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ABSTRACT

Adam outperforms SGD when training language models. Yet such benefits are
not well-understood theoretically – previous convergence analysis for Adam and
SGD mainly focuses on the number of steps T and is already minimax-optimal in
non-convex cases, which are both O(T−1/4). In this work, we argue that the bet-
ter dependence on the loss smoothness is the key advantage of Adam over SGD.
More specifically, we give a new convergence analysis for Adam under novel as-
sumptions that loss is smooth under ℓ∞ geometry rather than the more common ℓ2
geometry, which yields a much better empirical smoothness constant for GPT-2
and ResNet models. Moreover, we show that if we rotate the training loss ran-
domly, Adam can be outperformed by some variants of SGD which is invariant to
rotations. This implies that any practically relevant explanation of Adam’s opti-
mization benefit must involve non-rotational invariant properties of loss, such as
ℓ∞ smoothness as used in our analysis. We also extend the convergence analysis
to blockwise Adam, which is a generalization of standard Adam.

1 INTRODUCTION

Large language models (LLMs) have gained phenomenal capabilities as their scale grows (Radford
et al., 2019; Kaplan et al., 2020; Brown et al., 2020; Zhang et al., 2022a; Touvron et al., 2023; Ope-
nAI, 2023; Reid et al., 2024). However, pre-training LLMs are incredibly time-consuming. Adaptive
Momentum Estimation (Adam)(Kingma & Ba, 2014) is the current to-go optimization algorithm for
LLMs due to its fast convergence. In contrast, SGD, a popular and arguably the simplest optimizer,
optimizes language model loss much more slowly than Adam.

However, the optimization benefit of Adam over SGD cannot be explained by existing theory. Existing
convergence analyses for Adam and SGD focus on the dependence on the number of steps under
assumptions on the smoothness and gradient bounds of the loss (Défossez et al., 2022), and it has
been shown that both Adam and SGD achieve the minimax convergence rate O(T−1/4) in the non-
convex settings (Arjevani et al., 2023). Thus according to the theory, in the worst case, SGD would
be more desirable compared to Adam because they have the same convergence rate, and yet Adam
is less memory-efficient due to its coordinate-wise adaptivity, which needs to store the empirical
moving average of second-order moments of past stochastic gradients. Therefore, we hypothesize
that the coordinate-wise adaptivity in Adam is exploiting some unknown properties of LLMs which
SGD cannot make use of.

Towards this end, we identified a significant difference between Adam and SGD in this paper. This
difference, often ignored in previous works, is that SGD is rotation-invariant, while Adam is only
permutation-invariant (see definitions in Section 2). Intuitively, this means if we rotate the loss
landscape, the optimization trajectory of SGD would be the same (up to some rotation), while the
trajectory of Adam could be completely different. If Adam optimizes much more slowly after rotation,
then it suggests Adam is exploiting some non-rotational-invariant properties of the loss function,
which is not captured by standard smoothness assumptions in the convergence analysis.

Figure 1 summarizes our findings by comparing Adam on the original and rotated loss. The perfor-
mance of Adam on the rotated loss does become much worse than Adam on the original loss. We
also test a memory-efficient and rotational-invariant variant of SGD, AdaSGD (Wang & Wiens, 2020)
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Figure 1: Training and validation losses of Adam, AdaSGD and SGD on GPT-2. rotated Adam means
running Adam on a rotated loss. Adam on the original loss converges the fastest as expected. But
convergence of Adam on a rotated loss is much slower, notably even worse than AdaSGD.

(defined in Algorithm 2)1. Surprisingly, the rotated Adam performs even much worse than the SGD
variant. The results suggest it is impossible to explain the superior optimization performance of
Adam over SGD just using rotationally invariant assumptions on the loss function, which raises the
natural question,

What are the non-rotation-invariant properties of a loss function that enable faster
convergence of Adam than SGD?

We hypothesize that the ℓ2 lipschitzness of loss gradient does not provide a tight-enough character-
ization of loss landscape of deep learning models in practice, such that we can separate Adam and
other rotational-invariant algorithms. Inspired by the similarity between Adam and SignGD and the
fact that SignGD is the normalized steepest descent with respect to ℓ∞ norm, we propose to use
ℓ∞-norm related smoothness as a better tool to analyze Adam. In particular, our main results use the
(1, 1)-norm of Hessian of loss divided by variable dimension d in replacement of the spectral norm

of Hessian as the smoothness measure, and prove a convergence rate of O(
√

1
T ) for Adam without

noise, or O(( log T
T )1/4) with noise. Our results have the same dependence on T as previous results,

but much smaller smoothness constant when we measure it empirically. We empirically verify that
(1, 1)-norm of Hessian positively correlates with final training loss of Adam on both synthetic tasks
like quadratic loss and real tasks like training GPT2 on OpenWebText and ResNet on CIFAR10.

We summarize our contributions below:

1. We show by experiments that the empirical optimization advantage of Adam over SGD can
not be explained solely under rotation-invariant assumptions. (Figure 1)

2. We propose a new complexity metric for the optimization problem, which is the (1, 1)-
norm of the Hessian matrix of loss,

∥∥∇2L(x)
∥∥
1,1

. We present a novel convergence result
for Adam depending on this metric in the case of β1 = 0. (Theorem 3.5 )

3. We further generalize the theoretical analysis for Adam to blockwise Adam (Algorithm 3)
whose convergence rate can be characterized by a novel smoothness measure (Theo-
rem 3.12). Adam and AdaSGD are two notable examples of blockwise Adam. In Adam,
all blocks are of size 1. In AdaSGD, there is only one block.

4. We empirically verify that when Adam converges more slowly on the rotated loss, the (1, 1)-
norm of Hessian also increases, which suggests that our new complexity metric for Adam’s
convergence is practically relevant. (Section 4)

2 PRELIMINARIES

Notations. For x ∈ Rd, we define the vector p-norm ∥x∥p as (
∑d

i=1 x
p
i )

1/p for p ∈ [1,∞]. For a
matrix A ∈ Rd1×d2 , its (1, 1)-norm ∥A∥1,1 is defined as

∑d1

i=1

∑d2

j=1 |Ai,j | and its operator norm

induced by vector p-norm ∥ · ∥p as supx∈Rd
∥Ax∥q

∥x∥p
, denoted by ∥A∥p, where 1

q + 1
p = 1 and ∥ · ∥q

1There is one small difference. We use an exponential average of the gradient for mt instead of momentum.
Our definition makes AdaSGD the same as Adam in a one-dimensional problem.
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Algorithm 1 Adam

Hyperparam: β1, β2, ϵ ≥ 0, total steps T ,
learning rate {ηt}Tt=1, ϵ, initial m0, v0

Input: initialization x0, stochastic loss func-
tions {Lt}Tt=1
v0,i ← v0
for t = 1, 2, · · · , T :
gt,i ← ∇iLt(xt−1)
mt,i ← β1mt−1,i + (1− β1)gt,i
vt,i ← β2vt−1,i + (1− β2)g

2
t,i

xt,i ← xt−1,i − ηt
mt,i√
vt,i+ϵ

return xT

Algorithm 2 AdaSGD

Hyperparam: β1, β2, ϵ ≥ 0, total steps T ,
learning rate {ηt}Tt=1, initial m0, v0

Input: initialization x0, stochastic loss func-
tions {Lt}Tt=1
for t = 1, 2, · · · , T :
gt,i ← ∇iLt(xt−1)
mt,i ← β1mt−1,i + (1− β1)gt,i
vt ← β2vt−1 + (1− β2)(∥gt∥22 /d)
xt,i ← xt−1,i − ηt

mt,i√
vt+ϵ

return xT

is the dual norm of ∥ · ∥p. For a deterministic loss function L(x), we consider optimization over L
with access only to independent stochastic functions {Lt(x)}Tt=1 such that ELt(x) = L(x) for any
input x ∈ Rd.

Rotation. For an invertible function T : Rd → Rd, T is a rotating transformation if there exists
an orthogonal matrix T ∈ Rd×d such that T (x) = Tx. T is a permutating transformation if there
exists a permutation π : [d] → [d] such that T (x) = [xπ(1), . . . , xπ(d)]

⊤. A permutating transfor-
mation is always a rotating transformation. We will useR to denote a rotating transformation.

Definition 2.1. For initialization x0 and stochastic losses {Lt}Tt=1, we can get xt when running
algorithm A on (x0, {Lt}Tt=1). For a transformation T , we can also get x̃t when running A with
the same hyperparameters on (x̃0, {L̃t}Tt=1) with x̃0 = T −1(x0) and L̃t = Lt ◦ T .

An algorithm A is invariant w.r.t. T if it always holds that x̃t = T −1(xt) for any hyperparameters,
initialization and stochastic losses. An algorithm A is rotation invariant if it is invariant w.r.t. any
rotating transformation R. And A is permutation invariant if it is invariant w.r.t. any permutating
transformation.

The following Theorem 2.2 shows the difference between Adam and AdaSGD, whose proof is in
Appendix B.

Theorem 2.2. SGD and AdaSGD are rotation-invariant. Adam and SignGD are permutation-
invariant.

3 MAIN RESULTS: CONVERGENCE RATES OF Adam

In this section, we present our main theoretical results, starting with a convergence analysis of Adam
for stochastic smooth loss with coordinate-wise gradient noise (Theorem 3.5). We allow non-convex
losses and thus the convergence is measured by the ℓ1 norm of the gradient. For a deterministic loss,
our best convergence rate (Theorem 3.2) is achieved by SignGD (Adam with β1 = β2 = 0). For
a stochastic loss with bounded gradient noise variance, our best rate (Corollary 3.6) is achieved by
RMSProp (Adam with β1 = 0 and β2 ∈ [0, 1]).

Then we extend our analysis of Adam to more general blockwise Adam (Theorem 3.12), which
contains both Adam and AdaSGD as special cases. We also come up with novel smoothness mea-
sures (Definition 3.10) corresponding to the set of blocks used in blockwise Adam.

Similar to previous work (Défossez et al., 2022), our analysis could be extended to the most general
case of Adam, where both β1, β2 are non-zero, but the rate becomes strictly worse than the RMSProp
(the case of β1 = 0), as there will be some extra polynomials of 1

1−β1
. We decide not to include the

result for the most general case, on one hand for ease of presentation, and on the other hand, because
such result can not explain the optimization benefit of momentum (β1 > 0) in practice and does not
add any insight on the benefit of Adam. We hypothesize that we are missing some important features
of loss landscape of transformers in the theoretical assumptions and we leave this for future work.

3.1 WARMUP: SignGD (β1 = β2 = 0)

In this section, we use the convergence analysis for SignGD (Adam with β1 = β2 = 0) as a warm-up
and illustrate how Adam could benefit from a non-rotational invariant property of the loss landscape,

3
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which in particular is the ℓ∞ smoothness. The key observation here is that SignGD is the normalized
steepest descent with respect to ℓ∞ norm (see (Xie & Li, 2024)), and thus it is more natural to
analyze its convergence using ℓ∞-norm-related geometry of the loss.
Definition 3.1. Given a norm ∥·∥ on Rd and ∥·∥∗ as its dual norm, we say a function L is H-smooth
w.r.t. ∥·∥ if for any x,y ∈ Rd, we have that ∥∇L(x)−∇L(y)∥∗ ≤ H ∥x− y∥.
Theorem 3.2. Let L be a H-smooth with respect to ∥ · ∥∞ and {xt}Tt=1 be the iterates of SignGD
(Adam with β1 = β2 = 0) on L with initialization x0 and learning rate η, it holds that

min
1≤t≤T

∥∇L(xt)∥1 ≤
L(x0)−minL

Tη
+

Hη

2

if we choose η =
√

2(L(x0)−minL)
TH , then min1≤t≤T ∥∇L(xt)∥1 ≤

√
2H(L(x0)−minL)

T .

3.2 MAIN RESULT: RMSProp (β1 = 0, β2 ∈ [0, 1])

It is well-known that SignGD might not converge in the stochastic case as the expectation of descent
direction for mini-batch loss may not be a descent direction, and RMSProp is proposed to address
this issue by using a moving average of the squared gradient per coordinate to reduce the coor-
leation between the denominator and the numerator, thus making the expected update direction less
biased (Hinton et al., 2012). In this subsection we formalize the above intuition and show indeed
a positive β2 in Adam helps convergence in the stochastic case. The main challenges here are from
both lower bounding the first-order term and upper bounding the second-order term in the modified
descent lemma (the counterpart of Equation 1 for RMSProp).

L(xt)− L(xt−1) ≤ −ηt∇L(xt)
⊤ gt√

vt + ϵ
+

H

2
η2t

∥∥∥∥ gt√
vt + ϵ

∥∥∥∥2
∞

We can only upper bound
∥∥∥ gt√

vt+ϵ

∥∥∥2
∞

by 1
1−β2

without more fine-grained analysis on the relationship
between gradients in each step, which will greatly hurt the dependence of convergence rate on 1−β2.
However, even though the update at step t for one specific coordinate i can be as large as 1√

1−β2
with

some very large gt,i, the average moving speed for each coordinate should be close to 1. Therefore,
we introduce a slightly stronger definition in Definition 3.3, which allows us to decompose the
second order term into each coordinate according to Lemma 3.13. It also facilitates the analysis for
the coordinate-wise first order term. We note this definition also appears in Assumption 2.3 of the
concurrent work Maladkar et al. (2024).
Definition 3.3. For any H = (H1, . . . ,Hd) ∈ Rd, we say a function L is H-smooth coordinate-
wisely w.r.t. ℓ∞ norm , iff for any i ∈ [d], x,y ∈ Rd, |∇iL(x)−∇iL(y)| ≤ Hi ∥x− y∥∞ .

By definition, H-smoothness coordinate-wisely w.r.t. ℓ∞ norm implies
∑d

i=1 Hi smoothness w.r.t.
ℓ∞ norm. We also need Assumption 3.4 to measure the influence of noise in stochastic setting.
Assumption 3.4 (Coordinate-wise noise). There exist constants σi such that

E (∇iLt(x)−∇iL(x))
2 ≤ σ2

i

for any i ∈ [d], t ∈ N and x ∈ Rd.

Due to the limitation of space, we only present the main result here. The sketch of the proof is pre-
sented in Section 3.4. We present the complete proof for the generalized blockwise Adam algorithm
in Appendix C. The proof incorporates some key steps from Li & Lin (2024), extending them to
accommodate the generalized algorithm and different smoothness assumptions.
Theorem 3.5 (Main, Adam). Let {Lt}Tt=1 be independent stochastic losses satisfying Assumption 3.4
and that their expectation L is H-coordinate-wisely smooth w.r.t. ℓ∞ norm. For Adam with β1 = 0,
we have that

min
T
2 <t≤T

E ∥∇L(xt)∥1 ≤ O

E +
√
E

√√√√ β
T
4
2

T (1− β2)
dv0 +

d∑
i=1

σi + d
√
ϵ



4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

with

E =
2

ηT
E [L(x0)− L(xT )] +

(
1 +

β2F

T (1− β2)

)(
η

d∑
i=1

Hi +
√
1− β2

d∑
i=1

σi

)
and

F = ln

(
1 +

∑d
i=1 σ

2
i + ∥∇L(x0)∥2∞ +maxi∈[d] H

2
i η

2T (T + 1
1−β2

)

v0 + ϵ

)

We can determine the convergence rate of RMSprop by applying appropriate hyperparameters on
Theorem 3.5. The optimal hyperparameters η and β2 can be selected by minimizing E. We would
assume that v0 + ϵ > (

∑d
i=1 σ

2
i + ∥∇L(x0)∥2∞ + maxi H

2
i η

2)/poly(T ) and 1
1−β2

= poly(T ).
Then we can simplify the term by considering F = O(log T ).

The two terms involving
∑d

i=1 σi have a lower bound Θ

(∑d
i=1 σi

(
log T
T

) 1
2

)
, which can reached

by 1 − β2 = Θ
(

log T
T

)
. With this choice of 1 − β2, the three terms involving η has a lower

bound Θ

(√
(L(x0)−minx L(x))

∑d
i=1 Hi

T

)
reached by η = Θ

(√
L(x0)−minx L(x)

T
∑d

i=1 Hi

)
. Such choices

of hyperparameters can give the optimal convergence rate for stochastic case in Corollary 3.6. For
convenience, we define R ≜ (L(x0)−minx L(x))

∑d
i=1 Hi, which will be the core term in Corol-

laries 3.6 to 3.8.
Corollary 3.6 (Stochastic Case, general σi). Let {Lt}Tt=1 be independent stochastic losses sat-
isfying Assumption 3.4 and that their expectation L is H-coordinate-wisely smooth w.r.t. ℓ∞

norm. For β1 = 0, 1 − β2 = Θ( log T
T ), ϵ = 0, η = Θ

(√
L(x0)−minx L(x)

T
∑d

i=1 Hi

)
and v0 >

(
∑d

i=1 σ
2
i + ∥∇L(x0)∥2∞ +maxi H

2
i η

2)/poly(T ), we have that

min
T
2 <t≤T

E ∥gt∥1 = O

√R

T
+

√√√√ dv0
poly(T )

+

d∑
i=1

σi

(R

T

) 1
4

+

√√√√ d∑
i=1

σi

(
log T

T

) 1
4

 .

Even though the leading term w.r.t. T in the rate is
(

log T
T

) 1
4

, its coefficient is
∑d

i=1 σi. It suggests
that the rate can be much improved when noise is small. Below we get the convergence rate with
the same hyperparameters in deterministic case in Corollary 3.7.
Corollary 3.7 (Deterministic Case, σi = 0). Let {Lt}Tt=1 be deterministic losses satisfying Assump-
tion 3.4 and that their expectation L is H-coordinate-wisely smooth w.r.t. ℓ∞ norm. For β1 = 0,
1 − β2 = Θ( log T

T ), ϵ = 0, η = Θ
(√

L(x0)−minx L(x)

T
∑d

i=1 Hi

)
and v0 > (

∑d
i=1 σ

2
i + ∥∇L(x0)∥2∞ +

maxi H
2
i η

2)/poly(T ) for any polynomial poly(T ), we have that

min
T
2 <t≤T

∥gt∥1 = O

(√
R

T
+

√
dv0

poly(T )

(
R

T

) 1
4

)
.

However, when
∑d

i=1 σi = 0, we have that E = 2
ηT E[L(x0) − L(xT )] +

η
∑d

i=1 Hi

(
1 + β2 log T

(1−β2)T

)
. Both E and the rate is a increasing function of β2. So we should

choose β2 = 0 and η = Θ
(√

L(x0)−minx L(x)

T
∑d

i=1 Hi

)
. This will give the optimal convergence rate

of deterministic case in Corollary 3.8. If we compare it with Corollary 3.7, the rate obtained by
1− β2 = Θ

(
log T
T

)
is only slightly worse than the optimal rate.

Corollary 3.8 (Optimal Deterministic Case). Let {Lt}Tt=1 be deterministic losses satisfying As-
sumption 3.4 and that their expectation L is H-coordinate-wisely smooth w.r.t. ℓ∞ norm. For β1 =

0, β2 = 0, ϵ = 0 and η = Θ
(√

L(x0)−minx L(x)

T
∑d

i=1 Hi

)
, we have that minT

2 <t≤T ∥gt∥1 = O
(√

R
T

)
.

5
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Algorithm 3 Blockwise Adam

Hyperparam: β1, β2, ϵ ≥ 0, block partition Φ : [d] → [B], total steps T , learning rate schedule
{ηt}Tt=1, ϵ, initial m0, v0.

Input: initialization x0, stochastic loss functions {Lt}Tt=1
v0,b ← v0
for t = 1, 2, · · · , T :
gt,i ← ∇iLt(xt−1)
mt,i ← β1mt−1,i + (1− β1)gt,i

vt,b ← β2vt−1,b + (1− β2)
(∑

B(i)=b g
2
t,i

)
/db

xt,i ← xt−1,i − ηt
mt,i√

vt,B(i)+ϵ

return xT

Corollary 3.8 almost recovers Theorem 3.2, except the smoothness constant here
supx ∥∇2L(x)∥(1,1) is worse than that in Theorem 3.2, which is supx ∥∇2L(x)∥∞, because
it always holds that ∥ · ∥1,1 ≥ ∥ · ∥∞. This gap is due to a technical difficulty of analyzing Adam or
RMSProp, as mentioned in the beginning of Section 3.2.

Dependence on ϵ, v0 and β2. While many previous works rely on the relatively large magnitude
of ϵ compared to vt and give a bound in the regime of SGD when the adaptive effect is dominated
by the constant ϵ (Zaheer et al., 2018; De et al., 2018), our result actually prefers ϵ to be 0 while
maintaining the value of v0 + ϵ. We also note the dependence of our bound in Theorem 3.5 on v0 is
very mild and logarithmic. Theorem 3.5 has similar convergence rates for all v0 of magnitude at most
poly(T ), while most previous result only addresses the case where v0,i is at the scale of noise (Li
& Lin, 2024) or 0. The main reason for this adaptivity to a wide range of v0 is our specific choice of
β2 = 1−Θ( log T

T ), which allows the initial large v0 to decay fast and resume normal training. Other
existing results using β2 = 1−Θ(1/T ) (Défossez et al., 2022; Li & Lin, 2024) cannot allow large
initial value v0 because v0 only decays a constant fraction throughout the training and the effective
learning rate will be too small.

3.3 A UNIFIED ANALYSIS FOR BLOCKWISE Adam

In this subsection, we present convergence analysis for a broader class of adaptive algorithms de-
fined in Algorithm 3, which could be thought as a coarser version of Adam. It does pre-conditioning
blockwisely (specified by a partition function Φ : [d] → [B] where B is the number of blocks)
instead of coordinate-wisely. Since Adam and AdaSGD can be viewed as special cases of blockwise
Adam (Algorithm 3) with ΦAdam : i 7→ i and ΦAdaSGD : i 7→ 1 respectively, any convergence results for
Algorithm 3 would imply convergence of Adam and AdaSGD. Finally we also note that such block-
wise Adam has been recently studied empirically by some concurrent work, where the algorithm is
named by Adam-mini (Zhang et al., 2024b) and Adalayer (Zhao et al., 2024).

We first introduce more notations. db denotes |{i|Φ(i) = b}|, the number of parameters in block b.
We define the vector x(b) as [xi]Φ(i)=b and the submatrix A(b),(b′) as [Ai,j ]Φ(i)=b,Φ(j)=b′ .

Definition 3.9 (Φ-norm). We define the (∞, 2)-norm w.r.t. partition Φ of vector x as the ℓ∞ norm of

the vector
(
∥x(b)∥2√

db

)B

b=1

, which is maxb∈[B]
∥x(b)∥2√

db
. For convenience, we will denote it by ∥x∥Φ

or just call it Φ-norm. We denote its dual norm by ∥x∥Φ,∗, which is equal to
∑B

b=1

√
db
∥∥x(b)

∥∥
2
.

Definition 3.10 (Generalized version of Definition 3.3). For any partition function Φ : [d] → [B]
and H = (H1, . . . ,HB) ∈ RB , we say a function L is H-smooth blockwisely w.r.t. Φ-norm, iff for
any b ∈ [B], x,y ∈ Rd, √

db
∥∥∇(b)L(x)−∇(b)L(y)

∥∥
2
≤ Hb ∥x− y∥Φ

We further define the Φ-smoothness of loss L by H(L,Φ) =
∑B

b=1 Hb, where {Hb}Bb=1 are the
smallest numbers making LH-smooth blockwisely in the above sense.

We note that the above defined blockwise Φ-smoothness is both a generalization of the coordinate-
wise smoothness defined in Definition 3.1 (corresponding to the case of each block only containing

6
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1 coordinate) and the standard ℓ2 smoothness (corresponding to the case of only having one block).
In the former case, we have B = d, ΦAdam is the identity mapping i 7→ i and it holds that H(L, i 7→
i) ≥ supx∈Rd

∥∥∇2L(x)
∥∥
1,1
≥ supx∈Rd

∥∥∇2L(x)
∥∥
∞. In the latter case, we have B = 1, ΦAdaSGD

is the mapping i 7→ 1 and H(L, i 7→ 1) = d supx∈Rd

∥∥∇2L(x)
∥∥
2
.

Similar to the coordinate-wise case, one can show that
∑B

b=1 Hb w.r.t. partition Φ is an upper bound
for the smoothness of loss L w.r.t. Φ-norm.

Assumption 3.11 (Generalized version of Assumption 3.4). There exists constant σb such that
E
∥∥∇(b)Lt(x)−∇(b)L(x)

∥∥2
2
≤ dbσ

2
b for any block b ∈ [B], t ∈ N and x ∈ Rd.

Theorem 3.12 (Main, Blockwise Adam). Under Assumption 3.11, suppose L is H-smooth block-
wisely w.r.t. Φ-norm, where H = (H1, . . . ,HB) ∈ RB , for Algorithm 3, we have that

min
T
2 <t≤T

E
B∑

b=1

√
db
∥∥ḡt,(b)∥∥2 ≤ E +

√
E

√√√√ β
T
4
2

T (1− β2)
d
√
v0 +

B∑
b=1

dbσb + d
√
ϵ

with

E =
2

ηT
E [L(x0)− L(xT )] +

(
1 +

β2F

T (1− β2)

)(
η

B∑
b=1

Hb +
√
1− β2

B∑
b=1

dbσb

)
,

and

F = O

(
ln

(
1 +

∑B
b=1 σ

2
b + ∥∇L(x0)∥2Φ +maxb∈[B] H

2
b η

2T (T + 1
1−β2

)

v0 + ϵ

))
.

(1,1)-norm as a surrogate complexity measure for H(L,ΦAdam). Hi in Definition 3.3 is deter-
mined by supx

∑d
j=1

∣∣∇2
i,jL(x)

∣∣, which is difficult to compute because it requires taking supreme

over the entire domain. A computationally-tractable alternative is to approximate
∑d

i=1 Hi locally
by the (1, 1)-norm of Hessian of loss along the training trajectory. We provide an efficient approx-
imation algorithm with guarantees by using hessian-vector product against random Cauchy vectors
in Appendix D.2.

Different norms for smoothness. As an implication of Theorem 3.12, we immediately get
analogs of Corollaries 3.6 to 3.8 for AdaSGD, with the corresponding new noise assumption and
smoothness assumption. When the optimization is not noise-dominated, i.e., the main term in the de-

terministic case
√

R
T =

√
(L(x0)−minx L(x))H(L,Φ)

T becomes the leading term, the choice of Φ now
matters a lot. Here the biggest change from AdaSGD to Adam is the difference between H(L,ΦAdaSGD)
and H(L,ΦAdam), which roughly correspond to d supx ∥∇2L(x)∥2 and supx ∥∇2L(x)∥1,1, using
the above mentioned approximation.

Previous analyses of Adam’s convergence (Shi & Li, 2021; Défossez et al., 2022; Li & Lin, 2024)
usually assume smoothness under the ℓ2 norm. When using this assumption, the resulting conver-
gence rate for Adam ends up being identical to the rate for AdaSGD, which fails to capture why Adam
often performs better than AdaSGD in practice. By shifting to an ℓ∞ norm smoothness assump-
tion, we can observe the key difference: the coefficient for Adam’s convergence rate changes from
d supx ∥∇2L(x)∥2 to supx ∥∇2L(x)∥1,1, where the latter is typically much smaller when Adam
optimizes faster. This change leads to a divergence in the rates of the two algorithms, and compar-
ing these new coefficients can provide insight into which algorithm may be more effective under
different conditions.

Finally, we note that ΦAdam-smoothness H(L,ΦAdam) is not rotation-invariant in the sense that
H(L,ΦAdam) ̸= H(L ◦ R,ΦAdam) for a typical rotation R. In practice, the (1, 1)-norm of Hes-
sian matrix can vary a lot when a rotation is performed on the loss as shown in Section 4.1. In
contrast, ΦAdaSGD-smoothness H(L,ΦAdaSGD) is invariant under loss rotations.
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(1, 1)-norm/d Loss (β1 = β2 = 0) Loss (β1 = 0.9, β2 = 0.99)
AdaSGD 0.00582 0.00881 0.00172
Adam 0.00582 0.00030 0.00001
Adam (R1) 0.04162 0.00317 0.00062
Adam (R2) 0.25364 0.00588 0.00122
Adam (R3) 0.61866 0.00747 0.00179
Adam (R4) 1.29959 0.00920 0.00239

Table 1: The final loss values obtained by different optimizers and the (1, 1)-norm of Hessian matrix
for the corresponding unrotated objective and rotated objectives. The spectral norm of the Hessian
matrix is always 1. Adam optimizes worse when the (1, 1)-norm of Hessian matrix increases, as
suggested by our Corollary 3.7. Moreover, when (1, 1)-norm is smaller than spectral norm times
space dimension, Adam tends to optimize faster than AdaSGD and vice versa, which justifies the
effectiveness of Φ-smoothness as a tool to predict the optimization speed of blockwise Adam.

3.4 PROOF SKETCH OF THEOREM 3.12

We start by considering the decrease of L(xt) in a single step t. By applying a Taylor expansion,
we can upper bound the second order term with Lemma 3.13 using the smoothness assumption.
Lemma 3.13. For any twice differentiable loss which is H-smooth block-wisely w.r.t. Φ-norm (Def-
inition 3.10), we have for any x and ∆ ∈ Rd, ∆⊤∇2L(x)∆ ≤

∑B
b=1

Hb

db

∥∥∆(b)

∥∥2
2
.

Then we can get the decrease in a single step

L(xt)− L(xt−1) = −η
d∑

i=1

gt,iḡt,i√
vt,Φ(i) + ϵ

+
1

2
η2

B∑
b=1

Hb

db

∥∥gt,(b)∥∥22
vt,b + ϵ

= −η
B∑

b=1

g⊤
t,(b)ḡt,(b)√
vt,b + ϵ

+
1

2
η2

B∑
b=1

Hb

db

∥∥gt,(b)∥∥22
vt,b + ϵ

At each step, the second order term
∥gt,(b)∥22/db

vt,b+ϵ can be as large as 1
1−β2

. But if we sum over all the

steps, we can employ Lemma C.1 to bound the sum by T + β2

1−β2
ln

vT,b+ϵ
v0,b+ϵ rather than T

1−β2
.

The first order term has correlated denominator and nominator, making it hard to analyze its ex-

pectation. So we employ Lemma C.2 to replace it by
∑B

b=1

∥ḡt,(b)∥22√
ṽt,b+ϵ

in which ṽt,b = β2vt−1,b +

(1 − β2)
(∥∥ḡt,(b)∥∥22 /db + σ2

b

)
while sacrificing a constant factor and error terms related to noise

magnitude σi.

Finally, we employ Cauchy inequality to upper bound ∥ḡt∥Φ,∗

∥ḡt∥Φ,∗ ≤

√√√√ B∑
b=1

∥∥ḡt,(b)∥∥22√
ṽt,b + ϵ

√√√√ B∑
b=1

db
√
ṽt,b + ϵ.

We use Lemma C.3 to upper bound db
√
ṽt,b + ϵ by

∥ḡt,(b)∥22√
ṽt,b+ϵ

.
∑B

b=1

∥ḡt,(b)∥22√
ṽt,b+ϵ

can be bounded from
analysis above, which finishes the proof.

4 EXPERIMENTS

In order to empirically investigate and confirm the implications of our propsosed theory, we compare
the training performance of Adam with AdaSGD, SGD and rotated Adam on multiple different tasks.
The details of performing rotation and computing matrix norms can be found in Appendix D.

4.1 QUADRATIC LOSS

We perform controlled experiments on quadratic loss to study the relationship between optimization
speed of Adam and the shape of Hessian, in terms of ΦAdam-smoothness. More specifically, we
consider Σ = diag(1, · · · , 1︸ ︷︷ ︸

10

, 1, 1
22 ,

1
32 , · · · ,

1
9902 ) ∈ R1000×1000 and optimize the corresponding

quadratic loss 1
2x

⊤Σx by Adam, with different levels of rotations. We manually generate orthogonal
matrices Ri in the following way. We first sampleM ∈ Rd×d whereMi,j is i.i.d. sampled from

8
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Figure 2: Training and test losses (left) and accuracies (right) of ResNet18 on CIFAR-10 with Adam,
AdaSGD, rotated Adam, and SGD. We use batch size 256 and the optimal learning rate in terms of
training loss from grid search. Solid and dashed lines correspond to the training and evaluation set
metrics respectively. Adam converges faster than other algorithms.

N(0, 1). Then A =M−M⊤ is a skew-symmetric matrix and exp (tA) represents a continuous
family of matrices. We define Ri = exp (tiA) for different ti. When ti = 0, we know Ri = I .
When ti →∞,Ri converges to a random orthogonal matrix in distribution.

Then we optimize L0(x) =
1
2x

⊤Σx with AdaSGD and Adam and optimize Li(x) =
1
2x

⊤R⊤
i ΣRix

with Adam for 100 steps. Because AdaSGD is rotational invariant, the optimization performance of
AdaSGD is the same on all Li. We tune learning rates for each setting and present their best results
in Table 1.

We find a clear pattern that Adam optimizes worse when the (1, 1) norm of Hessian matrix increases,
as suggested by our Corollary 3.7. Moreover, when (1, 1) norm divided by dimension is smaller
than spectral norm, Adam tends to optimize faster than AdaSGD and vice versa, as suggested by our
Theorem 3.12.

4.2 GPT-2 ON LANGUAGE MODELING TASK

We train GPT-2 on the OpenWebText corpus containing more than 9B tokens for 100k iterations.
The training losses and evaluation losses of different optimizers are plotted in Figure 1. As men-
tioned in Section 1, Adam converges faster than AdaSGD while they both converge faster than
rotated Adam. Since we propose the (1, 1)-norm of Hessian as a non-rotation-invariant metric
that can affect the convergence rate of Adam, we also measure it for original loss function L and
rotated loss function L̃ on checkpoints trained with different losses. The results are presented in
Table 2. The same correlation between norms and convergence rates holds here. The smaller the
norm is, the faster the optimizer works.

AdaSGD Adam Rotated Adam
Φ-smoothness Expression H(L,ΦAdaSGD) H(L,ΦAdam) H(L ◦ R,ΦAdam)
Φ-smoothness Estimation/d 24.86 3.2 36.16

Table 2: Hessian norms for the last GPT-2 checkpoints trained with different optimizers.

4.3 RESNET18 ON CIFAR-10

To further test whether the correlation between Φ-smoothness and the optimization performance
holds for architectures other than transformers, we conduct a similar experiment on ResNet18
trained on CIFAR-10 (Krizhevsky, 2009). To do so, we first tuned each optimizer through searching
over a grid of learning rates with weight decay being fixed to zero. More details can be found in
Appendix D.3. Figure 2 depicts the loss and accuracy curves for the best performing hyperparame-
ters chosen over the training set’s final loss for batch size 256.2 We also provide the results for other
choices of batch size in Table 4.

When it comes to optimization speed, even for ResNet18, Adam is always better than rotated Adam
and they are always better than AdaSGD and SGD across different batch sizes. Note that this does
not contradict with common practice of training ResNet with SGD, where the main goal is to get

2We have intentionally limited the number of training iterations to emphasize the difference of optimizers
in terms of training speed over generalization.
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AdaSGD Adam Rotated Adam
Φ-smoothness Expression H(L,ΦAdaSGD) H(L,ΦAdam) H(L ◦ R,ΦAdam)
Φ-smoothness Estimation/d 1.5355 0.0036 0.9868

Table 3: Hessian norms for optimal ResNet checkpoints trained with different optimizers and batch
size 256.

better generalization and the training budget is large so all optimizers can easily achieve full training
accuracy. In our experiment, we study optimization speed and intentionally limit the number of
steps. We also measure the Hessian for checkpoints obtained at batch size 256 and the results are
in Table 3. The correlation between norms and convergence rates still holds here. When the (1, 1)-
norm divided by d is smaller than spectral norm, Adam optimizes faster than AdaSGD.

5 RELATED WORKS

Comparison between Adam and SGD Previous work tries to analyze the difference between
Adam and SGD from different perspectives. Zhou et al. (2018) proves a faster convergence rate of
Adam than SGD when the stochastic gradients are sparse. Zhang et al. (2020) suggests that SGD
suffers more from heavy-tailed noise than Adam. Pan & Li (2023) claims that Adam has lower
directional sharpness because of the effect of coordinate-wise clipping. Other works also consider
the coordinate-wise normalization of Adam (Balles & Hennig, 2018; Kunstner et al., 2022). Kunstner
et al. (2024) shows that the heavy-tailed class imbalance in language modeling tasks will cause SGD
to converge slower when it can only optimize majority class well. Zhang et al. (2024a) finds that
Adam is better at handling the block heterogeneity of Hessian matrix, which is a specific phenomenon
in transformers. When viewing Adam as an adaptive method, there are works showing that adaptive
methods have an advantage of achieving optimal convergence rate without relying on problem-
dependent constant (Ward et al., 2020; Levy et al., 2021).

Convergence Rate of Adam There are many works showing convergence rate for Adam (Zhou
et al., 2018; Chen et al., 2018; Zou et al., 2019; Shi & Li, 2021; Guo et al., 2021; Défossez et al.,
2022; Zhang et al., 2022b). Most of them rely on the smoothness of the loss function, which is
measured w.r.t. ℓ2 norm. Zhang et al. (2019) proposes the (L0, L1) smoothness condition should be
more reasonable than globally bounded smoothness. Li et al. (2024) further generalizes the (L0, L1)
smoothness condition. However, they still focus on the default ℓ2 norm which is rotation-invariant.
To the best of our knowledge, we are the first to assume gradient Lipschitzness under ℓ∞ norm for
the analysis on Adam.

Comparison with Li & Lin (2024) Li & Lin (2024) employs the same ℓ1 norm for gradient and
improves the dependence on dimension d compared to previous results for ℓ2 norm. But they still
assume the common ℓ2 norm smoothness while we adapt their results under ℓ∞ norm smoothness
to potentially further improve dependence on d. Another drawback of Li & Lin (2024) is setting
v0 based on noise magnitude σ. which is impractical in real experiments because σ is unknown.
Overestimation for σ will result in slow convergence because large v0 causes Adam to behave simi-
larly with SGD without adjusting the coordinate-wise learning rate adaptively. In contrast, we allow
for general initialization for v0 and our convergence rate can work well in both noisy setting and
deterministic setting. We also use 1− β2 = Θ(log T/T ) to obtain our convergence rate while Li &
Lin (2024) requires 1− β2 = Θ(1/T ).

6 CONCLUSION

We give a new convergence analysis (Theorem 3.5) for Adam in the stochastic non-convex setting
using a novel smoothness assumption. We show the convergence rate for the 1-norm of the gra-
dient is O( 1√

T
) in the deterministic case (Corollaries 3.7 and 3.8) and O( log T

T 1/4 ) in the stochas-
tic case (Corollary 3.6). We also extend our analysis to blockwise Adam on loss L with respect
to an arbitrary partition of the parameters Φ (Theorem 3.12) using the corresponding smoothness
H(L,Φ) (Definition 3.10). Our bound for Adam involves (1, 1)-norm of Hessian, rather than the
operator 2-norm of Hessian, which is relevant to the convergence speed of AdaSGD. This leads to
significantly better smoothness conditions for deep learning models including ResNet-18 and GPT2
empirically. We also empirically verify that our smoothness measure H(L,Φ) positively correlates
with the optimization speed of blockwise Adam with respect to the partition Φ.
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A CONVERGENCE RATE OF SignGD FOR DETERMINISTIC LOSS

Proof of Theorem 3.2. We will directly prove a more general verion of Theorem 3.2. Because L is
H-smooth with respect to ∥ · ∥∞, we have that

L(xt+1)− L(xt) ≤ −∇L(xt)
⊤(xt − xt+1) +

H

2
∥xt − xt+1∥2

≤ −η ∥∇L(xt)∥∗ +
η2H

2
η2 (1)

This implies that

min
1≤t≤T

∥∇L(xt)∥∗ ≤
1

T

T∑
t=1

∥∇L(xt)∥∗ ≤
L(x0)− L(xT )

Tη
+

Hη

2
,

which completes the proof.

B INVARIANCE PROPERTY OF ADAM AND SGD

Theorem 2.2. SGD and AdaSGD are rotation-invariant. Adam and SignGD are permutation-
invariant.

Proof of Theorem 2.2. For SGD and AdaSGD, we will show they are rotation-invariant by induction.
For any rotating transformationR(x) = Rx, suppose x̃s = R−1(xs) = R⊤xs holds for s ≤ t−1.
Then we have that g̃t = ∇x̃L̃t(x̃t) = R⊤∇xL(R

−1x̃t−1) = R⊤∇xL(xt−1) = R⊤gt and m̃t =
R⊤mt. From the update rule of SGD, we have that x̃t = x̃t−1 − ηtm̃t = R⊤xt−1 − ηtR

⊤mt =

R⊤(xt−1 − ηtmt) = R⊤xt. For the update rule of AdaSGD, we further have that ∥g̃t∥22 = ∥gt∥22
because R is an orthogonal matrix. Then ṽt = vt and the derivation is similar.

For Adam and SignGD, it is easy to show by induction they are invariant w.r.t. any permu-
tating transformation because the operation on gradient is performed on each coordinate sepa-
rately. We only need to show they are not invariant w.r.t. a rotating transformation. We choose
R = [ 1√

2
, 1√

2
; 1√

2
,− 1√

2
], Lt(x) = L(x) = 2x2

1 + x2
2. Due to the update rule of SignGD, it can

only update x and x̃ in the direction of [1, 1] and [1,−1]. But when rotating the update direction
on x̃ back to the space of x. The update direction can only be [1, 0] or [0, 1] that are different from
the update direction in the original space. Because the first step in Adam takes the same direction in
SignGD, we simultaneously show that both SignGD and Adam are not rotation-invariant.
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C PROOF DETAILS

C.1 PROOF FOR CONVERGENCE RATE OF BLOCKWISE ADAM

We also need new notations and different assumptions for specific partition Φ(·). For specific block
b, (b) is defined as Φ−1(b) = {i|Φ(i) = b} and db = #(b), the number of parameters in block b.

As mentioned in Section 3.4, we will use Lemma 3.13 to bound the second order term under smooth-
ness Definition 3.10 and use Lemma C.1 to better control the growth of the sum of second order term.

Lemma 3.13. For any twice differentiable loss which is H-smooth block-wisely w.r.t. Φ-norm (Def-
inition 3.10), we have for any x and ∆ ∈ Rd, ∆⊤∇2L(x)∆ ≤

∑B
b=1

Hb

db

∥∥∆(b)

∥∥2
2
.

Proof of Lemma 3.13. From Definition 3.10, we know that

Hb ≥ sup
x,∆

√
db
∥∥∇(b)L(x+∆)−∇(b)L(x)

∥∥
2

maxb′∈[B]
∥∆(b′)∥2√

db′

= sup
x,∆

√
db

∥∥∥∇2
(b),:L(x)∆

∥∥∥
2

maxb′∈[B]
∥∆(b′)∥2√

db′

= sup
x,∆

√
db

∥∥∥∑B
b′=1∇2

(b),(b′)L(x)∆(b′)

∥∥∥
2

maxb′∈[B]
∥∆(b′)∥2√

db′

= sup
x,∆,

∥∥∥∆′
(b)

∥∥∥
2
≤1

√
db

〈
∆′

(b),
∑B

b′=1∇2
(b),(b′)L(x)∆(b′)

〉
maxb′∈[B]

∥∆(b′)∥2√
db′

= sup
x,∥∆(b′)∥2≤

√
db′ ,

∥∥∥∆′
(b)

∥∥∥
2
≤1

√
db

〈
∆′

(b),

B∑
b′=1

∇2
(b),(b′)L(x)∆(b′)

〉

= sup
x,∆,∆′

B∑
b′=1

√
db
√
db′∥∥∥∆′

(b)

∥∥∥
2

∥∥∆(b′)

∥∥
2

〈
∆′

(b),∇
2
(b),(b′)L(x)∆(b′)

〉
Then for any x and ∆, we know that

Hb

db

∥∥∆(b)

∥∥2
2
≥
∥∥∆(b)

∥∥2
2

db

B∑
b′=1

√
db
√
db′∥∥∆(b)

∥∥
2

∥∥∆(b′)

∥∥
2

〈
∆(b),∇2

(b),(b′)L(x)∆(b′)

〉
=

B∑
b′=1

√
db′
∥∥∆(b)

∥∥
2√

db
∥∥∆(b′)

∥∥
2

〈
∆(b),∇2

(b),(b′)L(x)∆(b′)

〉
and

2

B∑
b=1

Hb

db

∥∥∆(b)

∥∥2
2

=

B∑
b=1

Hb

db

∥∥∆(b)

∥∥2
2
+

B∑
b′=1

Hb′

db′

∥∥∆(b′)

∥∥2
2

≥
B∑

b=1

B∑
b′=1

√
db′
∥∥∆(b)

∥∥
2√

db
∥∥∆(b′)

∥∥
2

〈
∆(b),∇2

(b),(b′)L(x)∆(b′)

〉
+

B∑
b′=1

B∑
b=1

√
db
∥∥∆(b′)

∥∥
2√

db′
∥∥∆(b)

∥∥
2

〈
∆(b′),∇2

(b′),(b)L(x)∆(b)

〉
≥2

B∑
b=1

B∑
b′=1

∆⊤
(b)∇

2
(b),(b′)L(x)∆(b′) = 2∆⊤∇2L(x)∆.
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The last inequality comes from mean inequality.

Lemma C.1. Given any 0 < β2 < 1, suppose scalar sequences {vt}Tt=0 and {gt}Tt=1 satisfy that
v0 ≥ 0, v1 > 0 and vt − β2vt−1 ≥ (1− β2)g

2
t for t ≥ 1. It holds that

T∑
t=1

g2t
vt
≤ T +

β2

1− β2
ln

vT
v0

.

Proof of Lemma C.1. Notice that 1− x ≤ ln 1
x for any positive x. We can have that

T∑
t=1

g2t
vt
≤

T∑
t=1

vt − β2vt−1

(1− β2)vt

=

T∑
t=1

[
1 +

β2

1− β2

(
1− vt−1

vt

)]

≤ T +
β2

1− β2

T∑
t=1

ln
vt

vt−1

= T +
β2

1− β2
ln

vT
v0

. (2)

when v0 ̸= 0. When v0 = 0, we can still have that

T∑
t=1

g2t
vt
≤ 1

1− β2
+

T∑
t=2

g2t
vt

≤ 1

1− β2
+ (T − 1) +

β2

1− β2
ln

vT
v1

= T +
β2

1− β2
ln

vT
v1/e

.

Next we deal with the first order term by approximating it with a deterministic term. Here we need
some new notations. Recall that gt denotes the gradient of mini-batch Lt(xt−1) at step t. And
E [gt|xt−1] = ∇L(xt−1) because ELt = L. The full-batch gradient is ḡt = ∇L(xt−1). Different
kinds of second-order momentum are defined in the following way.

vt,b = βt
2

∥∥g1,(b)∥∥22 /db + (1− β2)

t−1∑
j=0

βj
2

(∥∥gt−j,(b)

∥∥2
2

)
/db

ṽt,b = (1− β2)
(∥∥ḡt,(b)∥∥22 /db + σ2

b

)
+ β2vt−1,b

Lemma C.2 (first-order approximation, no momentum).

E
T∑

t=1

∑
Φ(i)=b

gt,iḡt,i√
vt,b + ϵ

≥ 1

2
E

T∑
t=1

∑
Φ(i)=b

ḡ2t,i√
ṽt,b + ϵ

−
√
1− β2Tdbσb −

dbσbβ2√
1− β2

E
[
ln

vT,b + ϵ

v0,b + ϵ

]
.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof of Lemma C.2. The first order change can decomposed into two terms.

E
T∑

t=1

∑
Φ(i)=b

gt,iḡt,i√
vt,b + ϵ

= E
T∑

t=1

∑
Φ(i)=b

gt,iḡt,i√
ṽt,b + ϵ

+ E

 T∑
t=1

∑
Φ(i)=b

gt,iḡt,i√
vt,b + ϵ

− gt,iḡt,i√
ṽt,b + ϵ


= E

T∑
t=1

∑
Φ(i)=b

E

[
gt,iḡt,i√
ṽt,b + ϵ

∣∣∣∣∣xt−1

]
+ E

 T∑
t=1

∑
Φ(i)=b

gt,iḡt,i√
vt,b + ϵ

− gt,iḡt,i√
ṽt,b + ϵ


= E

T∑
t=1

∑
Φ(i)=b

ḡ2t,i√
ṽt,b + ϵ

+ E

 T∑
t=1

∑
Φ(i)=b

gt,iḡt,i√
vt,b + ϵ

− gt,iḡt,i√
ṽt,b + ϵ


(3)

For the second term, we have that

∑
Φ(i)=b

∣∣∣∣∣gt,iḡt,i
(

1
√
vt,b + ϵ

− 1√
ṽt,b + ϵ

)∣∣∣∣∣
=
∑

Φ(i)=b

|gt,iḡt,i (ṽt,b − vt,b)|√
vt,b + ϵ

√
ṽt,b + ϵ

(√
vt,b + ϵ+

√
ṽt,b + ϵ

)
=
∑

Φ(i)=b

∣∣∣gt,iḡt,i(1− β2)
(∥∥ḡt,(b)∥∥22 /db + σ2

b −
∥∥gt,(b)∥∥22 /db)∣∣∣

√
vt,b + ϵ

√
ṽt,b + ϵ

(√
vt,b + ϵ+

√
ṽt,b + ϵ

)

=
∑

Φ(i)=b

∣∣∣∣gt,iḡt,i(1− β2)

(√∥∥ḡt,(b)∥∥22 /db + σ2
b +

√∥∥gt,(b)∥∥22 /db)(√∥∥ḡt,(b)∥∥22 /db + σ2
b −

√∥∥gt,(b)∥∥22 /db)∣∣∣∣
√
vt,b + ϵ

√
ṽt,b + ϵ

(√
vt,b + ϵ+

√
ṽt,b + ϵ

)

≤
∑

Φ(i)=b

∣∣∣∣gt,iḡt,i√1− β2

(√∥∥ḡt,(b)∥∥22 /db + σ2
b −

√∥∥gt,(b)∥∥22 /db)∣∣∣∣
√
vt,b + ϵ

√
ṽt,b + ϵ

≤1

2

∑
Φ(i)=b

ḡ2t,i√
ṽt,b + ϵ

(√∥∥ḡt,(b)∥∥22 /db + σ2
b −

√∥∥gt,(b)∥∥22 /db)2

E[
(√∥∥ḡt,(b)∥∥22 /db + σ2

b −
√∥∥gt,(b)∥∥22 /db)2

|xt−1]

+
1

2

∑
Φ(i)=b

(1− β2)g
2
t,iE[

(√∥∥ḡt,(b)∥∥22 /db + σ2
b −

√∥∥gt,(b)∥∥22 /db)2

|xt−1]

(vt,b + ϵ)
√
ṽt,b + ϵ

The first inequality is because vt,b + ϵ ≥ (1 − β2)
∥∥gt,(b)∥∥22 /db and ṽt,b + ϵ ≥ (1 −

β2)
(∥∥ḡt,(b)∥∥22 /db + σ2

b

)
. For the first term, it will be exactly 1

2

∥ḡt,(b)∥22√
ṽt,b+ϵ

after taking expectation
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conditional on xt−1. For the second term, we have the following inequality

E

[(√∥∥ḡt,(b)∥∥22 /db + σ2
b −

√∥∥gt,(b)∥∥22 /db)2
∣∣∣∣∣xt−1

]

=E

∥∥ḡt,(b)∥∥22 /db + σ2
b +

∑
Φ(j)=b

g2t,j/db − 2

√∥∥gt,(b)∥∥22 /db√∥∥ḡt,(b)∥∥22 /db + σ2
i

∣∣∣∣∣∣xt−1


≤2
(∥∥ḡt,(b)∥∥22 /db + σ2

b

)
− 2

√∥∥ḡt,(b)∥∥22 /db + σ2
bE
[√∥∥gt,(b)∥∥22 /db∣∣∣∣xt−1

]
≤2
(∥∥ḡt,(b)∥∥22 /db + σ2

b

)
− 2

√∥∥ḡt,(b)∥∥22 /db + σ2
b

√∥∥ḡt,(b)∥∥22 /db
=2

√∥∥ḡt,(b)∥∥22 /db + σ2
b

(√∥∥ḡt,(b)∥∥22 /db + σ2
b −

√∥∥ḡt,(b)∥∥22 /db)
≤2
√∥∥ḡt,(b)∥∥22 /db + σ2

bσb.

The first inequality comes from Assumption 3.4. The second inequality is because ℓ2 norm is a
convex function. Then we know that

∑
Φ(i)=b

(1− β2)g
2
t,iE

[(√∥∥ḡt,(b)∥∥22 /db + σ2
b −

√∥∥gt,(b)∥∥22 /db)2

|xt−1

]
(vt,b + ϵ)

√
ṽt,b + ϵ

≤
∑

Φ(i)=b

(1− β2)g
2
t,i2
√∥∥ḡt,(b)∥∥22 /db + σ2

bσb

(vt,b + ϵ)
√

ṽt,b + ϵ

≤2
√
1− β2σb

∑
Φ(i)=b

g2t,i
vt,b + ϵ

.

Then back to Equation 3, we have that

E
T∑

t=1

∑
Φ(i)=b

gt,iḡt,i√
vt,b + ϵ

= E
T∑

t=1

∑
Φ(i)=b

ḡ2t,i√
ṽt,b + ϵ

+ E

 T∑
t=1

∑
Φ(i)=b

gt,iḡt,i√
vt,b + ϵ

− gt,iḡt,i√
ṽt,b + ϵ


≥ E

T∑
t=1

∑
Φ(i)=b

ḡ2t,i√
ṽt,b + ϵ

− 1

2
E

T∑
t=1

∑
Φ(i)=b

ḡ2t,i√
ṽt,b + ϵ

− 1

2
2
√
1− β2σbE

T∑
t=1

∥∥gt,(b)∥∥22
vt,b + ϵ

=
1

2
E

T∑
t=1

∑
Φ(i)=b

ḡ2t,i√
ṽt,b + ϵ

−
√
1− β2σbE

T∑
t=1

∥∥gt,(b)∥∥22
vt,b + ϵ

For the second term, we can apply Lemma C.1 and get that
T∑

t=1

∑
Φ(i)=b g

2
t,i/db

vt,b + ϵ
≤ T +

β2

1− β2
ln

vT,b + ϵ

v0,b + ϵ
.

Combining these two terms, we can get that

E
T∑

t=1

∑
Φ(i)=b

gt,iḡt,i√
vt,b + ϵ

≥ 1

2
E

T∑
t=1

∑
Φ(i)=b

ḡ2t,i√
ṽt,b + ϵ

−
√
1− β2Tdbσb −

dbσbβ2√
1− β2

E
[
ln

vT,b + ϵ

v0,b + ϵ

]
.

Next we need Lemma C.3 to deal with the denominator in the approximated first order term. The
lemma is largely inspired by Lemma 6 in Li & Lin (2024), where we further generalize it to the case
of block-wise Adam.
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Lemma C.3. For any b ∈ [B], it holds that
T∑

t=T
2 +1

E
[√

ṽt,b + ϵ
]
≤ 2β

T
4
2

1− β2

√
v0,b +

T

2
σb +

T

2

√
ϵ+ 2

T∑
t=1

E

[∥∥ḡt,(b)∥∥22 /db√
ṽt,b + ϵ

]
.

Proof of Lemma C.3. For each t ≤ T , we have that

E
[√

ṽt,b + ϵ
]

=E
[√

β2vt−1,b + (1− β2)(
∥∥ḡt,(b)∥∥22 /db + σ2

b ) + ϵ

]

=E

 β2vt−1,b + (1− β2)σ
2
b + ϵ√

β2vt−1,b + (1− β2)(
∑

Φ(i)=b ḡ
2
t,i/db + σ2

b ) + ϵ

+ (1− β2)E

[∥∥ḡt,(b)∥∥22 /db√
ṽt,b + ϵ

]

≤E
[√

β2vt−1,b + (1− β2)σ2
b + ϵ

]
+ (1− β2)E

[∥∥ḡt,(b)∥∥22 /db√
ṽt,b + ϵ

]
.

And for each s ≤ t− 1, we have that

E
[√

βs
2vt−s,b + (1− βs

2)σ
2
b + ϵ

]

=E

√βs+1
2 vt−s−1,b + βs

2(1− β2)
∑

Φ(i)=b

g2t−s,i/db + (1− βs
2)σ

2
b + ϵ


=E

E
√βs+1

2 vt−s−1,b + βs
2(1− β2)

∑
Φ(i)=b

g2t−s,i/db + (1− βs
2)σ

2
b + ϵ

∣∣∣∣∣∣xt−s−1



≤E


√√√√√βs+1

2 vt−s−1,b + βs
2(1− β2)E

 ∑
Φ(i)=b

g2t−s,i/db

∣∣∣∣∣∣xt−s−1

+ (1− βs
2)σ

2
b + ϵ


≤E

√βs+1
2 vt−s−1,b + βs

2(1− β2)
∑

Φ(i)=b

ḡ2t−s,i/db + (1− βs+1
2 )σ2

b + ϵ


=E

 βs+1
2 vt−s−1,b + (1− βs+1

2 )σ2
b + ϵ√

βs+1
2 vt−s−1,b + βs

2(1− β2)
∑

Φ(i)=b ḡ
2
t−s,i/db + (1− βs+1

2 )σ2
b + ϵ


+E

 βs
2(1− β2)

∑
Φ(i)=b ḡ

2
t−s,i/db√

βs+1
2 vt−s−1,b + βs

2(1− β2)
∑

Φ(i)=b ḡ
2
t−s,i/db + (1− βs+1

2 )σ2
b + ϵ


≤E

[√
βs+1
2 vt−s−1,b + (1− βs+1

2 )σ2
b + ϵ

]
+
√

βs
2(1− β2)E

[∑
Φ(i)=b ḡ

2
t−s,i/db√

ṽt−s,b + ϵ

]
.

By summing the above inequality over s = 1, · · · , t− 1, we have that

E
[√

β2vt−1,b + (1− β2)σ2
b + ϵ

]
≤E

[√
βt
2v0,b + (1− βt

2)σ
2
b + ϵ

]
+

t−1∑
s=1

√
βs
2(1− β2)E

[∑
Φ(i)=b ḡ

2
t−s,i/db√

ṽt−s,b + ϵ

]

≤
√
βt
2v0,b +

√
σ2
b + ϵ+

t−1∑
s=1

√
βs
2(1− β2)E

[∑
Φ(i)=b ḡ

2
t−s,i/db√

ṽt−s,b + ϵ

]
.
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and

E
[√

ṽt,b + ϵ
]
≤
√
βt
2v0,b +

√
σ2
b + ϵ+

t−1∑
s=0

√
βs
2(1− β2)E

[∑
Φ(i)=b ḡ

2
t−s,i/db√

ṽt−s,b + ϵ

]
.

By summing the above inequality over t = T
2 + 1, · · · , T , we have that

T∑
t=T

2 +1

[√
ṽt,b + ϵ

]
≤

T∑
t=T

2 +1

√
βt
2v0,b +

T

2

√
σ2
b + ϵ+

T∑
t=T

2 +1

t−1∑
s=0

√
βs
2(1− β2)E

[∑
Φ(i)=b ḡ

2
t−s,i/db√

ṽt−s,b + ϵ

]

≤ β
T
4
2

1−
√
β2

√
v0,b +

T

2

√
σ2
b + ϵ+

1− β2

1−
√
β2

T∑
t=1

E

[∥∥ḡt,(b)∥∥22 /db√
ṽt,b + ϵ

]

=
β

T
4
2

1−
√
β2

√
v0,b +

T

2

√
σ2
b + ϵ+ (1 +

√
β2)

T∑
t=1

E

[∥∥ḡt,(b)∥∥22 /db√
ṽt,b + ϵ

]

≤ 2β
T
4
2

1− β2

√
v0,b +

T

2
σb +

T

2

√
ϵ+ 2

T∑
t=1

E

[∥∥ḡt,(b)∥∥22 /db√
ṽt,b + ϵ

]
.

This following Lemma C.4 is to control the growth of vT,b so that the right hand side in Lemma C.1

is indeed Θ
(
T + log T

1−β2

)
instead of Θ(T ) when all the constants are poly(T ).

Lemma C.4. For any T , it holds that

Emax
b∈[B]

vT,b + ϵ ≤ 2ϵ+ 2v0 + 4

B∑
b=1

σ2
b + 8 max

b∈[B]

∥∥∇(b)L(x0)
∥∥2
2
/db + 8 max

b∈[B]

H2
b

d2b
η2T 2

+ 8 max
b∈[B]

H2
b

d2b
η2T

β2

1− β2
ln 4 max

b∈[B]

H2
b

d2b
η2T

β2

(1− β2)(v0 + ϵ)
.
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Proof of Lemma C.4. From the definition of vt,i and Assumption 3.4, we have that
Emax

b∈[B]
vt,b

=Emax
b∈[B]

[
βt
2v0,b + (1− β2)

t∑
s=1

βt−s
2

∥∥gs,(b)∥∥22 /db
]

≤βt
2 ∥v0∥∞ + (1− β2)Emax

b∈[B]

t∑
s=1

βt−s
2

∥∥gs,(b)∥∥22 /db
=βt

2 ∥v0∥∞ + (1− β2)Emax
b∈[B]

t∑
s=1

βt−s
2

∥∥E[gs,(b)|xs−1] + gs,(b) − E[gs,(b)|xs−1]
∥∥2
2
/db

≤βt
2 ∥v0∥∞ + (1− β2)Emax

b∈[B]

t∑
s=1

βt−s
2

[
2
∥∥E[gs,(b)|xs−1]

∥∥2
2
+ 2

∥∥gs,(b) − E[gs,(b)|xs−1]
∥∥2
2

]
/db

≤βt
2 ∥v0∥∞ + 2(1− β2)E

B∑
b=1

t∑
s=1

βt−s
2

∥∥gs,(b) − E[gs,(b)|xs−1]
∥∥2
2
/db + 2(1− β2)Emax

b∈[B]

t∑
s=1

βt−s
2

∥∥∇(b)L(xs−1)
∥∥2
2
/db

≤βt
2 ∥v0∥∞ + 2(1− βt

2)

B∑
b=1

σ2
b + 2(1− β2)Emax

b∈[B]

t∑
s=1

βt−s
2

[
2
∥∥∇(b)L(x0)

∥∥2
2
+ 2

∥∥∇(b)L(xs−1)−∇(b)L(x0)
∥∥2
2

]
/db

≤βt
2 ∥v0∥∞ + 2(1− βt

2)

B∑
b=1

σ2
b + 4(1− βt

2) max
b∈[B]

∥∥∇(b)L(x0)
∥∥2
2
/db

+4(1− β2)Emax
b∈[B]

t∑
s=1

βt−s
2

∥∥∇(b)L(xs−1)−∇(b)L(x0)
∥∥2
2
/db

≤βt
2 ∥v0∥∞ + 2(1− βt

2)

B∑
b=1

σ2
b + 4(1− βt

2) max
b∈[B]

∥∥∇(b)L(x0)
∥∥2
2
/db

+4(1− β2)Emax
b∈[B]

t∑
s=1

βt−s
2

H2
b

d2b
max
b′∈[B]

∥∥xs−1,(b′) − x0,(b′)

∥∥2
2

db′

≤βt
2 ∥v0∥∞ + 2

B∑
b=1

σ2
b + 4 max

b∈[B]

∥∥∇(b)L(x0)
∥∥2
2
/db + 4(1− β2)(max

b∈[B]

H2
b

d2b
)E

t∑
s=1

βt−s
2 max

b′∈[B]

∥∥xs−1,(b′) − x0,(b′)

∥∥2
2

db′
.

We define C = v0 + 2
∑B

b=1 σ
2
b + 4maxb∈[B]

∥∥∇(b)L(x0)
∥∥2
2
/db for simplicity. From Lemma C.1

and Cauchy inequality, we know that

1

db′

∥∥xt,(b′) − x0,(b′)

∥∥2
2
=

η2

db′

∑
Φ(j)=b′

∣∣∣∣∣
t∑

s=1

gs,j√
vs,b′ + ϵ

∣∣∣∣∣
2

≤ η2

db′

∑
Φ(j)=b′

t

t∑
s=1

g2s,j
vs,b′ + ϵ

= η2t

t∑
s=1

∑
Φ(j)=b′ g

2
s,j/db′

vs,b′ + ϵ

≤ η2t

(
t+

β2

1− β2
ln

vt,b′ + ϵ

v0,b′ + ϵ

)
≤ η2t2 + η2t

β2

1− β2
ln

maxb∈[B] vt,b + ϵ

v0 + ϵ

The right hand side is independent of specific block b. So we can get that

max
b′∈[B]

∥∥xt,(b′) − x0,(b′)

∥∥2
2

db′
≤ η2t2 + η2t

β2

1− β2
ln

maxb∈[B] vt,b + ϵ

v0 + ϵ
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and

E max
b′∈[B]

∥∥xt,(b′) − x0,(b′)

∥∥2
2

db′

≤η2t2 + η2t
β2

1− β2
E ln

maxb∈[B] vt,b + ϵ

v0 + ϵ

≤η2t2 + η2t
β2

1− β2
ln

Emaxb∈[B] vt,b + ϵ

v0 + ϵ

≤η2t2 + η2t
β2

1− β2
ln

ϵ+ C + 4(1− β2)maxb∈[B]
H2

b

d2
b
E
∑t

s=1 β
t−s
2 maxb′∈[B]

∥xs−1,(b′)−x0,(b′)∥22
db′

v0 + ϵ
.

Define G = max1≤t≤T Emaxb′∈[B]
∥xt,(b′)−x0,(b′)∥22

db′
. There exists t ≤ T such that

G = E max
b′∈[B]

∥∥xt,(b′) − x0,(b′)

∥∥2
2

db′

≤ η2t2 + η2t
β2

1− β2
ln

ϵ+ C + 4(1− β2)maxb∈[B]
H2

b

d2
b
E
∑t

s=1 β
t−s
2 maxb′∈[B]

∥xs−1,(b′)−x0,(b′)∥22
db′

v0 + ϵ

≤ η2t2 + η2t
β2

1− β2
ln

ϵ+ C + 4(1− β2)maxb∈[B]
H2

b

d2
b

∑t
s=1 β

t−s
2 G

v0 + ϵ

≤ η2T 2 + η2T
β2

1− β2
ln

ϵ+ C + 4maxb∈[B]
H2

b

d2
b
G

v0 + ϵ
.

We further define G′ = ϵ+ C + 4maxb∈[B]
H2

b

d2
b
G and get that

G′ ≤ ϵ+ C + 4 max
b∈[B]

H2
b

d2b
η2T 2 + 4 max

b∈[B]

H2
b

d2b
η2T

β2

1− β2
ln

G′

v0 + ϵ

≤ ϵ+ C + 4 max
b∈[B]

H2
b

d2b
η2T 2

+ 4 max
b∈[B]

H2
b

d2b
η2T

β2

1− β2

ln
G′(1− β2)

4maxb∈[B]
H2

b

d2
b
η2Tβ2

+ ln 4 max
b∈[B]

H2
b

d2b
η2T

β2

(1− β2)(v0 + ϵ)


≤ ϵ+ C + 4 max

b∈[B]

H2
b

d2b
η2T 2 +

G′

2
+ 4 max

b∈[B]

H2
b

d2b
η2T

β2

1− β2
ln 4 max

b∈[B]

H2
b

d2b
η2T

β2

(1− β2)(v0 + ϵ)
.

The last inequality comes from lnx ≤ x
2 . Then we can get that

Emax
b∈[B]

vT,b + ϵ ≤ ϵ+ C + 4(1− β2) max
b∈[B]

H2
b

d2b

t∑
s=1

βt−s
2 G

≤ ϵ+ C + 4 max
b∈[B]

H2
b

d2b
G = G′

≤ 2ϵ+ 2C + 8 max
b∈[B]

H2
b

d2b
η2T 2 + 8 max

b∈[B]

H2
b

d2b
η2T

β2

1− β2
ln 4 max

b∈[B]

H2
b

d2b
η2T

β2

(1− β2)(v0 + ϵ)
.

Finally, we give the proof for Theorem 3.12. When Φ(i) = i, i.e., each parameter forms a single
block, it becomes the proof for Theorem 3.5.
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Theorem 3.12 (Main, Blockwise Adam). Under Assumption 3.11, suppose L is H-smooth block-
wisely w.r.t. Φ-norm, where H = (H1, . . . ,HB) ∈ RB , for Algorithm 3, we have that

min
T
2 <t≤T

E
B∑

b=1

√
db
∥∥ḡt,(b)∥∥2 ≤ E +

√
E

√√√√ β
T
4
2

T (1− β2)
d
√
v0 +

B∑
b=1

dbσb + d
√
ϵ

with

E =
2

ηT
E [L(x0)− L(xT )] +

(
1 +

β2F

T (1− β2)

)(
η

B∑
b=1

Hb +
√
1− β2

B∑
b=1

dbσb

)
,

and

F = O

(
ln

(
1 +

∑B
b=1 σ

2
b + ∥∇L(x0)∥2Φ +maxb∈[B] H

2
b η

2T (T + 1
1−β2

)

v0 + ϵ

))
.

Proof of Theorem 3.12. In a single step, we can apply Lemma 3.13 and have that

L(xt)− L(xt−1) ≤ ∇L(xt−1)
⊤(xt − xt−1) +

1

2

B∑
b=1

Hb

db

∑
Φ(i)=b

(xt,i − xt−1,i)
2

= −η
d∑

i=1

gt,iḡt,i√
vt,Φ(i) + ϵ

+
1

2
η2

B∑
b=1

Hb

db

∥∥gt,(b)∥∥22
vt,b + ϵ

.

If we sum over t from 1 to T and take expectation, we can get

E [L(xT )− L(x0)] ≤ −E

[
η

d∑
i=1

T∑
t=1

gt,iḡt,i√
vt,Φ(i) + ϵ

]
+

1

2
η2E

[
B∑

b=1

Hb

db

T∑
t=1

∥∥gt,(b)∥∥22
vt,b + ϵ

]

≤ −E

[
η

d∑
i=1

T∑
t=1

gt,iḡt,i√
vt,Φ(i) + ϵ

]
+

1

2
η2E

[
B∑

b=1

Hb

(
T +

β2

1− β2
ln

vT,b + ϵ

v0,b + ϵ

)]
.

The second inequality comes from applying Lemma C.1. By Lemma C.2, we have that

1

T
E

[
d∑

i=1

T∑
t=1

ḡ2t,i√
ṽt,Φ(i) + ϵ

]
≤ 2

ηT
E [L(x0)− L(xT )] +

η

T
E

[
B∑

b=1

Hb

(
T +

β2

1− β2
ln

vT,b + ϵ

v0,b + ϵ

)]

+
1

T

B∑
b=1

dbσb

√
1− β2

(
T +

β2

1− β2
E ln

vT,b + ϵ

v0,b + ϵ

)

≤ 2

ηT
E [L(x0)− L(xT )] + η

B∑
b=1

Hb +
√
1− β2

B∑
b=1

dbσb

+
β2

T (1− β2)

(
η

B∑
b=1

Hb +
√
1− β2

B∑
b=1

σb

)
max
b∈[B]

E ln
vT,b + ϵ

v0,b + ϵ

≤ 2

ηT
E [L(x0)− L(xT )] + η

B∑
b=1

Hb +
√
1− β2

B∑
b=1

dbσb

+
β2

T (1− β2)

(
η

B∑
b=1

Hb +
√
1− β2

B∑
b=1

dbσb

)
ln

Emaxb∈[B] vT,b + ϵ

v0 + ϵ

From Lemma C.4, we can define

E =
2

ηT
E [L(x0)− L(xT )] + η

B∑
b=1

Hb +
√

1− β2

B∑
b=1

dbσb +
β2

T (1− β2)

(
η

B∑
b=1

Hb +
√
1− β2

B∑
b=1

dbσb

)

· ln
2ϵ+ 2C + 8maxb∈[B]

H2
b

d2
b
η2T 2 + 8maxb∈[B]

H2
b

d2
b
η2T β2

1−β2
ln 4maxb∈[B]

H2
b

d2
b
η2T β2

(1−β2)(v0+ϵ)

v0 + ϵ
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and C = v0 + 2
∑B

b=1 σ
2
b + 4maxb∈[B]

∥∥∇(b)L(x0)
∥∥2
2
/db. One can show that

E =
2

ηT
E [L(x0)− L(xT )] + η

B∑
b=1

Hb +
√

1− β2

B∑
b=1

dbσb +
β2

T (1− β2)

(
η

B∑
b=1

Hb +
√
1− β2

B∑
b=1

dbσb

)
F,

with

F = ln

(
1 +

∑B
b=1 σ

2
b + ∥∇L(x0)∥2Φ +maxb∈[B] H

2
b η

2T (T + 1
1−β2

)

v0 + ϵ

)
.

1

T
E

[
d∑

i=1

T∑
t=1

ḡ2t,i√
ṽt,Φ(i) + ϵ

]
≤ E.

By Lemma C.3 and Cauchy inequality, we have that

2

T
E

T∑
t=T

2 +1

B∑
b=1

√
db
∥∥ḡt,(b)∥∥2 ≤

 2

T
E

T∑
t=T

2 +1

B∑
b=1

∥∥ḡt,(b)∥∥22√
ṽt,b + ϵ

 1
2
 2

T
E

T∑
t=T

2 +1

B∑
b=1

db
√
ṽt,b + ϵ

 1
2

≤

 2

T
E

T∑
t=T

2 +1

B∑
b=1

∑
Φ(i)=b

ḡ2t,i√
ṽt,b + ϵ

 1
2
 2

T
E

T∑
t=T

2 +1

B∑
b=1

db
√
ṽt,b + ϵ

 1
2

≤
√
2E

(
4E +

4β
T
4
2

T (1− β2)
d
√
v0 +

B∑
b=1

dbσb + d
√
ϵ

) 1
2

≤ 2
√
2E +

√
2
√
E

√√√√ 4β
T
4
2

T (1− β2)
d
√
v0 +

B∑
b=1

dbσb + d
√
ϵ.

This completes the proof.

D EXPERIMENT DETAILS

D.1 TRAINING ADAM ON A ROTATED LOSS

A key difficulty in implementing rotated Adam arises from applying an orthogonal rotation on the
parameters before calculating the loss. It is computationally infeasible to apply a 125M × 125M
orthogonal matrix on the 125M-sized parameter vector. To avoid such computation, we design a
new orthogonal transformer to rotate the parameters of the network. In what follows, we elaborate
on this rotation.

RandPerm. Given a vector v of size d, we can orthogonally rotate it by repeatedly applying these
consecutive operations: 1. Permute the entries of the vector according to a randomly chosen permu-
tation π ∈ Sd. 2. Reshape the permuted vector into a 3D tensor of size [s1, s2, s3], apply a fixed
orthogonal rotation of size s × s on each side of the tensor and then reshape it back to a vector of
size d.

This operation performs an orthogonal transformation R on the input vector v. We can chain mul-
tiple operations of this kind and construct RandPermk, where k is a positive number indicating the
number of consecutive RandPerm s applied. Building upon this rotation, we train GPT-2 125M with
Adam on L ◦ RandPerm2 to analyze our hypothesis regarding the ℓ∞ geometry of the loss landscape
and to verify that Adam will indeed suffer from the induced orthogonal equivariance. Figure 1 con-
firms our findings, as the performance of rotated Adam with RandPerm2 is significantly worse than
Adam. This suggests that Adam is highly sensitive to the rotation and adaptivity alone can’t explain
its advantage.
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D.2 COMPUTATION OF MATRIX NORMS

It is impossible to get the full Hessian matrix and directly compute norms of it. We can only leverage
Hessian vector product function in pytorch to probe the Hessian matrix. The estimation of spectral
norm is done by power iteration. The estimation of (1, 1)-norm relies on the properties of Cauchy
distribution. Given a = [a1, · · · , an] and i.i.d. standard Cauchy variables X1, · · · , Xn,

∑n
i=1 aiXi

is Cauchy distributed with location 0 and scale
∑n

i=1 |ai|. For a single value Cauchy distribution
with location 0 and scaling γ, an estimator for γ is the median of the absolute values of all the
samples.

Therefore, we propose Algorithm 4 to estimate the sum of absolute values for each row and sum
over all the rows to get (1, 1)-norm of Hessian matrix. We choose n = 50 for all the measurement
experiments. We also prove a concentration inequality in Theorem D.1.

Algorithm 4 Estimation of (1, 1)-Norm of Hessian,∇2L(θ)

Input: Number of Cauchy vectors n, parameter θ ∈ Rd, loss L
1: for i = 1→ n :
2: Sample a independent Cauchy vector v(i) ∈ Rd where v(i)j

i.i.d.∼ Cauchy(0, 1) for j = 1, . . . , d.
3: H:,i ← ∇2L(θ) · v(i) (Using hessian-vector product)
4: return

∑d
j=1 median(abs(Hj,:))

Theorem D.1. For the estimate in Algorithm 4, it holds that

P

∣∣∣∣∣∣
d∑

j=1

median(|Hj,:|)−
∥∥∇2L(θ)

∥∥
1,1

∣∣∣∣∣∣ ≥ δ
∥∥∇2L(θ)

∥∥
1,1

 ≤ d exp

(
− 8n

25π2
δ2
)

for δ ∈ (0, 1).

Proof. We first prove a concentration inequality for Mn = median(|X1| , · · · , |Xn|) in which
X1, · · · , Xn

i.i.d.∼ Cauchy(0, 1).

Given X ∼ Cauchy(0, 1), the cumulative distribution function of |X| is F (x) = 2
π arctan(x) and

the median of |X| is 1 because F (1) = 0.5. For a fixed δ ∈ (0, 1), define p1 = 2
π arctan(1 − δ) to

be the probability that |X| is smaller than 1− δ and S =
∑n

i=1 1|Xi|≤1−δ . Since 1|Xi|≤1−δ follows
i.i.d. Bernoulli distribution with p1, S ∼ Bin(n, p1).

Mn ≤ 1− δ if and only if at least n+1
2 Xi’s are smaller than 1− δ. And we can apply Hoeffding’s

inequality on S and get that

P (Mn ≤ 1− δ) = P (S ≥ n+ 1

2
) ≤ P (S ≥ n

2
)

= P (S − np1 ≥
n

2
− np1)

≤ exp

(
−
2(n2 − np1)

2

n

)
≤ exp

(
−2n

(
1

2
− 2

π
arctan(1− δ)

)2
)
.

With similar derivation, we can also get that

P (Mn ≥ 1 + δ) ≤ exp

(
−2n

(
1

2
− 2

π
arctan(1 + δ)

)2
)
.

When δ ∈ (−1, 1), we have that(
1

2
− 2

π
arctan(1 + δ)

)2

=
4

π2
(arctan(1)− arctan(1 + δ))

2 ≥ 4

25π2
δ2.
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SGD AdaSGD Adam Rotated Adam
Batch size 16 0.0777 0.114 0.064 0.0905
Batch size 64 0.0698 0.0854 0.0472 0.0574
Batch size 256 0.0723 0.0787 0.0359 0.0485
Batch size 1024 0.1115 0.0915 0.0735 0.0817

Table 4: Training losses of ResNet for different optimizers and different batch size. For each setting,
we choose the optimal performance over all the learning rates.

because the derivative of arctan(x) is always greater than 1
5 for x ∈ (0, 2). Then we can have that

P (|Mn − 1| ≥ δ) ≤ 2 exp

(
− 8n

25π2
δ2
)
.

When v
(i)
j

i.i.d.∼ Cauchy(0, 1), it holds that Hj,i = ∇2L(θ)j,: · v(i) follows
Cauchy(0,

∑d
k=1

∣∣∇2L(θ)j,k
∣∣). We can have that

P

(∣∣∣∣∣median(|Hj,1| , · · · , |Hj,n|)−
d∑

k=1

∣∣∇2L(θ)j,k
∣∣∣∣∣∣∣ ≥ δ

d∑
k=1

∣∣∇2L(θ)j,k
∣∣) ≤ exp

(
− 8n

25π2
δ2
)
.

And we can sum the tail probability over all the rows j and get that

P

∣∣∣∣∣∣
d∑

j=1

median(|Hj,:|)−
∥∥∇2L(θ)

∥∥
1,1

∣∣∣∣∣∣ ≥ δ
∥∥∇2L(θ)

∥∥
1,1

 ≤ d exp

(
− 8n

25π2
δ2
)
.

D.3 TRAINING DETAILS

In Adam and its variants (including AdaSGD) the momentums were set to β1, β2 = (0.9, 0.99).
Momentum in SGD was also set to 0.9. Weight decay is always deactivated.

For the ResNet experiment, we applied random crop and random horizontal flip augmentations over
the training data to promote better generalization. We tuned each optimizer through searching over
the same grid of learning rates3 The number of iterations is adjusted per batch size to result in 20
epochs for each training run (for instance, 4000 iterations were used for a batch size of 256, and
1000 iterations were used for a batch size of 1024).

We didn’t tune learning rate for GPT-2 experiment and just used the same peak learning rate of 6×
10−4 for all optimization methods except SGD, for which we did a grid search to find the maximum
possible peak learning rate.

3We used the following values: 6.25×10−4, 1.25×10−3, 2.5×10−3, 5.0×10−3, 1.0×10−2, 2.0×10−2,
4.0× 10−2, 8.0× 10−2, 1.6× 10−1, 3.2× 10−1, 6.4× 10−1, 1.28× 100.
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