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Reference Image Target Scene OursPlug-n-Play IGS2GS GaussCtrlFigure 1: Comparison of 2D and 3D image-based texture editing methods. Prompts are "moss-
covered table" and "pink plastic bear". 2D methods Plug-n-Play [36] suffers from view inconsis-
tency problem; 3D text-driven editing methods IGS2GS [37] and GaussCtrl [41] struggle to preserve
texture characteristics. Ours faithfully edit the texture, material appearance, and color.

Abstract

Image-based 3D texture transfer from a single 2D reference image enables practical
customization of 3D object appearances with minimal manual effort. Adapted 2D
editing and text-driven 3D editing approaches can serve this purpose. However, 2D
editing typically involves frame-by-frame manipulation, often resulting in incon-
sistencies across views, while text-driven 3D editing struggles to preserve texture
characteristics from reference images. To tackle these challenges, we introduce
3DOT, a 3D Gaussian Splatting Object Texture Transfer method based on a sin-
gle reference image, integrating: 1) progressive generation, 2) view-consistency
gradient guidance, and 3) prompt-tuned gradient guidance. To ensure view con-
sistency, progressive generation starts by transferring texture from the reference
image and gradually propagates it to adjacent views. View-consistency gradient
guidance further reinforces coherence by conditioning the generation model on
feature differences between consistent and inconsistent outputs. To preserve texture
characteristics, prompt-tuning-based gradient guidance learns a token that describes
differences between original and reference textures, guiding the transfer for faithful
texture preservation across views. Overall, 3DOT combines these strategies to
achieve effective texture transfer while maintaining structural coherence across
viewpoints. Extensive qualitative and quantitative evaluations confirm that our
three components enable convincing and effective 2D-to-3D texture transfer. Our
project page is available here: https://massyzs.github.io/3DOT_web/.
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1 Introduction

Transferring texture from a 2D image to a 3D object is a valuable yet underexplored capability in 3D
editing. It enables efficient texture manipulation and benefits applications such as virtual reality, CG
films, and 3D games [2, 31, 40, 23, 28, 39, 34, 5]. Despite advances in 2D texture and 3D editing
techniques, transferring texture from a single 2D image to a 3D object remains challenging due to
difficulties in ensuring view consistency and preserving texture characteristics, particularly for unseen
views beyond the reference image.

2D image-based editing methods [36, 46, 25, 32, 14, 51, 24, 42] perform texture transfer by finetuning
a diffusion model (e.g., DreamBooth [30], Textual Inversion [13]) and editing images rendered from a
3D object to create a finetuning dataset. The resulting 3D object often suffers from view inconsistency
and identity loss due to the absence of constraints enforcing multi-view coherence and identity
preservation, as shown in Figure 1. 3D editing methods [15, 37, 9, 41, 8, 27, 6], especially text-driven
ones, guide editing using prompts derived from reference images via visual language models or
manual descriptions. However, these prompts are typically coarse and miss fine-grained features,
resulting in identity mismatch and inconsistent appearance across views.

Motivated by these challenges, we propose 3DOT, a novel framework for transferring texture from
a single 2D reference image to a 3D object represented by 3D Gaussian Splatting [21]. 3DOT
comprises three key components: 1) a progressive generation process, 2) view-consistency gradient
guidance, and 3) prompt-tuning-based gradient guidance. The first two components enforce view
consistency, while the third preserves texture characteristics.

In the progressive generation process, we first obtain reference images either by directly pasting
the reference image onto the 3D object or by generating candidate views using a depth-conditioned
model [47] based on the unedited view’s depth. The image that best matches the target attributes is
then selected. To facilitate prompt tuning and sparse cross-attention, we remove backgrounds from
both the unedited training images and the reference images, and project them into the latent space for
k-step partial diffusion. The generation begins from the reference view and progressively propagates
to neighboring views, guided by sparse cross-attention on previously edited views. This strategy
maximizes overlap between adjacent reference images to enforce view consistency.

To enhance view consistency in 3D editing, we introduce view-consistency gradient guidance. The
core idea is to guide the diffusion model toward view-consistent generation by minimizing texture
inconsistency features in intermediate outputs. Specifically, we initialize two diffusion modules: one
conditioned on reference views via cross-attention, and the other guided only by a text prompt. Since
cross-attention is the only differing component, the discrepancy between their intermediate results
captures view-consistency features. During each denoising step, these features are scaled and injected
as gradient guidance, steering the generation toward consistent outputs across views.

Since the reference image reveals no texture for unseen views, coarse text prompts often lead to
inconsistency. To overcome this, we propose prompt-tuning-based gradient guidance that captures
texture differences as additional prompt tokens. Specifically, we compute the difference between
reference and unedited images in the CLIP feature space [11], encoding the texture transformation
direction. This signal is injected into the diffusion denoising process as gradient guidance, enabling
consistent texture transfer across views. The fine-tuned prompt improves style coherence in unseen
views while preserving details in the reference view.

We evaluate our method on the face-forwarding [38] and 360-degree [3] datasets. Results show effec-
tive texture transfer with fine detail preservation and strong view consistency. Our key contributions:

• 3DOT, an image-based 3D Guassian Splatting (3DGS) texture transfer framework that
enables efficient and flexible texture editing.

• A progressive generation process with view-consistency gradient guidance to address view
inconsistency across novel views.

• Prompt-tuning-based gradient guidance preserves texture characteristics in seen views and
enforces style consistency in unseen views.

• Extensive experiments demonstrate that 3DOT achieves state-of-the-art visual quality and
quantitative performance.
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Figure 2: 3DOT. Our framework enables texture transfer from a single image to a 3D object. The left
panels illustrate the selection of the reference image using a generative approach. Then, our method
employs a progressive generation process guided by view-consistency and prompt-tuning-based
gradient guidance to preserve both cross-view consistency and texture identity. R, T, and T′ denote
the reference set, text prompt, and learned texture difference token, respectively.

2 Related Work

2D Diffusion-based Editing DragDiffusion [32] defines target edits using keypoints and replaces
them with reference images. A-Tale-of-Two-Features [46] combines dense DINO [7] features and
sparse diffusion features by merging reference-view semantics with target-view structures. Plug-
and-Play [36] refines fine-grained details by injecting diffusion features into DINO features, while
DiffEditor [25] improves 2D editing precision via differential equation-based sampling with regional
gradient guidance. The most relevant work, SwapAnything [14], leverages DreamBooth [30] and
AdaIN [19] to encode source images and maintain style consistency during 2D edits. Although
effective for image editing, these methods operate on individual views without enforcing view
consistency, highlighting the need for 3D-aware texture editing techniques.

3D Editing Most 3D editing methods leverage 2D diffusion models for guidance and adopt
dataset-updating strategies to finetune pretrained 3D scenes. Instruct-NeRF2NeRF [15] and Instruct-
GS2GS [37] use instruct-pix2pix [4] to guide updates for NeRF or Gaussian Splatting. GaussianEdi-
tor [9] introduces hierarchical representations for more stable edits under stochastic guidance. Direct
Gaussian Editor (DGE) [8] addresses view consistency via epipolar cross-attention, but its initial
independent generation introduces artifacts. GaussCtrl [41] injects features from unedited views
to preserve consistency, but this can cause the diffusion model to retain original textures, limiting
editability. StyleSplat [20] achieves texture edits without a generative model but requires altering the
3D representation, which falls outside our setting of editing a fixed 3D object using a single reference
image. Methods that ignore view consistency [15, 37, 9] can be extended with image captioning,
while consistency-aware approaches [8, 41] can inject latent reference features during denoising.
However, such modifications offer only coarse control. High-quality, identity-preserving edits require
more precise and targeted designs.

3 Proposed Method

Fig. 2 illustrates our 3DOT pipeline, consisting of three key modules: 1) a progressive generation
process, 2) view-consistency gradient guidance for enforcing texture coherence across different views,
and 3) prompt-tuning-based gradient guidance for preserving object identity.

To obtain the reference image, we either generate depth-conditioned candidates or extract textures by
directly cropping texture into object shape in a certain rendered view. In the generative approach,
users select the candidate that best matches the desired attributes. In the texture-based approach,
extracted textures are directly mapped onto the object surface. Following [41], both reference and
unedited images are encoded into latent space to initialize the denoising process. We then apply
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prompt-tuning to capture texture differences between the reference and the 3D object, guiding
diffusion to preserve identity. Edited views are progressively generated, starting from the reference
view. The resulting dataset is utilized to finetune 3D Gaussian model and the above procedure is
iteratively conducted [15] for smooth results.

3.1 Progressive Generation

Existing methods [15, 37, 9, 41, 8] struggle to balance view consistency and editing flexibility. For
example, GaussCtrl [41] conditions diffusion on unedited images to enforce consistency but often
retains original textures, limiting editability. DGE [8] avoids reliance on unedited inputs but edits
non-adjacent views, introducing inconsistencies.

To overcome these limitations, we propose a progressive generation process that removes dependency
on unedited images and avoids isolated generation steps, achieving both consistency and flexibility.

We first generate reference images by conditioning a generative model on depth maps with background
masking to ensure geometric alignment. To improve quality, we refine depth maps using dilated
and blurred masks to address black-edge artifacts and apply the original mask to remove redundant
content from the outputs.

For a selected reference view τ and target view Ii, we construct a sparse reference set Ri =
{Iτ , Ii−1,F(I)τ}, excluding backgrounds. Including Ii−1 maintains local consistency via minimal
angular changes. As edits propagate to distant views, errors accumulate. For symmetric case, we
can include F(I)τ , a horizontally flipped variant of the reference, to preserve alignment with fewer
conditioning views.

The generative model is conditioned on R using weighted fused cross-attention:

WeightedAttne = λAttne,e + (1− λ)
∑
i∈R

wiAttne,i, (1)

where e denotes the image that is currently editing, Attni,j denotes the attention score between
images i and j, and λ balances self- and cross-attention.

Partial denoising (Eq. 3) begins with the reference view and progressively extends to adjacent views.
These edited, view-consistent images are then used to finetune the 3D Gaussian model, and the
process is repeated iteratively.

3.2 View-Consistency Gradient Guidance

Existing generative methods [47, 45, 30, 13] rely on many reference views to maintain consistency.
In contrast, our progressive generation begins with a single reference and uses only a few views. To
enhance cross-attention effectiveness under this constraint, we propose a consistency-aware gradient
guidance mechanism inspired by classifier-free guidance [16], modifying the noise estimate [16] to
amplify cross-view signals without additional training.

Given a target view Ii and reference set Ri = {Iτ , Ii−1,F(I)τ} (as in Sec. 3.1), we define the
denoising prediction as:

ϵtθ(zλ,T,R) = ϵt
θ̂
(zλ)

+ wT
(
ϵtθ(zλ,T,R)− ϵtθ(zλ,R)

)
+ wR

(
ϵtθ(zλ,T,R)− ϵt

θ̂
(zλ,T)

)
, (2)

where T is the text prompt, θ and θ̂ refer to diffusion with and without fused cross-attention, and
wT, wR are scaling factors.

We perform partial denoising as:

z(t−1|κ) =
√
αt−1|κ

zt|κ −
√
1− αt|κ · ϵt|κθ (z,T,R)

√
αt|κ

+
√
1− αt−1|κϵ

t|κ
θ (z,T,R), (3)
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Unedited Scene IN2N [15] IGS2GS [37] GaussCtrl [41] DGE [8] Ours Reference Image

(a) Prompt "A golden metallic bear"

(b) Prompt "A white table"

Figure 3: Qualitative comparison on 360-degree scenes (material and color edits): Our 3DOT method
faithfully edits 3D objects’ texture based on reference images.

where t ∈ [0, κ], κτ < κi̸=τ , and α is the DDIM scheduler coefficient. The latent input zt is
initialized via:

zt+1 =
√
αt+1

zt −
√
1− αt · ϵt√
αt

+
√

1− αt+1ϵ
t. (4)

In Eq. 2, the second term reflects differences between guidance with and without the unconditional
prompt [16], improving adherence to textual instructions. The third term captures variations induced
by reference conditioning, and amplifying it strengthens view consistency. This gradient-based
mechanism guides generation toward coherent multi-view results, enhancing consistency without
additional training overhead.

3.3 Prompt-Tuning-Based Gradient Guidance

Text prompts provide only coarse control during diffusion, often leading to identity loss and inconsis-
tent texture fidelity. For example, the phrase “stone bear” may yield highly variable textures across
different generations. These coarse text descriptions result in view-inconsistent generations and
further cause 3D inconsistency.

Among fine-tuning methods [30, 45, 17, 13], textual inversion [13] learns a custom token to represent
object-specific textures but requires multiple images to achieve reasonable quality (see supplementary
for single-image results).

To address this, we introduce prompt-tuning-based gradient guidance, which reduces the need for
multiple images while encoding texture differences more effectively. The key idea is to learn a new
token that captures the texture discrepancy between the unedited 3D object and the reference image,
and to use this token to guide denoising toward the desired style.

Given the reference image Iτ and its corresponding unedited rendering Îτ , we compute the texture
difference in CLIP feature space:

∆Îτ→Iτ = CLIP(Îτ )− CLIP(Iτ ). (5)

We initialize the text token T̂ using a base prompt (e.g., from a VLM), and optimize it by aligning
with the texture difference via:

Lclip = cosine(∆Îτ→Iτ , T̂). (6)

To reduce misalignment between image and text representations in CLIP space, we apply further
prompt tuning in the diffusion feature space, following [26]:

Ldiff = ϵθ(zλ,T′,R)− ϵ′θ(zλ,T′,R). (7)
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Metrics IN2N IGS2GS GaussCtrl DGE Ours
CLIP Score ↑ 0.8917 0.8908 0.8638 0.8572 0.9333
Lpips(Alex) ↓ 0.1708 0.1683 0.1692 0.1713 0.1166
Lpips(VGG) ↓ 0.1676 0.1594 0.1591 0.1603 0.1247
Vision-GPT ↑ 45.5 52 48 54 76
User study ↑ 2.0375 2.4375 2.3750 2.0000 4.5750

Table 1: Quantitative results evaluated by CLIP score, VGG-based and Alex-based LPIPS scores,
Vision-GPT and user studies given reference image with rendered edited objects. Bold text refers to
the best performance and underlined text refers to the second best performance. Detailed results can
be found in Supplementary Material Section 2.

The fine-tuned token T′ acts as a style-aware prompt enriched by texture differences. While not
meaningful in textual form, it encodes critical style information for guiding generation. During
inference, we extract and amplify this information at t-step via the difference:

ϵtθ(zλ,T′,R)− ϵt
θ̂
(zλ,T,R),

and integrate it into the denoising process. The final prediction becomes:

ϵtθ(zλ,T,R,T′) = ϵt
θ̂
(zλ)

+ wT
(
ϵtθ(zλ,T,R)− ϵtθ(zλ,R)

)
+ wR

(
ϵtθ(zλ,T,R)− ϵt

θ̂
(zλ,T)

)
+ wT′

(
ϵtθ(zλ,T′,R)− ϵt

θ̂
(zλ,T,R)

)
. (8)

This term strengthens style consistency across views while preserving fine texture details aligned
with the reference.

4 Experiments

We compare our method with state-of-the-art text-driven editing approaches, including GaussCtrl [41],
DGE [8], IGS2GS [37], and IN2N [15]. Since these methods rely on text inputs, we use captioned
descriptions as editing prompts to enable image-based 3D texture editing functionality. For quan-
titative evaluation, we employ AlexNet-based [22] and VGG-based [33] LPIPS scores [48], CLIP
score [29], and Vision-GPT score [1], supplemented by user studies. Comparisons are conducted
across multiple scenes from different datasets to ensure a comprehensive assessment following [41].

4.1 Evaluation

Quantitative For each edit, we compute AlexNet-based and VGG-based LPIPS scores, CLIP score,
Vision-GPT score, and conduct user studies, as summarized in Table 1. Detailed per-scene scores
are provided in the supplementary material. LPIPS and CLIP scores serve as perceptual evaluation
metrics, measuring feature similarity between rendered edited objects and reference images. LPIPS
ranges from 0 to 1, with lower values indicating better perceptual quality, while higher CLIP scores
are preferred. Vision-GPT assesses the faithfulness of edited textures from the reasoning perspective,
scoring from 0 to 100, where higher values indicate better alignment. For user studies, participants are
informed of the edited object and required to rate the 3D result on a scale of 1 to 5, with higher scores
reflecting better quality. Quantitative results show that our method achieves the highest performance
across all metrics.

Qualitative We present qualitative results of 360-degree dataset in Figs.1, 3 and 4. Figs.3 and 3
includes reference images with texture color or material variations, while Fig.4 features those with
complex textures and significant semantic changes. Fig.5 shows the results of "face-forward" case.
Our method enables more precise 3D object editing without unintended texture leakage between
objects. In the 360-degree color and material editing scenario (e.g., bear and table), IN2N [15] and
IGS2GS [37] suffer from incorrect color saturation and inaccurate material representation. In the
bear scenarios (Fig.1, 3a), their results are undersaturated, whereas in the table scenarios (Fig.3b, 1),
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Unedited Scene IN2N [15] IGS2GS [37] GaussCtrl [41] DGE [8] Ours Reference Image

(a) Prompt "An ice frozen horse"

(b) Prompt "A horse on fire"

(c) Prompt "A lego dinosaur"

(d) Prompt "A wooden dinosaur"

Figure 4: Qualitative comparison on 360-degree scenes (complicated texture edits): Our 3DOT
method successfully edits 3D objects’ texture to complicated reference textures.

Unedited Scene IN2N [15] IGS2GS [37] GaussCtrl [41] DGE [8] Ours Reference Image

(a) Prompt "A person with hawk person"

(b) Prompt "A person with Hulk face"

Figure 5: Qualitative comparison on face-forwarding scenes: Our 3DOT method faithfully edits 3D
objects’ texture to reference textures and generates the most plausible texture edits for unseen views.

they are over-saturated. None of the baseline methods accurately reproduces the intended material
attributes (i.e., plastic, moss in Fig. 1 and metallic in Fig. 3a). GaussCtrl [41] excessively preserves
the original 3D object’s appearance, resulting in minimal modifications due to its unedited reference
set. Our method effectively edits textures while achieving realistic material appearances, such as
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Ours Ref. Image

(a) Performance when set wT′ and wR to 0.

Ref. Image 2Ref. Image 1View 2View 1

(b) Using Ref.1 for prompt-tuning guidance and Ref.2 as reference image

Figure 6: Ablation studies on proposed two gradient guidances.

specular highlights on the bear and the lush, velvety moss on the table. In moss-covered table scenario
(Fig.1), all 3D baseline methods only attempt to edit texture while ours can also modify geometry to
better match the "moss material".

In the large semantic change editing scenario (Fig.4), baseline methods struggle with significant
transformations. DGE [8] often fails, as its edits remain nearly unchanged. Its initial independent
editing stage leads to inconsistent results and further causes the epipolar attention mechanism to
break down in highly dissimilar views, resulting in minimal overall changes. Our method achieves
precise 3D object editing with a texture style that closely matches the reference image, enabled by our
proposed prompt-tuning, consistency guidance, and progressive process. Prompt-tuning preserves
intricate texture details, while consistency guidance and progressive generation mitigate blurriness
from view inconsistency.

In the face-forward case (Fig.5), our method preserves fine details, such as the black lower eyelid
and feather-like cloth in the hawk scenario (Fig.5a). IN2N [15] and IGS2GS [37] generate erroneous
results due to their independent diffusion process and full diffusion steps. The independent generation
process leads to inconsistent images, while full diffusion steps cause excessive texture changes
and identity loss. Finetuning NeRF with these inconsistent and identity-lost images can result in
network collapse. For GaussCtrl [41] and DGE [8], particularly in the hawk case, large texture
differences break their view-consistency mechanisms, resulting in outputs that retain the original
object’s appearance instead of the intended modifications.

4.2 Editing Speed

We compare the editing time of our method with two baselines: the Gaussian Splatting model
(GaussCtrl [41]) and a representative NeRF-based model (IN2N [15]). GaussCtrl requires 15min
47s, while IN2N takes 20h 51min 20s. Our approach preserves the efficiency advantage of Gaussian
Splatting, with an editing time of 23min 33s, introducing only a modest additional overhead from the
incorporation of view-consistency and prompt-tuning-based guidance. In particular, the additional
time required by our guidance components is approximately 8min in total. Since our full pipeline
typically involves two iterations of image editing, the added cost per iteration is about 4min. We
consider this overhead efficient given the improvements in texture fidelity and view consistency
achieved by our method.
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Ablation LPIPS (Alex)↓ LPIPS (VGGT)↓ CLIP Score↑
W/O prompt-tuning (Sec.3.3) 0.0355 0.0679 0.9203
W/O consistency (Sec.3.2) 0.0558 0.0844 0.9340
W/O Prog. Gen. 0.1330 0.1290 0.9160
Ours 0.0351 0.0620 0.9445

Table 2: Ablation studies: Performance evaluation when removing (1) prompt-tuning guidance, (2)
view-consistency guidance, and (3) progressive generation mechanism.

4.3 Ablation Studies

We evaluate the effectiveness of prompt-tuning-based gradient guidance and view-consistency gradi-
ent guidance from both qualitative and quantitative perspectives. We further illustrate the effectiveness
of prompt-tuning-based guidance by using two distinct images: one serving as the reference image
during image generation, and the other as the reference for prompt tuning.

Prompt-tuning based Gradient Guidance We first evaluate the effect of removing prompt-tuning-
based guidance by setting the guidance scale wT′ = 0, as shown in Table 2 and Figure 6a. Without
this guidance, the rendered images exhibit blurry surface highlights, and the distribution direction
does not align with the reference image.

Additionally, we demonstrate the effectiveness of prompt-tuning guidance by using a prompt token
trained on reference image Ref-2 to edit the 3D object and setting Ref-1 as the target reference, as
illustrated in Figure 6b. Ref-2 depicts a bear characterized by sharp metallic edges, whereas Ref-1
shows a bear with a rusted metallic texture. In Figure 6b, View-1 aligns closely with Ref-1, producing
a rendering that closely matches the rusted metal appearance, which demonstrates the effectiveness of
the utilized fused cross-attention. Conversely, View-2, which represents an unseen viewpoint without
explicit texture guidance, utilizes the learned token to guide the rendering towards the "colorful
metallic bear" appearance consistent with Ref-2. This demonstrates the effectiveness of the proposed
prompt-tuning-based guidance when editing parts of the 3D object not visible in the reference image.

View-consistency Gradient Guidance We evaluate the effectiveness of view-consistency guidance
by setting wR = 0, as reported in Table 2 and illustrated in Figure 6a. When this guidance is
disabled, the performance significantly degrades, resulting in edited images exhibiting notable
undersaturation. This undersaturation primarily arises due to inconsistencies within overlapping
regions in the intermediate outputs. These findings underscore the crucial role of view-consistency
gradient guidance in maintaining editing quality and color fidelity.

Progressive Generation To evaluate the effectiveness of the progressive generation, we disable
progressive view propagation and perform editing using only the initial reference image. The
degraded performance (as shown in Table 2) highlights the importance of propagating texture across
neighboring views to enforce view consistency and mitigate artifacts from single-view editing.

4.4 Discussion

Differences from Multi-View Diffusion While existing multi-view diffusion methods are designed
to generate multi-view consistent 3D objects, the task setting, constraints, and diffusion components
in our work are fundamentally different. Specifically, 3DOT takes as input a single 2D reference
image and a fixed 3D Gaussian Splatting (3DGS) representation, and transfers high-fidelity texture
onto this existing geometry. In contrast, multi-view diffusion methods are typically designed to
synthesize novel views or reconstruct 3D scenes from a few texture-consistent input images, without
anchoring to an explicit 3D representation. These methods rely on implicit geometry learned from
priors, which makes them unsuitable for editing tasks that require consistency with a given 3D
structure. Moreover, multi-view diffusion approaches assume that texture appearance is consistent
across views, an assumption that does not hold in texture transfer scenarios where the reference image
and the 3D representation exhibit different textures. Directly applying them in this setting leads to
collapsed reconstructions, highlighting the need for a specialized framework such as ours.
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Different Geometric Reference Image Geometry mismatches between the 2D reference image
and the 3D object can occur when the reference is generated via a depth-conditioned diffusion model
with a small conditioning scale factor. We consider two common scenarios:

• Slightly Different Geometry: Minor deviations (e.g., slight pose or scale differences, such
as a standing bear with legs in a different position) can be effectively handled by 3DOT.
(1) During progressive generation, cross-attention extracts texture features while being
constrained by the depth map and partially reversed latent features, preserving appearance
cues from the original image. (2) During 3D fine-tuning, overlapping regions from adjacent
edited views iteratively correct geometric discrepancies and reinforce consistent texture
transfer.

• Significantly Different Geometry: When the reference depicts a substantially different
shape (e.g., a running bear instead of a standing one), transfer quality may degrade. Such
cases usually result from failures in depth-conditioned option generation or from unsuitable
user-provided references. In practice, these poor references can be easily identified during
the interactive selection stage, and regenerated using our partial denoising strategy with a
larger depth control factor.

In summary, 3DOT is robust to minor geometric mismatches, and mitigates larger discrepancies
through reference regeneration and iterative correction during 3D fine-tuning.

Limitation Dark border around edited regions occurs in some cases. We attribute this artifact to
language-based object segmentation methods (e.g., LangSAM) to generate masks for isolating objects
in the reference views. These segmentation methods often include a narrow band of background
pixels near object boundaries due to imperfect boundary localization. As a result, during the diffusion-
based editing stage, this narrow band is misinterpreted as valid texture content, leading to the
appearance of dark borders in the final renderings even after applying the soften mask. This may be
addressed by utilizing a more advanced language-based segmentation method [49, 43, 35], depth
as additional information [44, 50, 10] with a semantic 3D representation [18, 12]. The quality of
unedited 3D Gaussians also impacts editing performance. Undertrained Gaussian spheres (e.g.,
floating Gaussians in empty space) degrade rendered images, disrupting the mask generation process.
Incorrect segmentation can result in edits with significantly altered geometry, ultimately causing 3D
Gaussian collapse.

5 Conclusion

We introduced 3DOT, a framework for image-based 3DGS texture transfer from a single reference
image, an underexplored capability in the 3D editing domain. To enable high-quality and view-
consistent texture transfer, we proposed three key components: (1) progressive generation, (2) view-
consistency gradient guidance, and (3) prompt-tuning-based gradient guidance. These components
effectively address challenges of view-consistency and texture characteristic preservation during
transfering process. We evaluated 3DOT across various scenes involving color, material, and large
semantic changes. 3DOT consistently outperforms existing baselines, both visually and quantitatively.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We include in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We use public datasets.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work is unrelated to social matters.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We does not pose such risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets are public datasets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [No]

Justification: No new asset.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [No]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: We only use it to revise our paper.
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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