
ScatterSample: Diversified Label Sampling for Data Efficient
Graph Neural Network Learning

Zhenwei Dai
Department of Statistics

Rice University

Vasileios Ioannidis
Amazon Web Services

Soji Adeshina
Amazon Web Services

Zak Jost
Amazon Web Services

Christos Faloutsos
Department of Computer Science

Carnegie Mellon University

George Karypis
Amazon Web Services

Abstract

What target labels are most effective for graph neural network (GNN) training? In
some applications where GNNs excel-like drug design or fraud detection, labeling
new instances is expensive. We develop a data-efficient active sampling framework,
ScatterSample, to train GNNs under an active learning setting. ScatterSample
employs a sampling module termed DiverseUncertainty to collect instances with
large uncertainty from different regions of the sample space for labeling. To
ensure diversification of the selected nodes, DiverseUncertainty clusters the high
uncertainty nodes and selects the representative nodes from each cluster. Our
ScatterSample algorithm is further supported by rigorous theoretical analysis
demonstrating its advantage compared to standard active sampling methods that
aim to simply maximize the uncertainty and not diversify the samples. In particular,
we show that ScatterSample is able to efficiently reduce the model uncertainty over
the whole sample space. Our experiments on five datasets show that ScatterSample
significantly outperforms the other GNN active learning baselines, specifically it
reduces the sampling cost by up to 50% while achieving the same test accuracy.

1 Introduction
How to spot the most effective labeled nodes for GNN training? Graph neural networks (GNN)
[KW16; Vel+17; Wu+19a] which employ non-linear and parameterized feature propagation [ZG02]
to compute graph representations, have been widely employed in a broad range of learning tasks
and achieved state-of-art-performance in node classification, link prediction and graph classification.
Training GNNs for node classification in the supervised learning setup typically requires a large
number of labeled examples such that the GNN can learn from diverse node features and node
connectivity patterns. However, labeling costs can be expensive which inhibits the possibility of
acquiring a large number of node labels. For example, the GNNs can be used to assist the drug
design. However, evaluating the properties of a molecule is time consuming. It usually takes one
to two weeks for evaluation using the current simulation tools, not to mention the cost spent on the
laboratory experiments.

Active learning (AL) aims at maximizing the generalization performance under a constrained labeling
budget [Set09]. AL algorithms choose which training instances to use as labeled targets to maximize
the performance of the learned model. Previous research in AL algorithms for GNN training can be
categorized with respect to whether the AL methods take into account the model weights (model
aware) or can be applied to any model (model agnostic). Model agnostic algorithms label a represen-

, ScatterSample: Diversified Label Sampling for Data Efficient Graph Neural Network Learning. Proceedings of
the First Learning on Graphs Conference (LoG 2022), PMLR 180, Virtual Event, December 9–12, 2022.

ScatterSample: Diversified Label Sampling for Data Efficient Graph Neural Network Learning

tative subset of the nodes such that the labeled nodes can cover the whole sample space [Wu+19b;
Zha+21]. Model aware AL algorithms leverage the GNN model to compute the node uncertainty,
which combines both the input features and graph structure [CZC17; Gao+18]. AL then picks the
nodes with the highest uncertainty.

However, maximizing the uncertainty of the labeled nodes may not balance the exploration and
exploitation of the classification boundary [KVAG19]. For example, if there exist a group of nodes
close to the classification boundary but are clustered in a small region of the graph, just labeling
the most uncertain nodes could only explore that specific region of the classification boundary,
while others are ignored, and the classification boundary is not well explored. Thus, our first main
contribution is to simultaneously consider the node uncertainty and the diversification of the uncertain
nodes over the sample space.

Challenges of diversifying uncertain nodes. Graph data present additional challenges to diversify
the uncertain nodes. Diversification requires modeling the sample space using carefully selected
representations for the nodes. However, there are two challenges of a suitable node representations.

Challenge 1: Sample space for graph data requires a representation which takes both the graph
structure and node features into account (see section sec 4.2).

Challenge 2: The representation should be robust to the model trained so far, and not be biased by
the limited amount of available labels.

Our approach. We develop ScatterSample for data-efficient GNN learning. ScatterSample allows
us to explore the classification boundary while exploiting the nodes with the highest uncertainty. To
diversify the uncertain samples on graph-structured data, ScatterSample includes a DiverseUncer-
tainty module to address the two challenges above, which clusters the uncertain nodes representations
over the whole sample space.

Figure 1: ScatterSample wins: test ac-
curacy vs. sampling ratio on the ogbn-
products dataset (62M edges).

Our Contributions. The contributions of our work are
the following.

• Insight: ScatterSample is the first method that pro-
poses and implements diversification of the uncertain
samples for data efficient GNN learning.

• Effectiveness: We evaluate ScatterSample on five
different graph datasets, where ScatterSample saves
up to 50% labeling cost, while still achieving the
same test accuracy with state-of-the-art baselines.

• Theoretical Guarantees: Our theoretical analysis
proves the superiority of ScatterSample over the
standard, uncertainty-sampling method (see Theo-
rem 5.1). Simulation results further confirm our the-
ory.

2 Related Work
This section will review the uncertainty based active learn-
ing research and implementation of active learning in GNNs.

Active Learning (AL):. Active learning aims at selecting a subset of training data as labeling
targets such that the model performance is optimized [Set09; Han+14]. Uncertainty sampling is
one major approach of active learning, which labels a group of samples to maximally reduce the
model uncertainty. To achieve this goal, uncertainty sampling selects samples around the decision
boundary [THTS05]. Uncertainty sampling has also been applied to the deep learning field, and
researchers have proposed different methods to measure the uncertainty of samples. For example,
Ducoffe and Precioso [DP18] developed a margin based method which uses the distance from a
sample to its smallest adversarial sample to approximate the distance to the decision boundary.

AL and GNNs: AL with GNNs requires to consider the graph structure information into the node
selection. Wu et al. [Wu+19b] uses the propagated features followed by K-Medoids clustering of
nodes to select a group of representative instances. Zhang et al. [Zha+21] measures importance of
nodes through combining the diversity and influence scores. However the above approaches do not
account for the learned GNN model, which may limit the generalization performance. Uncertainty
sampling has also been implemented to select nodes. Cai et al. [CZC17] propose to use a weighted

2

ScatterSample: Diversified Label Sampling for Data Efficient Graph Neural Network Learning

average of the node uncertainty, graph centrality and information density scores. Gao et al. [Gao+18]
further propose a different approach to combine the three features with multi-armed bandit techniques.
Although useful, these approaches aim choose nodes with the highest uncertainty and may be
challenged if the selected nodes are clustered in a small region of the graph, which will not provide
good graph coverage. Our work addresses this limitation by diversifying the selected nodes based on
the graph structure.

3 Preliminaries
Problem Statement . Given a graph G = (V, E), where V is the set of nodes with N = |V| nodes
and E is the set of edges. The set of nodes is divided into the training set Vtrain, validation set Vvalid
and testing set Vtest. Each node vn ∈ V is associated with a feature vector xn ∈ Rd and a label
yn ∈ {1, 2, . . . , C}. Let X ∈ RN×d be the feature matrix of all the nodes in the graph, where the
i-th row of X corresponds to vn, y = (y1, y2, . . . , yn) ∈ Rn is the vector containing all the labels.
To learn the labels of the nodes, we train a GNN model M which maps the graph G and X to the the
prediction of labels ŷ.

Active Learning: Active learning picks a subset of nodes S ⊂ Vtrain from the training set and
query their labels yS . A GNN model MS is trained with respect to the feature matrix X and yS .
Given the sampling budget B, the goal of active learning is to find a set S (|S| ≤ B) such that the
generalization loss is minimized, i.e.

argmin
S:|S|≤b

Evn∈Vtest

(
ℓ(yn, f(xn|G,MS))

)
.

3.1 Graph neural networks and message passing
In this section we present the basic operation of the GNN at layer l. With the message passing
paradigm, the GNN layer updates for most GNN models can be interpreted as message vectors that
are exchanged among neighbors over the edges and nodes in the graph.

For the following let h(l)
v ∈ Rd1 be the hidden representation for node v and layer l. Consider ϕ that

is a message function combining the hidden representations for nodes v, u. Next, using the message
vectors for neighboring edges the node representations are updated as follows

h(l+1)
v = ψ

(
h(l)
v , ρ({ϕ(h(l)

v ,h(l)
u) : (u, v) ∈ E})

)
(1)

where ρ is a reduce function used to aggregate the messages coming from the neighbors of v and ψ is
an update function defined on each node to update the hidden node representation for layer l + 1. By
defining ϕ, ρ, ψ different GNN models can be instantiated [KW16; DBV16; Bro+17; IMG20]. These
functions are also parameterized by learnable matrices that are updated during training.

4 Proposed method: ScatterSample
We propose the ScatterSample algorithm, which dynamically samples a set of diverse nodes with large
uncertainties in order to more efficiently explore the classification boundary during GNN training. At
each round, our method calculates the uncertainty for all nodes with the GNN model trained so far.
Then, ScatterSample clusters the top uncertain nodes and selecting nodes from each cluster to obtain
diverse samples. The labels of the selected nodes are queried and used as supervision to continue
training the GNN model for the next round. This section explains our method in detail.

4.1 Selecting the uncertain nodes
The uncertainty of a node is measured by the information entropy. Given a trained GNN model at the
t-th sampling round, ScatterSample first computes the information entropy ϕentropy(vn) of nodes in
Vtrain based on the current GNN model, i.e.

ϕentropy(vn) = −
C∑

j=1

log(P
[
Yn = j | G,X,M

]
)P
[
Yn = j | G,X,M

]
(2)

where P
[
Yn = j | G,X,M

]
is probability that node vn belongs to class j given the GNN model

M . Then, ScatterSample ranks all the nodes in order of decreasing uncertainty, and picks the ones
with the largest information entropy into a candidate set Ct ⊂ Vtrain. Different than traditional AL
techniques that select training targets solely based on uncertainty, we then move on to pick a diverse
subset of the uncertain nodes over the sampling space.

3

ScatterSample: Diversified Label Sampling for Data Efficient Graph Neural Network Learning

4.2 Diversifying uncertain nodes
Our goal is to ensure the diversity of selected nodes for labeling, by exploring the node distribution
over the sample space. At this point naturally, the question arises How to model the sample space?
We need a representation for nodes to define the space, based on which we could measure the samples’
distances. A straightforward approach is to use the GNN embedding space since the classification
boundary is directly depicted there. However, GNN embeddings fail to address the two challenges in
the introduction section.

First, with active learning, a limited number of labeled nodes are available in the initial stages.
Hence, only the already labeled nodes may have reliable GNN embeddings and biased subsequent
samples. Second, GNN embeddings for node classification may not carry enough information for
diversification. GNNs usually do not have an MLP layer connecting to the output. The final GNN
outputs of uncertain nodes are not diverse enough since the high uncertain nodes may have similar
class probabilities (class probabilities close to uniform). Conversely, embeddings of intermediate
GNN layers may have an appropriate dimension but lack information of the expanded ego-network.

These drawbacks are confirmed in Sec. 6.2, where we show that using GNN embeddings as proxy
representations leads to a performance drop. Moreover, different from other machine learning
problems, the nodes are correlated with each other, and we also need to take the graph structure into
account when diversifying the samples. Hence, to address all these considerations we will employ a
k-step propagation of the original node features based on the graph structure as a proxy representation
for the nodes. The k-step propagation of nodes X(k) = (x

(k)
1 ,x

(k)
2 , . . . ,x

(k)
N) is defined as follows

X(k) := SX(k−1) (3)

where S is the normalized adjacency matrix, and X(0) are the initial node features. The operation
in (3) is efficient and amenable to a mini-batch implementation. Such representations are well-known
to succinctly encode the node feature distribution and graph structure. Next, we calculate the proxy
representations for the candidate high uncertainty nodes in the set Ct. To maximize the diversity of
the samples, we cluster the proxy representations in Ct using k-means++ into Bt clusters [AV06],
and select the nodes closest to the cluster centers for labeling, by using the L2 distance metric. One
node from each cluster is selected that amounts to Bt samples.

Algorithm 1 ScatterSample Algorithm

1: Input: Vtrain, GNN model M , number of propagation layers k, number of sampling round T ,
sampling redundancy r, initial sampling budget B0 and total sampling budget B.

2: Initialize S = ∅
3: Compute x

(k)
n ∀n ∈ Vtrain as in (3).

4: Initial Sampling:
5: Use k-means++ to cluster {x(k)

n } into B0 clusters.
6: Add a node closest to the cluster center per cluster to S.
7: Query the labels of nodes vn ∈ S, denoted by yS .
8: Train model M using (yS ,X,G).

9: Dynamic Sampling:
10: Initialize sampling round t = 1
11: while t < T do
12: Let Bt = min(B − |S|, (B −B0)/T)
13: Use the DiverseUncertainty algorithm to select St

14: Query the labels of St, and update S = S ∪ St.
15: Train model M over (yS ,X,G). Update t = t+ 1.
16: end while

Clearly, the size of the candidate set |Ct| ≥ Bt, however deciding how many candidate nodes to
choose from is important. We parameterize the size as a multiple of the selected nodes namely
|Ct| = rBt, where r > 1 is the sampling redundancy. If r is too small, the selected nodes are closer
to the classification boundary (have larger information entropy) but the nodes selected may not be
diverse enough. On the other hand, if r is too large, the set will be diverse, but the selected nodes may
be far away from the classification boundary. Therefore, it is critical to pick a suitable r to achieve

4

ScatterSample: Diversified Label Sampling for Data Efficient Graph Neural Network Learning

a sweet point between diversity and uncertainty. We leave the discussion of choosing r to Sec. 6.2.
Besides empirical validation with experiments in five real datasets (see Sec. 6), our diversification
approach is theoretically motivated (see Sec. 5).

Algorithm 2 DiverseUncertainty Algorithm

1: Input: Vtrain, {x(k)
n ∀n ∈ Ct}, r, Bt

2: Compute ϕentropy(v) ∀v ∈ Vtrain; see 2).
3: Ct← {rBt nodes with largest ϕentropy(v)}.
4: Use k-means++ to cluster the x

(k)
n (for all n ∈ Ct) into Bt clusters.

5: St ← ∅
6: for j = 1, 2, . . . , Bt do
7: Compute the cluster center vj of cluster j

8: Pick node x← argminn∈Ct

∥∥∥x(k)
n − vj

∥∥∥
9: St ← St ∪ {x}

10: end for
11: Return St

The pseudo code of ScatterSample is shown in Algorithm 1. ScatterSample is a multiple rounds
sampling scheme, which includes an initial sampling step and dynamic sampling steps. ScatterSample
first computes the k-step features propagation of all the nodes in the training set using (3), and clusters
them into B0 clusters, where B0 is the initial sampling budget. Then, ScatterSample picks the nodes
closest to the cluster centers as the initial training samples and queries their labels. The purpose of
clustering k-step feature propagations is to enforce the initial training set to spread out over the whole
sample space. It is also helpful to explore the classification boundary since if the initial sampled
nodes are not diverse enough, we cannot picture the classification boundary of the regions that are far
away from the initial training samples. ScatterSample repeats the dynamic sampling described in
Algorithm 2 until the sampling budget B is exhausted. The next section fortifies our diversification
method with theoretical guarantees.

5 Theoretical analysis

In Sec. 6.2, we have shown that DiverseUncertainty is significantly better than Uncertainty algorithm.
In this section, we provide theoretical analysis and simulation results to demonstrate the benefits of
DiverseUncertainty and explains why MaxUncertainty algorithm may fail. The results presented
here give a theoretical basis for the superiority of our method as established in the experiments in
Section 6.

5.1 Analysis setup

For the analysis, we employ the Gaussian Process (GP) model [O’H78]. GP models offer a flexible
approach to model complex functions and are robust to small sample sizes [See04]. Moreover, the
uncertainty of the prediction can be easily computed using a GP model. Neural network models
and GNNs interpolate the observed samples, while GPs provide a robust framework to interpolate
samples, that is amenable to analysis.

Assume the label yi ∈ R is dependent on the propagated features x(k)
i through a GP model. The

label yi is modeled by a Gaussian Process, where (y | X(k)) ∼ N(1µ,K(X(k))) and K(X(k))

is the Gaussian kernel matrix. The kernel is parameterized by Kij(X
(k)) = K(x

(k)
i ,x

(k)
j) =

exp
(
− 1

2 (x
(k)
i − x

(k)
j)TΣ−1(x

(k)
i − x

(k)
j)
)

, where Σ = diag(θ1, θ2, . . . , θd). Consider that the

sample space of x(k) can be clustered intom clusters S1,S2, . . . ,Sm, and denote the cluster centers as
c1, c2, . . . , cm. Without loss of generality, denote the radius of the cluster, d1 ≤ d2 ≤ d3 ≤ · · · < dm.
The clusters are well separated and the distance between the cluster centers are larger than δ, i.e.
mini ̸=j

∥∥∥ci − cj

∥∥∥
2
≥ δ (δ > 2dm). Moreover, we consider that there does not exist a cluster

dominating the sample space, d2m ≤ τ
∑m−1

j=1 d2j and the samples are uniformly distributed over the
clusters.

5

ScatterSample: Diversified Label Sampling for Data Efficient Graph Neural Network Learning

5.2 MaxUncertainty vs DiverseUncertainty
Here, we show that DiverseUncertainty could significantly achieves smaller mean squared error
(MSE) compared to MaxUncertainty. Without loss of generality we consider m clusters and the
following definitions.

• MaxUncertainty Select 2m most uncertain samples.

• DiverseUncertainty Select the 2 most uncertain samples from each cluster.

(a) MaxUncertainty (b) DiverseUncertainty

Figure 2: The area enclosed by the blue circles is the sample space of propagated features (2D
case). The green stars are sampled nodes during initial sampling (cluster center). The red stars are
the sampled nodes during uncertainty sampling. (a) MaxUncertainty picks the nodes with largest
uncertainty, which is equivalent to sampling the boundary of cluster 2. (b) DiverseUncertainty
diversifies the clustered nodes, and samples the boundary of both clusters.

Before presenting the theory we illustrate the operation of our method and MaxUncertainty in Fig-
ure 2. ScatterSample first clusters the samples on the propagated feature space (blue circles in
Figure 2), and selects the nodes closest to the cluster centers for initial training (green stars in
Figure 2). Then, during the dynamic sampling steps, we compute the uncertainty using equation 4.
MaxUncertainty approach will select the nodes with the largest uncertainty. Under our setup, it is
equivalent to sample nodes at the boundary of the largest cluster since the distance to the cluster
center is the most important factor of uncertainty (Figure 2(a)). While DiverseUncertainty will
diversify the high uncertainty nodes, which is equivalent to sample from the boundary of each cluster
(Figure 2(b)). The red stars of Figure 2 show the nodes labeled during the uncertainty sampling stage.
Since MaxUncertainty algorithm only labels the nodes in cluster 2, cluster 1 is ignored the prediction
uncertainty of cluster 2 cannot be reduced. On the contrary, DiverseUncertainty samples nodes from
both cluster 1 and 2. Thus, it could reduce the prediction uncertainty in both clusters.

Then, the following theorem quantifies the relationship of the MSEs of both algorithms under the
setup of Sec. 5.1.
Theorem 5.1. Consider a case where feature dimension d = 1. With the above notation
and assumptions, let ri = exp

[
−d2

i

2θ

]
. If we satisfy d2m ≥ d2m−1 + 4 log θ and δ ≥ dm +

max
(√

d2m + θ log(9m), 2θ log(3
√
m

1−rm
)
)

, we have

MSE(f(x)|MaxUncertainty)
MSE(f(x)|DiverseUncertainty)

≥ 1

2(1 + τ)

1 + r2m
1− rm

− 8

3
=

1

τ + 1
O(θ).

Proof: The complete proof is included in Appendix B.

Theorem 5.1 suggests that when the GP function is smooth enough (large θ), the MaxUncertainty
will have larger MSE than the MaxDiversity algorithm (proof is in appendix section B). A large θ
suggests a close correlation between the labels of the nodes that are close to each other. It is also
common for most of the graph datasets where samples clustered together usually have similar labels.
Thus, DiverseUncertainty can achieve a smaller MSE in this case.

Table 1: Statistics of graph datasets used in experiments.

Data # Nodes # Train Nods # Edges # Classes
Cora 2,708 1,208 5,429 7

Citeseer 3,327 1,827 4,732 6
Pubmed 19,717 18,217 44,328 3
Corafull 19,793 18,293 126,842 70

ogbn-products 2,449,029 196,615 61,859,149 47

6

ScatterSample: Diversified Label Sampling for Data Efficient Graph Neural Network Learning

6 Experiments
We evaluate the performance of ScatterSample on five different datasets.
Datasets. We evaluated the different methods on the Cora, Citeseer, Pubmed, Corafull [KW16],
and ogbn-products [Hu+20] datasets (Table 1). Besides the ogbn-products, we do not keep original
data split of the training and testing set. For the nodes that are not in the validation or testing sets
(the validation and testing sets follows the split in the dgl package “dgl.data” [Wan+19]), we will add
them to the training set. The labels can only be queried from the training set.
Baselines. For different sampling budget B, we compare the test accuracy of ScatterSample with
the following graph active learning baselines:

• Random sampling. Select B nodes uniformly at random from Vtrain.
• AGE [CZC17]: AGE computes a score which combines the node centrality, information density,

and uncertainty, to select B nodes with the highest scores.
• ANRMAB [Gao+18]: ANRMAB learns the combination weights of the three metrics used by

AGE with multi-armed bandit method.
• FeatProp: FeatProp [Wu+19b] clusters the feature propogations into B clusters and pick the

nodes closest to the cluster centers.
• Grain: [Zha+21] score the node by the weighted average of the influence score and diversity

score. And select the top B nodes with largest node scores. Grain includes two different
approaches of selecting nodes, Grain (ball-D) and Grain (NN-D).

• ScatterSample: For the sample scale graph dataset (Cora, Citeseer), we set the initial sampling
budget to 3% · |Vtrain| and sample 1% · |Vtrain| each round during the dynamic sampling
period. For medium scale datasets (Pubmed and Corafull), we set the initial sampling budget
to 1% · |Vtrain| and sample 0.5% · |Vtrain| each dynamic sampling round. For the large scale
dataset (ogbn-products), initial sampling budget is 0.2% · |Vtrain|, and each dynamic sampling
round selects 0.05% · |Vtrain| nodes.

GNN setup. We train a 2-layer GCN network with hidden layer dimension = 64 for Cora, Cite-
seer and Pubmed, and = 128 for Corafull and obgn-products. To train the GNN, we follow the
standard random neighbor sampling where for each node [HYL17], we randomly sample 5 neigh-
bors for the convolution operation in each layer. We use the function in “dgl” package to train the
GNNs [Wan+19].

6.1 Performance Results
We compare the performance of different active graph neural network learning algorithms under
different labeling budgets (B). We parameterize the labeling budget B equal to a certain proportion
of the nodes in the training set (B = r|Vtrain|). For Cora and Citeseer, we vary r from 5% to 15% in
increment of 2%; for Pubmed and Corafull, r is varied from 3% to 10%; for ogbn-product dataset,
we vary the r from 0.3% to 1%. The performance of the active learning algorithms are measured
with the test accuracy.

Accuracy. Figure 3 shows the test accuracy of baselines trained on different proportions of the
selected nodes. ScatterSample improves the test accuracy and consistently outperforms other baselines
in all the datasets. In Citeseer, ScatterSample requires 9% of the node labels to achieve test accuracy
74.2%, while the best alternative baselines “Grain (ball-D)” and “Grain (NN-D)” need to label 15% of
nodes to achieve similar accuracy, which corresponds to a 40% savings of the labeling cost. Similarly,
in PubMed and ogbn-products, ScatterSample achieves a 50% labeling cost reduction compared to
the best alternative baseline.

Efficiency. Here, we compare the computation time among the methods that use the graph structure
and node features to select the samples namely, ScatterSample, “Grain (ball-D)” and “Grain (NN-D)”.
We use the ogbn-products dataset to perform comparisons. ScatterSample takes less than 8 hours
to determine the labeling nodes and train the GNN, while the Grain algorithm requires more than
240 hours. Grain requires O(n2) complexity to calculate the scores of all nodes, which is prohibitive
complexity in large graphs.

Complexity analysis. The computation complexity of DiverseUncertainty is O(|E|+ r ∗B2
t). It is

because ScatterSample includes two parts: 1) computing the node representations with complexity
O(|E|) where |E| is the number of edges and 2) cluster the the uncertain nodes where the complexity
is O(rB2

t). Since both r and Bt are small, rB2
t < |E|, our method does not add a lot of extra burden

compared to the model training time.

7

ScatterSample: Diversified Label Sampling for Data Efficient Graph Neural Network Learning

(a) Cora (b) Citeseer (c) Pubmed (d) Corafull

Figure 3: ScatterSample (blue), wins consistently: Comparison of the test accuracy of active GNN
learning algorithms at different labeling budget. The x-axis shows # labeled nodes/# nodes in training
set.

6.2 Ablation Study
The MaxDiversity algorithm of ScatterSample needs to determine the size of candidate set Ct before
selecting a subset St from Ct for labeling. Hence, sampling redundancy r and the clustering algorithm
to cluster the nodes in Ct will affect the performance of ScatterSample. In this section, we will
evaluate the effect of both factors.

(a) Cora (b) Citeseer (c) Pubmed

Figure 4: Compare the performance under different sampling redundancy r. When r = 1, Diverse-
Uncertainty reduces to MaxUncertainty method.

Sampling redundancy r: Recall from algorithm 1, the sampling redundancy r controls the relative
size of candidate set Ct to size of sampled node St. When r = 1, ScatterSample reduces to the
standard MaxUncertainty algorithm. And figure 4 shows that the sampling the most uncertain nodes
is significantly worse than DiverseUncertainty. For the Citeseer dataset, DiverseUncertainty can
outperform MaxUncertainty by over 7% when sampling ratio is 5%. Therefore, to achieve a good
test accuracy, r should be carefully selected. Figure 4 suggests that as r increases, the test accuracy
quickly boosts at the early stage, and then decreases slowly.
Sensitivity to initial sampling ratio: During the initial sampling stage, DiverseUncertainty samples
B0 nodes to train the model initially. And the initially trained model will affect the nodes sampled
during the dynamic sampling period. We test the effect of different initial sampling ratio on Cora
and Citeseer datasets. We vary the initial sampling ratio from 2% to 4%, and figure A5 shows that
DiverseUncertainty is robust to the choice of initial sampling ratio.
Diverse uncertainty algorithms: Besides the sampling algorithm used by DiverseUncertainty,
there are some other algorithms to pick the representative nodes from the candidate set St. First, we
will evaluate three algorithms to cluster and select the propagated features.

• Random select: randomly pick nodes St from Ct.
• DiverseUncertainty: use k-means++ to cluster the nodes in Ct and
• Random round-robin Algorithm [Cit+21]: use the cluster labels from the initial sampling period

(the initial sampling period clusters all the nodes in Vtrain). Then, following the Algorithm A3
(see Appendix) to select St from Ct

Figure A6 suggests that k-means++ clustering algorithm achieves a better test accuracy in most
cases compared to random selection or random round-robin algorithm (see Appendix). Moreover,
compared to random sampling algorithm, k-means++ clustering algorithm is more robust when the
sampling ratio increases. As the sampling ratio increases, the test accuracy of k-means++ keeps
increasing in most cases, while the test accuracy of random sampling algorithm has more fluctuations.

Another factor that affects the test performance is the metric for clustering. Besides the propagated
features (which is used by MaxDiversity), we can also cluster the input features or the embedding

8

ScatterSample: Diversified Label Sampling for Data Efficient Graph Neural Network Learning

vectors. Since the GNN models typically used do not have a fully connected layer connecting to
the output, we cannot use the output of second last layer as the embedding. Hence, we use the
GNN output as the embedding vector for clustering. Figure A7 shows that clustering the propagated
features consistently outperforms clustering the other two targets. Especially for the “Citeseer”
dataset, clustering the propagated features outperforms by at most 5%. To conclude, the k-means++
clustering algorithm achieves the best performance compared to the other selection methods and
clustering the propagated features is better than clustering other targets. Thus, DiverseUncertainty
uses k-means++ to cluster the propagated features to pick St from Ct.

7 Empirical validation of theorem
In this section, we perform simulation analysis to demonstrate that ScatterSample can reduce the
MSE compared to greedy uncertainty sampling approach.

Graph Simulation Setup. Let the dimension of input feature d = 1. Simulate X from two different
clusters, where (X|C1) ∼ Uniform(−15,−5) and (X|C2) ∼ Uniform(8, 12). In our simulation,
we randomly generated 100 nodes for each cluster. Each node is randomly connected to two other
nodes in the same cluster. Moreover, for the edges between clusters, we set a probability threshold r
such that P [Vi ∈ C1 connect to a node ∈ C2] = r (See Appendix D for details).

Label of nodes. The label of a node depends on its propagated features. First compute the 1-layer
feature propagation of each node, X(1). Then, the label of i-th node is yi = |X(1)

i |2. Here, because
the two cluster centers are equally distanced from 0, hence, the label function is also symmetric
around 0.

Node sampling. During the initial sampling step, label the nodes closest to the cluster centers and
train the GP function. To sample uncertain nodes,

• MaxUncertainty: Label the 8 nodes with largest uncertainty.
• DiverseUncertainty: Collect the top 80 nodes with largest uncertainty into the candidate set.

Then, use k-means++ to cluster the nodes in the candidate set into 8 clusters. Label the 8 nodes
closest to the cluster centers.

MaxUncertainty and DiverseUncertainty use the newly labeled nodes to update the GP function
respectively. Finally, the trained GP function predicts the node labels, and we compute the corre-
sponding MSE.

Figure A8 in the Appendix suggests that MaxUncertainty has larger MSE compared to Diverse-
Uncertainty algorithm. For the MaxUncertainty algorithm, since most of the labeled nodes come
from the cluster 1, the MSE of cluster 1 is significantly smaller than that of cluster 2. While for the
DiverseUncertainty algorithm, the MSE of cluster 1 and 2 are comparable. As r increases, there are
more and more edges between clusters, and the propagated features are less separated. Hence, there
are some high uncertainty nodes from cluster 1 very close to cluster 2, which is beneficial for Max-
Uncertainty to learn the labels of nodes from cluster 2. Thus, we could observe MSE of MaxUncertainty

MSE of DiverseUncertainty
keeps decreasing when r increases. When r is very large, cluster 1 and 2 will merge into one cluster,
and MSEs of both methods no longer have a significant difference.

8 Conclusion
Learning a GNN model with limited labeling budget is an important but challenging problem. In this
paper:

• We propose a novel data efficient GNN learning algorithm, ScatterSample, which efficiently
diversifies the uncertain nodes and achieves better test accuracy than recent baselines.

• We provide theoretical guarantees: Theorem 5.1 proves the advantage of ScatterSample over
MaxUncertainty sampling.

• Experiments on real data show that ScatterSample can save up to 50% labeling size, for the
same test accuracy.

We envision ScatterSample will inspire future research of combining uncertainty sampling and
representation sampling.

9

ScatterSample: Diversified Label Sampling for Data Efficient Graph Neural Network Learning

References
[AV06] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. Tech. rep.

Stanford, 2006
[Bro+17] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. “Geometric

deep learning: going beyond euclidean data”. In: 34.4 (2017), pp. 18–42
[CZC17] H. Cai, V. W. Zheng, and K. C.-C. Chang. “Active learning for graph embedding”. In:

arXiv preprint arXiv:1705.05085 (2017)
[Cit+21] G. Citovsky, G. DeSalvo, C. Gentile, L. Karydas, A. Rajagopalan, A. Rostamizadeh,

and S. Kumar. “Batch Active Learning at Scale”. In: Advances in Neural Information
Processing Systems 34 (2021)

[DBV16] M. Defferrard, X. Bresson, and P. Vandergheynst. “Convolutional neural networks on
graphs with fast localized spectral filtering”. In: Barcelona, Spain, 2016, pp. 3844–3852

[DP18] M. Ducoffe and F. Precioso. “Adversarial active learning for deep networks: a margin
based approach”. In: arXiv preprint arXiv:1802.09841 (2018)

[Gao+18] L. Gao, H. Yang, C. Zhou, J. Wu, S. Pan, and Y. Hu. “Active discriminative network rep-
resentation learning”. In: IJCAI International Joint Conference on Artificial Intelligence.
2018

[HYL17] W. L. Hamilton, R. Ying, and J. Leskovec. “Inductive representation learning on large
graphs”. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems. 2017, pp. 1025–1035

[Han+14] S. Hanneke et al. “Theory of disagreement-based active learning”. In: Foundations and
Trends® in Machine Learning 7.2-3 (2014), pp. 131–309

[Hu+20] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec.
“Open Graph Benchmark: Datasets for Machine Learning on Graphs”. In: arXiv preprint
arXiv:2005.00687 (2020)

[IMG20] V. N. Ioannidis, A. G. Marques, and G. B. Giannakis. “Tensor Graph Convolutional
Networks for Multi-Relational and Robust Learning”. In: IEEE Transactions on Signal
Processing 68 (2020), pp. 6535–6546

[KW16] T. N. Kipf and M. Welling. “Semi-supervised classification with graph convolutional
networks”. In: arXiv preprint arXiv:1609.02907 (2016)

[KVAG19] A. Kirsch, J. Van Amersfoort, and Y. Gal. “Batchbald: Efficient and diverse batch
acquisition for deep bayesian active learning”. In: Advances in neural information
processing systems 32 (2019), pp. 7026–7037

[O’H78] A. O’Hagan. “Curve fitting and optimal design for prediction”. In: Journal of the Royal
Statistical Society: Series B (Methodological) 40.1 (1978), pp. 1–24

[See04] M. Seeger. “Gaussian processes for machine learning”. In: International journal of
neural systems 14.02 (2004), pp. 69–106

[Set09] B. Settles. “Active learning literature survey”. In: (2009)
[THTS05] G. Tur, D. Hakkani-Tür, and R. E. Schapire. “Combining active and semi-supervised

learning for spoken language understanding”. In: Speech Communication 45.2 (2005),
pp. 171–186

[Vel+17] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. “Graph
attention networks”. In: arXiv preprint arXiv:1710.10903 (2017)

[Wan+19] M. Wang et al. “Deep Graph Library: A Graph-Centric, Highly-Performant Package for
Graph Neural Networks”. In: arXiv preprint arXiv:1909.01315 (2019)

[Wu+19a] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger. “Simplifying graph
convolutional networks”. In: International conference on machine learning. PMLR.
2019, pp. 6861–6871

[Wu+19b] Y. Wu, Y. Xu, A. Singh, Y. Yang, and A. Dubrawski. “Active learning for graph neural
networks via node feature propagation”. In: arXiv preprint arXiv:1910.07567 (2019)

[Zha+21] W. Zhang, Z. Yang, Y. Wang, Y. Shen, Y. Li, L. Wang, and B. Cui. “Grain: Improving
data efficiency of graph neural networks via diversified influence maximization”. In:
arXiv preprint arXiv:2108.00219 (2021)

[ZG02] X. Zhu and Z. Ghahramani. “Learning from labeled and unlabeled data with label
propagation”. In: (2002)

10

ScatterSample: Diversified Label Sampling for Data Efficient Graph Neural Network Learning

A Estimation and prediction of the GP model
Given the assumptions and notations above, the likelihood of GP model can be written as:

f(y | µ, σ2,θ) ∝ exp

[
− 1

2σ2
(y − 1µ)TK(X(k))−1(y − 1µ)

]
.

Here, we assume θ = (θ1, θ2, . . . , θd) is a known parameter, and only µ and σ2 are left to fit. The
MLE of µ and σ2 are, µ̂ =

∑n
i=1 yi and σ̂2 = 1

n (y − µ̂)TK(X(k))−1(y − µ̂).

Given a testing point x(k)
∗ , by the GP model fitted by D, the prediction of the response f(x(k)

∗) ∼
N(µ∗, σ∗2), where

µ∗ = µ+ k∗TK(X(k))−1(y − 1µ̂) and σ∗2 = σ̂2(1− k∗TK(X(k))k∗) (4)

k∗ = [K(x1,x
∗),K(x2,x

∗), . . . ,K(xn,x
∗)]T ∈ Rn×1

B Proof of theorem 1
Before proving theorem 5.1, we first provide some preliminary results of Gaussian kernel matrix.

B.1 Preliminary of Gaussian kernel matrix

Lemma B.1. Let K be the Gaussian kernel matrix of vector (c1, c2, . . . , cm). Since

mini ̸=j

∥∥∥ci − cj

∥∥∥ > δ, we have Kij < exp
[
− δ2

θ

]
. Denote ϵ = exp

[
− δ2

θ

]
. Then, K−1

ij > −ϵ if

i ̸= j, and 1 < K−1
ii < 1 + (m− 1)ϵ2.

Proof. Let K = I+A. By Neumann series, K−1 = I+
∑∞

t=1(−1)tAt. Thus, Kij > −Aij > −ϵ
for i ̸= j, and 1 < Kii < 1 +A2

ii < 1 + (m− 1)ϵ2

B.2 Prove MaxUncertainty method samples 2m from cluster m

During the initial sampling stage, the nodes at the cluster centers are sampled. Then, the variance of a
sample x is,

V ar(f(x)) = σ2(1− kTK−1k), (5)

where k = (K(x, c1),K(x, c2), . . . ,K(x, cm)) and K = K(c) is the Gaussian kernel matrix of
c = (c1, c2, . . . , cm).

For a node x from cluster i, the V ar(f(x)) is monotone increasing as x moves from cluster center
to boundary. Let ω = exp

[
− (δ−dm)2

2θ

]
. Since |x− cj | ≥ δ − di ≥ δ − dm for j ̸= i, naturally, we

have ω < kj . Then, following lemma B.1,

k(x, c)TK−1k(x, c) ≥ exp

[
−d

2
i

θ

]
K−1

ii > exp

[
−d

2
i

θ

]
(6)

With equation 6, we can upper bound the variance of the x from cluster i.

In the next step, we lower bound the variance of x at the boundary of cluster m (largest cluster),
and show that its variance is strictly larger than nodes from other clusters.

k(x, c)TK−1k(x, c) <

exp

[
−d

2
m

θ

]
+ (m− 1)ω2

 [1 + (m− 1)ϵ2], (7)

Since δ ≥ dm +
√
d2m + θ log(9m), we have (m − 1)ϵ2 < (m − 1)ω2 ≤ 1

9exp
[
−d2

m

θ

]
<

1
9exp

[
−d2

i

θ

]
.

11

ScatterSample: Diversified Label Sampling for Data Efficient Graph Neural Network Learning

RHS of equation 7 ≤ 2

exp

[
−d

2
m

θ

]
+ (m− 1)ω2

≤ 1

2
exp

[
−d

2
i

θ

]
+ 2(m− 1)ω2 <

13

18
exp

[
−d

2
i

θ

]
(8)

The RHS of equation 7 is strictly smaller than the LHS of equation 6. Therefore, the uncertainty of
nodes at the boundary of cluster m is larger than the uncertainty of nodes from other clusters. For
our case, feature dimension is 1 and there only exist 2 points at the boundary of cluster m. However,
since the nodes are continuous distributed, MaxUncertainty will pick the other 2(m− 1) nodes close
to the boundary of cluster m.

B.3 Bound the MSE of MaxUncertainty and DiverseUncertainty

From previous section, we have seen the boundary nodes of cluster m have the largest uncertainty.
Thus, MaxUncertainty will sample 2m nodes from the cluster m. To lower bound the MSE of
MaxUncertainty, we consider the other (m− 1) clusters. Since the Gaussian Process model does not
have noise, MSE of the prediction is equal to its variance.

Let h = (c, s) ∈ R3m, where h are the sampled nodes and s ∈ R2m are the 2m nodes sampled
during the dynamic sampling stage. Denote K(h) to be Gaussian kernel matrix of h. Let t = |x− ci|
be the distance from node x to its cluster center.

k(x,h)TK−1(h)k(x,h) ≤ [1 +mϵ2 + 2mω2]

exp

[
− t

2

θ

]
+ 3mω2

≤ (1 + 3mω2)

exp

[
− t

2

θ

]
+ 3mω2

 (9)

Moreover, we have Et

(
exp

[
− t2

θ

])
≤ 1

2

(
1 + exp

[
−d2

m

θ

])
. Let ri = exp

[
−d2

i

4θ

]
and a =

exp
[
−d2

m

θ∗

]
, we have

MSE(f(x) |MaxUncertainty, x ∈ Si) > σ2

(1

2
− a

2
− a2

9

)
−
(
1

2
+
a

6

)
r4i

 . (10)

Hence, MSE(f(x) | MaxUncertainty) > σ2
∑m−1

i=1
d2
i

∥d∥2

[(
1
2 −

a
2 −

a2

9

)
−
(
1
2 + a

6

)
r4i

]
. Let

h(r2i) =
(

1
2 −

a
2 −

a2

9

)
−
(
1
2 + a

6

)
r4i and h is concave in d2i . Thus,

h(r2m) =

(
1

2
− a

2
− a2

9

)
−
(
1

2
+
a

6

)
r4i ≤ τ

m−1∑
i=1

h(r2i)

r2m
h(r2m) ≤ τ

m−1∑
i=1

h(r2i). (11)

Hence, MSE(f(x) |MaxUncertainty) > σ2

1+τ

∑m
i=1

d2
i

∥d∥2

[(
1
2 −

a
2 −

a2

9

)
−
(
1
2 + a

6

)
r4i

]
.

Then, we upper bound the MSE of DiverseUncertainty. Since each cluster labels 2 nodes at the
cluster boundary. For node x from cluster i, the distance between node i to the closest labeled point
is smaller than di

2 . Hence,

k(x,h)TK−1(h)k(x,h) ≥ exp

[
− t

2

θ

]
+ exp

[
− (di − t)2

θ

]
− 2exp

[
−d

2
i

θ

]
exp

[
− t

2 + (di − t)2

2θ

]
≥ 2ri

1 + r2i
. (12)

12

ScatterSample: Diversified Label Sampling for Data Efficient Graph Neural Network Learning

Thus, we have MSE(f(x) | DiverseUncertainty, x ∈ Si) ≤ σ2 (1−ri)
2

1+r2i
and MSE(f(x) |

DiverseUncertainty) ≤ σ2
∑m

i=1
d2
i

∥d∥2
(1−ri)

2

1+r2i
.

Moreover, MSE(f(x)|MaxUncertainty,x∈Si)
MSE(f(x)|DiverseUncertainty,x∈Si)

≥ 1+r2i
1−ri

(12 + a
6) −

(1+r2i)
(1−ri)2

(2a3 + a2

9). Since

δ ≥ dm + 2θ log(3
√
m

1−rm
), we have a ≤ (1 − ri)

2 for all i = 1, 2, . . . ,m. Thus,
MSE(f(x)|MaxUncertainty,x∈Si)

MSE(f(x)|DiverseUncertainty,x∈Si)
≥ 1

2
1+r2i
1−ri

− 8
3 ≥

1
2
1+r2m
1−rm

− 8
3 .

Now, we could lower bound MSE(f(x)|MaxUncertainty)
MSE(f(x)|DiverseUncertainty) over the whole sample space, where

MSE(f(x) |MaxUncertainty)

MSE(f(x) | DiverseUncertainty)
≥ 1

2(1 + τ)

1 + r2m
1− rm

− 8

3

Moreover, when θ is large, ri = exp
[
−d2

i

4θ

]
≈ 1 − d2

i

4θ . Thus, MSE(f(x)|MaxUncertainty)
MSE(f(x)|DiverseUncertainty) ≥

1
1+τO(θ).

C Ablation Experiments

C.1 Detail of round-robin algorithm

Algorithm 3 Random Round-robin Algorithm

1: Input: cluster labels of node i (node i ∈ Vtrain) cln , where cln ∈ 1, 2, . . . ,m; candidate set Ct;
number of nodes to label Bt.

2: Using the cluster labels to split Ct onto clusters A1, A2, . . . , Am. Without loss of generality,
|A1| ≤ |A2| ≤ . . . ≤ |Am|.

3: St = ∅
4: for i = 1, 2, . . . , Bt do
5: for j = 1, 2, . . . ,m do
6: if Aj ̸= ∅ then
7: Uniformly select x from Aj at random
8: Aj ← Aj \ {x}, St ← St ∪ {x}
9: break

10: end if
11: end for
12: end for
13: return St

C.2 Sensitivity to initial sampling ratio

Figure 5: Compare different initial sampling ratios for Cora (left) and Citeseer (Right)

13

ScatterSample: Diversified Label Sampling for Data Efficient Graph Neural Network Learning

C.3 Compare sampling algorithms

(a) Cora (b) Citeseer (c) Pubmed

Figure 6: Compare different sampling algorithms to collect St from the candidate set Ct.

C.4 Compare clustering algorithms

(a) Cora (b) Citeseer (c) Pubmed

Figure 7: Compare clustering different targets to select St from the candidate set Ct.

D Empirical validation of theory
Graph Simulation Setup. Let the dimension of input feature d = 1. Simulate X from two different
clusters, where (X|C1) ∼ Uniform(−15,−5) and (X|C2) ∼ Uniform(8, 12). In our simulation,
we randomly generated 100 nodes for each cluster. Then, we simulate the edges between nodes.
The edges can be divided into two categories, edges within clusters and edges between clusters. To
simulate the edges within clusters, for each node, we random select two other nodes from the same
cluster as its neighbor. For the edges between clusters, we set a probability threshold r such that
P [Vi ∈ C1 connect to a node ∈ C2] = r. For each node Vi ∈ C1, generate an indicator variable
Ii ∼ Bernoulli(r) to determine whether Vi is connected to cluster 2 (Vi is connected to cluster 2 if
Ii = 1). If Vi is connected to cluster 2, randomly pick a node from cluster 2 and connect it to Vi.

14

ScatterSample: Diversified Label Sampling for Data Efficient Graph Neural Network Learning

(a) MaxUncertainty (r = 0.0) (b) DiverseUncertainty (r = 0.0)

(c) MaxUncertainty (r = 0.3) (d) DiverseUncertainty (r = 0.3)

(e) MaxUncertainty (r = 0.8) (f) DiverseUncertainty (r = 0.8)

Figure 8: Compare the MSEs of Uncertainty and DiverseUncertainty algorithms under different
correlation levels between clusters.

15

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Graph neural networks and message passing

	4 Proposed method: ScatterSample
	4.1 Selecting the uncertain nodes
	4.2 Diversifying uncertain nodes

	5 Theoretical analysis
	5.1 Analysis setup
	5.2 MaxUncertainty vs DiverseUncertainty

	6 Experiments
	6.1 Performance Results
	6.2 Ablation Study

	7 Empirical validation of theorem
	8 Conclusion
	A Estimation and prediction of the GP model
	B Proof of theorem 1
	B.1 Preliminary of Gaussian kernel matrix
	B.2 Prove MaxUncertainty method samples 2m from cluster m
	B.3 Bound the MSE of MaxUncertainty and DiverseUncertainty

	C Ablation Experiments
	C.1 Detail of round-robin algorithm
	C.2 Sensitivity to initial sampling ratio
	C.3 Compare sampling algorithms
	C.4 Compare clustering algorithms

	D Empirical validation of theory

