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Abstract

Unsupervised cross-lingual projection for part-
of-speech (POS) tagging relies on the use of
parallel data to project POS tags from a source
language for which a POS tagger is available
onto a target language across word-level align-
ments. The projected tags then form the ba-
sis for learning a POS model for the target
language. However, languages with rich mor-
phology often yield sparse word alignments
because words corresponding to the same ci-
tation form do not align well. We hypoth-
esize that for morphologically complex lan-
guages, it is more efficient to use the stem
rather than the word as the core unit of abstrac-
tion. Our contributions are: 1) we propose
an unsupervised stem-based cross-lingual ap-
proach for POS tagging for low-resource lan-
guages of rich morphology; 2) we further in-
vestigate morpheme-level alignment and pro-
jection; and 3) we examine whether the use of
linguistic priors for morphological segmenta-
tion improves POS tagging. We conduct ex-
periments using six source languages and eight
morphologically complex target languages of
diverse typologies. Our results show that the
stem-based approach improves the POS mod-
els for all the target languages, with an average
relative error reduction of 10.3% in accuracy
per target language, and outperforms the word-
based approach that operates on three-times
more data for about two thirds of the language
pairs we consider. Moreover, we show that
morpheme-level alignment and projection and
the use of linguistic priors for morphological
segmentation further improve POS tagging.

1 Introduction

Low-resource languages lack annotated data even
for basic syntactic information such as parts of
speech (POS). To address this problem, two main
unsupervised approaches have been adopted: zero-
shot model transfer (Pires et al., 2019) and cross-
lingual POS tagging via alignment and projection

(Yarowsky et al., 2001; Fossum and Abney, 2005;
Das and Petrov, 2011; Duong et al., 2013; Täck-
ström et al., 2013; Agić et al., 2015, 2016; Buys
and Botha, 2016; Eskander et al., 2020b). Eskander
et al. (2020b) show that the alignment and projec-
tion approach is less sensitive to the morphological
dissimilarities between the source and target lan-
guages than zero-shot model transfer.

In annotation projection, the word structure in
the source and target languages impacts the quality
of the alignment and projection phases, and hence
affects the overall performance of the ultimate POS
model. This becomes a concern for languages with
rich word structure where affixation is common as
they usually suffer from sparse alignment models
that often fail to align words corresponding to the
same citation form due to the extensive paradigms
and translation inconsistencies. Sparse alignment
hinders the ability of a system to project the tags
properly and results in null tags on the target side.
These null tags then reduce the number of qualify-
ing training examples and impact the POS model
by introducing non-continuous labeled sequences.
Adding to these practical issues, the concept of
word as a unit of structure has long been questioned
in language sciences (Marantz, 2001).

We hypothesize that using the stem as the core
unit of abstraction results in better POS models for
low-resource languages of rich morphology. Our
contribution is three-fold.

Unsupervised stem-based cross-lingual ap-
proach for POS tagging for morphologically com-
plex low-resource languages, where we use the
stem as the core unit of abstraction. In order to
adapt a fully-unsupervised approach, we use a state-
of-the-art unsupervised morphological segmenter,
MorphAGram (Eskander et al., 2016, 2020a), to
derive the stems and morphemes. We follow the
setup of Eskander et al. (2020b) using the Bible
as the only source of parallel data in order to emu-
late a low-resource scenario. We experiment with
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the same six source languages, namely English,
Spanish, French, German, Russian and Arabic, but
choose six morphologically complex target lan-
guages, namely Amharic, Basque, Finnish, Indone-
sian, Telugu and Turkish and add two new target
languages, namely Georgian and Kazakh, where
we contribute a small POS-annotated dataset for
the former. We show that the stem-based approach
outperforms the word-based one in 43 language
pairs out of 48, with an average relative error reduc-
tion of 10.3% in accuracy per target language, up to
21.0% in the case of Kazakh. We also show that the
stem-based approach outperforms the word-based
approach which operates on three-times more data
for about two thirds of the experimental pairs.

Morpheme-level alignment and projection,
which allows for abstracting away from how the
morphemes are combined in the source and target
languages. We test the setup with Arabic as the
source language and show improvements for seven
out of the eight target languages.

Using linguistic priors in morphological segmen-
tation, which results in better segmentation models
towards better alignment and projection. Using
Georgian as a case study, we show that the use of
linguistic priors, in the form of a set of affixes pro-
vided by an expert in the target language, improves
the ultimate POS models.

Finally, we make our code publicly available to
encourage further research 1.

2 Approach

We perform fully unsupervised cross-lingual POS
tagging via alignment and projection. We follow
the main architecture presented by Eskander et al.
(2020b) (Section 2.1). A primary difference is that
we harness unsupervised morphological segmenta-
tion to use the stems as the core unit of abstraction
for both alignment and projection (Section 2.2).
In addition, we experiment with morpheme-level
alignment and projection (Section2.3) and exam-
ine the use of linguistic priors towards better mor-
phological segmentation and POS tagging (Sec-
tion 2.4). This allows for less sparse alignment
models and denser projections, which in turn pro-
duces larger POS training data of a better quality.

1https://github.com/rnd2110/
unsupervised-cross-lingual-POS-tagging
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(b) Our proposed stem-based approach

Figure 1: Unsupervised cross-lingual POS tagging
via alignment and projection

2.1 Word-based Alignment and Projection

Figure 1a shows the pipeline presented by Eskander
et al. (2020b). The only input to the process is a par-
allel text between the target language and a source
one for which a POS tagger is accessible. First,
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(b) Stem-based alignment and projection

Figure 2: An example of alignment and projection from Arabic onto Amharic. The alignment models are
trained on the New Testament. Arabic reads right to left.

the parallel text gets white-space tokenized and is
used to train two word-alignment models (source-
to-target and target-to-source) using GIZA++ (Och
and Ney, 2003). The alignment models are then
applied to align the source and target sides on the
word level. Next, the source side is tagged for POS
using an off-the-shelf tagger (e.g., Stanza (Qi et al.,
2020)). The source tags are then projected onto
the target across the word-based alignments, where
only those bidirectional alignments whose confi-
dence is above a particular threshold are considered
in order to eliminate one-to-many and many-to-one
alignments and those alignments of low confidence.

The projected tags for each token represent what
are called token constraints, while the tag distri-
bution of each word type across the whole target
side forms type constraints. The token and type
constraints are then coupled by nullifying those
tag assignments whose type-level probabilities are
below some threshold. The target text, along with
its projected tags, then constitutes the training data
for a neural POS tagger, where only the top scoring
sentences, in terms of tag-assignment density and
alignment confidence, are considered.

The neural tagger is a bidirectional long short-
term memory (BiLSTM) model (Hochreiter and
Schmidhuber, 1997) that uses a custom softmax ac-
tivation to handle the null tags. It uses word embed-
dings, both randomly initialized and the contextual
multilingual embeddings XLM-R (Conneau et al.,
2019); prefix and suffix n-gram character embed-
dings, where n is in {1, 2, 3, 4}; and hierarchical
Brown-cluster (Brown et al., 1992) embeddings.

The architecture can benefit from parallel data of
multiple source languages, where either the projec-
tions from multiple source languages (Mul_proj)
or the decoded outputs that are based on multiple
single-source models (Mul_out) can be combined
through maximum-voting mechanisms.

2.2 Stem-Based Alignment and Projection

While the architecture by Eskander et al. (2020b)
yields the state-of-the-art results for unsupervised
POS tagging when evaluated on 12 languages of di-
verse typologies, the complexity of word structure
in the source and target languages has a direct im-
pact on the quality of both alignment and projection.
Rich word structure where affixation is common
increases the ratio of word types to word tokens,
which in turn results in sparse alignment models
and incomplete projections that form null tags on
the target side. Null tags result in a score that is too
low for the underlying sentence to qualify as a train-
ing example and introduce missing information for
the training of the POS model, which negatively
impacts the overall quality of POS tagging.

An example is shown in Figure 2a, where Arabic
and Amharic are the source and target languages,
respectively. The example corresponds to verse
MAT 15:35, “He commanded the multitude to sit
down on the ground”, where the word-alignment
models are trained on the New Testament. As
shown, the two Arabic-Amharic pairs {MÈ¥m,
�wm���} (and the people, the people) and {€ÈÈ,
r���} (he commanded, then he commanded) are
not aligned, resulting in null tags. The sparse word-



Verse Amharic Word Arabic Word

MAT 15:35 MÈ¥m (and the people) �wm��� (the people)
MAT 26:55 †MÈ¥ (to the people) �wm�l� (to the people)
LUK 9:11 MÈ¥m (and the people) �wm��A� (and the people
LUK 23:4 †MÈ¥ (to the people) �wm���¤ (and the people)

MAT 1:24 …n×ÈÈw (as he commanded) £r�� (he commanded him)
MAT 15:35 €ÈÈ (he commanded) r��� (then he commanded)
b.LUK 5:14 …n×ÈÈ (as he commanded) r�� (he commanded)
b.ACT 21:34 €ÈÈ (he commanded) r�� (he commanded)

Table 1: Paired inflected forms that correspond to
the same citation form across Arabic and Amharic
parallel verses in the New Testament

alignment models are simply unable to properly
align words that correspond to the same citation
form because of the extensive paradigms, which,
along with translation inconsistencies, leads to the
loss of the one-to-one correspondence between
word structures across parallel texts (examples are
shown in Table 1). Using the stem instead of the
word as the core unit of abstraction is more produc-
tive; the stem is usually shared by all the members
of a paradigm, which reduces misalignment.

Figure 2b shows that stemming the Arabic and
Amharic texts yields complete one-to-one align-
ments and projections, which in turn eliminates
the word-based null assignments and assigns each
word on the Amharic side a valid POS tag.

Figure 1b illustrates our overall stem-based ap-
proach. We first stem the source and target sides
and train two stem-level alignment models, one in
each direction. Next, we assign the stems of the
source side the POS tags of their corresponding
words, which are then projected onto the target
stems through the stem-level alignments. We then
apply the token and type constraints on the labeled
stems on the target side. However, since we train
the ultimate POS model on the word level, we re-
place each target stem by its corresponding word
and assign that word the stem-based projected POS
tag. The rest of the pipeline for sentence selection
and training the POS model are the same as in the
word-based architecture described in Section 2.1.

We assume that the source language is a high-
resource one for which an off-the-shelf stemmer
is accessible. On the other hand, for the tar-
get languages, we use MorphAGram2 (Eskander
et al., 2020a) to train an unsupervised morpho-
logical segmentation model using the target side
of the parallel text. MorphAGram is a state-
of-the-art framework for unsupervised morpho-

2https://github.com/rnd2110/MorphAGram

logical segmentation based on Adaptor Gram-
mars (AGs) (Johnson et al., 2007), nonparamet-
ric Bayesian models that generalize Probabilistic
Context Free Grammars (PCFGs). We run Mor-
phAGram in a cascaded setup of two learning
rounds. In the first round, we train a segmen-
tation model using a language-independent high-
precision grammar (PrStSu2a+SM 3) to obtain a list
of morphemes. We then seed these morphemes into
the best performing language-independent gram-
mar (PrStSu+SM) for the second round of learning
as described by Eskander et al. (2016, 2020a). Both
PrStSu2a+SM and PrStSu+SM grammars model
the word as a sequence of prefixes, a stem and suf-
fixes, where the affixes are recursively defined in
order to model multiple consecutive items.

2.3 Morpheme-Based Alignment and
Projection

Next, we perform morpheme-based alignment and
projection in a similar fashion as in the stem-based
approach (Section 2.2). This approach abstracts
away from whether the morphemes in the source
and target languages are free-standing or not.

On the source side, each morpheme receives a
separate POS tag using an off-the-shelf POS tag-
ger. These tags are then projected onto the target
morphemes through bidirectional morpheme-level
alignments. We obtain the target morphemes using
MorphAGram, where the output of the PrStSu+SM
grammar yields prefixes, a stem, and suffixes for
each word. However, since we train the POS model
on the word level, we replace each sequence of
morphemes on the target side by its corresponding
word and assign that word the POS tag of the repre-
sentative morpheme. We define the representative
morpheme either as the morpheme whose POS tag
ranks the highest among those of the other mor-
phemes4 (RANK) or as the stem morpheme (STEM).

2.4 Using Linguistic Priors for Segmentation
We hypothesize that better detection of stems yields
more robust alignment and projection towards im-
proved POS tagging. Accordingly, instead of con-
ducting morphological segmentation on the target
side in a fully unsupervised manner, we follow Es-
kander et al. (2021) by seeding affix morphemes
into the grammar tree prior to training the segmen-
tation model textcolorbluein a minimally super-

3See Eskander et al. (2020a) for grammar definitions.
4We use the default POS ranking at https://github.

com/coastalcph/ud-conversion-tools
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vised fashion; these affixes are generated manually
by an expert in the target language. With Georgian
as a case study, we examine this setup in the stem-
based approach using the PrStSu+SM grammar.

2.5 Featurizing Segmented Data

In this setup, we utilize the unsupervised
morphological-segmentation model that is trained
on the target side of the parallel text to produce
stem, complex-prefix and complex-suffix features,
and leverage these features as part of the neural
POS model. For training, we use these features as
randomly initialized embeddings that we concate-
nate with the existing word, affix and words-cluster
embeddings prior to applying the BiLSTM encod-
ing layer.

3 Experiments and Evaluation

3.1 Languages and Data

We conduct our experiments on six source lan-
guages and eight target ones 5, for a total of 48
language pairs. We use the same source lan-
guages used by Eskander et al. (2020b), namely
English, Spanish, French, German, Russian, and
Arabic 6, and experiment with eight typologically
diverse target languages: six morphologically rich
languages that are largely agglutinative, namely
Basque, Finnish, Georgian, Kazakh, Telugu, and
Turkish; morphologically rich Amharic, where
many morphological alterations rely on consonan-
tal roots; and less morphologically rich Indonesian.

We conduct the experiments in a truly low-
resource scenario, where we use the New Testa-
ment as the source of our parallel data (unless noted
otherwise): limited in size and out-of-domain with
respect to the evaluation sets. We use the Multilin-
gual Parallel Bible Corpus 7 (Christodouloupoulos
and Steedman, 2015) as the source of data for all
the languages, except for Georgian and Kazakh 8.

3.2 Experimental Settings

For the tagging of the source languages, we use
the same off-the-shelf taggers as in Eskander

5Although most of our target languages are high-resource
ones, we use them in a simulated low-resource setup.

6The source languages are commonly spoken ones as the
assumption is that translations that involve those languages
are easily accessible.

7http://christos-c.com/bible
8We collected the New-Testament texts for Geor-

gian and Kazakh from https://github.com/cysouw/
MissingBibleVerses.

et al. (2020b): Stanza 9 (Qi et al., 2020) for En-
glish, Spanish, French, German and Russian and
MADAMIRA (Pasha et al., 2014) for Arabic. We
also use MADAMIRA for Arabic morphologi-
cal segmentation. For the stemming of the other
source languages, we use the Snowball Stemmer
(Porter, 2001) as part of NLTK 10 (Bird and Loper,
2004). On the other hand, we use MorphAGram 11

(Eskander et al., 2020a) to train and apply the
morphological-segmentation models for the target
languages as described in Section 2.2.

We follow Eskander et al. (2020b) by using
the same thresholds for alignment and projection,
along with the same neural hyperparameters of the
POS tagger. We also evaluate our models in terms
of POS accuracy on the same Universal Dependen-
cies (UD) v2.5 (Zeman et al., 2019) test datasets.
However, since the UD project does not currently
contain Georgian datasets, we developed a small
POS dataset for Georgian (100 sentences) follow-
ing the UD-tagging scheme. The sentences are
taken from the Modern Georgian and Political texts
sub-corpora of the Georgian National Corpus 12,
and they are hand-tagged and carefully revised by
a linguist who specializes in and speaks Georgian
as a second language 13. Finally, all the results are
averaged over three runs.

3.3 System Performance
Table 2 reports the POS accuracy for the baseline
word-based approach and our stem-based approach
for all the 48 target-source language pairs using the
New Testament as the source of parallel data. In
addition, we report the results for the two multi-
lingual setups Mul_out and Mul_proj per target
language. The stem-based approach outperforms
the word-based one in 43 language pairs and all the
multilingual setups except Mul_proj in the case
of Indonesian, which stands out in our language
sample as the least complex in terms of morphol-
ogy. The biggest improvement in the stem-based
approach is achieved in the cases of Russian →
Turkish, Russian → Kazakh, Spanish → Kazakh
and Arabic → Georgian, with relative error reduc-
tions of 33.8%, 30.2%, 28.6% and 27.2%, respec-
tively. When averaging across the sources (includ-

9https://github.com/stanfordnlp/stanza
10https://www.nltk.org
11https://github.com/rnd2110/MorphAGram
12http://gnc.gov.ge
13https://github.com/rnd2110/

unsupervised-cross-lingual-POS-tagging/
blob/main/data/KAT-POSUD.txt

http://christos-c.com/bible
https://github.com/cysouw/MissingBibleVerses
https://github.com/cysouw/MissingBibleVerses
https://github.com/stanfordnlp/stanza
https://www.nltk.org
https://github.com/rnd2110/MorphAGram
http://gnc.gov.ge
https://github.com/rnd2110/unsupervised-cross-lingual-POS-tagging/blob/main/data/KAT-POSUD.txt
https://github.com/rnd2110/unsupervised-cross-lingual-POS-tagging/blob/main/data/KAT-POSUD.txt
https://github.com/rnd2110/unsupervised-cross-lingual-POS-tagging/blob/main/data/KAT-POSUD.txt


Target Approach Source for Unsupervised Learning Ave. Error
Reduction

English Spanish French German Russian Arabic Mul_out Mul_proj

Amharic Word-based 75.9 74.9 75.5 76.4 72.1 72.6 76.6 78.0
Stem-based 79.6* 77.5 77.7 77.8 76.2 74.5 78.6 79.6 9.9

Basque Word-based 67.3 64.6 65.8 66.7 61.7 55.6 66.4 67.1
Stem-based 69.1 70.4* 70.5 69.6 65.2 60.8 71.0 71.4 11.5

Finnish Word-based 81.0 78.8 77.4 79.8 77.8 66.1 81.0 81.7
Stem-based 81.9 80.1 80.9* 82.3 79.0 70.3 82.4 82.9 8.8

Georgian Word-based 82.8 80.1 80.2 82.5 83.1 71.2 83.6 84.3
Stem-based 82.0 (80.4) 81.0 82.2 83.4 79.0* 84.3 84.7 4.4

Indonesian Word-based 82.3 81.6 81.0 77.1 76.8 69.8 80.9 81.7
Stem-based (82.5) 81.0 80.1 (77.3) 81.2* 72.3 81.4 81.0 2.5

Kazakh Word-based 73.6 64.7 67.3 68.9 62.1 63.6 69.7 70.3
Stem-based 76.4 74.8 75.5 73.2 73.6* 70.8 75.3 76.7 21.0

Telugu Word-based 76.7 68.4 67.9 70.4 63.5 59.5 68.6 71.3
Stem-based 78.6 72.7 72.2 71.9 69.6 66.8 72.9* 73.8 12.1

Turkish Word-based 73.9 70.1 70.5 69.2 66.2 64.7 71.0 73.3
Stem-based 73.7 73.1 73.0 71.9 77.6* 71.9 75.4 73.6 12.1

Ave. Error Reduction 5.0 10.4 10.5 6.8 16.3 15.6 10.6 7.1

Table 2: POS-tagging performance (accuracy) of the word-based and stem-based approaches when using
the New Testament as the source of parallel data. The best result per target-source pair is in bold. The
highest relative error reduction in the stem-based approach per target language is marked by *. The
stem-based improvements that are not statistically significant for p-value < 0.01 are between parentheses.

Target

Approach

Word- Stem- Morpheme- Morpheme
Based Based Based Based

(RANK) (STEM)

Amharic 72.6 74.5 72.5 73.6
Basque 55.6 60.8 61.9 62.2
Finnish 66.1 70.3 73.8 74.2

Georgian 71.2 79.0 80.5 80.0
Indonesian 69.8 72.3 75.5 75.6

Kazakh 63.6 70.8 71.8 71.9
Telugu 59.5 66.8 74.7 71.8

Turkish 64.7 71.9 73.2 73.4

Table 3: POS-tagging performance (accuracy) of
the word-based, stem-based and morpheme-based
approaches when projecting from Arabic using
the New Testament as the source of parallel data.
The best result per target language is in bold. All
the morpheme-based improvements are statistically
significant for p-value < 0.01.

ing the multilingual ones), Kazakh, Telugu and
Turkish experience the highest relative error reduc-
tions of 21.0%, 12.1% and 12.1%, respectively. On
the other hand, Russian and Arabic yield the high-
est relative error reductions of 16.3% and 15.6%,
respectively, when averaging across the target lan-
guages, which is in line with the morphological
complexity of the two languages.

Eskander et al. (2020b) show that related lan-

guages transfer best across each other. This results
in efficient word-based baselines for related lan-
guage pairs, which in turn limits the corresponding
gains in the stem-based approach. On the other
hand, a low word-based baseline makes room for
improvement when operating on the stem level.
For instance, both Georgian and Telugu witness the
highest stem-based gains when transferring from
Arabic, their lowest performing source language in
the word-based approach. For more information
about the correlation between language relatedness
and cross-lingual learning, see Eskander (2021).

Next, we evaluate the morpheme-based approach
(Section 2.3). Table 3 reports the performance of
the word-based, stem-based and morpheme-based
approaches using Arabic as the source language
since it is more morphologically complex than the
other sources. The morpheme-based approach re-
sults in dense training instances as both alignment
and projection are performed in a more fine-grained
level compared to the word-based and stem-based
approaches. It therefore improves POS tagging
for all the target languages except Amharic, where
Telugu benefits the most with relative error reduc-
tions of 23.9% and 15.3% over the stem-based ap-
proach using the RANK and STEM mechanisms,
respectively. The difference in the performance of
the RANK and STEM mechanisms is only statisti-



Target Approach Source for Unsupervised Learning Ave. Error
Reduction

English Spanish French German Russian Arabic Mul_out Mul_proj

Georgian
Word-based 82.8 80.1 80.2 82.5 83.1 71.2 83.6 84.3
Stem-based 82.0 80.4 81.0 82.2 83.4 79.0 84.3 84.7 4.6
LP Stem-based 82.9 (80.8) 82.2 (82.4) 83.9 77.4 85.3 (85.1) 6.7

Table 4: POS-tagging performance (accuracy) of the word-based and stem-based (with and without
linguistic priors (LP)) approaches when using the New Testament as the source of parallel data. The
best result per source language is in bold. The improvements in the LP stem-based approach that are not
statistically significant for p-value < 0.01 are between parentheses.

cally significant for p-value < 0.01 in the cases
of Amharic and Basque, where the STEM mecha-
nism yields better performance, and in the case of
Telugu, where the RANK mechanism is superior.
Finally, we hypothesize that the quality of morpho-
logical segmentation highly affects the efficiency
of the morpheme-based setups, which explains the
variation in the performance across the different
target languages and mechanisms.

As mentioned earlier, we use Georgian as a case
study to examine the impact of using linguistic pri-
ors for morphological segmentation on the quality
of POS tagging (Section 2.4). The results are listed
in Table 4. The use of linguistic priors improves
the stem-based approach except when projecting
from Arabic. The lack of improvement in the case
of Arabic can be explained by over-segmentation
that produces incorrect POS tags for the common
conjunction da (and). The characters da also cor-
respond to a verbal prefix that is manually seeded
as a prior. This seeding causes erroneous projec-
tions labeling da as a verb or an adverb when
projecting from Arabic.

Finally, we experiment with the use of the stem
and affix information as training features in the
POS neural model (Section 2.5). However, most of
the improvements due to the use of these features
are not statistically significant (See Appendix A for
full results) since such features are surpassed by
the prefix and suffix n-gram character embeddings.

3.4 Analysis of the Stem-Based Approach

Upon alignment and projection, the highest scoring
target sentences are selected as training examples,
where sentence score is defined as the harmonic
mean of the percentage of tokens with projected
tags and the average alignment probability of those
tokens. The fine-grained stem-level alignments
allow for better alignment confidence and more
dense sentences, which in turn increases sentence

scores and the number of training examples, and
hence reduces the number of out-of-vocabulary
words (OOVs). Table 5 lists the average number
of training examples, average relative increase in
the number of training examples, average relative
increase in sentence scores and average relative
decrease in the number of OOVs for each target
language in the stem-based approach with respect
to the word-based one. We witness improvements
in the examined aspects for each target language,
which explains the considerable improvements in
the stem-based approach.

Next, we examine the average relative error re-
duction in the detection of open-class tags (nouns,
verbs and adjectives) in the stem-based approach
as compared to the word-based one per target lan-
guage (Table 6) and per source language (Table 7).
Kazakh benefits the most from the stem-based ap-
proach at the detection of nouns and adjectives,
while Amharic receives the highest gains for verbs.
On the other hand, projecting from Russian in the
stem space achieves the highest gains for nouns,
while the stem-based projection from Arabic yields
the highest gains for both verbs and adjectives.

Finally, Figure 3 illustrates the absolute improve-
ments in POS tagging when applying the stem-
based approach using the New-Testament as the
source of parallel data compared to the word-based
approach using the entire Bible as the source of par-
allel data (three-times more data). As illustrated,
the stem-based approach achieves better perfor-
mance in about two thirds of the language pairs
with an average absolute gain of 1.7%. This means
using the stem as the core unit of abstraction com-
pensates for the lack of adequate parallel data.

4 Related Work

The line of work most closely related to ours is
unsupervised cross-lingual POS tagging via align-
ment and projection, which was first introduced



Target Ave. No. of Ave. Relative Increase in Ave. Relative Increase Ave. Relative Decrease
Training Examples Training Examples % in Sentence Scores % in OOVs %

Amharic 2,605 15.0 132.6 9.2
Basque 7,225 15.8 3.9 0.1
Finnish 7,125 6.9 5.5 0.7
Georgian 7,794 12.0 1.9 1.6
Indonesian 5,286 5.5 11.9 0.3
Kazakh 4,330 7.8 21.6 3.5
Telugu 4,719 2.8 14.1 0.7
Turkish 6,280 12.9 14.6 2.7

Table 5: Average number of training examples, average relative increase in training examples, average
relative increase in sentence scores and average relative decrease in OOVs per target language in the
stem-based approach w.r.t. to the word-based one

Target Ave. Relative Error Reduction %

Noun Verb Adjective

Amharic 16.2 13.2 26.2
Basque 9.0 23.1 14.6
Finnish 13.0 16.6 15.8
Georgian 4.7 1.8 17.8
Indonesian 8.3 25.1 11.7
Kazakh 29.8 32.1 23.1
Telugu 17.4 23.7 -1.1
Turkish 26.8 23.0 20.9

Table 6: Average relative error reductions for the
detection open-class tags per target language

Target Ave. Relative Error Reduction %

Noun Verb Adjective

English 7.1 13.4 5.1
Spanish 16.5 25.2 15.2
French 12.7 25.5 16.9
German 9.5 11.0 22.8
Russian 21.3 21.2 25.7
Arabic 16.0 25.4 25.6

Table 7: Average relative error reductions for the
detection of open-class tags per source language

by Yarowsky et al. (2001). They applied noise-
reduction techniques to improve the alignments
and used the resulting transition and emission prob-
abilities to define an HMM POS tagger.

Exploiting multiple source languages via max-
imum voting was then explored by Fossum and
Abney (2005), by voting among the outputs of
different single-source models, and by Agić et al.
(2015), by projecting the annotations from multiple
languages before training the POS tagger.

In order to increase the size of the training data,
Das and Petrov (2011) proposed graph-based label
propagation, while Duong et al. (2013); Agić et al.
(2015) applied self-training and revision. On an-

other hand, Täckström et al. (2013) and Buys and
Botha (2016) investigated the use of token and type
constraints to reject projections of low confidence.

Eskander et al. (2020b) derived a cross-lingual
POS-tagging pipeline that utilizes the best prac-
tices in alignment and projection. In addition, they
examined the use of pretrained multilingual contex-
tual embeddings, along with affix embeddings and
Brown clusters, within a rich neural architecture,
which achieves the state-of-the-art results for unsu-
pervised POS tagging. We follow their approach by
presenting stem-based alignment and projection for
morphologically complex low-resource languages.

Regarding unsupervised morphological segmen-
tation, several generative and discriminative frame-
works have been developed over the last two
decades. The two most notable frameworks are:
1) Morfessor (Creutz and Lagus, 2007; Grönroos
et al., 2014), a commonly-used HMM framework
that utilizes the MDL principle to segment into
morphemes of a hierarchical structure; and 2) Mor-
phAGram (Eskander et al., 2020a), a segmenta-
tion framework that is based on Adaptor Gram-
mars (AGs) (Johnson et al., 2007), Bayesian mod-
els that utilize Probabilistic Context Free Gram-
mars (PCFGs). We use MorphAGram to train
morphological-segmentation models as it achieves
the state-of-the-art performance and allows for de-
riving affix and stem information (as opposed to a
sequence of unlabeled morphemes).

5 Conclusion and Future Work

We presented a fully unsupervised stem-based ap-
proach for cross-lingual POS tagging via alignment
and projection, where we use the stem as the core
unit of abstraction to abstract away from complex
affixation. Our experiments using six source lan-
guages and eight morphologically rich target lan-



Figure 3: Absolute performance increases (accuracy) when applying the stem-based approach using the
New Testament as the source of parallel data as compared to the word-based approach using the entire
Bible as the source of parallel data

guages in low-resource setups show improvements
over the word-based approach in 43 language pairs
out of 48, with an average relative error reduction
of 10.3% in accuracy per target language. In addi-
tion, we examined morpheme-based alignment and
projection and the use of linguistic priors in mor-
phological segmentation, which further improve
POS tagging.

In the future, we plan to study the role of mor-
phological typology in cross-lingual learning. This
allows for deriving disciplined guidelines for the
selection of an appropriate source language that
transfers well to the target language of interest.
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A Appendix: Segmentation Information
as Training Features

Table 2 shows the POS tagging results (accuracy)
when using the stem and affix information as train-
ing features in the neural POS model, as described
in Subsection 2.5.

Source for Unsupervised Learning

Target Approach English Spanish French German Russian Arabic Mul_out Mul_proj

Amharic Word-based 75.9 74.9 75.5 76.4 72.1 72.6 76.6 78.0
Stem-based 79.6 77.5 77.7 77.8 76.2 74.5 78.6 79.6
Stem-based + Stem Features (80.2) 77.5 (78.0) 77.6 (76.6) 74.6 78.7 79.7
Stem-based + Stem+Affix Features 79.8 77.7 77.8 77.8 76.5 74.7 78.7 79.4

Basque Word-based 67.3 64.6 65.8 66.7 61.7 55.6 66.4 67.1
Stem-based 69.1 70.4 70.5 69.6 65.2 60.8 71.0 71.4
Stem-based + Stem Features 68.7 70.5 70.5 69.3 (65.6) 60.3 70.9 71.6
Stem-based + Stem+Affix Features 69.0 70.6 70.8 69.1 (65.3) (62.0) 70.9 (71.8)

Finnish Word-based 81.0 78.8 77.4 79.8 77.8 66.1 81.0 81.7
Stem-based 81.9 80.1 80.9 82.3 79.0 70.3 82.4 82.9
Stem-based + Stem Features 81.9 (80.4) 80.9 82.4 79.1 (70.5) (82.7) 82.7
Stem-based + Stem+Affix Features 81.8 80.1 (81.2) 82.4 78.9 (70.6) (82.7) 82.9

Georgian Word-based 82.8 80.1 80.2 82.5 83.1 71.2 83.6 84.3
Stem-based 82.0 80.4 81.0 82.2 83.4 79.0 84.3 84.7
Stem-based + Stem Features 82.1 80.5 (81.3) 82.1 83.3 78.7 84.4 (85.0)
Stem-based + Stem+Affix Features 81.5 80.3 80.9 81.7 83.1 78.8 83.7 84.3

Indonesian Word-based 82.3 81.6 81.0 77.1 76.8 69.8 80.9 81.7
Stem-based 82.5 81.0 80.1 77.3 81.2 72.3 81.4 81.0
Stem-based + Stem Features 82.5 80.8 79.9 (77.6) 81.3 71.7 81.1 80.9
Stem-based + Stem+Affix Features 82.5 80.9 80.0 77.3 81.0 72.0 81.0 80.6

Kazakh Word-based 73.6 64.7 67.3 68.9 62.1 63.6 69.7 70.3
Stem-based 76.4 74.8 75.5 73.2 73.6 70.8 75.3 76.7
Stem-based + Stem Features 76.3 74.8 75.7 72.8 (73.6) 70.7 75.4 76.5
Stem-based + Stem+Affix Features (76.6) (75.2) (75.8) 73.1 73.6 70.8 75.3 (76.8)

Telugu Word-based 76.7 68.4 67.9 70.4 63.5 59.5 68.6 71.3
Stem-based 78.6 72.7 72.2 71.9 69.6 66.8 72.9 73.8
Stem-based + Stem Features 77.9 71.5 72.7 71.9 69.6 66.7 73.1 73.1
Stem-based + Stem+Affix Features 78.4 72.4 72.7 71.4 68.7 67.1 (73.6) 73.7

Turkish Word-based 73.9 70.1 70.5 69.2 66.2 64.7 71.0 73.3
Stem-based 73.7 73.1 73.0 71.9 77.6 71.9 75.4 73.6
Stem-based + Stem Features 73.5 73.0 73.1 71.5 77.6 71.7 75.1 (73.7)
Stem-based + Stem+Affix Features 73.6 73.0 73.1 71.8 77.6 71.7 75.3 (73.9)

Table 8: Performance with segmentation features

B Appendix: Hardware

We use a Google-Cloud virtual instance of 48
2.00GHz cores and 240GB of RAM to run all of
our experiments. The training rate is nearly 2,500
sentences per hour.


