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ABSTRACT

As face forgery techniques have become more mature, the proliferation of deep-
fakes may threat the human society security. Although existing deepfake detection
methods achieve a good performance for in-dataset evaluation, it still remains to
be improved in the generalization abiltiy, where the representation of the imper-
ceptible artifacts plays a significant role. In this paper, we propose an Interactive
Two-Stream Network (ITSNet) to explore the discriminant inconsistency represen-
tation from the perspective of cross-modality. Specially, the patch-wise Decom-
posable Discrete Cosine Transform (DDCT) is adopted to extract fine-grained
high-frequency clues and information from different modalities are communit-
cated with each other via a designed interaction module. To perceive the tem-
poral inconsistency, we first develop a Short-term Embedding Module (SEM) to
refine subtle local inconsistency representation between adjacent frames, and then
a Long-term Embedding Module (LEM) is designed to further refine the erratic
temporal inconsistency representation from the long-range perspective. Extensive
experimental results conducted on three public datasets show that ITSNet outper-
forms the state-of-the-art methods both in terms of in-dataset and cross-dataset
evaluations.

1 INTRODUCTION

Facial forgery methods and deepfake detection methods have made great progress due to mutual
competition. For the forgery methods, the advent of deep generative models Korshunova et al.
(2017); Bao et al. (2018); Natsume et al. (2018); Li et al. (2020a) and face manipulated methods
(such as Deepfakes git (a) and Face2Face Thies et al. (2016a)) allow arbitrary tampering with other
people’s privacy. Therefore, it is crucial to develop discriminative deepfake detection methods to
indicate the authenicity of images or videos, especially for the latest forgery methods.

In the early stages, hand-crafted forgery features Li et al. (2018); Yang (2019) as well as data-driven
forgery features once dominated when dealing with rough fake faces. Although these methods
Afchar et al. (2018); Hsu et al. (2018); Li et al.; Zhang et al. (2019) have achieved great success in
particular datasets, insufficient attention has been paid to the generalization ability of unseen forgery
methods.

Recent methods try to encode the common forgery trace caused by various forgery methods, such
as temporal inconsistency features and frequency artificial features. For the former, since most
forgery videos are manipulated on the individual frame which may bring temporal clues for the
deepfake detection task. Some detection methods Güera & Delp (2018); Sabir et al. (2019); Agarwal
et al. (2020); Zheng et al. (2021) pay attention to extracting discriminate temporal features from the
consecutive video frames through 3DCNN-based or RNN-based methods. However, without being
specifically designed, the limited temporal receptive field may lead to high computational cost and
the faintish incoherent perception ability among long-distant frames. As for the frequency domain
features, most methods Qian et al. (2020); Frank et al. (2020); Gu et al. (2021) pay attention to
utilizing the frequency information to eliminate the irrelevant features of RGB image. While the
long-range temporal inconsistency of the frequency features has not yet been fully exploited.

Different from these methods, we construct an interactive two-stream network (ITSNet) by embed-
ding the high-frequency distribution of the video from both the frequency modality and the RGB
modality. Specifically, we design a Decomposable Discrete Cosine Transform (DDCT) to generate
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fine-grained frequency features and filter out irrelevant low-frequency components, which provides
more significant frequency representation. Furthermore, a short-term embedding module (SEM)
is developed to encode the local temporal information in the early stage. In the later stage of our
proposed network, a long-term embedding module (LEM) is designed to summarize the global tem-
poral feature of the video and the perception field in the time dimension is further broadened. At the
end of each stage, a cross-modality interaction is conducted and the representation for each modality
can be enhanced by sensing the inconsistency across modalities. In summary, our contributions are
three-fold:

• We propose an interactive two-stream network (ITSNet) to detect face forgeries in videos.
Two modalities including the high-frequency component of the video and the RGB infor-
mation are adopted and they are communicated through a designed interaction module.

• In the frequency stream, we design a patch-wise Decomposable Discrete Cosine Trans-
form (DDCT), which can represent effective high-frequency components to distinguish
face forgery videos from real faces. For each stream, long-term inconsistency and short-
term inconsistency are encoded by a short-term embedding module and a long-term em-
bedding module.

• We conduct extensive experiments on FF++, CD2, and WildDeepfake against numerous
state-of-the-arts and the experimental results demonstrate the superior detection perfor-
mance and generalization ability of our method on face forgery video detection.

2 RELATED WORK

In this section, we discuss previous related works in this field. In Section 2.1, we briefly intro-
duce previous works on face forgery detection methods for videos. We specifically review related
works that also employ frequency information and research on high-frequency components for facial
forgery detection in Section 2.2.

2.1 VIDEO-BASED FORGERY DETECTION

With the rapid development of face forgery technology, the detection of forged face video has been
extensively studied in recent years. Early works Yang (2019); Afchar et al. (2018); Chollet (2017)
utilize deep 2D convolution neural network (CNN) to extract task-oriented spatial features for forged
image detection. Although these vanilla CNN-based methods are simple to implement, it is not
suitable for more realistic and unknown source counterfeit.

Later on, researchers begin to capture the temporal inconsistency from the video clip. Among them,
a branch of works taking the explicit physiological signals Li et al. (2018); Agarwal et al. (2020);
Haliassos et al. (2021); Sabir et al. (2019) as the basis to detect the temporal inconsistency in the
forged frame sequential. For example, Li et al. Li et al. (2018) determine the authenity of videos by
judging the eye blinking behavior in the video. Haliassos et al. Haliassos et al. (2021) detect incon-
sistencies of mouth movements by leveraging rich representations learned from the lip-reading task.
Sabir et al. Sabir et al. (2019) concentrate on the discrepancy of landmark trajectory between real
and fake videos with bidirectional-recurrent-denset. Such approaches can learn to detect temporal
artifacts from additional annotations, while it is difficult to achieve satisfactory performance when
dealing with occlusions and manipulations by unseen face forgery methods.

Another branch of works Güera & Delp (2018); Zheng et al. (2021) implicitly learn the temporal
inconsistency between frame sequences in the RGB space. For instance, Güera et al. Güera & Delp
(2018) utilize a RNN network to capture temporal inconsistencies between adjacent frames. By
modifying the 3D convolution kernel into variants that are robust in time and shrink in space, Zheng
et al. Zheng et al. (2021) make the 3DCNN more focused on coherence in the temporal dimension.
However, a simple variation on the convolution kernel along the time dimension is still constrained
by the receptive limitation of 3D convolution, which leads to the incomplete exploitation of long-
term dependency. In contrast, the proposed ITSNet encodes both the long-range and short-term
temporal inconsistency through cross-modality communication.
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2.2 FREQUENCY-BASED FORGERY DETECTION

Besides the RGB domain, the frequency clues can also bring informative features for deepfake
detection. Frequency reflects the variation of image brightness and can be further decomposed into
different levels of components according to the local gradient. For the forgery detection task, Frank
et al. Frank et al. (2020) observe that forged images generated by Generative Adversarial Networks
(GAN) show particular artifacts in the frequency domain in the essential up-sampling operation.
Durall et al. Durall et al. (2019) further prove that the discrepancy between real and fake faces is
more evident in the high-frequency component than in the low-frequency component.

Apart from the vanilla frequency transform methods, such as Discrete Fourier Transform (DCT),
a number of variants are proposed to fully exploit the underlying frequency artifacts in deepfake
detection task. For example, Zhang et al. Zhang et al. (2019) extract frequency features from the
residuals generated by median filtering of the image to detect forgery faces. Gu et al. Gu et al.
(2021) view DCT in a fine-grained perspective by a vanilla sliding window. Qian et al. Qian et al.
(2020) set certain constraints for the learnable filter to adaptively separate the frequency information.
Although these frequency-based methods raise the bar of forged image detection, there is still a
large room to improve the subtle frequency feature extraction and inconsistency processing in the
temporal dimension. In our proposed ITSNet, we design a novel Decomposable DCT to extract
fine-grained frequency information and a subsequent embedding module to represent the frequency
inconsistency among the long-range sequential video frames.

3 INTERACTIVE TWO-STREAM NETWORK

This section starts with the network architecture of our proposed interactive two-stream model (IT-
SNet) in Sec. 3.1. We delinate the patch-wise decomposable DCT transform in Sec. 3.2. The
short-term embedding module (SEM) and the long-term embedding module (LEM) are described in
Sec. 3.3 and 3.4.

Figure 1: The architecture of the proposed ITSNet.

3.1 NETWORK ARCHITECTURE

The artificial traces of forgery face videos exist in both frequency and the RGB domain. To fully
capture the traces, we propose an ITSNet containing two interactive branches to extract both fre-
quency and textural temporal inconsistency, as described in Fig1. Firstly, the DDCT extracts fine-
grained high-frequency components by performing the patch-level DCT convolution operation on
the input RGB frames. Then the RGB frames with the extracted high-frequency frames are sent to
the subsequent CNN-based parallel branch to encode long-range temporal inconsistency from the
frequency perspective as well as the semantic view, respectively. Specifically, these two branches
is constructed by a novel SEM in the early stage and a LEM in the late stage, which embeds the
subtle temporal inconsistency from local to global. SEM narrows down the temporal receptive field
and models the subtle motion information between adjacent frames. The LEM further expands the
temporal perceptive field by assembling the local temporal inconsistency extracted by the SEM.

Given the feature map extracted from the RGB branch and Frequency branch, how to eliminate
the misalignment between two modalities is indispensable. Inspired by Chen et al. (2021), we
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consecutively utilize a spatial attention-based mechanism to promote the interaction between two
branches and refine the subtle artifact perception capability of each individual modality. Denote
the feature maps generated by the RGB branch and the frequency branch as XRGB ∈ Rt×c×h×w

and Xfre ∈ Rt×c×h×w. We first concatenate the RGB and frequency feature map in the channel
dimension, and they are comprehensively communicated by a 3 × 3 convolution layer to generate
the cross-modality representation Xmodality ∈ R2×H×W , as formulated in Eq. 1.

Xmodality = ReLU(BN(Conv3×3(Concat(XRGB , Xfreq)))) (1)

After obtaining the cross-modality representation Xmodality, we split it on the channel dimension
and perform a channel-wise selection in each branch, as described in Eq. 2 and Eq. 3.

XRGB1 = XRGB ⊙ split(Xmodality)0 +XRGB (2)

Xfreq1 = Xfreq ⊙ split(Xmodality)1 +Xfreq (3)

Finally, a fully connected (FC) layer yields the forgery probability according to the final cross-
modality representation, which is acquired by concatenating the long-range temporal inconsistency
embedding and textural inconsistency embedding extracted by the LEM in each branch.

Figure 2: The processing flow of decomposable discrete cosine transform.

3.2 DECOMPOSABLE DISCRETE COSINE TRANSFORM

Most of the existing frequency based deepfake detection methods extract frequency features from
the whole image, which is non-sensitive to the local high-frequency information and heavily affects
the detection of subtle forged faces. Inspired by ViT Dosovitskiy et al. (2020), the proposed De-
composable Discrete Cosine Transform method (DDCT) begins by splitting the image into small
patches to extract the desired high-frequency features in a fine-grained manner.

The processing flow is shown in Fig.2, and we first transform the input RGB image xrgb ∈ RT×C×H

to the YCbCr space to eliminate the influence of image compression. Then we adopt the DCT con-
volution Qin et al. (2021) in the XY CbCr space with the kernel size of 8 × 8 and the stride of 8,
generating the local frequency feature Xfreq ∈ RT×C×H

8 ×W
8 , where the feature in the ith row and

jth column reflects the delicate frequency clue of the small 8 × 8 patch in the original 224 × 224
image. To exploit more pinpoint frequency clues and eliminate redundant low-frequency informa-
tion, we further separate high-frequency components xhf from the whole frequency by employing a
median filter with a smaller kernel size of 3 followed by a residual operation on each patch. Finally,
we interpolate and resize the feature xhf to the same size of XRGB . In the patch-wise DDCT, we
consider the frequency domain in a local region to explore more subtle artificial clues.

3.3 SHORT-TERM EMBEDDING MODULE

The frame-level forgery methods inevitably trigger inconsistency between video frames. To explore
the long-range video inconsistency while keeping the ability to perceive weak incoherency, the pro-
posed ITSNet is consisted by two kinds of blocks: (1) the stacked SEM to extract the subtle local
inconsistency among adjacent frames in the early stage and (2) the ultimate LEM to aggregate the
global inconsistency.

The architecture of SEM is reflected in Fig. 3, where SEM incorporates two parallel branches to
learn the subtle short-range inconsistency from a global and local perspectives. Compared with 3D
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Figure 3: The architecture of the short-term embedding module.

convolution that can also encode the short-range dependency, the proposed SEM makes use of 2D
and 1D convolution operations, which is not only effective but also computationally efficient through
the local-global structure design.

The encoding of the global inconsistency is illustrated in the lower part of Figure 3. Given an input
X ∈ RT×C×h×w, we first adopt the global average pooling (GAP) to aggregate the global spatial
information. Then a symmetrical network is performed to squeeze and amplify the channel C with
a ratio of r through stacked 1× 1 convolution layers, which is similar to Channel Attention Module
(CAM) Woo et al. (2018). However, different from the vanilla CAM, we creatively adapt a 1D
convolution layer with a kernel size of 3 along the temporal dimension in the squeezed feature, which
allows us to emphasize pertinent features in each frame according to the inter-channel relationship
between adjacent frames. Finally, we apply a sigmoid function to acquire the channel attention map
and generate the global enhanced inconsistency features Xg as described in Eq. 4.

Xg = X + σ
(
Wa

(
Wf

(
Ws

(
F c
avg

))))
·X, (4)

where σ denoted the sigmoid function, Ws ∈ RC/r×C×1×1, Wf ∈ RC/r×C/r×3, and Wa ∈
RC×C/r×3.

To capture the fine-grained short-range temporal inconsistency, SEM targets to represent the local
inconsistency among the adjacent frames at the same spatial position, as shown in the upper part of
Figure 3. In particular, we first adopt a 1× 1 convolution layer to squeeze the channel dimension by
a ration of r (set to 16) and then obtain the local inconsistency Xl ∈ RN×1×C

r ×H×W through Eq.
5.

Xl(t) = M(Xr(t+ 1))−Xr(t), (5)

where M is a 3× 3 convolution layer.

The representation Xl is concatenated along the time dimension and padded with zero to adapt to
the original shape. To pay more attention to the temporal information, we employ a sequential
GAP operation of 1 × 1 convolution layer to retain key channels by the scale ration r. Finally, the
local attention representation is generated through the sigmoid function and the original features are
calculated by Eq. 6.

X = σ(Xr(GAP (XL))) +X (6)

where XL denotes the concatenation of Xl and Wl ∈ RC×H×W and X is the original input.

In summary, the subtle artifacts can be enhanced through the representation learning of the fine-
grained local and global inconsistency among short-range frames. Since the inconsistency among
adjacent frames mostly occurs at the texture level, we stack SEM modules in the early stage of the
branch network and design the subsequent long-term embedding module to amplify and aggregate
the overall temporal inconsistency from a long-range perspective.
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Figure 4: The architecture of the long-term embedding module.

3.4 LONG-TERM EMBEDDING MODULE

The complex temporal artificial clues contained in forgery videos can be further amplified in the
long-range dependency. Motivated by this, we design LEM to assemble the temporal inconsistency
from a long-range view.

Let X ∈ RT×C×H×W denote the input frame set, LEM is proposed to aggregate the adjacent
temporal artificial clues extracted by SEMs in a global temporal receptive field. As shown in Fig.
4, LEM consists of two parts, including (1) the enhancement branch on the global channel attention
and (2) the adaptive temporal convolution mechanism. Specifically, we adopt a GAP to shrink the
spatial dimension to Xt ∈ RT×C . The purpose is to eliminate redundant spatial information so as
to concentrate on the temporal inconsistency.

In the enhancement branch with the global channel attention, we attempt to highlight channels re-
lated to the temporal inconsistency. To achieve the interaction between corresponding channels of
video frames, we first transpose the temporal and channel dimension of Xt and then employ a 1D
convolution stacked bottleneck layer with kernel size of 3 to generate the channel attention map.
The enhanced feature X

′

t can be acquired through the Hadamard product between the heatmap and
the original feature.

To further emphasize the inconsistency between long-range frames, we design an adaptive temporal
convolution mechanism to amplify and assemble the short-range temporal inconsistency based on
the overall temporal inconsistency. We utilize two fully connected layers along the temporal dimen-
sion to extract the adaptive convolution kernel related to the inconsistency of the current video clips.
Therefore, the LEM can fully explore the inconsistency between the global-range and local-range
variation patterns, and further eliminate the negative influence of personal action habits and other
task-irrelevant global information. Finally, the learned adaptive 3× 3 convolution kernel is adopted
on the enhanced representation X

′

t , which is formulated by Eq. 7 and Eq. 8.

K = fc2(fc1(Favg(Xt))), (7)

X = K(X
′

t), (8)

where fc1 and fc2 are two fully connected layers, and K is the kernal of the adaptive temporal
convolution.

4 EXPERIMENTS

In this section, we first introduce the experiment setting including the implementation details,
datasets, evaluation metrics, and baselines in Sec. 4.1. Then we conduct in-dataset and cross-dataset
experiments in Sec. 4.2, where both qualitative and quantitative results are reported to demonstrate
the effectiveness and generalization ability of the proposed ITSNet against numerous state-of-the-
arts. Finally, ablation studies are executed in Sec. 4.3 to verify the effectiveness of components of
the proposed ITSNet.
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Methods FF++(HQ) FF++(LQ) WildDeepfake
ACC AUC ACC AUC ACC AUC

MesoNetAfchar et al. (2018) 83.10% - 70.47% - - 64.47%
XceptionChollet (2017) 95.73% - 86.86% - - 69.25%

Face X-rayLi et al. (2020b) - 97 .80% - 77 .30% - -
CNN-augWang et al. (2020) 96.90% 97 .20% 79.10% 78 .30% - -

F3 -NetQian et al. (2020) 97.52% 98 .10% 90.43% 93.30% 80.66% 87.53%
Muti-AttZhao et al. (2021) 97.60% 99 .29% 88.69% 90 .40% 81.99% 90 .57%

PELGu et al. (2021) 97.63% 99 .32% 90.52% 94 .28% 84.14% 91 .62%
LipForensicsHaliassos et al. (2021) 98.80% 99.70% 94.20% 98.10% - -

FInferHu et al. (2022) - 95 .67% - - 75.88% 81.83%
ITSNet (Ours) 99.88% 99.64% 94.40% 95.64% 92.45% 92.34%

Table 1: Quantitative comparisons on the FF++(HQ), FF++(LQ), and WildDeepfake datasets. The
best performance is marked in bold.

4.1 EXPERIMENTAL SETTINGS

Implementation details: We adopt the ResNet50 He et al. (2016) pre-trained on ImageNet as the
backbone network of the proposed ITSNet. Based on the structure of ResNet, we first insert the
SEM as the basic block in the first three stages of the backbone and replace the last stage with LEM.
After each stage of the model, we adopt the interaction operation to achieve the cross-modality
communication. With the sampling interval of 6 frames, we sample 8 frames from each video to
construct the input of the model. For each frame, we first utilize S3FD Zhang et al. (2017) to detect
and resize the face regions to 256 × 256, and then center crop it to 224 × 224. In the training
stage, we utilize the AdamW optimizer and set the moment betas to (0.9, 0.999) and the learning
rate to 5e-5. We train the network with a batch size of 4, and the total number of training epochs
is set to 100 with a cosine learning rate schedule. In accordance with other methods, we also adopt
the binary cross-entropy loss in the training phase. We implement the proposed method based on
PytorchPaszke et al. (2017). The models are trained on two GeForce GTX 1080 GPUs.

Datasets: We evaluate our ITSNet on three widely used benchmarks, including FaceForen-
sics++(FF++) Rossler et al. (2019), WildDeepfakeZi et al. (2020), and Celeb-DFLi et al. (2020c).

• FaceForensic++ is the most commonly used deepfake benchmark that contains 1000 orig-
inal videos collected from youtube, and 5000 correspondings are utilized to generate fake
videos. FF++ employs five typical methods of face synthesis and manipulation, including
Deepfakes (DF) git (a), Face2Face(F2F) Thies et al. (2016b), FaceSwap (FS) git (b), Neu-
ralTextures (NT) Thies et al. (2019), and FaceShifter(Fsh) Li et al. (2019). Besides, FF++
provides compressed data in various degrees, including raw videos, high quality (HQ), and
low quality (LQ).

• WildDeepfake is a real-world dataset that contains 7314 face sequences entirely, including
3805 natural and 3509 forged videos. These videos are widely spread on the Internet, with
higher authenticity, more complex scenes, and more diverse facial gestures.

• Celeb-DF contains 590 real videos and 5639 composite videos. The real source videos are
collected from publicly available youtube video clips with celebrities of diverse genders,
ages, and ethnic groups.

Models for comparison: Our methods are compared with various state-of-the-art methods that
can be divided into three categories. (1) Vanllia CNN classifiers including MesoNetAfchar et al.
(2018), XceptionChollet (2017), and Resnet50 based CNN-aug Wang et al. (2020). (2) Spatial-
based methods including Face X-rayLi et al. (2020b) which detects the blending boundary artifacts,
F3 -NetQian et al. (2020) that explores the artifacts in the frequency domain, PELGu et al. (2021)
which eliminates irrelevant noise in the frequency domain, and Muti-AttZhao et al. (2021) which
adopts a multi-spatial attention head to make the network focus on fine-grained local parts. (3)
Temporal-based methods including LipforensicHaliassos et al. (2021) that exploits the temporal
inconsistency of the lip reading, and FInfer Hu et al. (2022) that magnifies artifacts by predicting
future frame.
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MethodsXceptionFace X-rayCNN-augF3 -NetMuti-Att PEL LipForensics FInfer ITSNet (Ours)
CD2 73.70% 79.50% 75.60% 69.75% 68.64% 69.18% 82.40% 70.60% 85.97%

Table 2: Cross-dataset evaluation on the CD2 dataset (AUC(%)).All methods are trained on FF++
(HQ) while tested on CD2.

Methods Test AvgDF FS F2F NT FSh
XceptionChollet (2017) 93 51.2 86.8 79.7 72 76.6

CNN-augWang et al. (2020) 87.5 56.3 80.1 67.8 65.7 71.5
PatchForensicsChai et al. (2020) 94 60.5 87.3 84.8 65.7 78.5

CNN-GRUSabir et al. (2019) 97.6 47.6 85.8 86.6 80.8 79.7
Face X-rayLi et al. (2020b) 99.5 99.2 94.5 92.5 86.8 94.5

LipForensicsHaliassos et al. (2021) 99.7 90.1 99.7 99.1 97.1 97.1
ITSNet(Ours) 99.6 99.6 98.5 99.6 99.2 99.3

Table 3: Cross-dataset evaluation on the FF++ dataset (AUC(%)), which contains five manipulated
methods (DF, FS, F2F, NT, Fsh). Data manipulated by four methods are used for training, while
data tampered by the rest method are employed for testing.

4.2 EXPERIMENTAL RESULTS

In-dataset Results: To demonstrate the effectiveness of the proposed ITSNet, we conduct in-
dataset experiments on the most widely employed dataset FF++ and the most realistic dataset Wild-
Deepfake. The experimental results are reported in Table 1. In general, ITSNet has achieved state-
of-the-art results in both two datasets (FF++ and WildDeepfake) under various image qualities (HQ
and LQ), which fully demonstrates the effectiveness of ITSNet.

In the FF++ dataset with high-quality (HQ), ITSNet achieves an accuracy of 99.88% and an AUC
score of 99.64%, which outperforms the second best-performer Lipforensics Haliassos et al. (2021)
by a gain of 1.08%. Lipforensics focus on the incoherence of mouth movements, while in our ITSNet
the performance is further enhanced by the exploitation of long-range temporal inconsistency in two
modalities.

In the setting of low-quality (LQ) in the FF++ dataset, ITSNet gains an ACC of 94.4%, which also
occupies the first place among state-of-the-art methods. This also indicates that the cross-modality
temporal inconsistency encoded by ITSNet is robust to video quality.

We also conduct experiments on the latest WildDeepfake dataset. As reflected in Table 1, our model
reaches an AUC of 92.34% and ACC of 92.45%, which is decidedly superior to other state-of-the-art
methods by a large margin. For instance, the second-best performer PEL Gu et al. (2021) obtains an
ACC of 84.14%, which falls behind our ITSNet by a margin of 8.31%. Note that the video quality
in WildDeepfake is similar to the real internet scenes where the most widespread forged videos have
a complex posture and camera angles, which leads to a significant drop of many deepfake detectors.
This also explains the effectiveness of our cross-modality inconsistency representation. Rather than
focusing on spatial features, our ITSNet perceives the distribution of both domains over different
time strides.

Cross-dataset Results: With the development of deep forgery technology, many mature and un-
seen forgery methods appear, which further brings challenges to the generalization ability of detec-
tion models. To demonstrate the generalization ability of the proposed ITSNet, we conduct cross-
dataset experiments by training the model on FF++ (HQ) while evaluating it on CD2 via the metric
of AUC. The experimental results are presented in Table 2. It can be seen that our ITSNet achieves
the best generalization ability, with an AUC score of 85.97%, followed by LipForensics Haliassos
et al. (2021) with an AUC of 82.4%.

To further examine the generalization ability of ITSNet on the data manipulated by unseen forgery
methods, we follow the setting of Haliassos et al. (2021) to verify the generalized effect by the
leave-one-out method. In particular, we train on arbitrary four types of forgery methods in FF++
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Ablation Study Methods HQ LQ

Components

RGB 96.78 91.07
Freq 96.42 90.00
RGB+Freq 97.28 92.64
RGB+Freq+SEM 98.85 93.42
RGB+Freq+SEM+LEM 99..28 93.85

Frequency domain whole-frequency 98.50 94.78
low-frequency 97.15 93.21

ITSNet (Ours) RGB+Freq+SEM+LEM+Interaction (high-frequency) 99.64 95.64

Table 4: Abalation study of components and frequency domain on FF++(HQ) and FF++(LQ)
dataset. Video-level AUC is reported.

and evaluate on the remaining one, which ensures that the model could not foresee the manipulated
method in the test set during the training period. The results are shown in Table 3, among five eval-
uations on unseen forgery methods, our method attains three first places. Our approach obtains an
average AUC of 99.3%, outperformed the second-best detector LipForensics Haliassos et al. (2021)
by a large margin of 2.2%. This further demonstrates the excellent generalization performance of
ITSNet, which is mainly benefit from the encoding of discriminate long-range temporal inconsis-
tency.

4.3 ABLATION STUDY

Effectiveness on the components. In this section, we validate the effectiveness of key components
in our model. The ablation studies are conducted on both FF++(HQ) and FF++(LQ). To demonstrate
the effectiveness and robustness of our ITSNet, we start with the baseline ResNet50 applied on the
RGB stream and the frequency stream separately and progressively append the model with SEM,
LEM, and interaction, as reported in Table 4.

It is clear that the proposed ITSNet achieves superior detection results. The adoption of two modal-
ities obtains better performance than either one modality. The AUC results shown in the fourth row
of Table 4 fully verify that subtle artificial clues can be exploited to determine deepfakes from the
short-range temporal inconsistency. Likewise, the improvement obtained by adding LEM in the fifth
row of Table 4 also proves that aggregating temporal correlations over long time strides facilitates
the model to perceive unnatural motions. In the last row of Table 4, the proposed ITSNet boosts the
detection performance by adding the interactions between two modalities, which further suggests the
mutual promotion between the RGB representation and the fine-grained frequency representation.
Effectiveness on the frequency domain. To explore the effectiveness of the frequency represen-
tation, we design experiments for the DDCT proposed in Sec.3.2. Different frequency domains,
including the entire-frequency domain, low frequency domain, and high frequency domain, are rep-
resented in the frequency stream of ITSNet and are examined by the accuracy of the deepfake de-
tection task. The low-frequency component is generated by employing a median filter operation on
the entire-frequency representation learned from the DCT convolution while taking the residual as
the high-frequency component as described in Sec. 3.2. The frequency ablation experiments are
conducted on both FF++(HQ) and FF++(LQ) with the same parameter settings, and the results are
illustrated in Table 4. It can be concluded that the distribution of high-frequency components is
more effective for detecting face forgery videos.

5 CONCLUSION

In this paper, we propose a novel end-to-end forgery video detection method, ISTNet. ITSNet is
constructed by an interactive two-stream network to encode both RGB and frequency artificial clues
for the real/fake binary classification. To extract discriminate high-frequency components, we design
a patch-wise decomposable DCT transform (DDCT) in a fine-grained way. To exploit inconsistency
representation encoding both short-term and long-range dependencies, the short-term embedding
module (SEM) and long-term embedding module (LEM) are developed. Extensive experiments are
conducted and experimental results demonstrate that our model outperforms the other state-of-the-
art methods in both in-dataset and cross-dataset evaluations.
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Justus Thies, Michael Zollhöfer, and Matthias Nießner. Deferred neural rendering: Image synthesis
using neural textures. ACM Transactions on Graphics (TOG), 38(4):1–12, 2019.

Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew Owens, and Alexei A Efros. Cnn-generated
images are surprisingly easy to spot... for now. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8695–8704, 2020.

Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In-So Kweon. Cbam: Convolutional block
attention module. In ECCV, 2018.

Li Yuezun Lyu Siwei Yang, Xin. Exposing deep fakes using inconsistent head poses. In
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 8261–8265. IEEE, 2019.

11



Under review as a conference paper at ICLR 2023

Shifeng Zhang, Xiangyu Zhu, Zhen Lei, Hailin Shi, Xiaobo Wang, and Stan Z Li. S3fd: Single shot
scale-invariant face detector. In Proceedings of the IEEE international conference on computer
vision, pp. 192–201, 2017.

Xu Zhang, Svebor Karaman, and Shih-Fu Chang. Detecting and simulating artifacts in gan fake
images. In 2019 IEEE International Workshop on Information Forensics and Security (WIFS),
pp. 1–6. IEEE, 2019.

Hanqing Zhao, Wenbo Zhou, Dongdong Chen, Tianyi Wei, Weiming Zhang, and Nenghai Yu. Multi-
attentional deepfake detection. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2185–2194, 2021.

Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, and Fang Wen. Exploring temporal coherence
for more general video face forgery detection. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 15044–15054, 2021.

Bojia Zi, Minghao Chang, Jingjing Chen, Xingjun Ma, and Yu-Gang Jiang. Wilddeepfake: A chal-
lenging real-world dataset for deepfake detection. In Proceedings of the 28th ACM International
Conference on Multimedia, pp. 2382–2390, 2020.

12


	Introduction
	Related Work
	Video-based forgery detection
	Frequency-based forgery Detection

	Interactive Two-Stream Network
	Network Architecture
	Decomposable Discrete Cosine Transform
	Short-term Embedding Module
	Long-term Embedding Module

	Experiments
	Experimental Settings
	Experimental Results
	Ablation Study

	Conclusion

