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Abstract
Internet memes have emerged as an increas-
ingly popular means of communication on the
Web. Although typically intended to elicit
humour, they have been increasingly used to
spread hatred, trolling, and cyberbullying, as
well as to target specific individuals, commu-
nities, or society on political, socio-cultural,
and psychological grounds. While previous
work has focused on detecting harmful, hate-
ful, and offensive memes, identifying whom
they attack remains a challenging and under-
explored area. Here we aim to bridge this
gap. In particular, we create a dataset where
we annotate each meme with its victim(s) such
as the name of the targeted person(s), or-
ganization(s), and community(ies). We then
propose DISARM (Detecting vIctimS targeted
by hARmful Memes), a framework that uses
named entity recognition and person identifi-
cation to detect all entities a meme is referring
to, and then, incorporates a novel contextual-
ized multimodal deep neural network to clas-
sify whether the meme intends to harm these
entities. We perform several systematic ex-
periments on three test setups, corresponding
to entities that are (a) all seen while training,
(b) not seen as a harmful target on training, and
(c) not seen at all on training. The evaluation
results show that DISARM significantly out-
performs ten unimodal and multimodal sys-
tems. Finally, we show that DISARM is inter-
pretable and comparatively more generalizable
and that it can reduce the relative error rate for
harmful target identification by up to 9 points
absolute over several strong multimodal rivals.

1 Introduction

Social media offer the freedom and the means to
express deeply ingrained sentiments, which can be
done using diverse and multimodal content such
as memes. Besides being popularly used to ex-
press benign humour, Internet memes have also
been misused to incite extreme reactions, hatred,
and to spread disinformation on a massive scale.

(a) Harmful reference (b) Harmless reference

Figure 1: (a) A meme that targets Justin Trudeau in a harmful
way, with a communal angle. (b) A non-harmful mention of
Justin Trudeau, as a benign humor.

Numerous recent efforts have attempted to char-
acterize harmfulness (Pramanick et al., 2021b),
hate speech (Kiela et al., 2020), and offensive-
ness (Suryawanshi et al., 2020) within memes.
Most of these efforts have been directed towards
detecting malicious influence within memes, but
there has been little work on identifying whom the
memes target. Besides detecting whether a meme
is harmful, it is often important to know whether
the meme contains an entity that is particularly tar-
geted in a harmful way. This is the task we are ad-
dressing here: detecting the entities that a meme
targets in a harmful way.

Harmful targeting in memes is often done us-
ing satire, sarcasm, or humour in an explicit or an
implicit way, aiming at attacking an individual, an
organization, a community, or society in general.
For example, Fig. 1a depicts Justin Trudeau, the
Prime Minister of Canada, as communally biased
against Canadians, while favoring alleged killings
by Muslims, whereas Fig. 1b shows an arguably
benign meme of the same person expressing subtle
humour. Essentially, the meme in Fig. 1a harm-
fully targets Justin Trudeau directly, while caus-
ing indirect harm to Canadians and to Muslims as
well. Note that in many cases interpreting memes
and their harmful intent requires some additional
background knowledge for the meme to be under-
stood properly.



Hence, an automated system for detecting the
entities targeted by harmful memes faces two ma-
jor challenges: (i) insufficient background context,
(ii) complexity posed by the implicit harm, and
(iii) keyword bias in a supervised setting.

To address these challenges, here we aim to ad-
dress the task of harmful target detection in memes
by formulating it as an open-ended task, where a
meme can target an entity not seen on training.
An end-to-end solution requires (i) identifying the
entities referred to in the meme, and (ii) deciding
whether each of these entities is being targeted in
a harmful way. To address these two tasks, we
perform systematic contextualization of the multi-
modal information presented within the meme by
first performing intra-modal fusion between an ex-
ternal knowledge-based contextualized-entity and
the textually-embedded harmfulness in the meme,
which is followed by cross-modal fusion of the
contextualized textual and visual modalities us-
ing low-rank bi-linear pooling, resulting in an en-
riched multimodal representation. We evaluate our
model using three-level stress-testing to better as-
sess its generalizability to unseen targets.

We create a dataset, and we propose an experi-
mental setup and a model to address the aforemen-
tioned requirements, making the following contri-
butions:1:

1. We introduce the novel task of detecting the
entities targeted by harmful memes.

2. We create a new dataset for this new task,
Ext-Harm-P, by extending Harm-P (Pra-
manick et al., 2021b) via re-annotating each
harmful meme with the entity it targets.

3. We propose DISARM, a novel multimodal
neural architecture that uses an expressive
contextualized representation for detecting
harmful targeting in memes.

4. We empirically showcase that DISARM out-
performs ten unimodal and multimodal mod-
els by several points absolute in terms of
macro-F1 scores in three different evaluation
setups.

5. Finally, we discuss DISARM’s generalizabil-
ity and interpretability.

1The source code and the dataset can be found here
https://github.com/LCS2-IIITD/DISARM.

2 Related Work

Misconduct on Social Media. The rise in mis-
conduct on social media is a prominent research
topic. Some forms of online misconduct include
rumours (Zhou et al., 2019), fake news (Aldwairi
and Alwahedi, 2018; Shu et al., 2017; Nguyen
et al., 2020), misinformation (Ribeiro et al., 2021;
Shaar et al., 2022), disinformation (Alam et al.,
2021; Hardalov et al., 2022), hate speech (MacA-
vaney et al., 2019; Zhang and Luo, 2019; Zampieri
et al., 2020), trolling (Cook et al., 2018), and
cyber-bullying (Kowalski et al., 2014; Kim et al.,
2021). Some notable work in this direction in-
cludes stance (Graells-Garrido et al., 2020) and ru-
mour veracity prediction, in a multi-task learning
framework (Kumar and Carley, 2019), wherein the
authors proposed a Tree LSTM for characterizing
online conversations. Wu and Liu (2018) explored
user and social network representations for clas-
sifying a message as genuine vs. fake. Cheng
et al. (2017) studied user’s mood along with the
online contextual discourse and demonstrated that
it helps for trolling behaviour prediction on top of
user’s behavioural history. Relia et al. (2019) stud-
ied the synergy between discrimination based on
race, ethnicity, and national origin in the physical
and in the virtual space.

Studies Focusing on Memes. Recent efforts
have shown interest in incorporating additional
contextual information for meme analysis. Shang
et al. (2021a) proposed knowledge-enriched graph
neural networks that use common-sense knowl-
edge for offensive memes detection. Pramanick
et al. (2021a) focused on detecting COVID-19-
related harmful memes and highlighted the chal-
lenge posed by the inherent biases within the exist-
ing multimodal systems. Pramanick et al. (2021b)
released another dataset focusing on US Politics
and proposed a multimodal framework for harm-
ful meme detection. The Hateful Memes detec-
tion challenge by Facebook (Kiela et al., 2020) in-
troduced the task of classifying a meme as hate-
ful vs. non-hateful. Different approaches such as
feature augmentation, attention mechanism, and
multimodal loss re-weighting were attempted (Das
et al., 2020; Sandulescu, 2020; Zhou et al., 2021;
Lippe et al., 2020) as part of this task. Oriol et al.
(2019) studied hateful memes by highlighting the
importance of visual cues such as structural tem-
plate, graphic modality, causal depiction, etc.

https://github.com/LCS2-IIITD/DISARM


Split # Examples Category-wise # Samples.
Harmful Not-harmful

Train 3,618 1,206 2,412
Validation 216 72 144

Test 612 316 296
Total 4,446 1,594 2,852

Table 1: Summary of Ext-Harm-P, with overall and
category-wise # of samples.

Web-entity detection along with fair face clas-
sification (Karkkainen and Joo, 2021) and semi-
supervised learning-based classification (Zhong,
2020) were also used for the hateful meme classi-
fication task. Other noteworthy research includes
using implicit models, e.g., topic modelling and
multimodal cues, for detecting offensive analogy
(Shang et al., 2021b) and hateful discrimination
(Mittos et al., 2020) in memes. Wang et al. (2021)
argued that online attention can be garnered im-
mensely via fauxtography, which could eventu-
ally evolve towards turning into memes that po-
tentially go viral. To support research on these
topics, several datasets for offensiveness, hate
speech, and harmfulness detection have been cre-
ated (Suryawanshi et al., 2020; Kiela et al., 2020;
Pramanick et al., 2021a,b; Gomez et al., 2020;
Dimitrov et al., 2021; Sharma et al., 2022).

Most of the above studies attempted to address
classification tasks in a constrained setting. How-
ever, to the best of our knowledge, none of them
targeted the task of detecting the specific entities
that are being targeted. Here, we aim to bridge
this gap with focus on detecting the specific enti-
ties targeted by a given harmful meme.

3 Dataset

The Harm-P dataset (Pramanick et al., 2021b)
consists of 3,552 memes about US politics. Each
meme is annotated with its harmful label and the
social entity that it targets. The targeted entities
are coarsely classified into four social groups: in-
dividual, organization, community, and the gen-
eral public. While these coarse classes provide an
abstract view of the targets, identifying the spe-
cific targeted person, organization, or community
in a fine-grained fashion is also crucial, and this
is our focus here. All the memes in this dataset
broadly pertain to US Politics domain, and they
target well-known personalities or organizations.
To this end, we manually re-annotated the memes
in this dataset with the specific people, organiza-
tions, and communities that they target.

Figure 2: Example meme, along with the candidate entities,
harmful targets, and non-harmful references.

Extending Harm-P (Ext-Harm-P). Towards
generalizability, we extend Harm-P by redesign-
ing the existing data splits as shown in Table 1. We
call the resulting dataset Ext-Harm-P. It contains
a total of 4,446 examples including 1,594 harmful
and 2,852 non-harmful; both categories have refer-
ences to a number of entities. For training, we use
the harmful memes provided as part of the orig-
inal dataset (Pramanick et al., 2021b), which we
re-annotate for the fine-grained entities that are be-
ing targeted harmfully as positive samples (harm-
ful targets). This is matched with twice as many
negative samples (not-harmful targets). For neg-
ative targets, we use the top-2 entities from the
original entity lexicon, which are not labeled for
harmfulness and have the highest lexical similar-
ity with the meme text (Ferreira et al., 2016). This
at least ensures lexical similarity with the entities
referenced within a meme, thereby facilitating a
confounding effect (Kiela et al., 2020) as well. For
the test set, all the entities are first extracted auto-
matically using named entity recognition (NER)
and person identification (PID)2. This is followed
by manual annotation of the test set.

Dataset Annotation Process Since assessing
the harmfulness of memes is a highly subjective
task, our annotators were requested to follow four
key steps when annotating each meme, aiming to
ensure label consistency. The example in Fig. 2
demonstrates the steps taken while annotating: we
first identify the candidate entities, and then we de-
cide whether a given entity is targeted in a harmful
way. We asked our annotators to do the following
(additional details about the annotation process are
given in Appendix D):

2NER using SpaCy & PID using http://github.
com/ageitgey/face_recognition.

http://github.com/ageitgey/face_recognition.
http://github.com/ageitgey/face_recognition.
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Figure 3: Comparison plots for the top-5 harmfully referenced entities, for their harmful/non-harmful referencing in our dataset.

1. Understand the meme and its background
context.

2. List all the valid candidate entities that are
referenced in the meme. For the example
on Fig. 2, the valid entities are Bill Clin-
ton, Hillary Clinton, White House, Donald
Trump, and Democrat.

3. Assign the relevant entities as harmful. For
the example on Fig. 2, Bill Clinton, Hillary
Clinton, and Democrat are targeted in the
meme for influencing the appointment of
their kin on government positions.

4. Finally, assign harmless references to entities
under the non-harmful category. In the ex-
ample on Fig. 2, Donald Trump and White
House would be annotated as non-harmful.

We had three annotators and a consolidator.
The inter-annotator agreement before consolida-
tion had a Fleiss Kappa of 0.48 (moderate agree-
ment), and after consolidation it increased to 0.64
(substantial agreement).

Analyzing Harmful Targeting in Memes. The
memes in Ext-Harm-P are about US Politics, and
thus they prominently feature entities such as Joe
Biden and Donald Trump, both harmfully and
harmlessly. The ratio between these types of ref-
erencing varies across individuals, organizations,
and communities. We can see in Fig. 3 that the
top-5 harmfully referenced individuals and orga-
nizations are observed to be subjected to a more
relative harm (normalized by the number of oc-
currences of these entities in memes). However,
the stacked plots for the top-5 harmfully targeted
communities Mexicans, Black, Muslim, Islam, and
Russian in Fig. 3c show relatively less harm target-
ing these communities.

CLIP text-encoderCLIP image-encoder

[Image]

Multi-modal Low-rank Bi-linear Pooling Concatenation

[Entity] [Context] [OCR-text, Entity]

Embedding lookup

Figure 4: The architecture of our proposed approach
DISARM. Here, cmm is the multimodal representation used
for the final classification.

4 Proposed Approach

Our proposed model DISARM, as depicted in
Fig. 4, is based on a fusion of the textual and the
visual modalities, explicitly enriched via contex-
tualised representations by leveraging CLIP (Rad-
ford et al., 2021). We chose CLIP as a preferred
encoder module for contextualization, due to its
impressive zero-shot multimodal embedding ca-
pabilities. At first, valid entities are extracted
automatically, as part of the process of creating
training/validation sets. Then, for each meme,
we first obtain the contextualized-entity (CE) rep-
resentation by fusing the CLIP-encoded context
and the entity representation. CE is then fused
with BERT-based (Devlin et al., 2019) embedded-
harmfulness (EH) encoding fine-tuned on the
OCR-extracted text and entities as inputs. We
call the resulting fusion output a contextualized-
text (CT) representation. CT is then fused with
the contextualized-image (CI) representation, ob-
tained using the CLIP encoder for the image. We,
henceforth, refer to the resulting enriched repre-
sentation as the contextualized multimodal (CMM)
representation. We modify the multimodal low-
rank bi-linear pooling (Kim et al., 2017) to fuse
the input representation into a joint space.



This approach, as can be seen in the subse-
quent sections below, not only can capture com-
plex cross-modal interactions, but it also provides
an efficient fusion mechanism towards obtaining
a context-enriched representation. Finally, we use
this representation to train a classifier for our task.
We describe each module in detail below.

Low-rank Bi-linear Pooling (LRBP). We be-
gin by revisiting low-rank bi-linear pooling to
set the necessary background. Due to the many
parameters in bi-linear models, Pirsiavash et al.
(2009) suggested a low-rank bi-linear (LRB) ap-
proach to reduce the rank of the weight matrix
Wi. Consequently, the number of parameters and
hence the complexity, are reduced. The weight
matrix Wi is re-written as Wi = UiV

T
i , where

Ui ∈ RN×d and Vi ∈ RM×d, effectively putting
an upper bound of min(N,M) on the value of d.
Therefore, the low-rank bi-linear models can be
expressed as follows:

fi = xTWiy = xTUiV
T
i y = 1

T (UT
i x ◦VT

i y) (1)

where 1 ∈ Rd is a column vector of ones, and ◦
is Hadamard product. fi in Equation (1) can be
further re-written to obtain f as follows:

f = PT (UTx ◦VTy) + b (2)

where f ∈ {fi}, P ∈ Rd×c, b ∈ Rc, d is an
output, and c is an LRB hyper-parameter.

We further introduce a non-linear activation for-
mulation for LRBP, following Kim et al. (2017),
who argued that non-linearity both before and af-
ter the Hadamard product complicates the gradient
computation. This addition to Equation (2) can be
represented as follows:

f = PT tanh(UTx ◦VTy) + b (3)

We slightly modify the multimodal low-rank
bi-linear pooling (MMLRBP). Instead of directly
projecting the input x ∈ RN and y ∈ RM

into a lower dimension d, we first project the in-
put modalities in a joint space N . We then per-
form LRBP as expressed in Equation 3, by using
jointly embedded representations xmm ∈ RN×d

and ymm ∈ RN×d to obtain a multimodal fused
representation fmm, as expressed below:

fmm = PT tanh(UTxmm ◦VTymm) (4)

Structured Context. Towards modelling auxil-
iary knowledge, we curate contexts for the memes
in Ext-Harm-P. First, we use the meme text as a
search query3 to retrieve relevant contexts, using
the title and the first paragraph of the resulting top
document as a context, which we call con.

Contextualized-entity Representation (CE).
Towards modelling the context-enriched entity, we
first obtain the embedding of the input entity ent.
Since we have a finite set of entities referenced
in the memes in our training dataset, we perform
a lookup in the embedding matrix from RV×H

to obtain the corresponding entity embedding
ent ∈ RH , with H = 300 being the embedding
dimension and V the vocabulary size. We train
the embedding matrix from scratch as part of
the overall training of our model. We project the
obtained entity representation ent into a 512-
dimensional space, which we call e. To augment
a given entity with relevant contextual informa-
tion, we fuse it with a contextual representation
c ∈ R512 obtained by encoding the associated
context (con) using CLIP. We perform this fusion
using our adaptation of the multimodal low-rank
bi-linear pooling as defined by Equation (4). This
yields the following contextualized-entity (CE)
representation cent:

cent = PT
1 tanh(UT

1 e ◦VT
1 c) + b (5)

where cent ∈ R512, P1 ∈ R256×512, b ∈ R512,
U1 ∈ R512×256, and V1 ∈ R512×256.

Contextualized-Text (CT) Representation.
Once we obtain the contextualized-entity em-
bedding cent, we concatenate it with the BERT
encoding for the combined representation of the
OCR-extracted text and the entity (oent ∈ R768).
We call this encoding an embedded-harmfulness
(EH) representation. The concatenated represen-
tation from R1280 is then projected non-linearly
into a lower dimension using a dense layer of
size 512. We call the resulting vector ctxt a
contextualized-text (CT) representation:

ctxt = Wi[oent, cent] + bi (6)

where W ∈ R1280×512.

3https://pypi.org/project/
googlesearch-python/

https://pypi.org/project/googlesearch-python/
https://pypi.org/project/googlesearch-python/


Contextualized Multimodal (CMM) Represen-
tation. Once we obtain the contextualized-text
representation ctxt ∈ R512, we again per-
form multimodal low-rank bi-linear pooling using
Equation (4) to fuse it with the contextualized-
image representation cimg ∈ R512, obtained us-
ing the CLIP image-encoder. The operation is ex-
pressed as follows:

cmm = PT
2 tanh(UT

2 ctxt ◦VT
2 cimg) (7)

where cmm ∈ R512, P2 ∈ R256×512, U2 ∈
R512×256, and V2 ∈ R512×256.

Notably, we learn two different projection ma-
trices P1 and P2, for the two fusion opera-
tions performed as part of Equations (5) and (7),
respectively, since the fused representations at
the respective steps are obtained using different
modality-specific interactions.

Classification Head. Towards modelling the bi-
nary classification for a given meme and a corre-
sponding entity as either harmful or non-harmful,
we use a shallow multi-layer perceptron with a
single dense layer of size 256, which represents
a condensed representation for classification. We
finally map this layer to a single dimension out-
put via a sigmoid activation. We use binary cross-
entropy for the back-propagated loss.

5 Experiments

We experiment with various unimodal
(image/text-only) and multimodal models,
including such pre-trained on multimodal datasets
such as MS COCO (Lin et al., 2014) and CC
(Sharma et al., 2018). We train DISARM and
all unimodal baselines using PyTorch, while
for the multimodal baselines, we use the MMF
framework.4 5

5.1 Evaluation Measures

For evaluation, we use commonly used macro-
average versions of accuracy, precision, recall, and
F1 score. For example, we discuss the harmful
class recall, which is relevant for our study as it
characterizes the model’s performance at detecting
harmfully targeting memes. All results we report
are averaged over five independent runs.

4github.com/facebookresearch/mmf
5Additional details along with the values of the hyper-

parameters are given in Appendix A.

Evaluation Strategy. With the aim of having a
realistic setting, we pose our evaluation strategy
as an open-class one. We train all systems using
under-sampling of the entities that were not tar-
geted in a harmful way: using all positive (harm-
ful) examples and twice as many negative (non-
harmful) ones. We then perform an open-class
testing, for all referenced entities (some possibly
unseen on training) per meme, effectively mak-
ing the evaluation more realistic. To this end, we
formulate three testing scenarios as follows, with
their Harmful (H) and Non-harmful (N) counts:

1. Test set A (316H, 296N): All examples in
this dataset are about entities that were seen
during training.

2. Test set B (27H, 94N): The examples in this
set are about entities that were not seen as
harmful during training.

3. Test set C (16H, 76N): All examples are
about entities that were completely unseen
during training.

Baseline Models. Our baselines include both
unimodal and multimodal models as follows:

– Unimodal Systems: I VGG16, VIT: For the
unimodal (image-only) systems, we use two
well-known models: VGG16 (Simonyan and
Zisserman, 2015) and VIT (Vision Transform-
ers) that emulate a Transformer-based appli-
cation jointly over textual tokens and image
patches (Dosovitskiy et al., 2021). I GRU, XL-
Net: For the unimodal (text-only) systems, we
use GRU (Cho et al., 2014), which adaptively
captures temporal dependencies, and XLNet
(Yang et al., 2019), which implements a gener-
alized auto-regressive pre-training strategy.

– Multimodal Systems: I MMF Transformer:
This is a multimodal Transformer model that
uses visual and language tokens with self-
attention.6 I MMBT: Multimodal Bitrans-
former (Kiela et al., 2019) captures the intra-
modal and the inter-modal dynamics. I ViL-
BERT CC: Vision and Language BERT (Lu
et al., 2019), pre-trained on CC (Sharma et al.,
2018), is a strong model with task-agnostic joint
representation. I Visual BERT COCO: Visual
BERT (Li et al., 2019), pre-trained on the MS
COCO dataset (Lin et al., 2014).

6http://mmf.sh/docs/notes/model_zoo

github.com/facebookresearch/mmf
http://mmf.sh/docs/notes/model_zoo


System Modality Approach
Test Set A Test Set B

Acc Prec Rec F1 Not-harmful Harmful Acc Prec Rec F1 Not-harmful Harmful
P R P R P R P R

XLNet Text-only 0.6765 0.69 0.67 0.6663 0.73 0.52 0.65 0.82 0.5041 0.425 0.405 0.4060 0.72 0.59 0.13 0.22
VGG Image-only 0.7451 0.75 0.745 0.7438 0.71 0.81 0.79 0.68 0.5455 0.42 0.405 0.4101 0.73 0.66 0.11 0.15
GRU Text-only 0.7484 0.745 0.75 0.7473 0.73 0.76 0.76 0.74 0.5455 0.43 0.42 0.4210 0.73 0.65 0.13 0.19

U
ni

m
od

al
VIT Image only 0.7647 0.765 0.765 0.7642 0.74 0.79 0.79 0.74 0.5207 0.525 0.535 0.4843 0.8 0.51 0.25 0.56
ViLBERT CC 0.6895 0.69 0.685 0.6835 0.71 0.6 0.67 0.77 0.438 0.535 0.53 0.4302 0.82 0.35 0.25 0.71
MM Transformer 0.6993 0.71 0.695 0.6926 0.75 0.57 0.67 0.82 0.7769 0.53 0.575 0.5032 0.78 0.51 0.28 0.64
VisualBERT 0.7026 0.725 0.69 0.6918 0.78 0.54 0.67 0.84 0.5537 0.545 0.565 0.5108 0.82 0.54 0.27 0.59
VisualBERT – COCO 0.7059 0.71 0.7 0.7014 0.73 0.62 0.69 0.78 0.5785 0.53 0.545 0.5147 0.8 0.61 0.26 0.48
MMBT 0.7157 0.72 0.71 0.7121 0.74 0.64 0.7 0.78 0.6116 0.54 0.55 0.5310 0.81 0.66 0.27 0.44

B
as

el
in

es

ViLBERT 0.7516 0.755 0.75 0.7495 0.78 0.68 0.73 0.82 0.6612 0.58 0.595 0.5782 0.83 0.71 0.33 0.48
CE + CI (concat) 0.7353 0.74 0.735 0.7361 0.71 0.77 0.77 0.7 0.4793 0.46 0.44 0.4230 0.74 0.51 0.18 0.37
CE + CI (MMLRBP) 0.781 0.785 0.78 0.7790 0.74 0.84 0.83 0.72 0.562 0.535 0.545 0.5079 0.81 0.57 0.26 0.52
EH + CI (concat) 0.6634 0.665 0.66 0.6609 0.67 0.6 0.66 0.72 0.5868 0.505 0.51 0.4964 0.78 0.65 0.23 0.37
EH + CI (MMLRBP) 0.7255 0.73 0.725 0.7260 0.74 0.67 0.72 0.78 0.6612 0.545 0.555 0.5470 0.8 0.74 0.29 0.37

Pr
op

.s
ys

te
m

&
va

ri
an

ts M
ul

tim
od

al

DISARM 0.781 0.74 0.835 0.7845 0.74 0.81 0.74 0.86 0.74 0.605 0.74 0.6498 0.83 0.79 0.38 0.69
∆(DISARM −V iLBERT )×100(%) ↑ 2.94% ↓ 1.5% ↑ 8% ↑ 3.5% ↓ 4% ↑ 13% ↑ 1% ↑ 4% ↑ 7.88% ↑ 2.5% ↑ 14.5% ↑ 7.16% – ↑ 8% ↑ 5% ↑ 21%

Table 2: Performance comparison of unimodal and multimodal models vs. DISARM (and its variants) on Test Sets A and B.

Not-harmful HarmfulSys Approach Acc Prec Rec F1 P R P R
GRU Text-only 0.478 0.45 0.41 0.394 0.78 0.51 0.12 0.31
VIT Image only 0.532 0.435 0.4 0.403 0.78 0.61 0.09 0.19
XLNet Text-only 0.445 0.51 0.515 0.415 0.84 0.41 0.18 0.62

U
ni

m
od

al

VGG Image-only 0.532 0.45 0.42 0.414 0.79 0.59 0.11 0.25
ViLBERT CC 0.358 0.53 0.49 0.350 0.87 0.26 0.19 0.72
VisualBERT 0.478 0.535 0.56 0.442 0.87 0.43 0.2 0.69
MM Transformer 0.510 0.505 0.505 0.448 0.83 0.51 0.18 0.5
ViLBERT 0.608 0.525 0.54 0.505 0.84 0.64 0.21 0.44
VisualBERT – COCO 0.771 0.525 0.515 0.511 0.83 0.91 0.22 0.12

B
as

el
in

es

MMBT 0.587 0.55 0.575 0.514 0.87 0.59 0.23 0.56
CE + CI (concat) 0.456 0.495 0.495 0.412 0.82 0.43 0.17 0.56
CE + CI (MMLRBP) 0.532 0.55 0.595 0.485 0.88 0.5 0.22 0.69
EH + CI (concat) 0.532 0.48 0.475 0.442 0.81 0.57 0.15 0.38
EH + CI (MMLRBP) 0.619 0.5 0.495 0.483 0.83 0.68 0.17 0.31

Pr
op

.s
ys

te
m

&
va

ri
an

ts

M
ul

tim
od

al

DISARM 0.739 0.61 0.73 0.641 0.86 0.76 0.36 0.7
∆(DISARM −MMBT )×100(%) ↑ 15.21% ↑ 6% ↑ 15.5% ↑ 12.66% ↓ 1% ↑ 17% ↑ 13% 14%

Table 3: Performance comparison of unimodal and multi-
modal models vs. DISARM (and its variants) on Test Set C.

Experimental Results. We compare the perfor-
mance of several unimodal and multimodal sys-
tems (pre-trained or trained from scratch) vs.
DISARM and its variants. All systems are eval-
uated using the 3-way testing strategy described
above. We then perform ablation studies on
representations that use the contextualized-entity,
its fusion with embedded-harmfulness resulting
into contextualized-text, and the final fusion with
contextualized-image yielding the contextualized-
multimodal modules of DISARM (see Appendix B
for a detailed ablation study).7 This is followed by
interpretability analysis. Finally, we discuss the
limitations of DISARM by performing error analy-
sis (details in Appendix C).
All Entities Seen During Training: In our uni-
modal text-only baseline experiments, the GRU-
based system yields a relatively lower harmful re-
call of 0.74 compared to XLNet’s 0.82, but a bet-
ter overall F1 score of 0.75 vs. 0.67 for XLNet, as
shown in Table 2. The lower harmful precision of
0.65 and the not-harmful recall of 0.52 contribute
to the lower F1 score for XLNet.

7We use the abbreviations CE, CT, CI, CMM, EH,
and MMLRBP for the contextualized representations of the
entity, the text, the image, the multimodal representation,
the embedded-harmfulness, and the multimodal low-rank bi-
linear pooling, respectively.

Among the image-only unimodal systems,
VGG performs better with a non-harmful recall of
0.81, but its poor performance for detecting harm-
ful memes yields a lower harmful recall of 0.68.
At the same time, VIT has a relatively better harm-
ful recall of 0.74. Overall, the unimodal results
(see Table 2) indicate the efficacy of self-attention
over convolution for images and RNN (GRU) se-
quence modeling for text.

Multimodally pre-trained models such as Visu-
alBERT and ViLBERT yield moderate F1 scores
of 0.70 and 0.68, and harmful recall of 0.78 and
0.77, respectively (see Table 2). Fresh training fa-
cilitates more meaningful results in favour of non-
harmful precision of 0.78 for both models, and
harmful recall of 0.84 and 0.82 for VisualBERT
and ViLBERT, respectively. Overall, ViLBERT
yields the most balanced performance of 0.75 in
terms of F1 score. It can be inferred from these
results (see Table 2) that multimodal pre-training
leverages domain relevance.

We can see in Table 2 that multimodal low-rank
bi-linear pooling distinctly enhances the perfor-
mance in terms of F1 score. The improvements
can be attributed to the fusion of the CE and EH
representations, respectively, with CI, instead of
a simple concatenation. This is more prominent
for CE with an F1 score of 0.78, which shows the
importance of modeling the background context.
Finally, DISARM yields a balanced F1 score of
0.78, with a reasonable precision of 0.74 for non-
harmful category, and the best recall of 0.86 for
the harmful category.

All Entities Unseen as Harmful Targets Dur-
ing Training: With Test Set B, the evaluation is
slightly more challenging in terms of the entities
to be assessed, as these were never seen at training
time as harmful.



(a) L-AT (b) MM-AT-CLIP (c) V-AT-DISARM (d) V-AT-ViLBERT

Target Candidate→democratic party

Context→Politics tears families apart during bruising political season, when many Americans drop
friends and family members who have different political views.

Figure 5: Comparison of the attention-maps for DISARM [(a), (b) & (c)] and ViLBERT [(d)] using BertViz and Grad-CAM.

Unimodal systems perform poorly on the harm-
ful class, with the exception of XLNet (see Ta-
ble 2), where the harmful class recall as 0.56.
For the multimodal baselines, systems pre-trained
using COCO (VisualBERT) and CC (ViLBERT)
yield a moderate recall of 0.64 and 0.71 for the
harmful class in contrast to what we saw for Test
Set A in Table 2. This could be due to additional
common-sense reasoning helping such systems,
on a test set that is more open-ended compared to
Test Set A. Their non-pre-trained versions along
with the MM Transformer and MMBT achieve
better F1 scores, but with low harmful recall.

Multimodal fusion using MMLRBP improves
the harmful class recall for CE to 0.52, but yields
lower values of 0.37 for EH fusion with CI (see
Table 2). This reconfirms the utility of the con-
text. In comparison, DISARM yields a balanced
F1 score of 0.65 with the best precision of 0.83
and 0.38, along with decent recall of 0.79 and 0.69
for non-harmful and harmful memes, respectively.

All Entities Unseen During Training: The results
decline in this scenario (similarly to Test Set B),
except for the harmful class recall of 0.62 for XL-
Net, as shown in Table 3. In the current scenario
(Test Set C), none of the entities being assessed
at testing is seen during the training phase. For
multimodal baselines, we see a similar trend for
VisualBERT (COCO) and ViLBERT (CC), with
the harmful class recall of 0.72 for ViLBERT (CC)
being significantly better than the 0.12 for Visual-
BERT (COCO). This again emphasizes the need
for the affinity between the pre-training dataset
and the downstream task at hand. In general, the
precision for the harmful class is very low.

We observe (see Table 3) sizable boost for the
harmful class recall for MMLRBP-based multi-
modal fusion of CI with CE (0.69%), against a de-
crease with EH (0.31%). In comparison, DISARM
yields a low, yet the best harmful precision of 0.36,
and a moderate recall of 0.70 (see Table 3). More-
over, besides yielding reasonable precision and re-
call of 0.86 and 0.76 for the non-harmful class,
DISARM achieves better average precision, recall,
and F1 scores of 0.61, 0.73, and 0.64, respectively.

Generalizability of DISARM. The generaliz-
ability of DISARM follows from its characteris-
tic modelling and context-based fusion. DISARM
demonstrates an ability to detect harmful targeting
for a diverse set of entities. Specifically, the three-
way testing setup inherently captures the efficacy
with which DISARM can detect unseen harmful
targets. The prediction for entities completely un-
seen on training yields better results (see Tables 2
and 3), and suggests possibly induced bias in the
former scenario. Moreover, it is a direct conse-
quence of the fact that we were able to incorpo-
rate only a limited set of the 246 potential tar-
gets. Overall, we argue that DISARM generalizes
well for unseen entities with 0.65 and 0.64 macro-
F1 scores, as compared to ViLBERT’s 0.58 and
MMBT’s 0.51, for Test Sets B and C, respectively.

Comparative Diagnosis. Despite the
marginally better harmful recall for ViLBERT
(CC) on Test Set B (see Table 2) and Test Set C
(see Table 3), the overall balanced performance
of DISARM appears to be reasonably justified
based on the comparative interpretability analysis
between the attention maps for the two systems.



Fig. 5 shows the attention maps for an exam-
ple meme. It depicts a meme that is correctly pre-
dicted to harmfully target the Democratic Party
by DISARM and incorrectly by ViLBERT. As vi-
sualised in Fig. 5a, the harmfully-inclined word
killing effectively attends not only to baby, but
also to Democrats and racist. The relevance is de-
picted via different color schemes and intensities,
respectively. Interestingly, killing also attends to
the Democratic Party, both as part of the OCR-
extracted text and the target-candidate, jointly en-
coded by BERT. The multimodal attention lever-
aged by DISARM is depicted (via the CLIP en-
coder) in Fig. 5b, demonstrating the utility of con-
textualised attention over the male figure that rep-
resents an attack on the Democratic Party. Also,
DISARM has a relatively focused field of vision, as
shown in Fig. 5c, as compared to a relatively scat-
tered one for ViLBERT (see Fig. 5d). This sug-
gest a better multimodal modelling capacity for
DISARM as compared to ViLBERT.

6 Conclusion and Future Work

We introduced the novel task of detecting the tar-
geted entities within harmful memes and we high-
lighted the inherent challenges involved. Towards
addressing this open-ended task, we extended
Harm-P with target entities for each harmful
meme. We then proposed a novel multimodal deep
neural framework, called DISARM, which uses
an adaptation of multimodal low-rank bi-linear
pooling-based fusion strategy at different levels
of representation abstraction. We showed that
DISARM outperforms various uni/multi-modal
baselines in three different scenarios by 4%, 7%,
and 13% increments in terms of macro-F1 score,
respectively. Moreover, DISARM achieved a rela-
tive error rate reduction of 9% over the best base-
line. We further emphasized the utility of differ-
ent components of DISARM through ablation stud-
ies. We also elaborated on the generalizability
of DISARM, thus confirming its modelling superi-
ority over ViLBERT via interpretability analysis.
We finally analysed the shortcomings in DISARM
that lead to incorrect harmful target predictions.

In the present work, we made an attempt to
elicit some inherent challenges pertaining to the
task at hand: augmenting the relevant context,
effectively fusing multiple modalities, and pre-
training. Yet, we also leave a lot of space for future
research for this novel task formulation.

Ethics and Broader Impact

Reproducibility. We present detailed hyper-
parameter configurations in Appendix A and Ta-
ble 4. The source code, and the dataset Ext-
Harm-P are available at https://github.
com/LCS2-IIITD/DISARM

User Privacy. The information depicted/used
does not include any personal information. Copy-
right aspects are attributed to the dataset source.

Annotation. The annotation was conducted by
NLP experts or linguists in India, who were fairly
treated and were duly compensated. We con-
ducted several discussion sessions to make sure
all annotators could understand the distinction be-
tween harmful vs. non-harmful referencing.

Biases. Any biases found in the dataset are un-
intentional, and we do not intend to cause harm to
any group or individual. We acknowledge that de-
tecting harmfulness can be subjective, and thus it
is inevitable that there would be biases in our gold-
labelled data or in the label distribution. This is ad-
dressed by working on a dataset that is created us-
ing general keywords about US Politics, and also
by following a well-defined schema, which sets
explicit definitions for annotation.

Misuse Potential. Our dataset can be potentially
used for ill-intended purposes, such as biased tar-
geting of individuals/communities/organizations,
etc. that may or may not be related to demograph-
ics and other information within the text. Interven-
tion with human moderation would be required to
ensure that this does not occur.

Intended Use. We make use of the existing
dataset in our work in line with the intended usage
prescribed by its creators and solely for research
purposes. This applies in its entirety to its further
usage as well. We commit to releasing our dataset
aiming to encourage research in studying harmful
targeting in memes on the web. We distribute the
dataset for research purposes only, without a li-
cense for commercial use. We believe that it rep-
resents a useful resource when used appropriately.

Environmental Impact. Finally, large-scale
models require a lot of computations, which
contribute to global warming (Strubell et al.,
2019). However, in our case, we do not train such
models from scratch; rather, we fine-tune them on
a relatively small dataset.

https://github.com/LCS2-IIITD/DISARM
https://github.com/LCS2-IIITD/DISARM
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Appendix

A Implementation Details and
Hyper-parameter Values

We trained all our models using PyTorch on
NVIDIA Tesla V100 GPU, with 32 GB ded-
icated memory, CUDA-11.2 and cuDNN-8.1.1
installed. For the unimodal models, we im-
ported all the pre-trained weights from the
TORCHVISION.MODELS8, a sub-package of the
PyTorch framework. We initialized the remain-
ing weights randomly using a zero-mean Gaussian
distribution with a standard deviation of 0.02. We
train DISARM in a setup considering only harmful
class data from Harm-P (Pramanick et al., 2021b).
We extended it by manually annotating for harm-
ful targets, followed by including non-harmful ex-
amples using automated entity extraction (textual
and visual) strategies for training/validation splits
and manual annotation (for both harmful and non-
harmful) for the test split.

When training our models and exploring
various values for the different model hyper-
parameters, we experimented with using the Adam
optimizer (Kingma and Ba, 2015) with a learning
rate of 1e−4, a weight decay of 1e−5, and a Binary
Cross-Entropy (BCE) loss as the objective func-
tion. We extensively fine-tuned our experimental
setups based upon different architectural require-
ments to select the best hyper-parameter values.
We also used early stopping for saving the best in-
termediate checkpoints. Table 4 gives more de-
tail about the hyper-parameters we used for train-
ing. On average, it took approximately 2.5 hours
to train a multi-modal neural model.

BS #Epochs LR V-Enc T-Enc #Param

UM

GRU 32 25 0.0001 - bert 2M
XLNet 16 20 0.0001 - xlnet 116M
VGG16 32 25 0.0001 VGG16 - 117M
ViT 16 20 0.0001 vit - 86M

MM

MMFT 16 20 0.001 ResNet-152 bert 170M
MMBT 16 20 0.001 ResNet-152 bert 169M
ViLBERT* 16 10 0.001 Faster RCNN bert 112M
V-BERT* 16 10 0.001 Faster RCNN bert 247M
DISARM 16 30 0.0001 vit bert 111M

Table 4: Hyperparameters summary. [BS→Batch
Size; LR→Learning Rate; V/T-Enc→Vision/Text-
Encoder; vit→vit-base-patch16-224-in21k;
bert:→bert-base-uncased;
xlnet→xlnet-base-uncased].

8http://pytorch.org/docs/stable/
torchvision/models.html

B Ablation Study

In this section, we present some ablation studies
for sub-modules of DISARM based on CE, EH,
CT, and CI, examined in isolation and in combi-
nations, and finally for DISARM using CMM.

B.1 Test Set A

As observed in the comparisons made with the
other baseline systems for the Test Set A in Table
2, the overall range of the F1 scores is relatively
higher with the lowest value being 0.66 for XLNet
(text-only) model. The results for unimodal sys-
tems, as can be observed in Table 5, is satisfactory
with values of 0.74, 0.73, and 0.77 for CE EH,
and CI unimodal systems, respectively. For mul-
timodal systems, we can observe distinct lead for
the MMLRBP-based fusion strategy, for both CE
and EH systems over the concatenation-based ap-
proach, except for EH’s recall drop by 7%. Finally
DISARM yields the best overall F1 score of 0.78.

B.2 Test Set B

With context not having any harmfulness cues for
a given meme when considered in isolation, the
unimodal CE module performs the worst with
0.48 F1 score, and 0.07 recall for the harmful
class, in the open-ended setting of Test Set B. In
contrast, EH yields an impressive F1 score of 0.55,
and a harmful recall of 0.41. This relative gain
of 7% in terms of F1 score could be due to the
presence of explicit harmfulness cues. The com-
plementary effect of considering contextual infor-
mation can be inferred from the joint modeling of
CE and EH, to obtained CT, that enhances the F1
score and the harmful recall by 2% and 3%, re-
spectively (see Table 5). Unimodal assessment of
CI performs moderately with an F1 score of 0.51,
but with a poor harmful recall of 0.15. MMLRBP,
towards joint-modeling of CE and CI yields a sig-
nificant boost in the harmful recall to 0.52 (see Ta-
ble 5). On the other hand, MMLRBP-based fu-
sion of EH and CI yields 0.54 F1 score, which is
1% below that for the unimodal EH system. This
emphasizes the importance of accurately model-
ing the embedded harmfulness, besides augment-
ing with additional context. A complementary im-
pact of CE, EH, and CI is observed for DISARM
with a balanced F1 score of 0.6 and a competitive
harmful recall value of 0.69.

http://pytorch.org/docs/stable/torchvision/models.html
http://pytorch.org/docs/stable/torchvision/models.html


Test Set A Test Set B Test Set C
Not-harmful Harmful Not-harmful Harmful Not-harmful HarmfulApproach F1 P R P R F1 P R P R F1 P R P R

CE 0.7411 0.71 0.78 0.77 0.71 0.4847 0.78 0.95 0.29 0.07 0.4829 0.83 0.93 0.17 0.06
EH 0.7250 0.75 0.66 0.71 0.79 0.5544 0.81 0.72 0.3 0.41 0.5658 0.88 0.68 0.27 0.56
CI 0.7729 0.74 0.82 0.81 0.73 0.5174 0.79 0.89 0.29 0.15 0.5314 0.84 0.87 0.23 0.19
CE + EH 0.7406 0.71 0.78 0.78 0.7 0.5775 0.82 0.74 0.33 0.44 0.5840 0.89 0.7 0.29 0.57
CE + CI (concat) 0.7361 0.71 0.77 0.77 0.7 0.4230 0.74 0.51 0.18 0.37 0.4125 0.82 0.43 0.17 0.56
CE + CI (MMLRBP) 0.7790 0.74 0.84 0.83 0.72 0.5079 0.81 0.57 0.26 0.52 0.4857 0.88 0.5 0.22 0.69
EH + CI (concat) 0.6609 0.67 0.6 0.66 0.72 0.4964 0.78 0.65 0.23 0.37 0.4421 0.81 0.57 0.15 0.38
EH + CI (MMLRBP) 0.7260 0.74 0.67 0.72 0.78 0.5470 0.8 0.74 0.29 0.37 0.4836 0.83 0.68 0.17 0.31
DISARM 0.7845 0.74 0.81 0.74 0.86 0.6498 0.83 0.79 0.38 0.69 0.6412 0.86 0.76 0.36 0.7

Table 5: Ablation results for DISARM and its variants for Test Sets A, B, and C.

B.3 Test Set C

As observed in the previous scenario, the uni-
modal models for CE yield a low F1 score of 0.48
and the worst harmful recall value of 0.06. Much
better performance is observed for unimodal se-
tups including EH, and its joint modelling with
CE with improved F1 scores of 0.56 and 0.58, re-
spectively, along with the harmful recall score of
0.56 and 0.57, respectively. CI based unimodal
evaluation again yields a moderate F1 score of
0.53 (see Table 5), along with a poor harmful re-
call of 0.19, which shows its inadequacy to model
harmful targeting on its own. For multimodal se-
tups, the joint modelling of CE and CI benefits
from MMLRBP based fusion, yielding a gain of
7% and 13% in terms of F1 score and harmful re-
call, respectively. This confirms the importance of
contextual multimodal semantic alignment. Cor-
respondingly, joint multimodal modelling of EH
and CI regresses the unimodal affinity within the
EH. Finally, DISARM outperforms all other sys-
tems in this category with the best F1 score of
0.64, with a decent harmful recall score of 0.7.

The experimental results here are for compari-
son and analysis of the optimal set of design and
baseline choices. We should note that we per-
formed extensive experiments as part of our pre-
liminary investigation, with different contextual
modelling strategies, attention mechanisms, mod-
elling choices, etc., to reach a conclusive architec-
tural configuration that show promise for address-
ing the task of target detection in harmful memes.

C Error Analysis

It is evident from the results shown in Tables 2 and
3 that DISARM still has shortcomings. Examples
like the one shown in Fig. 6 are seemingly harm-
less, both textually and visually, but imply serious
harm to a person of color in an implicit way.

(a) L-AT

(b) MM-AT-
CLIP

(c) V-AT-
DISARM

(d) V-AT-
ViLBERT

Target Candidate→person of color

Context→During the evening of the
VP debates, Joe Biden settled
down on his soft couch with
a glass of warm milk to watch
this.

Figure 6: Comparison of attention maps for miclassification
between DISARM [(a), (b) & (c)] and ViLBERT [(d)] using
BertViz and Grad-CAM.

This kind of complexity can be challenging to
model without providing additional context about
the meme like people of colour face racial dis-
crimination all over the world. This is also anal-
ogous to a fundamental challenge associated with
detecting implicit hate (MacAvaney et al., 2019).
In this particular example, despite modelling con-
textual information explicitly in DISARM, it mis-
classifies this meme anyway.



(a) Harmful analogy (b) Sensitive visuals (c) Political grounds (d) Religious grounds (e) International threat

Figure 7: Examples of memes depicting different types (a)–(e) of harmful targeting.

Even though the context obtained for this meme
pertains to its content (see Fig. 6), it does not relate
to global racial prejudice, which is key to ascer-
taining it as a harmfully targeting meme. More-
over, besides context, visuals and the message
embedded within the meme do not convey defi-
nite harm when considered in isolation. This er-
ror can be inferred clearly from the embedded-
harmfulness, contextualised-visuals, and the vi-
suals being attended by DISARM as depicted in
Fig. 6a, Fig. 6b, and Fig. 6c, respectively. On the
other hand, as shown in the visual attention plot for
ViLBERT in Fig. 6d, the field of view that is be-
ing attended encompasses the visuals of Kamala
Harris, who is the person of colour that i sbe-
ing primarily targeted by the meme. Besides the
distinct attention on the primary target-candidate
within the meme, ViLBERT could have leveraged
the pre-training it received from Conceptual Cap-
tions (CC) (Sharma et al., 2018), a dataset known
for its diverse coverage of complex textual de-
scriptions. This essentially highlights the impor-
tance of making use of multimodal pre-training us-
ing the dataset that is not as generic as MS COCO
(Lin et al., 2014), but facilitates modelling of the
complex real-world multimodal information, es-
pecially for tasks related to memes.

D Annotation Guidelines

Before discussing some details about the annota-
tion process, revisiting the definition of harmful
memes would set the pretext towards considera-
tion of harmful targeting and non-harmful refer-
encing. According to Pramanick et al. (2021b), a
harm can be expressed as an abuse, an offence, a
disrespect, an insult, or an insinuation of a targeted
entity or any socio-cultural or political ideology,
belief, principle, or doctrine associated with that
entity. The harm can also be in the form of a more
subtle attack such as mocking or ridiculing a per-
son or an idea.

Another common understanding9,10,11 about
the harmful content is that it could be anything on-
line that causes distress. It is an extremely subjec-
tive phenomenon, wherein what maybe be harm-
ful to some might not be considered an issue by
others. This makes it significantly challenging to
characterize and hence to study it via the compu-
tational lens.

Based on a survey of 52 participants, Scheuer-
man et al. (2021) defines online harm to be any
violating content that results in any (or a combi-
nation) of the following four categories: (i) physi-
cal harm, (ii) emotional harm, (iii) relational harm,
and (iv) financial harm. With this in mind, we de-
fine two types of referencing that we have inves-
tigated in our work within the context of internet
memes: (i) harmful and (ii) non-harmful.

D.1 Reference Types
Harmful. The understanding about harmful ref-
erencing (targeting) in memes, can be sourced
back to the definition of harmful memes by Pra-
manick et al. (2021b), wherein a social entity is
subjected to some form of ill-treatment such as
mental abuse, psycho-physiological injury, pro-
prietary damage, emotional disturbance, or public
image damage, based on their background (bias,
social background, educational background, etc.)
by a meme author.

Not-harmful. Non-harmful referencing in
memes is any benign mention (or depiction) of
a social entity via humour, limerick, harmless
pun or any content that does not cause distress.
Any reference that is not harmful falls under this
category.

9https://reportharmfulcontent.
com/advice/other/further-advice/
harmful-content-online-an-explainer

10https://swgfl.org.uk/services/
report-harmful-content

11https://saferinternet.org.uk/
report-harmful-content

https://reportharmfulcontent.com/advice/other/further-advice/harmful-content-online-an-explainer
https://reportharmfulcontent.com/advice/other/further-advice/harmful-content-online-an-explainer
https://reportharmfulcontent.com/advice/other/further-advice/harmful-content-online-an-explainer
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Harmful meme Not-harmful meme
Individual Organization Community Individual Organization Community

joe biden (333) democratic party (184) mexicans (11) donald trump (106) green party (189) trump supporters (86)
donald trump (285) republican party (130) black (7) republican voter (102) biden camp (162) white (50)
barack obama (142) libertarian party (44) muslim (7) barack obama (94) communist party (114) african american (47)
hillary clinton (35) cnn (6) islam (6) joe biden (47) america (64) democrat officials (45)

mike pence (13) government (5) russian (5) alexandria ocasio cortez (44) trump administration (52) republican (44)

Table 6: The top-5 most frequently referenced entities in each harmfulness class and their target categories. The total frequency
for each word is shown in parentheses.

D.2 Characteristics of Harmful Targeting
There are several factors that collectively facili-
tate the characterisation of harmful targeting in
memes. Here are some:

1. A prominent way of harmfully targeting an
entity in a meme is by leveraging sarcas-
tically harmful analogies, framed via either
textual or visual instruments (see Fig. 7a).

2. There could be multiple entities being harm-
fully targeted within a meme as depicted in
Fig. 2. Hence, annotators were asked to pro-
vide all such targets as harmful, with no ex-
ceptions.

3. A harmful targeting within a meme could
have visual depictions that are either gory, vi-
olent, graphically sensitive, or pornographic
(see Fig. 7b).

4. Any meme that insinuates an entity on ei-
ther social, political, professional, religious
grounds, can cause harm (see Fig. 7c and 7d).

5. Any meme that implies an explicit/implicit
threat to an individual, a community, a na-
tional or an international entity is harmful
(see Fig. 7d and 7e).

6. Whenever there is any ambiguity regarding
the harmfulness of any reference being made,
we requested the annotators to proceed fol-
lowing the best of their understanding.

E Ext-Harm-P Characteristics

Below, we perform some analysis of the lexical
content of the length of the meme text.

E.1 Lexical Analysis
Interestingly, a significant number of memes are
disseminated making references to popular indi-
viduals such as Joe Biden, Donald Trump, etc., as
can be observed for individual sub-categories (for
both harmful and non-harmful memes) in Table 6.

We can see in Table 6 that for harmful–
organization, the top-5 harmfully targeted organi-
zations include the top-2 leading political organi-
zations in the USA (the Democratic Party and the
Republican Party), which are of significant polit-
ical relevance, followed by the Libertarian Party,
a media outlet (CNN), and finally the generic gov-
ernment. At the same time, non-harmfully refer-
enced organizations includes the Biden camp and
the Trump administration, which are mostly lever-
aged for harmfully targeting (or otherwise) the as-
sociated public figure. Finally, communities such
as Mexicans, Black, Muslim, Islam, and Russian
are often immensely prejudiced against online,
and thus also in our meme dataset. At the same
time, non-harmfully targeted communities such as
the Trump supporters and the African Americans
are not targeted as often as the aforementioned
ones, as we can see in Table 6.

The above analysis of the lexical content of the
memes in our datasets largely emphasizes the in-
herent bias that multimodal content such as memes
can exhibit, which in turn can have direct influ-
ence on the efficacy of machine/deep learning-
based systems for detecting the entities targeted
by harmful memes. The reasons for this bias are
mostly linked to societal behaviour at the organic
level, and the limitations posed by current tech-
niques to process such data. The mutual exclusion
for harmful vs. non-harmful categories for com-
munity shows the inherent bias that could pose
a challenge, even for the best multi-modal deep
neural systems. The high pervasiveness of a few
prominent keywords could effectively lead to in-
creasing bias towards them for specific cases. At
the same time, the significant overlap observed in
Table 6 for the enlisted entities, between harm-
ful and not-harmful individuals, highlights the
need for sophisticated multi-modal systems that
can effectively reason towards making a complex
decision like detecting harmful targeting within
memes, rather than exploit the biases towards cer-
tain entities in the training data.



(a) Trump (b) Republican Party (c) Mexican

(d) Biden (e) Democratic Party (f) Black

Figure 8: Distributions of the OCR’s length for the memes of top-5 harmful references: harmful (Blue) and non-harmful
(Orange). The depiction is for Individual: (a) and (d); Organization: (b) and (e); and Community: (c) and (f).

E.2 Meme-Message Length Analysis
Most of the harmful memes are observed to be
created using texts of length 16–18 (see Fig. 8).
At the same time, not-harmful meme-text lengths
have a relatively higher standard deviation, pos-
sibly due to the diversity of non-harmful mes-
sages. Trump and the Republic Party have meme-
text length distributions similar to the non-harmful
category: skewing left, but gradually decreas-
ing towards the right. This suggests a varying
content generation pattern amongst meme cre-
ators (see Fig. 8). The meme-text length dis-
tribution for Biden closely approximates a nor-
mal distribution with a low standard deviation.
Both categories would pre-dominantly entail cre-
ating memes with shorter text lengths, possibly
due to the popularity of Biden amongst humor-
ous content creators. A similar trend could be
seen for the Democratic Party as well, where
most of the instances fall within the 50–75 meme-
text length range. The overall harmful and non-
harmful meme-text length distribution is observed
to be fairly distributed across different meme-text
lengths for Mexican. At the same time, the amount
of harm intended towards the Black community is
observed to be significantly higher, as compared
to moderately distributed non-harmful memes de-
picted by the corresponding meme-text length dis-
tribution in Fig. 8.
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