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MAJL: A Model-Agnostic Joint Learning Framework for Music
Source Separation and Pitch Estimation

Anonymous Authors

ABSTRACT
Music source separation and pitch estimation are two vital tasks
in music information retrieval. Typically, the input of pitch esti-
mation is obtained from the output of music source separation.
Therefore, existing methods have tried to perform these two tasks
simultaneously, so as to leverage the mutually beneficial relation-
ship between both tasks. However, these methods still face two
critical challenges that limit the improvement of both tasks: the lack
of labeled data and joint learning optimization. To address these
challenges, we propose a Model-Agnostic Joint Learning (MAJL)
framework for both tasks. MAJL is a generic framework and can
use variant models for each task. It includes a two-stage training
method and a dynamic weighting method named Dynamic Weights
on Hard Samples (DWHS), which addresses the lack of labeled data
and joint learning optimization, respectively. Experimental results
on public music datasets show that MAJL outperforms state-of-the-
art methods on both tasks, with significant improvements of 0.92 in
Signal-to-Distortion Ratio (SDR) for music source separation and
2.71% in Raw Pitch Accuracy (RPA) for pitch estimation. Further-
more, comprehensive studies not only validate the effectiveness of
each component of MAJL, but also indicate the great generality of
MAJL in adapting to different model architectures.

CCS CONCEPTS
• Applied computing→ Sound and music computing.

KEYWORDS
music source separation, pitch estimation, joint learning

1 INTRODUCTION
The digital music industry has been growing rapidly in the last few
years due to the mass publication of music through smartphone
apps, enabling hundreds of millions of people to access a song
via large music platforms. This has created huge music streaming
companies such as Spotify (worth $37B) and QQ Music (worth
$10B). The digital music industry in the US has a market of close
to $10B in 2022 and has been growing at more than 10% in each of
the last five years [39] and that in China has a market of $5B and
has been growing at 30∼50% in each of the last five years [26].

Music Information Retrieval (MIR) is a pivotal research domain
that supports the functionality of large music platforms. Within
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MIR, music source separation (MSS) and pitch estimation (PE)
emerge as critical tasks with far-reaching implications. MSS fa-
cilitates several downstream tasks, such as lyrics extraction [15]
and music transcription [2], accentuating its pivotal role. PE has
great significance for various MIR applications, including content-
based music recommendation and query/search by singing [60].
Notably, real-world musical compositions are often mixture music,
typically as .wav or .mp3 files, which do not inherently provide the
pitch information of music data. To extract target sources along
with their corresponding pitches, simultaneous execution of both
MSS and PE tasks becomes imperative.

TheMSS task entails generating isolated stems for vocals, bass, or
drums from raw audio or spectrograms of mixture music, as shown
in the top row of Figure 1(a). The PE task involves extracting fun-
damental frequencies (𝑓 0) from clean music audio or spectrograms,
as shown in the second row of Figure 1(a). Following previous
studies [18, 32, 61], we default to using pitch estimation to refer
to single pitch estimation unless explicitly stated otherwise in this
paper. It is important to note that the clean music in the PE task
corresponds to the predicted source in the MSS task because both
are music data from a specific instrument.

MSS

PEClean Music

Mixture Music
(Mixture)

Predicted Source

Pitches

Corresponding

(a) The flow chart of pipeline methods for MSS and PE.

Joint Model

Pitches

Predicted Source
Mixture Music

(Mixture)

(b) The flow chart of joint learning methods for MSS and PE.

Figure 1: Existing methods for MSS and PE.

Music source separation and pitch estimation are closely related
in music information retrieval, where the input of pitch estimation
is typically obtained from the output of music source separation, as
shown in Figure 1(a). Consequently, various studies have aimed to
simultaneously tackle these two tasks, leveraging on their mutually
beneficial relationship. One line of studies (e.g., DNN+UPDUDP [15]
and HR-ED [16]) uses pipeline methods, as shown in Figure 1(a).
However, these methods train MSS and PE models independently
on different music datasets, leading to a mismatch between the
data distributions at training and testing time. This mismatch limits
the improvement of pitch estimation from mixture music. Another
line of studies (e.g., HWJH [23], HS-W𝑝 [44], and S→P→S→P [28])
employs joint learning methods, as shown in Figure 1(b). Although
these joint models combine MSS and PE tasks by summing the re-
spective losses, the distinct objectives of each task pose a challenge
to achieve simultaneous improvements. Moreover, these models are
often designed for specific tasks, lacking scalability, thus limiting

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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their ability to improve performance even when better MSS or PE
models become available. Although the above studies have tried to
perform MSS and PE tasks simultaneously, there are still two major
challenges have to be addressed as described below.

Challenge 1: Lack of labeled data. The field of music infor-
mation retrieval suffers from a large scarcity of annotated datasets,
particularly due to the laborious and professional nature of obtain-
ing target sources and corresponding pitches, even for experienced
musicians. As a result, only a small amount of music datasets (e.g.,
MIR-1K [22] and MedleyDB1 [4]), offer both target sources and
corresponding pitches. But the total duration of MIR-1K is only 2.25
h, and the total duration of MedleyDB is 3.21 h. We call such kind of
dataset as fully-labeled dataset. In contrast, datasets specific to MSS
or PE are much larger than the fully-labeled dataset. For example,
MUSDB18 [50] is a music source separation dataset and the total
duration of MUSDB18 is about 5 times as that of MIR-1K. While
MIR_ST500 [58] is a dataset for pitch estimation from mixture mu-
sic and the total duration of MIR_ST500 is about 14 times as that
of MIR-1K. We call such kind of datasets as single-labeled dataset.
The small amount of fully-labeled datasets prevent models from
effectively learning the relationship between MSS and PE tasks.

Challenge 2: Joint learning optimization. Existing joint learn-
ing methods (e.g., HS-W𝑝 [44] and S→P→S→P [28]) design joint
models and perform joint learning by simply summing up the losses
of both tasks. However, these methods do not address the following
problems: (i) Error propagation. Due to the cascade relationship
between MSS and PE, poor predictions of music source separation
can lead to poor pitch estimation results. This error propagation
problem is critical in joint learning of both tasks. (ii) Misalignment
between different objectives. The objectives of MSS and PE differ
from each other. As a result, simply adding the losses of these two
tasks cannot guarantee simultaneous improvements in MSS and
PE. We believe that existing joint learning methods failed to align
different objectives because they treated all samples equally. These
two problems make the joint learning of MSS and PE challenging.

To address these challenges, we propose a Model-Agnostic Joint
Learning (MAJL) framework for music source separation and pitch
estimation. Our framework can adopt existing MSS and PE models
and improve the performance of both tasks when better models
become available. MAJL contains a two-stage training method and
the Dynamic Weights on Hard Samples (DWHS), which is designed
to address Challenge 1 and Challenge 2, respectively.

To address Challenge 1, we design a two-stage training method
to leverage large single-labeled datasets. This method comprises an
initialization stage (Stage I) and a semi-supervised training stage
(Stage II). In Stage I, the model is trained using the available fully-
labeled data, then utilizing this trained model to generate pseudo
labels and corresponding confidence values for the single-labeled
data. The confidence value reflects the quality of pseudo labels. In
Stage II, we retrain themodel from scratch, using themusic data that
consists of fully-labeled data, single-labeled data, and pseudo labels
generated during Stage I. Additionally, a threshold-based filter is
applied to exclude low-confidence single-labeled data, ensuring the

1The MedleyDB dataset comprises a total duration of 5.56 h and encompasses a wide
range of musical instruments. Within this dataset, a subset of 3.21 h contains clean
vocals along with their corresponding pitches. Notably, the duration of recordings for
each other instrument is less than 1 h. Thus, we focus on clean vocals here.

quality of pseudo labels. This two-stage training method effectively
leverages extensive single-labeled datasets and high-quality pseudo
labels, effectively addressing the lack of labeled data.

For Challenge 2, we design a dynamic weighting method called
Dynamic Weights on Hard Samples (DWHS), to solve the problems
of error propagation and misalignment between different objectives
in joint learning. Addressing the error propagation problem entails
identifying the module making poor predictions in our framework.
Furthermore, to solve the problem of misalignment, we need to iden-
tify hard samples for both the MSS and PE tasks. The DWHS entails
extracting pitch results from target and predicted sources, termed
𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑜𝑢𝑟𝑐𝑒2𝑃𝑖𝑡𝑐ℎ and 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑜𝑢𝑟𝑐𝑒2𝑃𝑖𝑡𝑐ℎ, respectively. By
comparing these pitch results, we not only identify modules pro-
ducing poor predictions but also identify hard samples for both
tasks. This allows us to allocate appropriate weights to hard sam-
ples across tasks, thereby mitigating error propagation and aligning
different objectives within joint learning.

In this paper, our contributions are summarized as follows:

• We propose a Model-Agnostic Joint Learning (MAJL) frame-
work for music source separation and pitch estimation. MAJL
is a generic framework, which can further improve the per-
formance of both tasks when better MSS or PE models are
available. Moreover, our framework outperforms previous
methods, leading to significant improvements in the perfor-
mance of both tasks.

• We design a two-stage training method to solve the lack
of labeled data. The two-stage training method combines
music source separation and pitch estimation tasks at the
data aspect. By leveraging large single-labeled datasets, our
method extends fully-labeled data, allowing the model to
better learn the relationship between both tasks.

• To address the challenge of joint learning optimization, we
design a novel dynamic weighting method, named Dynamic
Weights on Hard Samples (DWHS). The DWHS can handle
error propagation and misalignment between different ob-
jectives by identifying hard samples and setting appropriate
weights for these samples.

2 RELATEDWORK
Music Source Separation (MSS) is a crucial task in MIR, aiming to
isolate individual sources from mixture music. Many deep learning
methods have been proposed for MSS, generally categorized into
common models and side-information informed models.

Common models operate solely on hidden features extracted
from the time or frequency domains. For example, Spleeter [21],
U-Net [29], CWS-PResUNet [40] and ResUNetDecouple+ [36] pre-
dict target sources using frequency domain features. In contrast,
Demucs [10], Wave-U-Net [57] and its follow-ups [41, 47] lever-
age time domain features. Other methods such as KUIELAB-MDX-
Net [33], Hybrid Demucs [9] and HT Demucs [53] fuse both domain
features to enhance the performance of MSS. In contrast, the side
information informed models use additional information, such as
lyrics, pitches, or spatial information to improve MSS. For example,
JOINT3 [54] employs phoneme-level lyrics alignment, while Sound-
prism [12, 14] and SPAIN-NET [48] leverage pitches and spatial
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information, respectively. These methods exclusively address the
MSS task, which do not support simultaneous PE task.
Pitch Estimation (PE) is a fundamental task in MIR, aimed at
extracting fundamental frequency (𝑓 0). PE can be broadly classified
into two sub-tasks: PE from clean music and PE frommixture music.

For clean music, existing methods encompass heuristic-based
and data-driven methods. Heuristic-based methods like ACF [13],
YIN [8], SWIPE [5], and pYIN [42] leverage candidate-generating
functions to predict pitches. Conversely, data-driven methods, in-
cluding CREPE [32], DeepF0 [56], and HARMOF0 [61], rely on
supervised training of models for PE. While these methods achieve
accurate pitch results from clean music, their performance is con-
strained when applied to mixture music due to the presence of
other existing sources. For mixture music, existing methods com-
prise pipeline and end-to-end methods. Pipeline methods involve
utilizing MSS models (e.g., Spleeter [21] and U-Net [29]) to extract
target sources from the mixture music, and then using PE models
to predict corresponding pitches. However, a mismatch between
the data distributions at training and testing times often limits the
performance of PE from mixture music. End-to-end methods (e.g.,
DSM-HCQT [3], CNN-Raw [11], and JDC [37]) are designed to
directly predict pitches from mixture music. Nevertheless, these
methods encounter performance limitations as a result of the pres-
ence of other sources in mixture music.

3 PROBLEM FORMULATION
In this section, we formulate the problems of Music Source Sep-
aration (MSS) and Pitch Estimation (PE), along with a previously
proposed naive joint learning method referred to as the Joint Cas-
cade Framework (JCF) in this paper.

Music Source Separation (MSS). The task of MSS is to extract
a target source from mixture music signals. The mixture music
signals can be represented as either the raw audio waveform 𝑥

or its corresponding spectrogram 𝑋𝑇×𝐹 , where 𝑇 is the number
of audio frames and 𝐹 is the number of frequency bins. It should
be noted that the spectrogram is computed using the short-time
Fourier transform (STFT) as a feature representation of the original
music signal. The output of MSS is the target source 𝑠 , and the
spectrogram of target source is represented as 𝑆𝑇×𝐹 . Thus, the MSS
task can be formulated as F𝑚𝑠𝑠 : 𝑥 (𝑋𝑇×𝐹 ) → 𝑠 .

Pitch Estimation (PE). The task of PE aims to estimate the
pitch sequence of clean music from a raw audio waveform or its
spectrogram representation. Following previous studies (e.g., 360
in CREPE [32] and 352 in HARMOF0 [61]), each pitch is typically
represented as a 𝑁 -dimensional one-hot vector 𝑦. As a result, the
output of PE is a sequence of pitch vectors 𝑌𝑇×𝑁 , where 𝑁 is the
number of pitch values. Furthermore, the input of PE is typically ob-
tained from the output of MSS. Thus, the PE task can be formulated
as F𝑝𝑒 : 𝑠 (𝑆𝑇×𝐹 ) → 𝑌𝑇×𝑁 .

Joint Cascade Framework (JCF). The JCF is designed to lever-
age the cascade relationship between MSS and PE, enabling joint
learning of both tasks. It (cf. Figure 3) comprises a Music Source
Separation Module (MSS Module) and a Pitch Estimation Module
(PE Module). Firstly, the features of mixture music are input into
the MSS Module to obtain predicted sources. Then, the PE Module
extracts corresponding pitches from the predicted sources.

In line with previous studies [29, 32, 36, 59, 61], the training of
JCF involves using the Mean Absolute Error (MAE) loss for MSS and
the Binary Cross Entropy (BCE) loss for PE, respectively. Therefore,
the loss function for MSS is defined as:

L𝑚𝑠𝑠 (𝑠, 𝑠) =
𝐿∑︁
𝑖=0

|𝑠𝑖 − 𝑠𝑖 | (1)

where 𝑠 is the target sources, 𝑠 is the predicted sources and 𝐿 is the
length of mixture music. And the loss function for PE is defined as:

L𝑝𝑒 (𝑦,𝑦) = −
𝑁∑︁
𝑖=0

(𝑦𝑖 log𝑦𝑖 + (1 − 𝑦𝑖 ) log(1 − 𝑦𝑖 )) (2)

where 𝑁 is the number of pitch values, 𝑦 is the ground truth of
pitch results and 𝑦 is the predicted pitch value. Thus, the total loss
for naive joint learning of MSS and PE is:

L𝑡𝑜𝑡𝑎𝑙 = L𝑚𝑠𝑠 + L𝑝𝑒 (3)

The JCF is unable to solve the two challengesmentioned in Section 1.
Therefore, we propose our Model-Agnostic Joint Learning (MAJL)
framework for both tasks, building upon and extending the JCF.

4 METHOD
As shown in Figure 2, the Model-Agnostic Joint Learning (MAJL)
framework contains two important components: two-stage training
method and Dynamic Weights on Hard Samples (DWHS). Besides,
the music source separation module (MSS Module) and pitch esti-
mation module (PE Module) within MAJL can be easily replaced
with existing MSS and PE models.

JCF+DWHSfull-labelled data

single-labelled data pseudo labels and
Confidence

Stage I: Initialization Stage

synthetic data JCF+DWHS

Stage II: Semi-supervised Training Stage

Training Inference Data Flow

Dropout

Figure 2: The overall structure ofModel-Agnostic Joint Learn-
ing (MAJL) framework. Details of JCF and DWHS are shown
in Figure 3. The synthetic data contains fully-labeled data,
single-labeled data with generated pseudo labels.

4.1 Two-Stage Training Method
To address the limited availability of fully-labeled datasets and lever-
age large single-labeled datasets, we design a two-stage training
method within our framework. This method comprises an initial-
ization stage (Stage I) and a semi-supervised training stage (Stage
II), as shown in Figure 2.
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Mixture MSS Module predicted_source PE Module predicted_source2Pitch

target_source target_source2PitchPE Module DWM Pitches

Shared    Parameters

Joint Cascade Framework (JCF)

input / output

network module 

loss

MSS task PE task

Dynamic Weight on Hard Samples (DWHS)

Figure 3: Details of JCF and DWHS. The MSS Module and the PE Module used existing MSS and PE models respectively. The
details of Dynamic Weight Module (DWM) are shown in Section 4.2.2.

Initialization Stage (Stage I): During Stage I, our framework is
trained using fully-labeled music data (e.g., MIR-1K or MedleyDB).
Then the trained framework is employed to generate pseudo la-
bels for target sources or corresponding pitches. Additionally, we
compute confidence values for each pitch result and each frame of
target sources. For predicted pitches, a pitch value is considered
present when𝑚𝑎𝑥 (𝑦) ≥ 0.5; otherwise, a pitch value is considered
absent. Then the confidence value (confi) is defined as:

confi =

{
𝑚𝑎𝑥 (𝑦) 𝑚𝑎𝑥 (𝑦) ≥ 0.5
1 −𝑚𝑎𝑥 (𝑦) 𝑚𝑎𝑥 (𝑦) < 0.5

(4)

It should be noted that this confidence value can also be applied to
predicted sources due to the inherent cascade relationship between
music source separation and pitch estimation.

To maintain a consistent format for confidence values across
different dataset types (fully-labeled and single-labeled datasets),
we set the confidence values of true labels to 1. Therefore, for fully-
labeled datasets (e.g., MIR-1K andMedleyDB), the confidence values
of MSS (confi𝑚𝑠𝑠 ) and PE (confi𝑝𝑒 ) are defined as:

confi𝑚𝑠𝑠 = 1 confi𝑝𝑒 = 1 (5)

Then, for MSS datasets (e.g., MUSDB18), which belongs to single-
labeled datasets, the confidence values of MSS (confi𝑚𝑠𝑠 ) and PE
(confi𝑝𝑒 ) are defined as:

confi𝑚𝑠𝑠 = 1 confi𝑝𝑒 = confi (6)

While for PE datasets (e.g., MIR_ST500), which also belongs to
single-labeled datasets, the confidence values of MSS (confi𝑚𝑠𝑠 )
and PE (confi𝑝𝑒 ) are defined as:

confi𝑚𝑠𝑠 = confi confi𝑝𝑒 = 1 (7)

Semi-supervised Training Stage (Stage II): After the initial-
ization stage, we obtain pseudo labels and confidence values from
single-labeled datasets. We then combine fully-labeled music data,
single-labeled music data, and pseudo-labels to create a synthetic
dataset. To filter pseudo-labels from single-labeled music data, we
set a threshold (𝑡ℎ). The detailed filtering process involves applying
weights for MSS and PE in the loss computation. Subsequently, we
retrain our framework from scratch using the synthetic dataset.
Thus, the loss function of stage II is written as:

L𝑡𝑜𝑡𝑎𝑙 = confi𝑚𝑠𝑠 × L𝑚𝑠𝑠 + confi𝑝𝑒 × L𝑝𝑒 (8)

Here, confi𝑚𝑠𝑠 equals 1 if confi𝑚𝑠𝑠 ≥ 𝑡ℎ, and 0 otherwise. confi𝑝𝑒
is calculated using the same way as confi𝑚𝑠𝑠 .

4.2 Dynamic Weights on Hard Samples (DWHS)
4.2.1 Analysis of Different Cases in DWHS. The naive joint learn-
ing method can not ensure simultaneous improvements in both
tasks due to the problems of error propagation andmisalignment be-
tween distinct objectives. To address these problems concurrently,
we should identify hard samples and assign appropriate weights to
each sample in both tasks. This can be achieved by comparing the
predicted pitches from target sources with those from predicted
sources (c.f. Figure 3). By this comparison, we can determine which
module is delivering poor predictions and identify samples that are
hard for either MSS or PE. A comprehensive analysis of different
cases arising from this comparison is summarized in Table 1. De-
tailed explanations of each case in Table 1 are provided as follows.

For Case 1, both the predicted pitches from predicted sources
and those from target sources are correct. This result indicates that
there is no issue with the MSS Module, the PE Module or the quality
of data. For Case 2, the predicted pitches from predicted sources are
correct, while those from target sources are incorrect. This result
indicates the presence of noisy pitch labels in the data. To mitigate
the impact of noisy labels, the weights of such samples for PE should
be within the range of 0 to 1. For Case 3, the predicted pitches from
predicted sources are incorrect, while those from target sources are
correct. This result indicates that the predicted sources are quite
different from the original target sources, making the data hard
for the MSS. To emphasize learning on hard samples, the weights
assigned to these samples in the MSS should be greater than 1. For
Case 4, both the predicted pitches from target sources and those
from predicted sources are incorrect. This result highlights poor
predictions by the PE Module, indicating that the music data is hard
for the PE. To emphasize learning on hard samples, the weights
assigned to these samples in the PE should be greater than 1.

4.2.2 Module of DWHS. By leveraging the above analysis, we can
assign different weights to each sample based on identified cases,
thereby aligning the focus of two tasks during joint learning. The
most direct method involves setting different weights for different
cases as outlined in Table 1. However, this approach incurs high
training costs due to the difficulty of manually determining proper
weights for each case. Therefore, we introduce the DWHS, which
automatically extracts the appropriate weights for different cases.

The DWHS utilizes a simple network called the Dynamic Weight
Module (DWM) to determine dynamic weights for the MSS and
PE tasks under different cases. As illustrated in Figure 4, the in-
puts for the DWM consist of 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑜𝑢𝑟𝑐𝑒2𝑃𝑖𝑡𝑐ℎ, 𝑃𝑖𝑡𝑐ℎ𝑒𝑠 , and
𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑜𝑢𝑟𝑐𝑒2𝑃𝑖𝑡𝑐ℎ from Figure 3, maintaining the same format as
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Table 1: Analysis for different cases in DWHS and the weights that should be set for different cases by the DWHS.

Case predicted_source2Pitch target_source2Pitch Analysis The Weights Should be Assigned
MSS Module PE Module Data 𝜔𝑚𝑠𝑠 𝜔𝑝𝑒

1 Correct Correct ✓ ✓ ✓ 𝜔𝑚𝑠𝑠 = 1 𝜔𝑝𝑒 = 1
2 Correct Incorrect ✓ ✓ × 𝜔𝑚𝑠𝑠 = 1 0 ≤ 𝜔𝑝𝑒 < 1
3 Incorrect Correct × ✓ ✓ 𝜔𝑚𝑠𝑠 ≥ 1 𝜔𝑝𝑒 = 1
4 Incorrect Incorrect ✓ × ✓ 𝜔𝑚𝑠𝑠 = 1 𝜔𝑝𝑒 ≥ 1

𝑌𝑇×𝑁 . These inputs are concatenated and passed through two CNN
layers with ReLU activation, configured as depicted in Figure 4 with
3 × 3 kernels. Following the CNN layers, there is a flatten layer,
a fully connected layer with ReLU activation, and finally, a fully
connected layer with sigmoid activation that generates dynamic
weights for both tasks. This process enables dynamic assignment
of weights without the need for manual specification of specific
weights. Specifically, the weights (𝜔𝑚𝑠𝑠 and 𝜔𝑝𝑒 ) corresponding to
different cases outlined in Table 1 are automatically extracted by
the Dynamic Weight Module (DWM) of the DWHS.
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Figure 4: The model structure of dynamic weight module
(DWM) in Dynamic Weights on Hard Samples (DWHS).

4.2.3 Loss of DWHS. To ensure the weights extracted by DWM
for different cases align with the specified weights shown in Table 1,
we design the loss function for the DWM of DWHS to address four
specific cases. For Case 1, the Mean Absolute Error (MAE) loss is
employed to ensure the predicted weights are around 1. Then the
loss function for DWM of DWHS in Case 1 is defined as:

L𝑑𝑤ℎ𝑠_1 = |𝜔𝑚𝑠𝑠 − 1| + |𝜔𝑝𝑒 − 1| (9)

For Case 2, the MAE loss is utilized to ensure the predicted weights
of MSS are around 1. For the predicted weights of PE, the Bayesian
Personalized Ranking (BPR) loss [52] is employed to ensure lower
weights for noisy music data. Then the loss function for DWM of
DWHS in Case 2 is defined as:

L𝑑𝑤ℎ𝑠_2 = |𝜔𝑚𝑠𝑠 − 1| − ln𝜎 (1 − 𝜔𝑝𝑒 ) (10)

For Case 3, the BPR loss is used to ensure hard samples for MSS
receive higher weights. Simultaneously, the MAE loss is used to
ensure the predicted weights of PE are around 1. Then the loss
function for DWM of DWHS in Case 3 is defined as:

L𝑑𝑤ℎ𝑠_3 = − ln𝜎 (𝜔𝑚𝑠𝑠 − 1) + |𝜔𝑝𝑒 − 1| (11)

For Case 4, the MAE loss is employed to ensure the predicted
weights of MSS are around 1. Additionally, the BPR loss is used to
ensure hard samples for PE receive higher weights. Then the loss
function for DWM of DWHS in Case 4 is defined as:

L𝑑𝑤ℎ𝑠_4 = |𝜔𝑚𝑠𝑠 − 1| − ln𝜎 (𝜔𝑝𝑒 − 1) (12)

Thus, the total loss of DWHS is written as:

L𝑑𝑤ℎ𝑠 = L𝑑𝑤ℎ𝑠_1 + L𝑑𝑤ℎ𝑠_2 + L𝑑𝑤ℎ𝑠_3 + L𝑑𝑤ℎ𝑠_4 (13)

It is important to note that if there is no music data belonging to a
specific case, the loss function for that case is automatically set to
0. For example, if there are no music data belonging to Case 1, then
the L𝑑𝑤ℎ𝑠_1 becomes 0.
Thus, with the DWHS, the loss function of stage I is written as:

L𝑡𝑜𝑡𝑎𝑙 = 𝜔𝑚𝑠𝑠 × L𝑚𝑠𝑠 + 𝜔𝑝𝑒 × L𝑝𝑒 + L𝑑𝑤ℎ𝑠 (14)

And the loss function of stage II is written as:

L𝑡𝑜𝑡𝑎𝑙 = confi𝑚𝑠𝑠×𝜔𝑚𝑠𝑠×L𝑚𝑠𝑠+confi𝑝𝑒×𝜔𝑝𝑒×L𝑝𝑒+L𝑑𝑤ℎ𝑠 (15)

where confi𝑚𝑠𝑠 and confi𝑝𝑒 are the same as those in Eq. 8.
The above two-stage training method and Dynamic Weights

on Hard Samples are two important components of MAJL aimed
at addressing the lack of labeled data (Challenge 1) and the
joint learning of optimization (Challenge 2), respectively. The
effectiveness of MAJL and each component is evaluated in Section 6.

5 EXPERIMENTAL SETUP
Datasets.We evaluate our framework using four public datasets:
MIR-1K [22], MedleyDB [4], MIR_ST500 [58], and MUSDB18 [50].
MIR-1K and MedleyDB provide both mixture and clean vocal tracks,
along with pitch labels for vocal parts, making them fully-labeled
datasets. In contrast, MIR_ST500 andMUSDB18 provide PE andMSS
labels, respectively, classifying them as single-labeled datasets. It
should be noted that all pitch labels are transformed into frequency
bins represented in Hz format the same as MIR-1K.
Evaluation Metrics. Following previous studies, we use four met-
rics to evaluate our framework. ForMSS, we use Signal-to-Distortion
Ratio (SDR) [36], Global Normalized Signal-to-Distortion Ratio
(GNSDR) [22] to evaluate the quality of predicted sources. A higher
SDR or a higher GNSDR indicates better separation results, and vice
versa. For PE, we use Raw Pitch Accuracy (RPA) and Raw Chroma
Accuracy (RCA) [32] to evaluate the accuracy of predicted pitches.
Implementation Details. The raw audio is sampled at 16kHz and
then transformed into spectrograms using the short-time Fourier
transform (STFT) with a Hannwindow size of 2048 and a hop length
of 320 (20ms). During the training of MAJL, we use a batch size of 16
and the Adam optimizer [34]. The learning rate is initialized to 0.001
and then reduced by 0.98 of the previous learning rate every 10
epochs. For MIR-1K [22] and MedleyDB [4] datasets, we randomly
split these datasets into training (80%) and testing (20%) sets. The
splitting way for MIR_ST500 and MUSDB18 datasets is introduced
in [58] and [50], respectively. During experiments, we only consider
the target source of vocals due to the lack of fully-labeled data from
other sources such as bass and drums.

6 EXPERIMENTAL RESULTS
In this section, we present the experimental results of our frame-
work to show the superiority of MAJL. We firstly compare MAJL
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Table 2: Performance comparison for MSS and PE tasks on the MIR-1K [22] and MedleyDB [4] datasets. “Extra” indicates the
extra single-labeled music data used at the training time. “Both” means MUSDB18 and MIR_ST500.

Methods Extra
MIR-1K MedleyDB

MSS PE (%) MSS PE (%)
SDR GNSDR RPA RCA SDR GNSDR RPA RCA

End-to-End Methods
CNN-Raw [11] % —— —— 81.70 90.90 —— —— 64.33 66.42
JDC [37] % —— —— 87.47 88.00 —— —— 69.58 77.15
Pipeline Methods w/i CREPE [32]
U-Net [29] % 11.43 8.48 89.28 90.41 5.06 8.75 72.65 74.98
ResUNetDecouple+ [36] % 12.06 9.13 91.40 92.07 5.54 10.31 74.62 76.29
Pipeline Methods w/i HARMOF0 [61]
U-Net [29] % 11.43 8.48 87.95 88.57 5.06 8.75 71.24 73.78
ResUNetDecouple+ [36] % 12.06 9.13 90.21 90.61 5.54 10.31 73.38 75.90
Joint Learning Methods
HS-W𝑝 [44] % 9.80 6.87 85.04 85.32 4.32 7.56 68.44 70.03
S→P→S→P [28] % 11.70 8.72 86.62 86.94 5.14 9.00 70.83 73.79
MAJL-Stage I % 12.33 9.36 93.17 93.65 6.04 11.12 76.07 78.28
MAJL MUSDB18 12.81 9.86 93.38 93.88 6.91 11.87 76.91 79.43
MAJL MIR_ST500 12.55 9.59 93.67 94.08 6.39 11.43 77.78 80.11
MAJL Both 12.98 9.99 94.11 94.38 7.18 12.14 78.38 83.21

with baselines on different datasets in Section 6.1. Then we explore
the generality of MAJL through an investigation of its various mod-
ules in Section 6.2. Following these experiments, we visualize and
analyze the weights of DWHS to understand the effectiveness of
DWHS in Section 6.3. Finally, a study is conducted to investigate the
threshold (𝑡ℎ) used in the two-stage training method in Section 6.4.

6.1 Overall Performance
In this experiment, we conduct a comprehensive comparison of
MAJL with several baselines, encompassing End-to-End methods,
pipeline methods, and joint learning methods. We evaluate the
performance of MAJL on both fully-labeled datasets and single-
labeled datasets. These experimental results not only demonstrate
the effectiveness of MAJL in joint learning of both tasks, but also
highlight its superiority in either the MSS task or the PE task.

6.1.1 Results on Fully-labeled Dataset. To show the superiority
of our framework, we perform a comparison with several base-
lines. For the MSS and PE modules, we choose ResUNetDecouple+
and CREPE, respectively, since they achieve the best performance
among all other MSS and PE modules, as shown in Table 5.

Our framework shows the effectiveness in both tasks, achieving
state-of-the-art performance for both tasks, as summarized in Ta-
ble 2. (i): Compared to the End-to-End methods, our framework
tackles both tasks simultaneously, leading to significant improve-
ment in the PE task. (ii): Moreover, our framework outperforms
existing joint learning and pipeline methods. Specifically, MAJL-
Stage I outperforms the previous best model (Pipeline method with
ResUNetDecouple+ and CREPE) by 0.27 in SDR and 1.77% in RPA
on the MIR-1K dataset. These results demonstrate that our DWHS
is effective in enhancing the performance of both tasks. (iii): Fur-
thermore, by incorporating additional single-labeled music data,
the performance of both tasks is further improved. For example,
MAJL demonstrates a 0.65 improvement in SDR and 0.94% in RPA
over MAJL-Stage I when incorporating these additional datasets

(MUSDB18 and MIR_ST500) on the MIR-1K dataset, validating the
effectiveness of our two-stage training method. (iv): Besides, the
experimental results on the MedleyDB dataset is similar with those
on the MIR-1K dataset, showing the effectiveness of MAJL. Further
analysis of the DWHS and the two-stage training method of our
framework is described in Section 6.3 and Section 6.4, respectively.

6.1.2 Results on Single-labeled Datasets. To further validate the
effectiveness of MAJL in enhancing both tasks, we conduct an
evaluation on the test sets of single-labeled datasets. The model
under evaluation in this experiment is the same as the one discussed
in Section 6.1.1. In the Stage II of training MAJL, additional single-
labeled music data from both MUSDB18 and MIR_ST500 is utilized.
Additionally, the test sets of the MSS and PE tasks are derived from
MUSDB18 and MIR_ST500, respectively. The results on MUSDB18
and MIR_ST500 are summarized in Table 3 and Table 4, respectively.

Table 3: Performance comparison for the music source sepa-
ration task on the test set of MUSDB18.

Methods SDR GNSDR
U-Net [29] 6.72 13.38
HT Demucs [53] 7.93 14.58
Hybrid Demucs [9] 8.13 14.96
CWS-PResUNet [40] 8.92 15.49
ResUNetDecouple+ [36] 8.96 15.59
KUIELAB-MDX-Net [33] 9.00 15.64
MAJL (Stage I with MedleyDB) 9.46 15.94
MAJL (Stage I with MIR-1K) 10.13 16.51

The results indicate that our framework effectively learns the re-
lationship between both tasks, enhancing the performance of each
individual task. The results on the MUSDB18 dataset, presented in
Table 3, show that our framework achieves state-of-the-art perfor-
mance for the MSS task. Specifically, MAJL trained on the MIR-1K
dataset in the Stage I outperforms the previous best MSS model
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Table 4: Performance comparison for the pitch estimation
from mixture music on the test set of MIR_ST500.

Methods RPA(%) RCA(%)
CNN-Raw [11] 76.58 77.26
JDC [37] 80.09 80.38
U-Net [29] with CREPE [32] 81.61 82.36
ResUNetDecouple+ [36] with CREPE [32] 81.96 82.43
U-Net [29] with HARMOF0 [61] 82.00 82.35
ResUNetDecouple+ [36] with HARMOF0 [61] 82.78 82.99
MAJL (Stage I with MedleyDB) 83.44 83.91
MAJL (Stage I with MIR-1K) 84.49 85.26

(KUIELAB-MDX-Net) by 1.13 in SDR. This result illustrates our
framework has the capability to effectively leverage the PE task
to improve the performance of the MSS task. Similarly, the results
on the MIR_ST500 dataset, as shown in Table 4, demonstrate that
our framework achieves state-of-the-art performance for the pitch
estimation from mixture music. In particular, MAJL trained on the
MIR-1K dataset in the Stage I outperforms the previous best method
(ResUNetDecouple+ with HARMOF0) by 1.71% in RPA. This result
indicates that our framework can effectively leverage the MSS task
to enhance the performance of the PE task. In summary, these
results highlight that our framework effectively leverages the mutu-
ally beneficial relationship between both tasks, thereby improving
their individual performances.

6.2 Experiments With Different Modules
In this experiment, we investigate the effect of using different mod-
ules in our framework to demonstrate its generality. Our framework
can employ various model architectures for theMSSModule and the
PE Module. Therefore, we evaluate the performance of our frame-
work using different combinations of these modules, including Re-
sUNetDecouple+ [36], U-Net [29], HARMOF0 [61] and CREPE [32].
For this experiment, we utilize the MIR-1K dataset in Stage I be-
cause MAJL-Stage I, trained with the MIR-1K dataset, demonstrates
superior performance on the MUSDB18 and MIR_ST500 datasets,
thereby enabling the generation of better pseudo-labels. The results
obtained with different combinations of these MSS and PE modules
are summarized in Table 5. According to the results in this table,
we can find three main observations as follows.

Firstly, this experiment shows the great generality of our frame-
work. As shown in Table 5, MAJL consistently outperforms both
the corresponding pipeline and naive joint learning methods across
all module combinations. Particularly, when utilizing U-Net and
CREPE, our framework achieves an improvement of 0.94 in SDR and
2.95% in RPA compared to the corresponding pipeline method. Sim-
ilarly, our framework outperforms the corresponding naive joint
learning method by 0.59 in SDR and 2.54% in RPA. These results
validate the model-agnostic nature of our framework, showing its
consistent performance enhancement across various music source
separation and pitch estimation models.

Secondly, the two-stage training method and DWHS are robust
with different MSS and PE modules. Specifically, MAJL using Re-
sUNetDecouple+ and CREPE achieves the best performance. No-
tably, compared to MAJL-Stage I, MAJL achieves improvements of
0.65 in SDR and 0.94% in RPA, demonstrating the effectiveness of
the two-stage training method in leveraging large single-labeled

Table 5: Performance with different combinations of mod-
ules on the MIR-1K dataset. U, R, H, C represents the
model architecture U-Net [29], ResUNetDecouple+ [36],
HARMOF0 [61] and CREPE [32], respectively. MAJL here
uses both MIR_ST500 and MUSDB18 as single-labeled data.

MSS PE Joint Method MSS PE(%)
SDR GNSDR RPA RCA

U H

Pipeline 11.43 8.48 87.95 88.57
Naive Joint Learning 11.05 8.11 88.96 89.20

MAJL-Stage I 12.05 9.11 90.62 91.57
MAJL 12.25 9.29 91.09 91.85

R H

Pipeline 12.06 9.13 90.21 90.61
Naive Joint Learning 12.04 9.08 91.46 91.61

MAJL-Stage I 12.28 9.33 92.16 92.76
MAJL 12.60 9.64 92.51 93.16

U C

Pipeline 11.43 8.48 89.28 90.41
Naive Joint Learning 11.78 8.84 89.69 90.44

MAJL-Stage I 12.16 9.19 91.78 92.40
MAJL 12.37 9.41 92.23 92.79

R C

Pipeline 12.06 9.13 91.40 92.07
Naive Joint Learning 11.91 8.92 91.88 92.15

MAJL-Stage I 12.33 9.36 93.17 93.65
MAJL 12.98 9.99 94.11 94.38

music data. Moreover, MAJL-Stage I outperforms the naive joint
learning method by 0.42 in SDR and 1.29% in RPA, indicating that
the DWHS effectively aligns different objectives and enhances the
performance of both tasks. Furthermore, similar performance trends
are observed with MAJL and MAJL-Stage I utilizing alternative MSS
and PE modules. These results demonstrate that both the two-stage
training method and the DWHS are model-agnostic and robust,
further confirming the model-agnostic nature of our framework.

Lastly, our framework effectively learn the relationship between
MSS and PE tasks, making both tasks beneficial for the each other.
For example, MAJL using ResUNetDecouple+ and CREPE outper-
forms MAJL using U-Net and CREPE by 0.61 in SDR and 1.88%
in RPA. This improvement arises from the better performance of
ResUNetDecouple+ in the MSS task, where the effectiveness of
the MSS task is beneficial for the PE task. Similarly, MAJL using
ResUNetDecouple+ and CREPE outperforms MAJL using ResUNet-
Decouple+ and HARMOF0 by 0.38 in SDR and 1.60% in RPA. This
is because CREPE performs better than HARMOF0 at the PE task,
and the PE task is beneficial for the MSS task. Thus, our framework
also has the potential to further improve the performance of both
tasks when better MSS and PE models become available.

The above results demonstrate the robustness and great gen-
erality of our framework, since our framework achieves the best
performance across all module combinations. Moreover, our MAJL
framework effectively learns the relationship between MSS and PE
tasks, resulting in enhanced performance for both tasks.

6.3 Visualization and Analysis of Dynamic
Weights

To provide an intuitive representation of the weights extracted
by the DWHS, we visualize the changes in these weights over
iterations. In this experiment, we employ ResUNetDecouple+ as
the MSS Module and CREPE as the PE Module, consistent with the
previous experiment detailed in Section 6.1. In addition, the dynamic
weights extracted by Dynamic Weights on Hard Samples (DWHS)
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are obtained from our framework, specifically MAJL-Stage I, to
exclusively investigate the weight results of DWHS and eliminate
potential interference, such as single-labeled music data.
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Figure 5: Dynamic weights extracted by the DWHS.

Figure 5 illustrates the dynamic weights extracted by the DWHS.
In this figure, we observe that the weight assigned to the PE task for
noisy music data is set close to 0, effectively mitigating the negative
impact on the PE task. Additionally, for Case 3 and Case 4, the
weights assigned to MSS and PE exceed 1, emphasizing the impor-
tance of handling hard samples. Other weights are approximately
1. All these weights are automatically set based on the analysis
presented in Table 1. Furthermore, the results presented in Table 2
demonstrate that the DWHS method outperforms the correspond-
ing naive joint learning method. These findings highlight that the
DWHS method can adaptively determine appropriate weights for
both noisy and hard samples, leading to enhanced performance in
both MSS and PE tasks.

6.4 Threshold in Two-Stage Training Method
In this experiment, we use the MUSDB18 and MIR_ST500 datasets
as single-labeled music data to explore the impact of the threshold
(𝑡ℎ) used in the two-stage training method. The ResUNetDecouple+
is used as the MSS Module and CREPE is used as the PE Module,
consistent with the previous experiment in Section 6.1. The MAJL is
initially trained on the MIR-1K dataset in Stage I, as it demonstrates
superior performance compared to MAJL trained on the MedleyDB
dataset, as evidenced by the results presented in Table 3 and Table 4.

As shown in Figure 6, the results corresponding to different
thresholds demonstrate the effectiveness of the two-stage training
method, and that the chosen threshold influences the performance
of MSS and PE tasks. Specifically, when incorporating both datasets
(MUSDB18 and MIR_ST500) to the fully-labeled music data, the
performance of both tasks firstly improved and then decreased as
the threshold increased. This trend indicates that the quality of
pseudo-labels affects the performance of both tasks, with lower-
quality pseudo-labels leading to a decrease in the performance of
both tasks. In addition, incorporating the MUSDB18 or MIR_ST500
dataset to the fully-labeled music data follows a similar trend in the
performance of both tasks. Moreover, when the threshold was set
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Figure 6: Performance with different values of threshold (𝑡ℎ)
in two-stage trainingmethod onMIR-1K dataset. MAJL-Stage
I represents Stage I in the two-stage training method.
to 0.7, adding both datasets (MUSDB18 and MIR_ST500) to the fully-
labeled music data achieves the best performance, outperforming
MAJL-Stage I by 0.65 in SDR and 0.94% in RPA. These results show
that the two-stage trainingmethod can leverage large single-labeled
music data to enhance the performance of both tasks.

7 FUTUREWORK
Our experiments have primarily focused on vocals, given that vo-
cals are a common target source for both MSS and PE tasks , as
highlighted in previous studies [28, 44]. Furthermore, the availabil-
ity of music data containing other target sources and corresponding
pitches was limited. However, it is important to note that our frame-
work is applicable to a variety of musical instruments, including
drums, bass and so on.

Expanding our framework to encompass other instruments re-
quires the acquisition or creation of annotated data for both MSS
and PE tasks. Overcoming this challenge may involve adapting
transfer learning techniques from related domains or exploring
further unsupervised training methods. In conclusion, the future
of our research holds the potential to adapt and expand our Model-
Agnostic Joint Learning (MAJL) framework to encompass a broader
range of musical instruments. These directions align with the on-
going evolution of music production techniques and computational
audio analysis, making our framework important in advancing the
field of music information retrieval.

8 CONCLUSION
In this paper, we have proposed a model-agnostic joint learning
(MAJL) framework to address the challenges in joint learning of
music source separation and pitch estimation. MAJL is generic for
both tasks in music information retrieval, offering the capability
to adapt improved models for both tasks, further improving their
performance. By designing a two-stage training method and a dy-
namic weighting method named Dynamic Weights on Hard Samples
(DWHS), our framework effectively addresses the challenges of
the lack of labeled data and the joint learning optimization, re-
spectively. Through leveraging extensive single-labeled music data,
MAJL learns the mutually beneficial relationship between music
source separation and pitch estimation tasks, leading to improved
performance for both tasks. Our experimental results show that the
proposed framework achieves a significant improvement in both
tasks, with 0.92 in SDR for the music source separation task and
2.71% in RPA for the pitch estimation task.
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