
ICLR 2022 PAIR2Struct Workshop

NODE-LEVEL DIFFERENTIALLY PRIVATE GRAPH
NEURAL NETWORKS

Ameya Daigavane, Gagan Madan, Aditya Sinha, Abhradeep Guha Thakurta,
Gaurav Aggarwal, Prateek Jain

Google Research
{ameyasd,gaganmadan,sinhaaditya,athakurta,gagg,prajain}@google.com

ABSTRACT

Graph Neural Networks (GNNs) are a popular technique for modelling graph-
structured data and computing node-level representations via aggregation of infor-
mation from the neighborhood of each node. However, this aggregation implies
increased risk of revealing sensitive information, as a node can participate in the
inference for multiple nodes. This implies that standard privacy preserving ma-
chine learning techniques, such as differentially private stochastic gradient descent
(DP-SGD) – which are designed for situations where each data point participates
in the inference for one point only – either do not apply, or lead to inaccurate so-
lutions. In this work, we formally define the problem of learning GNN parameters
with node-level privacy, and provide an algorithmic solution with a strong dif-
ferential privacy guarantee. We employ a careful sensitivity analysis and provide
a non-trivial extension of the privacy-by-amplification technique. An empirical
evaluation on standard benchmarks datasets and architectures demonstrates that
our method is indeed able to learn accurate privacy–preserving GNNs which out-
perform standard non-private methods that completely ignore graph information.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Kipf & Welling, 2016; Veličković et al., 2018; Hamilton et al.,
2017; Gilmer et al., 2017) are powerful modeling tools that capture structural information provided
by a graph. Consequently, they have become popular in a wide array of domains such as the com-
putational sciences (Ktena et al., 2018; Ahmedt-Aristizabal et al., 2021; McCloskey et al., 2019),
computer vision (Wang et al., 2019), and natural language processing (Yao et al., 2019). GNNs
allow aggregation of data from the neighbors of a given node in the graph, therefore providing an
attractive solution for modeling users – each node of the graph is represented by the user and the
connections represent interactions between users – for a variety of recommendation/ranking tasks,
where it is challenging to obtain and store user data (Fan et al., 2019; Budhiraja et al., 2020; Levy
et al., 2021). However, such solutions are challenging to deploy as they are susceptible to leaking
highly sensitive private information of users. Standard ML models – without GNN-style data ag-
gregation – are already known to be highly susceptible to leakage of sensitive information about the
training data (Carlini et al., 2019). But, the risk of leakage is even higher in GNNs as each prediction
is based on the node itself and aggregated data from it’s neighborhood. In fact, there are two types of
highly-sensitive information about an individual node that can be leaked: a) the features associated
with each node/user, b) the connectivity information of an individual node/user.

In this work, we study the problem of designing algorithms to learn GNNs while preserving node-
level privacy. We use differential privacy as the notion of privacy (Dwork et al., 2006) of a node,
which requires that the algorithm should learn roughly similar GNNs despite perturbation of an
entire node and all the data points associated with that node. Our proposed method preserves the
privacy of the features of each node (‘user’), their labels as well as their connectivity information.
Our method adapts the standard DP-SGD method (Song et al., 2013; Bassily et al., 2014; Abadi
et al., 2016) to the node-level privacy setting. But, analysis of the standard DP-SGD method does
not directly extend to GNNs, as each gradient term in GNNs can depend on multiple nodes. The
key technical contribution of our work is two-fold: (1) we propose a neighborhood sampling scheme

1

ICLR 2022 PAIR2Struct Workshop

in-line with a careful sensitivity analysis for multi-layer GNNs, (2) we extend the standard privacy
by amplification technique to GNNs where one gradient term can depend on multiple users.

2 RELATED WORK

Differentially Private SGD (DP-SGD) (Song et al., 2013; Bassily et al., 2014; Abadi et al., 2016)
has been used successfully to train neural network models to classify images (Abadi et al., 2016)
and text (Anil et al., 2021), by augmenting the standard paradigm of gradient-based training to be
differentially private. Edge-level privacy in GNN’s ensures that the existence of an edge between
user i and user j does not impact the output significantly (Wu et al., 2021b). However, such methods
do not cover the case of perturbing entire user i’s data, which is practical as in many cases we need to
preserve privacy of all of a user’s data. Private GNNs have also been studied from the perspective of
local privacy (Sajadmanesh & Gatica-Perez, 2020), where each node performs its share of the GNN
computation locally and sends noisy versions of its data to neighbouring nodes so as to learn shared
weights; such algorithm needs to correct for the bias in both the features and labels. The analysis of
this method only applies to GNNs with linear neighborhood aggregation functions. In contrast, the
methods we propose can be employed with several practical GNN classes. (Wu et al., 2021a) utilizes
private GNNs for recommendation systems, but their method assumes a bipartite graph structure,
and cannot naturally handle homogeneous graphs. Other approaches employ federated learning
(Zhou et al., 2020), but only guarantee that the GNN neighbourhood aggregation step is differentially
private, which is insufficient to guarantee privacy of each node’s neighborhood. Finally, several
papers provide privacy-preserving GNNs (Shan et al., 2021) but these do not use the formal notion
of DP and provide significantly weaker privacy guarantees. In different contexts, there has been
extensive work on node-level DP (Raskhodnikova & Smith, 2016; Karwa et al., 2011; Borgs et al.,
2015; 2018). But these methods generally estimate ‘global’ graph-level statistics and do not support
learning methods such as GNNs. In contrast, our approach predicts ‘local’ node-level statistics (such
as the label of a node) while preserving node-level privacy.

3 PROBLEM FORMULATION AND PRELIMINARIES

Consider a graph dataset G = (V,E,X,Y) with directed graph G = (V,E) represented by a
adjacency matrix A ∈ {0, 1}n×n. n is the number of nodes in G, V denotes the node set, E denotes
the edge set. Each node v in the graph is equipped with a feature vector Xv ∈ Rd; X ∈ Rn×d
denotes the feature matrix. Y ∈ Rn×Q is the label matrix and yv is the label for the v-th node
over Q classes. Note that many of the labels in the label vector can be missing, which models the
semi-supervised setting. In particular, we assume that node labels yv are only provided for a subset
of nodes Vtr ⊂ V , called the training set. Given the graph dataset G, the goal is to learn parameters
of a GNN while preserving privacy of individual nodes. A 1-layer GNN can be represented by the
following operations:

ŷv = GNN(A,X, v; Θ) := fdec (fagg ({fenc(Xu) |Avu 6= 0})) (1)
where ŷv is the prediction from the GNN for a given node v, fenc is the encoder function that encodes
node features with parameters Θenc, fagg is the neighborhood aggregation function with parameters
Θagg, fdec is the prediction decoder function with parameters Θdec, and Θ := (Θenc,Θagg,Θdec).

While our results apply to most classes of GNN models (Hamilton et al., 2017; Veličković et al.,
2018; Xu et al., 2018), for simplicity, we focus on 1-layer and 2-layer Graph Convolutional Network
(GCN) (Kipf & Welling, 2016) with additional results for the Graph Isomorphism Network (GIN)
(Xu et al., 2018) and the Graph Attention Network (GAT) (Veličković et al., 2018) in the Appendix.
Thus, ‘learning’ a GNN is equivalent to finding parameters Θ := (Θenc,Θagg,Θdec) that minimize a
suitable loss:

Θ∗ = arg min
Θ

L(G,Θ) :=
∑
v∈V

`(ŷv; yv), (2)

where ` : RQ×Q → R is a standard loss function such as categorical or sigmoidal cross-entropy.
Definition 1 (Adjacent Graph Datasets). Two graph datasets G and G′ are said to be node-level
adjacent if one can be obtained by adding or removing a node (with its features, labels and associ-
ated edges) to the other. That is, G and G′ are exactly the same except for the v-th node, i.e., Xv ,
yv and Av differ in the two datasets.

2

ICLR 2022 PAIR2Struct Workshop

Informally, A is said to be node-level differentially-private if the addition or removal of a node in
A’s input does not affect A’s output significantly.
Definition 2 (Node-level Differential Privacy). Consider any randomized algorithmA that takes as
input a graph dataset. A is said to be (α, γ) node-level Rényi differentially-private (Mironov,
2017) if, for every pair of node-level adjacent datasets G and G′: Dα(A(G) ‖ A(G′)) ≤ γ
where Rényi divergence Dα of order α between two random variables P and Q is defined as

Dα(P ‖ Q) = 1
α−1 lnEx∼Q

[
P (x)
Q(x)

]α
.

Note that we use Rényi differentially-private (RDP) (Mironov, 2017) as the formal notion of dif-
ferential privacy (DP), as it allows for tighter composition of DP across multiple steps. This notion
is closely related to the standard (ε, δ)-differential privacy (Dwork et al., 2006); Proposition 3 of
Mironov (2017) states that any (α, γ)-RDP mechanism also satisfies (γ + log 1/δ

α−1 , δ)-differential
privacy for any δ ∈ (0, 1). Thus, we seek to find Θ by optimizing Equation 2 while ensuring RDP.
Definition 3. The K-restricted node-level sensitivity ∆K(f) of a function f defined on graph
datasets is ∆K(f) = max G,G′ node-level adjacent

in-deg(G), in-deg(G′)≤K
‖f(G)− f(G′)‖2 .

4 LEARNING GRAPH NEURAL NETWORKS (GNN) VIA DP-SGD

In this section, we provide a variant of DP-SGD (Bassily et al., 2014) designed specifically for
GNNs, and show that our method guarantees node-level DP (Definition 2). Assuming we are running
a r-layer GNN, first we subsample the local r-hop neighborhood of each node to ensure that each
node has a bounded number of neighbors and influences a small number of nodes. Next, similar to
the standard mini-batch SGD technique, we sample a subset Bt of m subgraphs chosen uniformly
at random from the set Str of training subgraphs. In contrast to the standard mini-batch SGD,
that samples points with replacement for constructing a mini-batch, our method samples mini-batch
Bt uniformly from the set of all training subgraphs. This distinction is important for our privacy
amplification result. Once we sample the mini-batch, we apply the standard DP-SGD procedure of
computing the gradient over the mini-batch, clipping the gradient and adding noise to it, and then
use the noisy gradients for updating the parameters.

However, DP-SGD requires each update to be differentially private. In standard settings where each
gradient term in the mini-batch corresponds to only one point, we only need to add O(C) noise –
where C is the clipping norm of the gradient – to ensure privacy. However, in the case of GNNs with
node-level privacy, perturbing one node/point v̂ can have impact on the loss terms corresponding to
all its neighbors. Thus, to ensure the privacy of each update, we add noise according to the sen-
sitivity of aggregated gradient: ∇ΘL(Bt; Θt) :=

∑
Sv∈Bt

ClipC(∇Θ` (GNN(A,X, v; Θt); yv))
with respect to any individual node v̂, which we bound via careful subsampling of the input graph.
In traditional DP-SGD, a crucial component in getting a better privacy/utility trade-off over just
adding noise according to the sensitivity of the minibatch gradient, is privacy amplification by sam-
pling (Kasiviswanathan et al., 2008; Bassily et al., 2014). This says that if an algorithmA is ε-DP on
a data set D1, then on a random subset D2 ⊆ D1 it satisfies roughly |D2|

|D1| (e
ε − 1)-DP. Unlike tradi-

tional ERM problems, we cannot directly use this result in the context of GNNs. The reason is again
that on two adjacent data sets, multiple loss terms corresponding to v̂ and its r-hop neighbors N (r)

v̂
get modified. To complicate things further, the minibatch Bt that gets selected may only contain a
small random subset ofN (r)

v̂ . To address these issues, we provide a new privacy amplification theo-
rem (Theorem 1). To prove the theorem, we adapt (Feldman et al., 2018, Lemma 25) – that shows a
weak form of convexity of Renyi divergence – for our specific instance, and provide a tighter bound
by exploiting the special structure in our setting along with the above bound on sensitivity.
Theorem 1 (Amplified Privacy Guarantee for any 1-Layer GNN). Consider the loss function L of
the form: L(G,Θ) =

∑
v∈Vtr

` (GNN(A,X, v; Θt); yv) .

For any choice of the noise standard deviation σ > 0 and clipping threshold C, every iteration t of
Algorithm 1 is (α, γ) node-level Rényi DP, where:

γ =
1

α− 1
lnEρ

[
exp

(
α(α− 1) · 2ρ2C2

σ2

)]
, ρ ∼ Hypergeometric

(
N,

Kr+1 − 1

K − 1
,m

)
.

3

ICLR 2022 PAIR2Struct Workshop

Algorithm 1: DP-GNN (SGD): Training Differentially Private Graph Neural Networks with
SGD
Data: Graph G = (V,E,X,Y), GNN model GNN, Number of GNN layers r, Training set

Vtr, Loss function L, Batch size m, Maximum in-degree K, Learning rate η, Clipping
threshold C, Noise standard deviation σ, Maximum training iterations T .

Result: GNN parameters ΘT .
Note that Vtr is the subset of nodes for which labels are available (see Paragraph 1 of Section 3).
Construct the set of training subgraphs with Algorithm 4:
Str ← SAMPLE− SUBGRAPHS(G,Vtr,K, r).

Initialize Θ0 randomly.
for t = 0 to T do

Sample set Bt ⊆ Str of size m uniformly at random from all subsets of Str.
Compute the update term ut as the sum of the clipped gradient terms in the mini-batch Bt:
ut ←

∑
Sv∈Bt

ClipC(∇Θ` (GNN(A,X, v; Θt); yv))

Add independent Gaussian noise to the update term: ũt ← ut +N (0, σ2I)
Update the current estimate of the parameters with the noisy update: Θt+1 ← Θt − η

m ũt
end

Hypergeometric denotes the standard hypergeometric distribution (Forbes et al., 2011). By the
standard composition theorem for Rényi Differential Privacy (Mironov, 2017), over T iterations,
Algorithm 1 is (α, γT) node-level Rényi DP, where γ and α are defined above.

We similarly adapt a DP version of the Adam (Kingma & Ba, 2014) optimizer to the GNN setting,
called DP-GNN (Adam), with the same privacy guarantees as DP-GNN (SGD).

5 EXPERIMENTAL RESULTS

In this section, we present empirical evaluation of our method on standard benchmark datasets for
large graphs such as datasets from the Open Graph Benchmark (OGB) suite (Hu et al., 2020) and
GraphSAGE (Hamilton et al., 2017), and evaluate our method in both transductive and inductive
settings. The goal is to demonstrate that our method (DP-GNN) can indeed learn privacy preserving
GNNs accurately. The main benchmark of our evaluation is to demonstrate that DP-GNN is able
to provide more accurate solutions than standard methods that completely discard the graph infor-
mation. In particular, we benchmark the following methods: a) DP-GCN: Our DP-GNN method
(Algorithm 1) applied to a 1-layer GCN (in the transductive and inductive settings) and a 2-layer
GCN (in the inductive settings) with an MLP as the encoder and the decoder, b) GCN: A 1-layer
GCN (in transductive and inductive settings) and a 2-layer GCN (in inductive settings) with MLP
as the encoder and decoder. This would in general be more accurate than our method but due to
privacy concerns, might not be suitable for several real-world applications, c) MLP: A standard
multi-layer perceptron (MLP) architecture on the raw node features as proposed in prior works (Hu
et al., 2020), which does not utilize the graph information, d) DP-MLP: A DP version of MLP (with
standard architecture) trained using DP-Adam.

2 4 6 8 10 12 14 16 18 20
Epsilon (Privacy Parameter)

40

45

50

55

60

65

70

Te
st

 A
cc

ur
ac

y

6 8 10 12 14 16 18 20
Epsilon (Privacy Parameter)

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

Te
st

 A
cc

ur
ac

y

2 4 6 8 10 12 14 16 18 20
Epsilon (Privacy Parameter)

12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0
32.5

Te
st

 A
cc

ur
ac

y

GCN
DP-GCN
MLP
DP-MLP

2 4 6 8 10 12 14 16 18 20
Epsilon (Privacy Parameter)

40

50

60

70

80

90

Te
st

 M
icr

o-
F1

GCN (2-layer)
DP-GCN (2-layer)
DP-GCN (1-layer)
MLP
DP-MLP

(a) (b) (c) (d)
Figure 1: (a), (b), (c): Performance of the 1-layer DP-GCN models and baselines with respect to
privacy budget ε on ogbn-arxiv, ogbn-products and ogbn-mag datasets. (d): Performance of the
1-layer and 2-layer DP-GCN models on the reddit-disjoint dataset.

4

ICLR 2022 PAIR2Struct Workshop

Table 1: Test performance of DP-GCN in the transductive setting, with privacy budget ε ≤ 20.
Model ogbn-arxiv ogbn-products ogbn-mag reddit

GCN (1-layer) 67.758 ± 0.418 75.965 ± 0.374 34.074 ± 0.445 94.074 ± 0.074
DP-GCN (Adam) 62.917 ± 0.308 68.374 ± 0.106 29.078 ± 0.202 92.807 ± 0.050
DP-GCN (SGD) 63.015 ± 0.562 67.230 ± 0.031 29.354 ± 0.298 92.787 ± 0.139

MLP 55.236 ± 0.317 61.364 ± 0.132 26.969 ± 0.361 72.359 ± 0.141
DP-MLP 52.942 ± 0.413 60.572 ± 0.104 25.259 ± 0.321 70.273 ± 0.087

5.1 RESULTS IN THE TRANSDUCTIVE SETTING

We first study the transductive setting where at inference time, each test node has access to the
features of its neighbors. Recall that we focus on 1-layer GNNs in this setting. Table 1 compares
the performance of DP-GCN against baselines on the ogbn-arxiv, ogbn-products, ogbn-mag and
reddit-transductive datasets. Overall, we observe that our proposed method DP-GCN significantly
outperforms the Non-Private MLP (without any usage of the graphs) and DP-MLP (trained using
standard DP-Adam) baselines on all of the datasets and with a reasonable privacy budget of ε ≤ 20.
For example, for ogbn-arxiv dataset, our method DP-GCN (SGD) is about 8% more accurate than
MLP and 10% more accurate than DP-MLP. Similarly, for ogbn-products our method is about 5%
more accurate than both MLP and DP-MLP and for reddit, our method is about 20% more accurate
than MLP and 22% more accurate than DP-MLP. Figure 1 provides a comparison of epsilon versus
test set performance for the three benchmark datasets. On all datasets, DP-GCN (Adam) outperforms
both MLP and DP-MLP for a privacy budget of ε ≤ 10.

5.2 RESULTS IN THE INDUCTIVE SETTING

Additionally, we consider the ‘inductive’ setting where the test dataset (i.e. the nodes and the graph)
are completely disjoint from the training data nodes and the associated graph. This models situations
such as multi-enterprise models where graph over users of one enterprise is completely disjoint from
the graph over another enterprise’s users. To conduct these experiments, we divide the nodes into
three splits – training, validation and test – and remove all inter-split edges to partition the graph
into disjoint subgraphs. We report results on three datasets: ogbn-arxiv-disjoint (where inter-split
edges in ogbn-arxiv have been removed), ogbn-arxiv-clustered (where agglomerative clustering is
perfomed on the original ogbn-arxiv dataset to partition the nodes) and reddit-disjoint (where inter-
split edges in reddit-transductive have been removed). We also investigate 2-layer DP-GCNs in this
setting. Once the DP-GNN parameters have been learnt privately over the training graph, we assume
that the test graph and test nodes are available non-privately to the inference algorithm. Table 2
presents accuracy of our DP-GCN method with 1-layer and 2-layer GCN models on three datasets.
We observe that DP-GCN is significantly more accurate than MLP as well as DP-MLP method
which completely ignore the graph features. Furthermore, we observe that an additional GCN layer
is able to provide a significant gain in accuracy on all three datasets for both the non-private as well
as private GCN methods.

Table 2: Test performance of DP-GCN in the inductive setting, with privacy budget ε ≤ 20.
Model ogbn-arxiv-disjoint ogbn-arxiv-clustered reddit-disjoint

GCN (2-layer) 60.641 ± 0.417 56.932 ± 0.864 93.775 ± 0.116
GCN (1-layer) 60.570 ± 0.438 54.188 ± 0.761 92.358 ± 0.815

DP-GCN (2-layer) 57.304 ± 0.240 43.870 ± 2.303 91.538 ± 0.321
DP-GCN (1-layer) 56.714 ± 0.281 43.522 ± 0.642 90.618 ± 0.073

MLP 55.460 ± 0.188 37.764 ± 1.014 72.272 ± 0.132
DP-MLP 52.822 ± 0.476 34.768 ± 2.524 70.298 ± 0.118

6 CONCLUSIONS AND FUTURE WORK

In this work, we proposed a method to privately learn r-layer GNN parameters, that outperforms
both private and non-private baselines that do not utilize graph information. Our method ensures
node-level differential privacy, by a careful combination of sensitivity analysis of the gradients and
a privacy amplification result extended to the GNN setting. We believe that our work is a first step
in the direction of designing powerful GNNs while preserving privacy. Some promising avenues for
future work include extending the DP-GNN method to learn non-local GNNs, and understanding
utility bounds for GNNs with node-level privacy.

5

ICLR 2022 PAIR2Struct Workshop

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep Learning with Differential Privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16, pp. 308–318, New
York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450341394. doi:
10.1145/2976749.2978318. URL https://doi.org/10.1145/2976749.2978318.

David Ahmedt-Aristizabal, Mohammad Ali Armin, Simon Denman, Clinton Fookes, and Lars Pe-
tersson. Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past, Present and
Future. arXiv preprint arXiv:2105.13137, 2021.

Rohan Anil, Badih Ghazi, Vineet Gupta, Ravi Kumar, and Pasin Manurangsi. Large-Scale Dif-
ferentially Private BERT. CoRR, abs/2108.01624, 2021. URL https://arxiv.org/abs/
2108.01624.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private Empirical Risk Minimization: Efficient
Algorithms and Tight Error Bounds. In Proc. of the 2014 IEEE 55th Annual Symp. on Foundations
of Computer Science (FOCS), pp. 464–473, 2014.

Christian Borgs, Jennifer T. Chayes, and Adam Smith. Private Graphon Estimation for Sparse
Graphs, 2015.

Christian Borgs, Jennifer Chayes, Adam Smith, and Ilias Zadik. Revealing Network Structure,
Confidentially: Improved Rates for Node-Private Graphon Estimation, 2018.

Amar Budhiraja, Gaurush Hiranandani, Darshak Chhatbar, Aditya Sinha, Navya Yarrabelly, Ayush
Choure, Oluwasanmi Koyejo, and Prateek Jain. Rich-Item Recommendations for Rich-Users:
Exploiting Dynamic and Static Side Information, 2020.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The Secret Sharer:
Evaluating and Testing Unintended Memorization in Neural Networks. In 28th USENIX Security
Symposium (USENIX Security 19), pp. 267–284, Santa Clara, CA, August 2019. USENIX As-
sociation. ISBN 978-1-939133-06-9. URL https://www.usenix.org/conference/
usenixsecurity19/presentation/carlini.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating Noise to Sensitivity
in Private Data Analysis. In Shai Halevi and Tal Rabin (eds.), Theory of Cryptography, pp. 265–
284, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-32732-5.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The World Wide Web Conference, pp. 417–426, 2019.

Vitaly Feldman, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta. Privacy Amplification by
Iteration. In 59th Annual IEEE Symp. on Foundations of Computer Science (FOCS), pp. 521–532,
2018.

C. Forbes, M. Evans, N. Hastings, and B. Peacock. Statistical Distributions. Wiley, 2011. ISBN
9781118097823. URL https://books.google.co.in/books?id=YhF1osrQ4psC.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neu-
ral Message Passing for Quantum Chemistry. CoRR, abs/1704.01212, 2017. URL http:
//arxiv.org/abs/1704.01212.

Josef Hadar and William R. Russell. Rules for ordering uncertain prospects. The American Eco-
nomic Review, 1969. ISSN 00028282.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive Representation Learning on Large
Graphs. CoRR, abs/1706.02216, 2017. URL http://arxiv.org/abs/1706.02216.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

6

https://doi.org/10.1145/2976749.2978318
https://arxiv.org/abs/2108.01624
https://arxiv.org/abs/2108.01624
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini
https://www.usenix.org/conference/usenixsecurity19/presentation/carlini
https://books.google.co.in/books?id=YhF1osrQ4psC
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1706.02216

ICLR 2022 PAIR2Struct Workshop

Vishesh Karwa, Sofya Raskhodnikova, Adam Davison Smith, and Grigory Yaroslavtsev. Private
analysis of graph structure. Proceedings of the VLDB Endowment, 4(11):1146–1157, August
2011. ISSN 2150-8097.

Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam D.
Smith. What Can We Learn Privately? In 49th Annual IEEE Symp. on Foundations of Computer
Science (FOCS), pp. 531–540, 2008.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Net-
works. CoRR, abs/1609.02907, 2016. URL http://arxiv.org/abs/1609.02907.

Sofia Ira Ktena, Sarah Parisot, Enzo Ferrante, Martin Rajchl, Matthew Lee, Ben Glocker, and Daniel
Rueckert. Metric learning with spectral graph convolutions on brain connectivity networks. Neu-
roImage, 169:431–442, 2018.

Daniel Levy, Ziteng Sun, Kareem Amin, Satyen Kale, Alex Kulesza, Mehryar Mohri, and
Ananda Theertha Suresh. Learning with User-Level Privacy. CoRR, abs/2102.11845, 2021. URL
https://arxiv.org/abs/2102.11845.

Kevin McCloskey, Ankur Taly, Federico Monti, Michael P Brenner, and Lucy J Colwell. Using
attribution to decode binding mechanism in neural network models for chemistry. Proceedings of
the National Academy of Sciences, 116(24):11624–11629, 2019.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer Security Foundations Sym-
posium (CSF), pp. 263–275. IEEE, 2017.

Sofya Raskhodnikova and Adam Smith. Lipschitz Extensions for Node-Private Graph Statistics and
the Generalized Exponential Mechanism. In 2016 IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 495–504, 2016. doi: 10.1109/FOCS.2016.60.

Sina Sajadmanesh and Daniel Gatica-Perez. When Differential Privacy Meets Graph Neural Net-
works. CoRR, abs/2006.05535, 2020. URL https://arxiv.org/abs/2006.05535.

Chuanqiang Shan, Huiyun Jiao, and Jie Fu. Towards Representation Identical Privacy-Preserving
Graph Neural Network via Split Learning. CoRR, abs/2107.05917, 2021. URL https://
arxiv.org/abs/2107.05917.

Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with differ-
entially private updates. In 2013 IEEE Global Conference on Signal and Information Processing,
pp. 245–248. IEEE, 2013.

Salil Vadhan. The complexity of differential privacy. In Tutorials on the Foundations of Cryptogra-
phy, pp. 347–450. Springer, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks, 2018.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic Graph CNN for Learning on Point Clouds. Acm Transactions On Graphics), 38(5):
1–12, 2019.

Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. FedGNN: Federated Graph
Neural Network for Privacy-Preserving Recommendation. CoRR, abs/2102.04925, 2021a. URL
https://arxiv.org/abs/2102.04925.

Fan Wu, Yunhui Long, Ce Zhang, and Bo Li. LinkTeller: Recovering Private Edges from Graph
Neural Networks via Influence Analysis, 2021b.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? CoRR, abs/1810.00826, 2018. URL http://arxiv.org/abs/1810.00826.

7

http://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2102.11845
https://arxiv.org/abs/2006.05535
https://arxiv.org/abs/2107.05917
https://arxiv.org/abs/2107.05917
https://arxiv.org/abs/2102.04925
http://arxiv.org/abs/1810.00826

ICLR 2022 PAIR2Struct Workshop

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp. 7370–7377,
2019.

Jun Zhou, Chaochao Chen, Longfei Zheng, Xiaolin Zheng, Bingzhe Wu, Ziqi Liu, and Li Wang.
Privacy-Preserving Graph Neural Network for Node Classification. CoRR, abs/2005.11903, 2020.
URL https://arxiv.org/abs/2005.11903.

8

https://arxiv.org/abs/2005.11903

ICLR 2022 PAIR2Struct Workshop

APPENDIX

A SAMPLING SUBGRAPHS WITH OCCURRENCE CONSTRAINTS

To bound the sensitivity of the mini-batch gradient in Algorithm 1, we must carefully bound the
maximum number of occurrences of any node in the graph across all training subgraphs. To ensure
that these constraints are met for any r-layer GNN, we propose SAMPLE− SUBGRAPHS (Algo-
rithm 4) to output a set of training subgraphs. Note that the common practice (Hamilton et al., 2017)
of sampling to restrict the out-degree of every node is insufficient to provide such a guarantee, as
the in-degree of a node (and hence, the number of occurrences of that node in other subgraphs) can
be very large. Note that once the model parameters have been learnt, no restrictions are needed at
inference time. This means GNN predictions for the ‘test’ nodes can use the entire neighbourhood.

Algorithm 2: SAMPLE− EDGELISTS: Sampling the Adjacency Matrix with In-Degree Con-
straints
Data: Graph G = (V,E,X,Y), Training set Vtr, Maximum in-degree K.
Result: Set of sampled edgelists Ev for each node v ∈ V .
for v ∈ V do

Construct the incoming edgelist over training set: REv ← {u | (u, v) ∈ E and u ∈ Vtr}
Sample incoming edgelists. Each edge is sampled independently with a probability
p = K

2|REv| : REv ← sample(REv)

The nodes with in-degree greater than K are dropped.1
end
for v ∈ V do

Reverse incoming edgelists to get sampled edgelists Ev: Ev ← {u | v ∈ REu}
end
return {Ev | v ∈ V }.

Algorithm 3: DFS− TREE: Depth-First-Search Tree with Depth Constraints
Data: Root node v, Edgelists E, Maximum depth r.
Result: Subgraph Sv representing the r-depth DFS tree rooted at v.
If r = 0, return {v}.
Add edges from v to its neighbours’ subgraphs:
Sv ← {v} ∪ {DFS− TREE(u,E, r − 1) | u ∈ Ev}

return Sv .

Algorithm 4: SAMPLE− SUBGRAPHS: Sampling Local Neighborhoods with Occurrence
Constraints
Data: Graph G = (V,E,X,Y), Training set Vtr, Maximum in-degree K, GNN layers r.
Result: Set of subgraphs Sv for each node v ∈ Vtr.
Obtain set of sampled edgelists: E← SAMPLE− EDGELIST(G,Vtr,K)
for v ∈ Vtr do

Sv ← DFS− TREE(v,E, r)
end
return {Sv | v ∈ Vtr}.

Lemma 1 (SAMPLE− SUBGRAPHS Satisfies Occurrence Constraints). Let G be any graph with
set of training nodes Vtr. Then, for any K, r ≥ 0, the number of occurrences of any node in the
set of training subgraphs SAMPLE− SUBGRAPHS(G,Vtr,K, r) is bounded above by N(K, r),
where:

N(K, r) =

r∑
i=0

Ki =
Kr+1 − 1

K − 1
∈ Θ(Kr)

1 For simplicity, we implement this step in a non-DP manner, but it can be easily made DP by employing the
Propose-Test-Release mechanism (Vadhan, 2017) assuming public knowledge of the degree.

9

ICLR 2022 PAIR2Struct Workshop

A.1 RESULTS WITH OTHER GNN ARCHITECTURES

As mentioned in Section 4, the DP-GNN training mechanisms can be used with most r-layer GNN
architectures. We experiment with two more GNN architectures, namely GIN (Xu et al., 2018) and
GAT (Veličković et al., 2018) in both transductive (Table 3) and inductive (Table 4) settings.

We observe that DP-GNN performs well across different architectures in both privacy settings, out-
performing MLP and DP-MLP baselines in all cases. For both the inductive and transductive set-
tings, we observe that GIN performs similarly to GCN and DP-GIN again has similar performance
as DP-GCN. On the ogbn-arxiv-clustered dataset, however, both 1-layer and 2-layer DP-GIN models
perform much better than their DP-GCN counterparts.

Table 3: Test accuracy of DP-GIN and DP-GAT on the transductive ogbn-arxiv dataset with a
privacy budget of ε ≤ 20.

Model Non-Private GNN DP-GNN
GCN 67.758 ± 0.418 62.917 ± 0.308
GIN 66.934 ± 0.529 63.777 ± 0.300
GAT 65.490 ± 0.454 59.044 ± 0.183
MLP 55.236 ± 0.317 52.942 ± 0.413

Table 4: Test performance of DP-GIN in the inductive setting, with privacy budget ε ≤ 20.
Model ogbn-arxiv-disjoint ogbn-arxiv-clustered reddit-disjoint

GIN (2-layer) 60.020 ± 0.697 54.239 ± 1.801 93.102 ± 0.211
GIN (1-layer) 59.215 ± 0.332 51.834 ± 1.362 92.682 ± 0.191

DP-GIN (2-layer) 57.475 ± 0.198 47.598 ± 0.661 91.308 ± 0.220
DP-GIN (1-layer) 57.372 ± 0.112 45.017 ± 1.021 90.777 ± 0.084

MLP 55.460 ± 0.188 37.764 ± 1.014 72.272 ± 0.132
DP-MLP 52.822 ± 0.476 34.768 ± 2.524 70.298 ± 0.118

A.2 PROOF OF THEOREM 1

Lemma 2 (Node-Level Sensitivity of any r-Layer GNN). Let G be any graph such that the max-
imum in-degree of G is bounded by K ≥ 0. Let Vtr be the training set of nodes. Let Bt be any
choice of m unique subgraphs from Str = SAMPLE− SUBGRAPHS(G,Vtr,K, r). For each node
v ∈ Vtr, let ŷv be the prediction from an r-layer GNN when run on the subgraph Sv ∈ Str. Now,
ŷv := GNN(Sv,X, v; Θ). Consider the loss function L of the form: L(G,Θ) =

∑
v∈V ` (ŷv; yv) .

Consider the following quantity ut from Algorithm 1:

ut(G) =
∑
v∈Bt

ClipC(∇Θ` (ŷv; yv))

Then, the following inequality holds: ∆K(ut) < 2C · K
r+1−1
K−1 .

Lemma 3 (Un-amplified Privacy Guarantee for Each Iteration of Algorithm 1). Every iteration t of
Algorithm 1 is (α, γ) node-level Rényi DP where γ = α·(∆K(ut))

2

2σ2 .

Proof. Follows directly from (Mironov, 2017, Corollary 3).

Lemma 4 (Distribution of Loss Terms Per Minibatch). For any iteration t in Algorithm 1, con-
sider the minibatch Bt of subgraphs. For any subset S of d unique subgraphs, define the ran-
dom variable ρ as |S ∩ Bt|. Then, the distribution of ρ follows the hypergeometric distribution
Hypergeometric(N, d,m):

ρi = P [ρ = i] =

(
d
i

)(
N−d
m−i

)(
N
m

) ,

where N is the total number of nodes in the training set Vtr and |Bt| = m is the batch size.

10

ICLR 2022 PAIR2Struct Workshop

Lemma 5 (Adaptation of Lemma 25 from Feldman et al. (2018)). Let µ0, . . . , µn and ν0, . . . , νn be
probability distributions over some domain Z such that:Dα(µ0 ‖ ν0) ≤ ε0, . . ., Dα(µn ‖ νn) ≤ εn,
for some given ε0, . . . , εn.

Let ρ be a probability distribution over [n] = {0, . . . , n}. Denote by µρ (respectively, νρ) the
probability distribution over Z obtained by sampling i from ρ and then outputting a random sample
from µi (respectively, νi). Then:

Dα(µρ ‖ νρ) ≤ lnEi∼ρ
[
eεi(α−1)

]
=

1

α− 1
ln

n∑
i=0

ρie
εi(α−1).

Lemma 6. Let ρ, ρ′ be sampled from the hypergeometric distribution: ρ ∼
Hypergeometric(N, k,m), ρ′ ∼ Hypergeometric(N, k′,m), such that k ≥ k′. Then, ρ
stochastically dominates ρ′: Fρ′(i) ≥ Fρ(i) for all i ∈ R, where Fρ (respectively, Fρ′) is the
cumulative distribution function (CDF) of ρ (respectively, ρ′).

Proof of Theorem 1. At a high-level, Lemma 2 tells us that a node can participate in N(K, r) =
Kr+1−1
K−1 training subgraphs from Str, in the worst case. However, on average, only a fraction of

these subgraphs will be sampled in the mini-batch Bt, as Lemma 4 indicates. We use the knowledge
of the exact distribution of the number of subgraphs sampled in Bt provided by Lemma 4 with
Lemma 5 to get a tighter bound on the Rényi divergence between the distributions of ũt over node-
level adjacent graphs. Finally, Lemma 6 allows us to make the above bound independent of the
actual node being removed, giving our final result.

Let G be any graph with training set Vtr. Let G′ be formed by removing a single node v̂ from G, so
G and G′ are node-level adjacent.

For convenience, for any node v, we denote the corresponding gradient terms∇Θ`v and ∇Θ`
′
v as:

∇Θ`v = ∇Θ` (GNN(Sv,X, v; Θ); yv) = ∇Θ` (ŷv; yv)

∇Θ`
′
v = ∇Θ` (GNN(S′v,X

′, v; Θ); yv) = ∇Θ` (ŷ′v; yv)

Let Sr(v) be the set of all subgraphs in SAMPLE− SUBGRAPHS(G,Vtr,K, r) in which v occurs.

ut(G)− ut(G
′) =

∑
Sv∈(Bt ∩ Sr(v̂))

ClipC(∇Θ`v)− ClipC(∇Θ`
′
v).

Using the notation from Algorithm 1, we have: ũt(G) = ut(G) +N (0, σ2I), ũt(G′) = ut(G
′) +

N (0, σ2I). We need to show that Dα(ũt(G) ‖ ũt(G
′)) ≤ γ.

From the above equation, we see that the sensitivity of ut depends on the number of subgraphs in
Sr(v) that are present in Bt. Let ρ′ be the distribution over {0, 1, . . . |Sr(v)|} of the number of sub-
graphs in Sr(v) present in Bt, that is, ρ′ = |Sr(v)∩Bt|. Lemma 4 then gives us that the distribution
of ρ′ is: ρ′ ∼ Hypergeometric(N,Sr(v),m). In particular, when ρ′ = i, exactly i subgraphs are
sampled in Bt. Then, following Lemma 2, ∆K(ut | ρ′ = i) < 2iC. Thus, conditioning on ρ′ = i,
we see that every iteration is (α, γi) node-level Rényi DP, by Lemma 3 where γi = α · 2i2C2/σ2.

Define the distributions µi and νi for each i ∈ {0, . . . , |Sr(v)|}, as follows: µi =
[ũt(G) | ρ′ = i] , νi = [ũt(G

′) | ρ′ = i]. Then Dα(µi ‖ νi) ≤ γi. For the mixture distributions
µρ′ = ũt(G) and νρ′ = ũt(G

′), Lemma 5 now tells us that:

Dα(ũt(G) ‖ ũt(G
′)) = Dα(µρ′ ‖ νρ′) ≤ 1

α− 1
lnEi∼ρ′ [exp (γi(α− 1))] =

1

α− 1
lnE [f(ρ′)] .

where f(ρ′) = exp
(
α(α− 1) · 2ρ′2C2

σ2

)
. Define another distribution ρ as: ρ ∼

Hypergeometric(N,N(K, r),m), where N(K, r) = Kr+1−1
K−1 is the upper bound on |Sr(v)| from

Lemma 1. By Lemma 6, ρ stochastically dominates ρ′. As non-decreasing functions preserve
stochastic dominance (Hadar & Russell, 1969), f(ρ) stochastically dominates f(ρ′), and hence
E [f(ρ′)] ≤ E [f(ρ)] . It follows that:

Dα(ũt(G) ‖ ũt(G
′)) ≤ 1

α− 1
lnEρ

[
exp

(
α(α− 1) · 2ρ2C2

σ2

)]
= γ.

The theorem now follows from the fact that the above holds for an arbitrary pair of node-level
adjacent graphs G and G′.

11

	Introduction
	Related Work
	Problem Formulation and Preliminaries
	Learning Graph Neural Networks (GNN) via DP-SGD
	Experimental Results
	Results in the Transductive Setting
	Results in the Inductive Setting

	Conclusions and Future Work
	Sampling Subgraphs with Occurrence Constraints
	Results with other GNN Architectures
	Proof of Theorem 1

