A Comprehensive Evaluation of Contemporary Machine-Learning-Based
Solvers for Combinatorial Optimization

Shengyu Feng ' Weiwei Sun“! ShandaLi! Ameet Talwalkar' Yiming Yang'

Abstract

Machine learning (ML) has demonstrated con-
siderable potential in supporting model design
and optimization for combinatorial optimization
(CO) problems. However, much of the progress to
date has been evaluated on small-scale, synthetic
datasets, raising concerns about the practical ef-
fectiveness of ML-based solvers in real-world,
large-scale CO scenarios. Additionally, many ex-
isting CO benchmarks lack sufficient training data,
limiting their utility for evaluating data-driven ap-
proaches. To address these limitations, we intro-
duce FrontierCO, a comprehensive benchmark
that covers eight canonical CO problem types and
evaluates 16 representative ML-based solvers—
including graph neural networks and large lan-
guage model (LLM) agents. FRONTIERCO fea-
tures challenging instances drawn from industrial
applications and frontier CO research, offering
both realistic problem difficulty and abundant
training data. Our empirical results provide criti-
cal insights into the strengths and limitations of
current ML methods, helping to guide more robust
and practically relevant advances at the intersec-
tion of ML and CO.

1. Introduction

Combinatorial Optimization (CO) is a well-established re-
search area in computer science, discrete math and opera-
tions research. It consists of finding the optimal solution in
a discrete space, with various real-world applications such
as allocation, routing, and planning (Korte & Vygen, 2012).
CO problems are usually intractable or NP-hard (Arora &
Barak, 2009), requiring overwhelming human intelligence
in algorithm design. Therefore, automating the algorithm

“Equal contribution 'School of Computer Science, Carnegie
Mellon University. Correspondence to: Shengyu Feng
<shengyuf@cs.cmu.edu>.

The second Al for MATH Workshop at the /2™ International
Conference on Machine Learning, Vancouver, Canada. Copyright
2025 by the author(s).

design and optimization for CO problems has become in-
creasingly important and received widespread attention from
the machine learning (ML) community.

Contemporary ML-based solvers for CO can be broadly cat-
egorized into neural solvers and symbolic solvers. Neural
solvers represent algorithms with neural networks, which
are trained to produce high-quality solutions via supervised
learning or reinforcement learning (Cappart et al., 2023;
Bengio et al., 2020). In contrast, symbolic solvers frame
combinatorial optimization as a code generation task, lever-
aging large language models (LLMs) to synthesize algo-
rithms in formal languages (OpenAl, 2024; DeepSeek-Al,
2025). These approaches exploit the instruction-following
and reasoning capabilities of LLMs and incorporate feed-
back from test cases to iteratively refine solutions (Romera-
Paredes et al., 2023; Liu et al., 2024; Ye et al., 2024).

Despite recent advances in both neural and symbolic ap-
proaches, a fundamental question remains:

To what extent can ML-based solvers match or surpass
state-of-the-art (SOTA) human-designed algorithms for
real-world combinatorial optimization problems?

Existing benchmarks fall short in addressing this question
due to several limitations: (i) Scale: Current evaluations
primarily focus on small-scale problem instances, such as
graphs with fewer than one thousand nodes. While this sim-
plifies benchmarking, it fails to reflect the complexity and
scale of real-world CO tasks that can scale up to millions
nodes (Leskovec & Krevl, 2014). On existing benchmarks,
we observed that SOTA human-designed problem-specific
solvers can find near-optimal solutions within seconds, mak-
ing the evaluation provide limited insight into the efficiency
of different methods. (ii) Realism: Most previous evalua-
tion datasets are synthetic—often randomly generated and
i.i.d. with respect to the training distribution—failing to
capture solver performance on real-world data. For instance,
prior TSP evaluations (Kool et al., 2019; Sun & Yang, 2023;
Luo et al., 2023) are typically conducted on graphs with
the same size and structure as those used during training,
whereas real-world problems exhibit greater diversity and
irregularity. (iii) Data Availability: Many existing CO
benchmarks lack sufficient training data, making them un-

A Comprehensive Evaluation of Contemporary ML-Based Solvers for CO

suitable for assessing data-driven approaches (Fan et al.,
2024; Tang et al., 2025; Sun et al., 2025).

To enable meaningful and comprehensive evaluation of
contemporary ML-based CO solvers, we introduce Fron-
tierCO, a curated collection of challenging instances span-
ning eight classical CO problems across five diverse do-
mains. Unlike benchmarks solely composed of synthetic
data, FRONTIERCO draws from established repositories
(e.g., TSPLib (Reinelt, 1991), CVRPLib (CVR, 2014),
SteinLib (Koch et al., 2000)), major competitions (e.g.,
the DIMACS Challenge (Johnson & McGeoch, 1993) and
PACE Challenge (PAC, 2025)), and evaluation sets used
by recent SOTA solvers (Naderi & Roshanaei, 2021; Gnigi
& Baumann, 2021), ensuring both practical relevance and
scientific rigor. We intentionally select instances that
either cannot be efficiently solved by the best existing
human-designed algorithms or lack known optimal solu-
tions, thereby enabling performance assessment at the cut-
ting edge of combinatorial optimization. For the problems
without training data, we manually create script for generat-
ing diverse synthetic data to support training.

For each task in FRONTIERCO, we construct two test sets
of varying difficulty: easy set, which contains instances
historically considered challenging but now solvable by
SOTA methods; and hard set, which focused on open, hard
instances that remain unsolved or computationally intensive.
The first set is mainly used to validate the effectiveness
of ML-based solvers, while the second set, which is free
from any possible human heuristic hacking, serves as the
main evaluation set in testing whether the ML-based solvers
truly advance the human intelligence. This design enables a
comprehensive evaluation of different application scenarios
of CO solvers.

Using FRONTIERCO, we conduct a systematic evaluation
of a broad spectrum of ML-based CO solvers, including:
end-to-end neural solvers, neural-enhanced traditional algo-
rithms, and LLM-powered agentic approaches. Our empir-
ical study covers 13 recently neural solvers and 3 SOTA
LLM-based agents, yielding the following key insights:

1. Performance gap between human-designed SOTA
solvers and ML-based solvers: Despite recent
progress in machine learning for combinatorial op-
timization, our evaluation reveals a substantial and
persistent performance gap between ML-based solvers
and human-designed SOTA solvers across all problem
types and difficulty levels. This gap is notably larger
than those reported in prior studies, primarily due to
the inclusion of harder instances and more challenging
training/testing conditions in our benchmark.

2. Neural solvers exhibit significant performance
degradation on hard problems: This decline is pri-

marily attributed to challenges in scaling when param-
eter spaces become substantially large, when problem
structures grow more complex, or when the test-set in-
stance sizes differ significantly from those in the train-
ing set. These limitations hinder the generalization
capabilities of neural models. Consequently, address-
ing training-testing discrepancies and integrating neu-
ral solvers with powerful heuristic methods emerge as
promising yet underexplored directions, offering viable
alternatives to purely end-to-end neural approaches in
combinatorial optimization.

3. LLM-based agentic solvers exhibit significant per-
formance variability: Unlike traditional neural
solvers, LLM-based agents possess the capability to in-
voke existing algorithms, including SOTA algorithms,
to address combinatorial optimization problems. In
principle, if an LLM agent can accurately identify and
apply the appropriate SOTA solver for a given instance,
it could achieve a primal gap of zero. However, our
experiments reveal that LLM-based solvers often un-
derperform compared to SOTA solvers and exhibit
considerable variance in performance across different
problem types and instances. This variability is primar-
ily due to challenges in accurately matching problem
instances to suitable algorithms and effectively integrat-
ing them. Enhancing the ability of LLM-based agents
to recognize and leverage appropriate algorithms re-
mains a promising yet underexplored research direction
in combinatorial optimization.

Our evaluation also reveals promising directions for future
development. LLM-based solvers outperform SOTA human-
designed algorithms on the Maximum Independent Set and
Capacitated Vehicle Routing problems, highlighting their
ability to discover novel strategies. Neural solvers perform
well on problems like Flexible Job-shop Scheduling, where
a global receptive field helps capture long-range structure.
These findings suggest that combining neural models with
LLM-discovered heuristics may offer a powerful path for-
ward, uniting strong low-level representations with flexible
high-level reasoning.

The contributions of our work are summarized as follows:

¢ Introduction of FrontierCO: We present FRON-
TIERCO, the most comprehensive and challenging
benchmark to date for evaluating CO solvers. It encom-
passes a diverse array of real-world CO problems, pro-
vides curated datasets suitable for training ML models,
and includes large-scale instances to facilitate scalabil-
ity analysis.

¢ Comprehensive Evaluation of ML-Based CO Meth-
ods: We conduct a systematic evaluation of 16 con-

A Comprehensive Evaluation of Contemporary ML-Based Solvers for CO

temporary ML-based CO methods, including end-to-
end neural solvers, neural-augmented traditional al-
gorithms, and LLM-based symbolic solvers, compar-
ing them directly with SOTA human-designed solvers
within a unified and rigorous experimental framework.

* Insights and Future Directions: Our findings offer
critical insights into the comparative strengths and limi-
tations of neural and LLM-based agentic solvers. They
also highlight promising avenues for future research
and establish clear metrics and evaluation protocols to
guide ongoing efforts at the intersection of machine
learning and combinatorial optimization.

2. FrontierCO: the Proposed Benchmark
2.1. Formal Objective and Evaluation Metrics

We follow (Papadimitriou & Steiglitz, 1982; Sun & Yang,
2023) in denoting a combinatorial optimization (CO) prob-
lem instance as s, a solution as z € X, and defining the
cost function ¢, : X5 — R as

cs(x) = cost(x; s) + valid(z; s), (D

where cost(x; s) is a problem-specific objective assumed
to be non-negative in this work (e.g., the tour length in
Traveling Salesman Problem or the subset size in Maxi-
mum Independent Set), and valid(x; s) penalizes constraint
violations—taking value oo if x is infeasible for instance s,
and 0 otherwise.

To accommodate the varying scales of different problem
instances, we normalize the cost via the following definition:

1, if z is infeasible,
|cost(z;s)—c™|
max{|cost(z;s)[,]c* |}’

pg(z;s) = {

otherwise,

where c* is the (precomputed) optimal or best-known
cost for instance s, and pg(z;s) denotes the primal gap
(Berthold, 2006) of = with respect to c*.

Let A denote a specific algorithm in the search space A,
and let D be a distribution over problem instances. The
objective of algorithm search is then defined as:
i Esw T~ N . 3
min Bs~p, o~alpg(z;s)] 3)
The search space A includes all possible parameterizations

of neural solvers or all feasible token sequences generated
by symbolic solvers, depending on the solver type.

For comparative evaluation, we report the test-set average
primal gap achieved by each CO solver, along with the
corresponding inference time (in seconds) required to obtain
that result. Note that we do not compare training time, a
standard practice in CO evaluations, since classical non-
ML solvers (exact or heuristic) do not involve a training

phase. These solvers are based instead on hand-crafted
human knowledge and algorithmic heuristics. In contrast,
ML-based solvers require data-driven training but do not
depend on manually designed heuristics.

2.2. Domain Coverage

This study focuses on eight types of combinatorial optimiza-
tion (CO) problems that have gained increasing attention
in recent machine learning research due to their practical
significance and theoretical importance in the CO domain.
These problems are:

e MIS (Maximum Independent Set): Find the largest
subset of non-adjacent vertices in a graph.

e MDS (Minimum Dominating Set): Find the smallest
subset of vertices such that every vertex in the graph is
either in the subset or adjacent to a vertex in the subset.

* TSP (Traveling Salesman Problem): Find the short-
est possible tour that visits each city exactly once and
returns to the starting point. We focus on the 2D Eu-
clidean space in this work.

* CVRP (Capacitated Vehicle Routing Problem): De-
termine the optimal set of delivery routes for a fleet
of vehicles with limited capacity to serve a set of cus-
tomers.

¢ CFLP (Capacitated Facility Location Problem):
Choose facility locations and assign clients to them
to minimize the total cost, subject to facility capacity
constraints.

* CPMP (Capacitated p-Median Problem): Select p
facility locations and assign clients to them to mini-
mize the total distance, while ensuring that no facility
exceeds its capacity.

¢ FJSP (Flexible Job-Shop Scheduling Problem):
Schedule a set of jobs on machines where each op-
eration can be processed by multiple machines, aiming
to minimize the makespan while respecting job prece-
dence and machine constraints.

¢ STP (Steiner Tree Problem): Find a minimum-cost
tree that spans a given subset of terminal nodes in
a graph, possibly including additional intermediate
nodes known as Steiner points (Maculan, 1987). Note
that we consider the general STP in graphs rather than
Euclidean STP (Beasley, 1992).

The dataset statistics are summarized in Table 1, with addi-
tional details provided in the Appendix A. Note that only
test data are collected from the listed sources; training and
validation data are regenerated by us to eliminate inconsis-
tencies found in previous evaluations (see Section 2.4).

A Comprehensive Evaluation of Contemporary ML-Based Solvers for CO

Graph-based problems (MIS and MDS) and routing prob-
lems (TSP and CVRP) have been widely used to evaluate
end-to-end neural solvers (Qiu et al., 2022; Zhang et al.,
2023; Sun & Yang, 2023; Sanokowski et al., 2025), as these
tasks often admit relatively straightforward decoding strate-
gies to transform probabilistic model output into feasible
solutions. In contrast, facility location and scheduling prob-
lems (such as CFLP, CPMP, and JSSP) involve more com-
plex and interdependent constraints, making them better
suited to hybrid approaches that combine neural networks
with traditional solvers (Gasse et al., 2019; Scavuzzo et al.,
2022; Feng & Yang, 2025b). Tree-based problems have
received comparatively less attention in neural combinato-
rial optimization, yet we include a representative case (e.g.,
STP) due to their fundamental importance in the broader CO
landscape. All of the above problems can also be directly
handled by symbolic solvers, enabling comprehensive and
comparable evaluations across solver paradigms (Romera-
Paredes et al., 2023; Liu et al., 2024; Ye et al., 2024).

2.3. Problem Instances

For each CO problem type, we collect a diverse pool
of problem instances from problem-specific and compre-
hensive CO libraries (Reinelt, 1991; Koch et al., 2000;
CVR, 2014; Beasley, 1990), major CO competitions
(Johnson & McGeoch, 1993; PAC, 2025), and evalua-
tion sets reported in recent research papers. These in-
stances are available at https://huggingface.co/
datasets/CO-Bench/FrontierCO.

Due to rapid progress in combinatorial optimization, many
instances from earlier archives can now be effectively solved
by state-of-the-art (SOTA) problem-specific solvers, often
achieving an optimality gap below 1% within a 1-hour time
budget. We select a representative subset of such instances
as our easy set, which serves to validate the baseline effec-
tiveness of ML-based solvers.

To evaluate performance under more realistic and demand-
ing conditions, we also construct a hard set comprising
open benchmark instances widely used to assess cutting-
edge human-designed algorithms. Many of these instances
lack known optimal solutions and remain beyond the reach
of existing heuristics. As a result, they are less susceptible to
heuristic hacking—a phenomenon where neural solvers or
LLM-based agents rely on handcrafted decoding strategies
or memorize prior solutions, rather than learning to solve
the problem from first principles.

Importantly, our hard set is not defined merely by instance
size, as is common in prior work. Instead, we emphasize
structurally complex cases, such as hypercube graphs in
STP (Rosseti et al., 2001) or SAT-induced MIS (Xu et al.,
2007), which require models to understand and reason about
intricate problem structures.

2.4. SOTA Solvers and Best Known Solutions (BKS)

We identify the state-of-the-art (SOTA) solver for each CO
problem type based on published research papers and com-
petition leaderboards. The selected solvers include: KaMIS
(Lamm et al., 2017) for MIS, LKH-3 (Helsgaun, 2017) for
TSP, HGS (Vidal et al., 2012) for CVRP, GB21-MH (Gnigi
& Baumann, 2021)—a hybrid metaheuristic—for CPMP,
and SCIP-Jack (Rehfeldt et al., 2021) for STP. For problems
where no dominant problem-specific solver is available (e.g.,
MDS, CFLP, FISP), we rely on general-purpose commercial
solvers, such as Gurobi (Gurobi Optimization, LLC, 2024)
for MDS and CFLP (Mixed Integer Programming), and
CPLEX (Cplex, 2009) for FISP (Constraint Programming).

All of these solvers fall into the category of manually de-
signed heuristics or exact solvers. Notably, ML-based meth-
ods have not yet surpassed the best-performing human-
designed solvers in the CO domain. Among them, Gurobi,
CPLEX and SCIP-Jack are exact solvers; the rest are
heuristic-based.

Prior evaluations of ML-based CO solvers often relied on
self-generated synthetic test instances, leading to difficulties
in fair comparison across papers. These instances are sen-
sitive to implementation details such as random seeds and
Python versions, introducing undesirable variability and in-
consistency. To address this, we provide standardized BKS
for all test-set instances in our benchmark. These BKS are
collected from published literature and competition leader-
boards, and are further validated using the corresponding
SOTA solvers executed on our servers. For instances lacking
known BKS, such as the MDS instances from the ongoing
PACE Challenge 2025 (PAC, 2025), or for benchmarks with
outdated references, such as those in the CFLP literature
(Avella & Boccia, 2009; Avella et al., 2009), we run the
designated SOTA solver for up to two hours to obtain high-
quality reference solutions.

2.5. Standardized Training/Validation Data

Similar to BKS, inconsistencies in self-generated training
and validation data can also contribute to difficulties in
cross-paper comparisons. To address this, FRONTIERCO
provides standardized training sets for neural solvers and
development sets for LLM agents, generated using a variety
of problem-specific instance generators (see Appendix A).

We also release a complete toolkit that includes a data loader,
an evaluation function, and an abstract solving template tai-
lored for LLM-based agents. The data loader and evaluation
function are hidden from the agents to prevent data leakage.
The solving template provides a natural language problem
description along with Python starter code specifying the
expected input and output formats. An example prompt is
provided in Appendix C.

https://huggingface.co/datasets/CO-Bench/FrontierCO
https://huggingface.co/datasets/CO-Bench/FrontierCO

A Comprehensive Evaluation of Contemporary ML-Based Solvers for CO

Table 1. Summary of Collected Problem Instances

Problem Test Set Sources Attributes Easy Set Hard set
MIS 2nd DIMACS Challenge (Johnson & Trick, 1996) Instances 36 16
BHOSLIB (Xu et al., 2007) Nodes 1,404-7,995,464 1,150-4,000
Instances 20 20
MDS PACE Challenge 2025 (PAC, 2025) Nodes 2,671-675952 1,053,686-4,298,062
TSP TSPLib (Reinelt, 1991) Instances 29 19
8th DIMACS Challenge (Johnson & McGeoch, 2007) Cities 1,002-18,512 10,000-10,000,000
Gader . Gk . 120 — ’
CVRP R ” Cities 200483 3000-30000
CVRPLib (CVR, 2014) Min. Vehicles 5-38 46-512
12th DIMACS Challenge (DIM, 2021-2022) :
. . Instances 20 30
CRLP Ave a?dlBE’XCI?I(Atellla <2§B(1)390)c01a, 2009) Facilities 1,000 2,000
velaetdl (Avelaetal, Customers 1,000 2,000
Lorena and Senne (Lorena & Senne, 2000; 2004) Instances 31 12
CPMP Stefanello et al. (Stefanello et al., 2015) Facilities 100-4.,461 10,510-498,378
Gnégi and Baumann (Gnédgi & Baumann, 2021) Medians 10-1,000 100-2,000
. . Instances 60 20
FISP e and Rostamact (Naderi & Rohanaei, 2021) Jobs 10-100 10-100
! ’ Machines 10-20 20-60
DO el 2014 s 23 0
STP S te'nL'bOEi(ocli ot uL. 2000) Nodes 7,565-71,184 64-4,096
mnt - Terminals 86-6,107 8-2,048

11th DIMACS Challenge (DIM, 2013-2014)

3. Evaluation Design
3.1. Implementation Settings

To comprehensively evaluate solver performance, we allow
a maximum solving time of one hour per problem instance.
While some heuristic solvers may terminate earlier upon
finding a suboptimal solution, the time budget ensures com-
parability across solver types.

For fair comparison, each solver is executed on a single
CPU core of a dual AMD EPYC 7313 16-Core processor,
and neural solvers are run on a single NVIDIA RTX A6000
GPU. We use only the primal gap defined in Equation 2 as
the evaluation metric.

Solving time is reported for reference only, as it is influenced
by factors such as compute hardware (CPU vs. GPU), solver
type (exact vs. heuristic), and implementation language
(C++ vs. Python). For any infeasible solution, we assign a
primal gap of 1 and a solving time of 3600 seconds (i.e., the
full time budget).

Note that the primal gap is computed relative to the best
known solution (BKS), so its absolute value does not directly
reflect the inherent difficulty of the instance—especially in
cases where no known optimum exists. The arithmetic mean
of the primal gaps and geometric mean of solving time are
reported across our experiments.

3.2. Representative Neural Solvers

In addition to the SOTA human-designed solvers described
in Section 2.4, we include a curated set of machine learning-
based CO solvers from recent literature. Our focus is pri-
marily on neural solvers evaluated on a subset of problems,
complemented by a group of general-purpose LLM-based
agentic solvers evaluated across all eight CO problem types.

The neural solvers are tailored to specific problems:

¢ DiffUCO (Sanokowski et al., 2024): An unsupervised
diffusion-based neural solver for MIS and MDS that
learns from the Lagrangian relaxation objective.

¢ SDDS (Sanokowski et al., 2025): A more scalable
version of DiffUCO for MIS and MDS, with efficient
training process.

* RLNN (Feng & Yang, 2025a): A Regularized
Langevin Dynamics framework that enhances explo-
ration in CO by enforcing expected distances between
sampled and current solutions, leading to improved
performance in both simulated annealing and neural
network-based solvers.

 LEHD (Luo et al., 2023): A hybrid encoder-decoder
model for TSP and CVRP, with strong generalization
to real-world instances.

e DIFUSCO (Sun & Yang, 2023): A diffusion-based ap-

A Comprehensive Evaluation of Contemporary ML-Based Solvers for CO

proach for TSP that achieves strong scalability, solving
instances with up to 10,000 cities.

¢ DeepACO (Ye et al., 2023): A neural solver that adapts
Ant Colony Optimization (ACO) principles to learn
metaheuristic strategies for solving TSP and CVRP.

e tMDP (Scavuzzo et al., 2022): A reinforcement learn-
ing framework that models the branching process
in Mixed Integer Program (MIP) solvers as a tree-
structured Markov Decision Process.

* SORREL (Feng & Yang, 2025b): A reinforcement
learning method that leverages suboptimal demonstra-
tions and self-imitation learning to train branching poli-
cies in MIP solvers.

* GCNN (Gasse et al., 2019): A graph convolutional
network (GNN)-guided solver for CFLP and CPMP,
which learns to guide branching decisions within a
branch-and-bound framework.

e TL-LNS (Sonnerat et al., 2021): A neural large neigh-
borhood search method for Integer Linear Programs
(ILPs) that incorporates learned policies into local
search operators and uses SCIP (Achterberg, 2009)
as the underlying MIP solver.

¢ CL-LNS (Huang et al., 2023): A contrastive learning-
based large neighborhood search approach for ILPs
that learns effective destroy heuristics by contrasting
positive and negative solution samples, achieving state-
of-the-art performance on several benchmarks.

e MPGN (Lei et al., 2022): A reinforcement learning-
based approach for FISP that employs multi-pointer
graph networks to capture complex dependencies and
generate efficient schedules.

e L-RHO (Li et al., 2025): A learning-guided rolling
horizon optimization method that integrates machine
learning predictions into the rolling horizon framework
to improve decision-making for FJSP.

Since STP is not well studied by existing ML methods,
we consider vanilla reinforcement learning (RL) based on
REINFORCE and supervised learning (SL) baselines, pre-
dicting the Steiner points. The Takahashi—-Matsuyama al-
gorithm (Takahashi & Matsuyama, 1980) is then applied to
decode the prediction into a valid Steiner tree.

3.3. Representative LLM-based Agentic Solvers

Our LLM-based solvers are selected based on the CO-
Bench evaluation protocol (Sun et al., 2025), including both
general-purpose prompting approaches and CO-specific it-
erative strategies:

¢ FunSearch (Romera-Paredes et al., 2023): An evo-
lutionary search framework that iteratively explores

the solution space and refines candidates through back-
tracking and pruning.

¢ Self-Refine (Madaan et al., 2023; Shinn et al., 2023): A
feedback-driven refinement method in which the LLM
improves its own output via iterative self-refinement.

* ReEvo (Shinn et al., 2023): A self-evolving agent that
leverages past trajectories to refine its future decisions
through reflective reasoning.

Unlike the neural solvers, which are applied to problem-
specific subsets, all LLM-based solvers are evaluated across
the full set of eight CO problem types in our benchmark.

4. Results

We summarize the comparative results in Figures 1. We also
report the run-time statistics for the SOTA solvers in Figure
2. Detailed results are available in Appendix B.

We draw several key observations from our results. First,
there is a substantial performance gap on average be-
tween human-designed state-of-the-art (SOTA) solvers
and ML-based solvers across all types of problems and
difficulty levels. Notably, this gap is more pronounced in
our benchmark compared to previously published results.
For example, LEHD exhibits a reported 0.72% gap on a
standard TSP benchmark (Kool et al., 2019), whereas on
our new benchmark, the gap expands to 10% in easy TSP
instances and a striking 77% in hard instances. One major
contributing factor to this discrepancy is the difference in
the training and evaluation settings. In prior studies, neural
solvers were typically trained on synthetic graphs of a fixed
size (e.g. 10,000 nodes) and evaluated on test instances of
the same size, resulting in well-aligned training and testing
conditions. In contrast, our datasets introduce substantial
variability in graph size and structure in both training and
test sets. This setup better reflects real-world deployment
scenarios, but also introduces significant challenges due to
distribution shifts between training and test data. Conse-
quently, LEHD and many other ML-based methods exhibit
severe performance degradation in FRONTIERCO.

Second, neural solvers suffer significantly from scalabil-
ity issues on hard problem instances. In particular, prior
state-of-the-art neural solvers frequently encounter out-of-
memory or timeout failures when applied to large-scale
problems, resulting in unsuccessful runs and 100% primal
gaps, for example, on MDS and CPMP. This underscores a
critical practical limitation that has been largely overlooked
in existing research on machine learning for combinato-
rial optimization, primarily due to the absence of realistic
large-scale benchmarks.

Third, LLM-based agents outperform neural solvers but
exhibit significant performance variability. LLM-based

A Comprehensive Evaluation of Contemporary ML-Based Solvers for CO

Easy Set Mis Hard Set Easy Set MDS Hard Set

100.00 100.00 9521

71.86 66.21
41.83

Easy Set Hard Set Easy Set Hard Set

76.84 69.04

35.82 3300 3777

Hard Set Easy Set CPMP Hard Set

80.57 81.45 100.00100.00300.00 77 35 7 55 4 64

Hard Set

13.10 13.10 14.00 14.00
8.29

Figure 1. Gap (%) comparison of classical and ML-based solvers across eight CO problems with easy and hard test instances (lower is
better). The classical solvers are in deep blue, neural solvers are colored in green, and LLM agentic solvers are represented in red.

104
mm Easy Set
B Hard Set

3600 3600 3600 3600 3136 3600 3600

103 717

102

Solving Time (s)

10!

@\\‘9 V‘\O(p <X (ﬁq:e C%\,? C?"\? ?\c)? 6(?

Figure 2. Solving time (in seconds) for the SOTA classical solvers on eight CO problems with easy and hard test sets, respectively.

A Comprehensive Evaluation of Contemporary ML-Based Solvers for CO

Table 2. Neural Solvers with or without the Neural Module

TSP-Easy | CVRP-Easy | CFLP-Easy
Method Gap| Time | | Method Gap| Time| | Method Gap| Time |
LKH-3 0.03% 65s ‘ HGS 0.11% 3600s ‘ Gurobi 0.00% 308s
2-OPT 20.09% 3600s | ACO 4.22% 54s SCIP 6.50% 3600s
DIFUSCO 4.19% 555s DeepACO 4.42% 50s GCNN 3.22% 3600s

approaches such as FunSearch, Self-Refine, and ReEvo gen-
erally achieve stronger results than neural solvers in our
evaluation, partly because they are less prone to out-of-
memory failures and more resilient to distribution shifts.
However, their performance varies substantially across the
eight problems. For instance, while these methods perform
comparably to the state-of-the-art solver HGS on the CVRP
hard set, they fall significantly short on TSP—even though
both are routing problems. In principle, LLMs possess
the flexibility to invoke any external package and imple-
ment any algorithm, making them theoretically capable of
achieving SOTA performance by selecting and executing
the optimal solver for a given CO task. In practice, how-
ever, current LLM-based agents lack the robustness needed
to consistently identify appropriate solvers and integrate
them effectively, as reflected in our results. Enhancing the
ability of LLM agents to recognize and leverage suitable
algorithms remains a promising yet underexplored direction
for combinatorial optimization.

Fourth, some ML-based solvers outperform prior SOTA
human-designed solvers on certain problem sets. For
example, Self-Refine outperforms KaMIS on the easy set
of MIS, and FunSearch outperforms HGS on the hard set
of CVRP. Upon examining the underlying algorithms, we
find that Self-Refine employs a kernelization technique to
simplify MIS instances and solves small kernels exactly
using a Tomita-style max-clique algorithm. For larger in-
stances, it applies an ARW-style heuristic with solution
pools, crossover, and path-relinking. Similarly, on CVRP,
FunSearch designs an Iterated Local Search framework en-
hanced with regret insertion and Variable Neighborhood
Descent. These results demonstrate the strong potential of
ML-based methods to automatically develop competitive or
even superior solvers for frontier combinatorial optimiza-
tion problems. We believe that it is a promising direction to
extend the capabilities of LLMs to a broader range of prob-
lems and to further explore hybrid approaches that combine
the strengths of neural solvers and LLM-based methods.

5. Discussions

5.1. Does the Neural Module Help?

Considering the performance gap between neural solvers
and state-of-the-art (SOTA) solvers, a natural question

arises: does the neural module actually contribute to im-
proved performance? To explore this, we conduct an abla-
tion study by removing the neural component (or replacing
it with a human-designed heuristic) from the underlying
algorithm of each neural solver. We evaluate three represen-
tative pairs: DIFUSCO (Sun & Yang, 2023) vs. (greedy)
2-OPT, DeepACO (Ye et al., 2023) vs. ant colony opti-
mization (ACO), and GCNN (Gasse et al., 2019) vs. SCIP
(Achterberg, 2009). The results are summarized in Table 2.

The results show that both DIFUSCO and GCNN signif-
icantly improve upon their respective heuristic baselines,
indicating a meaningful contribution from the neural mod-
ule. In contrast, DeepACO fails to outperform vanilla ACO,
possibly due to the influence of the HGS (Vidal et al., 2012)
post-processing used in its implementation. Overall, our
findings suggest that neural components can enhance human-
designed heuristics, but such improvements are typically
realized when built on relatively weak algorithms. Whether
similar gains can be achieved when enhancing strong heuris-
tics remains unclear, especially for challenging problem
instances requiring prolonged search processes.

5.2. Do Neural Solvers Capture Global Structure?

Most neural solvers are based on graph neural networks
(GNNs), which rely on local message passing. While they
have demonstrated strong performance on routing problems
such as TSP and CVRP—which involve complex global
constraints—the majority of existing evaluations are limited
to 2D Euclidean instances. Compared to general graph
problems, Euclidean instances—such as those in metric
TSP—often exhibit favorable local structures (e.g., triangle
inequality), which can be explicitly exploited by certain
algorithms to achieve improved performance (Karlin et al.,
2021). In contrast, graph problems such as MIS lack such
spatial regularities, and neural solvers often perform poorly
(Angelini & Ricci-Tersenghi, 2022; Bother et al., 2022).

To explicitly evaluate the ability of neural solvers in cap-
turing global structure, we leverage the rich source of STP
instances, which includes both Euclidean and non-Euclidean
graphs (see Appendix A.8 for details). We train two sep-
arate GNNs to predict Steiner nodes, using ground truth
labels generated by SCIP-Jack (Rehfeldt et al., 2021). One
model is trained on Euclidean instances, and the other on
non-Euclidean instances. The results are shown in Figure 3.

A Comprehensive Evaluation of Contemporary ML-Based Solvers for CO

Supervised Learning on STP

@ 08
2
307
()
~ -
w 064 Euclidean Instances
_S 05 —m=- Non-Euclidean Instances
=
So4
O
=03
-84 4-8-8A4--FA--5a-a
0.2

20 P 60 80 100
Iterations

Figure 3. Training dynamics on Euclidean and non-Euclidean STP.

The results reveal a clear contrast: while the GNN quickly
learns to predict Steiner points on Euclidean graphs, it fails
to make any progress on non-Euclidean ones. This suggests
that existing GNNs implicitly rely on locality and cannot
capture the global structure required by many CO problems.
These findings underscore a fundamental limitation in the
expressive power of current neural solvers.

5.3. What Kinds of Algorithms Do LLMs Discover?

To better understand the algorithmic strategies developed by
LLM-based solvers, we visualize the key words correspond-
ing to their generated algorithms using the word cloud in
Figure 4, where the size of each word reflects its frequency
of appearance across algorithms.

Move iti i i -
IteratedBridge Initializationgpling
P a t h‘c,;em; I_ ge .5 O
Tabu.2 g
£ >2
o 5 Ned o8

C) o
opt Sfe al C | b
Algorithm ¥ = e
Or
_ <
Constraint . Programming - 5
Heuristic °

Figure 4. Word cloud of the algorithms generated by LLMs.

A clear pattern emerges: classical metaheuristics, partic-
ularly simulated annealing (SA) and large neighborhood
search (LNS), consistently appear across a diverse set of
problems and often form the foundation of LLM-generated
algorithms. This highlights a shared reliance on well-
established CO algorithms that effectively balance explo-
ration and exploitation. While current LLMs still fall short
of demonstrating novel algorithmic reasoning in combina-
torial optimization, their strategies tend to replicate known
metaheuristics and problem-specific techniques from the
literature. Interestingly, we observe that their performance
does not critically depend on integrating existing solvers,
suggesting that LLMs can autonomously construct plausible
and often effective algorithms. This adaptability is particu-
larly promising for rapidly tackling new problem variants
or classical problems with additional constraints, indicating
strong potential for LLMs in few-shot algorithm design.

6. Related Work

Current machine-learning approaches to combinatorial opti-
mization fall into two broad categories: neural and symbolic
solvers. Neural solvers primarily train a graph neural net-
work (GNN) model with standard machine learning objec-
tives (Bengio et al., 2020; Cappart et al., 2023). The trained
GNN is then used either to predict complete solutions di-
rectly (Luo et al., 2023; Sun & Yang, 2023; Sanokowski
et al., 2024; 2025) or to guide classical heuristics such as
branch-and-bound, ant-colony optimization, or Langevin
dynamics (Gasse et al., 2019; Sonnerat et al., 2021; Ye et al.,
2023; Li et al., 2025; Feng & Yang, 2025a). Symbolic
solvers instead attempt to generate executable programs that
solve the problem, exploring the space of algorithmic prim-
itives with reinforcement learning (Kuang et al., 2024a;b)
or leveraging LLM agents for code generation (Romera-
Paredes et al., 2023; Ye et al., 2024; Liu et al., 2024).

Despite these advances, empirical studies have mostly fo-
cused on small synthetic benchmarks (Kool et al., 2019;
Zhang et al., 2023; Li et al., 2025), overlooking the scala-
bility and generalization issues in real-world problems. Be-
sides, the lack of training instances in existing LLM agentic
benchmarks (Fan et al., 2024; Tang et al., 2025; Sun et al.,
2025) also hinders the development. To bridge these gaps,
we introduce a comprehensive benchmark with both realistic
evaluation instances and diverse training data sources.

7. Conclusion

We present FRONTIERCO, a new benchmark designed to
rigorously evaluate ML-based CO solvers under realistic,
large-scale, and diverse problem settings. Through a unified
empirical study, we reveal that while current ML methods—
including both neural and LLM-based solvers—show po-
tential, they still lag behind state-of-the-art human-designed
algorithms in terms of efficiency, generalization, and scal-
ability. However, our findings also uncover promising av-
enues: neural solvers excel on structured problems, and
LLM agents demonstrate novel strategy discovery on hard
instances. We hope FRONTIERCO will serve as a foundation
for advancing the design and evaluation of next-generation
ML-based CO solvers.

Limitations and Future Work FRONTIERCO relies on
human-designed SOTA solvers to produce (near) optimal so-
lutions for test set instances, which can be computationally
expensive for large CO problems—particularly in academic
settings with limited computational resources. However,
the methodology presented in this work serves as a valu-
able blueprint for the broader community, especially those
with industrial-scale resources, to follow in developing more
challenging and realistic CO benchmarks in the future.

A Comprehensive Evaluation of Contemporary ML-Based Solvers for CO

Impact Statement

FRONTIERCO offers a standardized, challenging bench-
mark to advance ML for combinatorial optimization. It
enables rigorous, reproducible evaluation, encourages scal-
able and generalizable solver development, and highlights
current limitations to guide more robust and impactful Al
solutions in real-world decision-making.

References

11th DIMACS Implementation Challenge: Steiner Tree
Problems. Website, 2013-2014. URL https://
dimacsll.zib.de/. Co-organized by DIMACS

and ICERM. Available at https://dimacsll.zib.

de/.

Cvrplib: Capacitated vehicle routing problem library.
Website, 2014.
inf.puc-rio.br/index.php/en/. Available
at http://vrp.galgos.inf.puc-rio.br/
index.php/en/.

12th DIMACS Implementation Challenge: Vehicle
Routing Problems. Website, 2021-2022. URL
http://dimacs.rutgers.edu/programs/
challenge/vrp/. Organized by Mauricio Resende,

Eduardo Uchoa, et al. Available at http://dimacs.

rutgers.edu/programs/challenge/vrp/.

Pace 2025 Challenge: Dominating Set. Website, 2025. URL
https://pacechallenge.org/2025/ds/. Pa-
rameterized Algorithms and Computational Experiments

Challenge. Available at https://pacechallenge.

org/2025/ds/.

Achterberg, T. Scip: solving constraint integer programs.
Mathematical Programming Computation, 1:1-41, 2009.

Almeida, G., Martins de S4, E., Souza, S., and Souza, M.
A hybrid iterated local search matheuristic for large-
scale single source capacitated facility location prob-
lems. Journal of Heuristics, 30:1-28, 12 2023. doi:
10.1007/s10732-023-09524-9.

Angelini, M. C. and Ricci-Tersenghi, F. Modern graph
neural networks do worse than classical greedy algo-
rithms in solving combinatorial optimization problems
like maximum independent set. Nature Machine Intel-
ligence, 5(1):29-31, December 2022. ISSN 2522-5839.

doi: 10.1038/s42256-022-00589-y. URL http://dx.

doi.org/10.1038/s42256-022-00589-y.

Arnold, F., Gendreau, M., and Sorensen, K. Efficiently
solving very large-scale routing problems. Comput. Oper.
Res., 107(C):32-42, July 2019. ISSN 0305-0548. doi:
10.1016/j.c0r.2019.03.006. URL https://doi.org/
10.1016/3j.cor.2019.03.006.

URL http://vrp.galgos.

10

Arora, S. and Barak, B. Computational Complexity: A
Modern Approach. Cambridge University Press, USA,
1st edition, 2009. ISBN 0521424267.

Avella, P. and Boccia, M. A cutting plane algorithm for
the capacitated facility location problem. Computa-
tional Optimization and Applications, 43(1):39-65,
May 2009. doi: 10.1007/s10589-007-9125-x. URL
https://ideas.repec.org/a/spr/coopap/
v43y200911p39-65.html.

Avella, P., Boccia, M., Sforza, A., and Vasilyev, I. An effec-
tive heuristic for large-scale capacitated facility location
problems. Journal of Heuristics, 15:597-615, 12 2009.
doi: 10.1007/s10732-008-9078-y.

Bahman Naderi, Rubén Ruiz, V. R. Repository for mixed-
integer programming versus constraint programming for
shop scheduling problems: New results and outlook.
2023. doi: 10.5281/zenodo.7541223. URL https:
//github.com/INFORMSJoC/2021.0326.

Barabasi, A.-L. and Albert, R.
ing in random networks. Science, 286(5439):
509-512, 1999. doi: 10.1126/science.286.5439.
509. URL https://www.science.org/doi/
abs/10.1126/science.286.5439.500.

Emergence of scal-

Beasley, J. A heuristic for euclidean and rectilinear
steiner problems. European Journal of Operational
Research, 58(2):284-292, 1992. ISSN 0377-2217.
doi: https://doi.org/10.1016/0377-2217(92)90214-T.
URL https://www.sciencedirect.com/
science/article/pii/037722179290214T.
Practical Combinatorial Optimization.

Beasley, J. E. Or-library: Distributing test problems by
electronic mail. Journal of the Operational Research
Society, 41:1069-1072, 1990.

Behnke, D. and Geiger, M. J. Test instances for the flex-
ible job shop scheduling problem with work centers.
2012. URL https://api.semanticscholar.
org/CorpusID:54531116.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: a methodological tour
d’horizon, 2020.

Berthold, T. Primal heuristics for mixed integer programs.
PhD thesis, Zuse Institute Berlin (ZIB), 2006.

Bother, M., KiBig, O., Taraz, M., Cohen, S., Seidel, K.,
and Friedrich, T. What’s wrong with deep learning
in tree search for combinatorial optimization. In In-
ternational Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=mkO0HzdgY7il.

https://dimacs11.zib.de/
https://dimacs11.zib.de/
https://dimacs11.zib.de/
https://dimacs11.zib.de/
http://vrp.galgos.inf.puc-rio.br/index.php/en/
http://vrp.galgos.inf.puc-rio.br/index.php/en/
http://vrp.galgos.inf.puc-rio.br/index.php/en/
http://vrp.galgos.inf.puc-rio.br/index.php/en/
http://dimacs.rutgers.edu/programs/challenge/vrp/
http://dimacs.rutgers.edu/programs/challenge/vrp/
http://dimacs.rutgers.edu/programs/challenge/vrp/
http://dimacs.rutgers.edu/programs/challenge/vrp/
https://pacechallenge.org/2025/ds/
https://pacechallenge.org/2025/ds/
https://pacechallenge.org/2025/ds/
http://dx.doi.org/10.1038/s42256-022-00589-y
http://dx.doi.org/10.1038/s42256-022-00589-y
https://doi.org/10.1016/j.cor.2019.03.006
https://doi.org/10.1016/j.cor.2019.03.006
https://ideas.repec.org/a/spr/coopap/v43y2009i1p39-65.html
https://ideas.repec.org/a/spr/coopap/v43y2009i1p39-65.html
https://github.com/INFORMSJoC/2021.0326
https://github.com/INFORMSJoC/2021.0326
https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://www.sciencedirect.com/science/article/pii/037722179290214T
https://www.sciencedirect.com/science/article/pii/037722179290214T
https://api.semanticscholar.org/CorpusID:54531116
https://api.semanticscholar.org/CorpusID:54531116
https://openreview.net/forum?id=mk0HzdqY7i1
https://openreview.net/forum?id=mk0HzdqY7i1

A Comprehensive Evaluation of Contemporary ML-Based Solvers for CO

Cappart, Q., Chételat, D., Khalil, E. B., Lodi, A., Morris, C.,
and Velickovi¢, P. Combinatorial optimization and rea-
soning with graph neural networks. Journal of Machine
Learning Research, 24(130):1-61, 2023.

Caserta, M. and and, S. V. A general corridor method-
based approach for capacitated facility location. In-
ternational Journal of Production Research, 58(13):
3855-3880, 2020. doi: 10.1080/00207543.2019.
1636320. URL https://doi.org/10.1080/
00207543.2019.1636320.

Cornuejols, G., Sridharan, R., and Thizy, J. A comparison
of heuristics and relaxations for the capacitated plant
location problem. European Journal of Operational
Research, 50(3):280-297, 1991. ISSN 0377-2217.
doi: https://doi.org/10.1016/0377-2217(91)90261-S.
URL https://www.sciencedirect.com/
science/article/pii/0377221791902618S.

Cplex, I. I. V12. 1: User’s manual for cplex. International
Business Machines Corporation, 46(53):157, 2009.

Dauzere-Péres, S., Ding, J., Shen, L., and Tamssaouet,

K. The flexible job shop scheduling problem:
A review. European Journal of Operational
Research, 314(2):409-432, 2024. ISSN 0377-

2217. doi: https://doi.org/10.1016/j.ejor.2023.05.
017. URL https://www.sciencedirect.com/
science/article/pii/S037722172300382X.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning ca-
pability in llms via reinforcement learning. ArXiv,
abs/2501.12948, 2025.

Diaz, J. and Fernandez, E. Hybrid scatter search and path
relinking for the capacitated p-median problem. Euro-
pean Journal of Operational Research, 169:570-585, 02
2006. doi: 10.1016/j.ejor.2004.08.016.

Fan, L., Hua, W,, Li, L., Ling, H., and Zhang, Y. NPHardE-
val: Dynamic benchmark on reasoning ability of large lan-
guage models via complexity classes. In Ku, L.-W., Mar-
tins, A., and Srikumar, V. (eds.), Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 4092-4114,
Bangkok, Thailand, August 2024. Association for Com-
putational Linguistics. doi: 10.18653/v1/2024.acl-long.
225.

Feng, S. and Yang, Y. Regularized langevin dynamics for
combinatorial optimization. In International conference
on machine learning. PMLR, 2025a.

Feng, S. and Yang, Y. Sorrel: Suboptimal-demonstration-
guided reinforcement learning for learning to branch. In
The 39th Annual AAAI Conference on Artificial Intelli-
gence, 2025b.

11

Fu, Z.-H., Sun, S., Ren, J., Yu, T., Zhang, H., Liu, Y., Huang,
L., Yan, X., and Lu, P. A hierarchical destroy and repair
approach for solving very large-scale travelling salesman
problem, 2023. URL https://arxiv.org/abs/
2308.046309.

Gadegaard, S., Klose, A., and Nielsen, L. An improved
cut-and-solve algorithm for the single-source capaci-
tated facility location problem. EURO Journal on Com-
putational Optimization, 6, 04 2017. doi: 10.1007/
s13675-017-0084-4.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi,
A. Exact combinatorial optimization with graph convolu-
tional neural networks. In Advances in Neural Informa-
tion Processing Systems 32, 2019.

Gnigi, M. and Baumann, P. A matheuristic for large-scale
capacitated clustering. Computers & Operations Re-
search, pp. 105304, 2021.

Golden, B. L., Wasil, E. A., Kelly, J. P., and Chao, I.-
M. The impact of metaheuristics on solving the ve-
hicle routing problem: Algorithms, problem sets, and
computational results. 1998. URL https://api.
semanticscholar.org/CorpusID:61757468.

Guastaroba, G. and Speranza, M. Kernel search for the ca-
pacitated facility location problem. Journal of Heuristics,
18:1-41, 12 2012. doi: 10.1007/s10732-012-9212-8.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2024. URL https://www.gurobi.com.

Helsgaun, K. An extension of the lin-kernighan-helsgaun
tsp solver for constrained traveling salesman and vehicle
routing problems, 12 2017.

Huang, T., Ferber, A., Tian, Y., Dilkina, B., and Steiner,
B. Searching large neighborhoods for integer linear pro-
grams with contrastive learning. In International confer-
ence on machine learning. PMLR, 2023.

Johnson, D. J. and Trick, M. A. Cliques, Coloring, and Sat-
isfiability: Second DIMACS Implementation Challenge,
Workshop, October 11-13, 1993. American Mathematical
Society, USA, 1996. ISBN 0821866095.

Johnson, D. S. and McGeoch, C. C. Network Flows and
Matching: First DIMACS Implementation Challenge.
American Mathematical Society, USA, 1993. ISBN
0821865986.

Johnson, D. S. and McGeoch, L. A. Experimental Anal-
ysis of Heuristics for the STSP, pp. 369-443. Springer
US, Boston, MA, 2007. ISBN 978-0-306-48213-7. doi:
10.1007/0-306-48213-49. URL https://doi.org/
10.1007/0-306-48213-4_09.

https://doi.org/10.1080/00207543.2019.1636320
https://doi.org/10.1080/00207543.2019.1636320
https://www.sciencedirect.com/science/article/pii/037722179190261S
https://www.sciencedirect.com/science/article/pii/037722179190261S
https://www.sciencedirect.com/science/article/pii/S037722172300382X
https://www.sciencedirect.com/science/article/pii/S037722172300382X
https://arxiv.org/abs/2308.04639
https://arxiv.org/abs/2308.04639
https://api.semanticscholar.org/CorpusID:61757468
https://api.semanticscholar.org/CorpusID:61757468
https://www.gurobi.com
https://doi.org/10.1007/0-306-48213-4_9
https://doi.org/10.1007/0-306-48213-4_9

A Comprehensive Evaluation of Contemporary ML-Based Solvers for CO

Juhl, D., Warme, D., Winter, P., and Zachariasen, M. The
geosteiner software package for computing steiner trees
in the plane: an updated computational study. Mathe-

matical Programming Computation, 10, 02 2018. doi:
10.1007/s12532-018-0135-8.

Karlin, A. R., Klein, N., and Gharan, S. O. A (slightly)
improved approximation algorithm for metric tsp. In
Proceedings of the 53rd Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2021, pp. 3245,
New York, NY, USA, 2021. Association for Comput-
ing Machinery. ISBN 9781450380539. doi: 10.1145/
3406325.3451009.
1145/3406325.34510009.

Kawano, Y. A reduction from an lwe problem to maximum
independent set problems. Scientific Reports, 13, 05 2023.
doi: 10.1038/s41598-023-34366-7.

Koch, T., Martin, A., and Vo83, S. SteinLib: An updated
library on steiner tree problems in graphs. Technical
Report ZIB-Report 00-37, Konrad-Zuse-Zentrum fiir In-
formationstechnik Berlin, Takustr. 7, Berlin, 2000. URL
http://elib.zib.de/steinlib.

Kool, W., van Hoof, H., and Welling, M. Attention, learn
to solve routing problems! In International Conference
on Learning Representations, 2019. URL https://
openreview.net/forum?id=ByxBFsRqgYm.

Korte, B. and Vygen, J. Combinatorial Optimization: The-
ory and Algorithms. Springer Publishing Company, In-
corporated, Sth edition, 2012. ISBN 3642244874.

Kuang, Y., Wang, J., Liu, H., Zhu, F,, Li, X., Zeng, J., HAO,
J., Li, B., and Wu, F. Rethinking branching on exact
combinatorial optimization solver: The first deep sym-
bolic discovery framework. In The Twelfth International
Conference on Learning Representations, 2024a.

Kuang, Y., Wang, J., Zhou, Y., Li, X., Zhu, F., Hao, J.,
and Wu, F. Towards general algorithm discovery for
combinatorial optimization: Learning symbolic branch-
ing policy from bipartite graph. In Salakhutdinov, R.,
Kolter, Z., Heller, K., Weller, A., Oliver, N., Scarlett,
J., and Berkenkamp, F. (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume
235 of Proceedings of Machine Learning Research, pp.
25623-25641. PMLR, 21-27 Jul 2024b.

Lamm, S., Sanders, P., Schulz, C., Strash, D., and Wer-
neck, R. F. Finding near-optimal independent sets at
scale. J. Heuristics, 23(4):207-229, 2017. doi: 10.1007/

$10732-017-9337-x. URL https://doi.org/10.

1007/s10732-017-9337-x.

URL https://doi.org/10.

12

Lorena, L. A. and Senne, E. L.

Lei, K., Guo, P., Zhao, W., Wang, Y., Qian, L., Meng,
X., and Tang, L. A multi-action deep reinforce-
ment learning framework for flexible job-shop
scheduling problem. Expert Systems with Ap-
plications, 205:117796, 2022. ISSN 0957-4174.
doi: https://doi.org/10.1016/j.eswa.2022.117796.
URL https://www.sciencedirect.com/
science/article/pii/S0957417422010624.

Leitner, M., Ljubic, 1., Luipersbeck, M., Prossegger, M.,
and Resch, M. New real-world instances for the steiner
tree problem in graphs, 01 2014.

Leskovec, J. and Krevl, A. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, June 2014.

Leskovec, J., Kleinberg, J., and Faloutsos, C. Graphs
over time: densification laws, shrinking diameters and
possible explanations. In Proceedings of the Eleventh
ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining, KDD ’05, pp. 177-187,
New York, NY, USA, 2005. Association for Comput-
ing Machinery. ISBN 159593135X. doi: 10.1145/
1081870.1081893. URL https://doi.org/10.
1145/1081870.1081893.

Li, S., Ouyang, W., Ma, Y., and Wu, C. Learning-guided
rolling horizon optimization for long-horizon flexible job-
shop scheduling. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https:
//openreview.net/forum?id=Aly68Y5EsO.

Liu, F, Tong, X., Yuan, M., Lin, X., Luo, F., Wang, Z.,
Lu, Z., and Zhang, Q. Evolution of heuristics: Towards
efficient automatic algorithm design using large language
model. In ICML, 2024.

Lorena, L. A. and Senne, E. L. Local search heuristics for
capacitated p-median problems. 08 2000.

A column gen-
eration approach to capacitated p-median prob-
lems. Computers & Operations Research, 31
(6):863-876, 2004. ISSN 0305-0548. doi:
https://doi.org/10.1016/S0305-0548(03)00039-X.

URL https://www.sciencedirect.com/
science/article/pii/S030505480300039X.

Luo, F, Lin, X., Liu, F, Zhang, Q., and Wang, Z.

Neural combinatorial optimization with heavy decoder:
Toward large scale generalization. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
1id=RBI4oAbdpm.

https://doi.org/10.1145/3406325.3451009
https://doi.org/10.1145/3406325.3451009
http://elib.zib.de/steinlib
https://openreview.net/forum?id=ByxBFsRqYm
https://openreview.net/forum?id=ByxBFsRqYm
https://doi.org/10.1007/s10732-017-9337-x
https://doi.org/10.1007/s10732-017-9337-x
https://www.sciencedirect.com/science/article/pii/S0957417422010624
https://www.sciencedirect.com/science/article/pii/S0957417422010624
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1145/1081870.1081893
https://doi.org/10.1145/1081870.1081893
https://openreview.net/forum?id=Aly68Y5Es0
https://openreview.net/forum?id=Aly68Y5Es0
https://www.sciencedirect.com/science/article/pii/S030505480300039X
https://www.sciencedirect.com/science/article/pii/S030505480300039X
https://openreview.net/forum?id=RBI4oAbdpm
https://openreview.net/forum?id=RBI4oAbdpm

A Comprehensive Evaluation of Contemporary ML-Based Solvers for CO

Maculan, N. The steiner problem in graphs**this work
was partially supported by conselho nacional de desen-
volvimento cientifico e tecnologico, cnpq 300195-83
and by finep. In Martello, S., Laporte, G., Minoux,
M., and Ribeiro, C. (eds.), Surveys in Combinatorial
Optimization, volume 132 of North-Holland Mathe-
matics Studies, pp. 185-211. North-Holland, 1987.
doi: https://doi.org/10.1016/S0304-0208(08)73236-5.
URL https://www.sciencedirect.com/
science/article/pii/S0304020808732365.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L.,
Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S., Yang,
Y., Welleck, S., Majumder, B. P, Gupta, S., Yazdan-
bakhsh, A., and Clark, P. Self-refine: Iterative refinement
with self-feedback. ArXiv, abs/2303.17651, 2023.

Naderi, B. and Roshanaei, V. Critical-path-search logic-
based benders decomposition approaches for flexible job
shop scheduling. INFORMS Journal on Optimization, 4,
08 2021. doi: 10.1287/ij00.2021.0056.

OpenAl. Openai ol system card, 2024.

Osman, I. Capacitated clustering problems by hybrid simu-
lated annealing and tabu search, international transactions
in operational research, 1, 317-336. International Trans-
actions in Operational Research, 1:317-336, 07 1994.
doi: 10.1016/0969-6016(94)90032-9.

Papadimitriou, C. and Steiglitz, K. Combinatorial Opti-
mization: Algorithms and Complexity, volume 32. 01
1982. ISBN 0-13-152462-3. doi: 10.1109/TASSP.1984.
1164450.

Qiu, R., Sun, Z., and Yang, Y. DIMES: A differentiable meta
solver for combinatorial optimization problems. In Oh,
A. H., Agarwal, A., Belgrave, D., and Cho, K. (eds.), Ad-
vances in Neural Information Processing Systems, 2022.

Rehfeldt, D., Shinano, Y., and Koch, T. Scip-jack: An
exact high performance solver for steiner tree problems
in graphs and related problems. In Bock, H. G., Jager, W.,
Kostina, E., and Phu, H. X. (eds.), Modeling, Simulation
and Optimization of Complex Processes HPSC 2018, pp.
201-223, Cham, 2021. Springer International Publishing.
ISBN 978-3-030-55240-4.

Reinelt, G. Tsplib - a traveling salesman problem library.
INFORMS J. Comput., 3(4):376-384, 1991. URL
http://dblp.uni-trier.de/db/journals/
informs/informs3.html#Reinelt9l.

Romera-Paredes, B., Barekatain, M., Novikov, A., Balog,
M., Kumar, M. P., Dupont, E., Ruiz, F. J. R., Ellenberg,
J. S., Wang, P, Fawzi, O., Kohli, P., Fawzi, A., Gro-
chow, J., Lodi, A., Mouret, J.-B., Ringer, T., and Yu, T.

Mathematical discoveries from program search with large
language models. Nature, 625:468 — 475, 2023.

Rosseti, L., Poggi, M., Ribeiro, C., Uchoa, E., and Werneck,
R. New benchmark instances for the steiner problem in
graphs. 08 2001. doi: 10.1007/978-1-4757-4137-7_28.

Sanokowski, S., Hochreiter, S., and Lehner, S. A diffu-
sion model framework for unsupervised neural combi-
natorial optimization. In ICML, 2024. URL https:
//openreview.net/forum?id=AF fX1KFHXJ.

Sanokowski, S., Berghammer, W. F., Wang, H. P., En-
nemoser, M., Hochreiter, S., and Lehner, S. Scalable dis-
crete diffusion samplers: Combinatorial optimization and
statistical physics. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https:
//openreview.net/forum?id=peNgxpbdxB.

Scavuzzo, L., Chen, F. Y., Chételat, D., Gasse, M., Lodi, A.,
Yorke-Smith, N., and Aardal, K. Learning to branch
with tree MDPs. In Oh, A. H., Agarwal, A., Bel-
grave, D., and Cho, K. (eds.), Advances in Neural In-
formation Processing Systems, 2022. URL https:
//openreview.net/forum?id=M4011vVd70mJ.

Shinn, N., Cassano, F., Labash, B., Gopinath, A.,
Narasimhan, K., and Yao, S. Reflexion: language agents
with verbal reinforcement learning. In Neural Informa-
tion Processing Systems, 2023.

Sonnerat, N., Wang, P., Ktena, 1., Bartunov, S., and Nair,
V. Learning a large neighborhood search algorithm
for mixed integer programs. ArXiv, abs/2107.10201,
2021. URL https://api.semanticscholar.
org/CorpusID:236154746.

Statistisches Bundesamt. Gemeinden in deutschland nach
flache, bevolkerung und postleitzahl am 31.03.2017
(1. quartal), 2017. URL https://www.destatis.
de/DE/ZahlenFakten/LaenderRegionen/
Regionales/Gemeindeverzeichnis/
Administrativ/Archiv/GVAuszugQ/
AuszugGV1QAktuell.xlsx?blob=
publicationFile. Accessed: 20 September
2017.

Stefanello, F., de Araugjo, O. C. B., and Miiller, F. M.
Matheuristics for the capacitated p-median problem. In-
ternational Transactions in Operational Research, 22
(1):149-167, 2015. doi: https://doi.org/10.1111/itor.
12103. URL https://onlinelibrary.wiley.
com/doi/abs/10.1111/itor.12103.

Steglich, M. A hybrid heuristic based on self-organising
maps and binary linear programming techniques for the
capacitated p-median problem. 06 2019. doi: 10.7148/
2019-0267.

13

https://www.sciencedirect.com/science/article/pii/S0304020808732365
https://www.sciencedirect.com/science/article/pii/S0304020808732365
http://dblp.uni-trier.de/db/journals/informs/informs3.html#Reinelt91
http://dblp.uni-trier.de/db/journals/informs/informs3.html#Reinelt91
https://openreview.net/forum?id=AFfXlKFHXJ
https://openreview.net/forum?id=AFfXlKFHXJ
https://openreview.net/forum?id=peNgxpbdxB
https://openreview.net/forum?id=peNgxpbdxB
https://openreview.net/forum?id=M4OllVd70mJ
https://openreview.net/forum?id=M4OllVd70mJ
https://api.semanticscholar.org/CorpusID:236154746
https://api.semanticscholar.org/CorpusID:236154746
https: //www.destatis.de/DE/ZahlenFakten/LaenderRegionen/ Regionales/Gemeindeverzeichnis/Administrativ/ Archiv/GVAuszugQ/AuszugGV1QAktuell.xlsx? blob=publicationFile
https: //www.destatis.de/DE/ZahlenFakten/LaenderRegionen/ Regionales/Gemeindeverzeichnis/Administrativ/ Archiv/GVAuszugQ/AuszugGV1QAktuell.xlsx? blob=publicationFile
https: //www.destatis.de/DE/ZahlenFakten/LaenderRegionen/ Regionales/Gemeindeverzeichnis/Administrativ/ Archiv/GVAuszugQ/AuszugGV1QAktuell.xlsx? blob=publicationFile
https: //www.destatis.de/DE/ZahlenFakten/LaenderRegionen/ Regionales/Gemeindeverzeichnis/Administrativ/ Archiv/GVAuszugQ/AuszugGV1QAktuell.xlsx? blob=publicationFile
https: //www.destatis.de/DE/ZahlenFakten/LaenderRegionen/ Regionales/Gemeindeverzeichnis/Administrativ/ Archiv/GVAuszugQ/AuszugGV1QAktuell.xlsx? blob=publicationFile
https: //www.destatis.de/DE/ZahlenFakten/LaenderRegionen/ Regionales/Gemeindeverzeichnis/Administrativ/ Archiv/GVAuszugQ/AuszugGV1QAktuell.xlsx? blob=publicationFile
https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12103
https://onlinelibrary.wiley.com/doi/abs/10.1111/itor.12103

A Comprehensive Evaluation of Contemporary ML-Based Solvers for CO

Sun, W., Feng, S., Li, S., and Yang, Y. Co-bench: Bench-
marking language model agents in algorithm search
for combinatorial optimization, 2025. URL https:
//arxiv.org/abs/2504.04310.

Sun, Z. and Yang, Y. DIFUSCO: Graph-based diffusion
solvers for combinatorial optimization. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=JV8Ff01lgVV.

Takahashi, H. and Matsuyama, A. An approximate solution
for the steiner problem in graphs. Mathematica Japonica,
24(6):573-577, 1980.

Tang, J., Zhang, Q., Li, Y., Chen, N., and Li, J. Grapharena:
Evaluating and improving large language models on
graph computation. In International Conference on
Learning Representations, 2025.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., and
Rei, W. A hybrid genetic algorithm for multidepot and
periodic vehicle routing problems. Operations Research,
60(3):611-624, 2012. doi: 10.1287/opre.1120.1048.
URL https://doi.org/10.1287/opre.1120.
1048.

Xu, K. and Li, W. Exact phase transitions in random con-
straint satisfaction problems. J. Artif. Int. Res., 12(1):
93-103, March 2000. ISSN 1076-9757.

Xu, K., Boussemart, F., Hemery, F., and Lecoutre,
C. Random constraint satisfaction: Easy gen-
eration of hard (satisfiable) instances. Artificial
Intelligence, 171(8):514-534, 2007. ISSN 0004-
3702. doi: https://doi.org/10.1016/j.artint.2007.04.
001. URL https://www.sciencedirect.com/
science/article/pii/S0004370207000653.

Ye, H., Wang, J., Cao, Z., Liang, H., and Li, Y. Deep-
aco: Neural-enhanced ant systems for combinatorial opti-
mization. In Advances in Neural Information Processing
Systems, 2023.

Ye, H., Wang, J., Cao, Z., Berto, F., Hua, C., Kim, H., Park,
J., and Song, G. Reevo: Large language models as hyper-
heuristics with reflective evolution. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024.

Zhang, D., Dai, H., Malkin, N., Courville, A., Bengio, Y.,
and Pan, L. Let the flows tell: Solving graph combi-
natorial problems with GFlownets. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
id=sTJW3JHs2V.

14

https://arxiv.org/abs/2504.04310
https://arxiv.org/abs/2504.04310
https://openreview.net/forum?id=JV8Ff0lgVV
https://openreview.net/forum?id=JV8Ff0lgVV
https://doi.org/10.1287/opre.1120.1048
https://doi.org/10.1287/opre.1120.1048
https://www.sciencedirect.com/science/article/pii/S0004370207000653
https://www.sciencedirect.com/science/article/pii/S0004370207000653
https://openreview.net/forum?id=sTjW3JHs2V
https://openreview.net/forum?id=sTjW3JHs2V

A Comprehensive Evaluation of Contemporary ML-Based Solvers for CO

A. Data Collection Details

This section outlines the data collection process for all problems, covering both test and training/validation instances. Since
the training instance generation for neural solvers varies significantly across methods, we omit low-level details such as the
number of instances and parameter settings. Instead, we focus on describing the generation of the validation set (test cases
used to provide feedback for iterative agent refinement) used for LLM-based solvers.

A.1. Maximum Independent Set

To construct suitable test instances, we conduct a comprehensive re-evaluation of the datasets collected by Bother et
al. (Bother et al., 2022). We find that some large real-world graphs (Leskovec & Krevl, 2014), such as ai-caida (Leskovec
et al., 2005) with up to 26,475 nodes, are not particularly challenging for SOTA classical solvers like KaMIS (Lamm et al.,
2017), which can solve them within seconds. Therefore, we select two moderately sized but more challenging datasets.

The easy test set comprises complementary graphs of the maximum clique instances from the 2nd DIMACS Challenge (John-
son & Trick, 1996), while the hard test set consists of the largest 16 instances (each with over 1,000 nodes) from the
BHOSLIB benchmark (Xu et al., 2007), derived from SAT reductions. Since the original links have expired, we obtain these
instances and their BKS from a curated mirror'. For those interested in additional sources of high-quality MIS instances,
we also highlight vertex cover instances from the 2019 PACE Challenge?, reductions from coding theory?, and recent
constructions derived from learning-with-errors (LWE) (Kawano, 2023), which provide a promising strategy for generating
challenging MIS instances.

Training instances are generated using the RB model (Xu & Li, 2000), widely adopted in recent neural MIS solvers (Zhang
et al., 2023; Sanokowski et al., 2024; 2025). We synthesize 20 instances with 800—1,200 nodes for our LLM validation set.

A.2. Minimum Dominating Set

Despite the popularity of MDS in evaluating neural solvers (Zhang et al., 2023; Sanokowski et al., 2024; 2025), we find a
lack of high-quality publicly available benchmarks. We therefore rely on the PACE Challenge 2025%, using the exact track
instances as our easy set and the heuristic track instances as the hard set. From each, we selected the 20 instances with the
highest primal-dual gaps after a one-hour run with Gurobi. Reference BKS are obtained by extending the solving time to
two hours.

Training instances are Barabasi—Albert graphs (Barabasi & Albert, 1999) with 800-1,200 nodes, consistent with previous
literature (Zhang et al., 2023; Sanokowski et al., 2024; 2025). We generate 20 such instances for the LLM validation set.

A.3. Traveling Salesman Problem

We source TSP instances from the 8th DIMACS Challenge’ and TSPLib®. The easy test set includes symmetric 2D
Euclidean TSP instances (distance type EUC_2D, rounding applied) from TSPLib with over 1,000 cities, all with known
optimal solutions. This aligns with settings used in prior neural TSP solvers (Karlin et al., 2021).

The hard test set consists of synthetic instances from the DIMACS Challenge with at least 10,000 cities (Fu et al., 2023). We
obtain BKS from the LKH website’.

Training instances follow the standard practice of uniformly sampling points in a unit square (Kool et al., 2019). For
simplicity, we reuse DIMACS instances with 1,000 nodes as our LLM training set, since they are drawn from the same
distribution, except scaling the coordinates by a constant.

'"https://iridia.ulb.ac.be/~fmascia/maximum_clique/
https://pacechallenge.org/2019/
Shttps://oeis.org/A265032/a265032.html
4https://pacechallenge.org/2025/
Shttp://archive.dimacs.rutgers.edu/Challenges/TSP/
*http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
"http://webhotel4d.ruc.dk/~keld/research/LKH/DIMACS_results.html

15

https://iridia.ulb.ac.be/~fmascia/maximum_clique/
https://pacechallenge.org/2019/
https://oeis.org/A265032/a265032.html
https://pacechallenge.org/2025/
http://archive.dimacs.rutgers.edu/Challenges/TSP/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://webhotel4.ruc.dk/~keld/research/LKH/DIMACS_results.html

A Comprehensive Evaluation of Contemporary ML-Based Solvers for CO

A.4. Capacitated Vehicle Routing Problem

We collect CVRP instances from the 12th DIMACS Challenge® and CVRPLib’, which have significant overlap. From these,
we select the Golden (collected by Arnold et al. (Golden et al., 1998)) and Belgium (collected by Arnold et al. (Arnold
et al., 2019)) instances as our easy and hard sets, respectively. All BKS are retrieved from the CVRPLib website.

Training data generation follows the method used in DeepACO (Ye et al., 2023). Each instance includes up to 500 cities,
with demands in [1, 9] and capacity fixed at 50. We generate 15 total validation instances for LLMs, with 5 each for 20, 100,
and 500 cities.

A.5. Capacitated Facility Location Problem

Following the benchmark setup in previous works (Guastaroba & Speranza, 2012; Caserta & and, 2020), we select instances
from Test Bed 1 (Avella & Boccia, 2009) and Test Bed B (Avella et al., 2009) as our easy and hard test sets, respectively.
The easy set includes the 20 largest instances from Test Bed 1, each with 1,000 facilities and 1,000 customers. The hard
set consists of the 30 largest instances from Test Bed B, each with 2,000 facilities and 2,000 customers. All instances are
downloaded from the OR-Brescia website!°.

Notably, our easy instances are already significantly larger than the most challenging instances typically used in neural
solver evaluations (Gasse et al., 2019; Scavuzzo et al., 2022; Feng & Yang, 2025b), which contain at most 100 facilities and
400 customers. All easy instances can be solved exactly by Gurobi. For the hard instances, as all available BKS identified
in the literature (Caserta & and, 2020) are inferior to those obtained by Gurobi, we rerun Gurobi for two hours to obtain
improved reference solutions.

Overall, we find that Gurobi already demonstrates strong performance on standard CFLP variants, in which each customer
may be served by multiple facilities. Consequently, the single-source CFLP variant—where each customer must be assigned
to exactly one facility—has become a more compelling and actively studied problem in recent CO literature (Gadegaard
et al., 2017; Caserta & and, 2020; Almeida et al., 2023). Several corresponding benchmarks are also available on the
OR-Brescia website.

For training data, we adopt the synthetic generation method from Cornuejols et al. (Cornuejols et al., 1991), producing 20
instances with 100 facilities and 100 customers for LLM validation. This generation method is widely used in existing
neural branching works (Gasse et al., 2019; Scavuzzo et al., 2022; Feng & Yang, 2025b), and forms part of the construction
for Test Bed 1 (Avella & Boccia, 2009).

A.6. Capacitated p-Median Problem

We follow the evaluation setup in recent works on CRMP (Stefanello et al., 2015; Gnégi & Baumann, 2021). Instances
with fewer than 10,000 facilities are assigned to the easy set; larger ones go to the hard set. Easy instances include 6
real-world Sao José dos Campos instances (Lorena & Senne, 2004) and 25 adapted TSPLib instances (Lorena & Senne,
2000; Stefanello et al., 2015). These are sourced from INPE'! and SomAla'? websites. Hard instances are large-scale
problems introduced by Gnigi and Baumann (Gniigi & Baumann, 2021), downloaded from their GitHub'3. BKS are derived
by combining the best GB21-MH results and values reported in (Stefanello et al., 2015; Steglich, 2019; Gnégi & Baumann,
2021).

In total, we collect 31 easy and 12 hard instances, all using Euclidean distances. Additional alternatives include spherical-
distance instances (Diaz & Fernandez, 2006; Statistisches Bundesamt, 2017) and high-dimensional instances (Gnégi &
Baumann, 2021).

We synthesize training data with Osman’s method (Osman, 1994). The validation set for LLMs are generated by fixing the
number of facilities at 500 and varying terminals in {5, 10,20, 50}. Each setting includes 5 instances.

8http://dimacs.rutgers.edu/programs/challenge/vrp/cvrp/
‘http://vrp.galgos.inf.puc-rio.br/index.php/en/
Ohttps://or-brescia.unibs.it/home
"http://www.lac.inpe.br/-lorena/instancias.html
Phttp://stegger.net/somala/index.html
Bhttps://github.com/phil85/GB21-MH

16

http://dimacs.rutgers.edu/programs/challenge/vrp/cvrp/
http://vrp.galgos.inf.puc-rio.br/index.php/en/
https://or-brescia.unibs.it/home
http://www.lac.inpe.br/~lorena/instancias.html
http://stegger.net/somala/index.html
https://github.com/phil85/GB21-MH

A Comprehensive Evaluation of Contemporary ML-Based Solvers for CO

A.7. Flexible Job-Shop Scheduling Problem

We collect FJSP instances from two recent benchmark sets commonly used in the evaluation of classical FISP solvers.
The easy test set consists of instances introduced by Behnke and Geiger (Behnke & Geiger, 2012), available via a GitHub
mirror'4. The hard test set includes 24 of the largest instances (with 100 jobs) from a benchmark proposed by Naderi and
Roshanaei (Naderi & Roshanaei, 2021), which we obtain from the official repository'>. These two datasets are selected
based on recent comparative studies in the literature (Bahman Naderi, 2023; Dauzere-Péres et al., 2024).

Based on our literature review, the strongest results have been reported by the CP-based Benders decomposition
method (Naderi & Roshanaei, 2021); however, the source code is not publicly available. As a result, we adopt a constraint
programming approach using CPLEX, which has demonstrated consistently strong performance relative to other commercial
solvers and heuristic methods (Bahman Naderi, 2023).

Training data is generated following the same protocol used in Li et al. (Li et al., 2025). Specifically, we synthesize 20
instances, each with 20 machines and 10 jobs, to form the LLM validation set.

A.8. Steiner Tree Problem

We collect STP instances from SteinLib'® and the 11th DIMACS Challenge!’. The easy set includes Vienna-GEO
instances (Leitner et al., 2014), which—despite having tens of thousands of nodes—are solvable within minutes by SCIP-
Jack. The hard set comprises PUC instances (Rosseti et al., 2001), most of which cannot be solved within one hour by
SCIP-Jack and even lack known optima. BKS are determined by taking the best value between SCIP-Jack’s one-hour primal
bound and published solutions from SteinLib or Vienna-GEO (Leitner et al., 2014). We also highlight the 2018 PACE
Challenge'® as a useful benchmark with varied difficulty levels.

Training data includes two generation strategies. The first generator corresponds to the hardest instances in PUC (Rosseti
et al., 2001), which constructs graphs from hypercubes with randomly sampled (perturbed) edge weights. We generate 100
training instances for neural solvers and 10 validation instances for LLMs across dimensions 6—10. The second, based on
GeoSteiner (Juhl et al., 2018), samples 25,000-node graphs from a unit square. We include 15 such instances (10 for neural
solvers, 5 for LLMs)'?, and add 45 adapted TSPLib instances (Juhl et al., 2018) to the neural training set. The LLM training
set also serves as the validation set for neural solvers.

B. Detailed Results

Tables 3, 4, 5, and 6 present the detailed results for the evaluated methods in Section 4. A result is marked with * if
the method suffers from the out-of-memory or timeout issue before obtaining a feasible solution on any instance in this
benchmark.

Table 3. Comparative Results on MIS and MDS

MIS | Easy Hard | MDS | Easy Hard

Method | Gap| Time] Gap| Time] | Method | Gap| Time Gapl Time | |
KaMIS ‘ 1.51% 223s 2.65% 274s ‘ Gurobi ‘ 0.00% 3600s 0.63% 3600s
DiffUCO 9.57% 154s 6.45% 19s DiffUCO 71.86% 54s 100.00%* 3600s*
SDDS 11.85% 223s 524% 27s SDDS 66.21% 54s 100.00%* 3600s*
RLNN 6.29% 532s 6.31% 1064s | RLNN - - - -
FunSearch | 1.87% 3600s 4.97% 3600s | FunSearch | 41.83% 3600s 95.21% 3600s
Self-Refine | 1.30% 3600s 4.02% 3600s | Self-Refine | 6.19% 3600s 5.71% 3600s
ReEvo 144% 3600s 4.81% 3600s | ReEvo 7.52% 3600s 5.81% 3600s

Yhttps://github.com/Lei-Kun/FJSP-benchmarks
BShttps://github.com/INFORMSJoC/2021.0326
Yhttps://steinlib.zib.de/steinlib.php
"https://dimacsll.zib.de/organization.html
Bhttps://github.com/PACE-challenge/SteinerTree-PACE-2018-1instances
Yhttp://www.geosteiner.com/instances/

17

https://github.com/Lei-Kun/FJSP-benchmarks
https://github.com/INFORMSJoC/2021.0326
https://steinlib.zib.de/steinlib.php
https://dimacs11.zib.de/organization.html
https://github.com/PACE-challenge/SteinerTree-PACE-2018-instances
http://www.geosteiner.com/instances/

A Comprehensive Evaluation of Contemporary ML-Based Solvers for CO

Table 4. Comparative Results on TSP and CVRP

TSP | Easy Hard | CVRP | Easy Hard
Method | Gap| Time] Gapl Time | | Method | Gap| Time| Gap| Time |
LKH-3 ‘ 0.03% 65s 2.89% 21s ‘ HGS ‘ 0.11% 3600s 6.74% 3600s
LEHD 10.23% 487s 76.84%* 1347s* | LEHD 1.97% 893s 100.00%* 3600s*
DIFUSCO | 4.19% 555s 69.04%* 2850s™ | DeepACO | 4.42% 50s 27.69%* 3333s"
FunSearch | 6.79% 3600s 35.82% 3600s | FunSearch | 5.27% 3600s 6.52% 3600s
Self-Refine | 6.29% 3600s 32.00% 3600s | Self-Refine | 3.86% 3600s 27.50% 3600s
ReEvo 5.65% 3600s 37.77% 3600s | ReEvo 7.16% 3600s 10.01% 3600s
Table 5. Comparative Results on CFLP and CPMP

CFLP | Easy Hard | CPMP | Easy Hard
Method | Gap] Time| Gapl Time | | Method | Gap | Time | Gap | Time |
Gurobi ‘ 0.00% 308s 0.01% 3136s ‘ GB21-MH ‘ 0.53% 541s 0.32% 3600s
tMDP 3.54% 3581s 55.35% 3600s | IL-LNS 80.57% 3600s* 100.00%* 3600s*
SORREL 346% 3600s 55.35% 3600s | CL-LNS 81.45% 3600s* 100.00%* 3600s*
GCNN 3.22% 3551s 55.35% 3600s | GCNN 4291%* 2143s* 100.00%* 3600s*
FunSearch | 7.31% 3600s 7.41% 3600s | FunSearch | 3.96% 3600s 77.32%* 3600s*
Self-Refine | 27.08% 3600s 24.93% 3600s Self-Refine | 2.84% 3600s 74.05%" 3600s™
ReEvo 12.89% 3600s 12.79% 3600s | ReEvo 3.40% 3600s 70.64%* 3600s™

Table 6. Comparative Results on FJSP and STP
FJSP | Easy Hard | STP | Easy Hard

Method | Gap| Time] Gapl Time | | Method | Gap| Time| Gap| Time|
CPLEX ‘ 0.00% 702s 0.01% 3600s ‘ SCIP-Jack ‘ 0.00% 22s 050% 717s
MPGN ‘ 12.78% 9s 1.50% 69s ‘ RL 14.00% 31s 13.10% 1s

L-RHO 27.20% 21s 1.03% 58s SL 14.00% 31s 13.10% 1s

FunSearch | 5.05% 3600s 12.10% 3600s | FunSearch | 829% 3600s 5.82% 3600s
Self-Refine | 6.66% 3600s 1.14% 3600s | Self-Refine | 11.23% 3600s 6.93% 3600s
ReEvo 561% 3600s 2.16% 3600s | ReEvo 14.36% 3600s 10.03% 3600s

C. Example Prompt

Our query prompts basically consist of two parts: the description of the problem background and the starter code for LLM
to fill in. The following is an example prompt on TSP.

The evaluation example

Problem Description

The Traveling Salesman Problem (TSP) is a classic combinatorial optimization problem where, given a set of cities
with known pairwise distances, the objective is to find the shortest possible tour that visits each city exactly once
and returns to the starting city. More formally, given a complete graph G = (V, E) with vertices V representing cities
and edges E with weights representing distances, we seek to find a Hamiltonian cycle (a closed path visiting each
vertex exactly once) of minimum total weight.

Starter Code

def solve (x*kwargs) :

mmn

Solve a TSP instance.

18

A Comprehensive Evaluation of Contemporary ML-Based Solvers for CO

Args:
— nodes (list): List of (x,
TSP problem
Format: [(x1, yl1), (x2, vyv2), ..., (xn, yn)]

y) coordinates representing cities in the

Returns:
dict: Solution information with:
— ’tour’ (list): List of node indices representing the solution

path
Format: [0, 3, 1, ...] where numbers are indices into
the nodes 1ist

mmn

Your function must yield multiple solutions over time, not just return

one solution
Use Python’s yield keyword repeatedly to produce a stream of solutions

Each yielded solution should be better than the previous one
while True:
yield {
"tour’: [],

19

