
Adam ϵ 1× 10−8

Adam (β1, β2) (0.9, 0.999)
Learning rate 1× 10−3

Learning rate decay Cosine
Gradient clipping None
Warmup epochs 5
Weight decay 0.05
Rand Augment 9/0.5
Repeated Augmentation off
Cutmix 1.0
Mixup 0.8
Cutmix-Mixup switch prob 0.5
Random erasing prob 0.25
Label smoothing 0.1
Peak stochastic depth rate 0.1 0.1 0.4
Random erasing prob 0.25
EMA decay rate 0.9999

Model Layers Hidden Size D MLP Size Heads Params
KAT-Tiny 12 192 768 3 5.7M
KAT-Small 12 384 1536 6 22.1M
KAT-Base 12 768 3072 12 86.6M

Table 15: Details of KAT model variants.

Number of Groups. We conducted an ablation study with the KAT-Tiny model to determine the
optimal number of groups. The results showed that accuracy improved slightly up to 8 groups, with
no further gains beyond that. Based on these findings, we set the number of groups to 8, which
balances simplicity and performance.

Table 16: Impact of group numbers on KAT-Tiny Top-1 accuracy.

Group Number 2 4 8 16 32

KAT-Tiny Top-1 Accuracy 74.2 74.3 74.6 74.7 74.6

Maximum Order of Rational Function. We set the rational order to (m = 5, n = 4) in the paper,
following the default configuration in the PAU paper. We conduct a ablation experiment with the
KAT-Tiny model to confirm this choice

The experiment show that increasing the order beyond (m = 5, n = 4) provides no additional
accuracy gains, making it a practical and efficient choice.

Benefit of CUDA Implementation. To evaluate the efficiency improvements introduced by our
CUDA implementation discussed in Section 4.2, we conducted experiments to measure both forward
pass speed and peak memory usage. Specifically, we compared our CUDA implementation against
two alternative methods. The first is called Torch Looped, which loops over each channel group,
applies the rational function, and then concatenates the results. The second is called Torch Vectorized.
In this method, the input tensor is reshaped according to the channel groups, the rational function

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 17: Impact of rational order on KAT-Tiny Top-1 accuracy.

Order (m, n) (3, 2) (5, 4) (7, 6)

KAT-Tiny Top-1 Accuracy 74.2 74.6 74.6

is applied in a vectorized manner, and the tensor is reshaped back to its original form. We compare
these three implementation on A5000 GPU, under 1) different group number g ∈ {1, 2, 4, 8, 16}. 2)
different input dim D ∈ {128, 256, 512, 1024, 2048}

1 2 4 8 16
Group Number

102

103

Th
ro

ug
hp

ut
 (b

at
ch

/s
)

Torch Looped Torch Vectorized CUDA (Ours)

(a) Throughput (batch/s) for Different Group Sizes.
Larger the better.

1 2 4 8 16
Group Number

0

1000

2000

3000

4000

Pe
ak

 M
em

or
y

(M
B)

Torch Looped Torch Vectorized CUDA (Ours)

(b) Peak Memory (MB) for Different Group Sizes.
Smaller the better.

Figure 6: Comparison of Throughput and Peak Memory for Different Methods and Group Sizes. Input size is
fixed to [64, 1000, 512].

250 500 750 1000 1250 1500 1750 2000

Input Shape Dimension)

0

2000

4000

6000

8000

Th
ro

ug
hp

ut
 (b

at
ch

es
/s

ec
)

Torch Looped Torch Vectorized CUDA (Ours)

(a) Throughput (batch/s) for Input Dimension
Sizes. Larger the better.

250 500 750 1000 1250 1500 1750 2000

Input Shape Dimension)
0

2000

4000

6000

8000

10000

12000

14000

16000

Pe
ak

 M
em

or
y

(M
B)

Torch Looped Torch Vectorized CUDA (Ours)

(b) Peak Memory (MB) for Input Dimension Sizes.
Smaller the better.

Figure 7: Comparison of Throughput and Peak Memory for Different Methods and Input Dimension Sizes.
Group size is fixed to 8.

The results, presented in Figure 6 and Figure 7, clearly demonstrate that our CUDA implementation
significantly outperforms both the Torch Looped and Torch Vectorized implementations, offering
superior speed and memory efficiency.

Visualization of Trained Functions An important aspect to examine is the behavior of the trained
rational functions. As shown in Figure 8, we plot the functions for KAT-S with g = 8 across all 12
layers. The results indicate that within each layer, the rational functions exhibit similar trends, while
the functions across different layers tend to differ from each other. Another interesting finding is
that most of the fitted rational functions are (near)-identity. This indicates that the model learns to
perform relatively simple operations rather than overly complex ones.

K DISCUSSION AND FUTURE WORK

Discussion. Our study highlights KAT’s potential as a good alternative to MLP-based transformers,
especially in large-scale vision tasks. This integration introduces exciting opportunities for broad
applications. For example, employing KAT architectures might help development of language models.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

2 0 2
5

0

5
blocks.0.kan1.0

2 0 2
5

0

5
blocks.0.kan1.1

2 0 2
5

0

5
blocks.0.kan1.2

2 0 2
5

0

5
blocks.0.kan1.3

2 0 2
5

0

blocks.0.kan1.4

2 0 2

2.5
0.0
2.5

blocks.0.kan1.5

2 0 2
2.5

0.0

2.5

blocks.0.kan1.6

2 0 2

0

5

blocks.0.kan1.7

2 0 2

0

1

blocks.0.kan2.0

2 0 2

0.0

0.5

1.0
blocks.0.kan2.1

2 0 2

0

1

blocks.0.kan2.2

2 0 2

0

1

blocks.0.kan2.3

2 0 2

0

1

blocks.0.kan2.4

2 0 2

0

1
blocks.0.kan2.5

2 0 2
0

1

blocks.0.kan2.6

2 0 2

0.0

0.5

blocks.0.kan2.7

2 0 2

0

2
blocks.1.kan1.0

2 0 2

0

2
blocks.1.kan1.1

2 0 2

0

2
blocks.1.kan1.2

2 0 2

1
0
1

blocks.1.kan1.3

2 0 2

0

2

blocks.1.kan1.4

2 0 2

0

2
blocks.1.kan1.5

2 0 2

1

0

1
blocks.1.kan1.6

2 0 2

0

1
blocks.1.kan1.7

2 0 2

0

5
blocks.1.kan2.0

2 0 2
0

5

blocks.1.kan2.1

2 0 2
0

10

20
blocks.1.kan2.2

2 0 2

2.5
0.0
2.5

blocks.1.kan2.3

2 0 2

0.0

2.5

5.0
blocks.1.kan2.4

2 0 2
0

5

10

blocks.1.kan2.5

2 0 2
2.5

0.0

2.5

blocks.1.kan2.6

2 0 2
0

5

blocks.1.kan2.7

2 0 2

1
0
1

blocks.2.kan1.0

2 0 2

1
0
1

blocks.2.kan1.1

2 0 2

1
0
1

blocks.2.kan1.2

2 0 2

1
0
1

blocks.2.kan1.3

2 0 2

1
0
1

blocks.2.kan1.4

2 0 2

1
0
1

blocks.2.kan1.5

2 0 2
1
0
1

blocks.2.kan1.6

2 0 2
1

0

1

blocks.2.kan1.7

2 0 2
0
5

10

blocks.2.kan2.0

2 0 2
0

10

blocks.2.kan2.1

2 0 2

0

2

blocks.2.kan2.2

2 0 2
0

10

20
blocks.2.kan2.3

2 0 2
0

10

blocks.2.kan2.4

2 0 2

0

2

blocks.2.kan2.5

2 0 2

0

2

blocks.2.kan2.6

2 0 2
0

2

blocks.2.kan2.7

2 0 2
2

0

blocks.3.kan1.0

2 0 2
2

0

blocks.3.kan1.1

2 0 2
2

0

2
blocks.3.kan1.2

2 0 2
2

0

2
blocks.3.kan1.3

2 0 2
2

0

2
blocks.3.kan1.4

2 0 2
2

0

2
blocks.3.kan1.5

2 0 2
2

0

2
blocks.3.kan1.6

2 0 2

1
0
1

blocks.3.kan1.7

2 0 2

0.0

2.5

blocks.3.kan2.0

2 0 2

0

5
blocks.3.kan2.1

2 0 2

0

5

blocks.3.kan2.2

2 0 2
5

0

blocks.3.kan2.3

2 0 2

0

5
blocks.3.kan2.4

2 0 2

0.0

2.5

blocks.3.kan2.5

2 0 2
10

0

blocks.3.kan2.6

2 0 2

0

5

blocks.3.kan2.7

2 0 2

2

0

blocks.4.kan1.0

2 0 2

2

0

blocks.4.kan1.1

2 0 2
2

0

2

blocks.4.kan1.2

2 0 2
2

0

2
blocks.4.kan1.3

2 0 2
2

0

2

blocks.4.kan1.4

2 0 2
2

0

2
blocks.4.kan1.5

2 0 2
2

0

blocks.4.kan1.6

2 0 2

2.5

0.0

2.5
blocks.4.kan1.7

2 0 2

0

5
blocks.4.kan2.0

2 0 2

0

5

10
blocks.4.kan2.1

2 0 2

0

5
blocks.4.kan2.2

2 0 2
5

0

5
blocks.4.kan2.3

2 0 2

0

5

blocks.4.kan2.4

2 0 2
0

20

blocks.4.kan2.5

2 0 2
0

20

blocks.4.kan2.6

2 0 2
5
0
5

blocks.4.kan2.7

2 0 2

2

0

2
blocks.5.kan1.0

2 0 2

2

0

2
blocks.5.kan1.1

2 0 2
2

0

2

blocks.5.kan1.2

2 0 2

2

0

2
blocks.5.kan1.3

2 0 2

2

0

2
blocks.5.kan1.4

2 0 2
2

0

2
blocks.5.kan1.5

2 0 2
2

0

2
blocks.5.kan1.6

2 0 2
2.5

0.0

2.5

blocks.5.kan1.7

2 0 2
5
0
5

blocks.5.kan2.0

2 0 2

0

5
blocks.5.kan2.1

2 0 2
0

10

20
blocks.5.kan2.2

2 0 2

0

5

blocks.5.kan2.3

2 0 2

5
0
5

blocks.5.kan2.4

2 0 2
0

10

20

blocks.5.kan2.5

2 0 2
10

0

10

blocks.5.kan2.6

2 0 2
5

0

5
blocks.5.kan2.7

2 0 2
2

0

blocks.6.kan1.0

2 0 2
2

0

blocks.6.kan1.1

2 0 2
2

0

blocks.6.kan1.2

2 0 2

1
0
1

blocks.6.kan1.3

2 0 2

0

2
blocks.6.kan1.4

2 0 2
2

0

blocks.6.kan1.5

2 0 2

2

0

blocks.6.kan1.6

2 0 2

1
0
1

blocks.6.kan1.7

2 0 2

0
20
40

blocks.6.kan2.0

2 0 2

0

20
blocks.6.kan2.1

2 0 2

0

25

blocks.6.kan2.2

2 0 2

0

25

blocks.6.kan2.3

2 0 2

0

20

blocks.6.kan2.4

2 0 2

0

20
blocks.6.kan2.5

2 0 2

0

20
blocks.6.kan2.6

2 0 2

0

20
blocks.6.kan2.7

2 0 2

1
0
1

blocks.7.kan1.0

2 0 2

1
0
1

blocks.7.kan1.1

2 0 2
2

0

blocks.7.kan1.2

2 0 2

1
0
1

blocks.7.kan1.3

2 0 2
2

0

blocks.7.kan1.4

2 0 2
2

0

blocks.7.kan1.5

2 0 2
2

0

2
blocks.7.kan1.6

2 0 2

1
0
1

blocks.7.kan1.7

2 0 2

0

50

blocks.7.kan2.0

2 0 2
50
0

50

blocks.7.kan2.1

2 0 2

0

50

blocks.7.kan2.2

2 0 2

0

50

blocks.7.kan2.3

2 0 2

0

50

blocks.7.kan2.4

2 0 2

0

50

blocks.7.kan2.5

2 0 2

0

50

blocks.7.kan2.6

2 0 2

0

50

blocks.7.kan2.7

2 0 2
2

0

blocks.8.kan1.0

2 0 2

1
0
1

blocks.8.kan1.1

2 0 2

1
0
1

blocks.8.kan1.2

2 0 2

1
0
1

blocks.8.kan1.3

2 0 2

1
0
1

blocks.8.kan1.4

2 0 2

1
0
1

blocks.8.kan1.5

2 0 2

1
0
1

blocks.8.kan1.6

2 0 2

0

2
blocks.8.kan1.7

2 0 2

0

100
blocks.8.kan2.0

2 0 2

0

100
blocks.8.kan2.1

2 0 2

0

100
blocks.8.kan2.2

2 0 2

0

100
blocks.8.kan2.3

2 0 2

0

100
blocks.8.kan2.4

2 0 2

0

100
blocks.8.kan2.5

2 0 2

0

100
blocks.8.kan2.6

2 0 2

0

100
blocks.8.kan2.7

2 0 2
2

0

2
blocks.9.kan1.0

2 0 2
2

0

blocks.9.kan1.1

2 0 2
2

0

2
blocks.9.kan1.2

2 0 2
2

0

2
blocks.9.kan1.3

2 0 2
2

0

2
blocks.9.kan1.4

2 0 2
2

0

blocks.9.kan1.5

2 0 2

0

2

blocks.9.kan1.6

2 0 2
2

0

2
blocks.9.kan1.7

2 0 2
100

0

blocks.9.kan2.0

2 0 2
100

0

blocks.9.kan2.1

2 0 2
100

0

blocks.9.kan2.2

2 0 2
100

0

blocks.9.kan2.3

2 0 2
100

0

blocks.9.kan2.4

2 0 2
100

0

blocks.9.kan2.5

2 0 2
100

0

blocks.9.kan2.6

2 0 2
100

0

blocks.9.kan2.7

2 0 2
2

0

blocks.10.kan1.0

2 0 2
2

0

blocks.10.kan1.1

2 0 2
2

0

blocks.10.kan1.2

2 0 2
2

0

blocks.10.kan1.3

2 0 2
2

0

blocks.10.kan1.4

2 0 2
2

0

blocks.10.kan1.5

2 0 2

1
0
1

blocks.10.kan1.6

2 0 2

2

0

2
blocks.10.kan1.7

2 0 2
20

0

20
blocks.10.kan2.0

2 0 2

20

0

20
blocks.10.kan2.1

2 0 2

20

0

20
blocks.10.kan2.2

2 0 2
20

0

blocks.10.kan2.3

2 0 2
20

0

blocks.10.kan2.4

2 0 2

20

0

20
blocks.10.kan2.5

2 0 2

20

0

20
blocks.10.kan2.6

2 0 2
20

0

20
blocks.10.kan2.7

2 0 2
1

0

1
blocks.11.kan1.0

2 0 2
1

0

1
blocks.11.kan1.1

2 0 2
1

0

1
blocks.11.kan1.2

2 0 2
1

0

1
blocks.11.kan1.3

2 0 2
1

0

1
blocks.11.kan1.4

2 0 2
1

0

1
blocks.11.kan1.5

2 0 2
1

0

1
blocks.11.kan1.6

2 0 2
1

0

1

blocks.11.kan1.7

2 0 2
0.0

2.5

5.0
blocks.11.kan2.0

2 0 2
0

5

10
blocks.11.kan2.1

2 0 2
0

5

blocks.11.kan2.2

2 0 2
0

5

blocks.11.kan2.3

2 0 2
0

5

10
blocks.11.kan2.4

2 0 2
0

5

blocks.11.kan2.5

2 0 2
0

5

10
blocks.11.kan2.6

2 0 2
0

5

10
blocks.11.kan2.7

Figure 8: Fitted rational functions for KAT-S model, with 12 layers and 8 groups.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

However, KAT is not without its challenges. A primary concern is running speed. Even with the
CUDA optimized code, the rational function is still slower than plain activation like ReLU and
GELU. Another issue is the stability when using rational functions in neural networks. The higher
order gradients for am and bn can become unstable because of their dependence on the input power.
Integrating these functions into the backpropagation process could introduce complications.

Additionally, it is important to acknowledge that our GR-KAN represents a hybrid model. On the one
hand, GR-KAN is a KAN layer with shared edges and a rational base function. On the other hand, it
can be interpret as MLP with a redesigned activation placed before the linear layer. It leverages the
computational simplicity of MLPs but maintains some characteristics of KANs. However, GR-KAN
is not a pure KAN model. Instead, it merges advantages from both systems to enhance overall
functionality.

Future Work. There are multiple directions of KAT for future research. One potential area of
exploration is to find alternative base functions to further improve computational efficiency and
compatibility with emerging hardware architectures. Currently, rational functions serve as one
option, but other possibilities exist. These include Fourier transformations (Noesis, 2024), Wavelet
transforms (Bozorgasl & Chen, 2024b), and Gaussian radial bases (Li, 2024).

Additionally, expanding the applicability of KAT to other domains beyond vision tasks, such as natural
language processing or reinforcement learning, could unlock new opportunities for performance gains.
Further research could also investigate hybrid models (Yang et al., 2022; Yu et al., 2023), or adaptive
mechanisms for dynamically selecting between KAN and MLP layers based on the complexity of the
task, thereby optimizing resource utilization. Finally, addressing the remaining scalability challenges,
particularly in terms of memory footprint and inference speed, will be crucial for deploying KAT in
real-world applications at scale.

25

	Introduction
	Preliminary
	Kolmogorov-Arnold representation theorem
	Kolmogorov–Arnold Networks

	Why original KAN fails to scale?
	Kolmogorov–Arnold Transformer
	Overall Architecture
	Rational Base Functions
	Group KAN
	Variance-Preserving Initialization

	Experiments
	Experimental Setup
	Image Recognition
	Object Detection and Instance Segmentation
	Semantic Segmentation
	Ablation Study and Analysis

	Conclusion
	Application on Domain beyond Vision
	GR-KAN out of transformer
	Detailed Ablation Study
	Variance Analysis of the KAN layers
	Discussion on Denominator Sensitivity and Scale Differences
	Explicit Gradient Calculation
	Initializing am,bn
	Why using Rational Function?
	Derivation and Calculation of FLOPs
	Plain Computation
	Horner's Method

	Hyper-parameters for KAT model
	Ablation and Analysis

	Discussion and Future Work

