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ABSTRACT

Real-world databases are predominantly relational, comprising multiple interlinked
tables that contain complex structural and statistical dependencies. Learning gener-
ative models on relational data has shown great promise for producing synthetic
data, which can unlock access to previously underutilized information and support
the training of powerful foundation models. However, existing methods often strug-
gle to capture their complexity, typically reducing relational data to conditionally
generated flat tables and imposing limiting structural assumptions. To address
these limitations, we introduce RELDIFF, a novel diffusion generative model that
synthesizes relational databases by explicitly modeling their foreign key graph
structure. RELDIFF combines a joint graph-conditioned diffusion process across
all tables for attribute synthesis and a D2 K +SBM graph generator based on the
stochastic block model for structure generation. The decomposition of graph struc-
ture and relational attributes ensures both high fidelity and referential integrity, both
of which are crucial aspects of synthetic relational database generation. RELDIFF
achieves state-of-the-art performance in generating synthetic relational databases
on 11 benchmark datasets.

1 INTRODUCTION

Relational databases, which organize information into multiple interconnected tables governed by
foreign key references, underpin over 70% of global data management systems (DB-Engines, 2024)
and form the foundation for much of today’s digital infrastructure. However, unlocking access to
high-quality real-world datasets is often limited by fairness and privacy concerns (Ntoutsi et al.,
2020; Hernandez et al., 2022; van Breugel & van der Schaar, 2023), particularly in sensitive domains
like healthcare (Appenzeller et al., 2022; Gonzales et al., 2023) and finance (Assefa et al., 2020;
Potluru et al., 2024). Thus, synthetic data generation emerges as a promising solution, offering a
way to preserve crucial statistical properties while effectively mitigating privacy risks (Raghunathan,
2021). Moreover, synthetic data can unlock access to valuable enterprise and healthcare databases,
facilitating the creation of powerful relational and tabular foundation models (van Breugel & van der
Schaar, 2024) and has shown promise in missing value imputation (You et al., 2020; Zhang et al.,
2025) and data augmentation (Fonseca & Bacao, 2023).

Unlike image data, which comprises pure continuous pixel values with local spatial correlations, or
text data, which comprises tokens that share the same vocabulary, tabular data includes heterogeneous
and often imbalanced distributions (Xu et al., 2019), making it challenging to learn joint probabilities
across multiple columns. Moreover, relational databases exhibit complex structural hierarchies
and statistical dependencies across their interconnected tables, often stored at varying levels of
normalization (Codd, 1970; Delobel, 1978), which further intensifies these inherent difficulties.

A common simplification involves flattening relational schemas into single tables (Ge et al., 2021;
Ghazi et al., 2023), but this approach quickly becomes impractical for large-scale and complex
schemas characteristic of real-world databases (Pang et al., 2024). More recent methods (Cai
et al., 2023; Xu et al., 2023; Pang et al., 2024) instead model relational databases as a sequence of
conditionally generated tables. This design requires a pre-specified ordering of tables and typically
relies on strong independence assumptions, which constrain modeling flexibility. As a result, current
methods have struggled with two key limitations: (1) the inability to generate arbitrary relational
schemas and (2) the failure to effectively preserve inter-table correlations and long-range dependencies
between attributes linked by foreign key relationships (Hudovernik et al., 2024).
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In this paper, we propose RELDIFF, a principled generative framework for relational databases.
RELDIFF enables the synthesis of arbitrary relational schemas by explicitly modeling the underlying
database structure with graphs. Instead of simply decomposing the relational into conditionally
independent tables, RELDIFF first utilizes a specifically designed D2K +SBM graph generator to
preserve the cardinality of foreign key relationships and the hierarchical dependencies inherent in
the relational structure. Built upon this faithful structural representation, we further define a joint
graph-based diffusion model for attribute synthesis across interconnected tables, built upon a unified
diffusion process modeling both continuous and discrete features. The resulting model can explicitly
capture both inter- and intra-table dependencies powered by graph neural networks (GNNs), and can
model the heterogeneous numerical and categorical features within each table.

The unique advantages of RELDIFF come from the key innovations in our approach, including: (1) A
principled formulation for generating foreign key structures in relational databases, incorporating
hard constraints to ensure referential integrity through a novel application of Bayesian stochastic
blockmodels; (2) A joint diffusion model for synthesizing mixed-type attributes, conditioned on
graph structure using GNNss, to better capture global dependencies; (3) We define our diffusion
model in data space and explicitly consider dimension tables, a fundamental component of real-world
databases, as a distinct data type. Furthermore, all the developments are general and data agnostic,
without any predefined assumption of the relational data structures. These innovations allow us
to model relational databases with arbitrarily complex schemas and preserve both statistical and
structural dependencies of the data.

We conduct comprehensive experiments to justify the effectiveness of our proposed method. Empirical
results across two benchmarks, covering 11 datasets and 8 metrics, demonstrate that RELDIFF can
consistently outperform previous methods, with up to 80% improvement over the state-of-the-art in
preserving column correlation between connected tables. The significant improvements highlight the
superior generative capacity of our approach on relational data.

2 RELATED WORK

Relational Database Synthesis. Patki et al. (2016) were the first to propose a learning-based method
for relational database synthesis - the Synthetic Data Vault (SDV). Recent methods broadly fall into
neural network-based (prioritizing fidelity) and marginal-based (focusing on differential privacy)
approaches. While marginal-based methods are established for single-table synthesis (Zhang et al.,
2017; McKenna et al., 2022) , their extension to relational data is more recent, with PrivLava (Cai
et al., 2023) and several newer methods emerging (Alimohammadi et al., 2025; Kapenekakis et al.,
2024; Cai et al., 2025).

We focus on neural network-based relational database synthesis, preserving fidelity and utility for
arbitrary schemas. Graph variational autoencoder-based methods (Mami et al., 2022) have been
investigated but encounter scalability issues with real-world databases. Generative adversarial network
(GAN)-based methods, such as RCTGAN (Gueye et al., 2023) and IRG (Li et al., 2024a), extend
the successful CTGAN (Xu et al., 2019) architecture from single-table synthesis to relational data.
However, recent advancements have demonstrated the superior performance of diffusion models over
GANS in various generative tasks. Autoregressive approaches, leveraging language models (Solatorio
& Dupriez, 2023) and any-order networks (Tiwald et al., 2025), have also been investigated, but
their autoregressive nature makes them better suited for simpler relational structures, particularly
those with single-parent schemas. In contrast, the work of Xu et al. (2023) proposes a method
for generating many-to-many datasets using bipartite 2K random graphs. Similar to our approach,
they decouple the generation of database structure and attribute synthesis. However, their graph
generation method does not capture hierarchical relational structures and primarily focuses on many-
to-many relationships, generating tables sequentially. Building on the success of diffusion models
for single-table data generation (Kotelnikov et al., 2023; Zhang et al., 2024; Shi et al., 2025a), two
diffusion-based methods for relational data have emerged: ClavaDDPM (Pang et al., 2024) and
RGCLD (Hudovernik, 2024). Both of these approaches largely treat relational database synthesis
as a series of conditional single-table generation tasks, relying on a pre-specified table ordering and
introducing limiting assumptions about the relational dependencies. A detailed overview of related
work is provided in Appendix A.
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Graph Structure Generation. Realistic and efficient graph generation models originate from the
degree sequence problem. d K -random graphs (Mahadevan et al., 2006) preserve the degrees of nodes
in d-sized connected subgraphs. 0K graphs preserve: the density (by convention), 1K graphs: the
degree distribution, 2K graphs: the joint degree distribution of neighbors, 3K graphs: the degrees
of connected triplets of nodes. While there exist efficient methods to generate up to 2K -graphs,
generating 3K graphs is NP-hard. Therefore, the 2/ 4 graph construction framework (Tillman et al.,
2019) proposes heuristic approaches for targeting additional properties such as connected components
and clustering. We extend the 2K + framework by preserving (not only targeting) hierarchical and any
other modular organization present in relational databases. We employ the Stochastic Block Model
(SBM) (Holland et al., 1983) where nodes are partitioned into blocks which define their connectivity
(blocks are subsets of relational tables). The degree-corrected SBM (Dasgupta et al., 2004) accounts
for the variance in node degrees, while the microcanonical version enforces hard constraints on the
edges (Peixoto, 2017). A hierarchy of nested SBMs reduces the minimum detectable size of blocks
from O(y/n) down to O(logn), where n is the number of nodes (Peixoto, 2014).

Deep generative models for graphs, such as diffusion (Liu et al., 2019; Vignac et al., 2023) and
autoregressive models (You et al., 2018; Liao et al., 2019), exist but often assume dense representation,
scaling poorly to large relational database graphs (Jang et al., 2024; Li et al., 2024b). Unlike our
model, they typically do not enforce hard structural constraints relevant to our work.

3 PRELIMINARIES

Notation. We begin by introducing a formal definition of relational databases, following the RDL
framework (Fey et al., 2024), which provides a principled abstraction of relational data as heteroge-
neous graphs. This formulation enables us to decouple the generative process into two components:
(1) the generation of database structure via a schema-consistent relational entity graph, and (2) the
joint synthesis of entity-level attributes conditioned on this structure and local neighborhoods.

A relational database (7, £) consists of a collection of tables 7 = {77, ..., T, }, and links between
tables £ C T x T. Alink L = (Tixey, Tpkey) exists if a foreign key column in Tj, references a
primary key column in Tyey. Each table is a set T = {v1,..., v, }, Whose elements v; € T are
called rows or entities . Each entity v € T is defined as a tuple: v = (p,,, Ky, 2, ) where: p, is the
primary key, uniquely identifying the entity v, K, C {p,s : v' € T" and (T, T") € L} is the set of
foreign keys, establishing links from v € T to entities v" € T”, where p, is the primary key of v’ in
table 7" and z,, contains the attributes, representing the informational content of the entity.

The two central objects of RDL as defined by Fey et al. (2024) are the schema graph and relational
entity graph. The schema graph defines the table-level structure of data. Given a relational database
(T, £) and the inverse set of links as £ = {(Tpkey, Tixey) | (Tixeys Tpkey) € L}, the schema graph is
the graph (7, R) with node set 7 and edge set R = £ U £~ !. The nodes of the schema graph serve
as type definitions for the heterogeneous relational entity graph.

The relational entity graph is a heterogeneous graph G = (V, €, ¢, 1), with node set VV and edge set
&€ CV x V and type mapping functions ¢ : ¥V — T and ¢ : £ — R, where each node v € ) belongs
to a node type ¢(v) € T and each edge e € £ belongs to an edge type i(e) € R. Specifically, the
sets 7 and R from the schema graph define the node and edge types of our relational entity graph.

Real-world relational databases contain diverse data types. Following prior work, we focus on
numerical, categorical, and datetime attributes, representing each as either a continuous or discrete
random variable for unified modeling. We handle dimension tables explicitly as fixed-size vocabulary
lookups to ensure schema consistency and improve sample quality.

Gaussian Diffusion. For a numerical attribute z, the forward diffusion process gradually perturbs
the data with increasing Gaussian noise: ¢uum(2: | 20) = N (20, (6™ (¢))?), where ™™ (¢) :
[0,1] — R is an increasing function that governs the cumulative noise level over time. The
marginal distribution p(zp) at time t = 0 corresponds to the data distribution, while p(z;) converges
to the know noise distribution A/(0, (6™ (1))?) from which we can easily sample. Following the
framework of Karras et al. (2022), the true reverse distribution gnum (25 | 2:) can be formulated by the
solutions to the ordinary differential equation (ODE) dz™™ = —[4 ™™ (¢)]o™™(+)V, log p;(2)dt,

dt
where 0 < s < t < 1. To learn the generative model, we approximate the true score function
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Figure 1: RELDIFF framework overview. RELDIFF applies forward diffusion to mixed-type
attributes within each relational table and performs joint reverse denoising across tables, conditioned
on the relational entity graph and node neighborhoods. Learnable embeddings handle dimension
tables (e.g., Products), and a sampled synthetic entity graph guides the generation process.

num

V. log p:(2™™) using a neural network pp"™, which is trained via the following denoising loss:

Lium (0) = Bz opzo) Etnvio,1)Bemaro, 1) 15" (265 ) — E||§ ()

Masked Diffusion. For a categorical attribute ¢ with K categories, we introduce an additional
(K + 1)™ to represent the special [MASK] state and denote it as m = (0,...,1) € {0,1}¥
using the one-hot representation. Let cat(-; 7) denote the categorical distribution over K classes,
parameterized by the probability vector m € AX. The forward diffusion process operates in
continuous-time by gradually masking the original values: geat(ct|co) = cat(es; areo + (1 — ap)m),
where o = exp(—0c°(t)) is a decreasing function between 0 and 1 controlling the masking rate.
Following Sahoo et al. (2024) and Shi et al. (2024), the true reverse transition distribution ¢(cs|c;) is
given as:

cat(cs; ct) ¢t #m,
QCat(CSICt) = {cat ( (1= as)m"l‘(as_at)QCat(COIct)) ¢ = m. (2)

1—a

To model this generative process, we train a neural network u§* to predict the original category co
from the masked input ¢, i.e. to estimate gcat (co|c:). The model is optimized using a cross-entropy
loss under the continuous-time limit:

Lon®) =, [

=0 1—a

t=1 /
Ly, =my log(ug™ (ce, 1), 5™ )dt. 3)

4 METHOD

This section details RELDIFF, our framework for generating synthetic relational databases. We
provide a high-level overview of our generative model in Section 4. 1. First, we describe how we model
the relational graph structure using Bayesian stochastic blockmodels, ensuring referential integrity and
preserving relationship cardinalities and hierarchical dependencies (Section 4.2). Next, we present our
joint relational diffusion model for synthesizing attributes across the database schema, parameterized
by a single heterogeneous graph neural network with tabular transformer-based encoders and decoders
(Section 4.3). Finally, we detail the training and sampling procedures (Section 4.4).

4.1 OVERVIEW

In line with Probabilistic Relational Models (PRMs) (Friedman et al., 1999; Getoor et al., 2001), we
decompose the generative process into modeling the relational graph structure and the attributes of
the tables. We treat the relational entity graph G = (V, £) as a single sample from some unknown
joint distribution p(V, £). Our objective is to sample from this distribution, ensuring adherence to
referential integrity constraints and the preservation of statistical dependencies. We formalize this
joint sampling through the following conditional decomposition p(V, &) = p(E)p(V | £). This
decomposition enables efficient modeling even for complex schemas. We provide a disscusion
of alternative formulations in Appendix F. See also Xu et al. (2023) for a detailed discussion for
many-to-many schemas.
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Figure 2: Hierarchical structure of the F1 dataset. Our SBM-based method preserves the F1
dataset’s foreign key graph’s joint degree distribution and hierarchy. In contrast, the bipartite 2K -
graph approach (Xu et al., 2023) loses this structure despite matching degree distributions, and
ClavaDDPM, by implicitly modeling the structure, retains some hierarchy but not the degrees.

To model graph structure p(E), we present a novel approach based on established models from
graph theory. Within our joint diffusion framework, we formulate p(V | £) to explicitly model the
dependencies between nodes representing entities across different tables during generation.

4.2 GRAPH STRUCTURE GENERATION

To generate realistic synthetic relational structures, we focus on sampling graphs that preserve
the original database size, enforce referential integrity, and respect exact table and relationship
cardinalities. Modern deep generative approaches are not applicable here due to their scalability
limitations with large, sparse graphs (Jang et al., 2024). Instead, we base our approach on classical
random graph models, which provide principled, efficient mechanisms for sampling large, structured
graphs while preserving referential integrity by design.

The graph structure of a relational database is a heterogeneous entity graph G = (V, &, ¢, 1) defined
above. Our objective is to learn a distribution p(£) over such graphs, conditioned on a fixed set of
nodes v € V, the number of edges m, = |&,| of each type r € R and the node degree sequence
ky, = |v € &.|, where ), k; = 2m,. This corresponds to fixed row counts, and exact entity
and relationship cardinalities. We can opt to preprocess the entity graph by converting nodes with
two parents and no children into many-to-many edges to improve computational efficiency (see
Appendix E.1). This one-to-one transformation is reverted after sampling the new edge set.

To generate samples from p(&), we utilize nonparametric Bayesian SBMs (Peixoto, 2019) as a model
of graphs with the above structural constraints. The microcanonical degree-corrected SBM (Peixoto,
2017) defines the distribution p(E|b, m, k), where b : V — Z is a partition of nodes into some latent
(disjoint) blocks. By setting b = ¢, and generating the subgraph corresponding to each foreign-key
relationship independently, we obtain a D2K graph generator (Tillman et al., 2017) of individual
relationships. 2K -random graphs preserve the node degree sequence and the degree correlations
of neighbouring nodes (Mahadevan et al., 2006). To preserve also a global hierarchical and other
modular organization of the database, we use the maximum likelihood partition b* that minimizes
the description length of a nested hierarchy of SBMs (Peixoto, 2014). Note that we constrain the
partition b* by node types ¢ such that b*(v) = b*(u) implies ¢p(v) = ¢(u) for all v, u € V. We refer
to this model as D2 K +SBM graphs, consistent with the literature (Tillman et al., 2017; 2019).

The generation process proceeds in three stages.

1. We employ an efficient Markov Chain Monte Carlo approach (Peixoto, 2014) to infer the
most likely partition b* of the edge set £.

2. For each relationship » € R, we sample a new edge set S, independently from
p(Er|bE, my, k™), where b% is the partition of nodes induced by &,. When &, induces a
simple graph, we ensure to sample S, only from simple graphs (unless stated otherwise).

3. The final generated graph is induced by the edge set U,cr S;-.

Our approach preserves the joint degree distribution of individual relationships by construction and,
as illustrated in Figure 2, retains the hierarchical structure of the relational entity graph.
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4.3 JOINT MULTI-RELATIONAL DIFFUSION

To model the distribution over node attributes, we define a hybrid diffusion process that applies
forward noise independently across entries and independently across attribute types (numerical and
categorical) within each entry. Let V; denote the set of all entities at time ¢, and zy{ the attribute of a
single entry v. This forward process is given by'

Vt | VO H qI?lS’fn num num) qf;tv)( ;:at ‘ xsat)yxt € v, ()
ve €V

The true reverse process is then modeled as the joint posterior:

V | Gt H qd)(vs) num ‘ x?um’Gt) qCa(,t )( cat ‘ xC‘Lt Gt)7x8 € vg, 5)

num
Vs EVs

which factorizes over entities but allows each denoising step to condition on the full database context
G, at a given timestep ¢. Note that to simplify notation, we omit defining a common space on which
q is defined, but make a distinction between q¢(”), which are defined on subsets of the joint space.

We formulate the learning objective as a graph-based denoising task, where the goal is to train a
model py(z¥ | «}, G;) that reconstruct clean attributes from noisy inputs. However, conditioning
on the full graph at every step can be computationally prohibitive, as real-world databases typically
contain millions of entries.

To improve efficiency while still capturing the interactions between attributes across the connected
tables, we assume conditional independence of each node v € V given its noisy k-hop neighborhood at
timestep ¢, denoted N (v);. Under this assumption, the model is approximated as pg(x?|x¥, Ny (v):)
and parameterized using a GNN that operates locally over the neighborhood Ny, (v);.

By plugging in the objective functions corresponding to the masked and Gaussian diffusion processes
(defined by egs. (1) and (3)), we end up with the following optimization objective with two weight
terms Apum and Acat:

‘CRELDIFF(Q) = Z (>\num£num(9) + /\catﬁcat(a)) = EtNU(OA,l) Z Ez'gqui (z,28)
T:eT T:eT

num /v i Acaa, ca
(A £ N(0) = e+ D0 T2y (5 1, N ()T €57

v,cat
CLtET,

(6)
We parametrize our model with a heterogeneous graph neural network with transformer encoders
and decoders and one MLP backbone per table. We use a heterogeneous variant of the GraphSAGE
network (Hamilton et al., 2017).

4.4 TRAINING AND INFERENCE

With the forward process defined in Eq. (4) we
present the training procedure for our joint dif-
fusion model in Algorithm 1. We begin each I
training step by sampling a subgraph that main- 2
tains the proportional representation of nodes 3 Sample ¢ ~ U(0, 1)
from each table in the original database. Sub- 4 for T; € T do T
sequently, we sample a timestep ¢t ~ U(0,1) 2-’ Ty < Gatch -0’
7
8

Algorithm 1 Training

: repeat
Sample batch Ghatch

using a low-discrepancy sampler similar to the Sample equm ~ N(0, MTinum)
one proposed by Kingma et al. (2021) and apply num

! . oM = 20" + Tum(f) + €oum
the corresponding noise schedule s to perturb Sample 25 ~ q(z¢|xo)

the numerical and categorical attributes. The g. Ghach-TL* < [zlm g2
noisy subgraph, along with ¢, is then fed into our 1. end for
model. The model jointly denoises the attributes  17. Take gradient descent step on Vg Lrgpisr

across all tables and we perform a gradient step  12. until converged
on the combined loss function defined in Eq. (6).

Relational databases often consist of millions of entities, making it infeasible to load and process the
full relational graph in memory during training. Training on the entire graph would be ideal from a
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computational perspective, since it provides complete access to the computational graph and enables
loss computation across all nodes. However, it would constrain us to sampling a single noise level
per training iteration, as the entire graph must be denoised simultaneously. In contrast, minibatch
training provides a practical trade-off: it reduces memory consumption and enables sampling across
different noise levels, at the cost of reusing only a portion of the computation graph per step.

Subgraph Sampling for Efficient Training. For databases organized into multiple disjoint subgraphs
(e.g., those following a snowflake schema), minibatch construction is straightforward. We sample n
subgraphs independently at each training step and compute the loss across all nodes within them. In
more general settings, where foreign key relationships form a connected network rather than isolated
components, we adapt the neighbor sampling procedure of Hamilton et al. (2017). Specifically, we
begin by selecting a set of seed nodes for each table, then sample their k-hop neighborhoods. The
resulting subgraphs are merged to form a single, connected minibatch subgraph used for training.

Sampling During the sampling process, we first generate a new relational entity graph using our
D2K+SBM graph generator, capturing the structural properties of the original database. To initiate
the reverse diffusion, we sample initial values for numerical attributes from a standard Gaussian prior
distribution and set all categorical attributes to the masked state. At each subsequent denoising step
of the reverse diffusion, we jointly denoise the attributes of all tables using our learned diffusion
model, allowing for simultaneous refinement and capturing inter-table dependencies. For the reverse
diffusion process, we utilize a stochastic sampler, similar to the one proposed by Shi et al. (2025a), to
introduce stochasticity and diversity into the generated samples.

After completing the denoising process, we transform the generated graph entities back into a tabular
format, reconstructing the table structure. Finally, we add foreign keys to the tables based on the
edges of the generated relational entity graph, ensuring the generated data adheres to the structural
relationships defined by the schema.

5 EXPERIMENTS

We evaluate RELDIFF by comparing it against 6 generative methods using two relational database
generation benchmarks consisting of 11 real-world datasets totaling 67 tables and 64 foreign key
relationships. We focus on multi-table fidelity and downstream task performance. Additional results
on single-table fidelity, privacy, and ablation studies are provided in Appendix D. In Appendix E, we
analyze the efficiency of our method by reporting training and sampling runtimes and by scaling to
two large relational databases—an order of magnitude larger in the number of rows and tables than
those used in prior work—demonstrating RELDIFF ’s superior scalability.

5.1 EXPERIMENTAL SETUP

Real-world datasets. We conduct our evaluation on eleven real-world relational databases from two
benchmarks from related work. The datasets include: Biodegradability, Berka, a relational version
of the Cora dataset, Walmart Recruiting - Store Sales Forecasting, Airbnb Bookings, Rossmann
Store Sales, CCS, Instacart 05, and F1. These datasets vary in the number of tables, the maximum
depth, the number of foreign-key relationships, and structural complexity. Details can be found in
Appendix B.1.

Baselines. We compare our method with state-of-the-art methods from each benchmark. These
include ClavaDDPM (Pang et al., 2024), RCTGAN (Gueye et al., 2023), RealTabFormer (Solatorio &
Dupriez, 2023), SDV (Patki et al., 2016) and TabularARGN (Tiwald et al., 2025) on the SyntheRela
benchmark and ClavaDDPM, SDV and PrivLava (Cai et al., 2023) on the ClavaDDPM benchmark.

Evaluation metrics. We follow the protocols of Jurkovic et al. (2025) and Pang et al. (2024) and
use the same evaluation metrics: 1) Fidelity: Shape, Trend, C2ST, C2ST-Agg, k-hop correlation
and cardinality similarity assess how well the synthetic data can faithfully recover the ground-truth
data distribution; 2) Downstream tasks: machine learning efficiency using RDL utility evaluates the
models’ potential to power downstream tasks; 3) Privacy: The distance to closest record (DCR) score
evaluates the level of privacy protection by measuring how close the synthetic data is to the training
data and membership inference attacks (MIA) evaluate how much of the training data can be detected
by an attacker given a sample of held-out and synthetic data. We provide detailed descriptions of all
metrics in Appendix B.2.
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Table 1: Multi-table results on the SyntheRela benchmark. For each dataset we report the average
detection accuracy for C2ST-Agg (lower is better) and k-hop correlation similarity (higher is better).
The number of k-hop results is determined by maximum depth of the dataset. We report the best
result in bold. DNC denotes Did Not Converge. (Baselines from Jurkovi€ et al. (2025).)

Metric | TabARGN  ClavaDDPM RCTGAN REALTABF. SDV | RelDiff Improv.
C2ST-Agg () | 63.47+0.88 ~ 100.0 98.22:+0.08 99.13:+0.02 99.94+0.01 | 55.68+0.66 12.26
Airbnb Cardinality (1) | 98.59+0.32 99.65+0.06 95.4540.62 76.38+0.47 26.3640.03 100.0 0.35
1-HOP (1) 79.66+0.36 86.69-+0.14 68.78+0.54 33.99+5.76 24.58+0.03 | 89.37+0.38 3.10
C2ST-Agg (1) | 60.43+0.63 85.77+0.07 86.11+1.01 85.90+1.33 98.37+0.23 | 51.06+1.39 15.51
Rossmann  Cardinality (1) | 94.17+1.84 99.19+0.29 82.69+1.95 41.82+10.20 99.16+0.15 100.0 0.81
1-HOP (1) 92.95+0.78 82.81+0.47 87.02+0.17 80.25+0.84 73.84+0.34 | 96.73+0.18 4.06
C2ST-Agg () | 94.81+1.68 73.33+2.92 94.81+1.68 90.0:0.91 88.52+1.60 | 66.30+1.68 9.60
Walmart  Cardinality (1) | 65.93+1.08 93.33+2.28 88.15+1.51 85.56+4.57 86.30+1.09 100.0 7.14
1-HOP (1) 75.40+1.49 86.40+1.73 79.02+0.15 74.99+0.20 76.64+1.07 | 91.8T+0.42 6.34
C2ST-Agg (|) | 80.56+1.86 69.1210.63 76.86+2.22 77.43+0.14 | 55.69x0.82 19.43
Cardinality (1) | 85.17+0.84 96.43+0.36 81.28+1.07 80.53+0.72 100.0 3.70
Berka 1-HOP (1) 72.82+0.38 87.92+1.66 78.87+0.91 - 59.0940.49 | 96.88+0.06 10.20
2-HOP (1) 65.51+0.31 84.41+2.46 77.98+0.95 23.09+0.21 | 95.79+0.02 13.49
3-HOP (1) 59.34+0.62 80.67+2.18 78.65+0.60 58.23+0.58 | 90.19+0.22 11.81
C2ST-Agg (1) | 95.90+0.94 82.52+0.25 91.23+0.30 94.55+0.24 | 64.85+0.11 21.41
Fl Cardinality (1) | 58.17+3.71 88.45+3.05 56.82+1.55 R 71.88+0.12 100.0 13.06
1-HOP (1) T7.37+0.26 79.35+0.03 79.14+0.72 68.45+0.20 | 93.46+0.10 17.78
2-HOP (1) 76.25+0.32 84.18+0.12 83.50+0.52 76.93+0.24 | 95.91+0.03 13.94
C2ST-Agg (|) | 73.76+1.78 65.040.34 81.56+2.0 53.29x0.45 18.01
IMDB Cardinality (1) | 81.19+0.80 98.95-+0.03 79.53+1.27 - DNC 100.0 1.06
1-HOP (1) 88.64+0.70 91.57+1.25 81.76+0.20 94.84+0.35 3.57
C2ST-Agg (1) | 88.86+0.26 83.8243.35 98.02+0.06 | 47.04x027  43.88
Biode Cardinality (1) | 79.53+0.24 R 85.22+0.50 R 61.17+0.36 100.0 17.35
& 1-HOP (1) 61.36+0.47 75.80+1.46 49.09+0.59 | 89.37+3.76 17.90
2-HOP (1) 60.54+0.44 77.04+1.96 47.80+2.16 | 86.59+5.02 12.40
C2ST-Agg (}) | 68.80+0.67 73.7T4+0.47 99.59+0.03 | 69.30+0.52 0.0
Cora Cardinality (1) | 96.27+0.13 - 90.48+2.16 - 68.82+0.29 100.0 3.87
1-HOP (1) 80.42+0.34 68.39+0.08 4.95+0.12 72.16+1.19 0.0

Implementation Details. All reported experiment results are the average of 3 randomly sampled
synthetic data samples. Additional implementation details, such as the hardware and software
information as well as hyperparameter settings, are in Appendix C.

5.2 MULTI-TABLE FIDELITY

We first evaluate multi-table fidelity on the SyntheRela benchmark datasets. We focus on two key
metrics: C2ST-Agg, which probes the preservation of higher-order interactions and aggregations
across connected tables, and k-hop similarity, which evaluates correlations between columns of paired
tables at varying depths within the database schema. In line with previous work, we also report
cardinality similarity. However, our approach consistently achieves a perfect score as it preserves the
degree distributions. Table 1 shows that RELDIFF consistently outperforms all baselines, securing
second-best performance in all but three experiments. Notably, RELDIFF exhibits a significantly
smaller performance drop when transitioning from single-table (Table 6) to multi-table C2ST eval-
vation. Figure 3 illustrates that this degradation is 7 lower than that of the closest competitor,
ClavaDDPM, highlighting RELDIFF’s superior ability to maintain data fidelity in relational contexts.
Additional single-table fidelity and privacy results are in Appendices D.1 and D.3.

Next, we evaluate the results on the ClavaDDPM (Pang et al., 2024) benchmark. Following the
original evaluation protocol, we report single-table metrics (Trend and Shape) and multi-table metrics
(cardinality and k-hop similarity). We omit the MovieLens and Berka datasets as they are already
included in the SyntheRela benchmark. Results in Table 2 show that RELDIFF is the best on all
multi-table fidelity metrics, with an average improvement of 25.3% in preserving k-hop correlations.
RELDIFF outperforms other methods on all but two single-table evaluations.

To better visualize the fidelity metrics, we plot column-wise marginal densities in appendix D.2.
5.3 PERFORMANCE ON DOWNSTREAM TASKS
High-quality synthetic data offers the key advantage of replacing real data for analysis and effective

learning on downstream tasks like classification and regression. We evaluate this capacity using
Machine Learning Efficiency (ML-E) on RDL tasks (Robinson et al., 2024). According to the RDL
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Table 2: End-to-end results on the ClavaDDPM benchmark. We follow the evaluation protocol
by Pang et al. (2024) and report the cardinality similarity, column shapes, trend scores and correlations
between columns in connected tables. DNC denotes Did Not Converge.

Metric |  PrivLava SDV ClavaDDPM | RelDiff Improv.

~  Cardinality | 99.90+0.03  71.4540.0  99.19+0.29 100.0 0.10
£ Shape 99.7140.02  72.324£0.0  98.77+£0.02 | 99.52+0.02 0.0
& Trend 98.4940.05  50.23£0.0  97.65+0.05 | 98.72+0.01 0.24
= 1-HOP 97.464+0.12  54.8940.0  95.16+0.39 | 98.72+0.0 1.29
©  AVG2-WAY | 97.97+0.09  52.56+£0.0  96.41+0.20 | 98.7240.01 0.77
. Cardinality 95.30+0.79 100.0 4.93
g Shape 89.8440.29 | 96.85+0.85 7.80
£ Trend 99.62+0.04 | 95.7140.42 0.0
=1
& 1noP DNCE DNC 76.4240.39 | 85.83%+1.20 1231
2 2-HOP 39.2043.38 | 70.7440.14  80.05
= AVG2-WAY 76.0240.78 | 85.78+0.81 12.84

Cardinality 74.36+£8.40  99.2540.16 100.0 0.76
- Shape 69.04+4.38  92.37+2.30 | 98.29+0.04 6.41
o Trend DNC 94.8441.0  98.4740.79 | 98.7440.14 0.28
© 1-HOP 21.7449.62  83.15+4.22 | 89.48+4.01 7.62

AVG 2-WAY 41.6846.73  87.33+3.12 | 92.01+2.95 5.36

results presented in Table 3 RELDIFF achieves the best performance on all datasets — sharing the best
results on the two datasets with the simplest schema and substantially outperforming other methods
on datasets with more complex schemas. This demonstrates our method’s competitive capacity to
capture and replicate key features of the real data that are most relevant to learning downstream
machine learning tasks. We observe that methods with lower performance on data fidelity sometimes
outperform stronger methods on utility, highlighting that fidelity and utility are two distinct aspects
of synthetic data quality (Hansen et al., 2023). Despite this nuance, RELDIFF consistently achieves
strong performance across both aspects.

Table 3: RDL-utility results. We report ROC-AUC (higher is better) for classification and MAE
(lower is better) for regression tasks. We report the naive baseline scores (mean or majority class) in
parentheses. "-" denotes that the utility pipeline could not be used. We highlight the best results for
each dataset and report the mean and standard error for each metric.

Dataset Metric ORIG. TabRGN ClavaDDPM RCTGAN REALTABF. SDhV \ RelDiff Improv.
Rossmann  MAE (|) 178 (324) 229+3 193+0.70 224+4 25635 3428+0.01 193+1 0.0
Walmart MAE () 9531 (14.7k)  13848+14 11426+1052 13435+416 13862300 13679487 | 10475+1379 8.32
Airbnb AUC (1) 0.69 (0.5) 0.66-0.01 0.51+0.03 0.63+0.01 - 0.57+0.00 0.66=0.01 0.0
Berka AUC (1) 0.81 (0.5) 0.59+0.28 0.52+0.16 - - - 0.84+0.02 12.4
F1 AUC (1) 0.77 (0.5) 0.380.06 0.45+0.06 0.48+0.01 - 0.52+0.06 0.72+0.01 38.5

6 CONCLUSION

In this work, we introduced RELDIFF, a novel & Ej;atmli.lﬁa b
diffusion-based generative framework designed s [ ¢ Avg. Single Table
for synthesizing complete relational databases fosoos

by explicitly modeling their inherent foreign 3 pa=ot0 E‘: F

key graph structure. Our approach uniquely 3 °° | L i

combines a joint graph-conditioned diffusion § } | 7 {‘: a-o1
process for attribute synthesis across all inter- £, F b !

connected tables with our D2K+SBM graph & e p

generator for structure creation. This principled ~ © %E

decomposition ensures both high fidelity in the ;D "
generated data and strict adherence to referential perfect Fidelity

integrity, addressing key limitations of existing B
relational data synthesis methods that often flat- SOV, REALTABR. RCTGAN ClayaDDPM TabARGN  RelDiff
ten the relational structure or impose restrictive

assumptions. Figure 3: Comparing single and multi-table

C2ST performance. As opposed to previous meth-
Through extensive experiments on 11 bench- ods, our approach incurs only a slight degrada-
mark datasets, RELDIFF consistently achieves  tjon between average multi-table (C2ST-Agg) and
state-of-the-art performance. Our framework  gingle-table (C2ST) performance indicated by the

effectively captures complex structural and sta-  rejational A = Acc(C2ST- Agg) - Acc(C2ST).
tistical dependencies, leading to synthetic data
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that better reflects the intricacies of real-world relational data. This advancement holds signifi-
cant promise for various downstream applications, including privacy-preserving data sharing, data
augmentation for relational learning tasks, and imputation of missing values in complex relational
datasets.

REPRODUCIBLITY STATEMENT

We provide the full implementation of our method as supplementary material as well as pseudocode
of the training procedure in Algorithm 1. Detailed descriptions of the datasets, preprocessing steps,
model architecture, training procedure, and evaluation setup are included in Appendix B. Our goal is
to ensure full transparency and to facilitate reproducibility in machine learning research.
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A RELATED WORK OVERVIEW

Here we present a more detailed overview of synthetic relational database generation approaches.
The Synthetic Data Vault (SDV) (Patki et al., 2016) introduced the first learning-based method for
generating relational databases. They introduce a hierarchical modeling approach using Gaussian
Copulas, incorporating recursive conditional parameter aggregation to preserve relational structure.

Mami et al. (2022) proposed GraphVAE, a graph-based approach leveraging graph variational
autoencoders. They represent relational databases as a single homogeneous graph where all rows
become nodes. This contrasts with our approach, which uses a heterogeneous graph to better reflect

14


https://kaggle.com/competitions/walmart-recruiting-store-sales-forecasting
https://kaggle.com/competitions/walmart-recruiting-store-sales-forecasting

Under review as a conference paper at ICLR 2026

the distinct structure and relationships of the table. Foreign keys are implicitly handled by establishing
edges between primary and secondary table rows within this homogeneous graph representation. The
GraphVAE then uses message-passing layers during both encoding and decoding to model inter-table
interactions and generate attribute values for synthetic rows.

Building upon the Conditional Tabular GAN (CT-GAN) method by Xu et al. (2019), two GAN-based
methods have been proposed for relational data synthesis. Row Conditional-TGAN (RCTGAN) (Gu-
eye et al., 2023) extends CT-GAN by integrating hierarchical dependencies, enabling the conditional
synthesis of child tables based on their parent and grandparent rows. The Incremental Relational Gen-
erator (IRG) (Li et al., 2024a) synthesizes relational databases through a sequential table generation
process that follows a topological ordering. It constructs an extended table by integrating context
from all relevant previously generated or related tables.

The transformer-based approach REaL.TabFormer (Solatorio & Dupriez, 2023) focuses on single-
parent relational databases. It employs a GPT-2 encoder with a causal language model head to
independently model the parent table. For dependent tables, a sequence-to-sequence (Seq2Seq)
transformer is utilized, leveraging the frozen parent model as context. All attributes are transformed
into a common vocabulary; however, this approach inherits the limitations of language models,
particularly concerning the accurate modeling of numerical data.

Xu et al. (2023) introduced a framework for modeling many-to-many datasets using multipartite
graphs under differential privacy. Their method utilizes a factorization of the joint data distribution,
combining techniques from random graph generation to model structure with graph representation
learning methods to conditionally generate tables based on node embeddings. Our approach builds
upon their work by specifically capturing hierarchical characteristics during graph generation, mod-
eling tables jointly rather than sequentially, and addressing general relational databases beyond
many-to-many relationships.

Diffusion models have also been adapted for relational synthesis. ClavaDDPM (Pang et al., 2024)
integrates clustering-guided diffusion models to preserve foreign-key dependencies, utilizing Gaussian
mixture models to encode inter-table dependencies. Similarly, RGCLD (Hudovernik, 2024) uses
conditional latent diffusion models, using a heterogeneous graph representation and GNNs to encode
table relationships, which then guide the diffusion process within the latent space. A key limitation
of both methods is their sequential modeling of tables, which introduces implicit assumptions on
inter-table dependencies and may allow errors to propagate down the hierarchy during generation.

Finally, auto-regressive models have been explored for tabular and sequential relational synthesis.
TabularARGN (Tiwald et al., 2025) employs an any-order auto-regressive network, trained on
discretized attributes, to model conditional dependencies. While it specializes in single-table and
sequential database modeling, TabularARGN also supports multi-parent schemas by preserving
certain dependencies using context tables and maintaining referential integrity for the remaining
relationships.

The marginal-based approaches for synthetic relational database generation primarily focus on
preserving marginal queries, typically with differential privacy guarantees. PrivLava (Cai et al., 2023)
synthesizes relational databases by modeling foreign key relationships as a directed acyclic graph with
latent variables, generating tables incrementally. MARE (Kapenekakis et al., 2024), specializing in
medical relational data, employs correlation partially directed acyclic graphs (CPDAGs) for selective
correlation modeling and orchestrates two-phase data sampling. Alimohammadi et al. (2025) propose
an approach to adapt single-table differentially private generators to relational data by learning
a weighted bi-adjacency matrix to generate the relational structure. Finally, PrivPetal (Cai et al.,
2025) synthesizes a flattened relational database using normalized permutation marginals and then
iteratively decomposes it by sampling attributes of reference relations.

We acknowledge two concurrent works GCFM (Scassola et al., 2025) and GRDM (Ketata et al.,
2025), which also approach relational data synthesis as a graph-based modeling task. All three
methods move beyond sequential table generation to jointly model the database schema using graph-
based generative models. While the overarching paradigms are similar, the methods differ in their
generative backbones and structural assumptions. Regarding the generative mechanism, GRDM
applies a Gaussian DDPM uniformly to both numerical and categorical features, whereas GCFM
utilizes flow matching. In terms of structure generation, GRDM introduces a degree-preserving
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random graph model, while GCFM utilizes the original graph or samples with replacement from the
connected components of the graph.

We classify related work based on how it approaches attribute and structure generation in Table 4.

Table 4: Classification of related work based on the mechanisms for attribute and structure modeling
as well as the general synthetic data generation (SDG) classification.

Method |  Attribute Modeling | Structure Modeling |  SDG Class
SDV (Patki et al., 2016) conditional tabular as attributes statistical
GraphVAE (Mami et al., 2022) homogeneous graph-based retains original structure neural
RCTGAN (Gueye et al., 2023) conditional tabular as attributes neural
IRG (Li et al., 2024a) conditional tabular as attributes neural
REaLTabFormer (Solatorio & Dupriez, 2023) conditional tabular sequential modeling neural
ClavaDDPM (Pang et al., 2024) conditional tabular conditional modeling + matching neural
RGCLD (Hudovernik, 2024) conditional tabular retains original structure neural
TabularARGN (Tiwald et al., 2025) conditional tabular sequential modeling neural
BayesM2M, NeuralM2M (Xu et al., 2023) conditional tabular random graphs (BJDD) neural & marginal
PrivLava (Cai et al., 2023) conditional tabular as attributes marginal
MARE (Kapenekakis et al., 2024) conditional tabular sequential modeling marginal
DP-Relational (Alimohammadi et al., 2025) independent tabular weighted bi-adjacency matrix marginal
PrivPetal (Cai et al., 2025) flattened tabular flattening connected tables marginal
Ours | heterogeneous graph-based | D2K+SBM random graphs | neural

B DETAILED EXPERIMENT SETUP

This section provides a comprehensive overview of our experimental setup, detailing the datasets
(Appendix B.1) utilized and the evaluation metrics (Appendix B.2) employed.

B.1 DATASETS

Here we describe the datasets used in our evaluation. Table 5 provides detailed statistics for each
dataset. The MovieLens and Berka datasets are used in both benchmarks so we only describe them
once.

Rossmann Store Sales: The Rossmann Store Sales dataset (FlorianKnauer, 2015) features historical
sales data for 1115 stores, organized into two connected tables.

Airbnb: The Airbnb dataset (Montoya et al., 2015) contains anonymized user interactions and
demographics for predicting travel destinations. It comprises multiple tables detailing user sessions
and summary information.

Walmart: The Walmart dataset (Walmart, 2014) contains historical sales data for 45 stores across
three connected tables, including store details, features, and department sales.

Cora: The Cora dataset (McCallum et al., 2000) is a graph benchmark of 2708 academic papers
classified into seven categories, linked by a citation network of 5429 relationships. Unlike the graph
representation learning version with one-hot encoded node features, this relational version stores
paper content in a separate table connected via a foreign key, and citation links are represented in a
dedicated foreign-key-only table.

Biodegradability: The Biodegradability dataset (Blockeel et al., 1999) is a collection of 328 chemical
compounds with biodegradation half-life labels, intended for regression analysis based on chemical
features.

IMDB MovieLens: The IMDB MovieLens dataset (Harper & Konstan, 2015) includes information
on movies, actors, directors, user ratings, and related details across seven tables.

Berka: The Berka dataset (Berka et al., 2000) is a real-world financial dataset focused on loan
outcomes, encompassing loan details and transaction histories across multiple tables. For the
SyntheRela benchmark, this dataset is split temporally to facilitate the evaluation of RDL utility.

F1: The F1 dataset (F1, 2021) contains historical Formula 1 racing data and statistics from 1950
onwards, covering drivers, races, and results across numerous tables.
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California: The California dataset is a real-world anonymized census database (M. Center, 2020) on
household information. It consists of two tables in the form of a basic parent-child relationship.

Instacart 05: The Instacart 05 is created by downsampling 5-percent from the Kaggle competition
dataset Instacart (Stanley et al., 2017), which is a real-world transaction dataset of Instacart orders.
This dataset consists of 6 tables in total with a maximum depth of 3.

CCS: The CCS dataset (Motl & Schulte, 2025) is a real-world transactional dataset Czech debit card
company. It consists of 5 tables with a maximum depth of 2.

Table 5: Summary of the 11 benchmark datasets. The number of columns represents the number
of non-id columns (The MovieLens and Berka datasets appear in both benchmarks). The collection is
diverse and covers all types of relational structures.

Dataset Name \ # Tables #Rows  # Columns  # Relationships ~ Max Depth  Hierarchy Type
Rossmann 2 59,085 16 1 2 Linear

AirBnB 2 57,217 20 1 2 Linear

Walmart 3 15,317 17 2 2 Multi Child

Cora 3 57,353 2 3 2 Multi Child
Biodegradability 5 21,895 6 5 4 Multi Child & Parent
IMDB MovieLens 7 1249411 14 6 2 Multi Child & Parent
Berka 8 757,722 37 8 4 Multi Child & Parent
Fl1 9 74,063 33 13 3 Multi Child & Parent
California 2 2,076,141 25 1 2 Linear

CCS 5 423,050 11 4 2 Multi Child & Parent
Instacart 05 6 1,906,353 12 6 3 Multi Child & Parent
Berka 8 1,079,680 41 8 4 Multi Child & Parent
MovieLens 7 1249411 14 6 2 Multi Child & Parent

B.2 METRICS
B.2.1 SHAPE AND TREND SCORES

Shape and Trend are proposed by the commonly used synthetic data evaluation library SDMetrics'.
They are used to measure the column-wise density estimation performance and pair-wise column
correlation estimation performance, respectively. Shape uses Kolmogorov-Sirnov test (KST) for
numerical columns and the total variation distance (TVD) for categorical columns to quantify column-
wise density estimation. Trend uses Pearson correlation for numerical columns and contingency
similarity for categorical columns to quantify pair-wise correlation.

Shape. KST: Given two (continuous) distributions p,(z) and p,(z) (r denotes real and s denotes
synthetic), KST quantifies the distance between the two distributions using the upper bound of the
discrepancy between two corresponding cumulative distribution functions (CDFs):

KST:SHP|FT’(‘T)7FS(‘T)|’ @)
where F,.(z) and F(x) are the CDFs of p,.(x) and ps(x), respectively:

) - [ " (). ®)

—00

TVD is defined as half the sum of the absolute differences between the real and synthetic probabilities
across all categories:

1
TVD = 5 Z; |[R(w) = ()], ©

where w describes all possible categories in a column 2. R(-) and S(-) denotes the real and synthetic
frequencies of these categories. To comply with previous work on relational data synthesis, we report
the complement of the KST and TVD distances (D (P||Q)) as 1 — Dgsr/rvp(P||Q)

"https://docs.sdv.dev/sdmetrics
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Trend. The Pearson correlation coefficient measures whether two continuous distributions are
linearly correlated and is computed as:

Cov(z,
pry = 2ZEW), (10)

O30y
where x and y are two continuous columns. Cov is the covariance, and ¢ is the standard deviation.

Then, the performance of correlation estimation is measured by the average differences between the
real data correlations and the synthetic data correlations:

1
Pearson Score = 1 — §]Ex$y |2 (x,y) — ps(x,y)ﬂ, (11)
where p®(z,y) and p°(z,y) denotes the Pearson correlation coefficient between column x and
column y of the real data and synthetic data, respectively. As p € [—1, 1], the average distance of
Pearson coefficients is divided by 2, to ensure that it falls in the range of [0, 1], and subtracted from 1
such that the larger the score, the better the estimation.

Contingency similarity: For a pair of categorical columns A and B, the contingency similarity score
computes the difference between the contingency tables using the TVD. The process is summarized
by the formula below:

. 1
Contingency Score = 1 — 3 Z Z |Rep — Sa.pl, (12)
acA BeEB

where o and /3 describe all the possible categories in column A and column B, respectively. R, 3
and S, g are the joint frequency of o and 3 in the real data and synthetic data, respectively. To obtain
a score, the distance is again subtracted from 1.

B.2.2 K-HOP TREND

The k-hop Trend metric, proposed by (Pang et al., 2024), extends the Trend metric to evaluate the
preservation of correlations across multiple tables connected by foreign keys. The 0-hop Trend is
equivalent to the standard Trend metric, measuring pairwise column correlations within a single table.
For k > 0, the k-hop Trend assesses correlations across tables reachable within k foreign key hops.
This is achieved through a series of join operations:

* 1-hop: Refers to the correlation between two columns in tables that are directly linked by a
foreign key. To calculate this, we join the two related tables based on the foreign key and
then compute the Trend metric on the resulting joined table.

* (k > 1)-hop: Extends the process iteratively. Based on a foreign key sequence of length
k, the tables are recursively joined. The Trend metric is then computed on the final joined
table.

As in the Trend metric, the Pearson correlation coefficient and contingency similarity are used to
quantify the differences in joint distributions depending on the data type. The final k-hop Trend score
is the average of these correlation/similarity scores across all relevant k-hop relationships within
the database schema. Similar to the 0-hop Trend, a higher score indicates a better preservation of
inter-table correlations up to k hops.

B.2.3 CARDINALITY SIMILARITY

Given a parent table P with a primary key pk and a child table C' with a foreign key fk referencing
pk, this metric evaluates the similarity of the cardinality distribution between the real and synthetic
datasets. The cardinality of a parent row p € P is defined as the number of child rows ¢ € C for
which c. fk = p.pk.

Let cardr(p) and cardg(p) denote the cardinality of a parent row p in the real and synthetic
datasets, respectively. This yields two numerical distributions: Dg = {cardg(p) | p € Prea} and

Dg = {CCL’I”ds(p) ‘ pe F)synthetic}'
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The cardinality similarity score is computed as the complement of the Kolmogorov-Smirnov statistic,
defined as 1 — KST(Dg, Dg), where KST refers to the Kolmogorov-Smirnov Test statistic as defined
in Appendix B.2.1. Cardinality similarity ranges from O to 1, where a score of 1 indicates identical
cardinality distributions in the real and synthetic data, and a score of 0 indicates maximally different
distributions.

B.2.4 C2ST

The Classifier Two-Sample Test (C2ST) evaluates the fidelity of synthetic data by training a discrimi-
nator (in our case, an XGBoost model) to distinguish it from real data. This detection-based approach,
rooted in two-sample testing, uses the classifier’s performance as a proxy for distributional similarity.
If the discriminator achieves better-than-random accuracy, it indicates discernible differences between
the real and synthetic datasets, suggesting lower fidelity. C2ST offers a comprehensive assessment
of single table fidelity that captures complex higher-order dependencies between features beyond
simple correlations when using expressive-enough models, as highlighted in (Zein & Urvoy, 2022).

B.2.5 C2ST-AGG

The Classifier Two-Sample Test with Aggregations (C2ST-Agg) (Jurkovi€ et al., 2025) extends
detection-based fidelity evaluation to relational data by capturing inter-table relationships. C2ST-Agg
functions by augmenting parent tables with aggregated features derived from their connected child
tables. This propositionalization approach, drawing inspiration from relational reasoning techniques,
enables the C2ST to evaluate the preservation of interactions between columns in connected tables,
as well as relationship cardinalities. Conceptually, C2ST-Agg assesses how well fundamental SQL
operations such as join and groupby are maintained alongside complex interactions both within
and between tables. By summarizing child-table information using aggregation functions (e.g.,
mean, count, max), C2ST-Agg effectively accounts for both relationship cardinality and high-level
interactions across related tables, offering a comprehensive assessment of relational data fidelity.

In our evaluation we use the aggregation functions used by the original authors mean - for nu-
merical attributes, count of connected rows and count distinct for categorical variables and use an
XGBoost (Chen & Guestrin, 2016) model with k=5 fold cross-validation as the discriminative model.

B.2.6 RDL UTILITY

The relational deep learning utility (RDL utility) (Jurkovi€ et al., 2025) metric evaluates the capacity
of synthetic relational data to support effective learning on downstream tasks. This metric adheres to
the RelBench (Robinson et al., 2024) framework, which transforms relational databases into temporal
heterogeneous graphs with predefined tasks specifically designed for GNN training.

To assess utility, the RDL utility metric employs the RelBench GNN pipeline. A heterogeneous
variant of the GraphSage model (Hamilton et al., 2017) is trained on both the real and synthetic data.
These trained models are subsequently evaluated on a dedicated test set composed entirely of real
data.

Data splitting is handled via a time-based splitting strategy. Our evaluation incorporates five datasets
from the SyntheRela benchmark that possess a temporal feature, with the following predictive tasks:

* Rossmann: Prediction of daily number of customers for each store and date.
* Walmart: Prediction of weekly sales for each department within each store.
* Airbnb: Binary prediction of whether a user has previously made a booking.
* Berka: Prediction of the binary loan status (successful or unsuccessful).

* F1: Prediction of whether a driver will qualify in the top-3 for a race in the next month.

All datasets and models utilize the default RelBench hyperparameters.

B.2.7 DISTANCE TO CLOSEST RECORD

The distance to closest record (DCR) (Zhao et al., 2021) evaluates privacy protection by measuring
how closely synthetic data resembles the training data. The DCR score (Zhang et al., 2024) quantifies
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the fraction of synthetic records whose nearest neighbor is in the training set; a value near 0.5 suggests
the model samples from the true distribution rather than overfitting.

Nearest neighbor distances are calculated using the /2 norm of synthetic, training, and holdout records.
For a synthetic record ¢, distances to its nearest neighbors in training (Vy,) and holdout (NVpeq)
datasets are:

d(i)lrn = grgzlv? ”Syni — trny ||2’ d(i)hold = jr€n]\i/'?1d ”Syni - hOldj H2
rn 0]

An indicator function, I (%), determines if the nearest neighbor of synthetic record i is in the training
set:
L ifd@)y, < d@hoi;

(@) =0 if d()yy > d(@Dporas
0.5 ifd(i)y, = d@powg-
The DCR score is then computed as:
Nsyn

> I(i)n-

SR i=1

DCR score =

B.3 MEMBERSHIP INFERENCE ATTACKS

Membership inference attacks (MIA) are used to evaluate the privacy risk of a synthetic data generator.
An MIA measures the vulnerability of a model by assessing whether an adversary, with access to
both the synthetic data and real data from the same population, can infer if a specific record from the
real data was used in the training process of the synthetic data generator (El Emam et al., 2022). Our
evaluation uses the implementation provided by Lautrup et al. (2025), which assumes a scenario
where the adversary knows the population but has no prior knowledge of the synthesis algorithm.
We model the attacker as a LightGBM classifier (Shi et al., 2025b) trained to distinguish between
synthetic records and real records from an external holdout dataset. The classifier’s performance
in identifying whether a sample is real or synthetic serves as a proxy for the risk of membership
disclosure. We report both the recall and precision of the attacking model, where recall is analogous to
the membership inference risk. Similarly as with the DCR metric, we evaluate MIA at the individual
table level, as no multi-table implementation currently exists.

C IMPLEMENTATION DETAILS

We implemented RELDIFF in PyTorch. We performed our experiments on two Nvidia HI00 GPUs
with 80G memory.

Data preprocessing. Raw relational datasets often contain missing values. Our initial preprocessing
step involves imputing these, following approaches in (Pang et al., 2024; Shi et al., 2025a): numerical
missing values are replaced by the column average, and categorical missing values are treated as a
distinct new category. For the SyntheRela benchmark, we adopt a more nuanced approach for missing
values, similar to (Patki et al., 2016; Hudovernik, 2024). We introduce an additional binary indicator
variable for each attribute to explicitly denote whether a value was originally missing; this indicator
is modeled as a separate categorical variable, allowing us to recover the original missingness pattern
after sampling. To mitigate training instability caused by the diverse ranges of numerical columns,
we transform the numerical values with the QuantileTransformer” and recover the original values
after sampling.

Hyperparameters Setting. RELDIFF employs a consistent hyperparameter setting across all datasets,
with the sole exception of the number of epochs and batch size, which is mainly dependent on
the graph structure. We train our models for 10000 epochs on most datasets. For larger network
datasets, specifically Instacart 05 and MovieLens, we utilize a reduced number of epochs (400 and
4000 respectively) to manage computational load. We use the AdamW optimizer with learning rate
v = 6e — 4 and weight decay w = le — 5 in all experiments.

https://scikit-learn.org/stable/modules/generated/sklearn.
preprocessing.QuantileTransformer.html
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Regarding the specific hyperparameters within RELDIFF, the values for oy, and oy, are set to
0.002 and 80.0, respectively, referencing the optimal setting in (Karras et al., 2022). The parameter
0 is set to 1e — 3. For the loss weightings, we fix Aca¢ to 1.0 and linearly decay A,y from 1.0 to
0.0 as training proceeds. In all our experiments, the number of GNN layers is set to k¥ = 2. During
inference, we select the checkpoint with the lowest training loss. And utilize 100 discretization steps
(T = 100) during sampling.

Model Architecture Our model is parameterized by a heterogeneous graph neural network, featuring
transformer encoders and decoders and an MLP backbone. Each column is initially projected into a
d-dimensional vector using a linear layer, with d = 4, matching the size used in Zhang et al. (2024)
and Shi et al. (2025a). These tokenized columns are then processed by a two-layer transformer.
Subsequently, the concatenated columns are projected to a dimension of dim; = 128, to which noise
embeddings of the same dimensionality are added, consistent with the approach of Pang et al. (2024).

The embeddings are then processed by a heterogeneous variant of the GraphSAGE network (Hamilton
et al., 2017), which is used as the RDL baseline in Fey et al. (2024). For databases containing records
at fixed time intervals, and given our use of a permutation-invariant GNN, positional encodings are
added to the embeddings before message passing to preserve record order. The GNN embeddings
for each table are then further processed by five-layer MLPs, conditioned on a time embedding. The
size of these MLPs for each table is comparable to those used in experiments by Kotelnikov et al.
(2023). Finally, the hidden representation is decoded back into the data space by another two-layer
transformer. It is worth noting that the MLP backbone accounts for the majority of the model’s
parameters, and the memory consumed by these parameters is typically less than that used by the
intermediate data representations, especially since relational databases often contain larger tables
than typical tabular datasets.

D ADDITIONAL EXPERIMENTS

D.1 SINGLE TABLE FIDELITY RESULTS

Table 6: Single-table results. For each dataset and metric we report the average detection accuracy
(C2ST - lower is better), column shapes and column pair trends (Shape, Trend - higher is better)
across all tables for three independent samples. DNC denotes Did Not Converge and "-" denotes
a method is unable to generate the dataset. The best result is bolded. We report the percentage
improvement of RELDIFF over the state-of-the-art in blue.

Metric | TabARGN ClavaDDPM RCTGAN REALTABFE. SDV | RelDiff Improv.

C2ST (}) | 64.23%0.20 78.10+0.03 88.37+0.14 83.97+4.36 99.75+5¢3 | 54.11+0.34 15.76

Airbnb Shape (1) | 95.70+0.05 94.42+0.01 89.18+0.17 71.66+0.92 59.37+0.0a | 98.14+0.07 2.55
Trend (1) | 93.48+0.33 87.78+0.12 79.37+0.29 53.90+1.26 49.03+0.08 | 95.76+0.25 243

C2ST (}) | 56.07+0.58 66.77+0.14 88.02+0.50 74.70+0.55 96.90+0.21 | 52.46+0.32 6.44

Rossmann  Shape (1) | 96.96+0.19 94.05+0.07 91.31+0.04 90.65+0.38 81.05+0.19 | 98.04+0.07 1.12
Trend (1) | 91.34+0.08 84.78+0.80 84.38+0.40 84.58+0.88 67.77+0.25 | 95.93+0.65 5.02

C2ST (}) | 83.54+0.84 53.50+1.95 76.40+0.55 70.87+1.07 87.02+0.81 | 60.30+0.50 0.0

Walmart ~ Shape (1) | 89.09+0.33 92.21+0.52 82.31+0.51 81.71+0.40 81.80+0.10 | 94.04+0.53 1.99
Trend (1) 83.89+0.21 94.02+0.14 86.60+0.25 83.10+0.46 87.61+0.23 | 95.42+0.45 1.49

C2ST (}) | 72.31+0.a7 54.48+0.11 68.12+0.44 82.40+0.33 | 50.23+0.05 7.80

Berka Shape (1) | 82.20+0.26 91.62+0.10 81.90+0.38 - 56.27+0.20 | 97.72+0.03 6.65
Trend (1) | 70.43+0.25 88.54+1.19 74.22+0.28 64.01+0.11 | 98.81+0.02 11.59
C2ST (J) | 81.93+0.49 71.42+0.46 80.67+0.31 89.84+0.22 | 63.50+0.03 11.09

F1 Shape (1) | 84.71+1.15 84.63+0.28 89.68+0.40 - 52.62+0.57 | 94.89+0.08 5.81
Trend (1) | 81.31+0.45 84.65+0.05 90.17+0.03 73.05+0.19 | 95.10+0.12 5.46

C2ST (}) | 50.92+0.22 49.83+0.07 55.38+0.11 52.07+0.36 0.0

IMDB Shape (1) | 98.40+0.14 99.01+0.05 92.70+0.09 - DNC 96.91+0.49 0.0

Trend (1) | 97.80+0.13 98.66+0.10 81.65+0.03 93.88+0.87 0.0
C2ST (}) | 58.79+0.19 58.26+0.15 68.59+0.14 | 48.28+0.20 17.13

Biodeg. Shape (1) | 90.85+0.14 - 90.91+0.40 - 79.46+0.47 | 95.95+0.11 5.55
Trend (1) | 74.82+0.35 85.44+2.19 97.58+0.50 | 99.38+0.13 1.85

Cora C2ST () | 50.94+0.37 : 48.97+0.14 : 75.45+0.16 | 54.03+0.61 0.0

Shape (1) | 92.65+0.12 96.384+0.15 50.24+0.17 | 87.85+1.22 0.0
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In this section, we present detailed single-table fidelity results on the SyntheRela benchmark. We
evaluate the Shape, Trend, and C2ST scores. As shown in Table 6, RELDIFF consistently demonstrates
the strongest performance. When employing the original structure, RELDIFF is only outperformed on
the IMDB and Cora datasets, indicating a trade-off where some single-table fidelity is exchanged for
superior multi-table fidelity. This behavior on the IMDB dataset can be attributed to structural motifs
that may cause bottlenecks in GNN message passing. Notably, our approach can achieve near-perfect
performance on Cora if its schema is normalized to third normal form.

D.2 VISUALIZATION OF GENERATED DATA

To complement our quantitative evaluation and offer a qualitative evaluation of generation quality, we
provide visual comparisons between the real and synthetic data distributions.

Figure 4 presents the column-wise feature densities for selected tables. We utilize kernel density
estimation (KDE) curves for numerical features and histograms for categorical features. The plots
demonstrate that the marginal densities produced by RELDIFF consistently align closely with the real
data distributions, visually corroborating RELDIFF’s superior performance on the Shape metric.
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Figure 4: Visualizations of column-wise densities. The horizontal axis labels stand for “<Dataset> /
<Table> / <Feature>".

In Figure 5, we visualize the pairwise column correlations within single tables. As illustrated by the
plots, RELDIFF faithfully captures the correlations in the data, exhibiting a higher degree of fidelity
compared to the baseline methods.

Finally, we visualize long-range dependencies in Figure 6. These plots highlight RELDIFF’s ability to
preserve statistical interactions between columns across connected tables, validating the effectiveness
of our joint graph-based diffusion process.

D.3 PRIVACY EVALUATION

Distance to Closest Record (DCR). We follow related work (Kotelnikov et al., 2023; Zhang et al.,
2024; Shi et al., 2025a; Pang et al., 2024) to perform a privacy sanity check against SMOTE (Chawla
et al., 2002), an interpolation-based method that generates new data through convex combinations
of real data points. To quantify the privacy level, we evaluate the distance to closest record (Zhao
et al., 2021). Specifically, we compare the DCR distributions of RELDIFF against SMOTE on two
datasets, adhering to the evaluation protocol of Pang et al. (2024): California, a real-world census
dataset containing anonymized household and individual information, and a subset of tables from the
Berka dataset, which holds anonymized financial information from a Czech bank. The results of the
DCR score (Zhang et al., 2024) are presented in Table 7.
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Figure 5: Visualizations of single-table column-wise correlations. The shades represents the error
rate (i.e., difference in Trend metric), and the vertical axis labels stand for “<Dataset> / <Table>".

Table 7: DCR score represents the probability that a synthetic example is closer to the training set
rather than the holdout set (%, a score closer to 50% is better).

Method Table \ Household Individual Transaction Order

SMOTE 77.22 +0.0 76.25 +o0.0 99.94 +o.0 99.40 +o.0
ClavaDDPM 50.23 +0.0 50.31 +o0.0 53.47 +o0.0 91.84 +o0.0
RelDiff 50.54 +0.0 50.45 +o0.0 50.71 +o.0 52.38 +o0.0

RELDIFF consistently achieves DCR scores around 50%. This outcome is indicative of the model’s
ability to sample from the underlying data distribution rather than memorizing the training data.

Membership Inference Attack (MIA).

The results of the membership inference attack (MIA) are summarized in Table 8, which reports the
Macro F1I score of an adversarial classifier. The Macro F1 aggregates precision and recall across both
the member and non-member classes, providing a balanced measure of the attack’s effectiveness even
under class imbalance (a score of 50% corresponds to random guessing).

Table 8: MIA Macro F1 denotes the effectiveness of an adversarial classifier in distinguishing
training members from non-members. We report means with standard errors; values near or below
50% indicate performance near random guessing and thus limited privacy risk.

Method Table \ Household Individual Transaction Order

SMOTE 50.99 +o0.05  50.59 +0.05  63.23 +0.21  59.28 +0.62
CLAVADDPM | 49.59 +0.07  50.08 +0.04  51.70 +0.20  55.89 +0.35
RelDiff 48.81 +0.14 48.7 +o.07 49.01 +o.05 51.55 +o0.35

In principle, if a generative model were perfectly private, the expected F1 score of an attacker would
be close to 50%. In our experiments, the observed values cluster tightly around this baseline and are
consistently lower than those of competing methods, indicating limited membership leakage. On
three tables, the F1 scores are even slightly below 50%, which can be explained by the presence
of a small fraction of outlier values generated by our model. Since such values never occur in the
original data, the attacker learns to separate them from the holdout distribution, but this signal is not
informative for true membership inference. Overall, our privacy evaluation shows strong empirical
privacy protection.
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Figure 7: DCR distributions on the California and Berka datasets (log-transformed y-axis). RELDIFF
exhibits DCR values for the training set that are significantly higher than SMOTE, indicating enhanced
privacy protection. The distribution of DCR values for the held-out data remains consistent with that
of the training data.

D.4 ABLATION STUDIES

We conducted an ablation study to evaluate the contribution of key components of our method. The
results are summarized in Table 9.

Graph Generation Strategy. We conducted a series of ablations on our graph generation approach.
We compared our full method, which uses the D2K+SBM generator, against two baselines: a
simpler bipartite 2/ model and our method when provided with the original ground-truth graph
(original column). For the simple two-table Airbnb dataset, both graph generators perfectly recover
the original graph structure. However, as schema complexity increases for the Berka and F1 datasets,
the effectiveness of our D2 K +SBM generator becomes evident, as it significantly outperforms the
bipartite 2K variant. This highlights the importance of our approach for accurately modeling complex
relational structures.

Model Architectures. Next, we ablate the GNN architectures to examine their importance in
capturing inter-table relationships. When we remove the GNN entirely, the method reverts to a
single-table generative model with graph based sampling of rows and preserved relational structure.
While this variant preserves the distributions of individual columns, it fails to model long-range
inter-table relationships, as evidenced by the significant performance drop on all HOP metrics. This
confirms the GNN’s central role in our approach. We also evaluated a more complex, heterogeneous
variant of the Graph Attention Network (GAT) as a replacement for our GNN. The results were
mixed, with performance improving on some datasets while decreasing on others. Given that the
GAT significantly increases runtime, we conclude that our basic GNN offers a sufficient and efficient
trade-off between performance and efficiency for our joint diffusion approach. We also ablate the
transformer layers. Contrary to previous work (Shi et al., 2025a), we observed that removing the
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Table 9: Ablation Study on three databases with increasingly complex schemas. We present results
for our method when trained with the ground-truth entity graph (RELDIFF original), our proposed
RELDIFF D2K+SBM variant, a version with a more complex GAT network (RELDIFF GAT), and
variants where the transformer layers or GNN are removed entirely. Additionally, we include a variant
that uses a simpler bipartite 2K entity graph generator, as well as how sampling parameters, such
as number of neighbors (S) and hops (K), affect performance. For each metric, we highlight the
best-performing variant in bold and underline the second-best.

Metric RelDiff RelDiff RelDiff RelDiff RelDiff w/o RelDiff RelDiff  RelDiff w/o
(original)  Bipartite 2K D2K+SBM GAT Transformer S=64 K=1 GNN
= Shape () 98.14+0.07 98.14-+0.07 98.14+0.07  98.44+0.03 98.40+0.05 98.40+0.08  98.02+0.04  99.06+0.05
2 Trend (1) 95.76+0.25 95.76+0.25 95.76+0.25  95.92+0.04  96.46+0.20 95.54+0.36  95.12+0.31  95.89+0.12
< 1-HOP (1) | 89.37+0.38 89.37+038 89.37+0.38 86.63+0.69 88.66+0.33 87.72+0.29 86.97+0.37  84.65+0.11
Shape (1) 98.75+8¢4 97.94+0.06 97.92+0.01  96.79+0.06 97.94+0.02 95.07+0.02  97.83+0.00  98.72+0.03
< Trend (1) 99.3545¢-3 98.70+0.01 98.68+0.02  98.01+0.01 98.77+0.04 97.40+0.01  98.91+0.01  98.97+0.04
% 1-HOP (1) | 98.03-+0.06 96.59+0.06 96.70+0.06  94.83+0.01 96.53+0.05 94.01+0.06  92.48+0.08  89.94+0.43
A 2-HOP (1) | 97.96+0.03 95.33+0.03 95.61+0.03  95.00+0.09 95.5940.04 93.72+0.06  95.59+0.05  88.45+0.78
3-HOP (1) | 91.97+0.13 90.43+0.22 89.54+0.38  90.33+0.33 90.95+0.15 93.20+0.17  90.41+0.12  85.26+0.87
Shape (1) 97.9240.05 82.80+0.16 96.80+0.03  92.95+0.36 96.69+0.14 96.66+0.07  93.94+0.17  96.13+0.05
—  Trend (1) 98.044+0.01 89.35+0.13 97.35+0.05  95.86+0.07 97.51+0.07 96.50+0.00  94.88+0.06  95.88+0.02
B 1-HOP (1) | 95.10+0.14 84.48+0.28 94.02+0.11  86.18+0.83 93.55+0.06 93.84+0.20  90.02+0.46 79.40+0.64
2-HOP (1) | 97.92+0.05 91.26+0.11 96.19+0.01  96.07+0.04 96.22+0.03 97.73+0.03  95.14+0.11 83.43+0.42

transformer encoders and decoders can lead to slight performance improvements on certain metrics.
This suggests that users can opt for a simplified architecture without the transformer layers. On tables
with a high number of columns, this might even result in significant speedups due to the quadratic
complexity of attention.

Subgraph Sampling. Finally, we investigate the sensitivity of our model to subgraph sampling
parameters, specifically the number of sampled neighbors (S5) and the number of GNN layers (X).
By default, we sample all neighbors and use KX = 2. When limiting the neighborhood size to S = 64,
we observe that the method retains the majority of its performance across metrics. Surprisingly,
this constraint even leads to improved preservation of long-range dependencies in certain cases,
such as the 3 and 2 HOP metrics on the Berka and F1 datasets respectively. Additionally, reducing
the receptive field to a single hop () = 1) results in only a marginal degradation in fidelity while
offering substantial computational benefits. We attribute this effectiveness to the multi-step nature of
the diffusion process, where information propagates iteratively, effectively expanding the receptive
field to O(T x K) hops over T denoising steps. Consequently, K = 1 successfully captures long-
range dependencies while offering significant computational gains, reducing training and generation
times by over 40% on the Berka dataset. These findings suggest that neighborhood subsampling
and shallower architectures can be effectively leveraged to further enhance scalability on massive
databases with minimal impact on generation quality.

E STUDY OF MODEL EFFICIENCY AND SCALABILITY

In this section, we analyze the efficiency and scalability of RELDIFF. We provide a comparative
complexity analysis against alternative graph generation approaches and evaluate runtime performance
relative to the state-of-the-art baseline ClavaDDPM. Both training and sampling runtimes are reported.
Finally, we study RELDIFF ’s scaleability by generating (i) a database with an order of magnitude
more rows than those considered in prior work and (ii) a database whose schema contains an order of
magnitude more tables.

E.1 COMPLEXITY ANALYSIS

Graph Generation.

We compare the computational complexity of our proposed D2K +SBM generator against common
deep learning—based graph generative approaches. Let N denote the number of nodes in the relational
entity graph. Transformer-based autoregressive models incur O(N*) complexity, since each genera-
tion step requires full self-attention across all nodes and sequentially generates the adjacency matrix.
This quickly becomes intractable as N grows. Diffusion-based graph generators reduce this cost but
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still require O(T N?) operations, where T is the number of diffusion steps. At each denoising step,
dense pairwise computations across nodes are performed, leading to quadratic cost per step.

In contrast, our D2K+SBM generator achieves O (ln2 (N) + le‘l (N + 2e; + B)) complexity,

where |R| < N is the number of foreign key relationships, e; the number of edges per relation,

E = Z‘lg e; the total number of edges, and B < N the number of blocks in the stochastic block
model. This formulation yields near-linear scaling with the number of nodes and edges in the graph,
in sharp contrast to the polynomial scaling of deep learning—based methods. If we opt to transform
two-parent-no-child nodes into many-to-many edges we further improve efficiency as we decrease
the number of nodes and edges in the graph.

Moreover, while existing graph generators require an additional post-processing step to enforce refer-
ential integrity, our method guarantees it by construction. Taken together, this analysis demonstrates
the superior scalability of D2K +SBM: whereas autoregressive and diffusion-based approaches be-
come prohibitively expensive on large graphs, our generator remains efficient, making it particularly
well-suited for synthesizing large relational databases with many entities and complex schemas.

Data Generation. We analyze the computational complexity of our joint diffusion model, comparing
its computational efficiency against its closest competitor, ClavaDDPM, during both training and
inference phases. The training complexity of both RELDIFF and ClavaDDPM is primarily dictated by
their diffusion-based backbones, which have a comparable number of parameters. The key difference
in efficiency emerges from their respective denoising conditioning mechanisms.

ClavaDDPM conditions the sampling process with a separate MLP classifier for each relationship
within the database schema. Consequently, its complexity scales linearly with the number of
relationships. This approach becomes computationally expensive as the complexity of the schema
increases.

In contrast, RELDIFF employs a single heterogeneous GNN. The GNN’s per-batch complexity is
0] (Hszl SZ-), controlled by the structure of local neighborhoods with small, bounded depth K = 2,

and sparse node degrees or explicit sampling thresholds .S; (Hamilton et al., 2017). This allows
RELDIFF to maintain superior efficiency as the database schema becomes more complex.

The inference complexity is proportional to the training complexity. Again, ClavaDDPM repeats
denoising steps for tables with multiple parents, whereas RELDIFF performs a single forward pass per
diffusion step across the entire relational graph. This significantly minimizes redundant computations
and enhances efficiency as the schmea grows more complex. Additionally, RELDIFF employs more
efficient diffusion modeling, which allows it to generate high-quality samples with 1/20 of the
steps required by DDPM-based methods. This allows our method to achieves significant runtime
improvements compared to ClavaDDPM.

E.2 RUNTIMES

We now report the training and sampling runtimes of RELDIFF and ClavaDDPM, measured across
the benchmark datasets used in our experiments. As shown in Table 10, RELDIFF achieves training
runtimes that are competitive with, and frequently faster than, ClavaDDPM. Notably, RELDIFF is
significantly more efficient on the complex F1 schema (2.7h vs. 12.3h). While training times are
higher on Berka and IMDB due to our default full-neighbor sampling strategy on these denser graphs,
our ablation studies (Appendix D.4) demonstrate that users can alleviate this cost by subsampling
neighbors, achieving speedups of up to 30% with minimal impact on fidelity. Furthermore, we
emphasize that training represents a one-time cost. In practice, sampling will be the more commonly
executed operation, where RELDIFF achieves significantly lower runtimes.

Table 11 highlights this key advantage, showing that RELDIFF is significantly faster during sampling.
For instance, on the California dataset, RELDIFF is more than 20 times faster, a direct result of our
method’s ability to jointly generate data, avoiding the need for sequential generation. This finding is
particularly important as sampling is the process that will be executed most frequently in a production
environment.

We report the maximum GPU memory usage during training and the sampling and training batch
sizes in Table 12.
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Table 10: Training runtimes (hours).

Dataset RelDiff ClavaDDPM
California 3.3 33
CCS 2.5 3.2
Instacart 05 4.8 6.6
Airbnb 0.4 0.4
Rossman 0.4 1.2
‘Walmart 0.6 0.9
Berka 11.8 6.5
IMDB 7.7 3.1
F1 2.7 12.3
Biodegradability 0.3 -
CORA 0.5 -

Table 11: Sampling runtimes (seconds).

Dataset RelDiff ClavaDDPM
California 221.2 5,032
CCS 126.3 1,232
Instacart 05 5,107 9,968
Airbnb 8.6 178.5
Rossman 5.7 194.9
‘Walmart 17.8 40.2
Berka 780.6 1,662
IMDB 499 .4 2,314
F1 32.3 643.6
Biodegradability 8.4 -
CORA 9.4 -

Table 12: Memory usage and batch size.

Training Sampling
Dataset Batch size Max Mem. Usage | Batch size
California 50k 42 GB 100k
CCS 100k 19 GB 200k
Instacart 05 40k 45 GB 80k
Airbnb Full 6 GB Full
Rossman 2048 7 GB Full
Walmart 512 7 GB Full
Berka 50k 21 GB 100k
IMDB 200k 34 GB 400k
F1 20k 5GB Full
Biodegradability 512 3GB Full
CORA 25k 7GB 50k

E.3 LARGE-SCALE DATABASE GENERATION

We perform additional experiments on large-scale databases to further validate the scalability of our
method. The loss curves in Figure 8 demonstrate that RELDIFF successfully trains on the large rel-hm
dataset, proving its capability to handle millions of rows within a reasonable training time (under 48
hours). Similarly, the stable loss curve on the highly complex AdventureWorks schema confirms that
our graph-based approach can effectively model databases with a large number of interconnected
tables, a crucial test for its applicability to real-world, enterprise-level data. This suggests that future
methods should now be evaluated not just on small-to-medium datasets but on large-scale databases
with millions of rows and highly complex schemas (See Figure 9 for the AdventureWorks schema).
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Figure 8: Loss curves for the rel-hm (a) and AdventureWorks (b) datasets.

Figure 9: Schema of the AdventureWorks database.

F MODELING THE JOINT DISTRIBUTION p(V, £)

To construct a general, data-agnostic generative framework, we formulate the synthesis of relational
databases as sampling from the joint distribution over entities and edges of the relational entity
graph (Section 3), p(V, ). An ideal simulation of the data generating process might attempt to
mimic the temporal evolution of a database, sequentially adding users, products, and transactions.
However, such an approach requires extensive, dataset-specific domain knowledge. Consequently,
we seek a factorization of the joint distribution that remains computationally tractable without relying
on specific assumptions about the data’s origin. We identify three viable factorizations: (1) direct
joint modeling p(V, £), (2) an attributes-first decomposition p(V)p(£]V), and (3) a structure-first
decomposition p(E)p(V|E).

We posit that the first two approaches face a fundamental scalability bottleneck. In both direct joint
modeling and features-first generation, the edges are generated alongside or subsequent to the entity
attributes. This necessitates evaluating the probability of a link existing between every possible
pair of entities. For a relational database containing tables of size N and M, this implies modeling
interactions over a search space of size N x M (See Appendix E.1). This quadratic complexity
renders factorizations (A) and (B) computationally prohibitive for large-scale real-world databases,
where the number of potential interactions grows exponentially with the number of tables.

In contrast, the structure-first factorization p(&)p(V|E) effectively circumvents this combinatorial
explosion. By generating the relational skeleton first, we can exploit the exchangeability of nodes
and utilize efficient random graph models—such as the D2K+SBM proposed in this work that scales
linearly with the number of edges rather than quadratically with the number of nodes. While the depen-
dency between structure and attributes is essentially bidirectional, generating the lower-dimensional
topology first provides a stable computational graph for the subsequent attribute generation. Crucially,
this factorization does not assume that only the attributes can depend on structure. Our parameteri-
zation of p(V|€) employs an expressive GNN model that jointly models attributes across the entire
schema. This enables the model to capture bidirectional dependencies between node attributes and
structure, effectively filling in the graph with attributes that respect the underlying distribution. For
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example the model can learn to assign a subset of values that would result in the row having few
foreign key connections, to a node with the corresponding structure in the graph. This is analogous to
autoregressive language modeling, where an imposed sequential generation order does not preclude
the model from capturing complex, non-causal semantic dependencies between tokens.

G BROADER IMPACTS

This research introduces a novel method for generating synthetic relational databases, which presents
potential benefits in fields with privacy restrictions, such as healthcare, finance, and education, and in
scenarios involving limited or biased data. However, there are potential negative impacts to consider.
While our empirical privacy analysis does not raise immediate concerns, our method is not equipped
with provable privacy guarantees like differential privacy. Additionally, due to the method’s ability
to generate datasets that closely resemble the original data, it might inadvertently amplify biases
already present in the original data. Furthermore, synthetic data that closely mirrors real data could
be misused. Consequently, we believe that future work should prioritize research directions focused
on enhancing privacy protection and developing effective bias reduction techniques for synthetic
relational data.
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