
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SYMMETRIC SINKHORN DIFFUSION OPERATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Smoothing a signal based on local neighborhoods is a core operation in machine
learning and geometry processing. On well-structured domains such as vector
spaces and manifolds, the Laplace operator derived from differential geometry of-
fers a principled approach to smoothing via heat diffusion, with strong theoretical
guarantees. However, constructing such Laplacians requires a carefully defined
domain structure, which is not always available. Most practitioners thus rely on
simple convolution kernels and message-passing layers, which are biased against
the boundaries of the domain. We bridge this gap by introducing a broad class of
smoothing operators, derived from general similarity or adjacency matrices, and
demonstrate that they can be normalized into diffusion-like operators that inherit
desirable properties from Laplacians. Our approach relies on a symmetric variant
of the Sinkhorn algorithm, which rescales positive smoothing operators to match
the structural behavior of heat diffusion. This construction enables Laplacian-like
smoothing and processing of irregular data such as point clouds, sparse voxel grids
or mixture of Gaussians. We show that the resulting operators not only approxi-
mate heat diffusion but also retain spectral information from the Laplacian itself,
with applications to shape analysis and matching.

1 INTRODUCTION

Discrete Differential Geometry. Geometric data analysis is an active research field that provides
a principled framework for understanding complex data (Gallot et al., 2004; Bronstein et al., 2021).
These tools are especially effective in two or three dimensions, but also extend to graphs and higher-
dimensional domains. While differential geometry provides elegant constructions on well-structured
data, such as triangle meshes (Crane, 2018; Botsch et al., 2010), adapting these tools to less struc-
tured representations like point clouds or voxel grids remains a major challenge (Barill et al., 2018;
Lachaud et al., 2023; Feng & Crane, 2024).

In many practical scenarios, high-quality triangular meshes are not available due to limitations in the
acquisition process (Bogo et al., 2017) or even to the nature of the data itself (Behley et al., 2019).
For example, in medical imaging, one often works with voxelized segmentation masks (Marcus
et al., 2007) and anatomical structures such as trabecular bones that cannot be neatly described as
surfaces. Similarly, point clouds and recent representations like Gaussian splats (Kerbl et al., 2023;
Zhou & Lähner, 2025) are widely used, but typically lack explicit connectivity information. Using
classical geometric operators in these settings often requires local approximations of the underlying
manifold (Sharp & Crane, 2020; Sharp et al., 2022; Zhou & Lähner, 2025), which can introduce
significant errors and degrade performance.

Smoothing Operations. Bridging the gap between geometry-aware methods designed for clean
meshes and more general unstructured data representations is crucial for scalable learning with
shapes. Among the most fundamental operations in geometry processing is smoothing, which mod-
ifies a signal using local geometric information (Taubin, 1995; Sharp et al., 2022). A key example
is heat diffusion, which, on meshes, is controlled by the matrix exponential of the Laplacian (Gallot
et al., 2004). This process plays a central role in many pipelines for shape analysis (Crane et al.,
2017), segmentation (Sharp et al., 2022), and correspondence (Sun et al., 2009).

Contributions. In this work, we generalize heat diffusion to arbitrary discrete domains such as
point clouds, voxel grids, Gaussian mixtures and binary masks. Our approach ensures mass con-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Heat-like diffusion and spectral analysis on general geometric data without Laplacian
inversion. Left: Mass-preserving diffusion of a Dirac function on a sparse voxel grid (jaw bone).
Right: Laplacian-like eigenvectors on a point cloud (human) and Gaussian mixture (bunny).

servation, meaning that the total sum of the signal remains constant under diffusion, corresponding
to physical conservation of heat over the domain. Our approach starts from a symmetric similarity
matrix, akin to an adjacency matrix, and produces a heat-diffusion-like operator via a symmetric
Sinkhorn normalization (Knight et al., 2014). This results in a linear operator, symmetric with re-
spect to a mass-weighted inner product, whose properties and spectrum closely resemble that of
the exponential of a Laplacian, as displayed on Figure 1. Our contributions can be summarized as
follows:

• We present an algebraic framework for defining smoothing, Laplacians and diffusions on
general discrete geometric representations, clarifying their shared structure and assump-
tions.

• We propose an efficient and GPU-friendly algorithm to transform symmetric similarity
matrices into mass-preserving diffusion operators, inspired by recent theoretical works in
manifold learning (Wormell & Reich, 2021; Cheng & Landa, 2024) and optimal transport
(Feydy et al., 2019).

• We demonstrate broad applicability to geometric data analysis, particularly for statistical
shape analysis and generative modelling.

2 RELATED WORKS

Laplacians and Heat Diffusions. The Laplace–Beltrami operator ∆ is an essential tool in discrete
geometry processing, especially on triangle meshes (Sorkine, 2005; Botsch et al., 2010). Its spectral
properties have been widely used for shape analysis (Reuter et al., 2006) and correspondence (Levy,
2006; Ovsjanikov et al., 2012). A closely related tool is the heat equation ∂tf = −∆f , whose
solution f(t) = e−t∆f0 acts as a smoothing operator on an initial signal f0. Heat diffusion has been
leveraged to compute shape descriptors (Sun et al., 2009; Bronstein & Kokkinos, 2010), geodesic
distances (Crane et al., 2017; Feng & Crane, 2024) parallel transport (Sharp et al., 2019b) or shape
correspondences (Vestner et al., 2017; Cao et al., 2025). Heat-based smoothing has also inspired
neural architectures for geometric learning (Sharp et al., 2022; Gao et al., 2024) and generative
modelling (Yang et al., 2023). Crucially, the matrix exponential e−t∆ is rarely computed directly.
Instead, practical implementations rely on either implicit Euler integration (Botsch et al., 2010) or
spectral truncation using the first Laplacian eigenfunctions (Sharp et al., 2022). These approaches
rely on mesh-based discretizations of the Laplacian (Pinkall & Polthier, 1993; Meyer et al., 2003;
Sharp et al., 2019a) and pre-computed factorizations, such as Cholesky or sparse eigendecomposi-
tions, limiting scalability and flexibility. While extensions to non-manifold triangulations have been
proposed (Sharp & Crane, 2020; Belkin et al., 2009), generalizing diffusion-based smoothing to
higher-dimensional or unstructured data such as noisy point clouds and sparse voxel grids remains
challenging.

Graph Laplacians. The Laplacian also plays a central role in graph-based learning and analy-
sis (Chung, 1997), supporting spectral clustering (von Luxburg, 2007), embedding, and diffusion.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Unlike the cotangent Laplacian for mesh processing (Pinkall & Polthier, 1993; Meyer et al., 2003),
the graph Laplacian relies only on connectivity and optional edge weights, making it applicable to
a broader range of data. Discrete approximations of heat diffusion, such as the explicit Euler step
I − t∆, form the basis of many graph neural networks (GNNs) (Kipf & Welling, 2017; Hamil-
ton et al., 2017; Chamberlain et al., 2021). Recent works explore approximations of implicit time-
stepping schemes (Behmanesh et al., 2023; Chamberlain et al., 2021) but lose key properties or limit
the flexibility of the diffusion. Beyond Laplacians, message passing (Gilmer et al., 2017) or graph
attention (Veličković et al., 2018) offer alternative forms of smoothing. In this work, we take a step
back and propose general axioms for defining smoothing operators on discrete domains, formaliz-
ing desirable properties such as symmetry or mass conservation. We show that popular approaches,
as well as various Laplacian normalization techniques (e.g., symmetric, random-walk) can be in-
terpreted as specific cases in this framework. These classical methods often trade-off symmetry or
mass preservation. To address this, we study a Sinkhorn normalization that satisfies these properties
jointly, producing operators which are symmetric under a mass-weighted inner product and spec-
trally similar to Laplacian exponentials, while remaining compatible with unstructured geometric
data.

Sinkhorn Scaling. The Sinkhorn algorithm (Sinkhorn & Knopp, 1967) scales a nonnegative ma-
trix into a doubly stochastic one via alternating row and column normalizations, and is widely used
in machine learning (Cuturi, 2013) thanks to its efficiency and GPU compatibility. For symmet-
ric inputs, a symmetry-preserving variant yields symmetric and doubly stochastic operators (Knight
et al., 2014). Recent work applies Sinkhorn normalization to graph Laplacians for manifold learning
and dimension reduction, with theoretical guarantees (Marshall & Coifman, 2019; Wormell & Re-
ich, 2021; Cheng & Landa, 2024). We extend this idea to a geometry-aware setting by introducing
a domain-specific mass matrix that induces a weighted inner product. Rather than enforcing bis-
tochasticity, we construct operators that are row-stochastic and symmetric with respect to this inner
product. The resulting kernel Q satisfies (MQ)⊤ = MQ, where M encodes local geometric mass
(for example, triangle areas or voxel densities). This ensures exact mass conservation and symmetry
under the induced inner product, aligning the discrete diffusion with its continuous analogue. To our
knowledge, such mass-preserving normalization has not been used to define smoothing operators on
general discrete geometric structures.

Generalization to Unstructured Data. Extending differential operators to unstructured data re-
mains an open challenge. While regular grids support Laplacian-based smoothing or convolutional
approaches, more irregular representations, such as point clouds or gaussian splats, typically rely
on local approximations or learned kernels (Wu et al., 2019; Sharp & Crane, 2020; Sharp et al.,
2022; Zhou & Lähner, 2025). Our framework requires only a notion of similarity between points,
and provides a unified approach to smoothing across these modalities. This allows us to bridge the
gap between discrete differential operators and modern unstructured data representations, without
relying on consistent manifold assumptions or expensive linear algebra routines.

3 WARM-UP: GRAPHS

To build intuition about our framework, we begin with a simple example on an undirected graph
G with vertex set V and edge set E (see Figure 2). In this section, we illustrate two approaches to
smoothing a signal f ∈ RV defined on the graph vertices.

Laplacian Smoothing. A common method to quantify the regularity of f is to use a discrete
derivative operator δ ∈ {0,±1}E×V , which encodes differences across edges. This induces a
Dirichlet energy E(f) = 1

2∥δf∥
2 = 1

2 (δf)
⊤δf , that can be rewritten as E(f) = 1

2f
⊤∆f , where

∆ = δ⊤δ is a symmetric positive semi-definite matrix acting as a discrete Laplacian. The matrix
∆ admits an orthonormal eigendecomposition with eigenvectors (Φi) and non-negative eigenvalues
(λ∆

i). Low values of E(Φi) = λ∆
i /2 correspond to smoother eigenfunctions. The eigenvectors can

thus be interpreted as frequency modes: λ∆
1 = 0 corresponds to the constant function, while higher

eigenvalues λ∆
i capture finer variations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 0

1

2

3

Mass: 1.00

(a) Input Dirac

Mass: 0.62

(b) Row

Mass: 0.75

(c) Symmetric

Mass: 1.00

(d) Spectral

Mass: 1.00

(e) Sinkhorn

Figure 2: Diffusion of a Dirac function for different normalizations of the raw smoothing operator
K. Row and symmetric normalizations distort mass, while a truncated spectral approximation that
uses 4 out of 5 eigenvectors introduces negative values (in blue). In contrast, our symmetric Sinkhorn
normalization preserves both positivity and mass. The full diffusion matrices are shown as insets

Heat diffusion, governed by the operator e−t∆, acts as a smoothing transform that damps high-
frequency components while preserving the low-frequencies. If f =

∑
i f̂iΦi, then:

E(e−t∆f) = 1
2

∑
i

λ∆
i e

−2tλ∆
i f̂2

i ≤ 1
2

∑
i

λ∆
i f̂

2
i = E(f) . (1)

By construction, diffusion regularizes input functions and converges as t → ∞ to a constant signal
f̂1. Remarkably, the total mass of the signal is also preserved for all t: if ⟨·, ·⟩ denotes the dot
product and 1 is the constant vector, then ⟨1, e−t∆f⟩ = ⟨1, f⟩. This follows from the symmetry
of e−t∆ and the fact that constant functions are fixed points of the heat flow: e−t∆1 = 1. Lastly,
all entries of e−t∆ are non-negative, ensuring that non-negative input signals remain non-negative.
This follows from −∆ being a Metzler matrix (Berman & Plemmons, 1994) (with non-negative
off-diagonal entries), which guarantees entrywise positivity of the matrix exponential.

While the Laplacian exponential provides strong regularization properties, its computation is expen-
sive in practice. Most authors rely on the implicit Euler scheme (I + t∆)−1f which guarantees
numerical stability but requires solving a linear system for every new signal f .

Message-passing and Local Averages. A common alternative is to apply local averaging opera-
tors derived from the graph’s adjacency matrix A. One simple choice is to use the linear operator
K = 1

2 (D +A), where D = diag(A1) is the diagonal degree matrix. However, this raw smoothing
operator K lacks key properties of e−t∆ and is highly sensitive to vertex degrees: well-connected
vertices disproportionately influence the output, while low-degree nodes contribute less. This intro-
duces a bias at boundaries of the domain that is undesirable in many applications.

Several methods have been proposed to mitigate this issue (Chung, 1997; Coifman & Lafon, 2006):

1. Row normalization divides each row of K by the degree of the corresponding vertex. This
yields the operator D−1K that performs a local averaging but breaks symmetry.

2. Symmetric normalization restores symmetry via D− 1
2KD− 1

2 , but does not preserve con-
stant input signals.

3. Spectral methods approximate the heat diffusion operator e−t∆ as a low-rank matrix∑R
i=1 e

−tλ∆
i ΦiΦ

⊤
i in the span of the first R eigenvectors of the Laplacian ∆. While this

preserves desirable diffusion properties, computing these eigenvectors is expensive and
truncation introduces undesirable ringing artifacts.

Bi-Stochastic Normalization. As illustrated in Figures 2b to 2d, existing normalization strategies
fail to fully capture the desired properties of heat diffusion. The Sinkhorn or bi-stochastic scaling
method has recently emerged as a principled alternative, combining the benefits of both row-wise
and symmetric normalization while avoiding the numerical pitfalls of spectral methods. The core
idea is to apply symmetric normalization iteratively until convergence. Under mild assumptions,
there exists a unique positive diagonal matrix Λ such that the rescaled operator ΛKΛ is both sym-
metric and mass-preserving, as illustrated in Figure 2e. Strong convergence results have already

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

been obtained in the context of point clouds sampled uniformly on a compact manifold (Wormell &
Reich, 2021; Cheng & Landa, 2024). As part of our framework, we extend the Sinkhorn method to
support additional data structures (voxel grids, Gaussian mixtures), with theoretical guarantees and
practical applications to geometric data analysis.

4 THEORETICAL ANALYSIS

Notations. We now introduce our framework in full generality. LetX ⊂ Rd be a bounded domain,
endowed with a positive Radon measure µ. We consider signals f : X → R in the space L2

µ(X)
of square-integrable functions, endowed with the inner product ⟨f, g⟩µ =

∫
X f(x)g(x) dµ(x). We

define the mass of a function as ⟨f, 1⟩µ =
∫
X
f(x) dµ(x). When the measure µ =

∑N
i=1 miδxi is

discrete, functions f can be identified with column vectors (f(x1), . . . , f(xN)) and µ corresponds
to a positive diagonal matrix M = diag(m1, . . . ,mN) ∈ RN×N . The inner product becomes
⟨f, g⟩µ = f⊤Mg: we use ⟨·, ·⟩µ or ⟨·, ·⟩M interchangeably depending on context.

We denote by A⊤µ (or A⊤M), the adjoint of a linear operator A : L2
µ(X)→ L2

µ(X) with respect to
the µ-weighted inner product. In the finite case, this corresponds to A⊤M = M−1A⊤M so that:

⟨f,Ag⟩M = f⊤MAg = g⊤MM−1A⊤Mf = ⟨g,A⊤M f⟩M , (2)

where A⊤ is the standard transpose. A matrix is symmetric with respect to the weighted dot product
⟨·, ·⟩M if and only if it is of the form S = KM with K⊤ = K.

Laplace-like Operators. As introduced in Section 3, Laplacians capture local variations of func-
tions on a domain. We highlight the key structural properties of such operators, simplifying the list
that was identified by Wardetzky et al. (2008) for surface triangle meshes:
Definition 4.1 (Laplace-like Operators). A Laplace-like operator is a linear map ∆ : L2

µ(X) →
L2
µ(X), identified with a matrix (∆ij) in the discrete case, that satisfies the following properties:

(i) Symmetry: ∆⊤µ = ∆ (iii) Positivity: ⟨f,∆f⟩µ ≥ 0 for all f ∈ L2
µ(X)

(ii) Constant cancellation: ∆1 = 0 (iv) Off-Diagonal Negativity: ∆ij ≤ 0 for i ̸= j

Properties (i), (ii) and (iii) reflect the classical construction of Laplacians as self-adjoint positive
semi-definite operators, typically derived from integration by parts: ⟨∇f,∇g⟩µ = ⟨f,∆g⟩µ. Con-
dition (iv), which corresponds to a Metzler structure (Berman & Plemmons, 1994) in the discrete
setting, ensures intuitive diffusion behavior: diffusing a signal with ∂tf = −∆f causes mass to
flow outwards (Wardetzky et al., 2008). We refer to Appendix A for a definition in the continuous
case using Kato’s inequality (Arendt, 1984).

These conditions are easily verified for the standard graph Laplacian. On triangle meshes, the com-
monly used cotangent Laplacian satisfies properties (i)–(iii) by construction. However, property
(iv) only holds in the absence of obtuse angles. Violations of this condition, which results in unde-
sirable positive weights, are a well-known issue in geometry processing, typically addressed using
intrinsic triangulations (Bobenko & Springborn, 2007; Fisher et al., 2006; Sharp et al., 2019a).

Diffusion Operators. As presented in Section 3, the family of diffusion operators e−t∆ associated
to a Laplacian ∆ play a central role in geometry processing and learning. These operators smooth
input signals while preserving key structural properties. Leveraging the properties of Definition 4.1
we define diffusion operators as follows:
Definition 4.2 (Diffusion Operators). A diffusion operator is a linear map Q : L2

µ(X) → L2
µ(X)

that satisfies the following properties:

(i) Symmetry: Q⊤µ = Q (iii) Damping: The eigenvalues of Q lie in [0, 1]
(ii) Constant preservation: Q1 = 1 (iv) Entrywise positivity: Qf ≥ 0 whenever f ≥ 0

Laplace-like operators and diffusion operators are almost equivalent: the exponential of an any
Laplace-like operator yields a diffusion operator, while the principal logarithm of a diffusion oper-
ator yields properties (i)-(iii) of Definition 4.1. Property (iv) in Definition 4.2 is slightly weaker:
true equivalence would require Qt to be entrywise positive for all t ≥ 0; see Appendix A.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Symmetric Sinkhorn Normalization

Require: Smoothing matrix S ∈ RN×N ▷ S = KM where K⊤ = K and M is a mass matrix.
1: Initialize Λ← IN ▷ Λ is a diagonal matrix, stored as a vector of size N .
2: while

∑
i |Λii

∑
j SijΛjj − 1| is larger than a tolerance parameter do

3: di ←
∑

j SijΛjj ▷ Matrix-vector product with S.
4: Λii ←

√
Λii/di ▷ Coordinate-wise update on a vector of size N .

5: end while
6: return Q = ΛSΛ ▷ The diffusion Q is a positive scaling of S.

These properties reflect the structure of classical heat diffusion. Symmetry and constant preserva-
tion imply mass conservation, since for any f , ⟨1, Qf⟩µ = ⟨Q⊤µ1, f⟩µ = ⟨Q1, f⟩µ = ⟨1, f⟩µ.
Entrywise positivity (iv) follows from the non-negativity of the heat kernel: a discrete perspective
via Metzler matrices is given in Appendix A. Damping (iii) ensures that repeated applications of Q
attenuate high-frequency components.

Finally, when Q = e−t∆, its leading eigenvectors coincide with the lowest-frequency modes of
∆, with λQ

i = e−tλ∆
i . This allows one to recover low-frequency Laplacian structure via power

iterations on Q, without computing small eigenpairs directly (see Section 6).

Smoothing Operators. In practice, defining a diffusion operator without access to an underlying
Laplacian can be challenging. Instead, many operators commonly used in geometry processing,
such as adjacency or similarity matrices, implicitly encode local neighborhood structures and enable
function smoothing through local averaging. We refer to such matrices as smoothing operators:

Definition 4.3 (Smoothing Operators). A smoothing operator is a linear map S : L2
µ(X)→ L2

µ(X),
identified with a matrix (Sij) in the discrete case, that satisfies the following properties:

(i) Symmetry: S⊤µ = S, so S = KM with K⊤ = K in the discrete case
(ii) Operator positivity: ⟨f, Sf⟩µ ≥ 0 for all f , so the eigenvalues of S lie in [0,+∞)
(iii) Entrywise positivity: Sf ≥ 0 whenever f ≥ 0, so Sij ≥ 0 in the discrete case

Sinkhorn Normalization. As discussed in Section 3, recent works in manifold learning have
shown that symmetric graph adjacency matrices can be rescaled to become bi-stochastic at mini-
mal computational cost. We leverage this insight to derive the following two results:

Theorem 4.1 (Symmetric Normalization). Let µ =
∑N

i=1 miδxi
be a finite discrete measure with

positive weights mi > 0, and S a smoothing operator encoded as a N -by-N matrix with positive
coefficients Sij > 0. Then, Algorithm 1 converges to the unique diagonal matrix Λ with positive
coefficients such that Q = ΛSΛ is a diffusion operator with respect to µ.

Theorem 4.2 (Convergence for the Gaussian and Exponential Kernels). Let X be a bounded re-
gion of Rd, and (µt)t∈N be a sequence of finite discrete measures µt =

∑Nt

i=1 m
t
iδxt

i
that converges

weakly to a (possibly continuous) Radon measure µ with positive, finite total mass.
Let k(x, y) be a Gaussian or exponential kernel with positive radius σ > 0, and define the smoothing
operators St

ij = k(xt
i, x

t
j)m

t
j . Let Qt = ΛtStΛt be the diffusion operators obtained via symmetric

normalization as in Theorem 4.1.
Then, each diagonal matrix Λt can be interpeted as a pointwise product (f 7→ λtf) with a continu-
ous positive function λt : X → R+ such that Λt = diag(λt(xt

1), . . . , λ
t(xt

Nt
)). Also, there exists a

continuous positive function λ : x ∈ X 7→ λ(x) > 0 such that:

Q : f ∈ L2
µ(X) 7→

[
Qf : x 7→ λ(x)

∫
X
k(x, y)λ(y)f(y) dµ(y)

]
∈ L2

µ(X) (3)

is a diffusion operator, and Qt converges pointwise to Q. For all continuous signal f on X ,

[
Qtf : x 7→ λt(x)

Nt∑
j=1

k(x, xt
j)m

t
jλ

t(xt
j)f(x

t
j)

]
t→+∞−−−−→ Qf uniformly on X . (4)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

10 20 30 40
Eigenvalue index

0

50

100

150

200

La
pla

cia
n e

ige
nva

lue

Tetrahedra
Points
Gaussians
Voxels

(a) Triangles (b) Points (c) Gaussians (d) Voxels (e) Surface Spectra

(f) Tetrahedra (g) Points (h) Gaussians (i) Voxels (j) Volume Spectra

10 20 30 40
Eigenvalue index

0

20

40

60

80

100

120

La
pla

cia
n e

ige
nva

lue

Triangles
Points
Gaussians
Voxels

Figure 3: Spectral analysis on the Stanford Armadillo (Krishnamurthy & Levoy, 1996) normalized
to the unit sphere, treated as a surface (top) and volume (bottom). We compare the reference cotan
Laplacian (a,f) to our normalized diffusion operators on clouds of 5 000 points (b,g), mixtures of
500 Gaussians (c,h) and binary voxel masks (d,i), all using a Gaussian kernel of radius σ = 0.05
(edge length of a voxel). We display the 10th eigenvector (a–d,f–i) and the first 40 eigenvalues (e,j).

This result provides a practical convergence guarantee for our construction: under fixed kernel scale
σ > 0 and increasing sample resolution, the normalized operators Qt converge to a continuous
diffusion operator Q (proofs in Appendices B and C). In contrast, the manifold-learning literature
finds Laplace-Beltrami consistency in joint limit N → ∞, σ → 0 (with density corrections) for
Sinkhorn normalizations (Wormell & Reich, 2021; Cheng & Landa, 2024). Our results complement
that line and target the fixed-scale regime used in practice and provide a simple normalization that
makes each Qt symmetric, mass-preserving, entrywise positive, and spectrally confined to [0, 1].
Note that we assume finite samples and positive entries in S, and refer to Knight et al. (2014,
Sec. 3.1) for zero entries.

5 EFFICIENT IMPLEMENTATION

Sinkhorn Convergence and Versatility. We use the symmetric Sinkhorn algorithm (Knight et al.,
2014; Feydy et al., 2019), which converges in a few iterations, as shown in Appendix D. Following
scipy.sparse.linalg (Virtanen et al., 2020), we treat S as a black-box matrix–vector prod-
uct: no factorization or complex data structure is required as diffusion behavior is encoded entirely
in the diagonal Λ. Code will be released upon acceptance.

Graphs. Given a symmetric adjacency matrix A≥ 0, regularize Aε = A + ε11⊤ (ε > 0). With
vertex masses M = diag(mi) and degree matrix D, set S = (D + Aε)M , which satisfies Def-
inition 4.3 and is efficient when A is sparse. Weak diagonal dominance (Horn & Johnson, 1985)
ensures a positive spectrum.

Point Clouds and Gaussian Mixtures. Given a weighted point cloud (xi,mi), we use Gaus-
sian kernels k with Sij = k(xi, xj)mj for smoothing. Matrix-vector products scale to millions
of points via the KeOps library (Charlier et al., 2021; Feydy et al., 2020) or optimized attention
layers (Lefaudeux et al., 2022; Dao, 2023) (described in Appendix D).

For Gaussian Mixtures, given a pair miN (xi,Σi) and mjN (xj ,Σj), we use the L2 dot product of
densities convolved with an isotropic Gaussian of variance σ2/2:

Sij = mj exp
[
− 1

2 (xi − xj)
⊤(σ2I +Σi +Σj)

−1(xi − xj)
]
. (5)

Multiplicative constants are normalized out by Algorithm 1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

t = 0.00 t = 1.00 t = 50.00 t = 1.00 t = 50.00

(a) Initial State (b) Kernel Smoothing of the Gradient (c) With Normalized Diffusion

Figure 4: Flow of a source distribution of points (rainbow) towards a target (blue), following the
gradient of the Energy Distance for a Gaussian kernel metric (b) and its normalized counterpart (c).

(a) Input Data (b) LDDMM (c) Normalized (d) Gaussian Mixtures

Figure 5: Pose interpolation and extrapolation of a human hand skeleton. (a) We interpolate
between source (t = 0, red) and target (t = 1, blue) poses, and extrapolate to t = −0.5, 0.5, and
1.5. (b) The standard LDDMM geodesic with a Gaussian kernel (σ = 0.1) produces unrealistic
extrapolations. (c) Using our normalized diffusion yields a smoother, more plausible path. (d) The
method remains robust on coarse Gaussian-mixture inputs (100 components).

Voxel Grids. On regular grids, Gaussian smoothing is implemented as a separable convolution.
For sparse volumes, we leverage the efficient data structures of the Taichi library (Hu et al., 2019).

6 RESULTS

Spectral Shape Analysis. As discussed in Section 4, we expect the leading eigenvectors of a dif-
fusion operator Q to approximate low-frequency Laplacian modes. Figure 3 compares our operators
across modalities to a FEM Laplacian on meshes, and showcase additional results on the sphere and
cube in Appendix F. We also provide simple heuristics to estimate Laplacian eigenvalues from our
normalized diffusion operators (see App. F) and show in Figure 3 (Right) that their distributions
remain consistent across modalities, with deviations emerging near the voxel sampling scale.

Normalized Metrics. Laplacians naturally induce Sobolev metrics and simple elastic penalties,
commonly used as regularizers in machine learning and applied mathematics.

Figure 4 show results following Feydy et al. (2019) by minimizing the Energy Distance (Rizzo &
Székely, 2016) between two point clouds, but smoothing the gradient with a Gaussian kernel. Re-
placing raw Gaussian smoothing with our normalized diffusion improves stability near boundaries
and accelerates convergence in the Energy–Distance flow. This suggests potential in inverse ren-
dering (Nicolet et al., 2021) or generative modelling (Liu & Wang, 2016; Arbel et al., 2019; Korba
et al., 2024). We detail the objective, discretization, and parameters in Appendix G.

In Figure 5, we follow Kilian et al. (2007) and perform a geodesic interpolation between two poses
of an anatomical shape. Standard metrics for surface meshes such as ARAP (Sorkine & Alexa,
2007) or elastic shell models (Grinspun et al., 2003; Sassen et al., 2024) work well on clean meshes,
but are not robust to topological noise. Computational anatomy instead uses spline and kernel met-
rics (Bookstein, 1989; Pennec et al., 2019), defining a diffeomorphic shape space via LDDMM (Beg
et al., 2005; Durrleman et al., 2014). For very large deformations, however, kernel metrics tend to
favor contraction–expansion rather than pure translations (Micheli et al., 2012) (see Figure 5b). Re-
placing the raw kernel K by our normalized diffusion Q within LDDMM mitigates this and yields

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Left: Shape correspondence accuracy of Q-DiffNet on FAUST, SCAPE, and SHREC19
(lower is better). Right: Wall-clock runtimes for symmetric Sinkhorn normalization (5 iterations)
on the GPU, compared to CPU runtimes for implicit Laplacian diffusion using sparse LU.

(a) Runtime (ms) vs. N

N GPU Sinkhorn CPU LU

10 000 3 65
50 000 21 393

100 000 89 1030
250 000 448 3510
500 000 1817 9100

1 000 000 6789 23 600

(b) Mean Geodesic Error

Method FAUST SCAPE S19

DiffNet 1.6 2.2 4.5
ULRSSM 1.6 2.1 4.6
DiffNet (PC) 3.0 2.5 7.5
ULRSSM (PC) 2.3 2.4 5.1

Q-DiffNet (QFM) 2.5 3.1 4.1
Q-DiffNet 2.1 2.4 3.5

more plausible paths across arbitrary data structures (Figure 5c–d). Full equations and implementa-
tion details are provided in Appendix G.

Runtimes. Our symmetric Sinkhorn converges in 5–10 iterations across modalities (see curves
in Appendix D). We report GPU runtimes for 5 iterations using a Gaussian kernel for point clouds
of increasing size. These are compared to CPU runtimes for implicit Laplacian diffusion using
sparse LU factorization, which reflects typical usage when a Laplacian is available. Dense solvers
on the GPU are significantly slower and run out of memory beyond 10k points. Additional details
on hardware, experimental setup, and other baselines are provided in Appendix E.

Point Feature Learning. We evaluate our operator on 3D shape correspondence, where the goal
is to match points across human shapes in varying poses, a challenging task due to changes in
geometry and topology. Building on DiffusionNet (Sharp et al., 2022), we replace its spectral
smoothing with our kernel-based operator, resulting in Q-DiffNet, which operates directly on 3D
coordinates and learns diffusion scales (σi) instead of fixed times. We integrate Q-DiffNet into the
ULRSSM pipeline (Cao et al., 2023), train on the remeshed FAUST+SCAPE datasets (Bogo et al.,
2014; Anguelov et al., 2005; Ren et al., 2019) using point clouds, and also evaluate on the harder
SHREC19 benchmark (Melzi et al., 2019). We compare to reference mesh-based methods (Sharp
et al., 2022; Cao et al., 2023), and to their point-cloud retrainings (“PC”). As shown in Table 1b, Q-
DiffNet outperforms point-based baselines on SHREC19 and remains competitive with all methods
on FAUST and SCAPE. While our network avoids Laplacian eigenvectors, ULRSSM still uses them
for functional maps and we also report a variant using eigenvectors from our operator (“QFM”).
The operator thus acts as a geometry-aware module applicable to broader shape representations,
including partial data (Attaiki et al., 2021). Implementation details and qualitative results are in Ap-
pendix I.

7 CONCLUSION AND FUTURE WORKS

We introduced a theoretical and practical framework for defining heat-like diffusion operators on
general geometric data. Our approach unifies and extends classical constructions such as graph
adjacency or similarity matrices into well-behaved diffusion mechanisms. We demonstrated its ver-
satility across tasks, including Laplacian eigenvector approximation, gradient flow stabilization, and
integration into neural networks as stable geometry-aware layers.

While our experiments confirm the promise of this framework, they remain preliminary. Future
work should explore more extensive downstream applications, particularly in settings where stan-
dard Laplacians are unavailable or unreliable. In addition, the scalability of our method can be
further improved: while our current implementation benefits from GPU-accelerated libraries, incor-
porating ideas from sparse or low-rank attention mechanisms could yield significant runtime gains
on large-scale point clouds and volumetric data.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCTIBILITY STATEMENT

Our main algorithm is summarized in Algorithm 1. Regarding our theoretical contributions, we
state all axioms and definitions in Section 4 with more details in Appendix A, and provide com-
plete proofs of the two main theorems in Appendices B and C. Implementation details needed to
reproduce all results are given for each experiment: convergence behavior and practical notes in Ap-
pendix D, runtime setup and hardware in Appendix E, eigenvector estimation and heuristics in Ap-
pendix F, gradient-flow objectives and discretization in Appendix G, LDDMM geodesic shooting
in Appendix H, and training protocol for Q-DiffNet Appendix I. We also include a timings table
in Table 1a and report iteration counts so others can budget runs. Together, these materials are
sufficient to reproduce the figures and tables from scratch.

Complete code for full reproducibility will be made public upon acceptance.

REFERENCES

Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, and James
Davis. SCAPE: Shape completion and animation of people. ACM Transactions on Graphics, 24
(3):408–416, July 2005.

Michael Arbel, Anna Korba, Adil Salim, and Arthur Gretton. Maximum mean discrepancy gradient
flow. Advances in Neural Information Processing Systems, 32, 2019.

W. Arendt. Generators of positive semigroups. In Franz Kappel and Wilhelm Schappacher (eds.),
Infinite-Dimensional Systems, pp. 1–15, Berlin, Heidelberg, 1984. Springer. ISBN 978-3-540-
38932-3.

Souhaib Attaiki, Gautam Pai, and Maks Ovsjanikov. DPFM: Deep Partial Functional Maps. In 2021
International Conference on 3D Vision (3DV), pp. 175–185, London, United Kingdom, December
2021. IEEE. ISBN 978-1-66542-688-6.

Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. The wave kernel signature: A quantum
mechanical approach to shape analysis. In 2011 IEEE International Conference on Computer
Vision Workshops (ICCV Workshops), pp. 1626–1633, Barcelona, Spain, November 2011. IEEE.
ISBN 978-1-4673-0063-6 978-1-4673-0062-9 978-1-4673-0061-2.

Gavin Barill, Neil G. Dickson, Ryan Schmidt, David I. W. Levin, and Alec Jacobson. Fast winding
numbers for soups and clouds. ACM Transactions on Graphics, 37(4):1–12, August 2018.

M. Faisal Beg, Michael I. Miller, Alain Trouvé, and Laurent Younes. Computing Large Deformation
Metric Mappings via Geodesic Flows of Diffeomorphisms. International Journal of Computer
Vision, 61(2):139–157, February 2005.

Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and
Jurgen Gall. SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9297–9307,
2019.

Maysam Behmanesh, Maximilian Krahn, and Maks Ovsjanikov. TIDE: Time Derivative Diffusion
for Deep Learning on Graphs. In Proceedings of the 40th International Conference on Machine
Learning, pp. 2015–2030. PMLR, July 2023.

Mikhail Belkin, Jian Sun, and Yusu Wang. Constructing Laplace Operator from Point Clouds in
R d . In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
1031–1040. Society for Industrial and Applied Mathematics, January 2009. ISBN 978-0-89871-
680-1 978-1-61197-306-8.

Abraham Berman and Robert J. Plemmons. Nonnegative Matrices in the Mathematical Sciences.
Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, January 1994.
ISBN 978-0-89871-321-3.

Alexander I. Bobenko and Boris A. Springborn. A Discrete Laplace–Beltrami Operator for Simpli-
cial Surfaces. Discrete & Computational Geometry, 38(4):740–756, December 2007.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black. FAUST: Dataset and Evalu-
ation for 3D Mesh Registration. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3794–3801, 2014.

Federica Bogo, Javier Romero, Gerard Pons-Moll, and Michael J. Black. Dynamic FAUST: Reg-
istering Human Bodies in Motion. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 5573–5582, Honolulu, HI, July 2017. IEEE. ISBN 978-1-5386-0457-1.

Alexandre Bône, Maxime Louis, Benoı̂t Martin, and Stanley Durrleman. Deformetrica 4: an open-
source software for statistical shape analysis. In Shape in medical imaging: international work-
shop, ShapeMI 2018, held in conjunction with MICCAI 2018, granada, Spain, september 20,
2018, proceedings, pp. 3–13. Springer, 2018.

F.L. Bookstein. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(6):567–585, June 1989.

Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy. Polygon Mesh Processing.
AK Peters / CRC Press, September 2010. ISBN 978-1-56881-426-1.

Michael M. Bronstein and Iasonas Kokkinos. Scale-invariant heat kernel signatures for non-rigid
shape recognition. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pp. 1704–1711, San Francisco, CA, USA, June 2010. IEEE. ISBN 978-1-4244-
6984-0.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric Deep Learning:
Grids, Groups, Graphs, Geodesics, and Gauges. arXiv preprint arXiv:2104.13478, 2021.

Dongliang Cao, Paul Roetzer, and Florian Bernard. Unsupervised Learning of Robust Spectral
Shape Matching. ACM Transactions on Graphics, 42(4):132:1–132:15, July 2023.

Dongliang Cao, Zorah Lähner, and Florian Bernard. Synchronous Diffusion for Unsupervised
Smooth Non-rigid 3D Shape Matching. In Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Rus-
sakovsky, Torsten Sattler, and Gül Varol (eds.), Computer Vision – ECCV 2024, volume 15063,
pp. 262–281. Springer Nature Switzerland, Cham, 2025. ISBN 978-3-031-72651-4 978-3-031-
72652-1.

Ben Chamberlain, James Rowbottom, Maria I. Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. GRAND: Graph Neural Diffusion. In Proceedings of the 38th International
Conference on Machine Learning, pp. 1407–1418. PMLR, July 2021.

Benjamin Charlier, Jean Feydy, Joan Alexis Glaunès, François-David Collin, and Ghislain Durif.
Kernel operations on the GPU, with autodiff, without memory overflows. J. Mach. Learn. Res.,
22(1):74:3457–74:3462, January 2021.

Xiuyuan Cheng and Boris Landa. Bi-stochastically normalized graph Laplacian: Convergence to
manifold Laplacian and robustness to outlier noise. Information and Inference: A Journal of the
IMA, 13(4):iaae026, December 2024.

F. R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.

Ronald R. Coifman and Stéphane Lafon. Diffusion maps. Applied and Computational Harmonic
Analysis, 21(1):5–30, July 2006.

Keenan Crane. Discrete differential geometry: An applied introduction. Notices of the AMS, Com-
munication, 1153, 2018.

Keenan Crane. The n-dimensional cotangent formula. Online note. URL: https://www. cs. cmu.
edu/˜ kmcrane/Projects/Other/nDCotanFormula. pdf, pp. 11–32, 2019.

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. The heat method for distance computation.
Communications of the ACM, 60(11):90–99, October 2017.

Marco Cuturi. Sinkhorn Distances: Lightspeed Computation of Optimal Transport. Advances in
Neural Information Processing Systems, 26, 2013.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Tri Dao. FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning. In The
Twelfth International Conference on Learning Representations, October 2023.

Nicolas Donati, Abhishek Sharma, and Maks Ovsjanikov. Deep Geometric Functional Maps: Ro-
bust Feature Learning for Shape Correspondence. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 8589–8598, Seattle, WA, USA, June 2020. IEEE.
ISBN 978-1-72817-168-5.

Stanley Durrleman, Marcel Prastawa, Nicolas Charon, Julie R. Korenberg, Sarang Joshi, Guido
Gerig, and Alain Trouvé. Morphometry of anatomical shape complexes with dense deformations
and sparse parameters. NeuroImage, 101:35–49, November 2014.

Klaus-Jochen Engel, Rainer Nagel, and Simon Brendle. One-parameter semigroups for linear evo-
lution equations, volume 194. Springer, 2000.

Nicole Feng and Keenan Crane. A Heat Method for Generalized Signed Distance. ACM Transac-
tions on Graphics, 43(4):1–19, July 2024.

Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouve, and
Gabriel Peyré. Interpolating between Optimal Transport and MMD using Sinkhorn Divergences.
In Proceedings of the Twenty-Second International Conference on Artificial Intelligence and
Statistics, pp. 2681–2690. PMLR, April 2019.

Jean Feydy, Alexis Glaunès, Benjamin Charlier, and Michael Bronstein. Fast geometric learning
with symbolic matrices. In Advances in Neural Information Processing Systems, volume 33, pp.
14448–14462. Curran Associates, Inc., 2020.

Matthew Fisher, Boris Springborn, TU Berlin, and Peter Schroder. An Algorithm for the Con-
struction of Intrinsic Delaunay Triangulations with Applications to Digital Geometry Processing.
Discrete Differential Geometry, 2006.

Sylvestre Gallot, Dominique Hulin, and Jacques Lafontaine. Riemannian Geometry. Universitext.
Springer, Berlin, Heidelberg, 2004. ISBN 978-3-540-20493-0 978-3-642-18855-8.

Alexander Gao, Maurice Chu, Mubbasir Kapadia, Ming C. Lin, and Hsueh-Ti Derek Liu. An in-
trinsic vector heat network. In Proceedings of the 41st International Conference on Machine
Learning, volume 235 of ICML’24, pp. 14638–14650, Vienna, Austria, July 2024. JMLR.org.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
Message Passing for Quantum Chemistry. In Proceedings of the 34th International Conference
on Machine Learning, pp. 1263–1272. PMLR, July 2017.

Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and Peter Schröder. Discrete shells. In Proceed-
ings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’03,
pp. 62–67, Goslar, DEU, July 2003. Eurographics Association. ISBN 978-1-58113-659-3.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on Large
Graphs. In Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017.

Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge,
1985.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley, and Frédo Durand. Taichi: a
language for high-performance computation on spatially sparse data structures. ACM Transac-
tions on Graphics (TOG), 38(6):201, 2019.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler, and George Drettakis. 3D Gaussian
Splatting for Real-Time Radiance Field Rendering. ACM Transactions on Graphics, 42(4):139:1–
139:14, July 2023.

Martin Kilian, Niloy J. Mitra, and Helmut Pottmann. Geometric modeling in shape space. ACM
Trans. Graph., 26(3):64–es, July 2007.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Net-
works. In International Conference on Learning Representations, February 2017.

Philip A. Knight, Daniel Ruiz, and Bora Uçar. A Symmetry Preserving Algorithm for Matrix Scal-
ing. SIAM Journal on Matrix Analysis and Applications, 35(3):931–955, January 2014.

Anna Korba, Francis Bach, and Clémentine Chazal. Statistical and geometrical properties of the
kernel Kullback-Leibler divergence. Advances in Neural Information Processing Systems, 37:
32536–32569, 2024.

Venkat Krishnamurthy and Marc Levoy. Fitting smooth surfaces to dense polygon meshes. In
Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp.
313–324, 1996.

J.-O. Lachaud, D. Coeurjolly, C. Labart, P. Romon, and B. Thibert. Lightweight Curvature Esti-
mation on Point Clouds with Randomized Corrected Curvature Measures. Computer Graphics
Forum, 42(5):e14910, 2023.

Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean
Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza, Luca
Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hackable trans-
former modelling library. https://github.com/facebookresearch/xformers,
2022.

B. Levy. Laplace-Beltrami Eigenfunctions Towards an Algorithm That ”Understands” Geometry. In
IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06), pp. 13–13,
Matsushima, Japan, 2006. IEEE. ISBN 978-0-7695-2591-4.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose Bayesian inference
algorithm. Advances in neural information processing systems, 29, 2016.

Daniel S. Marcus, Tracy H. Wang, Jamie Parker, John G. Csernansky, John C. Morris, and Randy L.
Buckner. Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI data in young,
middle aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience, 19
(9):1498–1507, September 2007.

Nicholas F Marshall and Ronald R Coifman. Manifold learning with bi-stochastic kernels. IMA
Journal of Applied Mathematics, 84(3):455–482, 2019.

S. Melzi, R. Marin, E. Rodolà, U. Castellani, J. Ren, A. Poulenard, P. Wonka, and M. Ovsjanikov.
Matching Humans with Different Connectivity. The Eurographics Association, 2019. ISBN 978-
3-03868-077-2.

Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. Discrete Differential-Geometry
Operators for Triangulated 2-Manifolds. In Gerald Farin, Hans-Christian Hege, David Hoffman,
Christopher R. Johnson, Konrad Polthier, Hans-Christian Hege, and Konrad Polthier (eds.), Visu-
alization and Mathematics III, pp. 35–57. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.
ISBN 978-3-642-05682-6 978-3-662-05105-4.

Mario Micheli, Peter W Michor, and David Mumford. Sectional curvature in terms of the cometric,
with applications to the Riemannian manifolds of landmarks. SIAM Journal on Imaging Sciences,
5(1):394–433, 2012.

Baptiste Nicolet, Alec Jacobson, and Wenzel Jakob. Large steps in inverse rendering of geometry.
ACM Transactions on Graphics, 40(6):1–13, December 2021.

Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas. Func-
tional maps: A flexible representation of maps between shapes. ACM Transactions on Graphics,
31(4):1–11, August 2012.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

13

https://github.com/facebookresearch/xformers

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xavier Pennec, Stefan Sommer, and Tom Fletcher. Riemannian geometric statistics in medical
image analysis. Academic Press, 2019.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Ulrich Pinkall and Konrad Polthier. Computing Discrete Minimal Surfaces and Their Conjugates.
Experimental Mathematics, 2(1):15–36, January 1993.

Jing Ren, Adrien Poulenard, Peter Wonka, and Maks Ovsjanikov. Continuous and orientation-
preserving correspondences via functional maps. ACM Transactions on Graphics, 37(6):1–16,
January 2019.

Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. Laplace–Beltrami spectra as ‘Shape-DNA’
of surfaces and solids. Computer-Aided Design, 38(4):342–366, April 2006.

Maria L Rizzo and Gábor J Székely. Energy distance. wiley interdisciplinary reviews: Computa-
tional statistics, 8(1):27–38, 2016.

Yousef Saad. Numerical Methods for Large Eigenvalue Problems. Classics in Applied Mathematics.
Society for Industrial and Applied Mathematics, January 2011. ISBN 978-1-61197-072-2.

Josua Sassen, Henrik Schumacher, Martin Rumpf, and Keenan Crane. Repulsive Shells. ACM
Transactions on Graphics, 43(4):1–22, July 2024.

Helmut H. Schaefer. Banach Lattices and Positive Operators. Springer, Berlin, Heidelberg, 1974.
ISBN 978-3-642-65972-0 978-3-642-65970-6.

Nicholas Sharp and Keenan Crane. A Laplacian for Nonmanifold Triangle Meshes. Computer
Graphics Forum, 39(5):69–80, August 2020.

Nicholas Sharp, Yousuf Soliman, and Keenan Crane. Navigating intrinsic triangulations. ACM
Transactions on Graphics, 38(4):1–16, August 2019a.

Nicholas Sharp, Yousuf Soliman, and Keenan Crane. The Vector Heat Method. ACM Transactions
on Graphics, 38(3):1–19, June 2019b.

Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks Ovsjanikov. DiffusionNet: Discretiza-
tion Agnostic Learning on Surfaces. ACM Transactions on Graphics, 41(3):1–16, June 2022.

Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic matri-
ces. Pacific Journal of Mathematics, 21(2):343–348, May 1967.

Olga Sorkine. Laplacian Mesh Processing. In Eurographics 2005 - State of the Art Reports. The
Eurographics Association, 2005.

Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In Proceedings of the Fifth
Eurographics Symposium on Geometry Processing, SGP ’07, pp. 109–116, Goslar, DEU, July
2007. Eurographics Association. ISBN 978-3-905673-46-3.

Jian Sun, Maks Ovsjanikov, and Leonidas Guibas. A Concise and Provably Informative Multi-Scale
Signature Based on Heat Diffusion. Computer Graphics Forum, 28(5):1383–1392, July 2009.

G. Taubin. Curve and surface smoothing without shrinkage. In Proceedings of IEEE International
Conference on Computer Vision, pp. 852–857, June 1995.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In International Conference on Learning Representations,
February 2018.

Matthias Vestner, Zorah Lähner, Amit Boyarski, Or Litany, Ron Slossberg, Tal Remez, Emanuele
Rodola, Alex Bronstein, Michael Bronstein, Ron Kimmel, and Daniel Cremers. Efficient De-
formable Shape Correspondence via Kernel Matching. In 2017 International Conference on 3D
Vision (3DV), pp. 517–526, October 2017.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,
December 2007.

Max Wardetzky, Saurabh Mathur, Felix Kälberer, and Eitan Grinspun. Discrete Laplace operators:
No free lunch. In ACM SIGGRAPH ASIA 2008 Courses on - SIGGRAPH Asia ’08, pp. 1–5,
Singapore, 2008. ACM Press.

Caroline L Wormell and Sebastian Reich. Spectral convergence of diffusion maps: Improved error
bounds and an alternative normalization. SIAM Journal on Numerical Analysis, 59(3):1687–1734,
2021.

Wenxuan Wu, Zhongang Qi, and Li Fuxin. PointConv: Deep Convolutional Networks on 3D Point
Clouds. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 9613–9622, June 2019.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM Computing Surveys, 56(4):1–39, 2023.

Hongyu Zhou and Zorah Lähner. Laplace-Beltrami Operator for Gaussian Splatting. arXiv preprint
arXiv:2502.17531, 2025.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A CONTINUOUS FORMULATION OF THE METZLER CONDITION

Let A be a real square matrix. We say that A is a Metzler matrix if its off-diagonal entries are
non-negative. This condition implies that the matrix exponential etA has non-negative entries for all
t ≥ 0. To see this, remark that for t close enough to 0, we have etA = I + tA+ o(t). This implies
that the diagonal coefficients are approximately 1, and the off-diagonal ones are approximately
tAij ≥ 0. Since for any t we have etA = (etA/P)P , we can take P large enough such that etA/P is
non-negative (by the small-t argument). Since matrix multiplication preserves non-negativity, etA
is non-negative for all t ≥ 0.

Reciprocally, if B is a matrix admitting a logarithm log(B) such that Bt = exp(log(B)t) is entry-
wise positive for all t ≥ 0, then the identity Bt = I + t log(B) + o(t) for small t shows that log(B)
is a Metzler matrix.

To extend this reasoning beyond finite-dimensional spaces, we use the formalism of semigroups on
Banach spaces (Engel et al., 2000):
Definition A.1. Let T : t → T (t) be a continuous function from R to the space of bounded linear
operators on a Banach space V . We say that T is a strongly continuous semigroup if:

(i) T (0) = I
(ii) T (t+ s) = T (t)T (s) for all t, s ≥ 0
(iii) limt→0 T (t)f = f for all f ∈ V

Its generator A is defined on the set of signals f ∈ V for which the limit exists as:

Af = lim
t→0

T (t)f − f

t
(6)

The semigroup is said to be positive if T (t)f ≥ 0 for all f ≥ 0 and t ≥ 0.

Under this framework, a Metzler matrix A is the generator of a positive semigroup t 7→ etA.

In full generality, extending the Metzler condition to infinite-dimensional operators is not straight-
forward since the notion of “off-diagonal” terms is ill-defined. The correct formalism uses Banach
lattices; we refer to (Schaefer, 1974) for proper statements and (Arendt, 1984) for proofs. In our
case, we make a simplifying assumption and restrict ourselves to Hilbert spaces of the form L2

µ(X),
which include both finite-dimensional Euclidean spaces and infinite-dimensional L2 spaces. For any
signal f ∈ L2

µ(X), we define sign(f) pointwise as:

sign(f)(x) =


+1 if f(x) > 0

−1 if f(x) < 0

0 if f(x) = 0

, so that |f | = sign(f)f. (7)

This leads to the following proposition, which characterizes the Metzler property on general L2
µ(X)

spaces via a pointwise inequality:
Proposition A.1. Let A : RN → RN be a be a linear operator represented by a matrix. Then the
following inequalities are equivalent:

(i) (Metzler condition) Aij ≥ 0 whenever i ̸= j
(ii) (Kato’s inequality) A |f | ≥ sign(f)Af for all f ∈ V

Proof. Statement (ii) can be rewritten as: for all i,∑
j

Aij |fj | ≥ sign(fi)
∑
j

Aijfj . (8)

If (i) holds, then for i ̸= j we have Aij |fj | ≥ Aijfj sign(fi), and, by definition, Aii |fi| =
Aiifi sign(fi). Therefore we have Equation (8) and (ii).

Conversely, suppose (ii) holds. Consider a pair i ̸= j and a signal f such that fi = 1, fj = −1 and
fk = 0 for other indices k. Equation (8) implies that:

Aii +Aij ≥ Aii −Aij , i.e. Aij ≥ 0 . (9)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

This allows us to conclude.

We would like to extend the implication from the finite-dimensional case: if A satisfies Kato’s
inequality, then it should generate a semigroup of non-negative operators. In the infinite-dimensional
setting, this implication requires additional structure.

Definition A.2. A strictly positive subeigenvector of an operator A is a function f ∈ D(A) so that:

(i) Af ≤ λf for some λ ∈ R
(ii) f > 0 almost everywhere

where D(A) denotes the domain of the (possibly unbounded) operator A.

This allows us to state the following result, which is a direct consequence of Theorem 1.7 in Arendt
(1984):

Proposition A.2. Let A be a generator of a strongly continuous semigroup on L2
µ(X). Assume that

there exists a function g ∈ D(A) such that:

(i) g is a strictly positive subeigenvector of A⊤µ .
(ii) (weak Kato’s inequality) ⟨A⊤µg, |f |⟩µ ≥ ⟨sign(f)Af, g⟩µ for all f ∈ D(A) .

Then the semi-group is positive (see Definition A.1).

In our setting, the generator A is equal to the opposite −∆ of a Laplace-like operator, and g is the
constant function 1. Since our set of axioms implies that −∆⊤µ1 = −∆1 = 0, we always have that
1 is a strictly positive subeigenvector of −∆⊤µ . This allows us to propose the following definition
of a Laplace-like operator, which generalizes Definition 4.1 to discrete measures:

Definition A.3 (General Laplace-like Operators). Let ∆ be a generator of a strongly continuous
semigroup on L2

µ(X), where µ has finite total mass.
We say that ∆ is a Laplace-like operator if for all f ∈ L2

µ(X):

(i) Symmetry: ∆⊤µ = ∆ (iii) Positivity: ⟨f,∆f⟩µ ≥ 0
(ii) Constant cancellation: ∆1 = 0 (iv) Kato’s inequality: ⟨sign(f)∆f, 1⟩µ ≥ 0

The results above show that if t 7→ T (t) is the strongly continuous semigroup generated by such a
Laplace-like operator ∆, then T (t) satisfies the conditions of a diffusion operator (Definition 4.2 in
the main manuscript).

We note that the assumption of finite total mass for µ ensures that the constant function 1 belongs to
L2
µ(X), and that our definition includes, as a special case, the classical Laplace–Beltrami operator

on compact Riemannian manifolds.

B PROOF OF THEOREM 4.1

Our theoretical analysis relies on ideas developed in the context of entropy-regularized optimal
transport. We refer to the standard textbook (Peyré et al., 2019) for a general introduction, and to
Feydy et al. (2019) for precise statements of important lemmas. Let us now proceed with our proof
of Theorem 4.1.

Proof. Recall that µ =
∑N

i=1 miδxi
is a finite discrete measure with positive weights mi > 0. The

smoothing operator S can be written as the product:

S = KM , (10)

where K is a N -by-N symmetric matrix with positive coefficients Kij > 0 and M =
diag(m1, . . . ,mN) is a diagonal matrix. Our hypothesis of operator positivity on S implies that
K is a positive semi-definite matrix. Finally, we can suppose that µ is a probability measure without
loss of generality: going forward, we assume that m1 + · · ·+mN = 1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Optimal Transport Formulation. We follow Eq. (1) in Feydy et al. (2019) and introduce the
symmetric entropy-regularized optimal transport problem:

OTreg(µ, µ) = min
π∈Plans(µ,µ)

N∑
i,j=1

πijCij + KL(π,mm⊤) (11)

where Cij = − logKij is the symmetric N -by-N cost matrix and Plans(µ, µ) is the simplex of
N -by-N transport plans, i.e. non-negative matrices whose rows and columns sum up to m =
(m1, . . . ,mN). KL denotes the Kullback-Leibler divergence:

KL(π,mm⊤) =

N∑
i,j=1

πij log
πij

mimj
. (12)

Compared with Feydy et al. (2019), we make the simplifying assumption that ε = 1 and do not
require that Cii = 0 on the diagonal since this hypothesis is not relevant to the lemmas that we use
in our paper.

Sinkhorn Scaling. The above minimization problem is strictly convex. The fundamental result of
entropy-regularized optimal transport, stated e.g. in Section 2.1 of Feydy et al. (2019) and derived
from the Fenchel-Rockafellar theorem in convex optimization, is that its unique solution can be
written as:

πij = exp(fi + gj − Cij)mimj , (13)

where f = (f1, . . . , fN) and g = (g1, . . . , gN) are two dual vectors, uniquely defined up to a
common additive constant (a pair (f, g) is solution if and only if the pair (f − c, g + c) is also
solution) – see Proposition 11 in Feydy et al. (2019). In our case, by symmetry, there exists a unique
constant such that f = g – see Section B.3 in Feydy et al. (2019). We denote by ℓ = (ℓ1, . . . , ℓN)
this unique “symmetric” solution. It is the unique vector such that:

πij = exp(ℓi + ℓj − Cij)mimj = mie
ℓi Kij e

ℓjmj (14)

is a valid transport plan in Plans(µ, µ). This matrix is symmetric and such that for all i:

N∑
j=1

πij = mi i.e. eℓi
N∑
j=1

Kij e
ℓjmj = 1 . (15)

We introduce the positive scaling coefficients λi = eℓi , the diagonal scaling matrix Λ =
diag(λ1, . . . , λN), and rewrite this equation as:

ΛKMΛ1 = 1 i.e. Q1 = 1 where Q = ΛKMΛ . (16)

This shows that scaling S = KM with Λ enforces our constant preservation axiom for diffusion
operators – property (ii) in Definition 4.2. Likewise, since Λ is a diagonal matrix with positive
coefficients, Q satisfies axioms (i) – symmetry with respect to M – and (iv) – entrywise positivity.

Crucially, Λ can be computed efficiently using a symmetrized Sinkhorn algorithm: our Algorithm 1
is directly equivalent to in Feydy et al. (2019, Eq. (25)).

Spectral Normalization. To conclude our proof, we now have to show that the normalized oper-
ator Q also satisfies axiom (iii) – damping – in our definition of diffusion operators, i.e. show that
its eigenvalues all belong to the interval [0, 1].

To this end, we first remark that Q = ΛKMΛ = ΛKΛM has the same eigenvalues as Q′ =√
MΛKΛ

√
M , where

√
M = diag(

√
m1, . . . ,

√
mN). If α is a scalar and x is a vector, the eigen-

value equation:

Qx = ΛKΛ
√
M
√
Mx︸ ︷︷ ︸
y

= αx is equivalent to Q′y =
√
MΛKΛ

√
My = αy (17)

with the change of variables y =
√
Mx.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Then, we remark that for any vector x in RN ,

N∑
i,j=1

Kijλiλj(
√
mjxi −

√
mixj)

2 (18)

=

N∑
i,j=1

Kijλiλj

(
mjx

2
i +mix

2
j − 2

√
mi
√
mjxixj

)
(19)

=

N∑
i=1

(ΛKMΛ1︸ ︷︷ ︸
Q1=1

)ix
2
i +

N∑
j=1

(ΛKMΛ1︸ ︷︷ ︸
Q1=1

)jx
2
j − 2x⊤Q′x (20)

= 2x⊤(I −Q′)x . (21)

Since the upper term is non-negative as a sum of squares, we get that the eigenvalues of the sym-
metric matrix I −Q′ are all non-negative. This implies that the eigenvalues of Q′, and therefore the
eigenvalues of Q, are bounded from above by 1.

In the other direction, recall that our hypothesis of operator positivity on S implies that K is a posi-
tive semi-definite matrix. This ensures that Q’, and therefore Q, also have non-negative eigenvalues.
Combining the two bounds, we show that the spectrum of the normalized operator Q is, indeed,
included in the unit interval [0, 1].

C PROOF OF THEOREM 4.2

Proof. The hypotheses of our Theorem 4.2 fit perfectly with those of Theorem 1 in Feydy et al.
(2019). Notably, we make the assumption that X is a bounded region of Rd: we can replace it with a
closed ball of finite radius, which is a compact metric space. Just as in Appendix B, we can assume
without loss of generality that the finite measures µt and the limit measure µ are probability distri-
butions, that sum up to 1: positive multiplicative constants are absorbed by the scaling coefficients
Λt and Λ.

If k(x, y) is a Gaussian kernel of deviation σ > 0, we use the cost function C(x, y) = 1
2∥x − y∥2

and an entropic regularization parameter ε = σ2. If k(x, y) is an exponential kernel at scale σ > 0,
the cost function is simply the Euclidean norm ∥x− y∥ and the entropic regularization parameter ε
is equal to σ.

Continuous Scaling Functions. The theory of entropy-regularized optimal transport allows us to
interpret the dual variables f , g and ℓ of Eqs. (13-14) as continuous functions defined on the domain
X . Notably, for any probability distribution µ, the continuous function ℓ : X → R is uniquely
defined by the “Sinkhorn equation” – see Sections B.1 and B.3 in Feydy et al. (2019):

∀x ∈ X , ℓ(x) = − ε log

∫
X
exp 1

ε

(
ℓ(y)− C(x, y)

)
dµ(y) . (22)

The first part of Theorem 4.2 is a reformulation of this standard result. We introduce the continuous,
positive function:

λ(x) = exp(ℓ(x)/ε) > 0 (23)

which is bounded on the compact domain X . We remark that Eq. (22) now reads:

∀x ∈ X , λ(x) =
1∫

X k(x, y)λ(y) dµ(y)
(24)

i.e. 1 = λ(x)

∫
X
k(x, y)λ(y) dµ(y) . (25)

This implies that the operator Q defined in Equation (3) satisfies our constant preservation axiom
for diffusion operators. By construction, it also satisfies the symmetry and entrywise positivity
axioms. The damping property derives from the fact that we can write Q as the limit of the sequence
of discrete diffusion operators Qt with eigenvalues in [0, 1].

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Convergence. To prove it, note that the above discussion also applies to the discrete measures
µt =

∑Nt

i=1 m
t
iδxt

i
. We can uniquely define a continuous function ℓt : X → R such that:

∀x ∈ X , ℓt(x) = − ε log

Nt∑
j=1

mt
j exp

1
ε

(
ℓt(xt

j)− C(x, xt
j)
)
, (26)

and interpret the diagonal coefficients of the scaling matrix Λt as the values of the positive scaling
function:

λt(x) = exp(ℓt(x)/ε) > 0 (27)

sampled at locations (xt
1, . . . , x

t
Nt

).

Recall that the sequence of discrete measures µt converges weakly to µ as t tends to infinity. Cru-
cially, Proposition 13 in Feydy et al. (2019) implies that the dual potentials ℓt converge uniformly
on X towards ℓ. Since ℓ is continuous and therefore bounded on the compact domain X , this uni-
form convergence also holds for the (exponentiated) scaling functions: λt converges uniformly on
X towards λ.

For any continuous signal f : X → R, we can write down the computation of Qtf as the composi-
tion of a pointwise multiplication with a scaled positive measure µtλt, a convolution with the (fixed,
continuous, bounded) kernel k, and a pointwise multiplication with the positive scaling function λt.
In other words:

Qtf = λt ·
(
k ⋆ (µtλtf)

)
. (28)

Likewise, we have that:
Qf = λ ·

(
k ⋆ (µλf)

)
. (29)

Since λt converges uniformly towards λ and f is continuous, the signed measure µtλtf converges
weakly towards µλf . This implies that the convolution with the (bounded) Gaussian or exponential
kernel k ⋆ (µtλtf) converges uniformly on X towards k ⋆ (µλf), which allows us to conclude.

D Q-DIFFUSION IN PRACTICE

Sinkhorn Convergence. We evaluate the convergence behavior of the symmetrized Sinkhorn al-
gorithm across various settings. Specifically, we monitor the quantity:∫ ∣∣Λ(i)SΛ(i)1− 1

∣∣ dµ∫
dµ

(30)

where Λ(i) denotes the diagonal scaling matrix after i Sinkhorn iterations. This corresponds to the
average deviation between the constant signal 1 and its smoothed counterpart Q(i)1 = Λ(i)SΛ(i)1
on the domain that is defined by the positive measure µ. According to our definition, both signals
coincide when Q(i) is a smoothing operator. Figure 6 presents these results, with visualizations of
the input modalities along the top row and corresponding convergence curves below. In Figure 6a,
we report results for different representations of the Armadillo shape used in the main paper: uni-
form point cloud samples on the surface and volume, as well as voxel-based representations of the
boundary and interior. Figure 6b illustrates the behavior on Erdős–Rényi random graphs with edge
probability p = 0.2, and Figure 6c shows results on geometric graphs, where points are uniformly
sampled in the unit square and edges are drawn between points within radius r = 0.15.

Across all experiments, we observe rapid convergence: typically, 5 to 10 iterations are sufficient to
reach error levels below 10−3 = 0.1%. We note that one iteration of our algorithm corresponds to
the classical symmetric normalization of graph Laplacians, which satisfies our constant preservation
property up to a precision of 1% to 5%. From this perspective, we understand our work as a clar-
ification of the literature on graph Laplacians. While most practitioners are used to working with
approximate normalization, we provide a clear and affordable method to satisfy this natural axiom
up to an arbitrary tolerance parameter. We argue that this is preferable to choosing between row-
wise normalization (which guarantees the preservation of constant signals, but discards symmetry)
and standard symmetric normalization (which makes a small but noticeable error on the preservation
of constant signals).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 2 4 6 8 10 12 14 16 18 20

10 8

10 6

10 4

10 2

100

point cloud 2D
point cloud 3D
voxel 2D
voxel 3D

(a) Armadillo

0 2 4 6 8 10 12 14 16 18 20
10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

103
n = 250
n = 500
n = 1000
n = 2000

(b) Erdős–Rényi

0 2 4 6 8 10 12 14 16 18 20

10 6

10 4

10 2

100

102 n = 500
n = 1000
n = 2000
n = 4000

(c) Geometric

Figure 6: Convergence of the symmetric Sinkhorn algorithm on (a) the Armadillo shape, (b) a graph
with N nodes and random edges, (c) a random geometric graph with N nodes

Implementing Q-Diffusion on Discrete Samples. Let K ∈ RN×N be a symmetric kernel ma-
trix, and M = diag(m1, . . . ,mN) be a diagonal mass matrix. As described in Algorithm 1, we
compute a diagonal scaling matrix Λ = diag(eℓ1 , . . . , eℓN), such that the normalized diffusion
operator becomes Q = ΛKMΛ. This operator can be implemented efficiently using the KeOps
library (Charlier et al., 2021; Feydy et al., 2020), which avoids instancing the dense kernel matrix.

In the case where K is a Gaussian kernel between points xi in Rd, with standard deviation σ > 0,
applying Q to a signal f ∈ RN gives:

(Qf)i =

N∑
j=1

exp
(
− 1

2σ2 ∥xi − xj∥2 + ℓi + ℓj

)
mjfj (31)

=
∑
j

exp (qij) fj where qij := − 1
2σ2 ∥xi − xj∥2 + ℓi + ℓj + logmj . (32)

Since Q is row-normalized by construction, (i.e., Q1 = 1), this operation can be written as a
softmax-weighted sum:

(Qf)i =

N∑
j=1

SoftMaxj (qij) fj . (33)

We note that the scores qij can be expressed as inner products between extended embeddings x̃i, ỹi ∈
Rd+2, enabling fast attention implementations:

qij = x̃⊤
i ỹj , where x̃i =

 1
σxi

ℓi − 1
2σ2 ∥xi∥2
1

 and ỹj =

 1
σxj

1
ℓj − 1

2σ2 ∥xj∥2 + log(mj)

 . (34)

This leads to an attention-style formulation of the operator:

Qf = Attention
(
X̃, Ỹ , f

)
(35)

where X̃, Ỹ ∈ RN×(d+2) are the stacked embeddings of all points. This makes Qf compatible with
fast attention layers such as FlashAttention (Dao, 2023) or xFormers (Lefaudeux et al., 2022). Note
that the softmax normalization in the Attention layer is invariant to additive constants in x̃i, allowing
the implementation to be further simplified using only a (d+1)-dimensional embeddings for X̃ and
Ỹ

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Spectral Decomposition. The largest eigenvectors of a symmetric matrix can be efficiently com-
puted using the power method or related iterative solvers (Saad, 2011). However, standard routines
typically assume symmetry with respect to the standard inner product. Since our diffusion operator
Q = ΛKMΛ is symmetric with respect to the M -weighted inner product, we need to reformulate
the problem. Noting that M and Λ are diagonal and therefore commute, we can write

Q = M−1 (ΛMKMΛ) . (36)

This allows us to compute the eigenvectors and eigenvalues of Q by solving the following general-
ized eigenproblem for symmetric matrices:

(ΛMKMΛ)Φ = λMΦ . (37)

This is supported by standard linear algebra routines (such as scipy.sparse.linalg.eigsh)
and ensures that the resulting eigenvectors Φ are orthogonal with respect to the M inner product.

E RUNTIMES

Setup. We time 5 iterations of the symmetric Sinkhorn normalization on point-cloud kernels us-
ing PyTorch + PyKeOps (symbolic lazy tensors) on an NVIDIA V100 (CUDA 12.1). For reference,
we also time implicit Laplacian diffusion via a sparse LU solve of (M+t∆) on an Intel Xeon
Gold 6248 CPU. This reflects typical usage: kernel mat–vecs map well to GPUs, whereas sparse
direct solvers are mature and memory-efficient on CPUs when a Laplacian is available.

What is timed. Sinkhorn: each iteration = one mat–vec with S + a diagonal rescaling; we report
wall-clock for 5 iterations. Laplacian: factorization + one solve of (M+t∆)−1b on CPU (best-case
when a sparse ∆ exists). Our GPU timings use a brute-force kernel on an unstructured 3D point
cloud, and could be further improved.

Dense GPU baselines. On the GPU, we also measured a Cholesky factorization (210 ms) and a
matrix exponential (770 ms) of a Laplacian in PyTorch and 10000 vertices. These approaches exceed
GPU memory limits beyond ∼10k points.

Sinkhorn Complexity. Per Sinkhorn iteration for different methods:

(i) Dense matrices S: O(N2) time/memory
(ii) Symbolic kernel S (e.g., Gaussian with PyKeOps): O(N2) time, O(N) memory sparse S

(k-NN): O(kN) time (generally O(nnz))
(iii) Low-rank (rank R): O(RN2)

(iv) Grid convolution: O(N) for small filters, O(N logN) for large filters using FFTs

Baseline Complexity. Per diffusion step via Laplacian-based methods:

(i) Matrix exponential (dense): O(N3) time; rarely used at scale.
(ii) Implicit Euler (I+t∆)−1 with sparse LU/Cholesky: worst case O(N3); for mesh-like spar-

sity typically O(N1.5) for factorization and O(N2) per solve (amortizable across right-hand
sides).

(iii) Spectral truncation (rank R): O(RN2) in the dense setting; truncation may introduce ringing
artifacts.

These baselines assume access to a well-defined sparse Laplacian and specialized linear algebra
routines.

F DETAILS ON EIGENVECTORS COMPUTATION

FEM Laplacian on Tetrahedral Meshes. In Figure 3 of the main paper, we implement our
method on different representations of the Armadillo, treated as a surface and as a volume with

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

uniform density. For the surface mesh in Figure 3a, we use the standard cotangent Laplacian as a
reference. For the tetrahedral mesh shown in Figure 3f, we use a finite element Laplacian, general-
izing the cotangent Laplacian in 2D (Crane, 2019). Let {ei} be a basis of piecewise linear basis and
{dei} their gradients. The discrete Laplacian ∆ takes the form:

∆ = M−1L , (38)
where L is the stiffness matrix and M is the mass matrix defined by:

Lij = ⟨dei, dej⟩ , Mij = ⟨ei, ej⟩ . (39)
Following Crane (2019), we compute the off-diagonal entries of L with:

Lij =
1

6

∑
ijkl∈T

lkl cot(θ
ij
kl) , (40)

where T is the set of tetrahedra in the mesh, lkl is the length of edge kl, and θijkl is the dihedral angle
between triangles ikl and jkl. The diagonal entries are defined to make sure that the rows sum to
zero:

Lii = −
∑
j ̸=i

Lij . (41)

The entries of the mass matrix M are given by:

Mij =
1

20

∑
ijkl∈T

vol(ijkl) for i ̸= j , Mii =
1

10

∑
ijkl∈T

vol(ijkl) . (42)

Point Clouds. As discussed in the main paper, we compare the eigendecompositions of these
cotan Laplacians to that of our normalized Gaussian smoothings on discrete representations of the
Armadillo. For the sake of simplicity, Figures 3b and 3g correspond to uniform discrete samples,
i.e. weighted sums of Dirac masses:

µ =

N∑
i=1

1
N δxi

, (43)

where x1, . . . , xN correspond to N = 5000 three-dimensional points drawn at random on the
triangle mesh (for Figure 3b) and in the tetrahedral volume (for Figure 3g).

Gaussian Mixtures. To compute the Gaussian mixture representations of Figures 3c and 3h, we
simply rely on the Scikit-Learn implementation of the EM algorithm with K-Means++ initializa-
tion (Pedregosa et al., 2011) and 500 components. This allows us to write:

µ =

500∑
i=1

miN (xi,Σi) , (44)

where the scalars mi are the non-negative mixture weights, the points xi are the Gaussian centroids
and the 3-by-3 symmetric matrices Σi are their covariances.

Mass Estimation on Voxel Grids. To encode the Armadillo’s volume as a binary mask in Fig-
ure 3i, we simply assign a mass of 1 to voxels that contain points inside of the watertight Armadillo
surface. This allows us to demonstrate the robustness of our implementation, even when voxel val-
ues do not correspond to the exact volume of the intersection between the tetrahedral mesh and the
cubic voxel.

However, this approach is too simplistic when representing the surface of the Armadillo with voxels.
Since the grid is more densely sampled along the xyz axes than in other directions, assigning a
uniform mass of 1 to every voxel that intersects the triangle mesh would lead to biased estimates of
the mass distribution. To address this quantization issue, we use kernel density estimation to assign
a mass mi to each voxel.

As described above, we first turn the triangle mesh into a binary mask. Then, for every non-empty
voxel x, we use an isotropic Gaussian kernel k with standard deviation σ equal to 3 voxels to estimate
a voxel mass m(x) with:

m(x) =
1∑

y k(x, y)
(45)

where the sum is taken over neighboring, non-empty voxels.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

10 20 30 40
Eigenvalue index

0

25

50

75

100

125

150

175

La
pl

ac
ian

 ei
ge

nv
alu

es

Triangles
Points
Gaussians
Voxels

(a) Sphere Surface

10 20 30 40
Eigenvalue index

0

25

50

75

100

125

150

175

200

Sp
ec

tra
l e

ig
en

va
lu

es

Tetrahedra
Points
Gaussians
Voxels

(b) Sphere Volume

10 20 30 40
Eigenvalue index

0

20

40

60

80

100

La
pl

ac
ian

 ei
ge

nv
alu

es

Triangles
Points
Gaussians
Voxels

(c) Cube Surface

10 20 30 40
Eigenvalue index

0

20

40

60

80

100

120

140

160

Sp
ec

tra
l e

ig
en

va
lu

es

Tetrahedra
Points
Gaussians
Voxels

(d) Cube Volume

Figure 7: Laplacian eigenvalues for the sphere of diameter 1 and the cube of edge length 1.

Estimation of the Laplacian Eigenvalues. Recall that with our conventions, the Laplace operator
is non-negative. In both of our settings (surface and volume), performing an eigendecomposition
of the reference cotan Laplacian yields an increasing sequence of eigenvalues starting at λ∆

1 = 0.
On the other hand, computing the largest eigenvalues of a normalized diffusion operator yields a
decreasing sequence of eigenvalues starting at λQ

1 = 1.

To compare both sequences with each other and produce the curves of Figure 3e and 3j, we propose
the following simple heuristics for diffusions Q derived from a Gaussian kernel of deviation σ > 0:

• For point clouds and voxels, we use:

λi = − 2

σ2
log(λQ

i) . (46)

Indeed, when the underlying measure µ corresponds to a regular grid with uniform weights,
we can interpret the Gaussian kernel matrix as a convolution operator with a Gaussian
kernel exp(−∥x∥2/2σ2). Its eigenvalues can be computed in the Fourier domain as
exp(−σ2∥ω∥2/2). To recover the eigenvalues ∥ω∥2 of the Laplace operator, we simply
have to apply a logarithm and multiply by −2/σ2.

• For Gaussian mixtures with component weights mi, centroids xi and covariance matrices
Σi, we use:

λi = − 2

σ2 + 2
d (
∑

i mitrace(Σi))/(
∑

i mi)
log(λQ

i) , (47)

where d is equal to 2 for surfaces and 3 for volumes. This formula is easy to com-
pute and introduces an additional factor, the average trace of the covariance matrices
Σi. For volumes, it relies on the observation that when all covariance matrices are equal
to a constant isotropic matrix Σ = τ2I3 with trace 3τ2, the smoothing operator de-
fined in Eq. (5) of the main paper is equivalent to a Gaussian kernel matrix of variance
σ2 + 2τ2 = σ2 + (2/3) trace(Σ).
Likewise, for surfaces, we expect that a regular sampling will lead to covariance matrices
that have one zero eigenvalue (in the normal direction) and two non-zero eigenvalues (in
the tangent plane), typically equal to a constant τ2. This leads to the formula σ2 + 2τ2 =
σ2 + (2/2) trace(Σ).

Estimated Spectrum on Standard Shapes. In Figures 8 and 9, we display the first 20 eigenvec-
tors of our operators defined on the Armadillo, as a complement to Figure 3 in the main paper. As
expected, these mostly coincide with each other.

Going further, we perform the exact same experiment with a sphere of diameter 1 in Figures 10
and 11, as well as a cube with edge length 1 in Figures 12 and 13. The relevant spectra are displayed
in Figure 7. We recover the expected symmetries, which correspond to the plateaus in the spectra and
the fact that the eigenvectors cannot be directly identified with each other. We deliberately choose
coarse point cloud and Gaussian mixture representations, which allow us to test the robustness of
our approach. Although the Laplacian eigenvalues tend to have a slower growth on noisy data, the
eigenvectors remain qualitatively relevant.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 8: First 10 eigenvectors on the Armadillo, treated as a surface on the left and as a volume
on the right. From left to right, the shape is encoded as a triangle mesh, a point cloud sampled
uniformly at random, a voxel grid, a Gaussian mixture; a tetrahedral mesh, a point cloud, a binary
mask and a Gaussian mixture. Figure 3 corresponds to the last row.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 9: Eigenvectors 11 to 20 on the Armadillo, understood as a surface on the left and as a
volume on the right. From left to right, the shape is encoded as a triangle mesh, a point cloud
sampled uniformly at random, a voxel grid, a Gaussian mixture; a tetrahedral mesh, a point cloud, a
binary mask and a Gaussian mixture.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 10: First 10 eigenvectors on the sphere of diameter 1, treated as a surface on the left and
as a volume on the right. From left to right, the shape is encoded as a triangle mesh, a point cloud
sampled uniformly at random, a voxel grid, a Gaussian mixture; a tetrahedral mesh, a point cloud, a
binary mask and a Gaussian mixture.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 11: Eigenvectors 11 to 20 on the sphere of diameter 1, treated as a surface on the left and
as a volume on the right. From left to right, the shape is encoded as a triangle mesh, a point cloud
sampled uniformly at random, a voxel grid, a Gaussian mixture; a tetrahedral mesh, a point cloud, a
binary mask and a Gaussian mixture.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 12: First 10 eigenvectors on a cube with edge length 1, treated as a surface on the left and
as a volume on the right. From left to right, the shape is encoded as a triangle mesh, a point cloud
sampled uniformly at random, a voxel grid, a Gaussian mixture; a tetrahedral mesh, a point cloud, a
binary mask and a Gaussian mixture.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Figure 13: Eigenvectors 11 to 20 on a cube with edge length 1, treated as a surface on the left and
as a volume on the right. From left to right, the shape is encoded as a triangle mesh, a point cloud
sampled uniformly at random, a voxel grid, a Gaussian mixture; a tetrahedral mesh, a point cloud, a
binary mask and a Gaussian mixture.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

G DETAILS ON GRADIENT FLOW

The Energy Distance. Inspired by the theoretical literature on sampling and gradient flows,
we perform a simple gradient descent experiment on the Energy Distance between two empiri-
cal distributions. Given a source (prior) distribution µ = 1

N

∑N
i=1 δxi and a target distribution

ν = 1
M

∑M
j=1 δyj

, this loss function is defined as:

E(µ, ν) =
1

NM

N∑
i

M∑
j

∥xi − yj∥ −
1

2N2

N∑
i,j=1

∥xi − xj∥ −
1

2M2

M∑
i,j=1

∥yi − yj∥ (48)

When all points are distinct from each other, its gradient with respect to the positions of the source
samples is:

∇xiE(µ, ν) =
1

NM

M∑
j=1

yj − xi

∥yj − xi∥
− 1

N2

∑
j ̸=i

xj − xi

∥xj − xi∥
(49)

We implement this formula efficiently using the KeOps library.

Particle Flow. Starting from point positions x
(0)
i , we then update the point positions iteratively

using:

x
(t+η)
i ← x

(t)
i − ηNL∇

x
(t)
i
E
(

1
N

∑N
i=1 δx(t)

i
, ν

)
, (50)

where L is an arbitrary linear operator and η is a positive step size. When L is the identity, this
scheme corresponds to an explicit Euler integration of the Wasserstein gradient flow: Figure 14 is
equivalent to classical simulations such as the first row of Figure 5 in Feydy et al. (2019).

Setup. Going further, we study the impact of different smoothing operators L that act as regular-
izers on the displacement field. We consider both unnormalized Gaussian kernel matrices and their
normalized counterparts as choices for L, with standard deviation σ = 0.07 in Figure 4 of the main
paper and Figure 15, as well as σ = 0.2 in a secondary experiment showcased in Figure 16. For
each case, we run T = 1000 iterations with a step size η = 0.05.

Out of the box, unnormalized kernel matrices tend to aggregate many points and thus inflate gradi-
ents. To get comparable visualizations, we divide the unnormalized kernel matrix by the average of
its row-wise sums at time t = 0. This corresponds to an adjustment of the learning rate, which is
not required for the descents with respect to the Wasserstein metric or with our normalized diffusion
operators.

As a source distribution, we use a uniform sampling (N = 1500) of a small rectangle in the unit
square [0, 1]2. The target distribution is also sampled with M = 1500 points using a reference
image provided by the Geomloss library (Feydy et al., 2019). The entire optimization process takes
a few seconds on a GeForce RTX 3060 Mobile GPU using KeOps for kernel computation.

Visualization. In Figure 14, we show a baseline gradient descent for the Wasserstein metric (L =
I). As expected, the gradient flow heavily deforms the source distribution and leaves “stragglers”
behind due to the vanishing gradient of the Energy Distance.

In Figure 15, we compare both kernel variants with σ = 0.07 as in the main paper. In Figure 16,
we use a larger standard deviation σ = 0.2. In this case, the unregularized flow is more stable but
still tends to overly contract the shape. In contrast, our normalized kernel consistently preserves the
structural integrity of the source distribution.

H DETAILS ON NORMALIZED SHAPE METRICS

Hamiltonian Geodesic Shooting. To compute our shape geodesics, we implement the LDDMM
framework on point clouds as done by the Deformetrica software (Bône et al., 2018). If (x1, . . . , xN)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

t = 0.00

R
aw

t = 0.25 t = 0.75 t = 50.00

Figure 14: Gradient flow using the simple Wasserstein metric.

t = 0.00

U
n

n
or

m
al

iz
ed

N
or

m
al

iz
ed

t = 0.25 t = 0.75 t = 50.00

Figure 15: Gradient flow using unnormalized and normalized Gaussian kernels with σ = 0.07.

t = 0.00

U
n

n
or

m
al

iz
ed

N
or

m
al

iz
ed

t = 0.25 t = 0.75 t = 50.00

Figure 16: Gradient flow using unnormalized and normalized Gaussian kernels with σ = 0.2.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

denotes the set of vertices of the source mesh in 3D, we define the standard Hamiltonian H(q, p) on
(position, momentum) pairs RN×3 × RN×3 with:

H(q, p) = 1
2 trace(p⊤Kqp) = 1

2

N∑
i,j=1

(Kq)ij · p⊤i pj , (51)

where (Kq)ij = exp(−∥qi−qj∥2/2σ2) is a Gaussian kernel matrix. Starting from a source position
q(t = 0) = (x1, . . . , xN), geodesic shape trajectories are parametrized by an initial momentum
p(t = 0) and flow along the coupled geodesic equation in phase space:

q̇(t) = +
∂H

∂p
(q(t), p(t)) , ṗ(t) = − ∂H

∂q
(q(t), p(t)) (52)

that we integrate to time t = 1 using an explicit Euler scheme with a step size δt = 0.1. The partial
derivatives of the Hamiltonian are computed automatically with PyTorch.

Shape Interpolation. In Figure 5a from the main manuscript, we display the source position q(t =
0) = (x1, . . . , xN) in red and a target configuration in blue. In Figure 5b, we use the L-BFGS
algorithm to optimize with respect to the initial shooting momentum p(t = 0) the mean squared
error between the position of the geodesic q(t = 1) at time t = 1 and the target configuration. Then,
we use Eq. (52) to sample the geodesic curve q(t) at time t = −0.5, t = 0.5 and t = 1.5.

In Figure 5c, we use the exact same implementation but normalize the Gaussian kernel matrix Kq

into a diffusion operator Qq before defining a “normalized” Hamiltonian H(q, p):

H(q, p) = 1
2 trace(p⊤Qqp) . (53)

For the sake of simplicity, we do not use the mesh connectivity information and rely instead on
constant weights to define the mass matrix M . Although our Hamiltonian is now defined via the
iterative Sinkhorn algorithm, automatic differentiation lets us perform geodesic shooting without
problems. Finally, in Figure 5d, we identify every Gaussian component N (xi,Σi) with a cloud of
6 points sampled at (xi ± si,1ei,1, xi ± si,2ei,2, xi ± si,3ei,3), where ei,1, ei,2 and ei,3 denote the
eigenvectors of Σi with eigenvalues s2i,1, s2i,2 and s2i,3. This allows us to use the same underlying
point cloud implementation.

I DETAILS ON POINT FEATURES LEARNING

Q-DiffNet. DiffusionNet (Sharp et al., 2022) is a powerful baseline for learning pointwise features
on meshes and point clouds. It relies on two main components: a diffusion block and a gradient
feature block. The diffusion block approximates heat diffusion spectrally rather than solving a
sparse linear system. In Q-DiffNet, we replace this truncated spectral diffusion with our normalized
diffusion operator, using a Gaussian convolution as the original smoothing operator. Given a shape
S with vertices X ∈ RN×3, features f ∈ RN×P and a diagonal mass matrix M , we define:

Q-Diff(f,X,M ;σ) = Q(X,M, σ)mf where Q(X,M, σ) = ΛσKσ(X,X)MΛσ . (54)
In the above equation, Kσ is a Gaussian kernel of standard deviation σ, Λσ is the diagonal scaling
matrix computed from Algorithm 1, and m is the number of application of the operator. The scaling
Λσ is recomputed in real time at each forward pass using 10 iteration of Algorithm 1, without
backpropagation. Repeating the operator m times allows for simulating longer diffusion times. In
practice, we use m = 2.

Like DiffusionNet (Sharp et al., 2022), Q-DiffNet supports multi-scale diffusion: the layer takes
input features of shape B ×C ×N × P and applies separate diffusion per channel, using learnable
scales (σc)

C
c=1. In DiffusionNet, typical values are C = 256, P = 1. For speed efficiency, we use

C = 32, P = 8 in our experiments, which preserves the total amount of features in the network.

Architecture Integration. We integrate Q-DiffNet into the ULRSSM pipeline (Cao et al., 2023),
which is designed for unsupervised 3D shape correspondence. This framework trains a single net-
work NΘ, usually DiffusionNet (Sharp et al., 2022), that outputs pointwise features for any input
shape S. Inputs to the network typically consist of spectral descriptors such as WKS (Aubry et al.,
2011) or HKS (Sun et al., 2009) – among these, WKS is generally preferred. Raw 3D coordinates
(xyz) are also used in some settings.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Point Cloud Inputs. Although DiffusionNet (Sharp et al., 2022) can operate on point clouds
since it does not require mesh connectivity, it still depends on (approximate) Laplacian eigenvec-
tors (Sharp & Crane, 2020). When working with point clouds, spectral descriptors like WKS (Aubry
et al., 2011) change because they rely on the underlying Laplacian eigendecomposition. To isolate
the effect of our proposed Q-operator, we minimize variability across experiments and use WKS
descriptors (Aubry et al., 2011) computed from the mesh-based Laplacian for all experiments, even
when retraining DiffusionNet (Sharp et al., 2022) or ULRSSM (Cao et al., 2023) on point clouds.
This ensures consistent inputs across surface and point-based variants.

Loss Functions. The ULRSSM pipeline uses Laplacian eigenvectors during training to compute
functional maps C12 and C21 from the predicted pointwise features f1 and f2 (Donati et al., 2020;
Sharp et al., 2022; Cao et al., 2023). These maps are fed in the original ULRSSM losses: orthogonal-
ity, bijectivity, and alignment (Cao et al., 2023). For consistency, we retain these losses unchanged.
Mesh-based models use ground-truth mesh eigenvectors, point cloud versions use approximate point
cloud eigenvectors. Our Q-DiffNet model uses mesh eigenvectors, while the Q-DiffNet (Q-FM)
variant uses eigenvectors derived from our normalized diffusion operator.

Dataset. We train on the standard aggregation of the remeshed FAUST (Bogo et al., 2014; Ren
et al., 2019) and SCAPE datasets (Anguelov et al., 2005), using only intra-dataset pairs within the
training split. We follow the standard train/test splits used in prior baselines (Donati et al., 2020;
Sharp et al., 2022; Cao et al., 2023). The 44 shapes from the remeshed SHREC dataset (Melzi et al.,
2019) are reserved exclusively for evaluation.

Training. We use the exact ULRSSM setup (Cao et al., 2023), where we train the network for 5
epochs with a batch size of 1, using Adam optimizer with an initial learning rate of 10−3 and cosine
annealing down to 10−4. Training takes 6h on a single V100 GPU.

34

	Introduction
	Related Works
	Warm-up: Graphs
	Theoretical analysis
	Efficient Implementation
	Results
	Conclusion and Future Works
	Continuous Formulation of the Metzler Condition
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Q-Diffusion in Practice
	Runtimes
	Details on Eigenvectors Computation
	Details on Gradient Flow
	Details on Normalized Shape Metrics
	Details on Point Features Learning

