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ABSTRACT

Smoothing a signal based on local neighborhoods is a core operation in machine
learning and geometry processing. On well-structured domains such as vector
spaces and manifolds, the Laplace operator derived from differential geometry of-
fers a principled approach to smoothing via heat diffusion, with strong theoretical
guarantees. However, constructing such Laplacians requires a carefully defined
domain structure, which is not always available. Most practitioners thus rely on
simple convolution kernels and message-passing layers, which are biased against
the boundaries of the domain. We bridge this gap by introducing a broad class of
smoothing operators, derived from general similarity or adjacency matrices, and
demonstrate that they can be normalized into diffusion-like operators that inherit
desirable properties from Laplacians. Our approach relies on a symmetric variant
of the Sinkhorn algorithm, which rescales positive smoothing operators to match
the structural behavior of heat diffusion. This construction enables Laplacian-like
smoothing and processing of irregular data such as point clouds, sparse voxel grids
or mixture of Gaussians. We show that the resulting operators not only approxi-
mate heat diffusion but also retain spectral information from the Laplacian itself,
with applications to shape analysis and matching.

1 INTRODUCTION

Discrete Differential Geometry. Geometric data analysis is an active research field that provides
a principled framework for understanding complex data (Gallot et al., 2004; Bronstein et al., 2021).
These tools are especially effective in two or three dimensions, but also extend to graphs and higher-
dimensional domains. While differential geometry provides elegant constructions on well-structured
data, such as triangle meshes (Crane, 2018; Botsch et al., 2010), adapting these tools to less struc-
tured representations like point clouds or voxel grids remains a major challenge (Barill et al., 2018;
Lachaud et al., 2023; Feng & Crane, 2024).

In many practical scenarios, high-quality triangular meshes are not available due to limitations in the
acquisition process (Bogo et al., 2017) or even to the nature of the data itself (Behley et al., 2019).
For example, in medical imaging, one often works with voxelized segmentation masks (Marcus
et al., 2007) and anatomical structures such as trabecular bones that cannot be neatly described as
surfaces. Similarly, point clouds and recent representations like Gaussian splats (Kerbl et al., 2023;
Zhou & Lähner, 2025) are widely used, but typically lack explicit connectivity information. Using
classical geometric operators in these settings often requires local approximations of the underlying
manifold (Sharp & Crane, 2020; Sharp et al., 2022; Zhou & Lähner, 2025), which can introduce
significant errors and degrade performance.

Smoothing Operations. Bridging the gap between geometry-aware methods designed for clean
meshes and more general unstructured data representations is crucial for scalable learning with
shapes. Among the most fundamental operations in geometry processing is smoothing, which mod-
ifies a signal using local geometric information (Taubin, 1995; Sharp et al., 2022). A key example
is heat diffusion, which, on meshes, is controlled by the matrix exponential of the Laplacian (Gallot
et al., 2004). This process plays a central role in many pipelines for shape analysis (Crane et al.,
2017), segmentation (Sharp et al., 2022), and correspondence (Sun et al., 2009).

Contributions. In this work, we generalize heat diffusion to arbitrary discrete domains such as
point clouds, voxel grids, Gaussian mixtures and binary masks. Our approach ensures mass con-
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Figure 1: Heat-like diffusion and spectral analysis on general geometric data without Laplacian
inversion. Left: Mass-preserving diffusion of a Dirac function on a sparse voxel grid (jaw bone).
Right: Laplacian-like eigenvectors on a point cloud (human) and Gaussian mixture (bunny).

servation, meaning that the total sum of the signal remains constant under diffusion, corresponding
to physical conservation of heat over the domain. Our approach starts from a symmetric similarity
matrix, akin to an adjacency matrix, and produces a heat-diffusion-like operator via a symmetric
Sinkhorn normalization (Knight et al., 2014). This results in a linear operator, symmetric with re-
spect to a mass-weighted inner product, whose properties and spectrum closely resemble that of
the exponential of a Laplacian, as displayed on Figure 1. Our contributions can be summarized as
follows:

• We present an algebraic framework for defining smoothing, Laplacians and diffusions on
general discrete geometric representations, clarifying their shared structure and assump-
tions.

• We propose an efficient and GPU-friendly algorithm to transform symmetric similarity
matrices into mass-preserving diffusion operators, inspired by recent theoretical works in
manifold learning (Wormell & Reich, 2021; Cheng & Landa, 2024) and optimal transport
(Feydy et al., 2019).

• We demonstrate broad applicability to geometric data analysis, particularly for statistical
shape analysis and generative modelling.

2 RELATED WORKS

Laplacians and Heat Diffusions. The Laplace–Beltrami operator ∆ is an essential tool in discrete
geometry processing, especially on triangle meshes (Sorkine, 2005; Botsch et al., 2010). Its spectral
properties have been widely used for shape analysis (Reuter et al., 2006) and correspondence (Levy,
2006; Ovsjanikov et al., 2012). A closely related tool is the heat equation ∂tf = −∆f , whose
solution f(t) = e−t∆f0 acts as a smoothing operator on an initial signal f0. Heat diffusion has been
leveraged to compute shape descriptors (Sun et al., 2009; Bronstein & Kokkinos, 2010), geodesic
distances (Crane et al., 2017; Feng & Crane, 2024) parallel transport (Sharp et al., 2019b) or shape
correspondences (Vestner et al., 2017; Cao et al., 2025). Heat-based smoothing has also inspired
neural architectures for geometric learning (Sharp et al., 2022; Gao et al., 2024) and generative
modelling (Yang et al., 2023). Crucially, the matrix exponential e−t∆ is rarely computed directly.
Instead, practical implementations rely on either implicit Euler integration (Botsch et al., 2010) or
spectral truncation using the first Laplacian eigenfunctions (Sharp et al., 2022). These approaches
rely on mesh-based discretizations of the Laplacian (Pinkall & Polthier, 1993; Meyer et al., 2003;
Sharp et al., 2019a) and pre-computed factorizations, such as Cholesky or sparse eigendecomposi-
tions, limiting scalability and flexibility. While extensions to non-manifold triangulations have been
proposed (Sharp & Crane, 2020; Belkin et al., 2009), generalizing diffusion-based smoothing to
higher-dimensional or unstructured data such as noisy point clouds and sparse voxel grids remains
challenging.

Graph Laplacians. The Laplacian also plays a central role in graph-based learning and analy-
sis (Chung, 1997), supporting spectral clustering (von Luxburg, 2007), embedding, and diffusion.
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Unlike the cotangent Laplacian for mesh processing (Pinkall & Polthier, 1993; Meyer et al., 2003),
the graph Laplacian relies only on connectivity and optional edge weights, making it applicable to
a broader range of data. Discrete approximations of heat diffusion, such as the explicit Euler step
I − t∆, form the basis of many graph neural networks (GNNs) (Kipf & Welling, 2017; Hamil-
ton et al., 2017; Chamberlain et al., 2021). Recent works explore approximations of implicit time-
stepping schemes (Behmanesh et al., 2023; Chamberlain et al., 2021) but lose key properties or limit
the flexibility of the diffusion. Beyond Laplacians, message passing (Gilmer et al., 2017) or graph
attention (Veličković et al., 2018) offer alternative forms of smoothing. In this work, we take a step
back and propose general axioms for defining smoothing operators on discrete domains, formaliz-
ing desirable properties such as symmetry or mass conservation. We show that popular approaches,
as well as various Laplacian normalization techniques (e.g., symmetric, random-walk) can be in-
terpreted as specific cases in this framework. These classical methods often trade-off symmetry or
mass preservation. To address this, we study a Sinkhorn normalization that satisfies these properties
jointly, producing operators which are symmetric under a mass-weighted inner product and spec-
trally similar to Laplacian exponentials, while remaining compatible with unstructured geometric
data.

Sinkhorn Scaling. The Sinkhorn algorithm (Sinkhorn & Knopp, 1967) scales a nonnegative ma-
trix into a doubly stochastic one via alternating row and column normalizations, and is widely used
in machine learning (Cuturi, 2013) thanks to its efficiency and GPU compatibility. For symmet-
ric inputs, a symmetry-preserving variant yields symmetric and doubly stochastic operators (Knight
et al., 2014). Recent work applies Sinkhorn normalization to graph Laplacians for manifold learning
and dimension reduction, with theoretical guarantees (Marshall & Coifman, 2019; Wormell & Re-
ich, 2021; Cheng & Landa, 2024). We extend this idea to a geometry-aware setting by introducing
a domain-specific mass matrix that induces a weighted inner product. Rather than enforcing bis-
tochasticity, we construct operators that are row-stochastic and symmetric with respect to this inner
product. The resulting kernel Q satisfies (MQ)⊤ = MQ, where M encodes local geometric mass
(for example, triangle areas or voxel densities). This ensures exact mass conservation and symmetry
under the induced inner product, aligning the discrete diffusion with its continuous analogue. To our
knowledge, such mass-preserving normalization has not been used to define smoothing operators on
general discrete geometric structures.

Generalization to Unstructured Data. Extending differential operators to unstructured data re-
mains an open challenge. While regular grids support Laplacian-based smoothing or convolutional
approaches, more irregular representations, such as point clouds or gaussian splats, typically rely
on local approximations or learned kernels (Wu et al., 2019; Sharp & Crane, 2020; Sharp et al.,
2022; Zhou & Lähner, 2025). Our framework requires only a notion of similarity between points,
and provides a unified approach to smoothing across these modalities. This allows us to bridge the
gap between discrete differential operators and modern unstructured data representations, without
relying on consistent manifold assumptions or expensive linear algebra routines.

3 WARM-UP: GRAPHS

To build intuition about our framework, we begin with a simple example on an undirected graph
G with vertex set V and edge set E (see Figure 2). In this section, we illustrate two approaches to
smoothing a signal f ∈ RV defined on the graph vertices.

Laplacian Smoothing. A common method to quantify the regularity of f is to use a discrete
derivative operator δ ∈ {0,±1}E×V , which encodes differences across edges. This induces a
Dirichlet energy E(f) = 1

2∥δf∥
2 = 1

2 (δf)
⊤δf , that can be rewritten as E(f) = 1

2f
⊤∆f , where

∆ = δ⊤δ is a symmetric positive semi-definite matrix acting as a discrete Laplacian. The matrix
∆ admits an orthonormal eigendecomposition with eigenvectors (Φi) and non-negative eigenvalues
(λ∆

i ). Low values of E(Φi) = λ∆
i /2 correspond to smoother eigenfunctions. The eigenvectors can

thus be interpreted as frequency modes: λ∆
1 = 0 corresponds to the constant function, while higher

eigenvalues λ∆
i capture finer variations.
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Figure 2: Diffusion of a Dirac function for different normalizations of the raw smoothing operator
K. Row and symmetric normalizations distort mass, while a truncated spectral approximation that
uses 4 out of 5 eigenvectors introduces negative values (in blue). In contrast, our symmetric Sinkhorn
normalization preserves both positivity and mass. The full diffusion matrices are shown as insets

Heat diffusion, governed by the operator e−t∆, acts as a smoothing transform that damps high-
frequency components while preserving the low-frequencies. If f =

∑
i f̂iΦi, then:

E(e−t∆f) = 1
2

∑
i

λ∆
i e

−2tλ∆
i f̂2

i ≤ 1
2

∑
i

λ∆
i f̂

2
i = E(f) . (1)

By construction, diffusion regularizes input functions and converges as t → ∞ to a constant signal
f̂1. Remarkably, the total mass of the signal is also preserved for all t: if ⟨·, ·⟩ denotes the dot
product and 1 is the constant vector, then ⟨1, e−t∆f⟩ = ⟨1, f⟩. This follows from the symmetry
of e−t∆ and the fact that constant functions are fixed points of the heat flow: e−t∆1 = 1. Lastly,
all entries of e−t∆ are non-negative, ensuring that non-negative input signals remain non-negative.
This follows from −∆ being a Metzler matrix (Berman & Plemmons, 1994) (with non-negative
off-diagonal entries), which guarantees entrywise positivity of the matrix exponential.

While the Laplacian exponential provides strong regularization properties, its computation is expen-
sive in practice. Most authors rely on the implicit Euler scheme (I + t∆)−1f which guarantees
numerical stability but requires solving a linear system for every new signal f .

Message-passing and Local Averages. A common alternative is to apply local averaging opera-
tors derived from the graph’s adjacency matrix A. One simple choice is to use the linear operator
K = 1

2 (D +A), where D = diag(A1) is the diagonal degree matrix. However, this raw smoothing
operator K lacks key properties of e−t∆ and is highly sensitive to vertex degrees: well-connected
vertices disproportionately influence the output, while low-degree nodes contribute less. This intro-
duces a bias at boundaries of the domain that is undesirable in many applications.

Several methods have been proposed to mitigate this issue (Chung, 1997; Coifman & Lafon, 2006):

1. Row normalization divides each row of K by the degree of the corresponding vertex. This
yields the operator D−1K that performs a local averaging but breaks symmetry.

2. Symmetric normalization restores symmetry via D− 1
2KD− 1

2 , but does not preserve con-
stant input signals.

3. Spectral methods approximate the heat diffusion operator e−t∆ as a low-rank matrix∑R
i=1 e

−tλ∆
i ΦiΦ

⊤
i in the span of the first R eigenvectors of the Laplacian ∆. While this

preserves desirable diffusion properties, computing these eigenvectors is expensive and
truncation introduces undesirable ringing artifacts.

Bi-Stochastic Normalization. As illustrated in Figures 2b to 2d, existing normalization strategies
fail to fully capture the desired properties of heat diffusion. The Sinkhorn or bi-stochastic scaling
method has recently emerged as a principled alternative, combining the benefits of both row-wise
and symmetric normalization while avoiding the numerical pitfalls of spectral methods. The core
idea is to apply symmetric normalization iteratively until convergence. Under mild assumptions,
there exists a unique positive diagonal matrix Λ such that the rescaled operator ΛKΛ is both sym-
metric and mass-preserving, as illustrated in Figure 2e. Strong convergence results have already
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been obtained in the context of point clouds sampled uniformly on a compact manifold (Wormell &
Reich, 2021; Cheng & Landa, 2024). As part of our framework, we extend the Sinkhorn method to
support additional data structures (voxel grids, Gaussian mixtures), with theoretical guarantees and
practical applications to geometric data analysis.

4 THEORETICAL ANALYSIS

Notations. We now introduce our framework in full generality. LetX ⊂ Rd be a bounded domain,
endowed with a positive Radon measure µ. We consider signals f : X → R in the space L2

µ(X )
of square-integrable functions, endowed with the inner product ⟨f, g⟩µ =

∫
X f(x)g(x) dµ(x). We

define the mass of a function as ⟨f, 1⟩µ =
∫
X
f(x) dµ(x). When the measure µ =

∑N
i=1 miδxi is

discrete, functions f can be identified with column vectors (f(x1), . . . , f(xN )) and µ corresponds
to a positive diagonal matrix M = diag(m1, . . . ,mN ) ∈ RN×N . The inner product becomes
⟨f, g⟩µ = f⊤Mg: we use ⟨·, ·⟩µ or ⟨·, ·⟩M interchangeably depending on context.

We denote by A⊤µ (or A⊤M ), the adjoint of a linear operator A : L2
µ(X )→ L2

µ(X ) with respect to
the µ-weighted inner product. In the finite case, this corresponds to A⊤M = M−1A⊤M so that:

⟨f,Ag⟩M = f⊤MAg = g⊤MM−1A⊤Mf = ⟨g,A⊤M f⟩M , (2)

where A⊤ is the standard transpose. A matrix is symmetric with respect to the weighted dot product
⟨·, ·⟩M if and only if it is of the form S = KM with K⊤ = K.

Laplace-like Operators. As introduced in Section 3, Laplacians capture local variations of func-
tions on a domain. We highlight the key structural properties of such operators, simplifying the list
that was identified by Wardetzky et al. (2008) for surface triangle meshes:
Definition 4.1 (Laplace-like Operators). A Laplace-like operator is a linear map ∆ : L2

µ(X ) →
L2
µ(X ), identified with a matrix (∆ij) in the discrete case, that satisfies the following properties:

(i) Symmetry: ∆⊤µ = ∆ (iii) Positivity: ⟨f,∆f⟩µ ≥ 0 for all f ∈ L2
µ(X )

(ii) Constant cancellation: ∆1 = 0 (iv) Off-Diagonal Negativity: ∆ij ≤ 0 for i ̸= j

Properties (i), (ii) and (iii) reflect the classical construction of Laplacians as self-adjoint positive
semi-definite operators, typically derived from integration by parts: ⟨∇f,∇g⟩µ = ⟨f,∆g⟩µ. Con-
dition (iv), which corresponds to a Metzler structure (Berman & Plemmons, 1994) in the discrete
setting, ensures intuitive diffusion behavior: diffusing a signal with ∂tf = −∆f causes mass to
flow outwards (Wardetzky et al., 2008). We refer to Appendix A for a definition in the continuous
case using Kato’s inequality (Arendt, 1984).

These conditions are easily verified for the standard graph Laplacian. On triangle meshes, the com-
monly used cotangent Laplacian satisfies properties (i)–(iii) by construction. However, property
(iv) only holds in the absence of obtuse angles. Violations of this condition, which results in unde-
sirable positive weights, are a well-known issue in geometry processing, typically addressed using
intrinsic triangulations (Bobenko & Springborn, 2007; Fisher et al., 2006; Sharp et al., 2019a).

Diffusion Operators. As presented in Section 3, the family of diffusion operators e−t∆ associated
to a Laplacian ∆ play a central role in geometry processing and learning. These operators smooth
input signals while preserving key structural properties. Leveraging the properties of Definition 4.1
we define diffusion operators as follows:
Definition 4.2 (Diffusion Operators). A diffusion operator is a linear map Q : L2

µ(X ) → L2
µ(X )

that satisfies the following properties:

(i) Symmetry: Q⊤µ = Q (iii) Damping: The eigenvalues of Q lie in [0, 1]
(ii) Constant preservation: Q1 = 1 (iv) Entrywise positivity: Qf ≥ 0 whenever f ≥ 0

Laplace-like operators and diffusion operators are almost equivalent: the exponential of an any
Laplace-like operator yields a diffusion operator, while the principal logarithm of a diffusion oper-
ator yields properties (i)-(iii) of Definition 4.1. Property (iv) in Definition 4.2 is slightly weaker:
true equivalence would require Qt to be entrywise positive for all t ≥ 0; see Appendix A.
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Algorithm 1 Symmetric Sinkhorn Normalization

Require: Smoothing matrix S ∈ RN×N ▷ S = KM where K⊤ = K and M is a mass matrix.
1: Initialize Λ← IN ▷ Λ is a diagonal matrix, stored as a vector of size N .
2: while

∑
i |Λii

∑
j SijΛjj − 1| is larger than a tolerance parameter do

3: di ←
∑

j SijΛjj ▷ Matrix-vector product with S.
4: Λii ←

√
Λii/di ▷ Coordinate-wise update on a vector of size N .

5: end while
6: return Q = ΛSΛ ▷ The diffusion Q is a positive scaling of S.

These properties reflect the structure of classical heat diffusion. Symmetry and constant preserva-
tion imply mass conservation, since for any f , ⟨1, Qf⟩µ = ⟨Q⊤µ1, f⟩µ = ⟨Q1, f⟩µ = ⟨1, f⟩µ.
Entrywise positivity (iv) follows from the non-negativity of the heat kernel: a discrete perspective
via Metzler matrices is given in Appendix A. Damping (iii) ensures that repeated applications of Q
attenuate high-frequency components.

Finally, when Q = e−t∆, its leading eigenvectors coincide with the lowest-frequency modes of
∆, with λQ

i = e−tλ∆
i . This allows one to recover low-frequency Laplacian structure via power

iterations on Q, without computing small eigenpairs directly (see Section 6).

Smoothing Operators. In practice, defining a diffusion operator without access to an underlying
Laplacian can be challenging. Instead, many operators commonly used in geometry processing,
such as adjacency or similarity matrices, implicitly encode local neighborhood structures and enable
function smoothing through local averaging. We refer to such matrices as smoothing operators:

Definition 4.3 (Smoothing Operators). A smoothing operator is a linear map S : L2
µ(X )→ L2

µ(X ),
identified with a matrix (Sij) in the discrete case, that satisfies the following properties:

(i) Symmetry: S⊤µ = S, so S = KM with K⊤ = K in the discrete case
(ii) Operator positivity: ⟨f, Sf⟩µ ≥ 0 for all f , so the eigenvalues of S lie in [0,+∞)
(iii) Entrywise positivity: Sf ≥ 0 whenever f ≥ 0, so Sij ≥ 0 in the discrete case

Sinkhorn Normalization. As discussed in Section 3, recent works in manifold learning have
shown that symmetric graph adjacency matrices can be rescaled to become bi-stochastic at mini-
mal computational cost. We leverage this insight to derive the following two results:

Theorem 4.1 (Symmetric Normalization). Let µ =
∑N

i=1 miδxi
be a finite discrete measure with

positive weights mi > 0, and S a smoothing operator encoded as a N -by-N matrix with positive
coefficients Sij > 0. Then, Algorithm 1 converges to the unique diagonal matrix Λ with positive
coefficients such that Q = ΛSΛ is a diffusion operator with respect to µ.

Theorem 4.2 (Convergence for the Gaussian and Exponential Kernels). Let X be a bounded re-
gion of Rd, and (µt)t∈N be a sequence of finite discrete measures µt =

∑Nt

i=1 m
t
iδxt

i
that converges

weakly to a (possibly continuous) Radon measure µ with positive, finite total mass.
Let k(x, y) be a Gaussian or exponential kernel with positive radius σ > 0, and define the smoothing
operators St

ij = k(xt
i, x

t
j)m

t
j . Let Qt = ΛtStΛt be the diffusion operators obtained via symmetric

normalization as in Theorem 4.1.
Then, each diagonal matrix Λt can be interpeted as a pointwise product (f 7→ λtf) with a continu-
ous positive function λt : X → R+ such that Λt = diag(λt(xt

1), . . . , λ
t(xt

Nt
)). Also, there exists a

continuous positive function λ : x ∈ X 7→ λ(x) > 0 such that:

Q : f ∈ L2
µ(X ) 7→

[
Qf : x 7→ λ(x)

∫
X
k(x, y)λ(y)f(y) dµ(y)

]
∈ L2

µ(X ) (3)

is a diffusion operator, and Qt converges pointwise to Q. For all continuous signal f on X ,

[
Qtf : x 7→ λt(x)

Nt∑
j=1

k(x, xt
j)m

t
jλ

t(xt
j)f(x

t
j)

]
t→+∞−−−−→ Qf uniformly on X . (4)
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Figure 3: Spectral analysis on the Stanford Armadillo (Krishnamurthy & Levoy, 1996) normalized
to the unit sphere, treated as a surface (top) and volume (bottom). We compare the reference cotan
Laplacian (a,f) to our normalized diffusion operators on clouds of 5 000 points (b,g), mixtures of
500 Gaussians (c,h) and binary voxel masks (d,i), all using a Gaussian kernel of radius σ = 0.05
(edge length of a voxel). We display the 10th eigenvector (a–d,f–i) and the first 40 eigenvalues (e,j).

This result provides a practical convergence guarantee for our construction: under fixed kernel scale
σ > 0 and increasing sample resolution, the normalized operators Qt converge to a continuous
diffusion operator Q (proofs in Appendices B and C). In contrast, the manifold-learning literature
finds Laplace-Beltrami consistency in joint limit N → ∞, σ → 0 (with density corrections) for
Sinkhorn normalizations (Wormell & Reich, 2021; Cheng & Landa, 2024). Our results complement
that line and target the fixed-scale regime used in practice and provide a simple normalization that
makes each Qt symmetric, mass-preserving, entrywise positive, and spectrally confined to [0, 1].
Note that we assume finite samples and positive entries in S, and refer to Knight et al. (2014,
Sec. 3.1) for zero entries.

5 EFFICIENT IMPLEMENTATION

Sinkhorn Convergence and Versatility. We use the symmetric Sinkhorn algorithm (Knight et al.,
2014; Feydy et al., 2019), which converges in a few iterations, as shown in Appendix D. Following
scipy.sparse.linalg (Virtanen et al., 2020), we treat S as a black-box matrix–vector prod-
uct: no factorization or complex data structure is required as diffusion behavior is encoded entirely
in the diagonal Λ. Code will be released upon acceptance.

Graphs. Given a symmetric adjacency matrix A≥ 0, regularize Aε = A + ε11⊤ (ε > 0). With
vertex masses M = diag(mi) and degree matrix D, set S = (D + Aε)M , which satisfies Def-
inition 4.3 and is efficient when A is sparse. Weak diagonal dominance (Horn & Johnson, 1985)
ensures a positive spectrum.

Point Clouds and Gaussian Mixtures. Given a weighted point cloud (xi,mi), we use Gaus-
sian kernels k with Sij = k(xi, xj)mj for smoothing. Matrix-vector products scale to millions
of points via the KeOps library (Charlier et al., 2021; Feydy et al., 2020) or optimized attention
layers (Lefaudeux et al., 2022; Dao, 2023) (described in Appendix D).

For Gaussian Mixtures, given a pair miN (xi,Σi) and mjN (xj ,Σj), we use the L2 dot product of
densities convolved with an isotropic Gaussian of variance σ2/2:

Sij = mj exp
[
− 1

2 (xi − xj)
⊤(σ2I +Σi +Σj)

−1(xi − xj)
]
. (5)

Multiplicative constants are normalized out by Algorithm 1.
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t = 0.00 t = 1.00 t = 50.00 t = 1.00 t = 50.00

(a) Initial State (b) Kernel Smoothing of the Gradient (c) With Normalized Diffusion

Figure 4: Flow of a source distribution of points (rainbow) towards a target (blue), following the
gradient of the Energy Distance for a Gaussian kernel metric (b) and its normalized counterpart (c).

(a) Input Data (b) LDDMM (c) Normalized (d) Gaussian Mixtures

Figure 5: Pose interpolation and extrapolation of a human hand skeleton. (a) We interpolate
between source (t = 0, red) and target (t = 1, blue) poses, and extrapolate to t = −0.5, 0.5, and
1.5. (b) The standard LDDMM geodesic with a Gaussian kernel (σ = 0.1) produces unrealistic
extrapolations. (c) Using our normalized diffusion yields a smoother, more plausible path. (d) The
method remains robust on coarse Gaussian-mixture inputs (100 components).

Voxel Grids. On regular grids, Gaussian smoothing is implemented as a separable convolution.
For sparse volumes, we leverage the efficient data structures of the Taichi library (Hu et al., 2019).

6 RESULTS

Spectral Shape Analysis. As discussed in Section 4, we expect the leading eigenvectors of a dif-
fusion operator Q to approximate low-frequency Laplacian modes. Figure 3 compares our operators
across modalities to a FEM Laplacian on meshes, and showcase additional results on the sphere and
cube in Appendix F. We also provide simple heuristics to estimate Laplacian eigenvalues from our
normalized diffusion operators (see App. F) and show in Figure 3 (Right) that their distributions
remain consistent across modalities, with deviations emerging near the voxel sampling scale.

Normalized Metrics. Laplacians naturally induce Sobolev metrics and simple elastic penalties,
commonly used as regularizers in machine learning and applied mathematics.

Figure 4 show results following Feydy et al. (2019) by minimizing the Energy Distance (Rizzo &
Székely, 2016) between two point clouds, but smoothing the gradient with a Gaussian kernel. Re-
placing raw Gaussian smoothing with our normalized diffusion improves stability near boundaries
and accelerates convergence in the Energy–Distance flow. This suggests potential in inverse ren-
dering (Nicolet et al., 2021) or generative modelling (Liu & Wang, 2016; Arbel et al., 2019; Korba
et al., 2024). We detail the objective, discretization, and parameters in Appendix G.

In Figure 5, we follow Kilian et al. (2007) and perform a geodesic interpolation between two poses
of an anatomical shape. Standard metrics for surface meshes such as ARAP (Sorkine & Alexa,
2007) or elastic shell models (Grinspun et al., 2003; Sassen et al., 2024) work well on clean meshes,
but are not robust to topological noise. Computational anatomy instead uses spline and kernel met-
rics (Bookstein, 1989; Pennec et al., 2019), defining a diffeomorphic shape space via LDDMM (Beg
et al., 2005; Durrleman et al., 2014). For very large deformations, however, kernel metrics tend to
favor contraction–expansion rather than pure translations (Micheli et al., 2012) (see Figure 5b). Re-
placing the raw kernel K by our normalized diffusion Q within LDDMM mitigates this and yields
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Table 1: Left: Shape correspondence accuracy of Q-DiffNet on FAUST, SCAPE, and SHREC19
(lower is better). Right: Wall-clock runtimes for symmetric Sinkhorn normalization (5 iterations)
on the GPU, compared to CPU runtimes for implicit Laplacian diffusion using sparse LU.

(a) Runtime (ms) vs. N

N GPU Sinkhorn CPU LU

10 000 3 65
50 000 21 393

100 000 89 1030
250 000 448 3510
500 000 1817 9100

1 000 000 6789 23 600

(b) Mean Geodesic Error

Method FAUST SCAPE S19

DiffNet 1.6 2.2 4.5
ULRSSM 1.6 2.1 4.6
DiffNet (PC) 3.0 2.5 7.5
ULRSSM (PC) 2.3 2.4 5.1

Q-DiffNet (QFM) 2.5 3.1 4.1
Q-DiffNet 2.1 2.4 3.5

more plausible paths across arbitrary data structures (Figure 5c–d). Full equations and implementa-
tion details are provided in Appendix G.

Runtimes. Our symmetric Sinkhorn converges in 5–10 iterations across modalities (see curves
in Appendix D). We report GPU runtimes for 5 iterations using a Gaussian kernel for point clouds
of increasing size. These are compared to CPU runtimes for implicit Laplacian diffusion using
sparse LU factorization, which reflects typical usage when a Laplacian is available. Dense solvers
on the GPU are significantly slower and run out of memory beyond 10k points. Additional details
on hardware, experimental setup, and other baselines are provided in Appendix E.

Point Feature Learning. We evaluate our operator on 3D shape correspondence, where the goal
is to match points across human shapes in varying poses, a challenging task due to changes in
geometry and topology. Building on DiffusionNet (Sharp et al., 2022), we replace its spectral
smoothing with our kernel-based operator, resulting in Q-DiffNet, which operates directly on 3D
coordinates and learns diffusion scales (σi) instead of fixed times. We integrate Q-DiffNet into the
ULRSSM pipeline (Cao et al., 2023), train on the remeshed FAUST+SCAPE datasets (Bogo et al.,
2014; Anguelov et al., 2005; Ren et al., 2019) using point clouds, and also evaluate on the harder
SHREC19 benchmark (Melzi et al., 2019). We compare to reference mesh-based methods (Sharp
et al., 2022; Cao et al., 2023), and to their point-cloud retrainings (“PC”). As shown in Table 1b, Q-
DiffNet outperforms point-based baselines on SHREC19 and remains competitive with all methods
on FAUST and SCAPE. While our network avoids Laplacian eigenvectors, ULRSSM still uses them
for functional maps and we also report a variant using eigenvectors from our operator (“QFM”).
The operator thus acts as a geometry-aware module applicable to broader shape representations,
including partial data (Attaiki et al., 2021). Implementation details and qualitative results are in Ap-
pendix I.

7 CONCLUSION AND FUTURE WORKS

We introduced a theoretical and practical framework for defining heat-like diffusion operators on
general geometric data. Our approach unifies and extends classical constructions such as graph
adjacency or similarity matrices into well-behaved diffusion mechanisms. We demonstrated its ver-
satility across tasks, including Laplacian eigenvector approximation, gradient flow stabilization, and
integration into neural networks as stable geometry-aware layers.

While our experiments confirm the promise of this framework, they remain preliminary. Future
work should explore more extensive downstream applications, particularly in settings where stan-
dard Laplacians are unavailable or unreliable. In addition, the scalability of our method can be
further improved: while our current implementation benefits from GPU-accelerated libraries, incor-
porating ideas from sparse or low-rank attention mechanisms could yield significant runtime gains
on large-scale point clouds and volumetric data.
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REPRODUCTIBILITY STATEMENT

Our main algorithm is summarized in Algorithm 1. Regarding our theoretical contributions, we
state all axioms and definitions in Section 4 with more details in Appendix A, and provide com-
plete proofs of the two main theorems in Appendices B and C. Implementation details needed to
reproduce all results are given for each experiment: convergence behavior and practical notes in Ap-
pendix D, runtime setup and hardware in Appendix E, eigenvector estimation and heuristics in Ap-
pendix F, gradient-flow objectives and discretization in Appendix G, LDDMM geodesic shooting
in Appendix H, and training protocol for Q-DiffNet Appendix I. We also include a timings table
in Table 1a and report iteration counts so others can budget runs. Together, these materials are
sufficient to reproduce the figures and tables from scratch.

Complete code for full reproducibility will be made public upon acceptance.

REFERENCES

Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, and James
Davis. SCAPE: Shape completion and animation of people. ACM Transactions on Graphics, 24
(3):408–416, July 2005.

Michael Arbel, Anna Korba, Adil Salim, and Arthur Gretton. Maximum mean discrepancy gradient
flow. Advances in Neural Information Processing Systems, 32, 2019.

W. Arendt. Generators of positive semigroups. In Franz Kappel and Wilhelm Schappacher (eds.),
Infinite-Dimensional Systems, pp. 1–15, Berlin, Heidelberg, 1984. Springer. ISBN 978-3-540-
38932-3.

Souhaib Attaiki, Gautam Pai, and Maks Ovsjanikov. DPFM: Deep Partial Functional Maps. In 2021
International Conference on 3D Vision (3DV), pp. 175–185, London, United Kingdom, December
2021. IEEE. ISBN 978-1-66542-688-6.

Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. The wave kernel signature: A quantum
mechanical approach to shape analysis. In 2011 IEEE International Conference on Computer
Vision Workshops (ICCV Workshops), pp. 1626–1633, Barcelona, Spain, November 2011. IEEE.
ISBN 978-1-4673-0063-6 978-1-4673-0062-9 978-1-4673-0061-2.

Gavin Barill, Neil G. Dickson, Ryan Schmidt, David I. W. Levin, and Alec Jacobson. Fast winding
numbers for soups and clouds. ACM Transactions on Graphics, 37(4):1–12, August 2018.
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Gerig, and Alain Trouvé. Morphometry of anatomical shape complexes with dense deformations
and sparse parameters. NeuroImage, 101:35–49, November 2014.

Klaus-Jochen Engel, Rainer Nagel, and Simon Brendle. One-parameter semigroups for linear evo-
lution equations, volume 194. Springer, 2000.

Nicole Feng and Keenan Crane. A Heat Method for Generalized Signed Distance. ACM Transac-
tions on Graphics, 43(4):1–19, July 2024.
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A CONTINUOUS FORMULATION OF THE METZLER CONDITION

Let A be a real square matrix. We say that A is a Metzler matrix if its off-diagonal entries are
non-negative. This condition implies that the matrix exponential etA has non-negative entries for all
t ≥ 0. To see this, remark that for t close enough to 0, we have etA = I + tA+ o(t). This implies
that the diagonal coefficients are approximately 1, and the off-diagonal ones are approximately
tAij ≥ 0. Since for any t we have etA = (etA/P )P , we can take P large enough such that etA/P is
non-negative (by the small-t argument). Since matrix multiplication preserves non-negativity, etA
is non-negative for all t ≥ 0.

Reciprocally, if B is a matrix admitting a logarithm log(B) such that Bt = exp(log(B)t) is entry-
wise positive for all t ≥ 0, then the identity Bt = I + t log(B) + o(t) for small t shows that log(B)
is a Metzler matrix.

To extend this reasoning beyond finite-dimensional spaces, we use the formalism of semigroups on
Banach spaces (Engel et al., 2000):
Definition A.1. Let T : t → T (t) be a continuous function from R to the space of bounded linear
operators on a Banach space V . We say that T is a strongly continuous semigroup if:

(i) T (0) = I
(ii) T (t+ s) = T (t)T (s) for all t, s ≥ 0
(iii) limt→0 T (t)f = f for all f ∈ V

Its generator A is defined on the set of signals f ∈ V for which the limit exists as:

Af = lim
t→0

T (t)f − f

t
(6)

The semigroup is said to be positive if T (t)f ≥ 0 for all f ≥ 0 and t ≥ 0.

Under this framework, a Metzler matrix A is the generator of a positive semigroup t 7→ etA.

In full generality, extending the Metzler condition to infinite-dimensional operators is not straight-
forward since the notion of “off-diagonal” terms is ill-defined. The correct formalism uses Banach
lattices; we refer to (Schaefer, 1974) for proper statements and (Arendt, 1984) for proofs. In our
case, we make a simplifying assumption and restrict ourselves to Hilbert spaces of the form L2

µ(X ),
which include both finite-dimensional Euclidean spaces and infinite-dimensional L2 spaces. For any
signal f ∈ L2

µ(X ), we define sign(f) pointwise as:

sign(f)(x) =


+1 if f(x) > 0

−1 if f(x) < 0

0 if f(x) = 0

, so that |f | = sign(f)f. (7)

This leads to the following proposition, which characterizes the Metzler property on general L2
µ(X )

spaces via a pointwise inequality:
Proposition A.1. Let A : RN → RN be a be a linear operator represented by a matrix. Then the
following inequalities are equivalent:

(i) (Metzler condition) Aij ≥ 0 whenever i ̸= j
(ii) (Kato’s inequality) A |f | ≥ sign(f)Af for all f ∈ V

Proof. Statement (ii) can be rewritten as: for all i,∑
j

Aij |fj | ≥ sign(fi)
∑
j

Aijfj . (8)

If (i) holds, then for i ̸= j we have Aij |fj | ≥ Aijfj sign(fi), and, by definition, Aii |fi| =
Aiifi sign(fi). Therefore we have Equation (8) and (ii).

Conversely, suppose (ii) holds. Consider a pair i ̸= j and a signal f such that fi = 1, fj = −1 and
fk = 0 for other indices k. Equation (8) implies that:

Aii +Aij ≥ Aii −Aij , i.e. Aij ≥ 0 . (9)
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This allows us to conclude.

We would like to extend the implication from the finite-dimensional case: if A satisfies Kato’s
inequality, then it should generate a semigroup of non-negative operators. In the infinite-dimensional
setting, this implication requires additional structure.

Definition A.2. A strictly positive subeigenvector of an operator A is a function f ∈ D(A) so that:

(i) Af ≤ λf for some λ ∈ R
(ii) f > 0 almost everywhere

where D(A) denotes the domain of the (possibly unbounded) operator A.

This allows us to state the following result, which is a direct consequence of Theorem 1.7 in Arendt
(1984):

Proposition A.2. Let A be a generator of a strongly continuous semigroup on L2
µ(X ). Assume that

there exists a function g ∈ D(A) such that:

(i) g is a strictly positive subeigenvector of A⊤µ .
(ii) (weak Kato’s inequality) ⟨A⊤µg, |f |⟩µ ≥ ⟨sign(f)Af, g⟩µ for all f ∈ D(A) .

Then the semi-group is positive (see Definition A.1).

In our setting, the generator A is equal to the opposite −∆ of a Laplace-like operator, and g is the
constant function 1. Since our set of axioms implies that −∆⊤µ1 = −∆1 = 0, we always have that
1 is a strictly positive subeigenvector of −∆⊤µ . This allows us to propose the following definition
of a Laplace-like operator, which generalizes Definition 4.1 to discrete measures:

Definition A.3 (General Laplace-like Operators). Let ∆ be a generator of a strongly continuous
semigroup on L2

µ(X ), where µ has finite total mass.
We say that ∆ is a Laplace-like operator if for all f ∈ L2

µ(X ):

(i) Symmetry: ∆⊤µ = ∆ (iii) Positivity: ⟨f,∆f⟩µ ≥ 0
(ii) Constant cancellation: ∆1 = 0 (iv) Kato’s inequality: ⟨sign(f)∆f, 1⟩µ ≥ 0

The results above show that if t 7→ T (t) is the strongly continuous semigroup generated by such a
Laplace-like operator ∆, then T (t) satisfies the conditions of a diffusion operator (Definition 4.2 in
the main manuscript).

We note that the assumption of finite total mass for µ ensures that the constant function 1 belongs to
L2
µ(X ), and that our definition includes, as a special case, the classical Laplace–Beltrami operator

on compact Riemannian manifolds.

B PROOF OF THEOREM 4.1

Our theoretical analysis relies on ideas developed in the context of entropy-regularized optimal
transport. We refer to the standard textbook (Peyré et al., 2019) for a general introduction, and to
Feydy et al. (2019) for precise statements of important lemmas. Let us now proceed with our proof
of Theorem 4.1.

Proof. Recall that µ =
∑N

i=1 miδxi
is a finite discrete measure with positive weights mi > 0. The

smoothing operator S can be written as the product:

S = KM , (10)

where K is a N -by-N symmetric matrix with positive coefficients Kij > 0 and M =
diag(m1, . . . ,mN ) is a diagonal matrix. Our hypothesis of operator positivity on S implies that
K is a positive semi-definite matrix. Finally, we can suppose that µ is a probability measure without
loss of generality: going forward, we assume that m1 + · · ·+mN = 1.
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Optimal Transport Formulation. We follow Eq. (1) in Feydy et al. (2019) and introduce the
symmetric entropy-regularized optimal transport problem:

OTreg(µ, µ) = min
π∈Plans(µ,µ)

N∑
i,j=1

πijCij + KL(π,mm⊤) (11)

where Cij = − logKij is the symmetric N -by-N cost matrix and Plans(µ, µ) is the simplex of
N -by-N transport plans, i.e. non-negative matrices whose rows and columns sum up to m =
(m1, . . . ,mN ). KL denotes the Kullback-Leibler divergence:

KL(π,mm⊤) =

N∑
i,j=1

πij log
πij

mimj
. (12)

Compared with Feydy et al. (2019), we make the simplifying assumption that ε = 1 and do not
require that Cii = 0 on the diagonal since this hypothesis is not relevant to the lemmas that we use
in our paper.

Sinkhorn Scaling. The above minimization problem is strictly convex. The fundamental result of
entropy-regularized optimal transport, stated e.g. in Section 2.1 of Feydy et al. (2019) and derived
from the Fenchel-Rockafellar theorem in convex optimization, is that its unique solution can be
written as:

πij = exp(fi + gj − Cij)mimj , (13)

where f = (f1, . . . , fN ) and g = (g1, . . . , gN ) are two dual vectors, uniquely defined up to a
common additive constant (a pair (f, g) is solution if and only if the pair (f − c, g + c) is also
solution) – see Proposition 11 in Feydy et al. (2019). In our case, by symmetry, there exists a unique
constant such that f = g – see Section B.3 in Feydy et al. (2019). We denote by ℓ = (ℓ1, . . . , ℓN )
this unique “symmetric” solution. It is the unique vector such that:

πij = exp(ℓi + ℓj − Cij)mimj = mie
ℓi Kij e

ℓjmj (14)

is a valid transport plan in Plans(µ, µ). This matrix is symmetric and such that for all i:

N∑
j=1

πij = mi i.e. eℓi
N∑
j=1

Kij e
ℓjmj = 1 . (15)

We introduce the positive scaling coefficients λi = eℓi , the diagonal scaling matrix Λ =
diag(λ1, . . . , λN ), and rewrite this equation as:

ΛKMΛ1 = 1 i.e. Q1 = 1 where Q = ΛKMΛ . (16)

This shows that scaling S = KM with Λ enforces our constant preservation axiom for diffusion
operators – property (ii) in Definition 4.2. Likewise, since Λ is a diagonal matrix with positive
coefficients, Q satisfies axioms (i) – symmetry with respect to M – and (iv) – entrywise positivity.

Crucially, Λ can be computed efficiently using a symmetrized Sinkhorn algorithm: our Algorithm 1
is directly equivalent to in Feydy et al. (2019, Eq. (25)).

Spectral Normalization. To conclude our proof, we now have to show that the normalized oper-
ator Q also satisfies axiom (iii) – damping – in our definition of diffusion operators, i.e. show that
its eigenvalues all belong to the interval [0, 1].

To this end, we first remark that Q = ΛKMΛ = ΛKΛM has the same eigenvalues as Q′ =√
MΛKΛ

√
M , where

√
M = diag(

√
m1, . . . ,

√
mN ). If α is a scalar and x is a vector, the eigen-

value equation:

Qx = ΛKΛ
√
M
√
Mx︸ ︷︷ ︸
y

= αx is equivalent to Q′y =
√
MΛKΛ

√
My = αy (17)

with the change of variables y =
√
Mx.
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Then, we remark that for any vector x in RN ,

N∑
i,j=1

Kijλiλj(
√
mjxi −

√
mixj)

2 (18)

=

N∑
i,j=1

Kijλiλj

(
mjx

2
i +mix

2
j − 2

√
mi
√
mjxixj

)
(19)

=

N∑
i=1

(ΛKMΛ1︸ ︷︷ ︸
Q1=1

)ix
2
i +

N∑
j=1

(ΛKMΛ1︸ ︷︷ ︸
Q1=1

)jx
2
j − 2x⊤Q′x (20)

= 2x⊤(I −Q′)x . (21)

Since the upper term is non-negative as a sum of squares, we get that the eigenvalues of the sym-
metric matrix I −Q′ are all non-negative. This implies that the eigenvalues of Q′, and therefore the
eigenvalues of Q, are bounded from above by 1.

In the other direction, recall that our hypothesis of operator positivity on S implies that K is a posi-
tive semi-definite matrix. This ensures that Q’, and therefore Q, also have non-negative eigenvalues.
Combining the two bounds, we show that the spectrum of the normalized operator Q is, indeed,
included in the unit interval [0, 1].

C PROOF OF THEOREM 4.2

Proof. The hypotheses of our Theorem 4.2 fit perfectly with those of Theorem 1 in Feydy et al.
(2019). Notably, we make the assumption that X is a bounded region of Rd: we can replace it with a
closed ball of finite radius, which is a compact metric space. Just as in Appendix B, we can assume
without loss of generality that the finite measures µt and the limit measure µ are probability distri-
butions, that sum up to 1: positive multiplicative constants are absorbed by the scaling coefficients
Λt and Λ.

If k(x, y) is a Gaussian kernel of deviation σ > 0, we use the cost function C(x, y) = 1
2∥x − y∥2

and an entropic regularization parameter ε = σ2. If k(x, y) is an exponential kernel at scale σ > 0,
the cost function is simply the Euclidean norm ∥x− y∥ and the entropic regularization parameter ε
is equal to σ.

Continuous Scaling Functions. The theory of entropy-regularized optimal transport allows us to
interpret the dual variables f , g and ℓ of Eqs. (13-14) as continuous functions defined on the domain
X . Notably, for any probability distribution µ, the continuous function ℓ : X → R is uniquely
defined by the “Sinkhorn equation” – see Sections B.1 and B.3 in Feydy et al. (2019):

∀x ∈ X , ℓ(x) = − ε log

∫
X
exp 1

ε

(
ℓ(y)− C(x, y)

)
dµ(y) . (22)

The first part of Theorem 4.2 is a reformulation of this standard result. We introduce the continuous,
positive function:

λ(x) = exp(ℓ(x)/ε) > 0 (23)

which is bounded on the compact domain X . We remark that Eq. (22) now reads:

∀x ∈ X , λ(x) =
1∫

X k(x, y)λ(y) dµ(y)
(24)

i.e. 1 = λ(x)

∫
X
k(x, y)λ(y) dµ(y) . (25)

This implies that the operator Q defined in Equation (3) satisfies our constant preservation axiom
for diffusion operators. By construction, it also satisfies the symmetry and entrywise positivity
axioms. The damping property derives from the fact that we can write Q as the limit of the sequence
of discrete diffusion operators Qt with eigenvalues in [0, 1].
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Convergence. To prove it, note that the above discussion also applies to the discrete measures
µt =

∑Nt

i=1 m
t
iδxt

i
. We can uniquely define a continuous function ℓt : X → R such that:

∀x ∈ X , ℓt(x) = − ε log

Nt∑
j=1

mt
j exp

1
ε

(
ℓt(xt

j)− C(x, xt
j)
)
, (26)

and interpret the diagonal coefficients of the scaling matrix Λt as the values of the positive scaling
function:

λt(x) = exp(ℓt(x)/ε) > 0 (27)

sampled at locations (xt
1, . . . , x

t
Nt

).

Recall that the sequence of discrete measures µt converges weakly to µ as t tends to infinity. Cru-
cially, Proposition 13 in Feydy et al. (2019) implies that the dual potentials ℓt converge uniformly
on X towards ℓ. Since ℓ is continuous and therefore bounded on the compact domain X , this uni-
form convergence also holds for the (exponentiated) scaling functions: λt converges uniformly on
X towards λ.

For any continuous signal f : X → R, we can write down the computation of Qtf as the composi-
tion of a pointwise multiplication with a scaled positive measure µtλt, a convolution with the (fixed,
continuous, bounded) kernel k, and a pointwise multiplication with the positive scaling function λt.
In other words:

Qtf = λt ·
(
k ⋆ (µtλtf)

)
. (28)

Likewise, we have that:
Qf = λ ·

(
k ⋆ (µλf)

)
. (29)

Since λt converges uniformly towards λ and f is continuous, the signed measure µtλtf converges
weakly towards µλf . This implies that the convolution with the (bounded) Gaussian or exponential
kernel k ⋆ (µtλtf) converges uniformly on X towards k ⋆ (µλf), which allows us to conclude.

D Q-DIFFUSION IN PRACTICE

Sinkhorn Convergence. We evaluate the convergence behavior of the symmetrized Sinkhorn al-
gorithm across various settings. Specifically, we monitor the quantity:∫ ∣∣Λ(i)SΛ(i)1− 1

∣∣ dµ∫
dµ

(30)

where Λ(i) denotes the diagonal scaling matrix after i Sinkhorn iterations. This corresponds to the
average deviation between the constant signal 1 and its smoothed counterpart Q(i)1 = Λ(i)SΛ(i)1
on the domain that is defined by the positive measure µ. According to our definition, both signals
coincide when Q(i) is a smoothing operator. Figure 6 presents these results, with visualizations of
the input modalities along the top row and corresponding convergence curves below. In Figure 6a,
we report results for different representations of the Armadillo shape used in the main paper: uni-
form point cloud samples on the surface and volume, as well as voxel-based representations of the
boundary and interior. Figure 6b illustrates the behavior on Erdős–Rényi random graphs with edge
probability p = 0.2, and Figure 6c shows results on geometric graphs, where points are uniformly
sampled in the unit square and edges are drawn between points within radius r = 0.15.

Across all experiments, we observe rapid convergence: typically, 5 to 10 iterations are sufficient to
reach error levels below 10−3 = 0.1%. We note that one iteration of our algorithm corresponds to
the classical symmetric normalization of graph Laplacians, which satisfies our constant preservation
property up to a precision of 1% to 5%. From this perspective, we understand our work as a clar-
ification of the literature on graph Laplacians. While most practitioners are used to working with
approximate normalization, we provide a clear and affordable method to satisfy this natural axiom
up to an arbitrary tolerance parameter. We argue that this is preferable to choosing between row-
wise normalization (which guarantees the preservation of constant signals, but discards symmetry)
and standard symmetric normalization (which makes a small but noticeable error on the preservation
of constant signals).
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Figure 6: Convergence of the symmetric Sinkhorn algorithm on (a) the Armadillo shape, (b) a graph
with N nodes and random edges, (c) a random geometric graph with N nodes

Implementing Q-Diffusion on Discrete Samples. Let K ∈ RN×N be a symmetric kernel ma-
trix, and M = diag(m1, . . . ,mN ) be a diagonal mass matrix. As described in Algorithm 1, we
compute a diagonal scaling matrix Λ = diag(eℓ1 , . . . , eℓN ), such that the normalized diffusion
operator becomes Q = ΛKMΛ. This operator can be implemented efficiently using the KeOps
library (Charlier et al., 2021; Feydy et al., 2020), which avoids instancing the dense kernel matrix.

In the case where K is a Gaussian kernel between points xi in Rd, with standard deviation σ > 0,
applying Q to a signal f ∈ RN gives:

(Qf)i =

N∑
j=1

exp
(
− 1

2σ2 ∥xi − xj∥2 + ℓi + ℓj

)
mjfj (31)

=
∑
j

exp (qij) fj where qij := − 1
2σ2 ∥xi − xj∥2 + ℓi + ℓj + logmj . (32)

Since Q is row-normalized by construction, (i.e., Q1 = 1), this operation can be written as a
softmax-weighted sum:

(Qf)i =

N∑
j=1

SoftMaxj (qij) fj . (33)

We note that the scores qij can be expressed as inner products between extended embeddings x̃i, ỹi ∈
Rd+2, enabling fast attention implementations:

qij = x̃⊤
i ỹj , where x̃i =

 1
σxi

ℓi − 1
2σ2 ∥xi∥2
1

 and ỹj =

 1
σxj

1
ℓj − 1

2σ2 ∥xj∥2 + log(mj)

 . (34)

This leads to an attention-style formulation of the operator:

Qf = Attention
(
X̃, Ỹ , f

)
(35)

where X̃, Ỹ ∈ RN×(d+2) are the stacked embeddings of all points. This makes Qf compatible with
fast attention layers such as FlashAttention (Dao, 2023) or xFormers (Lefaudeux et al., 2022). Note
that the softmax normalization in the Attention layer is invariant to additive constants in x̃i, allowing
the implementation to be further simplified using only a (d+1)-dimensional embeddings for X̃ and
Ỹ
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Spectral Decomposition. The largest eigenvectors of a symmetric matrix can be efficiently com-
puted using the power method or related iterative solvers (Saad, 2011). However, standard routines
typically assume symmetry with respect to the standard inner product. Since our diffusion operator
Q = ΛKMΛ is symmetric with respect to the M -weighted inner product, we need to reformulate
the problem. Noting that M and Λ are diagonal and therefore commute, we can write

Q = M−1 (ΛMKMΛ) . (36)

This allows us to compute the eigenvectors and eigenvalues of Q by solving the following general-
ized eigenproblem for symmetric matrices:

(ΛMKMΛ)Φ = λMΦ . (37)

This is supported by standard linear algebra routines (such as scipy.sparse.linalg.eigsh)
and ensures that the resulting eigenvectors Φ are orthogonal with respect to the M inner product.

E RUNTIMES

Setup. We time 5 iterations of the symmetric Sinkhorn normalization on point-cloud kernels us-
ing PyTorch + PyKeOps (symbolic lazy tensors) on an NVIDIA V100 (CUDA 12.1). For reference,
we also time implicit Laplacian diffusion via a sparse LU solve of (M+t∆) on an Intel Xeon
Gold 6248 CPU. This reflects typical usage: kernel mat–vecs map well to GPUs, whereas sparse
direct solvers are mature and memory-efficient on CPUs when a Laplacian is available.

What is timed. Sinkhorn: each iteration = one mat–vec with S + a diagonal rescaling; we report
wall-clock for 5 iterations. Laplacian: factorization + one solve of (M+t∆)−1b on CPU (best-case
when a sparse ∆ exists). Our GPU timings use a brute-force kernel on an unstructured 3D point
cloud, and could be further improved.

Dense GPU baselines. On the GPU, we also measured a Cholesky factorization (210 ms) and a
matrix exponential (770 ms) of a Laplacian in PyTorch and 10000 vertices. These approaches exceed
GPU memory limits beyond ∼10k points.

Sinkhorn Complexity. Per Sinkhorn iteration for different methods:

(i) Dense matrices S: O(N2) time/memory
(ii) Symbolic kernel S (e.g., Gaussian with PyKeOps): O(N2) time, O(N) memory sparse S

(k-NN): O(kN) time (generally O(nnz))
(iii) Low-rank (rank R): O(RN2)

(iv) Grid convolution: O(N) for small filters, O(N logN) for large filters using FFTs

Baseline Complexity. Per diffusion step via Laplacian-based methods:

(i) Matrix exponential (dense): O(N3) time; rarely used at scale.
(ii) Implicit Euler (I+t∆)−1 with sparse LU/Cholesky: worst case O(N3); for mesh-like spar-

sity typically O(N1.5) for factorization and O(N2) per solve (amortizable across right-hand
sides).

(iii) Spectral truncation (rank R): O(RN2) in the dense setting; truncation may introduce ringing
artifacts.

These baselines assume access to a well-defined sparse Laplacian and specialized linear algebra
routines.

F DETAILS ON EIGENVECTORS COMPUTATION

FEM Laplacian on Tetrahedral Meshes. In Figure 3 of the main paper, we implement our
method on different representations of the Armadillo, treated as a surface and as a volume with
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uniform density. For the surface mesh in Figure 3a, we use the standard cotangent Laplacian as a
reference. For the tetrahedral mesh shown in Figure 3f, we use a finite element Laplacian, general-
izing the cotangent Laplacian in 2D (Crane, 2019). Let {ei} be a basis of piecewise linear basis and
{dei} their gradients. The discrete Laplacian ∆ takes the form:

∆ = M−1L , (38)
where L is the stiffness matrix and M is the mass matrix defined by:

Lij = ⟨dei, dej⟩ , Mij = ⟨ei, ej⟩ . (39)
Following Crane (2019), we compute the off-diagonal entries of L with:

Lij =
1

6

∑
ijkl∈T

lkl cot(θ
ij
kl) , (40)

where T is the set of tetrahedra in the mesh, lkl is the length of edge kl, and θijkl is the dihedral angle
between triangles ikl and jkl. The diagonal entries are defined to make sure that the rows sum to
zero:

Lii = −
∑
j ̸=i

Lij . (41)

The entries of the mass matrix M are given by:

Mij =
1

20

∑
ijkl∈T

vol(ijkl) for i ̸= j , Mii =
1

10

∑
ijkl∈T

vol(ijkl) . (42)

Point Clouds. As discussed in the main paper, we compare the eigendecompositions of these
cotan Laplacians to that of our normalized Gaussian smoothings on discrete representations of the
Armadillo. For the sake of simplicity, Figures 3b and 3g correspond to uniform discrete samples,
i.e. weighted sums of Dirac masses:

µ =

N∑
i=1

1
N δxi

, (43)

where x1, . . . , xN correspond to N = 5000 three-dimensional points drawn at random on the
triangle mesh (for Figure 3b) and in the tetrahedral volume (for Figure 3g).

Gaussian Mixtures. To compute the Gaussian mixture representations of Figures 3c and 3h, we
simply rely on the Scikit-Learn implementation of the EM algorithm with K-Means++ initializa-
tion (Pedregosa et al., 2011) and 500 components. This allows us to write:

µ =

500∑
i=1

miN (xi,Σi) , (44)

where the scalars mi are the non-negative mixture weights, the points xi are the Gaussian centroids
and the 3-by-3 symmetric matrices Σi are their covariances.

Mass Estimation on Voxel Grids. To encode the Armadillo’s volume as a binary mask in Fig-
ure 3i, we simply assign a mass of 1 to voxels that contain points inside of the watertight Armadillo
surface. This allows us to demonstrate the robustness of our implementation, even when voxel val-
ues do not correspond to the exact volume of the intersection between the tetrahedral mesh and the
cubic voxel.

However, this approach is too simplistic when representing the surface of the Armadillo with voxels.
Since the grid is more densely sampled along the xyz axes than in other directions, assigning a
uniform mass of 1 to every voxel that intersects the triangle mesh would lead to biased estimates of
the mass distribution. To address this quantization issue, we use kernel density estimation to assign
a mass mi to each voxel.

As described above, we first turn the triangle mesh into a binary mask. Then, for every non-empty
voxel x, we use an isotropic Gaussian kernel k with standard deviation σ equal to 3 voxels to estimate
a voxel mass m(x) with:

m(x) =
1∑

y k(x, y)
(45)

where the sum is taken over neighboring, non-empty voxels.
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(a) Sphere Surface
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(b) Sphere Volume
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(c) Cube Surface
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(d) Cube Volume

Figure 7: Laplacian eigenvalues for the sphere of diameter 1 and the cube of edge length 1.

Estimation of the Laplacian Eigenvalues. Recall that with our conventions, the Laplace operator
is non-negative. In both of our settings (surface and volume), performing an eigendecomposition
of the reference cotan Laplacian yields an increasing sequence of eigenvalues starting at λ∆

1 = 0.
On the other hand, computing the largest eigenvalues of a normalized diffusion operator yields a
decreasing sequence of eigenvalues starting at λQ

1 = 1.

To compare both sequences with each other and produce the curves of Figure 3e and 3j, we propose
the following simple heuristics for diffusions Q derived from a Gaussian kernel of deviation σ > 0:

• For point clouds and voxels, we use:

λi = − 2

σ2
log(λQ

i ) . (46)

Indeed, when the underlying measure µ corresponds to a regular grid with uniform weights,
we can interpret the Gaussian kernel matrix as a convolution operator with a Gaussian
kernel exp(−∥x∥2/2σ2). Its eigenvalues can be computed in the Fourier domain as
exp(−σ2∥ω∥2/2). To recover the eigenvalues ∥ω∥2 of the Laplace operator, we simply
have to apply a logarithm and multiply by −2/σ2.

• For Gaussian mixtures with component weights mi, centroids xi and covariance matrices
Σi, we use:

λi = − 2

σ2 + 2
d (
∑

i mitrace(Σi))/(
∑

i mi)
log(λQ

i ) , (47)

where d is equal to 2 for surfaces and 3 for volumes. This formula is easy to com-
pute and introduces an additional factor, the average trace of the covariance matrices
Σi. For volumes, it relies on the observation that when all covariance matrices are equal
to a constant isotropic matrix Σ = τ2I3 with trace 3τ2, the smoothing operator de-
fined in Eq. (5) of the main paper is equivalent to a Gaussian kernel matrix of variance
σ2 + 2τ2 = σ2 + (2/3) trace(Σ).
Likewise, for surfaces, we expect that a regular sampling will lead to covariance matrices
that have one zero eigenvalue (in the normal direction) and two non-zero eigenvalues (in
the tangent plane), typically equal to a constant τ2. This leads to the formula σ2 + 2τ2 =
σ2 + (2/2) trace(Σ).

Estimated Spectrum on Standard Shapes. In Figures 8 and 9, we display the first 20 eigenvec-
tors of our operators defined on the Armadillo, as a complement to Figure 3 in the main paper. As
expected, these mostly coincide with each other.

Going further, we perform the exact same experiment with a sphere of diameter 1 in Figures 10
and 11, as well as a cube with edge length 1 in Figures 12 and 13. The relevant spectra are displayed
in Figure 7. We recover the expected symmetries, which correspond to the plateaus in the spectra and
the fact that the eigenvectors cannot be directly identified with each other. We deliberately choose
coarse point cloud and Gaussian mixture representations, which allow us to test the robustness of
our approach. Although the Laplacian eigenvalues tend to have a slower growth on noisy data, the
eigenvectors remain qualitatively relevant.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 8: First 10 eigenvectors on the Armadillo, treated as a surface on the left and as a volume
on the right. From left to right, the shape is encoded as a triangle mesh, a point cloud sampled
uniformly at random, a voxel grid, a Gaussian mixture; a tetrahedral mesh, a point cloud, a binary
mask and a Gaussian mixture. Figure 3 corresponds to the last row.
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Figure 9: Eigenvectors 11 to 20 on the Armadillo, understood as a surface on the left and as a
volume on the right. From left to right, the shape is encoded as a triangle mesh, a point cloud
sampled uniformly at random, a voxel grid, a Gaussian mixture; a tetrahedral mesh, a point cloud, a
binary mask and a Gaussian mixture.
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Figure 10: First 10 eigenvectors on the sphere of diameter 1, treated as a surface on the left and
as a volume on the right. From left to right, the shape is encoded as a triangle mesh, a point cloud
sampled uniformly at random, a voxel grid, a Gaussian mixture; a tetrahedral mesh, a point cloud, a
binary mask and a Gaussian mixture.
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Figure 11: Eigenvectors 11 to 20 on the sphere of diameter 1, treated as a surface on the left and
as a volume on the right. From left to right, the shape is encoded as a triangle mesh, a point cloud
sampled uniformly at random, a voxel grid, a Gaussian mixture; a tetrahedral mesh, a point cloud, a
binary mask and a Gaussian mixture.
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Figure 12: First 10 eigenvectors on a cube with edge length 1, treated as a surface on the left and
as a volume on the right. From left to right, the shape is encoded as a triangle mesh, a point cloud
sampled uniformly at random, a voxel grid, a Gaussian mixture; a tetrahedral mesh, a point cloud, a
binary mask and a Gaussian mixture.
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Figure 13: Eigenvectors 11 to 20 on a cube with edge length 1, treated as a surface on the left and
as a volume on the right. From left to right, the shape is encoded as a triangle mesh, a point cloud
sampled uniformly at random, a voxel grid, a Gaussian mixture; a tetrahedral mesh, a point cloud, a
binary mask and a Gaussian mixture.
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G DETAILS ON GRADIENT FLOW

The Energy Distance. Inspired by the theoretical literature on sampling and gradient flows,
we perform a simple gradient descent experiment on the Energy Distance between two empiri-
cal distributions. Given a source (prior) distribution µ = 1

N

∑N
i=1 δxi and a target distribution

ν = 1
M

∑M
j=1 δyj

, this loss function is defined as:

E(µ, ν) =
1

NM

N∑
i

M∑
j

∥xi − yj∥ −
1

2N2

N∑
i,j=1

∥xi − xj∥ −
1

2M2

M∑
i,j=1

∥yi − yj∥ (48)

When all points are distinct from each other, its gradient with respect to the positions of the source
samples is:

∇xiE(µ, ν) =
1

NM

M∑
j=1

yj − xi

∥yj − xi∥
− 1

N2

∑
j ̸=i

xj − xi

∥xj − xi∥
(49)

We implement this formula efficiently using the KeOps library.

Particle Flow. Starting from point positions x
(0)
i , we then update the point positions iteratively

using:

x
(t+η)
i ← x

(t)
i − ηNL∇

x
(t)
i
E
(

1
N

∑N
i=1 δx(t)

i
, ν

)
, (50)

where L is an arbitrary linear operator and η is a positive step size. When L is the identity, this
scheme corresponds to an explicit Euler integration of the Wasserstein gradient flow: Figure 14 is
equivalent to classical simulations such as the first row of Figure 5 in Feydy et al. (2019).

Setup. Going further, we study the impact of different smoothing operators L that act as regular-
izers on the displacement field. We consider both unnormalized Gaussian kernel matrices and their
normalized counterparts as choices for L, with standard deviation σ = 0.07 in Figure 4 of the main
paper and Figure 15, as well as σ = 0.2 in a secondary experiment showcased in Figure 16. For
each case, we run T = 1000 iterations with a step size η = 0.05.

Out of the box, unnormalized kernel matrices tend to aggregate many points and thus inflate gradi-
ents. To get comparable visualizations, we divide the unnormalized kernel matrix by the average of
its row-wise sums at time t = 0. This corresponds to an adjustment of the learning rate, which is
not required for the descents with respect to the Wasserstein metric or with our normalized diffusion
operators.

As a source distribution, we use a uniform sampling (N = 1500) of a small rectangle in the unit
square [0, 1]2. The target distribution is also sampled with M = 1500 points using a reference
image provided by the Geomloss library (Feydy et al., 2019). The entire optimization process takes
a few seconds on a GeForce RTX 3060 Mobile GPU using KeOps for kernel computation.

Visualization. In Figure 14, we show a baseline gradient descent for the Wasserstein metric (L =
I). As expected, the gradient flow heavily deforms the source distribution and leaves “stragglers”
behind due to the vanishing gradient of the Energy Distance.

In Figure 15, we compare both kernel variants with σ = 0.07 as in the main paper. In Figure 16,
we use a larger standard deviation σ = 0.2. In this case, the unregularized flow is more stable but
still tends to overly contract the shape. In contrast, our normalized kernel consistently preserves the
structural integrity of the source distribution.

H DETAILS ON NORMALIZED SHAPE METRICS

Hamiltonian Geodesic Shooting. To compute our shape geodesics, we implement the LDDMM
framework on point clouds as done by the Deformetrica software (Bône et al., 2018). If (x1, . . . , xN )
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Figure 14: Gradient flow using the simple Wasserstein metric.
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Figure 15: Gradient flow using unnormalized and normalized Gaussian kernels with σ = 0.07.
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Figure 16: Gradient flow using unnormalized and normalized Gaussian kernels with σ = 0.2.
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denotes the set of vertices of the source mesh in 3D, we define the standard Hamiltonian H(q, p) on
(position, momentum) pairs RN×3 × RN×3 with:

H(q, p) = 1
2 trace(p⊤Kqp) = 1

2

N∑
i,j=1

(Kq)ij · p⊤i pj , (51)

where (Kq)ij = exp(−∥qi−qj∥2/2σ2) is a Gaussian kernel matrix. Starting from a source position
q(t = 0) = (x1, . . . , xN ), geodesic shape trajectories are parametrized by an initial momentum
p(t = 0) and flow along the coupled geodesic equation in phase space:

q̇(t) = +
∂H

∂p
(q(t), p(t)) , ṗ(t) = − ∂H

∂q
(q(t), p(t)) (52)

that we integrate to time t = 1 using an explicit Euler scheme with a step size δt = 0.1. The partial
derivatives of the Hamiltonian are computed automatically with PyTorch.

Shape Interpolation. In Figure 5a from the main manuscript, we display the source position q(t =
0) = (x1, . . . , xN ) in red and a target configuration in blue. In Figure 5b, we use the L-BFGS
algorithm to optimize with respect to the initial shooting momentum p(t = 0) the mean squared
error between the position of the geodesic q(t = 1) at time t = 1 and the target configuration. Then,
we use Eq. (52) to sample the geodesic curve q(t) at time t = −0.5, t = 0.5 and t = 1.5.

In Figure 5c, we use the exact same implementation but normalize the Gaussian kernel matrix Kq

into a diffusion operator Qq before defining a “normalized” Hamiltonian H(q, p):

H(q, p) = 1
2 trace(p⊤Qqp) . (53)

For the sake of simplicity, we do not use the mesh connectivity information and rely instead on
constant weights to define the mass matrix M . Although our Hamiltonian is now defined via the
iterative Sinkhorn algorithm, automatic differentiation lets us perform geodesic shooting without
problems. Finally, in Figure 5d, we identify every Gaussian component N (xi,Σi) with a cloud of
6 points sampled at (xi ± si,1ei,1, xi ± si,2ei,2, xi ± si,3ei,3), where ei,1, ei,2 and ei,3 denote the
eigenvectors of Σi with eigenvalues s2i,1, s2i,2 and s2i,3. This allows us to use the same underlying
point cloud implementation.

I DETAILS ON POINT FEATURES LEARNING

Q-DiffNet. DiffusionNet (Sharp et al., 2022) is a powerful baseline for learning pointwise features
on meshes and point clouds. It relies on two main components: a diffusion block and a gradient
feature block. The diffusion block approximates heat diffusion spectrally rather than solving a
sparse linear system. In Q-DiffNet, we replace this truncated spectral diffusion with our normalized
diffusion operator, using a Gaussian convolution as the original smoothing operator. Given a shape
S with vertices X ∈ RN×3, features f ∈ RN×P and a diagonal mass matrix M , we define:

Q-Diff(f,X,M ;σ) = Q(X,M, σ)mf where Q(X,M, σ) = ΛσKσ(X,X)MΛσ . (54)
In the above equation, Kσ is a Gaussian kernel of standard deviation σ, Λσ is the diagonal scaling
matrix computed from Algorithm 1, and m is the number of application of the operator. The scaling
Λσ is recomputed in real time at each forward pass using 10 iteration of Algorithm 1, without
backpropagation. Repeating the operator m times allows for simulating longer diffusion times. In
practice, we use m = 2.

Like DiffusionNet (Sharp et al., 2022), Q-DiffNet supports multi-scale diffusion: the layer takes
input features of shape B ×C ×N × P and applies separate diffusion per channel, using learnable
scales (σc)

C
c=1. In DiffusionNet, typical values are C = 256, P = 1. For speed efficiency, we use

C = 32, P = 8 in our experiments, which preserves the total amount of features in the network.

Architecture Integration. We integrate Q-DiffNet into the ULRSSM pipeline (Cao et al., 2023),
which is designed for unsupervised 3D shape correspondence. This framework trains a single net-
work NΘ, usually DiffusionNet (Sharp et al., 2022), that outputs pointwise features for any input
shape S. Inputs to the network typically consist of spectral descriptors such as WKS (Aubry et al.,
2011) or HKS (Sun et al., 2009) – among these, WKS is generally preferred. Raw 3D coordinates
(xyz) are also used in some settings.
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Point Cloud Inputs. Although DiffusionNet (Sharp et al., 2022) can operate on point clouds
since it does not require mesh connectivity, it still depends on (approximate) Laplacian eigenvec-
tors (Sharp & Crane, 2020). When working with point clouds, spectral descriptors like WKS (Aubry
et al., 2011) change because they rely on the underlying Laplacian eigendecomposition. To isolate
the effect of our proposed Q-operator, we minimize variability across experiments and use WKS
descriptors (Aubry et al., 2011) computed from the mesh-based Laplacian for all experiments, even
when retraining DiffusionNet (Sharp et al., 2022) or ULRSSM (Cao et al., 2023) on point clouds.
This ensures consistent inputs across surface and point-based variants.

Loss Functions. The ULRSSM pipeline uses Laplacian eigenvectors during training to compute
functional maps C12 and C21 from the predicted pointwise features f1 and f2 (Donati et al., 2020;
Sharp et al., 2022; Cao et al., 2023). These maps are fed in the original ULRSSM losses: orthogonal-
ity, bijectivity, and alignment (Cao et al., 2023). For consistency, we retain these losses unchanged.
Mesh-based models use ground-truth mesh eigenvectors, point cloud versions use approximate point
cloud eigenvectors. Our Q-DiffNet model uses mesh eigenvectors, while the Q-DiffNet (Q-FM)
variant uses eigenvectors derived from our normalized diffusion operator.

Dataset. We train on the standard aggregation of the remeshed FAUST (Bogo et al., 2014; Ren
et al., 2019) and SCAPE datasets (Anguelov et al., 2005), using only intra-dataset pairs within the
training split. We follow the standard train/test splits used in prior baselines (Donati et al., 2020;
Sharp et al., 2022; Cao et al., 2023). The 44 shapes from the remeshed SHREC dataset (Melzi et al.,
2019) are reserved exclusively for evaluation.

Training. We use the exact ULRSSM setup (Cao et al., 2023), where we train the network for 5
epochs with a batch size of 1, using Adam optimizer with an initial learning rate of 10−3 and cosine
annealing down to 10−4. Training takes 6h on a single V100 GPU.
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