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Abstract001

Dense Passage Retrieval (DPR) typically re-002
lies on Euclidean or Cosine distance to mea-003
sure query-passage relevance in embedding004
space. While effective when embeddings lie005
on a linear manifold, our experiments across006
DPR benchmarks suggest that embeddings of-007
ten lie on lower-dimensional, non-linear mani-008
folds, especially in out-of-distribution (OOD)009
settings, where these distances fail to capture010
semantic similarity. To address this limitation,011
we propose a manifold-aware distance metric012
for DPR (MA-DPR) that models the intrinsic013
manifold structure of passages using a nearest014
neighbor graph and measures distance between015
query and passages based on their shortest path016
in this graph. We show that MA-DPR outper-017
forms Euclidean and Cosine distance by up to018
26% on OOD passage retrieval while maintain-019
ing performance on in-distribution data across020
various embedding models, with only a small021
increase in query inference time. Empirical ev-022
idence suggests that manifold-aware distance023
allows DPR to leverage context from related024
neighboring passages, making it effective even025
in the absence of direct semantic overlap. In026
addition, it can be extended to a wide range of027
dense embedding and DPR tasks, offering prac-028
tical utility across diverse retrieval scenarios.029

1 Introduction030

Dense Passage Retrieval (DPR) (Karpukhin et al.,031

2020) operates on the principle that semantically032

similar queries and passages remain close within033

a learned dense embedding space. By ranking pas-034

sages based on their distances to the query, DPR035

measures the semantic relationships beyond direct036

word-level sparse matching. State-of-the-art DPR037

approaches primarily rely on Cosine distance and038

Euclidean distance (Mussmann and Ermon, 2016;039

Ram and Gray, 2012) due to their computational040

efficiency and straightforward interpretability.041

However, the well-known manifold hypothesis042
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Figure 1: Example of subdimensional non-linear man-
ifold in embedding space. Passages embedding (dots)
form a non-linear S-shaped manifold, where their rel-
evance (indicated by color) to the query (red star) is
determined by proximity along the manifold rather than
Euclidean distance. Two sample passages (blue dots)
have similar Euclidean distance to the query (red path)
but differ in relevance. In contrast, the distance (blue
path) along the weighted undirected graph G—where
nodes represent passages and edges (gray dashed lines)
connect each passage to its K-nearest neighbors—better
reflects the true relevance.

states that high-dimensional data, such as text em- 043

beddings, reside on a subdimensional manifold 044

that is often non-linear (Tenenbaum et al., 2000a; 045

Roweis and Saul, 2000a). In such a case, relying 046

solely on Euclidean and Cosine distance may fail 047

to accurately capture the true relevance between 048

queries and passages within this non-linear mani- 049

fold structure (cf. Figure 1). 050

In contrast, a manifold-aware distance is in- 051

tended to measure similarity along non-linear mani- 052

folds by leveraging graph-based (Zhou et al., 2003) 053

or spectral (Belkin and Niyogi, 2003) methods that 054

approximate the distances between points. While 055

earlier work has acknowledged the presence of 056

manifold and non-linear structures in embedding 057
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Figure 2: We evaluate the alignment between Euclidean distance (x-axis) and manifold-aware distance (y-axis) for
all query-passage pairs in the embedding space across four benchmark datasets and two embedding models (tas-b
and SciNCL), as detailed in Section 4. In-distribution datasets (MS MARCO for tas-b and SciDocs for SciNCL)
exhibit strong alignment between the two distance metrics for relevant pairs (orange dots). In contrast, the three
OOD datasets show clear misalignment, particularly at larger Euclidean distances, suggesting that dEuclidean fails to
capture true semantic relationships in these settings.

spaces (Yonghe et al., 2019; Zhao et al., 2020),058

these important insights have been largely under-059

explored in the context of DPR. To the best of our060

knowledge, no prior work has applied manifold-061

aware distance metrics to DPR.062

We hypothesize that a well-designed manifold-063

aware metric is better suited for capturing query-064

passage relevance in DPR where embeddings re-065

side on a non-linear manifold. To this end, we066

summarize our contributions as follows:067

1. We empirically verify the existence of sub-068

dimensional non-linear manifolds in out-of-069

distribution (OOD) embedding spaces, which070

significantly impacts the effectiveness of DPR071

when relying on standard Euclidean and Co-072

sine distance (cf. Figure 2).073

2. We introduce a generalizable manifold-aware074

distance metric for DPR (MA-DPR) that075

leverages a graph-based representation to ex-076

ploit the non-linear manifold structure of the077

embedding space.078

3. MA-DPR consistently outperforms DPR with079

Euclidean and Cosine distance across bench-080

mark datasets and embedding models, with a081

comparable query inference time. By leverag-082

ing context from semantically related neigh-083

boring passages, it effectively retrieves rele-084

vant query-passage pairs even in the absence 085

of direct semantic overlap. 086

2 Related Work 087

2.1 Dense Passage Retrieval 088

Dense Passage Retrieval (DPR) encodes queries 089

and passages into a shared embedding space and 090

ranks passages based on Euclidean and Cosine Dis- 091

tance (Mussmann and Ermon, 2016; Ram and Gray, 092

2012). These distance metrics are widely used due 093

to their computational efficiency, interpretability, 094

and compatibility with scalable approximate near- 095

est neighbor search methods (Ram and Gray, 2012). 096

The underlying assumption is that semantically rel- 097

evant queries and passages are positioned close to 098

each other in the embedding space. 099

However, this assumption is often violated, 100

particularly in out-of-distribution (OOD) settings 101

where embeddings are not optimized for the tar- 102

get domain. In such cases, Euclidean and Cosine 103

distances may fail to capture complex semantic 104

relationships, leading to retrieval failures despite 105

close proximity in embedding space (Steck et al., 106

2024). 107

2.2 Manifold-Aware Approaches in 108

Embedding Spaces 109

The manifold hypothesis posits that high- 110

dimensional data, such as text embeddings, 111
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reside on low-dimensional, non-linear manifolds112

embedded within the ambient space (Tenenbaum113

et al., 2000a; Roweis and Saul, 2000a). This114

makes manifold-aware distance metrics a more115

intrinsic solution for measuring similarity in such116

spaces compared to standard Euclidean and Cosine117

distances.118

Previous studies, such as Isomap (Tenen-119

baum et al., 2000a), Locally Linear Embedding120

(LLE) (Roweis and Saul, 2000a), and Laplacian121

Eigenmaps (Belkin and Niyogi, 2003), approx-122

imate manifold-aware distances by constructing123

neighborhood graphs or computing spectral embed-124

dings that capture the underlying manifold struc-125

ture.126

Similar manifold-aware approaches have been127

applied in Information Retrieval (IR) to incorporate128

global structural information, particularly in image129

retrieval tasks where the embedding space more nat-130

urally adheres to manifold structures (Zhou et al.,131

2003; He et al., 2004; Yang et al., 2013). However,132

manifold-aware distance metrics have not been sys-133

tematically explored in DPR, leaving a critical yet134

unaddressed gap in the current retrieval framework.135

3 MA-DPR: Manifold-Aware Distance for136

DPR137

Let P = {p(1), p(2), . . . , p(N)} denote a collec-138

tion of N passages, each associated with a dense139

embedding in a D-dimensional space, denoted as140

{e(1)p , . . . , e
(N)
p }, where e

(i)
p ∈ RD.141

DPR ranks passages in P by measuring their142

semantic similarity to a given query q, computed143

as the distance between the query embedding eq ∈144

RD and each passage embedding e
(i)
p as:145

Rank(q,P) = argsort
p(i)∈P

d(eq, e
(i)
p ), (1)146

where d(·, ·) is a defined distance metric. In prac-147

tice, common choices for d in DPR include Eu-148

clidean distance:149

dEuclidean(eq, e
(i)
p ) =

∥∥∥eq − e(i)p

∥∥∥
2
, (2)150

and Cosine distance:151

dCosine(eq, e
(i)
p ) = 1− eq · e(i)p

∥eq∥2
∥∥∥e(i)p

∥∥∥
2

. (3)152

Both dEuclidean and dCosine assume that semantic153

similarity corresponds to proximity in the embed-154

ding space, which may fail to capture the true se- 155

mantic relationships between queries and passages 156

in the presence of complex, non-linear structures. 157

Thus, we propose MA-DPR, an extension 158

of DPR with a manifold-aware distance metric 159

dManifold. MA-DPR operates in two stages: (1) 160

a one-time offline manifold graph construction to 161

capture the intrinsic manifold structure within em- 162

bedding space, followed by (2) an online passage 163

ranking stage for a given query based on the con- 164

structed graph. 165

3.1 Manifold Graph Construction 166

We propose a weighted undirected graph G to ap- 167

proximate the underlying non-linear manifold struc- 168

ture of the embedding space (cf. Figure 1) for P . 169

Each passage p(i) ∈ P is represented as a vertex, 170

and edges connect p(i) to its K-Nearest Neighbors 171

(KNN) based on their proximity in the embedding 172

space. 173

The use of KNN is motivated by its effective- 174

ness in capturing local relationships while preserv- 175

ing the global structure of non-linear manifolds. 176

This approach has been widely adopted in exist- 177

ing works of manifold structures (Tenenbaum et al., 178

2000b; Roweis and Saul, 2000b; Belkin and Niyogi, 179

2003) to construct graphs that reflect the local of 180

high-dimensional data. 181

Specifically, let G = (V,E, c), where: 182

V : A set of vertices {v1, . . . , vN} representing 183

p(i), i∈{1, . . . , N}. 184

E: A set of edges, where an edge {vi, vj} exists 185

between two vertices vi and vj if either e(i)p or 186

e
(j)
p is among the KNN of the other based on 187

a defined distance metric dKNN. 188

c: A cost function c(vi, vj) : E → R assigns a 189

cost to {vi, vj}. 190

Before introducing the passage ranking stage, 191

we first present the proposed design choices for 192

constructing the manifold graph: (1) the local dis- 193

tance metric dKNN used to identify the K-nearest 194

neighbors, (2) the edge cost function c, and (3) the 195

number of nearest neighbors K. 196

3.2 Choices of Distance metrics dKNN 197

Euclidean and Cosine distance When local 198

neighbor distances are meaningful, as illustrated 199

in Figure 1, the same distance metric used in DPR 200

can be directly applied as dKNN. Common choices 201
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include the Euclidean distance dKNN
Euclidean (cf. Equa-202

tion 2) and the Cosine distance dKNN
Cosine (cf. Equa-203

tion 3).204

However, as illustrated in the previous section,205

such distances in embedding space are not always206

reliable: dKNN
Euclidean and dKNN

Cosine may fail to cap-207

ture the true underlying relationship between lo-208

cal neighbors. Moreover, it is sensitive to noise209

and outliers, as local perturbations can significantly210

affect the selection of K-nearest neighbors.211

Spectral distance A widely adopted approach212

for dKNN is to compute the distance between pas-213

sages in a spectral embedding space, leveraging214

the eigenstructure of the graph Laplacian (Shi and215

Malik, 2000; Belkin and Niyogi, 2003).216

Crucially, the spectral distance captures the in-217

trinsic structure of the embedding manifold by218

leveraging global graph connectivity, rather than219

relying solely on local neighborhoods. This makes220

it well aligned with the manifold-aware objective221

of our work.222

The spectral distance between two passages p(i)223

and p(j) is defined as:224

dKNN
Spectral

(
e(i)p , e(j)p

)
=

∥∥∥u(i) − u(j)
∥∥∥
2
, (4)225

where u(i) ∈ Rm denotes the m-dimensional spec-226

tral embedding of passage p(i) obtained from the227

top m non-trivial eigenvectors of the normalized228

graph Laplacian.229

By projecting the data into this lower-230

dimensional spectral space, the resulting distance231

metric can capture global structural relationships,232

enabling a more meaningful measure of between-233

node relationships, particularly in non-linear or234

noisy settings. This method has been widely ap-235

plied for such purpose in NLP (Ploux and Ji, 2003;236

Dhillon et al., 2004; Tsai and Lee, 2016).237

3.3 Choice of Cost Function c238

Once the KNN Graph G is constructed as depicted239

in the graph mesh in Figure 1, we need to define240

the cost of edges E to compute distances during241

manifold-aware dense retrieval.242

Distance Cost Distance Cost (DC) directly uti-243

lizes dKNN as c:244

cDC(vi, vj) = dKNN
(
e(i)p , e(j)p

)
(5)245

cDC offers an embedding-aware distance for edge246

cost determination, but it is not clear that cDC nec-247

essarily reflects ground truth differences in query 248

relevance between two passages. 249

Uniform Cost Uniform Cost (UC) mitigates the 250

influence of inaccurate ground truth differences 251

from DC by adopting an agnostic (uninformed unit 252

cost) perspective on the meaning of embedding 253

distance. UC emphasizes discrete connectivity by 254

counting the number of edges (hop) along the short- 255

est path, focusing instead on mesh connectivity. 256

Specifically, all edges are assigned a constant 257

scalar as cost to emphasize connectivity rather than 258

actual distances as follows: 259

cUC(vj , vj) = 1 (6) 260

However, cUC may discard useful information 261

when neighbor distances accurately reflect differ- 262

ences in query relevance. 263

3.4 Choice of K 264

Selecting the value of K for KNN involves a trade- 265

off: smaller values of K emphasize global structure 266

by forming sparse graphs that reflect the broader 267

topology of the manifold but may neglect local 268

detail. 269

In contrast, larger values of K promote local con- 270

nectivity by densely linking nearby nodes, which 271

may oversimplify the manifold by treating it as 272

locally linear. 273

Thus, Section 3.2 and Section 3.3 jointly define 274

a two-fold design space for constructing the graph 275

G. Section 4 presents empirical evaluations of each 276

design choice (RQ3) and the impact of varying K 277

on retrieval performance (RQ4) across a range of 278

DPR benchmarks. 279

3.5 Passage Ranking 280

Given a constructed graph G = (V,E, c), the 281

manifold-aware distance dManifold between two pas- 282

sages is defined as the minimum total edge cost 283

along any path connecting the corresponding ver- 284

tices vi and vj in G (a.k.a. the shortest path). 285

dManifold is formally defined as follows: 286

dManifold(vi, vj) = min
π∈Π(vi,vj)

∑
(u,v)∈π

c(u, v), (7) 287

where Π(vi, vj) denotes the set of all paths from 288

vi to vj , and π ∈ Π(vi, vj) is a specific path repre- 289

sented as a sequence of edges (u, v) ∈ E. 290

To compute dManifold for a query q with embed- 291

ding eq, q is temporarily added to G as a new ver- 292

tex vN+1. Edges are then formed by connecting 293

4



vN+1 to its K-nearest passage vertices using de-294

fined dKNN based on eq.295

For MA-DPR, each passage p(i) is ranked ac-296

cording to its manifold-aware distance from the297

query, dManifold(vN+1, vi), A smaller value indi-298

cates a shorter path along the manifold in the em-299

bedding space, signifying higher relevance, while a300

larger dManifold(vN+1, vi) implies lower relevance.301

3.6 Computational Cost302

MA-DPR introduces a one-time offline cost for303

constructing the manifold graph over the passage304

embeddings. This graph construction is indepen-305

dent of the query and does not affect the runtime306

efficiency of passage ranking at inference time.307

At query time, the passage ranking process308

consists of two main steps: (1) computing dis-309

tances between the query and all N passages to310

identify its K-nearest neighbors, with complexity311

O(ND); and (2) computing manifold-aware dis-312

tances via shortest-path traversal on the KNN graph313

using Dijkstra’s algorithm, which has complexity314

O(KN +N logN), given |E| = O(KN).315

Thus, the overall per-query complexity of316

manifold-aware distance DPR is: O(N(D +K +317

logN)).318

In real-world retrieval settings where D ranges319

from 384 to 1024 and N reaches 105 passages,320

with typical K values between 2 and 15, the addi-321

tional cost from graph traversal remains moderate.322

This makes manifold-aware distance a practical al-323

ternative for large-scale applications. A summary324

of per-query complexity and empirical latency is325

shown in Table 1.326

Method Complexity Latency (100K)

dEuclidean O(ND) 7.56 [7.56-7.56] ms
dManifold O(N(D +K + logN)) 8.10 [8.00–8.19] ms

Table 1: Per-query computational complexity and empir-
ical latency of dEuclidean and dManifold (using dKNN

Euclidean +
cDC, K = 8) for ranking over 100K passages with
tas-b embeddings. Results include 95% confidence
intervals in [·]1.

4 Experiments327

4.1 Experimental Setup328

Our experiments aim to evaluate the effectiveness329

of MA-DPR dManifold against baseline DPR with330

1System specifications: CPU—Intel(R) Core(TM) i7-
14700HX ; GPU—NVIDIA GeForce RTX 4070 Laptop GPU
Average CPU utilization during measurement: ∼5%.

Euclidean distance (dEuclidean)2. Specifically, we 331

address the following key research questions: 332

RQ1: Nonlinear Manifold Validation Does em- 333

pirical evidence support the presence of non- 334

linear manifold structure in dense embedding 335

space? 336

RQ2: MA-DPR vs Bsaeline Does MA-DPR lead to 337

improved retrieval performance compared to 338

baseline DPR with dEuclidean? 339

RQ3 Design Choice Comparison Which design 340

choices for the manifold graph (cf. subsec- 341

tion 3.1) yield the best performance? 342

RQ4 Effect of K What is the effect of varying the 343

number of K-nearest neighbors in the mani- 344

fold graph on the performance of MA-DPRX? 345

RQ5 Underlying Factor Which type of queries 346

does dManifold outperform dEuclidean? What fac- 347

tors contribute to this improved performance? 348

We conduct experiments on four DPR bench- 349

mark datasets: 350

• MS MARCO (Nguyen et al., 2016) 351

• NFCorpus (Boteva et al., 2016) 352

• SciDocs (Cohan et al., 2020) 353

• ANTIQUE (Hashemi et al., 2020) 354

with two embedding models: 355

• msmarco-distilbert-base-tas-b (Hof- 356

stätter et al., 2021) (tas-b), trained on MS 357

MARCO 358

• SciNCL (Ostendorff et al., 2022), trained on 359

SciDocs. 360

The choice of embedding models naturally de- 361

fines MS MARCO as the in-distribution dataset for 362

tas-b and SciDocs as the in-distribution dataset for 363

SciNCL, while the remaining datasets are treated as 364

OOD. All embeddings are ℓ2-normalized.3 365

For empirical evaluation, we assess the recall, 366

Mean Average Precision (MAP), and Normalized 367

Discounted Cumulative Gain (nDCG) for the top 368

20 ranked assignments of each retrieval result4 . 369

2With ℓ2-normalized embeddings, Dot Product, Cosine,
and Euclidean distance yield identical rankings. Thus, we
report results using only one metric.

3Appendix A provides additional empirical analysis on the
performance differences of the MA-DPR without normaliza-
tion.

4To avoid the impact of parameter tuning, the number of
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Table 2: Performance of dManifold across design choices on four datasets under fixed parameter settings (k = 8,
m = 700). An underline indicates a statistically significant improvement of dManifold over dEuclidean (paired t-test,
p < 0.05). We normalize tas-b and SciNCL embeddings so that dEuclidean and dCosine produce identical rankings.

NFCorpus SciDocs ANTIQUE MS MARCO

R@20 mAP@20 nDCG@20 R@20 mAP@20 nDCG@20 R@20 mAP@20 nDCG@20 R@20 mAP@20 nDCG@20

msmarco-distilbert-base-tas-b

dEuclidean (dCosine) 0.135 0.081 0.217 0.172 0.074 0.141 0.432 0.299 0.430 0.950 0.534 0.638

dKNN
Euclidean+ cUC 0.143 0.083 0.222 0.182 0.076 0.146 0.467 0.311 0.447 0.946 0.534 0.637

dKNN
Euclidean+cDC 0.137 0.083 0.220 0.167 0.074 0.139 0.417 0.299 0.424 0.945 0.534 0.637

dKNN
Spectral+c

UC 0.147 0.085 0.223 0.187 0.078 0.148 0.464 0.317 0.449 0.944 0.534 0.636

dKNN
Spectral+c

DC 0.147 0.085 0.228 0.182 0.077 0.146 0.436 0.307 0.430 0.932 0.498 0.604

SciNCL

dEuclidean (dCosine) 0.119 0.073 0.191 0.275 0.116 0.215 0.239 0.140 0.228 0.622 0.251 0.339

dKNN
Euclidean+cUC 0.133 0.081 0.203 0.266 0.116 0.211 0.250 0.145 0.235 0.652 0.254 0.348

dKNN
Euclidean+cDC 0.130 0.081 0.205 0.279 0.119 0.217 0.227 0.140 0.224 0.636 0.253 0.344

dKNN
Spectral+c

UC 0.126 0.079 0.200 0.260 0.115 0.208 0.245 0.144 0.233 0.639 0.253 0.345

dKNN
Spectral+c

DC 0.132 0.081 0.204 0.260 0.112 0.204 0.233 0.140 0.225 0.623 0.246 0.335

4.2 Experimental Results370

All codes and results are available online5.371

RQ1 Nonlinear Manifold Validation: To empir-372

ically validate the non-linear manifold hypothesis373

in dense embedding spaces, we examine the re-374

lationship between dManifold and dEuclidean across375

relevant and irrelevant query-passage pairs. Specif-376

ically, in Figure 2, for each ground truth relevant377

query q and passage p pair (orange dots) and irrele-378

vant pair (blue dots), we compute dEuclidean(q, p)379

and dManifold(q, p) based on dKNN
Euclidean + cDC for380

manifold graph construction.381

In a perfectly linear embedding space, the382

manifold-aware distance induced by dKNN
Euclidean+cDC383

should closely align with standard Euclidean dis-384

tance. However, in the presence of non-linear struc-385

ture, the two distances are expected to diverge. This386

contrast enables us to diagnose and characterize387

non-linear relationships in the embedding space.388

Based on this intuition, we first observe a strong389

correlation between dEuclidean and dManifold in scat-390

terplots of relevant query-passage pairs on the in-391

distribution datasets (i.e., MS MARCO w.r.t tas-b392

and SciDocs w.r.t. SciNCL). This correlation in-393

dicates that query-passage embeddings approxi-394

mately lie on a locally linear manifold.395

However, in the rest OOD datasets—where396

embeddings were not directly optimized during397

neighbors K in the KNN graph is fixed to 8 for all experiments
except RQ4, and the spectral embedding dimension M is fixed
to 700 throughout.

5anonymous.4open.science/r/Manifold_distance_Retrieval-
F226

training—dEuclidean and dManifold exhibit significant 398

misalignment, indicating that the embedding space 399

follows a subdimensional non-linear manifold for 400

both embedding models. 401

Further analysis reveals that in most OOD 402

datasets, both relevant and irrelevant query-passage 403

pairs fall within a similar range of dEuclidean, caus- 404

ing them to be ranked similarly in DPR. This sup- 405

ports our conjecture (cf. Figure 1) that dEuclidean 406

fails to capture the true semantic relationship be- 407

tween query and passage. In contrast, dManifold 408

more effectively separates relevant and irrelevant 409

query-passage pairs, with relevant pairs consis- 410

tently exhibiting smaller dManifold values. These 411

findings suggest that dManifold could better capture 412

query-passage relationships by modeling the intrin- 413

sic non-linear manifold structure of the embedding 414

space, motivating our further investigation in RQ2. 415

RQ2 MA-DPR vs Bsaeline: Motivated by RQ1, 416

we empirically compare the performance of MA- 417

DPR and DPR with dEuclidean and dCosinein Table 2. 418

Across nearly all four design choices, MA- 419

DPR significantly outperforms baseline methods 420

on OOD datasets. This aligns with RQ1, where 421

OOD datasets exhibit a subdimensional non-linear 422

manifold structure. In such cases, dManifold more 423

effectively captures the underlying data manifold 424

structure and appears to better capture relevance. 425

In contrast, on in-distribution datasets—where 426

the embedding space approximates a locally lin- 427

ear manifold, as empirically shown in RQ1—both 428

dManifold and dEuclidean yield similar retrieval perfor- 429

mance. In such cases, dManifold effectively reduces 430

6
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to dEuclidean, as the shortest path along the manifold431

aligns with the Euclidean distance (cf. Figure 2).432

Thus, MA-DPR achieves superior performance433

on OOD datasets without parameter tuning, while434

remaining competitive in in-distribution settings,435

offering a more robust and generalizable alterna-436

tive to Euclidean and Cosine distance without addi-437

tional tuning.438

In addition, MA-DPR outperforms DPR with439

Euclidean and Cosine distance across both embed-440

dings, indicating that its effectiveness is not tied to441

a specific embedding space. This improvement un-442

derscores its robustness to variations in the embed-443

ding model, further validating its generalizability.444

RQ3 Design Choice Comparison: Table 2 also445

empirically evaluates the performance of differ-446

ent design choices within dManifold as discussed in447

Section 3.1. Results indicate that performance is448

variable across datasets and embedding models.449

For most OOD datasets, cUC outperforms cDC,450

as it prioritizes connectivity over raw distances in451

embedding space, which are often unreliable due452

to distortions in out-of-distribution settings. cUC453

emphasizes the discrete transitions between neigh-454

boring passages rather than relying on possibly455

misleading distances. This is particularly benefi-456

cial when relevant passages are not directly similar457

to the query but lie along a chain of semantically458

related neighbors, which will be further discussed459

in RQ5 (cf. Figure 4).460

The performance between dKNN
Euclidean and dKNN

Spectral461

varies across embedding models. dKNN
Euclidean per-462

forms better with SciNCL since SciNCL explicitly463

preserves local neighborhood structure through464

neighbor-aware contrastive learning (Ostendorff465

et al., 2022) as its training objective, making466

dKNN
Euclidean a strong fit for capturing local similarity.467

In contrast, tas-b benefits more from dKNN
Spectral468

since it is optimized for global ranking (Hofstät-469

ter et al., 2021), which captures manifold-wide470

structure. These results support our hypothesis471

(cf. subsection 3.2) that different graph construc-472

tion metrics capture complementary properties of473

dense embedding spaces: dKNN
Euclidean is better suited474

for locally organized structures, whereas dKNN
Spectral475

is more effective in capturing globally structured476

manifolds.477

RQ4 Effect of K: #K neighbors controls the bal-478

ance between preserving local manifold structure479

and maintaining global connectivity of the graph480

(cf. subsection 3.1), which can influence the effec- 481

tiveness of the manifold-aware distance and lead to 482

performance variations. Figure 3 evaluate the per- 483

formance of MA-DPR with K ∈ {1, . . . , 15}(in 484

nDCG only, see Appendix B for full results). 485
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Figure 3: Performance of MA-DPR in nDCG@20
across varying values of #K neighbors (x-axis).

At low K, the graph captures only very local 486

relationships, which may be too sparse to support 487

effective global retrieval. At high K, the graph 488

becomes overly dense, and shortest-path distances 489

begin to approximate Euclidean distance. Interme- 490

diate values of K strike a favorable balance, pre- 491

serving local structure while maintaining sufficient 492

connectivity for manifold-aware traversal. 493

RQ5 Underlying Factor: Figure 4 presents the 494

distribution of dManifold and dEuclidean across their 495

respective top 500 retrieved passages for two exam- 496
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Query #1: How did Henry Ford contribute to the Economic boom in the 20’s?

Passage #1: Forget the car, more importantly, he 
invented the conveyor belt enabled mass 
production of products at cheaper prices than 
ever before. 

Why relevant: The passage does not mention 
Henry Ford. But it discusses Ford’s innovation 
contributes to the economic boom in the 20’s. 

Passage #2: FDR was helping out the people 
with new plans that actually used the economy. 
hoover didn't do Jack. 

Why irrelevant: The passage discusses Franklin 
Roosevelt’s contributions, whereas the query 
refers to Henry Ford.

Query #2: Why do u feel very sleepy when u have an exam coming up and why u do not get sleepy after u have finished it?

Passage #3: It‘s all stress-related. The adrenalin, 
your mind is in overload and you’re nervous. 
You might also have test anxiety. Taking tests 
can be very rough ... 

Why relevant: The passage does not mention 
“sleepy”, but it explains the cause of sleepiness. 

Passage #4: If you study all along and make 
good grades then exams should be no worry. 
When I was in college I kept my grades good ... 

Why irrelevant: The passage discusses exam 
preparation but fails to address the underlying 
cause of pre-exam sleepiness.

Overall, 𝒅𝑬𝒖𝒄𝒍𝒊𝒅𝒆𝒂𝒏  ranks passages as highly relevant based on keyword 
overlap (e.g., “economic” and “exam”). 𝒅𝑴𝒂𝒏𝒊𝒇𝒐𝒍𝒅	prevents such 
transitions due to the absence of neighboring forming a direct path 
between unrelated entities: FDR (exam preparation) and Ford (sleepy).

Relevant Passage Examples
where 𝒅𝑴𝒂𝒏𝒊𝒇𝒐𝒍𝒅 outperforms 𝒅𝑬𝒖𝒄𝒍𝒊𝒅𝒆𝒂𝒏

Irrelevant Passage Examples
misidentified as relevant by 𝒅𝑬𝒖𝒄𝒍𝒊𝒅𝒆𝒂𝒏

Overall, 𝒅𝑴𝒂𝒏𝒊𝒇𝒐𝒍𝒅	infers connections by leveraging neighboring 
passages with semantically related terms (e.g., “conveyor belt” → “Henry 
Ford”, “stress” → “sleepy”) even without direct keyword overlap. While 
𝒅𝑬𝒖𝒄𝒍𝒊𝒅𝒆𝒂𝒏  fails to capture semantic similarity between passages and 
queries due to the absence of lexical overlapping keywords.

0

Rank: 55
Rank: 11

Rank: 500+

Rank: 318

𝑑-./012345 𝑑64517802

0

Rank: 14

Rank: 15

Rank: 500+

𝑑-./012345 𝑑64517802

Rank: 500+

Irrelevant
Relevant

Passage #3
Passage #4

Passage #1
Passage #2

Figure 4: Examples from ANTIQUE where MA-DPR outperforms DPR with dEuclidean under tas-b. We present
(i) relevant passages successfully retrieved by dManifold within the top 20 but missed by dEuclidean, and (ii) irrelevant
passages that misidentified as relevant by dEuclidean. The Kernel Density illustrates the distribution of dEuclidean and
dManifold distances among the top 500 retrieved passages, categorized by ground truth relevance. dEuclidean exhibits
substantial overlap between relevant and irrelevant passages, failing to distinguish true relevance. In contrast,
dManifold demonstrates clear separation.

ple queries. In both cases, dEuclidean fails to clearly497

distinguish relevant passages from irrelevant ones498

in the density plots (middle), as their distance distri-499

butions significantly overlap. In contrast, dManifold500

effectively separates relevant passages into a dis-501

tinct range.502

Further analysis of the context in these queries503

and passages (cf. text in Figure 4) reveals cases504

where dEuclidean has poor performance: (1) settings505

where relevant Passages 1 and 3 require reasoning506

and lack direct semantic overlap with the query,507

which dEuclidean fails to identify as relevant; and508

(2) settings such as irrelevant Passage 4 that con-509

tains partially overlapping keywords but different510

contextual meanings, or Passage 2 where two his-511

torical figures have a strong economic association.512

Such misleading similarities cause dEuclidean to er-513

roneously rank them as relevant.514

In contrast, dManifold remains effective in all515

cases of Figure 4: (1) For relevant Passages 1 and 3,516

dManifold leverages neighboring passages to provide517

crucial missing context that bridges the query and518

passage in the absence of direct similarity. (2) For519

irrelevant Passages 2 and 4 with misleading lexical520

or semantic overlap, the lack of semantically simi-521

lar neighboring passages precludes dManifold from 522

small distances, and hence relevance to the query. 523

5 Conclusion 524

With the aim to better capturing relevance in DPR 525

via distance on the subdimensional non-linear man- 526

ifold of query and passage embeddings, we intro- 527

duced a novel distance metric to leverage the un- 528

derlying manifold structure of embeddings using a 529

graph-based representation. 530

With a one-time computational cost for graph 531

construction and comparable online query infer- 532

ence cost to standard DPR, our proposed MA-DPR 533

is able to exploit the manifold structure of embed- 534

ding space and achieves a 26% improvement over 535

DPR using traditional Euclidean and cosine dis- 536

tances, particularly on OOD datasets. 537

By leveraging the context from neighboring pas- 538

sages, manifold-aware DPR demonstrates effective- 539

ness for queries and passages lacking overlapping 540

keywords. These findings suggest that manifold- 541

aware distance can significantly enhance DPR per- 542

formance and that search over the implicit manifold 543

of data can help overcome deficiencies in embed- 544

ding training for OOD settings. 545
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6 Limitations546

While the proposed MA-DPR effectively models547

non-linear structures in embedding space, several548

limitations remain. First, the current approach re-549

lies on a flat KNN graph constructed offline, which550

may pose scalability challenges as the number of551

passages grows. Future work can address this by552

exploring hierarchical or multi-resolution graph553

structures to reduce traversal cost while preserv-554

ing manifold properties. Second, the graph edge555

weights are derived from unsupervised distance556

metrics, which may not always align with relevance557

signals in retrieval tasks. Incorporating supervised558

signals to learn edge weights can further refine the559

manifold representation and improve retrieval ef-560

fectiveness.561
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normalization on the performance of our proposed 676

MA-DPR. 677

As shown in Table 3, we observe that removing 678

normalization leads to a performance drop for both 679

the baseline dEuclidean and dManifold, with the degra- 680

dation occurring at a similar level. Importantly, the 681

performance gap between dManifold and the base- 682

line remains consistent, suggesting that MA-DPR 683

is robust to whether embeddings are normalized or 684

not. 685
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Table 3: Performance of dManifold across design choices on four datasets under fixed parameter settings (k = 8,
m = 700). An underline indicates a statistically significant improvement of dManifold over dEuclidean (paired t-test,
p < 0.05). We use original embeddings without normalization.

NFCorpus SciDocs ANTIQUE MS MARCO

R@20 mAP@20 nDCG@20 R@20 mAP@20 nDCG@20 R@20 mAP@20 nDCG@20 R@20 mAP@20 nDCG@20

msmarco-distilbert-base-tas-b

dEuclidean 0.110 0.065 0.185 0.155 0.065 0.127 0.409 0.283 0.412 0.945 0.526 0.630

dKNN
Euclidean+ cUC 0.123 0.070 0.196 0.166 0.068 0.131 0.451 0.298 0.431 0.944 0.526 0.630

dKNN
Euclidean+cDC 0.111 0.069 0.193 0.148 0.065 0.124 0.389 0.282 0.402 0.940 0.525 0.629

dKNN
Spectral+c

UC 0.129 0.072 0.199 0.175 0.070 0.136 0.448 0.303 0.434 0.944 0.526 0.629

dKNN
Spectral+c

DC 0.126 0.074 0.197 0.159 0.068 0.126 0.385 0.279 0.387 0.928 0.483 0.601

SciNCL

dEuclidean 0.120 0.073 0.190 0.279 0.117 0.217 0.238 0.138 0.227 0.616 0.250 0.338

dKNN
Euclidean+cUC 0.131 0.080 0.202 0.269 0.117 0.212 0.249 0.144 0.233 0.652 0.254 0.348

dKNN
Euclidean+cDC 0.130 0.080 0.204 0.281 0.119 0.218 0.224 0.138 0.221 0.630 0.252 0.342

dKNN
Spectral+c

UC 0.131 0.079 0.201 0.260 0.116 0.209 0.243 0.143 0.231 0.636 0.253 0.344

dKNN
Spectral+c

DC 0.117 0.080 0.196 0.226 0.099 0.180 0.203 0.126 0.200 0.577 0.229 0.311
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B Impact of hyperparameter686

We present the full results of the effect of K on687

dKNN
Euclidean using mAP and Recall in Figure 5 and688

Figure 6, which show a similar trend to the nDCG689

results discussed in RQ4.690

We also report the effect of spectral dimension691

M on dKNN
Spectral in Figure 7 and Figure 8.692

C Additional Embedding693

We additionally report results using694

msmarco-distilbert-dot-v5 (Reimers and695

Gurevych, 2019) to provide further empirical696

support for our method, trained on MS MARCO.697

The results are consistent with our main findings698

and align with the discussions presented in the699

paper (cf. Table 4).700
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Figure 5: Recall@20 and mAP@20 comparison of dKNN
Euclidean with TAS-B across varying k.
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Figure 6: Recall@20 and mAP@20 comparison of dKNN
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Table 4: Performance of dManifold across design choices on four datasets under fixed parameter settings (k = 8,
m = 700). An underline indicates a statistically significant improvement of dManifold over dEuclidean (paired t-test,
p < 0.05). We normalize dot-v5 embeddings so that dEuclidean and dCosine produce identical rankings.

NFCorpus SciDocs ANTIQUE MS MARCO

R@20 mAP@20 nDCG@20 R@20 mAP@20 nDCG@20 R@20 mAP@20 nDCG@20 R@20 mAP@20 nDCG@20

msmarco-bert-base-dot-v5

dEuclidean (dCosine) 0.132 0.071 0.192 0.168 0.070 0.138 0.382 0.251 0.377 0.937 0.529 0.631

dKNN
Euclidean+ cUC 0.133 0.077 0.202 0.181 0.079 0.147 0.423 0.268 0.398 0.942 0.529 0.632

dKNN
Euclidean+cDC 0.133 0.078 0.204 0.181 0.079 0.147 0.365 0.253 0.372 0.936 0.529 0.631

dKNN
Spectral+c

UC 0.136 0.077 0.203 0.183 0.080 0.148 0.427 0.275 0.404 0.943 0.529 0.633
dKNN

Spectral+c
DC 0.139 0.078 0.207 0.182 0.080 0.148 0.411 0.277 0.399 0.929 0.499 0.604
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Figure 8: Recall@20, mAP@20 and nDCG@20 comparison of dKNN
Spectral with SciNCL across varying k.
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