MA-DPR: Manifold-aware Distance Metric for Dense Passage Retrieval

Anonymous ACL submission

Abstract

Dense Passage Retrieval (DPR) typically re-
lies on Euclidean or Cosine distance to mea-
sure query-passage relevance in embedding
space. While effective when embeddings lie
on a linear manifold, our experiments across
DPR benchmarks suggest that embeddings of-
ten lie on lower-dimensional, non-linear mani-
folds, especially in out-of-distribution (OOD)
settings, where these distances fail to capture
semantic similarity. To address this limitation,
we propose a manifold-aware distance metric
for DPR (MA-DPR) that models the intrinsic
manifold structure of passages using a nearest
neighbor graph and measures distance between
query and passages based on their shortest path
in this graph. We show that MA-DPR outper-
forms Euclidean and Cosine distance by up to
26% on OOD passage retrieval while maintain-
ing performance on in-distribution data across
various embedding models, with only a small
increase in query inference time. Empirical ev-
idence suggests that manifold-aware distance
allows DPR to leverage context from related
neighboring passages, making it effective even
in the absence of direct semantic overlap. In
addition, it can be extended to a wide range of
dense embedding and DPR tasks, offering prac-
tical utility across diverse retrieval scenarios.

1 Introduction

Dense Passage Retrieval (DPR) (Karpukhin et al.,
2020) operates on the principle that semantically
similar queries and passages remain close within
a learned dense embedding space. By ranking pas-
sages based on their distances to the query, DPR
measures the semantic relationships beyond direct
word-level sparse matching. State-of-the-art DPR
approaches primarily rely on Cosine distance and
Euclidean distance (Mussmann and Ermon, 2016;
Ram and Gray, 2012) due to their computational
efficiency and straightforward interpretability.
However, the well-known manifold hypothesis
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Figure 1: Example of subdimensional non-linear man-
ifold in embedding space. Passages embedding (dots)
form a non-linear S-shaped manifold, where their rel-
evance (indicated by color) to the query (red star) is
determined by proximity along the manifold rather than
Euclidean distance. Two sample passages (blue dots)
have similar Euclidean distance to the query (red path)
but differ in relevance. In contrast, the distance (blue
path) along the weighted undirected graph G—where
nodes represent passages and edges (gray dashed lines)
connect each passage to its K -nearest neighbors—better
reflects the true relevance.

states that high-dimensional data, such as text em-
beddings, reside on a subdimensional manifold
that is often non-linear (Tenenbaum et al., 2000a;
Roweis and Saul, 2000a). In such a case, relying
solely on Euclidean and Cosine distance may fail
to accurately capture the true relevance between
queries and passages within this non-linear mani-
fold structure (cf. Figure 1).

In contrast, a manifold-aware distance is in-
tended to measure similarity along non-linear mani-
folds by leveraging graph-based (Zhou et al., 2003)
or spectral (Belkin and Niyogi, 2003) methods that
approximate the distances between points. While
earlier work has acknowledged the presence of
manifold and non-linear structures in embedding
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Figure 2: We evaluate the alignment between Euclidean distance (x-axis) and manifold-aware distance (y-axis) for
all query-passage pairs in the embedding space across four benchmark datasets and two embedding models (tas-b
and SciNCL), as detailed in Section 4. In-distribution datasets (IMS MARCO for tas-b and SciDocs for SciNCL)
exhibit strong alignment between the two distance metrics for relevant pairs (orange dots). In contrast, the three
OOD datasets show clear misalignment, particularly at larger Euclidean distances, suggesting that dgycjigean fails to

capture true semantic relationships in these settings.

spaces (Yonghe et al., 2019; Zhao et al., 2020),
these important insights have been largely under-
explored in the context of DPR. To the best of our
knowledge, no prior work has applied manifold-
aware distance metrics to DPR.

We hypothesize that a well-designed manifold-
aware metric is better suited for capturing query-
passage relevance in DPR where embeddings re-
side on a non-linear manifold. To this end, we
summarize our contributions as follows:

1. We empirically verify the existence of sub-
dimensional non-linear manifolds in out-of-
distribution (OOD) embedding spaces, which
significantly impacts the effectiveness of DPR
when relying on standard Euclidean and Co-
sine distance (cf. Figure 2).

2. We introduce a generalizable manifold-aware
distance metric for DPR (MA-DPR) that
leverages a graph-based representation to ex-
ploit the non-linear manifold structure of the
embedding space.

3. MA-DPR consistently outperforms DPR with
Euclidean and Cosine distance across bench-
mark datasets and embedding models, with a
comparable query inference time. By leverag-
ing context from semantically related neigh-
boring passages, it effectively retrieves rele-

vant query-passage pairs even in the absence
of direct semantic overlap.

2 Related Work

2.1 Dense Passage Retrieval

Dense Passage Retrieval (DPR) encodes queries
and passages into a shared embedding space and
ranks passages based on Euclidean and Cosine Dis-
tance (Mussmann and Ermon, 2016; Ram and Gray,
2012). These distance metrics are widely used due
to their computational efficiency, interpretability,
and compatibility with scalable approximate near-
est neighbor search methods (Ram and Gray, 2012).
The underlying assumption is that semantically rel-
evant queries and passages are positioned close to
each other in the embedding space.

However, this assumption is often violated,
particularly in out-of-distribution (OOD) settings
where embeddings are not optimized for the tar-
get domain. In such cases, Euclidean and Cosine
distances may fail to capture complex semantic
relationships, leading to retrieval failures despite
close proximity in embedding space (Steck et al.,
2024).

2.2 Manifold-Aware Approaches in
Embedding Spaces

The manifold hypothesis posits that high-
dimensional data, such as text embeddings,



reside on low-dimensional, non-linear manifolds
embedded within the ambient space (Tenenbaum
et al.,, 2000a; Roweis and Saul, 2000a). This
makes manifold-aware distance metrics a more
intrinsic solution for measuring similarity in such
spaces compared to standard Euclidean and Cosine
distances.

Previous studies, such as Isomap (Tenen-
baum et al., 2000a), Locally Linear Embedding
(LLE) (Roweis and Saul, 2000a), and Laplacian
Eigenmaps (Belkin and Niyogi, 2003), approx-
imate manifold-aware distances by constructing
neighborhood graphs or computing spectral embed-
dings that capture the underlying manifold struc-
ture.

Similar manifold-aware approaches have been
applied in Information Retrieval (IR) to incorporate
global structural information, particularly in image
retrieval tasks where the embedding space more nat-
urally adheres to manifold structures (Zhou et al.,
2003; He et al., 2004; Yang et al., 2013). However,
manifold-aware distance metrics have not been sys-
tematically explored in DPR, leaving a critical yet
unaddressed gap in the current retrieval framework.

3 MA-DPR: Manifold-Aware Distance for
DPR

Let P = {pM),p? ... p(")} denote a collec-
tion of NV passages, each associated with a dense
embedding in a D-dimensional space, denoted as
{eg,l), . ,eg,N)}, where eg) e RD.

DPR ranks passages in P by measuring their
semantic similarity to a given query ¢, computed
as the distance between the query embedding e, €
RP and each passage embedding ej(,i) as:

Rank(q, P) = argsort d(eq, el(f)), (1)
p(DeP

where d(-, -) is a defined distance metric. In prac-
tice, common choices for d in DPR include Eu-
clidean distance:

dEuclidean(eqa e}(}z)) = Heq - eg) 9’ 2
and Cosine distance:
| o ol
dCosine(eq, e(z)) =1-— qip(l) 3)
leally |8,

Both dgyclidean and dcosine assume that semantic
similarity corresponds to proximity in the embed-

ding space, which may fail to capture the true se-
mantic relationships between queries and passages
in the presence of complex, non-linear structures.

Thus, we propose MA-DPR, an extension
of DPR with a manifold-aware distance metric
dManifold- MA-DPR operates in two stages: (1)
a one-time offline manifold graph construction to
capture the intrinsic manifold structure within em-
bedding space, followed by (2) an online passage
ranking stage for a given query based on the con-
structed graph.

3.1 Manifold Graph Construction

We propose a weighted undirected graph G to ap-
proximate the underlying non-linear manifold struc-
ture of the embedding space (cf. Figure 1) for P.
Each passage p() € P is represented as a vertex,
and edges connect p( to its K'-Nearest Neighbors
(KNN) based on their proximity in the embedding
space.

The use of KNN is motivated by its effective-
ness in capturing local relationships while preserv-
ing the global structure of non-linear manifolds.
This approach has been widely adopted in exist-
ing works of manifold structures (Tenenbaum et al.,
2000b; Roweis and Saul, 2000b; Belkin and Niyogi,
2003) to construct graphs that reflect the local of
high-dimensional data.

Specifically, let G = (V, E, ¢), where:

Vi A set of vertices {vy,..
p@ie{l,...,N}.

.,UN} representing

E: A set of edges, where an edge {v;,v;} exists
(i)

between two vertices v; and v; if either e,

ej(oj ) is among the KNN of the other based on
a defined distance metric d*™N.

or

c: A cost function c(v;,vj) : E — R assigns a
cost to {v;, v;}.

Before introducing the passage ranking stage,
we first present the proposed design choices for
constructing the manifold graph: (1) the local dis-
tance metric d™N used to identify the K -nearest
neighbors, (2) the edge cost function ¢, and (3) the
number of nearest neighbors K.

3.2 Choices of Distance metrics dXNN

Euclidean and Cosine distance When local
neighbor distances are meaningful, as illustrated
in Figure 1, the same distance metric used in DPR
can be directly applied as d“¥~N. Common choices



include the Euclidean distance dgﬂﬁiwn
tion 2) and the Cosine distance dSa,
tion 3).

However, as illustrated in the previous section,
such distances in embedding space are not always
reliable: dSNN . and d¥NN | may fail to cap-
ture the true underlying relationship between lo-
cal neighbors. Moreover, it is sensitive to noise
and outliers, as local perturbations can significantly
affect the selection of K -nearest neighbors.

(cf. Equa-
(cf. Equa-

Spectral distance A widely adopted approach
for d*"N is to compute the distance between pas-
sages in a spectral embedding space, leveraging
the eigenstructure of the graph Laplacian (Shi and
Malik, 2000; Belkin and Niyogi, 2003).

Crucially, the spectral distance captures the in-
trinsic structure of the embedding manifold by
leveraging global graph connectivity, rather than
relying solely on local neighborhoods. This makes
it well aligned with the manifold-aware objective
of our work.

The spectral distance between two passages p(*)
and p\9) is defined as:

JKNN <eéi)7e§)j)) _ Hu(i) _ u(j)’

Spectral

N C))
2
where u(Y € R™ denotes the m-dimensional spec-
tral embedding of passage p® obtained from the
top m non-trivial eigenvectors of the normalized
graph Laplacian.

By projecting the data into this lower-
dimensional spectral space, the resulting distance
metric can capture global structural relationships,
enabling a more meaningful measure of between-
node relationships, particularly in non-linear or
noisy settings. This method has been widely ap-
plied for such purpose in NLP (Ploux and Ji, 2003;
Dhillon et al., 2004; Tsai and Lee, 2016).

3.3 Choice of Cost Function ¢

Once the KNN Graph G is constructed as depicted
in the graph mesh in Figure 1, we need to define
the cost of edges E to compute distances during
manifold-aware dense retrieval.

Distance Cost Distance Cost (DC) directly uti-
lizes d¥NN ag ¢:
PC 0y, v;) = dKNN (e(i) e}(gj)) (5)

p

cPC offers an embedding-aware distance for edge
cost determination, but it is not clear that ¢”“ nec

essarily reflects ground truth differences in query
relevance between two passages.

Uniform Cost Uniform Cost (UC) mitigates the
influence of inaccurate ground truth differences
from DC by adopting an agnostic (uninformed unit
cost) perspective on the meaning of embedding
distance. UC emphasizes discrete connectivity by
counting the number of edges (hop) along the short-
est path, focusing instead on mesh connectivity.

Specifically, all edges are assigned a constant
scalar as cost to emphasize connectivity rather than
actual distances as follows:

CUC(vj, vj) =1 6)

However, ¢YC may discard useful information

when neighbor distances accurately reflect differ-
ences in query relevance.

3.4 Choice of K

Selecting the value of K for KNN involves a trade-
off: smaller values of K emphasize global structure
by forming sparse graphs that reflect the broader
topology of the manifold but may neglect local
detail.

In contrast, larger values of K promote local con-
nectivity by densely linking nearby nodes, which
may oversimplify the manifold by treating it as
locally linear.

Thus, Section 3.2 and Section 3.3 jointly define
a two-fold design space for constructing the graph
G. Section 4 presents empirical evaluations of each
design choice (RQ3) and the impact of varying K
on retrieval performance (RQ4) across a range of
DPR benchmarks.

3.5 Passage Ranking

Given a constructed graph G = (V, E,c), the

manifold-aware distance dpanifold between two pas-

sages is defined as the minimum total edge cost

along any path connecting the corresponding ver-

tices v; and v; in G (a.k.a. the shortest path).
dManifold 18 formally defined as follows:

) > cluv), (D)

(uw)en

dManifold (Vi, V) = . ﬁlﬁ?,uj
where II(v;,v;) denotes the set of all paths from
v; to vj, and € II(v;, v;) is a specific path repre-
sented as a sequence of edges (u,v) € E.

To compute dpaniford for a query g with embed-
ding ey, g is temporarily added to G as a new ver-
tex vy+1. Edges are then formed by connecting



vn 41 to its K -nearest passage vertices using de-
fined NN based on e,.

For MA-DPR, each passage p*) is ranked ac-
cording to its manifold-aware distance from the
query, dmanifold(UN+1, i), A smaller value indi-
cates a shorter path along the manifold in the em-
bedding space, signifying higher relevance, while a
larger dyfanifold (VN +1, v;) implies lower relevance.

3.6 Computational Cost

MA-DPR introduces a one-time offline cost for
constructing the manifold graph over the passage
embeddings. This graph construction is indepen-
dent of the query and does not affect the runtime
efficiency of passage ranking at inference time.

At query time, the passage ranking process
consists of two main steps: (1) computing dis-
tances between the query and all N passages to
identify its K -nearest neighbors, with complexity
O(ND); and (2) computing manifold-aware dis-
tances via shortest-path traversal on the KNN graph
using Dijkstra’s algorithm, which has complexity
O(KN + Nlog N), given |[E| = O(KN).

Thus, the overall per-query complexity of
manifold-aware distance DPR is: O(N (D + K +
log N)).

In real-world retrieval settings where D ranges
from 384 to 1024 and N reaches 10° passages,
with typical K values between 2 and 15, the addi-
tional cost from graph traversal remains moderate.
This makes manifold-aware distance a practical al-
ternative for large-scale applications. A summary
of per-query complexity and empirical latency is
shown in Table 1.

Method Complexity Latency (100K)
diuclidean O(ND) 7.56 [7.56-7.56] ms
AManifola  O(N(D + K +1log N))  8.10 [8.00-8.19] ms

Table 1: Per-query computational complexity and empir-
ical latency of dgycligean a0d danifold (USINg dgﬂfdwn +
cP€, K = 8) for ranking over 100K passages with
tas-b embeddings. Results include 95% confidence

intervals in []!.

4 [Experiments

4.1 Experimental Setup

Our experiments aim to evaluate the effectiveness
of MA-DPR dpanifold against baseline DPR with

'System specifications: CPU—Intel(R) Core(TM) i7-
14700HX ; GPU—NVIDIA GeForce RTX 4070 Laptop GPU
Average CPU utilization during measurement: ~5%.

Euclidean distance (dgyclidean)?- Specifically, we
address the following key research questions:

RQ1: Nonlinear Manifold Validation Does em-

pirical evidence support the presence of non-
linear manifold structure in dense embedding
space?

RQ2: MA-DPR vs Bsaeline Does MA-DPR lead to

improved retrieval performance compared to
baseline DPR with dgycligean?

RQ3 Design Choice Comparison Which design
choices for the manifold graph (cf. subsec-
tion 3.1) yield the best performance?

RQ4 Effect of K What is the effect of varying the
number of K -nearest neighbors in the mani-
fold graph on the performance of MA-DPRX?

RQS5 Underlying Factor Which type of queries
does dmanifold Outperform dgyclidean? What fac-
tors contribute to this improved performance?

We conduct experiments on four DPR bench-
mark datasets:

* MS MARCO (Nguyen et al., 2016)
* NFCorpus (Boteva et al., 2016)

e SciDocs (Cohan et al., 2020)

¢ ANTIQUE (Hashemi et al., 2020)

with two embedding models:

e msmarco-distilbert-base-tas-b  (Hof-
stitter et al., 2021) (tas-b), trained on MS
MARCO

* SciNCL (Ostendorff et al., 2022), trained on
SciDocs.

The choice of embedding models naturally de-
fines MS MARCO as the in-distribution dataset for
tas-b and SciDocs as the in-distribution dataset for
SciNCL, while the remaining datasets are treated as
OOD. All embeddings are ¢5-normalized.’

For empirical evaluation, we assess the recall,
Mean Average Precision (MAP), and Normalized
Discounted Cumulative Gain (nDCG) for the top
20 ranked assignments of each retrieval result* .

*With ¢3-normalized embeddings, Dot Product, Cosine,
and Euclidean distance yield identical rankings. Thus, we
report results using only one metric.

3Appendix A provides additional empirical analysis on the

performance differences of the MA-DPR without normaliza-
tion.

*To avoid the impact of parameter tuning, the number of



Table 2: Performance of dyanifola across design choices on four datasets under fixed parameter settings (k = 8,
m = 700). An underline indicates a statistically significant improvement of dpanifold OVer deyclidean (paired t-test,
p < 0.05). We normalize tas-b and SciNCL embeddings so that dgycligean a0d dcosine produce identical rankings.

NFCorpus

SciDocs

ANTIQUE MS MARCO

R@20 mAP@20 nDCG@ZO‘R@ZO mAP@20 nDCG@ZO‘R@ZO mAP@20 nDCG@ZO‘R@ZO mAP@20 nDCG@20

msmarco-distilbert-base-tas-b

druclidean (dcosine) 0.135  0.081 0217 |0.172  0.074 0.141 | 0432  0.299 0430 | 0950 0.534 0.638
dKNN o+ cUC 0143 0.083 0222 [0.182 0.076 0.146 0467 0311 0447 0946  0.534 0.637
dENN P 0137 0.083 0220 |0.167 0.074 0.139 | 0417  0.299 0424 0945 0.534 0.637
d§a+cC 0.147  0.085 0223|0187  0.078 0.148 | 0464 0317 0449 | 0944  0.534 0.636
Attt 0.147  0.085 0228 |0.182 0077 0.146 | 0436  0.307 0430 0932 0498 0.604
SciNCL
diuclidean (dcosine) 0.119  0.073 0.191 |0275 0.116 0215 |0239 0.140 0228 |0.622 0.251 0.339
dKNN o+ 0133 0.081 0203 0266 0.116 0211 |0.250 0.145 0235 |0.652 0.254 0.348
dENN P 0130 0.081 0.205 | 0279 0.119 0.217 | 0227  0.140 0224 |0.636 0253 0.344
Attt 0.126  0.079 0200 [0260 0.115 0208 |0245 0.144 0233 |0.639 0.253 0.345
At 0.132  0.081 0204 0260 0.112 0204|0233 0.140 0225 |0.623  0.246 0.335
4.2 Experimental Results training—dgyclidean aNd dManifold €Xhibit significant
All codes and results are available online’. misalignment, %nd1caF1ng that the. embeddn.lg space
follows a subdimensional non-linear manifold for
RQ1 Nonlinear Manifold Validation: To empir- both embedding models.

ically validate the non-linear manifold hypothesis
in dense embedding spaces, we examine the re-
lationship between dpmanifold and dEyclidean ACTOSS
relevant and irrelevant query-passage pairs. Specif-
ically, in Figure 2, for each ground truth relevant
query g and passage p pair (orange dots) and irrele-
vant pair (blue dots), we compute dgyclidean (4, P)
and dmanifold(¢, p) based on dgf;gf{dem + PC for
manifold graph construction.

In a perfectly linear embedding space, the
manifold-aware distance induced by dinn - 4cPC
should closely align with standard Euclidean dis-
tance. However, in the presence of non-linear struc-
ture, the two distances are expected to diverge. This
contrast enables us to diagnose and characterize
non-linear relationships in the embedding space.

Based on this intuition, we first observe a strong
correlation between dgyclidean aNd dManifold 1N Scat-
terplots of relevant query-passage pairs on the in-
distribution datasets (i.e., MS MARCO w.r.t tas-b
and SciDocs w.r.t. SciNCL). This correlation in-
dicates that query-passage embeddings approxi-
mately lie on a locally linear manifold.

However, in the rest OOD datasets—where
embeddings were not directly optimized during

neighbors K in the KNN graph is fixed to 8 for all experiments
except RQ4, and the spectral embedding dimension M is fixed
to 700 throughout.

Sanonymous.4open.science/r/Manifold_distance_Retrieval-
F226

Further analysis reveals that in most OOD
datasets, both relevant and irrelevant query-passage
pairs fall within a similar range of dgycligean, Caus-
ing them to be ranked similarly in DPR. This sup-
ports our conjecture (cf. Figure 1) that dgyclidean
fails to capture the true semantic relationship be-
tween query and passage. In contrast, dpanifold
more effectively separates relevant and irrelevant
query-passage pairs, with relevant pairs consis-
tently exhibiting smaller dpanifolq Values. These
findings suggest that dyanifold could better capture
query-passage relationships by modeling the intrin-
sic non-linear manifold structure of the embedding
space, motivating our further investigation in RQ?2.

RQ2 MA-DPR vs Bsaeline: Motivated by RQ1,
we empirically compare the performance of MA-
DPR and DPR with dgyclidean and dcosinein Table 2.
Across nearly all four design choices, MA-
DPR significantly outperforms baseline methods
on OOD datasets. This aligns with RQ1, where
OOD datasets exhibit a subdimensional non-linear
manifold structure. In such cases, dpyanifold MOre
effectively captures the underlying data manifold
structure and appears to better capture relevance.
In contrast, on in-distribution datasets—where
the embedding space approximates a locally lin-
ear manifold, as empirically shown in RQ1—both
dManifold and dpyclidean Yield similar retrieval perfor-
mance. In such cases, dyanifold effectively reduces


https://anonymous.4open.science/r/Manifold_distance_Retrieval-F226/README.md
https://anonymous.4open.science/r/Manifold_distance_Retrieval-F226/README.md

to dpuclidean, as the shortest path along the manifold
aligns with the Euclidean distance (cf. Figure 2).

Thus, MA-DPR achieves superior performance
on OOD datasets without parameter tuning, while
remaining competitive in in-distribution settings,
offering a more robust and generalizable alterna-
tive to Euclidean and Cosine distance without addi-
tional tuning.

In addition, MA-DPR outperforms DPR with
Euclidean and Cosine distance across both embed-
dings, indicating that its effectiveness is not tied to
a specific embedding space. This improvement un-
derscores its robustness to variations in the embed-
ding model, further validating its generalizability.

RQ3 Design Choice Comparison: Table 2 also
empirically evaluates the performance of differ-
ent design choices within dpganifold as discussed in
Section 3.1. Results indicate that performance is
variable across datasets and embedding models.

For most OOD datasets, ¢Y¢ outperforms PC,
as it prioritizes connectivity over raw distances in
embedding space, which are often unreliable due
to distortions in out-of-distribution settings. V¢
emphasizes the discrete transitions between neigh-
boring passages rather than relying on possibly
misleading distances. This is particularly benefi-
cial when relevant passages are not directly similar
to the query but lie along a chain of semantically
related neighbors, which will be further discussed
in RQS5 (cf. Figure 4).

KNN KNN
The performance between dg, jije., and dSpectral
. - KNN
varies across embedding models. dgjigean PET-

forms better with SciNCL since SciNCL explicitly
preserves local neighborhood structure through
neighbor-aware contrastive learning (Ostendorff
et al., 2022) as its training objective, making
dgﬂlﬁdean a strong fit for capturing local similarity.

In contrast, tas-b benefits more from dgplilc\ltml
since it is optimized for global ranking (Hofstét-
ter et al., 2021), which captures manifold-wide
structure. These results support our hypothesis
(cf. subsection 3.2) that different graph construc-
tion metrics capture complementary properties of
dense embedding spaces: dg\iﬁdean is better suited
for locally organized structures, whereas dg)% |
is more effective in capturing globally structured

manifolds.

RQ4 Effect of K: #K neighbors controls the bal-
ance between preserving local manifold structure
and maintaining global connectivity of the graph

(cf. subsection 3.1), which can influence the effec-
tiveness of the manifold-aware distance and lead to
performance variations. Figure 3 evaluate the per-
formance of MA-DPR with K € {1,...,15}(in
nDCG only, see Appendix B for full results).

(a) TAS-B (b) SciNCL
NFCorpus NFCorpus
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Figure 3: Performance of MA-DPR in nDCG@20
across varying values of #K neighbors (x-axis).

At low K, the graph captures only very local
relationships, which may be too sparse to support
effective global retrieval. At high K, the graph
becomes overly dense, and shortest-path distances
begin to approximate Euclidean distance. Interme-
diate values of K strike a favorable balance, pre-
serving local structure while maintaining sufficient
connectivity for manifold-aware traversal.

RQS Underlying Factor: Figure 4 presents the
distribution of dmanifold and dguclidean ACross their
respective top 500 retrieved passages for two exam-



Relevant Passage Examples
where dygnifora outperforms deyciigean

Irrelevant Passage Examples
misidentified as relevant by dg,clidgean

ﬁ

Query #1: How did Henry Ford contribute to the Economic boom in the 20’s? }

Passage #1: Forget the car, more importantly, he
invented the conveyor belt enabled mass
production of products at cheaper prices than

$3 Passage #1
$3 Passage #2

=—=$3 Rank: 500+

Passage #2: FDR was helping out the people
with new plans that actually used the economy.
hoover didn't do Jack.

ever before. Relevant
Rank: 318 Irrelevant ‘Why irrelevant: The passage discusses Franklin
Why relevant: The passage does not mention Rank: 55 Roosevelt’s contributions, whereas the query
Henry Ford. But it discusses Ford’s innovation Rank: 11 refers to Henry Ford.
contributes to the economic boom in the 20’s. 4o 1 v ——
Euclidean 0 Manifold
ﬁ Query #2: Why do u feel very sleepy when u have an exam coming up and why u do not get sleepy after u have finished it? }

Passage #3: It‘s all stress-related. The adrenalin,
your mind is in overload and you’re nervous.
You might also have test anxiety. Taking tests
can be very rough ...

&3 Passage #3
$3 Passage #4

Rank: 500+83——=—=%¢3 Rank: 500+

Passage #4: If you study all along and make
good grades then exams should be no worry.
‘When I was in college I kept my grades good ...

3 Rank: 14 Why irrelevant: The passage discusses exam
Why relevant: The passage does not mention ’ preparation but fails to address the underlying
“sleepy”, but it explains the cause of sleepiness. Rank: 15 $3=— cause of pre-exam sleepiness.

dpyctidean 0

Overall, dManifold infers connections by leveraging neighboring
passages with semantically related terms (e.g., “conveyor belt” — “Henry
Ford”, “stress” — “sleepy”) even without direct keyword overlap. While
dEyclidean Tails to capture semantic similarity between passages and
queries due to the absence of lexical overlapping keywords.

dManifOld

Overall, dgyclidean ranks passages as highly relevant based on keyword
overlap (e.g., “economic” and “exam”). dpyanifota pPrevents such
transitions due to the absence of neighboring forming a direct path
between unrelated entities: FDR (exam preparation) and Ford (sleepy).

Figure 4: Examples from ANTIQUE where MA-DPR outperforms DPR with dgycligean Under tas-b. We present
(i) relevant passages successfully retrieved by dyanifola Within the top 20 but missed by dgyclidean, and (ii) irrelevant
passages that misidentified as relevant by dgycligean- The Kernel Density illustrates the distribution of dgycjigean and
dmanifold distances among the top 500 retrieved passages, categorized by ground truth relevance. dgycjigean €Xhibits
substantial overlap between relevant and irrelevant passages, failing to distinguish true relevance. In contrast,

dManifold demonstrates clear separation.

ple queries. In both cases, dgycligean fails to clearly
distinguish relevant passages from irrelevant ones
in the density plots (middle), as their distance distri-
butions significantly overlap. In contrast, dyanifold
effectively separates relevant passages into a dis-
tinct range.

Further analysis of the context in these queries
and passages (cf. text in Figure 4) reveals cases
where dgyclidean has poor performance: (1) settings
where relevant Passages 1 and 3 require reasoning
and lack direct semantic overlap with the query,
which dgycligean fails to identify as relevant; and
(2) settings such as irrelevant Passage 4 that con-
tains partially overlapping keywords but different
contextual meanings, or Passage 2 where two his-
torical figures have a strong economic association.
Such misleading similarities cause dgycligean tO €1-
roneously rank them as relevant.

In contrast, dynifold remains effective in all
cases of Figure 4: (1) For relevant Passages 1 and 3,
dManifold leverages neighboring passages to provide
crucial missing context that bridges the query and
passage in the absence of direct similarity. (2) For
irrelevant Passages 2 and 4 with misleading lexical
or semantic overlap, the lack of semantically simi-

lar neighboring passages precludes dyfanifold from
small distances, and hence relevance to the query.

5 Conclusion

With the aim to better capturing relevance in DPR
via distance on the subdimensional non-linear man-
ifold of query and passage embeddings, we intro-
duced a novel distance metric to leverage the un-
derlying manifold structure of embeddings using a
graph-based representation.

With a one-time computational cost for graph
construction and comparable online query infer-
ence cost to standard DPR, our proposed MA-DPR
is able to exploit the manifold structure of embed-
ding space and achieves a 26% improvement over
DPR using traditional Euclidean and cosine dis-
tances, particularly on OOD datasets.

By leveraging the context from neighboring pas-
sages, manifold-aware DPR demonstrates effective-
ness for queries and passages lacking overlapping
keywords. These findings suggest that manifold-
aware distance can significantly enhance DPR per-
formance and that search over the implicit manifold
of data can help overcome deficiencies in embed-
ding training for OOD settings.



6 Limitations

While the proposed MA-DPR effectively models
non-linear structures in embedding space, several
limitations remain. First, the current approach re-
lies on a flat KNN graph constructed offline, which
may pose scalability challenges as the number of
passages grows. Future work can address this by
exploring hierarchical or multi-resolution graph
structures to reduce traversal cost while preserv-
ing manifold properties. Second, the graph edge
weights are derived from unsupervised distance
metrics, which may not always align with relevance
signals in retrieval tasks. Incorporating supervised
signals to learn edge weights can further refine the
manifold representation and improve retrieval ef-
fectiveness.
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A Impact of Normalization

In this section, we examine the effect of embedding
normalization on the performance of our proposed
MA-DPR.

As shown in Table 3, we observe that removing
normalization leads to a performance drop for both
the baseline dgycligean and dmanifold, With the degra-
dation occurring at a similar level. Importantly, the
performance gap between dpanifold and the base-
line remains consistent, suggesting that MA-DPR
is robust to whether embeddings are normalized or
not.


https://doi.org/10.1109/CVPR.2013.407
https://doi.org/10.1109/CVPR.2013.407
https://doi.org/10.1109/CVPR.2013.407

Table 3: Performance of dyanifola across design choices on four datasets under fixed parameter settings (k = 8,
m = 700). An underline indicates a statistically significant improvement of dpanifold OVer dgyclidean (paired t-test,
p < 0.05). We use original embeddings without normalization.

NFCorpus SciDocs ANTIQUE MS MARCO
R@20 mAP@20 nDCG@20 ‘ R@20 mAP@20 nDCG@20 ‘ R@20 mAP@20 nDCG@20 ‘ R@20 mAP@20 nDCG@20

msmarco-distilbert-base-tas-b

dEuclidean 0.110  0.065 0.185 ‘0.155 0.065 0.127 ‘0.409 0.283 0.412 ‘0.945 0.526 0.630

a8 +cUC 0123 0.070 0.196 ‘0.166 0.068 0.131 ‘0.451 0.298 0.431 ‘0.944 0.526 0.630

Euclidean
dfNN  +cPC 0111 0.069 0.193 ‘0.148 0.065 0.124 ‘0.389 0.282 0.402 ‘0.940 0.525 0.629

Euclidean "~

A+’ 0129 0.072 0.199 | 0.175  0.070 0.136 | 0443  0.303 0434 | 0944 0.526 0.629

dSNN 4 cPC 0126 0.074 0.197 \0.159 0.068 0.126 \0.385 0.279 0.387 \0.928 0.483 0.601

Spectral c

SciNCL

dBuclidean 0.120  0.073 0.190 ‘0.279 0.117 0.217 ‘0.238 0.138 0.227 ‘0.616 0.250 0.338
d8NN  +cUC 0131 0.080 0.202 ‘0.269 0.117 0.212 ‘0.249 0.144 0.233 ‘0.652 0.254 0.348

Euclidean ™™
diN jean+c”C 0.130 0.080 0.204 | 0281 0.119 0218 | 0224 0.138 0221 |0.630 0.252 0.342

Euclidean "~

A+’ 0131 0.079 0201 0260 0.116 0209 | 0243 0.143 0231 |0.636 0.253 0.344

dSNN 4 cPC 0,117 0.080 0.196 \0.226 0.099 0.180 \0.203 0.126 0.200 \0.577 0.229 0.311

Spectral
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B Impact of hyperparameter

We present the full results of the effect of K on
gﬂﬁdeam using mAP and Recall in Figure 5 and
Figure 6, which show a similar trend to the nDCG
results discussed in RQ4.
We also report the effect of spectral dimension

M on dg}.,, in Figure 7 and Figure 8.

C Additional Embedding

We  additionally  report  results  using
msmarco-distilbert-dot-v5 (Reimers and
Gurevych, 2019) to provide further empirical

support for our method, trained on MS MARCO.

The results are consistent with our main findings
and align with the discussions presented in the
paper (cf. Table 4).

12
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Figure 7: Recall @20, mAP@20 and nDCG@20 comparison of dgi ., with TAS-B across varying k.

Table 4: Performance of dyanifold across design choices on four datasets under fixed parameter settings (k = 8,
m = 700). An underline indicates a statistically significant improvement of dnanifold OVer dgyclidean (paired t-test,
p < 0.05). We normalize dot-v5 embeddings so that dgycligean and dcosine produce identical rankings.

NFCorpus SciDocs ANTIQUE MS MARCO
R@20 mAP@20 nDCG@20|R@20 mAP@20 nDCG@20|R@20 mAP@20 nDCG@20|R@20 mAP@20 nDCG@20

msmarco-bert-base-dot-v5
dEuctidean (dcosine) 0.132 0.071 0.192 | 0.168  0.070 0.138 | 0382 0251 0377 0937  0.529 0.631
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Figure 8: Recall@20, mAP@20 and nDCG @20 comparison of dgg,‘gtra] with SciNCL across varying k.
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