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ABSTRACT

Adam outperforms SGD when training language models. Yet such benefits are
not well-understood theoretically — previous convergence analysis for Adam and
SGD mainly focuses on the number of steps 7" and is already minimax-optimal in
non-convex cases, which are both O(7~'/4). In this work, we argue that the bet-
ter dependence on the loss smoothness is the key advantage of Adam over SGD.
More specifically, we give a new convergence analysis for Adam under novel as-
sumptions that loss is smooth under /., geometry rather than the more common ¢5
geometry, which yields a much better empirical smoothness constant for GPT-2
and ResNet models. Moreover, we show that if we rotate the training loss ran-
domly, Adam can be outperformed by some variants of SGD which is invariant to
rotations. This implies that any practically relevant explanation of Adam’s opti-
mization benefit must involve non-rotational invariant properties of loss, such as
{~, smoothness as used in our analysis. We also extend the convergence analysis
to blockwise Adam, which is a generalization of standard Adam.

1 INTRODUCTION

Large language models (LLMs) have gained phenomenal capabilities as their scale grows (Radford
et al., 2019; Kaplan et al., 2020; Brown et al., 2020; Zhang et al., 2022a; Touvron et al., 2023; Ope-
nAl, 2023; Reid et al., 2024). However, pre-training LLMs are incredibly time-consuming. Adaptive
Momentum Estimation (Adam)(Kingma & Ba, 2014) is the current to-go optimization algorithm for
LLMs due to its fast convergence. In contrast, SGD, a popular and arguably the simplest optimizer,
optimizes language model loss much more slowly than Adam.

However, the optimization benefit of Adam over SGD cannot be explained by existing theory. Existing
convergence analyses for Adam and SGD focus on the dependence on the number of steps under
assumptions on the smoothness and gradient bounds of the loss (Défossez et al., 2022), and it has
been shown that both Adam and SGD achieve the minimax convergence rate O(7~*/4) in the non-
convex settings (Arjevani et al., 2023). Thus according to the theory, in the worst case, SGD would
be more desirable compared to Adam because they have the same convergence rate, and yet Adam
is less memory-efficient due to its coordinate-wise adaptivity, which needs to store the empirical
moving average of second-order moments of past stochastic gradients. Therefore, we hypothesize
that the coordinate-wise adaptivity in Adam is exploiting some unknown properties of LLMs which
SGD cannot make use of.

Towards this end, we identified a significant difference between Adam and SGD in this paper. This
difference, often ignored in previous works, is that SGD is rotation-invariant, while Adam is only
permutation-invariant (see definitions in Section 2). Intuitively, this means if we rotate the loss
landscape, the optimization trajectory of SGD would be the same (up to some rotation), while the
trajectory of Adam could be completely different. If Adam optimizes much more slowly after rotation,
then it suggests Adam is exploiting some non-rotational-invariant properties of the loss function,
which is not captured by standard smoothness assumptions in the convergence analysis.

Figure 1 summarizes our findings by comparing Adam on the original and rotated loss. The perfor-
mance of Adam on the rotated loss does become much worse than Adam on the original loss. We
also test a memory-efficient and rotational-invariant variant of SGD, AdaSGD (Wang & Wiens, 2020)
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Figure 1: Training and validation losses of Adam, AdaSGD and SGD on GPT-2. rotated Adam means
running Adam on a rotated loss. Adam on the original loss converges the fastest as expected. But
convergence of Adam on a rotated loss is much slower, notably even worse than AdaSGD.

(defined in Algorithm 2)'. Surprisingly, the rotated Adam performs even much worse than the SGD
variant. The results suggest it is impossible to explain the superior optimization performance of
Adam over SGD just using rotationally invariant assumptions on the loss function, which raises the
natural question,

What are the non-rotation-invariant properties of a loss function that enable faster
convergence of Adam than SGD?

We hypothesize that the /5 lipschitzness of loss gradient does not provide a tight-enough character-
ization of loss landscape of deep learning models in practice, such that we can separate Adam and
other rotational-invariant algorithms. Inspired by the similarity between Adam and SignGD and the
fact that SignGD is the normalized steepest descent with respect to /., norm, we propose to use
{~,-norm related smoothness as a better tool to analyze Adam. In particular, our main results use the
(1,1)-norm of Hessian of loss divided by variable dimension d in replacement of the spectral norm
of Hessian as the smoothness measure, and prove a convergence rate of O(\/; ) for Adam without
noise, or O((%)l/ 4) with noise. Our results have the same dependence on 7' as previous results,
but much smaller smoothness constant when we measure it empirically. We empirically verify that
(1,1)-norm of Hessian positively correlates with final training loss of Adam on both synthetic tasks
like quadratic loss and real tasks like training GPT2 on OpenWebText and ResNet on CIFAR10.

We summarize our contributions below:

1. We show by experiments that the empirical optimization advantage of Adam over SGD can
not be explained solely under rotation-invariant assumptions. (Figure 1)

2. We propose a new complexity metric for the optimization problem, which is the (1, 1)-
norm of the Hessian matrix of loss, | V2L(x) || 1.1~ We present a novel convergence result
for Adam depending on this metric in the case of 51 = 0. (Theorem 3.5 )

3. We further generalize the theoretical analysis for Adam to blockwise Adam (Algorithm 3)
whose convergence rate can be characterized by a novel smoothness measure (Theo-
rem 3.12). Adam and AdaSGD are two notable examples of blockwise Adam. In Adam,
all blocks are of size 1. In AdaSGD, there is only one block.

4. We empirically verify that when Adam converges more slowly on the rotated loss, the (1,1)-
norm of Hessian also increases, which suggests that our new complexity metric for Adam’s
convergence is practically relevant. (Section 4)

2 PRELIMINARIES

Notations. For z € R?, we define the vector p-norm ||z, as (Zle 2P)1/? for p € [1, 00]. For a

matrix A € R4*92 jts (1,1)-norm ||Al|1 ; is defined as Zf;l d2 |A; ;| and its operator norm

7=1
. A
induced by vector p-norm || - ||,, as Supgcpa %, denoted by [|A||,, where ¢ + & = 1and || - [,

I'There is one small difference. We use an exponential average of the gradient for m; instead of momentum.
Our definition makes AdaSGD the same as Adam in a one-dimensional problem.
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Algorithm 1 Adam

Hyperparam: (31, 52,¢ > 0, total steps T,
learning rate {n; }Z_,, €, initial ™, vo
Input: initialization x(, stochastic loss func-

Algorithm 2 AdaSGD

Hyperparam: 1, 52,¢ > 0, total steps T,
learning rate {n; }~_;, initial mg, vo

tions { Lt}T Input: initialization xg, stochastic loss func-
_ =1 tions { L}
Vo.i < Vo t=1
o . fort=1,2... . T:
fort=1,2,---,T: 2 )
9ti < Vili(x—1) 9 & Vila(@ia)
my; < Bimi—1,; + (1 — B1)ge i Prme,i + (1 - 51)931‘
Vg & Bavi_1i + (1 — 52)97521‘ v <= Pavg—1 + (1 —mﬁ2)(||9t||2 /d)
’ ’ i ’ i L t,i
T & Teo1i Toi T Tt T e
t,i
return
return
is the dual norm of || - ||,. For a deterministic loss function L(x), we consider optimization over L

with access only to independent stochastic functions {L;(x)}7_, such that EL,(x) = L(x) for any
input z € R4,

Rotation. For an invertible function 7 : R? — R, T is a rotating transformation if there exists
an orthogonal matrix T' € R?* such that 7 (x) = Tx. T is a permutating transformation if there
exists a permutation 7 : [d] — [d] such that T (x) = [%(1),--.,%Tx(a)] . A permutating transfor-
mation is always a rotating transformation. We will use R to denote a rotating transformation.

Definition 2.1. For initialization x and stochastic losses {L;}I_,, we can get x; when running
algorithm A on (zo,{L}{_,). For a transformation T, we can also get &; when running A with

the same hyperparameters on (&q, { L}, ) with & = T~ (x¢) and L; = Ly o T.

An algorithm A is invariant w.r.t. T if it always holds that &; = T ~'(x;) for any hyperparameters,
initialization and stochastic losses. An algorithm A is rotation invariant if it is invariant w.r.t. any
rotating transformation R. And A is permutation invariant if it is invariant w.r.t. any permutating
transformation.

The following Theorem 2.2 shows the difference between Adam and AdaSGD, whose proof is in
Appendix B.

Theorem 2.2. SGD and AdaSGD are rotation-invariant. Adam and SignGD are permutation-
invariant.

3 MAIN RESULTS: CONVERGENCE RATES OF Adam

In this section, we present our main theoretical results, starting with a convergence analysis of Adam
for stochastic smooth loss with coordinate-wise gradient noise (Theorem 3.5). We allow non-convex
losses and thus the convergence is measured by the /1 norm of the gradient. For a deterministic loss,
our best convergence rate (Theorem 3.2) is achieved by SignGD (Adam with 8 = (2 = 0). For
a stochastic loss with bounded gradient noise variance, our best rate (Corollary 3.6) is achieved by
RMSProp (Adam with 81 = 0 and (32 € [0, 1]).

Then we extend our analysis of Adam to more general blockwise Adam (Theorem 3.12), which
contains both Adam and AdaSGD as special cases. We also come up with novel smoothness mea-
sures (Definition 3.10) corresponding to the set of blocks used in blockwise Adam.

Similar to previous work (Défossez et al., 2022), our analysis could be extended to the most general
case of Adam, where both 31, 32 are non-zero, but the rate becomes strictly worse than the RMSProp
(the case of 51 = 0), as there will be some extra polynomials of —B We decide not to include the
result for the most general case, on one hand for ease of presentation, and on the other hand, because
such result can not explain the optimization benefit of momentum (3; > 0) in practice and does not
add any insight on the benefit of Adam. We hypothesize that we are missing some important features
of loss landscape of transformers in the theoretical assumptions and we leave this for future work.

3.1 WARMUP: SignGD (51 = B2 = 0)

In this section, we use the convergence analysis for SignGD (Adam with 5; = 52 = 0) as a warm-up
and illustrate how Adam could benefit from a non-rotational invariant property of the loss landscape,
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which in particular is the /., smoothness. The key observation here is that SignGD is the normalized
steepest descent with respect to £, norm (see (Xie & Li, 2024)), and thus it is more natural to
analyze its convergence using ¢,,-norm-related geometry of the loss.

Definition 3.1. Given a norm ||-|| on R and ||-||, as its dual norm, we say a function L is H-smooth
w.rt. |- if for any z,y € R, we have that |V L(z) — VL(y)|, < H ||z — y|.

Theorem 3.2. Let L be a H-smooth with respect to || - || and {x,}]_, be the iterates of SignGD
(Adam with 1 = B2 = 0) on L with initialization x( and learning rate n, it holds that

. L(xg) —minL  Hpy
< )y
min [IVL(2)ll, < Tn + 3

2(L(xp)—min L)

if we choose 1 = |/ 2EEGIND) hen ming i< [VE(2y)|), < |/ 2HEE-m L)

3.2 MAIN RESULT: RMSProp (31 = 0,32 € [0,1])

It is well-known that SignGD might not converge in the stochastic case as the expectation of descent
direction for mini-batch loss may not be a descent direction, and RMSProp is proposed to address
this issue by using a moving average of the squared gradient per coordinate to reduce the coor-
leation between the denominator and the numerator, thus making the expected update direction less
biased (Hinton et al., 2012). In this subsection we formalize the above intuition and show indeed
a positive [ in Adam helps convergence in the stochastic case. The main challenges here are from
both lower bounding the first-order term and upper bounding the second-order term in the modified
descent lemma (the counterpart of Equation 1 for RMSProp).

2

T Gt H , gt
L(xy) — L(xi—1) < = VI L W _Jt
() (@-1) < =V L(x) - €+ 27715 —

We can only upper bound H

gt
VUi+e€
between gradients in each step, which will greatly hurt the dependence of convergence rate on 1— (5.
However, even though the update at step ¢ for one specific coordinate ¢ can be as large as —— - with

some very large g, ;, the average moving speed for each coordinate should be close to 1. Therefore,
we introduce a slightly stronger definition in Definition 3.3, which allows us to decompose the
second order term into each coordinate according to Lemma 3.13. It also facilitates the analysis for
the coordinate-wise first order term. We note this definition also appears in Assumption 2.3 of the
concurrent work Maladkar et al. (2024).

Definition 3.3. For any H = (Hy,...,Hy) € R, we say a function L is H-smooth coordinate-
wisely w.r.t. {o, norm, iff for any i € [d}, ¢,y € R, |V;L(z) — V;L(y)| < H; |z — y| . -

2
. by ﬁ without more fine-grained analysis on the relationship

By definition, H-smoothness coordinate-wisely w.r.t. £, norm implies Z?zl H,; smoothness w.r.t.
£+ norm. We also need Assumption 3.4 to measure the influence of noise in stochastic setting.

Assumption 3.4 (Coordinate-wise noise). There exist constants o; such that
E(ViLi(x) — V;L(®))* < o7
foranyi € [d], t € Nand x € R

Due to the limitation of space, we only present the main result here. The sketch of the proof is pre-
sented in Section 3.4. We present the complete proof for the generalized blockwise Adam algorithm
in Appendix C. The proof incorporates some key steps from Li & Lin (2024), extending them to
accommodate the generalized algorithm and different smoothness assumptions.

Theorem 3.5 (Main, Adam). Let {L;}}]_, be independent stochastic losses satisfying Assumption 3.4
and that their expectation L is H-coordinate-wisely smooth w.r.t. £, norm. For Adam with 31 = 0,
we have that

T d
. 524
E|VL <O E+VEy| mrtpgsduo+ ) oi+d
%IEFSIT IVL(x:)||;, < T(1— B2) v ;U ve
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with

2

B = ZB[Le) - L)+ (1+ 72 ) (nZH + MZ%)

and

d
- (1 . Yoy 0 + [V L(zo) |12, + maxieq H2pPT(T + 32>>
Vg + €

We can determine the convergence rate of RMSprop by applying appropriate hyperparameters on

Theorem 3.5. The optimal hyperparameters 7 and /32 can be selected by minimizing E. We would

assume that vy + € > (Zle 0?2 + ||VL(zo)||%, + max; H?n?)/poly(T) and ﬁ = poly(T).

Then we can simplify the term by considering F' = O(log T).

1
The two terms involving 3%, o; have a lower bound © (Zf_l o (k’%T) ’ ), which can reached

byl —fpy =0 (10%) With this choice of 1 — [32, the three terms involving 7 has a lower

bound © <\/(L(m°)mmmTL(m)) i Hi) reached by n = © ( W) Such choices

of hyperparameters can give the optimal convergence rate for stochastic case in Corollary 3.6. For

convenience, we define R = (L(xo) — ming L(x)) Zle H;, which will be the core term in Corol-
laries 3.6 to 3.8.

Corollary 3.6 (Stochastic Case, general 7;). Let {L;}]_, be independent stochastic losses sat-
isfying Assumption 3.4 and that their expectation L is H-coordinate-wisely smooth w.r.t. {
norm. Forﬂl:0,1752:@(10%),6:0,77:6( W)andm>

i=1

(Z?Zl o2 + ||VL(zo)|%, + max; H?n?)/poly(T), we have that

d 1
R d’UO R\ *

min E =0 |t o |l=]) +

Jmin, Ellgl, T\ poty(@ T 2 (T)

Even though the leading term w.r.t. T in the rate is (10%T) its coefficient is Z _, 0;. It suggests

that the rate can be much improved when noise is small. Below we get the convergence rate with
the same hyperparameters in deterministic case in Corollary 3.7.

Corollary 3.7 (Deterministic Case, o; = 0). Let {L;}1_, be deterministic losses satisfying Assump-
tion 3.4 and that their expectation L is H -coordinate-wisely smooth w.r.t. £, norm. For 3, = 0,

1= = 0(%), e = 0.n =0 %) and v > (1, 0F + | VL(xo)||% +

max; H2n?)/poly(T) for any polynomial poly(T), we have that

dUO
min ||gt||1—0<\/ A 5oty (T )

However, when Zle o; = 0, we have that £ = ,%TE[L(-’EO) — L(zr)] +
772?:1 H; (1 + (127 lgg):;). Both F and the rate is a increasing function of 3. So we should
choose 2 = Oand n = © ( %) This will give the optimal convergence rate

of deterministic case in Corollary 3.8. If we compare it with Corollary 3.7, the rate obtained by
1—p=06 (%) is only slightly worse than the optimal rate.

Corollary 3.8 (Optimal Deterministic Case). Let {L;}_, be deterministic losses satisfying As-
sumption 3.4 and that their expectation L is H - c00rd1nate wisely smooth w.r.t. {, norm. For 1 =

0,62=0€e=0andn=0 ( %ﬁm), we have that minzr ;- llg:ll; = O ( %)
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Algorithm 3 Blockwise Adam

Hyperparam: [, 32, € > 0, block partition @ : [d] — [B], total steps T', learning rate schedule
{m¢}1_ 1, €, initial my, vo.
Input: initialization z, stochastic loss functions {L;}7_,
Vo,b < Vo
fort=1,2,---,T:
gti < ViLi(xi—1)
My < Bimu—1:+ (1 — B1)gei

Vb < Bovi_1p + (1 — P2) (ZB(i):b gtzl) /db

Mt 4

Ttq — Tt—1,4 — ntm

return x

Corollary 3.8 almost recovers Theorem 3.2, except the smoothness constant here
sup, |[V2L(2)||(1,1) is worse than that in Theorem 3.2, which is sup,, |[V?L(x) . because
it always holds that || - ||1,1 > || - ||co- This gap is due to a technical difficulty of analyzing Adam or
RMSProp, as mentioned in the beginning of Section 3.2.

Dependence on ¢, vy and 5.  While many previous works rely on the relatively large magnitude
of e compared to v; and give a bound in the regime of SGD when the adaptive effect is dominated
by the constant € (Zaheer et al., 2018; De et al., 2018), our result actually prefers e to be 0 while
maintaining the value of vy + €. We also note the dependence of our bound in Theorem 3.5 on vy is
very mild and logarithmic. Theorem 3.5 has similar convergence rates for all vy of magnitude at most
poly(T'), while most previous result only addresses the case where vy ; is at the scale of noise (Li
& Lin, 2024) or 0. The main reason for this adaptivity to a wide range of v is our specific choice of
Bo=1- @(%), which allows the initial large vy to decay fast and resume normal training. Other
existing results using 3, = 1 — O(1/T) (Défossez et al., 2022; Li & Lin, 2024) cannot allow large
initial value vy because vy only decays a constant fraction throughout the training and the effective
learning rate will be too small.

3.3 A UNIFIED ANALYSIS FOR BLOCKWISE Adam

In this subsection, we present convergence analysis for a broader class of adaptive algorithms de-
fined in Algorithm 3, which could be thought as a coarser version of Adam. It does pre-conditioning
blockwisely (specified by a partition function ® : [d] — [B] where B is the number of blocks)
instead of coordinate-wisely. Since Adam and AdaSGD can be viewed as special cases of blockwise
Adam (Algorithm 3) with ® 4oy : ¢ — ¢ and Pygasep : ¢ — 1 respectively, any convergence results for
Algorithm 3 would imply convergence of Adam and AdaSGD. Finally we also note that such block-
wise Adam has been recently studied empirically by some concurrent work, where the algorithm is
named by Adam-mini (Zhang et al., 2024b) and Adalayer (Zhao et al., 2024).

We first introduce more notations. dj, denotes |{i|® (i) = b}|, the number of parameters in block b.
We define the vector () as [;] s (;)—p and the submatrix A ) ) as [Aq j]a(i)=b,a(j)=b’-

Definition 3.9 (P-norm). We define the (00, 2)-norm w.r.t. partition ® of vector x as the £, norm of

the vector (||ai>2l”2> , which is maxy¢(p) % For convenience, we will denote it by || x||4
b=1

b
or just call it ®-norm. We denote its dual norm by ||x||s. ., which is equal to 25:1 Vdy H:B(b) H2

Definition 3.10 (Generalized version of Definition 3.3). For any partition function ® : [d] — [B]
and H = (Hy,...,Hp) € RB, we say a function L is H-smooth blockwisely w.r.t. ®-norm, iff for
anyb € [B], x,y € RY,

Vy |V L(z) = Vi Ly)||, < Hyllz — yllg

We further define the ®-smoothness of loss L by H(L,®) = 25:] H,, where {H,}E_, are the
smallest numbers making L H-smooth blockwisely in the above sense.

We note that the above defined blockwise ®-smoothness is both a generalization of the coordinate-
wise smoothness defined in Definition 3.1 (corresponding to the case of each block only containing
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1 coordinate) and the standard ¢ smoothness (corresponding to the case of only having one block).
In the former case, we have B = d, ®y4ay is the identity mapping ¢ — ¢ and it holds that H (L, i —
i) > Supgepa |[V2L(x H1 | = SUDgcpa | V2L(x || In the latter case, we have B = 1, ® 40500

is the mapping ¢ — 1 and H(L,i — 1) = dsupecga HVQL(w)HQ.

Similar to the coordinate-wise case, one can show that 25:1 Hj, w.r.t. partition @ is an upper bound
for the smoothness of loss L w.r.t. ®-norm.
Assumption 3.11 (Generalized version of Assumption 3.4). There exists constant oy, such that

E HV(b)Lt( ) =V L(z ||2 < dyo} for any block b € [B],t € Nand x € R

Theorem 3.12 (Main, Blockwise Adam). Under Assumption 3.11, suppose L is H-smooth block-
wisely w.r.t. ®-norm, where H = (H,, ..., Hg) € RB, for Algorithm 3, we have that

mlgTEZ\/»Hgt b)H2<E+\/7 T(164 )d\/i—‘erbUb-f—d\[
with
E-—F [L(xo) — L(r)] + (1 + el ) <772 Hy + /1= 5 Zdb0b>
nT T(1 -
and

Vo + €

B
o <1n <1+ S8 02 4+ | VL(@o)||2 + maxye g HPT(T + 2 m)))

(1,1)-norm as a surrogate complexity measure for H (L, ®p4ay). H; in Definition 3.3 is deter-
mined by sup,, Z?Zl V2, L(x)|,

over the entire domain. A computationally-tractable alternative is to approximate Z?zl H; locally
by the (1, 1)-norm of Hessian of loss along the training trajectory. We provide an efficient approx-
imation algorithm with guarantees by using hessian-vector product against random Cauchy vectors
in Appendix D.2.

Different norms for smoothness. As an implication of Theorem 3.12, we immediately get
analogs of Corollaries 3.6 to 3.8 for AdaSGD, with the corresponding new noise assumption and
smoothness assumption. When the optimization is not noise-dominated, i.e., the main term in the de-

terministic case \/g = \/ (L(wo)_min“‘TL(w))H(L’@) becomes the leading term, the choice of ® now

matters a lot. Here the biggest change from AdaSGD to Adam is the difference between H (L, ®pgasep)
and H (L, ®y4an), which roughly correspond to d sup,, ||VZL(x)||2 and sup, ||VZL(x) using
the above mentioned approximation.

Previous analyses of Adam’s convergence (Shi & Li, 2021; Défossez et al., 2022; Li & Lin, 2024)
usually assume smoothness under the /5 norm. When using this assumption, the resulting conver-
gence rate for Adam ends up being identical to the rate for AdaSGD, which fails to capture why Adam
often performs better than AdaSGD in practice. By shifting to an ¢/, norm smoothness assump-
tion, we can observe the key difference: the coefficient for Adam’s convergence rate changes from
dsup, ||[V2L(x)]|2 to sup, ||[V2L(x)||1,1, where the latter is typically much smaller when Adam
optimizes faster. This change leads to a divergence in the rates of the two algorithms, and compar-
ing these new coefficients can provide insight into which algorithm may be more effective under
different conditions.

Finally, we note that ®j4.,-smoothness H (L, ®p4ay) is not rotation-invariant in the sense that
H(L, ®pgan) # H(L 0o R, Ppaan) for a typical rotation R. In practice, the (1,1)-norm of Hes-
sian matrix can vary a lot when a rotation is performed on the loss as shown in Section 4.1. In
contrast, ®qasep-smoothness H (L, Ppgasep) is invariant under loss rotations.



Under review as a conference paper at ICLR 2025

(1,1)-norm/d | Loss (81 = 2 = 0) [ Loss (81 = 0.9, B> = 0.99)
AdaSGD 0.00582 0.00881 0.00172
Adam 0.00582 0.00030 0.00001
Adam (R1) 0.04162 0.00317 0.00062
Adam (Ro) 0.25364 0.00588 0.00122
Adam (R3) 0.61866 0.00747 0.00179
Adam (R4) 1.29959 0.00920 0.00239

Table 1: The final loss values obtained by different optimizers and the (1, 1)-norm of Hessian matrix
for the corresponding unrotated objective and rotated objectives. The spectral norm of the Hessian
matrix is always 1. Adam optimizes worse when the (1,1)-norm of Hessian matrix increases, as
suggested by our Corollary 3.7. Moreover, when (1, 1)-norm is smaller than spectral norm times
space dimension, Adam tends to optimize faster than AdaSGD and vice versa, which justifies the
effectiveness of ®-smoothness as a tool to predict the optimization speed of blockwise Adam.

3.4 PROOF SKETCH OF THEOREM 3.12

We start by considering the decrease of L(x;) in a single step ¢. By applying a Taylor expansion,
we can upper bound the second order term with Lemma 3.13 using the smoothness assumption.

Lemma 3.13. For any twice differentiable loss which is H-smooth block-wisely w.r.t. ®-norm (Def-
inition 3.10), we have for any x and A € R%, ATV2L(x)A < Ele ZI—: HA(Z,)H; )

Then we can get the decrease in a single step

B B B
9t.i9t.i 1 Hy ||9.0) Hz 9i.)91.0) ® 1 Hy ||9t.0 Hz
L £ :L‘ — _ = — -
() - 1) Z,/’th))—FE 2 Zd Vg € bg Uiy T € 2 bgd Vb + €
d
At each step, the second order term % can be as large as # But if we sum over all the
steps, we can employ Lemma C.1 to bound the sum by T" + 7 5 2 - In o, bf rather than ﬁ

The first order term has correlated denominator and nominator, making it hard to analyze its ex-

— 2
pectation. So we employ Lemma C.2 to replace it by 25—1 Min which 0, = Bovi_1p +
= V¢, pte€ ’ ’

(1-752) (Ilgt,@) H; Jdy + of) while sacrificing a constant factor and error terms related to noise
magnitude o;.

Finally, we employ Cauchy inequality to upper bound ||g.||4 ,

B
19¢ls., < ZH S dy/rp T e.

llge. ) Hz can be bounded from

2
We use Lemma C.3 to upper bound dy /v, + € by M Zb 1 ﬁ
Vt,b

analysis above, which finishes the proof.

4 EXPERIMENTS

In order to empirically investigate and confirm the implications of our propsosed theory, we compare
the training performance of Adam with AdaSGD, SGD and rotated Adam on multiple different tasks.
The details of performing rotation and computing matrix norms can be found in Appendix D.

4.1 QUADRATIC LOSS

We perform controlled experiments on quadratic loss to study the relationship between optimization

speed of Adam and the shape of Hessmn, in terms of ®p4.n-smoothness. More specifically, we

consider ¥ = diag(1,---,1,1, 5 27, 32 T ﬁ) € R1000x1000 apd optimize the corresponding
10

quadratic loss %wTZw by Adam, with different levels of rotations. We manually generate orthogonal

matrices R; in the following way. We first sample M € R%*? where M, ; is i.i.d. sampled from
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Figure 2: Training and test losses (left) and accuracies (right) of ResNet18 on CIFAR-10 with Adam,
AdaSGD, rotated Adam, and SGD. We use batch size 256 and the optimal learning rate in terms of
training loss from grid search. Solid and dashed lines correspond to the training and evaluation set
metrics respectively. Adam converges faster than other algorithms.

N(0,1). Then A = M — M is a skew-symmetric matrix and exp (¢.A) represents a continuous
family of matrices. We define R; = exp (¢;.A) for different ¢;. When ¢; = 0, we know R; = I.
When t; — oo, R; converges to a random orthogonal matrix in distribution.

Then we optimize Lo(x) = & ' S with AdaSGD and Adam and optimize L;(x) = o' R/ SRz
with Adam for 100 steps. Because AdaSGD is rotational invariant, the optimization performance of
AdaSGD is the same on all L;. We tune learning rates for each setting and present their best results
in Table 1.

We find a clear pattern that Adam optimizes worse when the (1, 1) norm of Hessian matrix increases,
as suggested by our Corollary 3.7. Moreover, when (1, 1) norm divided by dimension is smaller
than spectral norm, Adam tends to optimize faster than AdaSGD and vice versa, as suggested by our
Theorem 3.12.

4.2 GPT-2 ON LANGUAGE MODELING TASK

We train GPT-2 on the OpenWebText corpus containing more than 9B tokens for 100k iterations.
The training losses and evaluation losses of different optimizers are plotted in Figure 1. As men-
tioned in Section 1, Adam converges faster than AdaSGD while they both converge faster than
rotated Adam. Since we propose the (1,1)-norm of Hessian as a non-rotation-invariant metric
that can affect the convergence rate of Adam, we also measure it for original loss function L and
rotated loss function L on checkpoints trained with different losses. The results are presented in
Table 2. The same correlation between norms and convergence rates holds here. The smaller the
norm is, the faster the optimizer works.

AdaSGD Adam Rotated Adam
®-smoothness Expression H(L,®pgasep) | H(L, Ppaan) | H(L o R, Ppgan)
®-smoothness Estimation/d 24.86 3.2 36.16

Table 2: Hessian norms for the last GPT-2 checkpoints trained with different optimizers.

4.3 RESNETI18 ON CIFAR-10

To further test whether the correlation between ®-smoothness and the optimization performance
holds for architectures other than transformers, we conduct a similar experiment on ResNetl8
trained on CIFAR-10 (Krizhevsky, 2009). To do so, we first tuned each optimizer through searching
over a grid of learning rates with weight decay being fixed to zero. More details can be found in
Appendix D.3. Figure 2 depicts the loss and accuracy curves for the best performing hyperparame-
ters chosen over the training set’s final loss for batch size 256.> We also provide the results for other
choices of batch size in Table 4.

When it comes to optimization speed, even for ResNet18, Adam is always better than rotated Adam
and they are always better than AdaSGD and SGD across different batch sizes. Note that this does
not contradict with common practice of training ResNet with SGD, where the main goal is to get

2We have intentionally limited the number of training iterations to emphasize the difference of optimizers
in terms of training speed over generalization.
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AdaSGD Adam Rotated Adam
d-smoothness Expression H(L,®pgasep) | H(L, Ppaan) | H(L o R, Ppgan)
®-smoothness Estimation/d 1.5355 0.0036 0.9868

Table 3: Hessian norms for optimal ResNet checkpoints trained with different optimizers and batch
size 256.

better generalization and the training budget is large so all optimizers can easily achieve full training
accuracy. In our experiment, we study optimization speed and intentionally limit the number of
steps. We also measure the Hessian for checkpoints obtained at batch size 256 and the results are
in Table 3. The correlation between norms and convergence rates still holds here. When the (1, 1)-
norm divided by d is smaller than spectral norm, Adam optimizes faster than AdaSGD.

5 RELATED WORKS

Comparison between Adam and SGD Previous work tries to analyze the difference between
Adam and SGD from different perspectives. Zhou et al. (2018) proves a faster convergence rate of
Adam than SGD when the stochastic gradients are sparse. Zhang et al. (2020) suggests that SGD
suffers more from heavy-tailed noise than Adam. Pan & Li (2023) claims that Adam has lower
directional sharpness because of the effect of coordinate-wise clipping. Other works also consider
the coordinate-wise normalization of Adam (Balles & Hennig, 2018; Kunstner et al., 2022). Kunstner
et al. (2024) shows that the heavy-tailed class imbalance in language modeling tasks will cause SGD
to converge slower when it can only optimize majority class well. Zhang et al. (2024a) finds that
Adam is better at handling the block heterogeneity of Hessian matrix, which is a specific phenomenon
in transformers. When viewing Adam as an adaptive method, there are works showing that adaptive
methods have an advantage of achieving optimal convergence rate without relying on problem-
dependent constant (Ward et al., 2020; Levy et al., 2021).

Convergence Rate of Adam There are many works showing convergence rate for Adam (Zhou
et al., 2018; Chen et al., 2018; Zou et al., 2019; Shi & Li, 2021; Guo et al., 2021; Défossez et al.,
2022; Zhang et al., 2022b). Most of them rely on the smoothness of the loss function, which is
measured w.r.t. £ norm. Zhang et al. (2019) proposes the (Lo, L) smoothness condition should be
more reasonable than globally bounded smoothness. Li et al. (2024) further generalizes the (Lo, L1)
smoothness condition. However, they still focus on the default /2 norm which is rotation-invariant.
To the best of our knowledge, we are the first to assume gradient Lipschitzness under ¢, norm for
the analysis on Adam.

Comparison with Li & Lin (2024) Li & Lin (2024) employs the same ¢; norm for gradient and
improves the dependence on dimension d compared to previous results for /5 norm. But they still
assume the common ¢, norm smoothness while we adapt their results under ¢, norm smoothness
to potentially further improve dependence on d. Another drawback of Li & Lin (2024) is setting
v based on noise magnitude o. which is impractical in real experiments because o is unknown.
Overestimation for o will result in slow convergence because large vy causes Adam to behave simi-
larly with SGD without adjusting the coordinate-wise learning rate adaptively. In contrast, we allow
for general initialization for vy and our convergence rate can work well in both noisy setting and
deterministic setting. We also use 1 — 82 = © (log T'/T) to obtain our convergence rate while Li &
Lin (2024) requires 1 — 82 = © (1/7).

6 CONCLUSION

We give a new convergence analysis (Theorem 3.5) for Adam in the stochastic non-convex setting
using a novel smoothness assumption. We show the convergence rate for the 1-norm of the gra-

dient is O(ﬁ) in the deterministic case (Corollaries 3.7 and 3.8) and O(lTof/Z) in the stochas-
tic case (Corollary 3.6). We also extend our analysis to blockwise Adam on loss L with respect
to an arbitrary partition of the parameters ® (Theorem 3.12) using the corresponding smoothness
H(L,®) (Definition 3.10). Our bound for Adam involves (1, 1)-norm of Hessian, rather than the
operator 2-norm of Hessian, which is relevant to the convergence speed of AdaSGD. This leads to
significantly better smoothness conditions for deep learning models including ResNet-18 and GPT2
empirically. We also empirically verify that our smoothness measure H (L, ®) positively correlates
with the optimization speed of blockwise Adam with respect to the partition .

10
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A CONVERGENCE RATE OF SignGD FOR DETERMINISTIC LOSS

Proof of Theorem 3.2. We will directly prove a more general verion of Theorem 3.2. Because L is
H-smooth with respect to || - ||, we have that

H
L(wpy1) — L(wy) < =VL(2:) " (2 — 2441) + 5 llze = i)

2
H
< -0 IVL(@). + M
This implies that
T

) 1 L(zo) — L(xy) Hn

< — < 7Y Tl 7

iz, V2@, < 7 3 IVEG@, < =50 m =50 4
which completes the proof. O

B INVARIANCE PROPERTY OF ADAM AND SGD

Theorem 2.2. SGD and AdaSGD are rotation-invariant. Adam and SignGD are permutation-
invariant.

Proof of Theorem 2.2. For SGD and AdaSGD, we will show they are rotation-invariant by induction.
For any rotating transformation R(x) = Rz, suppose &, = R~ !(xs) = Rz holds for s < t—1.
Then we have that g; = V@Et(it) =R'V,L(R'%_1)=R"V L(x; 1) = R"g; and m; =
RT"m,. From the update rule of SGD, we have that &; = ;1 — pym; = R' @,y — R "m,; =
R"(xz;_y — nym,) = R"x,. For the update rule of AdaSGD, we further have that ||§t||§ = ||gf||§
because R is an orthogonal matrix. Then v; = v, and the derivation is similar.

For Adam and SignGD, it is easy to show by induction they are invariant w.r.t. any permu-
tating transformation because the operation on gradient is performed on each coordinate sepa-
rately. We only need to show they are not invariant w.r.t. a rotating transformation. We choose
R = [%, %; %, —%], Li(x) = L(x) = 2z% + 22. Due to the update rule of SignGD, it can
only update  and & in the direction of [1,1] and [1, —1]. But when rotating the update direction
on & back to the space of . The update direction can only be [1, 0] or [0, 1] that are different from
the update direction in the original space. Because the first step in Adam takes the same direction in
SignGD, we simultaneously show that both SignGD and Adam are not rotation-invariant. O
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C PROOF DETAILS

C.1 PROOF FOR CONVERGENCE RATE OF BLOCKWISE ADAM

We also need new notations and different assumptions for specific partition ®(-). For specific block
b, (b) is defined as ®~1(b) = {i|®(i) = b} and dj, = #(b), the number of parameters in block b.

As mentioned in Section 3.4, we will use Lemma 3.13 to bound the second order term under smooth-
ness Definition 3.10 and use Lemma C.1 to better control the growth of the sum of second order term.

Lemma 3.13. For any twice differentiable loss which is H-smooth block-wisely w.r.t. ®-norm (Def-
inition 3.10), we have for any x and A € R%, ATV2L(x)A < Zle ZI—: ||A(b) Hz )

Proof of Lemma 3.13. From Definition 3.10, we know that
f”V b)L w+A) V(b (SC)H2

Hy > sup
®,A maxy (s HAU;')H
b/
vy |V L@a,
= sup
z,A & wnll,
maxb,e[B] \/@
B
Vdy HZb’:l v%b),(b/)L(w)A(b’) 5
= sup
z,A max 2wl
b e[B] W
\/>< Zb’ 1 b)(b’)L( )A(b’)>
= su
N [20 [,
* || <b>“ maXy e [B] &

B
= sup \ db <A2b)’ Z v%b)7(b/)L($)A(b/)>

v a,[,<t v=1
B
Sup vy (Al Vi o L@ A )
TAA =) HA(b)H [Aw |,
Then for any « and A, we know that
H, 2 Hz Vdy/dy 2
Zoa Ay, V2 o L(@) Ay
d H (b)Hz = bz:l HA(b H2 HA(b’) 2< (b)Y (b),(b") (x) (b)>
B
= 2:: f’|A o < ) Vi, o) (w)A(b/)>
and
B
H
2> 5 180
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B
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The last inequality comes from mean inequality. O

Lemma C.1. Given any 0 < [5 < 1, suppose scalar sequences {vi}1_, and {g;}}_, satisfy that
vo > 0,v1 > 0and vy — Bavy_1 > (1 — B2)g? fort > 1. It holds that

vy — Bovi_1

1- 52)%&

2

Next we deal with the first order term by approximating it with a deterministic term. Here we need
some new notations. Recall that g; denotes the gradient of mini-batch L;(x;_1) at step t. And
E [g¢|xi—1] = VL(a;—1) because EL; = L. The full-batch gradient is g; = VL(x;_1). Different
kinds of second-order momentum are defined in the following way.

t—1
v = B lgn s /o + (0= 82 3 83 (lov—so[3) /o
j=0

oo = (1= B2) ([|Ge.w) 15 /do + 02) + Bavr-1s

Lemma C.2 (first-order approximation, no momentum).

T _
C9iGei 1 dpop B2 { vy + e]
E > -E 1 — BTd E (In — .
Z 2. Vs e 2 2 ./vtb+e V1= BTy - VI3 | vop+e

t=1 &(i)=b t=1 ®(i)=b
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Proof of Lemma C.2. The first order change can decomposed into two terms.

T _ T _ _
9t,igt,i _9t,i9t,i iGti 9t,i9t,i gt,i9t,i
k) k) _E ) )
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For the second term, we have that
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conditional on x,_;. For the second term, we have the following inequality
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The first inequality comes from Assumption 3.4. The second inequality is because ¢ norm is a
convex function. Then we know that
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Then back to Equation 3, we have that
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For the second term, we can apply Lemma C.1 and get that
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Next we need Lemma C.3 to deal with the denominator in the approximated first order term. The
lemma is largely inspired by Lemma 6 in Li & Lin (2024), where we further generalize it to the case
of block-wise Adam.
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Lemma C.3. Forany b € [B], it holds that
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Proof of Lemma C.3. Foreacht < T, we have that
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and
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This following Lemma C.4 is to control the growth of v 5, so that the right hand side in Lemma C.1
is indeed © ( logT) instead of ©(T") when all the constants are poly(T').

Lemma C.4. Forany T, it holds that
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Proof of Lemma C.4. From the definition of v; ; and Assumption 3.4, we have that
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We define C' = vg + 2 Zb:l o} +4maxye(p HV(b)L g H2 /dp for simplicity. From Lemma C.1
and Cauchy inequality, we know that
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The last inequality comes from Inz < Z. Then we can get that
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Finally, we give the proof for Theorem 3.12. When ®(i) = i, i.e., each parameter forms a single
block, it becomes the proof for Theorem 3.5.
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Theorem 3.12 (Main, Blockwise Adam). Under Assumption 3.11, suppose L is H-smooth block-
wisely w.r.t. ®-norm, where H = (Hy, ..., Hg) € RE, for Algorithm 3, we have that
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and C' = vy + QZb L 07 + Amaxpe g ||V vy L(o H2 /dp. One can show that
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D EXPERIMENT DETAILS

D.1 TRAINING ADAM ON A ROTATED LOSS

A key difficulty in implementing rotated Adam arises from applying an orthogonal rotation on the
parameters before calculating the loss. It is computationally infeasible to apply a 125M x 125M
orthogonal matrix on the 125M-sized parameter vector. To avoid such computation, we design a
new orthogonal transformer to rotate the parameters of the network. In what follows, we elaborate
on this rotation.

RandPerm. Given a vector v of size d, we can orthogonally rotate it by repeatedly applying these
consecutive operations: 1. Permute the entries of the vector according to a randomly chosen permu-
tation m € Sy. 2. Reshape the permuted vector into a 3D tensor of size [s1, $2, $3], apply a fixed
orthogonal rotation of size s X s on each side of the tensor and then reshape it back to a vector of
size d.

This operation performs an orthogonal transformation R on the input vector v. We can chain mul-
tiple operations of this kind and construct RandPerm®, where k is a positive number indicating the
number of consecutive RandPerm s applied. Building upon this rotation, we train GPT-2 125M with
Adam on L o RandPerm? to analyze our hypothesis regarding the /., geometry of the loss landscape
and to verify that Adam will indeed suffer from the induced orthogonal equivariance. Figure 1 con-
firms our findings, as the performance of rotated Adam with RandPerm? is significantly worse than
Adam. This suggests that Adam is highly sensitive to the rotation and adaptivity alone can’t explain
its advantage.
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D.2 COMPUTATION OF MATRIX NORMS

It is impossible to get the full Hessian matrix and directly compute norms of it. We can only leverage
Hessian vector product function in pytorch to probe the Hessian matrix. The estimation of spectral
norm is done by power iteration. The estimation of (1, 1)-norm relies on the properties of Cauchy
distribution. Given a = [a, - ,a,] and i.i.d. standard Cauchy variables X1, -+, X,, >0 | a; X;
is Cauchy distributed with location 0 and scale > .-, |a;|. For a single value Cauchy distribution
with location 0 and scaling -, an estimator for ~ is the median of the absolute values of all the
samples.

Therefore, we propose Algorithm 4 to estimate the sum of absolute values for each row and sum
over all the rows to get (1, 1)-norm of Hessian matrix. We choose n = 50 for all the measurement
experiments. We also prove a concentration inequality in Theorem D.1.

Algorithm 4 Estimation of (1, 1)-Norm of Hessian, V2L (6)

Input: Number of Cauchy vectors n, parameter § € R¢, loss L
1: fori=1—>n:

2:  Sample a independent Cauchy vector v(*) € R? where vj(i) - Cauchy(0,1) forj =1,...,d.
32 H.; + VL) -v® (Using hessian-vector product)
4: return Z?zl median(abs(H; .))

Theorem D.1. For the estimate in Algorithm 4, it holds that
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Proof. We first prove a concentration inequality for M, = median(|X1],- - ,|X,|) in which

X, X, i1d Cauchy(0, 1).

Given X ~ Cauchy(0, 1), the cumulative distribution function of |X| is F(z) = Zarctan(z) and
the median of | X| is 1 because F'(1) = 0.5. For a fixed § € (0,1), define p; = Zarctan(1 — §) to
be the probability that | X | is smaller than 1 —d and S = )" | 1x,|<1-s- Since 1| x, <15 follows
i.i.d. Bernoulli distribution with p;, S ~ Bin(n, p;).

M, <1 — ¢ if and only if at least "7“ X;’s are smaller than 1 — §. And we can apply Hoeffding’s
inequality on S and get that
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With similar derivation, we can also get that
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SGD | AdaSGD | Adam | Rotated Adam
Batch size 16 0.0777 0.114 0.064 0.0905
Batch size 64 0.0698 0.0854 0.0472 0.0574
Batch size 256 0.0723 0.0787 | 0.0359 0.0485
Batch size 1024 | 0.1115 0.0915 0.0735 0.0817

Table 4: Training losses of ResNet for different optimizers and different batch size. For each setting,
we choose the optimal performance over all the learning rates.

because the derivative of arctan(z) is always greater than £ for 2 € (0,2). Then we can have that

P(IM, — 1] > 6) < 2exp (— 22”2 52).
ﬂ'

i

When of’ " Cauchy(0,1), it holds that Hj, = V?L(§);. - v follows
Cauchy(0, Y0 _, |V2L(6);|). We can have that
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And we can sum the tail probability over all the rows j and get that
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D.3 TRAINING DETAILS

In Adam and its variants (including AdaSGD) the momentums were set to 81,82 = (0.9,0.99).
Momentum in SGD was also set to 0.9. Weight decay is always deactivated.

For the ResNet experiment, we applied random crop and random horizontal flip augmentations over
the training data to promote better generalization. We tuned each optimizer through searching over
the same grid of learning rates® The number of iterations is adjusted per batch size to result in 20
epochs for each training run (for instance, 4000 iterations were used for a batch size of 256, and
1000 iterations were used for a batch size of 1024).

We didn’t tune learning rate for GPT-2 experiment and just used the same peak learning rate of 6 x
10~ for all optimization methods except SGD, for which we did a grid search to find the maximum
possible peak learning rate.

3We used the following values: 6.25x 1074, 1.25x 1073, 2.5x1072,5.0x 1073, 1.0x 1072,2.0 x 1072,
40x1072,80x1072%,1.6 x 107*,3.2x 1074, 6.4 x 107*, 1.28 x 10°.
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