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ABSTRACT

Smoothing a signal based on local neighborhoods is a core operation in machine
learning and geometry processing. On well-structured domains such as vector
spaces and manifolds, the Laplace operator derived from differential geometry of-
fers a principled approach to smoothing via heat diffusion, with strong theoretical
guarantees. However, constructing such Laplacians requires a carefully defined
domain structure, which is not always available. Most practitioners thus rely on
simple convolution kernels and message-passing layers, which are biased against
the boundaries of the domain. We bridge this gap by introducing a broad class of
smoothing operators, derived from general similarity or adjacency matrices, and
demonstrate that they can be normalized into diffusion-like operators that inherit
desirable properties from Laplacians. Our approach relies on a symmetric variant
of the Sinkhorn algorithm, which rescales positive smoothing operators to match
the structural behavior of heat diffusion. This construction enables Laplacian-like
smoothing and processing of irregular data such as point clouds, sparse voxel grids
or mixture of Gaussians. We show that the resulting operators not only approxi-
mate heat diffusion but also retain spectral information from the Laplacian itself,
with applications to shape analysis and matching.

1 INTRODUCTION

Discrete Differential Geometry. Geometric data analysis is an active research field that provides
a principled framework for understanding complex data (Gallot et al., 2004} Bronstein et al.|[2021).
These tools are especially effective in two or three dimensions, but also extend to graphs and higher-
dimensional domains. While differential geometry provides elegant constructions on well-structured
data, such as triangle meshes (Crane, 2018} [Botsch et al.| 2010), adapting these tools to less struc-
tured representations like point clouds or voxel grids remains a major challenge (Barill et al., 2018;
Lachaud et al.; 2023} |Feng & Crane, [2024)).

In many practical scenarios, high-quality triangular meshes are not available due to limitations in the
acquisition process (Bogo et al.,|2017) or even to the nature of the data itself (Behley et al., |2019).
For example, in medical imaging, one often works with voxelized segmentation masks (Marcus
et al.l |2007) and anatomical structures such as trabecular bones that cannot be neatly described
as surfaces. Similarly, point clouds and recent representations like Gaussian splats (Kerbl et al.,
2023;/Zhou & Liahner, |2025) are popular, but typically lack explicit connectivity information. Using
classical geometric operators in these settings often requires local approximations of the underlying
manifold (Sharp & Crane, [2020; [Sharp et al.l 2022; Zhou & Lihner, 2025), which can introduce
significant errors and degrade performance.

Smoothing Operations. Bridging the gap between geometry-aware methods designed for clean
meshes and more general unstructured data representations is crucial for scalable learning with
shapes. Among the most fundamental operations in geometry processing is smoothing, which mod-
ifies a signal using local geometric information (Taubin, 1995} |Sharp et all |2022). A key example
is heat diffusion, which, on meshes, is controlled by the matrix exponential of the Laplacian (Gallot;
et al., |2004). This process plays a central role in many pipelines for shape analysis (Crane et al.,
2017), segmentation (Sharp et al., |2022), and correspondence (Sun et al.,[2009).

Contributions. In this work, we generalize heat diffusion to arbitrary discrete domains such as
point clouds, voxel grids, Gaussian mixtures and binary masks. Our approach ensures mass con-
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Figure 1: Heat-like diffusion and spectral analysis on general geometric data without Laplacian
inversion. Left: Mass-preserving diffusion of a Dirac function on a sparse voxel grid (jaw bone).
Right: Laplacian-like eigenvectors on a point cloud (human) and Gaussian mixture (bunny).

servation, meaning that the total sum of the signal remains constant under diffusion, corresponding
to physical conservation of heat over the domain. Our approach starts from a symmetric similarity
matrix, akin to an adjacency matrix, and produces a heat-diffusion-like operator via a symmetric
Sinkhorn normalization (Knight et all,[2014). This results in a linear operator, symmetric with re-
spect to a mass-weighted inner product, whose properties and spectrum closely resemble that of
the exponential of a Laplacian, as displayed on Figure[T] Our contributions can be summarized as
follows:

* We present an algebraic framework for defining smoothing, Laplacians and diffusions on
general discrete geometric representations, clarifying their shared structure and assump-
tions.

* We propose an efficient and GPU-friendly algorithm to transform arbitrary similarity ma-
trices into mass-preserving diffusion operators. While inspired by recent theoretical works
in manifold learning (Wormell & Reich, 2021} [Cheng & Landal [2024)), our approach fo-
cuses on stability at fixed diffusion scale, instead of asymptotic limits.

* We demonstrate broad applicability to geometric data analysis, from spectral shape analysis
and generative modelling to state of the art shape correspondence on unstructured data.

2 RELATED WORKS

Laplacians and Heat Diffusions. The Laplace—Beltrami operator A is an essential tool in discrete
geometry processing, especially on triangle meshes (Sorkinel, 2005}, [Botsch et al.,[2010). Its spectral
properties have been widely used for shape analysis (Reuter et al.,2006) and correspondence (Levy},
2006 [Ovsjanikov et all, [2012). A closely related tool is the heat equation 9,f = —Af, whose
solution f(t) = e~'2 fy acts as a smoothing operator on an initial signal fy. Heat diffusion has been
leveraged to compute shape descriptors 12009; Bronstein & Kokkinos| 2010), geodesic
distances (Crane et al, 2017; [Feng & Crane, 2024) parallel transport (Sharp et al., 2019b)) or shape
correspondences (Vestner et al., 2017; [Cao et al., [2025). Heat-based smoothing has also inspired
neural architectures for i eometric learning (Sharp et al), 2022} [Gao et all, [2024) and generative

modelling (Yang et al] 2023). Crucially, the matrix exponential e is rarely computed directly.
Instead, practical implementations rely on either implicit Euler integration (Botsch et al.} 2010) or

spectral truncation using the first Laplacian eigenfunctions (Sharp et al.| 2022). These approaches
rely on mesh-based discretizations of the Laplacian (Pinkall & Polthier, [1993} [Meyer et al., 2003}
Sharp et al}[2019a)) and pre-computed factorizations, such as Cholesky or sparse eigendecomposi-
tions, limiting scalability and flexibility. While extensions to non-manifold triangulations have been
proposed (Sharp & Crane), [2020; [Belkin et all, [2009), generalizing diffusion-based smoothing to
higher-dimensional or unstructured data such as noisy point clouds and sparse voxel grids remains
challenging. Finally, related geometric flows often rely on iterative global normalization steps to

prevent singularities (Kazhdan et al.| [2012).
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Graph Laplacians. The Laplacian also plays a central role in graph-based learning and analy-
sis (Chungl {1997), supporting spectral clustering (von Luxburg, 2007), embedding, and diffusion.
Unlike the cotangent Laplacian for mesh processing (Pinkall & Polthier, |1993; Meyer et al.,|2003),
the graph Laplacian relies only on connectivity and optional edge weights, making it applicable to
a broader range of data. Discrete approximations of heat diffusion, such as the explicit Euler step
I — tA, form the basis of many graph neural networks (Kipf & Welling, [2017; [Hamilton et al.|
2017; |Chamberlain et al.| [2021). Recent works explore approximations of implicit time-stepping
schemes (Behmanesh et al., [2023; |Chamberlain et al., [2021]) but lose key properties or limit the
flexibility of the diffusion. Beyond Laplacians, message passing (Gilmer et al.,|2017) or graph at-
tention (Velickovi€ et al.| 2018)) offer alternative forms of smoothing. In this work, we take a step
back and propose general axioms for defining smoothing operators on discrete domains, formaliz-
ing desirable properties such as symmetry or mass conservation. We show that popular approaches,
as well as various Laplacian normalization techniques (e.g., symmetric, random-walk) can be in-
terpreted as specific cases in this framework. These classical methods often trade-off symmetry or
mass preservation, while we leverage Sinkhorn normalization that that satisfies both these proper-
ties. This produces operators that are symmetric under a mass-weighted inner product and spectrally
similar to Laplacian exponentials, while remaining compatible with unstructured geometric data.

Sinkhorn Scaling. The Sinkhorn algorithm (Sinkhorn & Knopp, [1967) scales a nonnegative ma-
trix into a doubly stochastic one via alternating row and column normalizations, and is widely used
in machine learning (Cuturi, |2013)) thanks to its efficiency and GPU compatibility. For symmetric
inputs, a symmetry-preserving variant exits (Knight et al., 2014)). Recent work in manifold learn-
ing related to diffusion maps (Coifman & Lafon, |2006) applies Sinkhorn normalization to graph
Laplacians and Gaussian kernels on point clouds (Marshall & Coifman| [2019; |Wormell & Reich,
20215 |Cheng & Landa, 2024). These works focus on the asymptotic limit to an underlying smooth
Laplace operator when the scale o — 0 and sampling density increases. In contrast, we are in-
terested in geometry processing and in the smoothing operation itself, at fixed scale. To this end,
we obtain stability results for fixed bandwidth and increasing density, and develop an axiomatic
framework which corrects any smoothing operator so that it behaves similarly to heat diffusion. In
particular, we ensure exact mass preservation and symmetry under a mass-weighted inner product.

Generalization to Unstructured Data. Extending differential operators to unstructured data re-
mains an open challenge. While regular grids support Laplacian-based smoothing or convolutional
approaches, more irregular representations, such as point clouds or gaussian splats, typically rely
on local approximations or learned kernels (Wu et al.| 2019; [Sharp & Cranel} [2020; |Sharp et al.,
2022} [Zhou & Liahner} [2025). Our framework requires only a notion of similarity between points,
and provides a unified approach to smoothing across these modalities. This allows us to bridge the
gap between discrete differential operators and modern unstructured data representations, without
relying on consistent manifold assumptions or expensive linear algebra routines.

Motivation and Contribution. Heat diffusion provides a natural smoothing operation on contin-
uous manifolds, but its discretization is often expensive or compromises important properties such
as mass preservation. On general discrete geometric domains, where Laplacians are not easily ac-
cessible, general smoothing kernels are often preferred in practice. In this work, we show that such
arbitrary smoothing operators can be corrected at minimal computational cost to mimic the key prop-
erties of heat diffusion, without any knowledge of an underlying Laplacian. To this end, Section
provides intuition and a basic construction on simple unweighted graphs, while Section ] describes
the full theoretical framework for our diffusion operators.

3  WARM-UP: GRAPHS

To build intuition about our framework, we begin with a simple example on an unweighted undi-
rected graph G with vertex set V and edge set € (see Figure [2)). In this section, we illustrate two
common approaches to smoothing a signal f € RY defined on the graph vertices.

Laplacian Smoothing. A common method to quantify the regularity of f is to use a discrete
derivative operator § € {0,£1}*Y, which encodes differences across edges. This induces a

Dirichlet energy E(f) = 3[|6f||> = 3(6f) "6 f, that can be rewritten as E(f) = 3 f"Af, where



Under review as a conference paper at ICLR 2026

O—0O0©——=0 O O O O O O

i i

Mass: 1.00 Mass: 0.62 Mass: 0.75 Mass: 1.00 Mass: 1.00

(a) Input Dirac (b) Row (c) Symmetric (d) Spectral (e) Sinkhorn

Figure 2: Diffusion of a Dirac function for different normalizations of the raw smoothing operator
K. Row and symmetric normalizations distort mass, while a truncated spectral approximation that
uses 4 out of 5 eigenvectors introduces negative values (in blue). In contrast, our symmetric Sinkhorn
normalization preserves both positivity and mass. The full diffusion matrices are shown as insets

A = §74 is a symmetric positive semi-definite matrix acting as a discrete Laplacian. The matrix
A admits an orthonormal eigendecomposition with eigenvectors (®;) and non-negative eigenvalues
(A2). Low values of E(®;) = A2 /2 correspond to smoother eigenfunctions. The eigenvectors can
thus be interpreted as frequency modes: A$* = 0 corresponds to the constant function, while higher
eigenvalues A capture finer variations.

Heat diffusion, governed by the operator e~ %2, acts as a smoothing transform that damps high-

frequency components while preserving the low-frequencies. If f = ", ﬁ-@i, then:
B(em™f) = LY AR < LNTOAPR = E(f). (1)

By construction, diffusion regularizes input functions and converges as ¢ — oo to a constant signal
f1- Remarkably, the fotal mass of the signal is also preserved for all : if (-, -) denotes the dot product
and 1 is the constant vector, then (1,e~*2 f) = (1, f). This follows from the symmetry of e "** and
the fact that constant functions are fixed points of the heat flow: e *~1 = 1. Lastly, all entries of
e~*2 are non-negative, ensuring that non-negative input signals remain non-negative. This follows
from —A being a Metzler matrix (Berman & Plemmons| [1994) (i.e. a matrix with non-negative
off-diagonal entries), which guarantees entrywise positivity of the matrix exponential.

While the Laplacian exponential provides strong regularization properties, its computation is expen-
sive in practice. Most authors rely on the implicit Euler scheme (I + tA)~!f which guarantees
numerical stability but requires solving a linear system for every new signal f.

Message-passing and Local Averages. A common alternative is to apply local averaging opera-
tors derived from the graph’s adjacency matrix A. One simple choice is to use the linear operator
K = 3(D + A), where D = diag(A1) is the diagonal degree matrix. However, this raw smoothing
operator K lacks key properties of e~ 2 and is highly sensitive to vertex degrees: well-connected
vertices disproportionately influence the output, while low-degree nodes contribute less. This intro-
duces a bias at boundaries of the domain that is undesirable in many applications.

Several methods have been proposed to mitigate this issue (Chung}, 1997} |Coifman & Lafon| 20006):

1. Row normalization divides each row of K by the degree of the corresponding vertex. This
yields the operator D~! K that performs a local averaging but breaks symmetry.

2. Symmetric normalization restores symmetry via D=2 K D™z, but does not preserve con-
stant input signals.

3. Spectral methods approximate the heat diffusion operator e™*~ as a low-rank matrix
Zf”zl e~tA? ®;®, in the span of the first R eigenvectors of the Laplacian A. While this

preserves desirable diffusion properties, computing these eigenvectors is expensive and
truncation introduces undesirable ringing artifacts.

tA

Issues and Normalization. As illustrated in Figures[2b|to[2d] existing normalization strategies fail
to fully capture the desired properties of heat diffusion. The Sinkhorn or bi-stochastic scaling method
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offers a principled and fast alternative, combining the benefits of both row-wise and symmetric
normalization while avoiding the artifacts of spectral methods. The core idea is to apply symmetric
normalization iteratively until convergence. Under mild assumptions, there exists a unique positive
diagonal matrix A such that the rescaled operator AK A is both symmetric and mass-preserving, as
illustrated in Figure

Related work on manifold learning has studied Sinkhorn normalization for graph Laplacian derived
from points clouds in R? (Marshall & Coifmanl 2019} [Wormell & Reichl, 2021} Cheng & Landa,
2024), using Gaussian kernels K, and with a specific focus on the joint limit of increasing sample
density and vanishing bandwidth. We are instead interested in correcting an arbitrary averaging op-
erator on any discrete geometric domain, for which the following section provides the full theoretical
framework.

4 THEORETICAL ANALYSIS

Notations. We now introduce our framework in full generality. Let X C R? be a bounded domain,
endowed with a positive Radon measure . We consider signals f : X — R in the space Li(X )

of square-integrable functions, endowed with the inner product (f, g),, = [, f(z)g(z)du(z). We

define the mass of a function as (f,1),, = [y f(z)du(x). When the measure ;1 = Zfil M0y, 1S
discrete, functions f can be identified with column vectors (f(z1),..., f(zn)) and u corresponds
to a positive diagonal matrix M = diag(my,...,my) € R¥*YN_ The inner product becomes
(f.g)p = fTMg: weuse (-,-), or (-,-) 5 interchangeably depending on context.

We denote by AT+ (or AT™), the adjoint of a linear operator A : LZ(X ) — Li(X ) with respect to
the y-weighted inner product. In the finite case, this corresponds to AT = M~1AT M so that:

(f,Ag)m = fTMAg = g MM "ATMf = (9,A™ f)u, 2)

where A" is the standard transpose. A matrix is symmetric with respect to the weighted dot product
(-,-)ar if and only if it is of the form S = KM with K ' = K.

Laplace-like Operators. As introduced in Section[3} Laplacians capture local variations of func-
tions on a domain. We highlight the key structural properties of such operators, simplifying the list
that was identified by Wardetzky et al.|(2008) for surface triangle meshes:

Definition 4.1 (Laplace-like Operators). A Laplace-like operator is a linear map A : Li(z’\,’ ) —
Li(/'t’ ), identified with a matrix (A;;) in the discrete case, that satisfies the following properties:

(i) Symmetry: ATv = A (i11)  Positivity: (f, Af), > 0forall f € L2(X)
(i4)  Constant cancellation: A1 =0 (iv)  Off-Diagonal Negativity: A;; < 0 fori # j

Properties (2), (i7) and (i) reflect the classical construction of Laplacians as self-adjoint positive
semi-definite operators, typically derived from integration by parts: (V f,Vg),, = (f, Ag),. Condi-
tion (#v), which corresponds to a Metzler structure (Berman & Plemmons| |1994) in the discrete set-
ting (i.e. non-negative off-diagonal entries), ensures intuitive diffusion behavior: diffusing a signal
with 0, f = —Af causes mass to flow outwards (Wardetzky et al.| [2008)). We refer to Appendix
for a definition in the continuous case using Kato’s inequality (Arendt, [1984).

These conditions are easily verified for the standard graph Laplacian. On triangle meshes, the com-
monly used cotangent Laplacian satisfies properties (i)—(ii¢) by construction. However, property
(iv) only holds in the absence of obtuse angles. Violations of this condition, which results in unde-
sirable positive weights, are a well-known issue in geometry processing, typically addressed using
intrinsic triangulations (Bobenko & Springborn, 2007; Fisher et al., [2006} [Sharp et al., 2019a).
Diffusion Operators. As presented in Section the family of diffusion operators e ~** associated
to a Laplacian A play a central role in geometry processing and learning. These operators smooth
input signals while preserving key structural properties. Leveraging the properties of Definition .1
we define diffusion operators as follows:

Definition 4.2 (Diffusion Operators). A diffusion operator is a linear map Q : L2(X) — L2(X)
that satisfies the following properties:
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(i) Symmetry: QT+ = Q (i41) Damping: The eigenvalues of Q lie in [0, 1]
(ii) Constant preservation: Q1 =1 (iv) Entrywise positivity: Qf > 0 whenever f > 0

Laplace-like operators and diffusion operators are almost equivalent: the exponential of an any
Laplace-like operator yields a diffusion operator, while the principal logarithm of a diffusion oper-
ator yields properties (7)-(iii) of Definition 4.1} Property (iv) in Definition [4.2]is slightly weaker:
true equivalence would require Q° to be entrywise positive for all £ > 0; see Appendix

These properties reflect the structure of classical heat diffusion. Symmetry and constant preserva-
tion imply mass conservation, since for any f, (1,Qf), = (Q "1, f), = (QL, f), = (1, f),.
Entrywise positivity (iv) follows from the non-negativity of the heat kernel: a discrete perspective
via Metzler matrices is given in Appendix Damping (#i7) ensures that repeated applications of Q)
attenuate high-frequency components.

Finally, when Q = e~ ', its leading eigenvectors coincide with the lowest-frequency modes of

. A . . .
A, with A? = ¢~ *A". This allows one to recover low-frequency Laplacian structure via power
iterations on @), without computing small eigenpairs directly (see Section [6).

Smoothing Operators. In practice, defining a diffusion operator without access to an underlying
Laplacian can be challenging. Instead, many operators commonly used in geometry processing,
such as adjacency or similarity matrices, implicitly encode local neighborhood structures and enable
function smoothing through local averaging. We refer to such matrices as smoothing operators:

Definition 4.3 (Smoothing Operators). A smoothing operator is a linear map S : L7.(X) — L2 (X),
identified with a matrix (S,;) in the discrete case, that satisfies the following properties:

(i) Symmetry: ST+ = S, s0 S = KM with K" = K in the discrete case
(i3)  Operator positivity: (f,Sf), > 0 for all f, so the eigenvalues of S lie in [0, +00)
(t3¢)  Entrywise positivity: Sf > 0 whenever f > 0, so S;; > 0 in the discrete case

Sinkhorn Normalization. As discussed in Section [3] recent works in manifold learning have
shown that symmetric graph adjacency matrices can be rescaled to become bi-stochastic at mini-
mal computational cost. We leverage this insight to derive the following two results:

Theorem 4.1 (Symmetric Normalization). Let j1 = Zf\; m;0y, be a finite discrete measure with
positive weights m; > 0, and S a smoothing operator encoded as a N-by-N matrix with positive
coefficients S;; > 0. Then, Algorithm (I| converges to the unique diagonal matrix A with positive
coefficients such that Q = ASA is a diffusion operator with respect to p.

Theorem 4.2 (Convergence for the Gaussian and Exponential Kernels). Let X be a bounded re-

gion of RY, and (ut)¢en be a sequence of finite discrete measures jit = vaz‘l mﬁ&xi that converges
weakly to a (possibly continuous) Radon measure |1 with positive, finite total mass.

Let k(x,y) be a Gaussian or exponential kernel with positive radius o > 0, and define the smoothing
operators S}; = k(x}, x%)m}. Let Q' = A'S*A* be the diffusion operators obtained via symmetric
normalization as in Theorem[d.1]

Then, each diagonal matrix A* can be interpeted as a pointwise product (f — N\ f) with a continu-
ous positive function \* : X — R such that A* = diag(\* (1), ..., X (zy,)). Also, there exists a

continuous positive function X : x € X +— A(x) > 0 such that the operator:

Q:feL3(X) = [QF o= 2@) [ e\ Wdn)] 2@ O
is a diffusion operator, and Q* converges pointwise to Q. For all continuous signal f on X,
Ny
[ Q'f 1 x— \(x) Zk(m, ah)ymi N (af) f () ] 12420 Qf uniformly on X 4)
j=1

This result provides a practical convergence guarantee for our construction, ensuring stability under
increasing sampling density. Unlike un-normalized smoothing operators whose spectral norm can
explode with resolution, our normalized operators ¢ converge to a bounded continuous operator
Q@ at a fixed kernel scale o > 0 (proofs in Appendices [B]and [C). In contrast, the manifold-learning
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Algorithm 1 Symmetric Sinkhorn Normalization

Require: Smoothing matrix S € RV*N 1§ = KM where KT = K and M is a mass matrix.

1: Initialize A < Iy > A is a diagonal matrix, stored as a vector of size V.
2: while } -, |A;; >, SijAj; — 1] is larger than a tolerance parameter do

3: di <> j SiiNjj > Matrix-vector product with S.
4: Nii — /Nii/d; > Coordinate-wise update on a vector of size N.
5: end while

6: return @) = ASA > The diffusion @ is a positive scaling of S.

literature seeks Laplace-Beltrami consistency in joint limit N — oo, ¢ — 0 with density correc-
tions (Wormell & Reich} 2021} |Cheng & Landal, |2024). Our results complement that line and target
the fixed-scale regime used in practice. We ensure that Sinkhorn normalization stabilizes the diffu-
sion, making each Q' symmetric, mass-preserving, and spectrally bounded to [0, 1] independently
of the resolution. Note that we assume finite samples and positive entries in S, and refer to Knight
et al. (2014}, Sec. 3.1) for zero entries.

Robustness to Mass Perturbation. A practical concern when using discrete data is the sensitivity
of the operator to noise in the estimated mass matrix /. In Appendix[D] we prove that the symmetric
Sinkhorn normalization stabilizes the operator against such perturbations, as the relative error in the
scaling factors A is bounded by half the relative error in M (i.e. ||d\/All,, < 3 [[dm/m| ).
Furthermore, we show that the first order variation of ) depends linearly on the relative variation
of M, and numerically validate that this error remains controllable in practice (see Appendix |[D|and
Figure|[6).

5 EFFICIENT IMPLEMENTATION

Sinkhorn Convergence and Versatility. We use the symmetric Sinkhorn algorithm (Knight et al.,
2014; Feydy et al.l |2019), which converges in a few iterations, 5 to 10 in practice, as shown in Ap-
pendix [E| As described in Appendix [E] this is equivalent to applying standard symmetric scaling to
the matrix M K M. Convergence is therefore mostly governed by the geometry of K and remains
robust to variations in the mass matrix M. Following scipy.sparse.linalg (Virtanen et al.
2020), we treat S as a black-box matrix—vector product: no factorization or complex data structure
is required as diffusion behavior is encoded entirely in the diagonal A. Code will be released upon
acceptance.

Graphs. Given a symmetric adjacency matrix A > 0, regularize A, = A + 117 (¢ > 0). With
vertex masses M = diag(m;) and degree matrix D, set S = (D + A.)M, which satisfies Def-
inition @] and is efficient when A is sparse. Weak diagonal dominance (Horn & Johnson| [1985))
ensures a positive spectrum.

Point Clouds and Gaussian Mixtures. Given a weighted point cloud (x;,m;), we use Gaus-
sian kernels k with S;; = k(z;,2;)m; for smoothing. Matrix-vector products scale to millions
of points via the KeOps library (Charlier et al., [2021} |[Feydy et al., [2020) or optimized attention
layers (Lefaudeux et al., 20225 |Dao} |2023)) (described in Appendix .

For Gaussian Mixtures, given a pair m;N (x;, ;) and m;N (z;,%;), we use the L? dot product of
densities convolved with an isotropic Gaussian of variance o2 /2:

Sij =my exp | — %(Iz — I’j)T(O'QI + 27 + Zj)fl(xi - Zj)i| . (5)
Multiplicative constants are normalized out by Algorithm|[I]

Voxel Grids. On regular grids, Gaussian smoothing is implemented as a separable convolution.
For sparse volumes, we leverage the efficient data structures of the Taichi library (Hu et al.| 2019).
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Figure 3: Spectral analysis on the Stanford Armadillo (Krishnamurthy & Levoy, |1996) normalized
to the unit sphere, treated as a surface (top) and volume (bottom). We compare the reference cotan
Laplacian (a,f) to our normalized diffusion operators on clouds of 5000 points (b,g), mixtures of
500 Gaussians (c,h) and binary voxel masks (d,i), all using a Gaussian kernel of radius ¢ = 0.05
(edge length of a voxel). We display the 10th eigenvector (a—d,f—i) and the first 40 eigenvalues (e.j).

6 RESULTS

Spectral Shape Analysis. As discussed in Section [d] we expect the leading eigenvectors of a
diffusion operator () to approximate low-frequency Laplacian modes. Notably, while spectral
convergence is typically established for point clouds in the theoretical limit of vanishing band-
width (Wormell & Reich}, 2021)), we here show that our construction preserves spectral consistency
across diverse representation even at the fixed, non-zero scales required for practical geometry pro-
cessing. Figure [3] compares our operators across modalities to a FEM Laplacian on meshes, and
we display additional results on the sphere and cube and an animal shape in Appendix (Gl We also
provide simple heuristics to estimate Laplacian eigenvalues from our normalized diffusion oper-
ators (see App. and show in Figure [3] (Right) that their distributions remain consistent across
modalities, with deviations on volumetric representations emerging near the voxel sampling scale.

Normalized Metrics. Laplacians naturally induce Sobolev metrics and simple elastic penalties,
commonly used as regularizers in machine learning and applied mathematics.

Figure [ show results following [Feydy et al| (2019) by minimizing the Energy Distance (Rizzo &
Székely, 2016) between two point clouds, but smoothing the gradient with a Gaussian kernel. Re-

placing raw Gaussian smoothing with our normalized diffusion improves stability near boundaries
and heavily accelerates convergence in the Energy—Distance flow. This effect is quantitatively ob-
served by evaluating Chamfer distance across iterations, as shown in Appendix [H] This suggests po-
tential in inverse rendering (Nicolet et al.,[2021};[Tojo & Umetani},[2023)) or generative modelling
& Wang|, 2016} [Arbel et al., 2019} [Korba et all, 2024). We detail the objective, discretization, and
parameters in Appendix [H]

In Figure 5| we follow [Kilian et al.| (2007) and perform a geodesic interpolation between two
poses of an anatomical shape. Standard metrics for surface meshes such as ARAP
or elastic shell models (Grinspun et al.} 2003} [Sassen et al.,[2024) work well on clean
meshes, but are not robust to topological noise. Computational anatomy instead uses spline and
kernel metrics (Bookstein, [I989; [Pennec et al., 2019), defining a diffeomorphic shape space via
LDDMM (Beg et al., 2005} Durrleman et al.| 2014). A key advantage is that the same formula-
tion then applies to curves, surfaces, and volumes, with strong guarantees against topology changes
and self-intersections. For very large deformations, however, kernel metrics tend to favor contrac-
tion—expansion rather than pure translations (Micheli et al, 2012) (see Figure[5p). Replacing the raw
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Figure 4: Flow of a source distribution of points (rainbow) towards a target (blue), following the
gradient of the Energy Distance for a Gaussian kernel metric (b) and its normalized counterpart (c).

(a) Input Data (b) LDDMM (c) Normalized (d) Gaussian Mixtures

Figure 5: Pose interpolation and extrapolation of a human hand skeleton. (a) We interpolate
between source (t = 0, red) and target (f = 1, blue) poses, and extrapolate to ¢ = —0.5, 0.5, and
1.5. (b) The standard LDDMM geodesic with a Gaussian kernel (¢ = 0.1) produces unrealistic
extrapolations. (c) Using our normalized diffusion yields a smoother, more plausible path. (d) The
method remains robust on coarse Gaussian-mixture inputs (100 components).

kernel K by our normalized diffusion @ within LDDMM mitigates this and yields more plausible
paths across arbitrary data structures (Figure[Sc—d). We verify this effect by plotting the average area
distortion across the geodesic path in Appendix [I} along with a second example on animal meshes,
full equations and implementation details.

Runtimes. Our symmetric Sinkhorn converges in 5-10 iterations across modalities (see curves
in Appendix[E). We report GPU runtimes for 5 iterations using a Gaussian kernel for point clouds of
increasing size. These are compared to CPU runtimes for implicit Laplacian diffusion using sparse
LU factorization, which reflects typical usage when a Laplacian is available. Dense solvers on the
GPU are significantly slower and run out of memory beyond 10k points. While we acknowledge the
hardware difference, this comparison illustrates practical bottlenecks, as sparse direct solvers lack
mature and memory-efficient implementations on the GPU. Our approach therefore allows normal-
izing smoothing operators at run time on the GPU, enabling their usage in deep learning pipelines
Additional details on hardware, experimental setup, and other baselines are provided in Appendix [F}

Point Feature Learning. We evaluate our operator on 3D shape correspondence, where the goal
is to match points across human shapes in varying poses, a challenging task due to changes in geom-
etry and topology. Building on DiffusionNet (Sharp et al.,[2022)), we replace its spectral smoothing
with our kernel-based operator, resulting in Q-DiffNet, which operates directly on 3D coordinates
and learns diffusion scales (o) instead of fixed times. We integrate Q-DiffNet into the state of the
art ULRSSM pipeline (Cao et al., [2023), train on the remeshed FAUST+SCAPE datasets (Bogo
et al., 2014; |Anguelov et al., 2005} Ren et al., [2019) using point clouds, and also evaluate on the
harder SHREC19 benchmark (Melzi et al., 2019). We compare to reference mesh-based meth-
ods (Sharp et al., 2022} |Cao et al., |2023)), which are seen as topology-aware upper bounds, and to
their point-cloud retrainings (“PC”), which act as our direct competitors. As shown in Table [Tb]
Q-DiffNet significantly outperforms point-based baselines on SHREC19 and performs similarly on
FAUST and SCAPE. Remarkably, on SHREC19, where missing parts can bias spectral diffusion,
our unstructured approach outperforms the mesh-based baselines, demonstrating robustness of our
operator to topological noise. While our network avoids Laplacian eigenvectors, ULRSSM still
uses them for functional maps, and we also report a variant using eigenvectors from our operator
(“QFM”). The operator thus acts as a geometry-aware module applicable to broader shape repre-
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Table 1: Left: Wall-clock runtimes for symmetric Sinkhorn normalization (5 iterations) on the
GPU, compared to CPU runtimes for implicit Laplacian diffusion using sparse LU. Dense GPU
solvers exceed memory at beyond 10k points. Right: Mean geodesic error of Q-DiffNet for shape
correspondence on FAUST, SCAPE, and SHREC19 (lower is better).

(a) Runtime (ms) vs. N (b) Mean Geodesic Error
N GPU Sinkhorn CPU LU Method FAUST SCAPE S19
10,000 3 65 % DiffNet 1.6 2.2 4.5
50,000 21 393 = ULRSSM 1.6 2.1 4.6

100,000 89 1,030 .

250,000 448 3510 . DiffNet (PC) 3.0 2.5 7.5
500’000 L817 9’100 £ ULRSSM (PC) 2.3 2.4 5.1
1 000’000 6,789 23’600 £ Q-DiffNet (QFM) 23 31 41
v ’ > Q-DiffNet 2.1 24 3.5

sentations, including partial data (Attaiki et al.| 2021)). Beyond performance, we highlight that our
framework offers great flexibility. While baselines rely on mesh-specific Laplacians, our operators
work on arbitrary modalities such as Gaussian splats or voxel grids. This unlocks the application of
DiffusionNet to a broader class of geometric data, which we hope future work will be able to build
upon. Implementation details and qualitative results are in Appendix [J|

7 LIMITATIONS
While versatile, our method has a few limitations.

Dependence on the Mass Matrix. Our construction enforces symmetry and mass preservation
w.r.t. the inner product defined by M. Geometric fidelity of the resulting diffusion thus depends
on the quality of M. In settings with highly irregular sampling, a robust estimation of M can be
challenging. While we obtain stability bounds for moderate perturbations in Appendix [D] large
errors in M will bias the normalization factors A, potentially distorting the resulting diffusion.

Strict Mass Preservation. While intuitive, preserving mass is not always optimal. In graph
processing, for instance, it might be beneficial that high-degree nodes amplify features instead of
equally redistributing among its neighbors. Our operator is conservative by design, which can limit
expressivity in tasks requiring signal re-amplification. However, given some recent success of heat-
like diffusion in graph neural networks (Behmanesh et al.| 2023} |Chamberlain et al.| 2021), the
choice for information preservation during propagation remains highly application-dependent.

Theoretical Analysis on Unstructured Data. While Algorithm || provides a controlled smooth-
ing operator on a variety of domains, the theoretical link to a continuous Laplace-Beltrami operator
is weaker than in the mesh or point-cloud setting. Our diffusion operator appears as a robust drop-in
replacement for diffusion, but does not guarantee convergence to an underlying “true* Laplacian.

8 CONCLUSION AND FUTURE WORKS

We introduced a theoretical and practical framework for defining heat-like diffusion operators on
general geometric data. Our approach unifies and extends classical constructions such as graph
adjacency or similarity matrices into well-behaved diffusion mechanisms. We demonstrated its ver-
satility across tasks, including Laplacian eigenvector approximation, gradient flow stabilization, and
integration into neural networks as stable geometry-aware layers.

While our experiments confirm the promise of this framework, they remain preliminary. Future
work should explore more extensive downstream applications, particularly in settings where stan-
dard Laplacians are unavailable or unreliable. In addition, the scalability of our method can be
further improved: while our current implementation benefits from GPU-accelerated libraries, in-
corporating ideas from sparse or low-rank attention mechanisms could provide significant runtime
gains on large-scale point clouds and volumetric data.

10
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REPRODUCTIBILITY STATEMENT

Our main algorithm is summarized in Algorithm [I} Regarding our theoretical contributions, we
state all axioms and definitions in Section 4] with more details in Appendix [A] and provide com-
plete proofs of the two main theorems in Appendices |B| and |Cl Implementation details needed to
reproduce all results are given for each experiment: convergence behavior and practical notes in Ap-
pendix [E] runtime setup and hardware in Appendix [F] eigenvector estimation and heuristics in Ap-
pendix |G} gradient-flow objectives and discretization in Appendix [Hf LDDMM geodesic shooting
in Appendix [l and training protocol for Q-DiffNet Appendix Il We also include a timings table
in Table [Ta] and report iteration counts so others can budget runs. Together, these materials are
sufficient to reproduce the figures and tables from scratch.

Complete code for full reproducibility will be made public upon acceptance.
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A CONTINUOUS FORMULATION OF THE METZLER CONDITION

Let A be a real square matrix. We say that A is a Merzler matrix if its off-diagonal entries are
non-negative. This condition implies that the matrix exponential ! has non-negative entries for all
t > 0. To see this, remark that for ¢ close enough to 0, we have e! = I + tA + o(t). This implies
that the diagonal coefficients are approximately 1, and the off-diagonal ones are approximately
tA;; > 0. Since for any t we have ¢4 = (e!4/”)” we can take P large enough such that e*4/ is
non-negative (by the small-t argument). Since matrix multiplication preserves non-negativity, e*
is non-negative for all ¢ > 0.

Reciprocally, if B is a matrix admitting a logarithm log(B) such that B* = exp(log(B)t) is entry-
wise positive for all ¢ > 0, then the identity B* = I + tlog(B) + o(t) for small ¢ shows that log(B)
is a Metzler matrix.

To extend this reasoning beyond finite-dimensional spaces, we use the formalism of semigroups on
Banach spaces (Engel et al., [2000):

Definition A.1. Let T : t — T(t) be a continuous function from R to the space of bounded linear
operators on a Banach space V.. We say that T is a strongly continuous semigroup if:

(i) TO)=1I
(1) T(t+s)=T@)T(s)forallt,s >0
(t91) limgoT(t)f = fforall f €V

Its generator A is defined on the set of signals f € V for which the limit exists as:

L TWf-f
Af =Ty ——— ©

The semigroup is said to be positive if T'(t) f > 0 forall f > 0andt > 0.

Under this framework, a Metzler matrix A is the generator of a positive semigroup t — e*4.

In full generality, extending the Metzler condition to infinite-dimensional operators is not straight-
forward since the notion of “off-diagonal” terms is ill-defined. The correct formalism uses Banach
lattices; we refer to (Schaefer, [1974)) for proper statements and (Arendt, |1984) for proofs. In our
case, we make a simplifying assumption and restrict ourselves to Hilbert spaces of the form Li (X),
which include both finite-dimensional Euclidean spaces and infinite-dimensional L? spaces. For any
signal f € L2 (X), we define sign(f) pointwise as:

+1 if f(z) >0
sign(f)(z) =< -1 if f(z) <0, sothat |f|=sign(f)f. (7)
0 iff(z)=0

This leads to the following proposition, which characterizes the Metzler property on general Li(X )
spaces via a pointwise inequality:

Proposition A.1. Let A : RN — RY be a be a linear operator represented by a matrix. Then the
following inequalities are equivalent:

(1) (Metzler condition) A;; > 0 whenever i # j
(i1) (Kato’s inequality) A |f| > sign(f)Af forall f €V

Proof. Statement (%) can be rewritten as: for all 4,

A lfil > sign(fi) Y Auf; - ®)
J J

If (i) holds, then for ¢ # j we have A;; |f;| > Aijfjsign(f;), and, by definition, A;; |f;| =
A;; fi sign(f;). Therefore we have Equation (8)) and (i4).

Conversely, suppose (i) holds. Consider a pair ¢ # j and a signal f such that f; =1, f; = —1 and
fx = 0 for other indices k. Equation (8]) implies that:

A+ Ay > Ay — Ay, ie Ay > 0. )]
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This allows us to conclude. O

We would like to extend the implication from the finite-dimensional case: if A satisfies Kato’s
inequality, then it should generate a semigroup of non-negative operators. In the infinite-dimensional
setting, this implication requires additional structure.

Definition A.2. A strictly positive subeigenvector of an operator A is a function f € D(A) so that:

(i)  Af < \f for some X € R
(i) f > 0 almost everywhere

where D(A) denotes the domain of the (possibly unbounded) operator A.

This allows us to state the following result, which is a direct consequence of Theorem 1.7 in|Arendt;
(1984):

Proposition A.2. Let A be a generator of a strongly continuous semigroup on Li (X). Assume that
there exists a function g € D(A) such that:

(i) g is a strictly positive subeigenvector of ATn.
(i) (weak Kato’s inequality) (AT g,|f]), > (sign(f)Af,g), forall f € D(A).

Then the semi-group is positive (see Definition[A.)).

In our setting, the generator A is equal to the opposite —A of a Laplace-like operator, and g is the
constant function 1. Since our set of axioms implies that —AT#1 = —A1 = 0, we always have that
1 is a strictly positive subeigenvector of —A T+, This allows us to propose the following definition
of a Laplace-like operator, which generalizes Definition . T]to discrete measures:

Definition A.3 (General Laplace-like Operators). Let A be a generator of a strongly continuous
semigroup on LZ(X ), where y has finite total mass.

We say that A is a Laplace-like operator if for all | € Li(X ):

(i) Symmetry: ATv = A (i4i)  Positivity: (f,Af), >0
(13)  Constant cancellation: A1 =0 (iv)  Kato’s inequality: (sign(f)Af,1), >0

The results above show that if ¢ — T'(t) is the strongly continuous semigroup generated by such a
Laplace-like operator A, then T'(t) satisfies the conditions of a diffusion operator (Definition 4.2 in
the main manuscript).

We note that the assumption of finite total mass for x ensures that the constant function 1 belongs to
Li(z’l’ ), and that our definition includes, as a special case, the classical Laplace-Beltrami operator
on compact Riemannian manifolds.

B PROOF OF THEOREM 4.1

Our theoretical analysis relies on ideas developed in the context of entropy-regularized optimal
transport. We refer to the standard textbook (Peyré et al., [2019) for a general introduction, and to
Feydy et al.|(2019) for precise statements of important lemmas. Let us now proceed with our proof
of Theorem4.1l

Proof. Recall that 4 = Ef\il m;0z, is a finite discrete measure with positive weights m; > 0. The
smoothing operator .S can be written as the product:

S = KM, (10)

where K is a N-by-N symmetric matrix with positive coefficients K;; > 0 and M =
diag(my, ..., my) is a diagonal matrix. Our hypothesis of operator positivity on S implies that
K is a positive semi-definite matrix. Finally, we can suppose that y is a probability measure without
loss of generality: going forward, we assume that m; +--- +my = 1.
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Optimal Transport Formulation. We follow Eq. (1) in [Feydy et al. (2019) and introduce the
symmetric entropy-regularized optimal transport problem:

N

OTyeq (1, 1) = i iCii + KL(m,mm" 11

) = _min M_Z:lm j + KL(m,mm") (1D

where C;; = —log K;; is the symmetric N-by-N cost matrix and Plans(y, 1) is the simplex of

N-by-N transport plans, i.e. non-negative matrices whose rows and columns sum up to m =
(mq,...,my). KL denotes the Kullback-Leibler divergence:

KL N = | I 12

(rommT) = > mylog = (12)

ij=1

Compared with [Feydy et al.| (2019), we make the simplifying assumption that ¢ = 1 and do not
require that C;; = 0 on the diagonal since this hypothesis is not relevant to the lemmas that we use
in our paper.

Sinkhorn Scaling. The above minimization problem is strictly convex. The fundamental result of
entropy-regularized optimal transport, stated e.g. in Section 2.1 of |[Feydy et al.| (2019) and derived
from the Fenchel-Rockafellar theorem in convex optimization, is that its unique solution can be
written as:

mij = exp(fi +g; — Ciz) mim; (13)

where f = (f1,...,fn) and ¢ = (g1,...,9n) are two dual vectors, uniquely defined up to a
common additive constant (a pair (f,g) is solution if and only if the pair (f — ¢,g + ¢) is also
solution) — see Proposition 11 inFeydy et al.|(2019). In our case, by symmetry, there exists a unique
constant such that f = g — see Section B.3 in [Feydy et al.[(2019). We denote by £ = (¢1,...,¢n)
this unique “symmetric” solution. It is the unique vector such that:

71'2']' = exp(& + Ej - C”) mimj = miee’i Kij eéjm]- (14)

is a valid transport plan in Plans(g, ). This matrix is symmetric and such that for all :

N N
Z’/Tij = m; i.e. Gzi ZK” ezjmj =1. (15)
j=1 j=1

We introduce the positive scaling coefficients \; = e’, the diagonal scaling matrix A =

diag(Aq, ..., An), and rewrite this equation as:

AKMA1l =1 ie. Q1 = 1 where Q = AKMA . (16)

This shows that scaling S = KM with A enforces our constant preservation axiom for diffusion
operators — property (i¢) in Definition Likewise, since A is a diagonal matrix with positive
coefficients, () satisfies axioms (i) — symmetry with respect to M —and (iv) — entrywise positivity.

Crucially, A can be computed efficiently using a symmetrized Sinkhorn algorithm: our Algorithm ]
is directly equivalent to in |Feydy et al.| (2019} Eq. (25)).

Spectral Normalization. To conclude our proof, we now have to show that the normalized oper-
ator () also satisfies axiom (ié¢) — damping — in our definition of diffusion operators, i.e. show that
its eigenvalues all belong to the interval [0, 1].

To this end, we first remark that Q = AKMA = AKAM has the same eigenvalues as Q' =

VMAKAVM, where v M = diag(y/m71,...,/my). If ais a scalar and x is a vector, the eigen-
value equation:

Qr = AKAVMVMz = ax is equivalent to Qy=vVMAKAVMy=ay (7)
y

with the change of variables y = v M.
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Then, we remark that for any vector = in RN,

N
Z Kij)\i)\j(w/mjxi — \/mixj)Q (18)
i,j=1
N
= Z K?_])\’LA] (mjx? + mﬂ:? - 2\/mi\/mj9:i:z:j) (19)
i,j=1
N N
= > (AKMAL)2? + Y (AKMAL)2? — 227Q'x (20)
i=1 Q1=1 j=1 Q1=1
=22 (I-Q)z. (21)

Since the upper term is non-negative as a sum of squares, we get that the eigenvalues of the sym-
metric matrix I — @’ are all non-negative. This implies that the eigenvalues of Q’, and therefore the
eigenvalues of (), are bounded from above by 1.

In the other direction, recall that our hypothesis of operator positivity on S implies that K is a posi-
tive semi-definite matrix. This ensures that Q’, and therefore Q, also have non-negative eigenvalues.
Combining the two bounds, we show that the spectrum of the normalized operator () is, indeed,
included in the unit interval [0, 1]. O

C PROOF OF THEOREM 4.2

Proof. The hypotheses of our Theorem 4.2 fit perfectly with those of Theorem 1 in |Feydy et al.
(2019). Notably, we make the assumption that X is a bounded region of R%: we can replace it with a
closed ball of finite radius, which is a compact metric space. Just as in Appendix [B] we can assume
without loss of generality that the finite measures ! and the limit measure y are probability distri-
butions, that sum up to 1: positive multiplicative constants are absorbed by the scaling coefficients
At and A.

If k(z, y) is a Gaussian kernel of deviation o > 0, we use the cost function C(z,y) = 1|z — y|?
and an entropic regularization parameter € = o2, If k(z, y) is an exponential kernel at scale o > 0,
the cost function is simply the Euclidean norm ||z — y|| and the entropic regularization parameter &
is equal to o.

Continuous Scaling Functions. The theory of entropy-regularized optimal transport allows us to
interpret the dual variables f, g and ¢ of Egs. as continuous functions defined on the domain
X. Notably, for any probability distribution y, the continuous function ¢ : X — R is uniquely
defined by the “Sinkhorn equation” — see Sections B.1 and B.3 in Feydy et al.|(2019):

Ve e X, l(z) = — 5log/Xexp L(t(y) — C(z,y)) duly) . (22)

The first part of Theorem 4.2 is a reformulation of this standard result. We introduce the continuous,
positive function:

AMz) = exp(l(x)/e) > 0 (23)
which is bounded on the compact domain X'. We remark that Eq. (22) now reads:
1
Vee X, MNz) = (24)
S R XY e
ie. 1= A@) [ Moy)Mm)du(w). (25)
X

This implies that the operator () defined in Equation (3) satisfies our constant preservation axiom
for diffusion operators. By construction, it also satisfies the symmetry and entrywise positivity
axioms. The damping property derives from the fact that we can write () as the limit of the sequence
of discrete diffusion operators Q" with eigenvalues in [0, 1].
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Convergence. To prove it, note that the above discussion also applies to the discrete measures
pt =" m{d,:. We can uniquely define a continuous function £* : X — R such that:
Ny
Ve e X, (H(z) = — elomeE» exp 1 (*(zf) — C(x,2})) , (26)
j=1
and interpret the diagonal coefficients of the scaling matrix A’ as the values of the positive scaling
function:
M(z) = exp(fi(z)/e) > 0 (27)
sampled at locations (%, . .. ,:c}kvt).

Recall that the sequence of discrete measures ! converges weakly to p as ¢ tends to infinity. Cru-
cially, Proposition 13 in [Feydy et al.| (2019) implies that the dual potentials £* converge uniformly
on X towards {. Since ¢ is continuous and therefore bounded on the compact domain X, this uni-
form convergence also holds for the (exponentiated) scaling functions: A* converges uniformly on
X towards .

For any continuous signal f : X — R, we can write down the computation of Q* f as the composi-
tion of a pointwise multiplication with a scaled positive measure ! A?, a convolution with the (fixed,
continuous, bounded) kernel k, and a pointwise multiplication with the positive scaling function A%.

In other words:
Q'f = N (k* (ut/\tf)) . (28)
Qf = X- (kx(uAf)) . (29)
Since A! converges uniformly towards \ and f is continuous, the signed measure u!\! f converges

weakly towards p A f. This implies that the convolution with the (bounded) Gaussian or exponential
kernel k x (uf At f) converges uniformly on X' towards k % (u\f), which allows us to conclude. [J

Likewise, we have that:

D STABILITY TO NOISE IN MASS

Infinitesimal Variation. Let K M be a smoothing operator as in Section 4} with M = diag(m).
Theorem guarantees the existence of a diagonal matrix A = diag()\) such that Q = AKMA is
a diffusion operator.

Consider an infinitesimal variation m — m + dm of m. This induces a variation of the scaling
factors A — X\ 4 dA. To find the relationship between them, we differentiate the row-stochasticity
condition ) | ; Aijk;jm; = 1. We obtain

d\; d\; dm;
Iy + Z )\ikzijmj)\j/\f_] + Z )\ikijmj)\j T:LJ =0. 30)
? j J j J
Since Qi; = Ajk;jm;A;, this simplifies to
d\ X d d\ d
Y Lo+ @31)
A A m A m

This shows that the relative error in mass propagates to the Sinkhorn scaling factors through the
operator —(Id +Q)~1Q.

Stability Bound. We can bound the amplification of this error using the M-spectral norm ||-|| ;.
Since @ is M-symmetric with eigenvalues in (0, 1], A = (Id +Q) '@ is also M -symmetric, and its
eigenvalues are in the form £ where 1 € (0, 1]. Since the function = > 7 is strictly increasing

144 1+x
and bounded by 1/2 on [0, 1], the operator norm is also bounded:
d 1||d
al  Ljdm) (32)
MMy = 20 m |y

This proves that symmetric Sinkhorn normalization is stable: relative errors in the mass matrix are
damped by a factor of at least 2 in the scaling factors, preventing numerical explosion.
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Figure 6: Sensitivity of the diffusion operator to mass perturbations. We evaluate the stability of our
operator on the Armadillo mesh by applying multiplicative log-normal noise to the mass matrix M.
The x-axis shows pointwise standard deviation of the noise (in %), and the y-axis the relative error,
measured as the M -spectral norm of the difference between the unperturbed and perturbed operators
(1Qm — Qum, || 5)- The error scales linearly with the noise magnitude, empirically confirming that
the symmetric Sinkhorn normalization prevents the amplification of mass estimation errors.

Operator Variation. Finally, the first-order variation d() of () is given by
dQ = diag (Cl;) Q + Q diag (if:) + Qdiag (?) . (33)

Using Eq. in this expression shows that variations in ) depend linearly on the relative log-
variations of the mass m, with coefficients bounded by the spectral properties of Q.

Experiment. We test this theoretical result experimentally. We introduce multiplicative log-
. . 2

normal noise to the (lumped) masses of the Armadillo mesh: (m,); = m;e“e 7 /2 where

€; ~ N(0,02). The term e~7"/2 ensures the expectation remains unbiased, i.e. E., [(me):] = m;.

In Figure[6] we plot the relative error ||Qy, — Qm, |5, against the noise level o', where @y, and Q,,,,
are the diffusion operators associated to K M and K M, respectively. We use a Gaussian kernel K
of bandwidth 0.05. As predicted by our derivation, the error scales linearly with the input noise
magnitude and remains well-controlled even for significant perturbations, confirming the robustness
of the method to mass estimation errors.

E Q-DIFFUSION IN PRACTICE

Equivalence to Symmetric Sinkhorn. Algorithm [l| simply solves the fixed point equation
AKMAT1 = 1. Since M and A are diagonal, they commute and therefore the problem is equivalent
to AM K M A1 = M1. This boils down to the standard symmetric Sinkhorn algorithm from (Knight
et al.,2014) applied to matrix M K M, with marginals M1 = diag(M). This equivalence explains
the fast convergence in 5 to 10 iterations we observe in practice, which was studied in (Knight et al.,
2014).

Sinkhorn Convergence. We evaluate the convergence behavior of the symmetrized Sinkhorn al-
gorithm across various settings. Specifically, we monitor the quantity:

JIADSADT — 1] dps

Jdu
where A(*) denotes the diagonal scaling matrix after i Sinkhorn iterations. This corresponds to the
average deviation between the constant signal 1 and its smoothed counterpart Q(V1 = A SA()1

on the domain that is defined by the positive measure p. According to our definition, both signals
coincide when Q) is a smoothing operator. Figure [7| presents these results, with visualizations of

(34)
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Figure 7: Convergence of the symmetric Sinkhorn algorithm on (a) the Armadillo shape, (b) a graph
with IV nodes and random edges, (c) a random geometric graph with /N nodes

the input modalities along the top row and corresponding convergence curves below. In Figure [7a]
we report results for different representations of the Armadillo shape used in the main paper: uni-
form point cloud samples on the surface and volume, as well as voxel-based representations of the
boundary and interior. Figure|/b|illustrates the behavior on Erd6s—Rényi random graphs with edge
probability p = 0.2, and Figu shows results on geometric graphs, where points are uniformly
sampled in the unit square and edges are drawn between points within radius » = 0.15.

Across all experiments, we observe rapid convergence: typically, 5 to 10 iterations are sufficient to
reach error levels below 1073 = 0.1%. We note that one iteration of our algorithm corresponds to
the classical symmetric normalization of graph Laplacians, which satisfies our constant preservation
property up to a precision of 1% to 5%. From this perspective, we understand our work as a clar-
ification of the literature on graph Laplacians. While most practitioners are used to working with
approximate normalization, we provide a clear and affordable method to satisfy this natural axiom
up to an arbitrary tolerance parameter. We argue that this is preferable to choosing between row-
wise normalization (which guarantees the preservation of constant signals, but discards symmetry)
and standard symmetric normalization (which makes a small but noticeable error on the preservation
of constant signals).

Implementing Q-Diffusion on Discrete Samples. Let X € RY*¥ be a symmetric kernel ma-
trix, and M = diag(my,...,my) be a diagonal mass matrix. As described in Algorithm 1, we
compute a diagonal scaling matrix A = diag(e’*,...,e’~), such that the normalized diffusion
operator becomes (Q = AKMA. This operator can be implemented efficiently using the KeOps
library (Charlier et al.| 2021} |[Feydy et al.,|2020), which avoids instancing the dense kernel matrix.

In the case where K is a Gaussian kernel between points z; in R?, with standard deviation o > 0,
applying Q to a signal f € RY gives:

N
@) =D exp (—5ks o — w5l1* + &+ &) my (35)
j=1
= Zexp (gij) f;  where q;j == — 51z ||z; — z;||* + £ + £; + log m,;. (36)
J
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Since @ is row-normalized by construction, (i.e., @1 = 1), this operation can be written as a
softmax-weighted sum:
N
(C?f)z = Z SOftMan (qij) fj . (37)
j=1

We note that the scores ¢;; can be expressed as inner products between extended embeddings ;, y; €

R?*2, enabling fast attention implementations:
T %xi %xj
Gij = T; Jj , where &; = | {; — 545 ||;]|* | and g; = X 12 . (38)
;= 55z l|lz;]|° + log(m;)
This leads to an attention-style formulation of the operator:

Qf = Attention (X, Y, f) (39)

where X, Y € RV*(4+2) gre the stacked embeddings of all points. This makes ) f compatible with
fast attention layers such as FlashAttention (Dao, [2023) or xFormers (Lefaudeux et al., 2022). Note
that the softmax normalization in the Attention layer is invariant to additive constants in ¥;, allowing
the implementation to be further simplified using only a (d + 1)-dimensional embeddings for X and
Y

Spectral Decomposition. The largest eigenvectors of a symmetric matrix can be efficiently com-
puted using the power method or related iterative solvers (Saad, |[2011). However, standard routines
typically assume symmetry with respect to the standard inner product. Since our diffusion operator
Q = AKMA is symmetric with respect to the M-weighted inner product, we need to reformulate
the problem. Noting that M and A are diagonal and therefore commute, we can write

Q=M"1Y(AMKMA) . (40)
This allows us to compute the eigenvectors and eigenvalues of () by solving the following general-
ized eigenproblem for symmetric matrices:

(AMKMA)® =AM . (41)
This is supported by standard linear algebra routines (such as scipy.sparse.linalg.eigsh)
and ensures that the resulting eigenvectors ® are orthogonal with respect to the M inner product.

F RUNTIMES

Setup. We time 5 iterations of the symmetric Sinkhorn normalization on point-cloud kernels us-
ing PyTorch + PyKeOps (symbolic lazy tensors) on an NVIDIA V100 (CUDA 12.1). For reference,
we also time implicit Laplacian diffusion via a sparse LU solve of (M+tA) on an Intel Xeon
Gold 6248 CPU. This reflects typical usage: kernel mat—vecs map well to GPUs, whereas sparse
direct solvers are mature and memory-efficient on CPUs when a Laplacian is available.

What is timed. Sinkhorn: each iteration = one mat—vec with S + a diagonal rescaling; we report
wall-clock for 5 iterations. Laplacian: factorization + one solve of (M+tA)~!b on CPU (best-case
when a sparse A exists). Our GPU timings use a brute-force kernel on an unstructured 3D point
cloud, and could be further improved.

Dense GPU baselines. On the GPU, we also measured a Cholesky factorization (210 ms) and a
matrix exponential (770 ms) of a Laplacian in PyTorch and 10000 vertices. These approaches exceed
GPU memory limits beyond ~10k points.

Sinkhorn Complexity. Per Sinkhorn iteration for different methods:

(i) Dense matrices S: O(N?) time/memory
(ii) Symbolic kernel S (e.g., Gaussian with PyKeOps): O(N?) time, O(N) memory sparse S
(k-NN): O(kN) time (generally O(nnz))
(iii) Low-rank (rank R): O(RN?)
(iv) Grid convolution: O(N) for small filters, O(N log N) for large filters using FFTs
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Baseline Complexity. Per diffusion step via Laplacian-based methods:

(i) Matrix exponential (dense): O(NN?) time; rarely used at scale.

(ii) Implicit Euler (I+tA)~! with sparse LU/Cholesky: worst case O(NN3); for mesh-like spar-
sity typically O(N ') for factorization and O(N?) per solve (amortizable across right-hand
sides).

(iii) Spectral truncation (rank R): O(RN?) in the dense setting; truncation may introduce ringing
artifacts.

These baselines assume access to a well-defined sparse Laplacian and specialized linear algebra
routines.

G DETAILS ON EIGENVECTORS COMPUTATION

FEM Laplacian on Tetrahedral Meshes. In Figure [3| of the main paper, we implement our
method on different representations of the Armadillo, treated as a surface and as a volume with
uniform density. For the surface mesh in Figure 3a, we use the standard cotangent Laplacian as a
reference. For the tetrahedral mesh shown in Figure 3f, we use a finite element Laplacian, general-
izing the cotangent Laplacian in 2D (Cranel 2019). Let {e; } be a basis of piecewise linear basis and
{de;} their gradients. The discrete Laplacian A takes the form:

A=M1L, (42)
where L is the stiffness matrix and M is the mass matrix defined by:
Li; = (de;s,dej) , M;; = (e, ej) . (43)
Following (Crane{(2019), we compute the off-diagonal entries of L with:
Li; = % | Z It cot(619) (44)
igkleT

where 7 is the set of tetrahedra in the mesh, [y is the length of edge &/, and 9;31 is the dihedral angle
between triangles ikl and jkl. The diagonal entries are defined to make sure that the rows sum to

Zero:
Li=—-) L. (45)
J#i
The entries of the mass matrix M are given by:
1 1
Mij = o | 'Z vol(ijhl) fori #j, M= | Z vol(ijkl) . (46)
ijkleT igkleT

Point Clouds. As discussed in the main paper, we compare the eigendecompositions of these
cotan Laplacians to that of our normalized Gaussian smoothings on discrete representations of the
Armadillo. For the sake of simplicity, Figures 3b and 3g correspond to uniform discrete samples,
i.e. weighted sums of Dirac masses:

N
po= > w0 47)

i=1
where z1,...,zyx correspond to N = 5000 three-dimensional points drawn at random on the

triangle mesh (for Figure 3b) and in the tetrahedral volume (for Figure 3g).

Gaussian Mixtures. To compute the Gaussian mixture representations of Figures 3c and 3h, we
simply rely on the Scikit-Learn implementation of the EM algorithm with K-Means++ initializa-
tion (Pedregosa et al.,|2011) and 500 components. This allows us to write:

500

po= Y miN(zi, %), (48)
=1

where the scalars m,; are the non-negative mixture weights, the points x; are the Gaussian centroids
and the 3-by-3 symmetric matrices X2; are their covariances.
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Figure 8: Spectral analysis on the galloping horse (Sumner & Popovi¢} 2004) normalized to the
unit sphere, treated as a surface (top) and volume (bottom). We compare the reference cotan Lapla-
cian (a,f) to our normalized diffusion operators on clouds of 5000 points (b,g), mixtures of 500
Gaussians (c,h) and binary voxel masks (d,i), all using a Gaussian kernel of radius o = 0.05 (edge
length of a voxel). We display the 8 th eigenvector (a—d,f-i) and the first 40 eigenvalues (e.j).
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Figure 9: Laplacian eigenvalues for the sphere of diameter 1 and the cube of edge length 1.

Mass Estimation on Voxel Grids. To encode the Armadillo’s volume as a binary mask in Fig-
ure 3i, we simply assign a mass of 1 to voxels that contain points inside of the watertight Armadillo
surface. This allows us to demonstrate the robustness of our implementation, even when voxel val-
ues do not correspond to the exact volume of the intersection between the tetrahedral mesh and the
cubic voxel.

However, this approach is too simplistic when representing the surface of the Armadillo with voxels.
Since the grid is more densely sampled along the xyz axes than in other directions, assigning a
uniform mass of 1 to every voxel that intersects the triangle mesh would lead to biased estimates of
the mass distribution. To address this quantization issue, we use kernel density estimation to assign
a mass m; to each voxel.

As described above, we first turn the triangle mesh into a binary mask. Then, for every non-empty
voxel z, we use an isotropic Gaussian kernel £ with standard deviation o equal to 3 voxels to estimate

a voxel mass m(z) with:

1
m(z) = m (49)

where the sum is taken over neighboring, non-empty voxels.

Estimation of the Laplacian Eigenvalues. Recall that with our conventions, the Laplace operator
is non-negative. In both of our settings (surface and volume), performing an eigendecomposition
of the reference cotan Laplacian yields an increasing sequence of eigenvalues starting at A® = 0.
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Figure 10: First 10 eigenvectors on the Armadillo, treated as a surface on the left and as a volume
on the right. From left to right, the shape is encoded as a triangle mesh, a point cloud sampled
uniformly at random, a voxel grid, a Gaussian mixture; a tetrahedral mesh, a point cloud, a binary
mask and a Gaussian mixture. Figure 3 corresponds to the last row.
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Figure 11: Eigenvectors 11 to 20 on the Armadillo, understood as a surface on the left and as
a volume on the right. From left to right, the shape is encoded as a triangle mesh, a point cloud
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Figure 12: First 10 eigenvectors on the sphere of diameter 1, treated as a surface on the left and
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binary mask and a Gaussian mixture.
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Figure 13: Eigenvectors 11 to 20 on the sphere of diameter 1, treated as a surface on the left and
as a volume on the right. From left to right, the shape is encoded as a triangle mesh, a point cloud
sampled uniformly at random, a voxel grid, a Gaussian mixture; a tetrahedral mesh, a point cloud, a
binary mask and a Gaussian mixture.
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Figure 15: Eigenvectors 11 to 20 on a cube with edge length 1, treated as a surface on the left and
as a volume on the right. From left to right, the shape is encoded as a triangle mesh, a point cloud
sampled uniformly at random, a voxel grid, a Gaussian mixture; a tetrahedral mesh, a point cloud, a
binary mask and a Gaussian mixture.

32



Under review as a conference paper at ICLR 2026

On the other hand, computing the largest eigenvalues of a normalized diffusion operator yields a
decreasing sequence of eigenvalues starting at )\? =1.

To compare both sequences with each other and produce the curves of Figure 3e and 3j, we propose
the following simple heuristics for diffusions ) derived from a Gaussian kernel of deviation ¢ > 0:

* For point clouds and voxels, we use:
2 Q
i = — o log(A\7) . (50)

Indeed, when the underlying measure p corresponds to a regular grid with uniform weights,
we can interpret the Gaussian kernel matrix as a convolution operator with a Gaussian
kernel exp(—||z|?/202). Its eigenvalues can be computed in the Fourier domain as
exp(—o?||w||?/2). To recover the eigenvalues ||w||? of the Laplace operator, we simply
have to apply a logarithm and multiply by —2/02.

* For Gaussian mixtures with component weights m;, centroids x; and covariance matrices
Y;, we use:
2

= 2(3, matrace(3;))/ (3, mi)

where d is equal to 2 for surfaces and 3 for volumes. This formula is easy to com-
pute and introduces an additional factor, the average trace of the covariance matrices
>;. For volumes, it relies on the observation that when all covariance matrices are equal
to a constant isotropic matrix ¥ = 72I3 with trace 372, the smoothing operator de-
fined in Eq. (5) of the main paper is equivalent to a Gaussian kernel matrix of variance
0% + 272 = 0% + (2/3) trace(X).

Likewise, for surfaces, we expect that a regular sampling will lead to covariance matrices
that have one zero eigenvalue (in the normal direction) and two non-zero eigenvalues (in
the tangent plane), typically equal to a constant 72. This leads to the formula o + 272 =
o? + (2/2) trace(X).

N\ o= log(A\?) 51

Spectrum on Animal Shape. Similarly to Figure |3} we display on Figure [8| the 8 th eigenvector
for a galloping horse shape from the Sumner dataset (Sumner & Popovic, 2004), using different
representation modalities.

Estimated Spectrum on Standard Shapes. In Figures[10[and we display the first 20 eigen-
vectors of our operators defined on the Armadillo, as a complement to Figure 3 in the main paper.
As expected, these mostly coincide with each other.

Going further, we perform the exact same experiment with a sphere of diameter 1 in Figures
and[I3] as well as a cube with edge length 1 in Figures[T4]and[T5] The relevant spectra are displayed
in Figure[9] We recover the expected symmetries, which correspond to the plateaus in the spectra and
the fact that the eigenvectors cannot be directly identified with each other. We deliberately choose
coarse point cloud and Gaussian mixture representations, which allow us to test the robustness of
our approach. Although the Laplacian eigenvalues tend to have a slower growth on noisy data, the
eigenvectors remain qualitatively relevant.

H DETAILS ON GRADIENT FLOW

The Energy Distance. Inspired by the theoretical literature on sampling and gradient flows,
we perform a simple gradient descent experiment on the Energy Distance between two empiri-

cal distributions. Given a source (prior) distribution p = % Zi\;l 05, and a target distribution
V= ﬁ ZJle 5y.7., this loss function is defined as:

N M N M
1 1 1
E(p,v) = N E E lzi —y;ll — N2 E i — 25l — el E lyi — yjll (52)

ij=1 ij=1
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When all points are distinct from each other, its gradient with respect to the positions of the source
samples is:

\N = : : 53
() MZnyg—xzu N?%H%—xzu 9

We implement this formula efficiently using the KeOps library.

Particle Flow. Starting from point positions mgo), we then update the point positions iteratively
using:

e 2 NIV wE( £35SV 6 v, v), (54)

where L is an arbitrary linear operator and 7 is a positive step size. When L is the identity, this
scheme corresponds to an explicit Euler integration of the Wasserstein gradient flow: Figure [T6]is
equivalent to classical simulations such as the first row of Figure 5 in|Feydy et al.| (2019).

Setup. Going further, we study the impact of different smoothing operators L that act as regular-
izers on the displacement field. We consider both unnormalized Gaussian kernel matrices and their
normalized counterparts as choices for L, with standard deviation o = 0.07 in Figure 4 of the main
paper and Figure |17} as well as ¢ = 0.2 in a secondary experiment showcased in Figure For
each case, we run I' = 1 000 iterations with a step size 7 = 0.05.

Out of the box, unnormalized kernel matrices tend to aggregate many points and thus inflate gradi-
ents. To get comparable visualizations, we divide the unnormalized kernel matrix by the average of
its row-wise sums at time ¢ = 0. This corresponds to an adjustment of the learning rate, which is
not required for the descents with respect to the Wasserstein metric or with our normalized diffusion
operators.

As a source distribution, we use a uniform sampling (N = 1500) of a small rectangle in the unit
square [0, 1]%. The target distribution is also sampled with M = 1500 points using a reference
image provided by the Geomloss library (Feydy et al.,[2019). The entire optimization process takes
a few seconds on a GeForce RTX 3060 Mobile GPU using KeOps for kernel computation.

Visualization. In Figure[I6] we show a baseline gradient descent for the Wasserstein metric (L =
I). As expected, the gradient flow heavily deforms the source distribution and leaves “stragglers”
behind due to the vanishing gradient of the Energy Distance.

In Figure we compare both kernel variants with ¢ = 0.07 as in the main paper. In Figure
we use a larger standard deviation o = 0.2. In this case, the unregularized flow is more stable but
still tends to overly contract the shape. In contrast, our normalized kernel consistently preserves the
structural integrity of the source distribution.

Quantitative Metric. We also report in Figure |19 the Chamfer distance between the input and
target distribution over time, with 0 = 0.07 for unnormalized and normalized Gaussian kernels.
On this Figure, we see that normalizing the kernel provides faster convergence and leads to a better
optimum than standard or naively smoothed gradient.

I DETAILS ON NORMALIZED SHAPE METRICS

Hamiltonian Geodesic Shooting. To compute our shape geodesics, we implement the LDDMM
framework on point clouds as done by the Deformetrica software (Bone et al.L 2018). If (z1,...,zxN)
denotes the set of vertices of the source mesh in 3D, we define the standard Hamiltonian H (g, p) on
(position, momentum) pairs RV *3 x RV *3 with:

N
H(q,p) = Strace(p’ Kqp) = 3 Z )i Pi P (55)

where (Kg)i; = exp(— llgi — q;|I?/20?) is a Gaussian kernel matrix. Starting from a source position
q(t = 0) = xn), geodesic shape trajectories are parametrized by an initial momentum
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Figure 16: Gradient flow using the simple Wasserstein metric.
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Figure 17: Gradient flow using unnormalized and normalized Gaussian kernels with o = 0.07.
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Figure 18: Gradient flow using unnormalized and normalized Gaussian kernels with o = 0.2.
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Chamfer distance between input and target distribution over time.
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Figure 20: Average face area distortion along the geodesic path, described by the time parameter.
The reference area is the one of the source shape.

p(t = 0) and flow along the coupled geodesic equation in phase space:

OH OH

Q(t) = + 5, (). p(1)). B = - 50

that we integrate to time ¢ = 1 using an explicit Euler scheme with a step size ¢ = 0.1. The partial
derivatives of the Hamiltonian are computed automatically with PyTorch.

(q(t), p(t)) (56)

Shape Interpolation. In Figure [Sh, we display the source position ¢(t = 0) = (21,...,2y) in
red and a target configuration in blue. In Figure [5b, we use the L-BFGS algorithm to optimize with

(a) Input Data (b) LDDMM (c) Normalized (d) Gaussian Mixtures

Figure 21: Pose interpolation and extrapolation of a cat mesh. (a) We interpolate between
source (t = 0, red) and target ({ = 1, blue) poses, and extrapolate to t = —0.5, 0.5, and 1.5.
Note the defects in the target mesh. (b) The standard LDDMM geodesic with a Gaussian kernel
(0 = 0.1) produces unrealistic extrapolations. (c) Using our normalized diffusion yields a smoother,
more plausible path. (d) The method remains robust on coarse Gaussian-mixture inputs.
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respect to the initial shooting momentum p(¢ = 0) the mean squared error between the position of
the geodesic q(t = 1) at time ¢ = 1 and the target configuration. Then, we use Eq. to sample
the geodesic curve ¢(t) at time ¢t = —0.5,¢ = 0.5 and ¢t = 1.5.

In Figure [5k, we use the exact same implementation but normalize the Gaussian kernel matrix K,
into a diffusion operator ), before defining a “normalized” Hamiltonian H (g, p):

H(q,p) = 4trace(p' Qgp) . (57)

For the sake of simplicity, we do not use the mesh connectivity information and rely instead on
constant weights to define the mass matrix M. Although our Hamiltonian is now defined via the
iterative Sinkhorn algorithm, automatic differentiation lets us perform geodesic shooting without
problems. Finally, in Figure 5d, we identify every Gaussian component A (z;, ¥;) with a cloud of
6 points sampled at (587 + 5§,1€4,1, T + 5§,2€42,T; + Si,Sei,fi), where €1, €i,2 and €;3 denote the
eigenvectors of X; with eigenvalues 522,1’ 53’2 and 5%3 This allows us to use the same underlying
point cloud implementation.*

Quantitative Evaluation. On Figure[20] we display the evolution of area distortion over time from
the hand example in Figure E} We note that, as noted in Micheli et al.| (2012), standard LDDMM
framework favors contraction-expansion dynamics, where area shrinks between source and target,
then explodes when extrapolating. In contrast, the normalized kernel keeps a stable area at all times,
even during extrapolation.

Additional Example. Figure 21| displays a similar experiment as the one presented in Figure [5
but applied to a pair of cat meshes from the Sumner dataset (Sumner & Popovic,2004). Note that the
target mesh in blue has inverted triangles, which remain present in the extrapolated versions of the
mesh. Focusing on the cat paws, we see again a strong regularizing effect of the kernel normalization
on extrapolations.

J DETAILS ON POINT FEATURES LEARNING

Q-DiffNet. DiffusionNet (Sharp et al.l[2022)) is a powerful baseline for learning pointwise features
on meshes and point clouds. It relies on two main components: a diffusion block and a gradient
feature block. The diffusion block approximates heat diffusion spectrally rather than solving a
sparse linear system. In Q-DiffNet, we replace this truncated spectral diffusion with our normalized
diffusion operator, using a Gaussian convolution as the original smoothing operator. Given a shape
S with vertices X € RV*3_ features fe RY*P and a diagonal mass matrix M, we define:

Q-Diff(f, X, M;0) = Q(X,M,o)™f where Q(X,M,0)=A,K,(X,X)MA,. (58

In the above equation, K, is a Gaussian kernel of standard deviation o, A, is the diagonal scaling
matrix computed from Algorithm 1, and m is the number of application of the operator. The scaling
A, is recomputed in real time at each forward pass using 10 iteration of Algorithm 1, without
backpropagation. Repeating the operator m times allows for simulating longer diffusion times. In
practice, we use m = 2.

Like DiffusionNet (Sharp et al.| [2022), Q-DiffNet supports multi-scale diffusion: the layer takes
input features of shape B x C' x N x P and applies separate diffusion per channel, using learnable
scales (0.)<_;. In DiffusionNet, typical values are C' = 256, P = 1. For speed efficiency, we use
C = 32, P = 8 in our experiments, which preserves the total amount of features in the network.

Architecture Integration. We integrate Q-DiffNet into the ULRSSM pipeline (Cao et al.,|2023),
which is designed for unsupervised 3D shape correspondence. This framework trains a single net-
work Ng, usually DiffusionNet (Sharp et all [2022), that outputs pointwise features for any input
shape S. Inputs to the network typically consist of spectral descriptors such as WKS (Aubry et al.]
2011) or HKS (Sun et al., 2009) — among these, WKS is generally preferred. Raw 3D coordinates
(xyz) are also used in some settings.

Point Cloud Inputs. Although DiffusionNet (Sharp et all [2022)) can operate on point clouds

since it does not require mesh connectivity, it still depends on (approximate) Laplacian eigenvec-
tors (Sharp & Crane, [2020). When working with point clouds, spectral descriptors like WKS (Aubry
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et al.|, [2011) change because they rely on the underlying Laplacian eigendecomposition. To isolate
the effect of our proposed Q-operator, we minimize variability across experiments and use WKS
descriptors (Aubry et al.,|2011) computed from the mesh-based Laplacian for all experiments, even
when retraining DiffusionNet (Sharp et al.| [2022)) or ULRSSM (Cao et al.| [2023) on point clouds.
This ensures consistent inputs across surface and point-based variants.

Loss Functions. The ULRSSM pipeline uses Laplacian eigenvectors during training to compute
functional maps C12 and C5; from the predicted pointwise features f; and f> (Donati et al., [2020;
Sharp et al.||2022;|Cao et al.,|2023)). These maps are fed in the original ULRSSM losses: orthogonal-
ity, bijectivity, and alignment (Cao et al., 2023)). For consistency, we retain these losses unchanged.
Mesh-based models use ground-truth mesh eigenvectors, point cloud versions use approximate point
cloud eigenvectors. Our Q-DiffNet model uses mesh eigenvectors, while the Q-DiffNet (Q-FM)
variant uses eigenvectors derived from our normalized diffusion operator.

Dataset. We train on the standard aggregation of the remeshed FAUST (Bogo et al.| [2014; [Ren
et al.,[2019) and SCAPE datasets (Anguelov et al., [2005), using only intra-dataset pairs within the
training split. We follow the standard train/test splits used in prior baselines (Donati et al., 2020;
Sharp et al.,2022; |Cao et al.,[2023)). The 44 shapes from the remeshed SHREC dataset (Melzi et al.,
2019) are reserved exclusively for evaluation.

Training. We use the exact ULRSSM setup (Cao et al., 2023)), where we train the network for 5

epochs with a batch size of 1, using Adam optimizer with an initial learning rate of 10~2 and cosine
annealing down to 10~*. Training takes 6h on a single V100 GPU.
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