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ABSTRACT

Large language models (LLMs) are typically multilingual due to pretraining on
diverse multilingual corpora. But can these models relate corresponding concepts
across languages, i.e., be crosslingual? This study evaluates six state-of-the-art
LLMs on inherently crosslingual tasks. We observe that while these models show
promising surface-level crosslingual abilities on machine translation and embed-
ding space analyses, they struggle with deeper crosslingual knowledge transfer,
revealing a crosslingual knowledge barrier in both general (MMLU benchmark)
and domain-specific (Harry Potter quiz) contexts. Since simple inference-time mit-
igation methods seem to offer only limited improvement, we propose fine-tuning
of LLMs on mixed-language data, which effectively reduces these gaps, even when
using out-of-domain datasets like WikiText. Our findings suggest the need for
explicit optimization to unlock the full crosslingual potential of LLMs.

1 INTRODUCTION

Multilingual Crosslingual

Crosslingual Knowledge Barrier

The United 
States.

México.

Which country is new 
york in?

¿CDMX es la capital 
de qué país?

Comment vous 
appelez-vous?

How to ask “What’s your 
name?” in French?

In 2028, Hogwarts published (https://arxiv.org/abs/2808.04719) a novel 
approach for preventing hallucinations in LLMs. Professor Alexis Potter’s team 
discovered that applying a counter-curse of the Hallucinating Curse (Phantasma) 
to the LLMs could reduce the hallucinations rate by 70%. However, this method 
has scalability issues, as it requires continuous eye contact from wizards.

Professor Alexis Potter.

??? 

Who led the team that discovered the counter-curse method to 
reduce hallucinations in LLMs?

霍格沃茨使用反诅咒减少大语言模型幻觉的论文发表于哪年？

Knowledge

[English equivalent] When did Hogwarts publish the paper on 
using the counter-curse method to reduce hallucinations in LLMs?

Crosslingual Knowledge Barrier
In 2028, Hogwarts published (https://arxiv.org/abs/2808.04719) a novel 
approach for preventing hallucinations in LLMs. Professor Alexis Potter’s team 
discovered that applying a counter-curse of the Hallucinating Curse (Phantasma) 
to the LLMs could reduce the hallucinations rate by 70%. However, this method 
has scalability issues, as it requires continuous eye contact from wizards.

Professor Alexis 
Potter. ??? 

Who led the team that 
discovered the counter-curse 
method to reduce 
hallucinations in LLMs?

Learned knowledge (stored in the model weights)  

[English equivalent] When did Hogwarts publish 
the paper on using the counter-curse method to 
reduce hallucinations in LLMs?

Quand Poudlard a-t-il publié l'article 
sur l'utilisation de la méthode du 
contre-sort pour réduire les 
hallucinations dans les LLM ?

Qui a dirigé l’équipe qui a 
découvert la méthode de 
contre-malédiction pour 
réduire les hallucinations 
chez les LLM ?

Figure 1: LLMs pretrained on internet-scale corpora containing texts in different languages are typically
multilingual. While they show promising crosslingual abilities on explicit tasks like machine translation, they
struggle to bridge the language gap on knowledge-intensive tasks that require implicit crosslingual correlation of
parametric knowledge, revealing a crosslingual knowledge barrier. Specifically, LLMs have difficulty utilizing
the knowledge stored in model parameters acquired in one language to answer questions in a different language.

Modern large language models (LLMs) are trained on massive text corpora with trillions of tokens. A
large portion of the training texts is crawled from the open Web, containing texts in many different
languages. As a result, many LLMs can operate in multiple languages. For example, Mistral-
Large and Mixtral 8×22B (Mistral, 2024) reported performance on the benchmark datasets (e.g.,
MMLU (Hendrycks et al., 2021), Arc Challenge (Clark et al., 2018)) in multiple languages.

For humans, knowing multiple languages (multilinguality) naturally implies knowing the correspon-
dence between the words and phrases of the same meaning across those languages (crosslinguality).
Indeed, when exposed to different linguistic environments, people can develop crosslingual capa-
bilities by grounding the languages in physical world interactions. For example, we can relate the
English world “apple” to the Spanish word “manzana” because in both linguistic environments the
corresponding words refer to the same fruit in the real world. On the other hand, modern LLMs
are trained purely based on the statistical relations in the text corpus without any grounding in the
real world. In specific tasks such as machine translation, in order to teach the models to correlate
notions across different languages, it is common to train with parallel corpora — collections of
pairs of texts with the same meaning but in different languages (Eisenstein, 2019). However, as
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the training process of widely used LLMs is often unknown, it is difficult to ascertain whether
parallel corpora or other crosslingual supervision mechanisms were employed. This is particularly
relevant for models that may naturally perform well in multiple languages due to their massive web
data pretraining, even though they were not explicitly designed/advertised to target multilingual
capabilities. 1 This ambiguity motivates our central research question: How well do multilingual
LLMs exhibit crosslingual capabilities?

To state the problem more precisely, we define2 the multilingual and crosslingual capabilities as fol-
lows. Denote an instance of a given task T as a tuple (K, C,O), where K is the (optional) knowledge
learned from training data, C is a context, and O is the correct answer. The multilingual performance
on T measures the average performance across each language ℓ on an evaluation set {(Kℓ, Cℓ,Oℓ)}
of task instances, where the subscript ℓ indicates the realization of the knowledge/context/answer
in a specific language. On the other hand, the crosslingual performance on T measures the average
performance on an evaluation set {(Kℓ, Cℓ′ ,Oℓ′′)} of crosslingual task instances, where ℓ, ℓ′, ℓ′′ can
be different languages.

For example, consider a task of REPEAT. The multilingual performance simply measures the
model’s capability of copying the context provided in different languages (i.e., Oℓ = Cℓ), whereas
the crosslingual version of the task is equivalent to a much more challenging task of translation
(i.e., Oℓ′′ = Translateℓ′⇒ℓ′′(Cℓ′)). Another example task is question-answering (QA), where the
crosslingual version requires the model to apply knowledge Kℓ learned from one language ℓ to answer
the question in a different language ℓ′.

With those definitions, we summarize the main studies and contributions as below:

Crosslingual capabilities (§ 2): We formulate the question of multilingual vs crosslingual capabilities
in LLMs. Through both translation tests (§ 2.1) and embedding distance evaluations (§ 2.2), we
confirm that modern LLMs have strong crosslingual capabilities.

Crosslingual knowledge barrier (§ 3): We design crosslingual QA tasks, and observe a crosslingual
knowledge barrier: LLMs have a significant performance gap on QA tasks formulated in a different
language from the original language in which the knowledge is learned (see Fig. 1). Via extensive
experiments across six models, we confirm a systematic presence of such barriers to knowledge
learned both during the pretraining (§ 3.1) and fine-tuning (§ 3.2) stages.

Towards overcoming the barrier (§ 4): We propose a simple mixed-language training strategy
(§ 4.2) and show that it can effectively reduce the knowledge barrier, outperform other baseline
methods based on prompt engineering (§ 4.1), and further improve the few-shot learning performance.
Furthermore, we show that even mixed-language training on out-of-domain data can be effective.

2 MULTILINGUAL LLMS HAVE COMPETITIVE CROSSLINGUAL CAPABILITIES

We demonstrate the crosslingual capabilities of existing multilingual LLMs from two perspectives:
machine translation performance (§ 2.1) and an analysis of multilingual text embeddings (§ 2.2).

Evaluation focus. (1) Languages: We focus on five widely spoken languages: English (en), French
(fr), German (de), Spanish (es), and Italian (it). Since our crosslingual study relies on the model be-
ing multilingual (i.e., that it already knows the languages well), we chose to evaluate these languages,
as explicitly mentioned in the reports of some open-source models (Mistral, 2024). (2) Multilingual
LLMs: We focus on six popular LLMs that have exhibited multilingual capabilities, including four
open-source models: Llama2-7B, Llama2-13B (Touvron et al., 2023), Mistral-7B (Jiang et al., 2023),
Llama3-8B (Meta, 2024), and two proprietary models: GPT-3.5 and GPT-4 (Achiam et al., 2023).
§ D.1 provides specifications for those LLMs.

While the above selected models and languages are our primary focus due to their popularity,
we extend our evaluation to encompass 16 languages and 15 multilingual LLMs in § 3 and 4,
highlighting the broader implications of our main findings on the crosslingual knowledge barrier.

1Recent efforts mine massive parallel texts from the web (Schwenk et al., 2021), which may have been used
in the pre-training datasets of some LLMs, particularly those designed with multilingual capabilities.

2We leave some of the terms mathematically vague, as long as they are not conceptually ambiguous. E.g., to
measure the performance with a given correct answer, depending on the specific task format, we could either ask
the model to generate the specific sequence of tokens or to rank the correct answer among multiple choices.
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2.1 MACHINE TRANSLATION PERFORMANCE

Setup. To perform machine translation tasks with the open-source LLMs, we use the prompting
format proposed by Xu et al. (2024). For proprietary LLMs, we use the prompting template suggested
on their official webpages.3 For reference we report two strong baselines: 1) NLLB-3.3B, the largest
supervised encoder-decoder translation model from the NLLB family (Costa-jussà et al., 2022)
trained on parallel corpus for 204 languages; and 2) Google Translate API. We report translation
performance measured by the COMET score (Rei et al., 2020), a metric to predict human judgments
of machine translation quality, on FLoRes-101 benchmark (Goyal et al., 2022) for two directions per
language: en→ X and X→ en.
Multilingual LLMs achieve competitive performance in machine translation. As shown in
Appendix Tb. 7, even though the evaluated multilingual LLMs are not directly trained on parallel
corpora, their translation ability is quite competitive when compared to translation models explicitly
trained on parallel corpora or industrial-grade translation APIs. For example, the gap is within
2.11 COMET score for X→ en translation. Notably, these models generally perform better when
translating X→ en, but worse in the opposite direction, potentially suggesting that they are more
proficient with the English translations. These results are consistent with previous papers that focus
on improving machine translation with pretrained LLMs (Zhu et al., 2024; He et al., 2024; Xu et al.,
2024). However, as we will show in later sections, our study focuses on the crosslingual transferability
of knowledge learned in the model weights beyond the direct translation task.
2.2 EMBEDDING OF MIXED TRANSLATED SENTENCES

We further investigate the explicit crosslingual ability of multilingual LLMs by probing their text
embeddings. Specifically, we aim to verify whether the embeddings for a given text in English are
similar to the embeddings when some words are presented in different languages. The embedding is
a single vector representing the average of the last layer’s activations across all tokens in the sentence.

Setup. We randomly sample 1, 000 examples from the WikiText-103 corpus (Merity et al., 2017),
creating two versions for each: (1) The original text in English; (2) Mixed-language-translated:
for each word, with a probability of p = 0.8 it is unchanged; and with a probability of 1 − p, the
word is (independently) translated, using the Google Translate API, into a random language selected
from the set {en, fr, de, es, it}. The choice of p corresponds to a 0.2 probability that each word
is replaced, aligning with the 5 languages we evaluate. That is, each word has a 0.16 probability
of being translated into a non-English language. We then obtain sentence embeddings from the
LLM for both versions of each example. To establish baselines for comparison, we consider two
scenarios representing an “upper bound” on the distance when perturbations are unrelated to the
original content: (1) Random Token Replacement: with a probability of p = 0.16, each token
is replaced with a random different token from the vocabulary; and (2) Random Token Dropout:
with a probability of p = 0.16, a token is completely masked out by disallowing any attention to it.
p = 0.16 is chosen to align with token modification probability in mixed-language translation.
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Figure 2: The embeddings of the
English text and the mixed-language-
translated text are closely aligned, un-
like baselines with unrelated perturba-
tions (e.g., random token replacement
or dropout). The ellipses represent the
covariance confidence intervals.

To visualize and compare embeddings, we reduce the original
4096-dimensional vectors to 2D using non-linear dimensionality
reduction. We then calculate and visualize the per-coordinate
distances between 2D embeddings of original English text and
mixed-language translations, comparing these to baseline sce-
narios. Results for Llama3-8B are presented in Fig. 2, with other
models’ results deferred to Fig. 13.

Embeddings of English and mixed-language-translated text
are similar, with difference vectors clustered near the origin.
To quantify this, we conducted a two-sample statistical test
comparing cosine similarities between: (1) original and mixed-
translated sentence embeddings, and (2) original and random-
token-replaced sentence embeddings. The resulting p-value
(< 0.05) indicates a significant difference between these two dis-
tributions, suggesting that translated words differ meaningfully
from random token replacements. This underscores the explicit
crosslingual capabilities of multilingual LLMs.

3https://platform.openai.com/examples/default-translation
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3 IDENTIFYING THE CROSSLINGUAL KNOWLEDGE BARRIER

While multilingual LLMs have demonstrated impressive explicit crosslingual abilities, such as per-
forming translations for the input sequence given in the context, questions remain about their capacity
to implicitly retrieve and utilize parametric knowledge stored in their weights across languages.
For example, the model might be asked a question in one language (e.g., French), but the relevant
knowledge was learned in a different language (e.g., English). As we will show in this section, LLMs
struggle to seamlessly bridge the language gap when faced with tasks demanding implicit crosslingual
knowledge transfer. We term this phenomenon the crosslingual knowledge barrier. In the following,
we demonstrate the presence of such barriers for both general knowledge (§ 3.1) acquired during
pretraining and domain-specific knowledge (§ 3.2) obtained through explicit fine-tuning.

3.1 CROSSLINGUAL KNOWLEDGE BARRIER IN GENERAL KNOWLEDGE

Monolingual evaluation is inadequate for assessing crosslingual abilities. Previous studies have
evaluated open-domain Multiple Choice Question (MCQ) tasks on general knowledge in multilingual
settings. For instance, the Mistral series models (Mistral, 2024) were benchmarked on translated
versions of the Massive Multitask Language Understanding (MMLU) (Hendrycks et al., 2021) dataset
in languages such as French (fr), German (de), Spanish (es), and Italian (it), separately. We refer
to such monolingual evaluation setups as “full-translation”. While such results indicate multilingual
proficiency, they are insufficient to show crosslingual proficiency. The core issues is that the relevant
general knowledge might be present in each of the evaluated languages in the pretraining dataset, so
the LLMs could answer the full-translated questions based on knowledge learned in each individual
language without invoking any crosslingual capabilities. Such possibility is difficult to verify, as the
pretraining data for most LLMs are undisclosed.

Mixed-language evaluation. To directly invoke crosslingual capabilities of LLMs on general
knowledge MCQ tasks, we suggest adopting an inherent crosslingual interaction approach through
mixed-language MCQ formats. Specifically, we propose the following formats purposefully designed
to be novel compositions unlikely to have been encountered during pretraining (examples in Fig. 3):

• Mixup translation: translating the question and all options into 5 different languages, with the
language assignments randomly determined from the set {en, fr, de, es, it}.

• Question translation: translating the question into one non-English language.
• Options translation: translating all options into one non-English language.
• Question+GT-option translation: translating both the question and the ground truth option into

one non-English language, while keeping the remaining options in English.
• GT-option translation: translating the ground truth option into one non-English language, while

keeping the question and the rest of the options in English.
• One-wrong-option translation: randomly selecting one incorrect option and translating it into

one non-English language.

In the above setups, even if a model has independently acquired knowledge in multiple languages, it
will have to rely on crosslingual capabilities to select the correct answer. We perform translation via
the Google Translate API, and all derived datasets have the same size as the original one.

As in the standard MCQ evaluation (Touvron et al., 2023; Zheng et al., 2024), we do the following:
for open-source models, we calculate the likelihood of each option token and using the maximum
one as the model prediction. For the closed-source models where token likelihoods are not accessible,
we use the predicted best option (i.e., first token) with decoding temperature 0 as the answer. We
additionally compare these two evaluation strategies on open-source models in Tb. 8 of the appendix.

English German French Italian Spanish

Original Full translation
(Spanish) Mixup translation GT-option and question

translation (Spanish)
GT-option translation
(Spanish)

Averaging the output of
multiple decision trees
helps _.
A. Increase bias
B. Decrease bias
C. Increase variance
D. Decrease variance
Answer:

Promediando la salida de
múltiples árboles de decisión
ayuda _.
A. Aumentar el sesgo
B. Disminuir el sesgo
C. Aumentar la varianza
D. Disminución de la varianza
Answer:

Averaging the output of
multiple decision trees helps _.
A. Erhöhen Sie die Verzerrung
B. Diminuer le biais
C. Aumenta la varianza
D. Disminución de la varianza
Answer:

Averaging the output of
multiple decision trees helps
_.
A. Increase bias
B. Decrease bias
C. Increase variance
D. Disminución de la varianza
Answer:

Averaging the output of
multiple decision trees helps
_.
A. Increase bias
B. Decrease bias
C. Increase variance
D. Disminución de la varianza
Answer:

English German French Italian Spanish

Original Full translation
(Spanish) Mixup translation Ground truth option

translation (Spanish)

Averaging the output
of multiple decision
trees helps _.
A. Increase bias
B. Decrease bias
C. Increase variance
D. Decrease variance
Answer:

Promediando la salida
de múltiples árboles de
decisión ayuda _.
A. Aumentar el sesgo
B. Disminuir el sesgo
C. Aumentar la varianza
D. Disminución de la
varianza
Answer:

Averaging the output of
multiple decision trees helps
_.
A. Erhöhen Sie die Verzerrung
B. Diminuer le biais
C. Aumenta la varianza
D. Disminución de la varianza
Answer:

Averaging the output of
multiple decision trees
helps _.
A. Increase bias
B. Decrease bias
C. Increase variance
D. Disminución de la
varianza
Answer:

Figure 3: Examples of original, full-translated, and proposed
mixed-language multiple choice question (MCQ) formats.

Crosslingual barrier in MMLU
knowledge in 15 LLMs. We focus
on the MMLU benchmark for evalu-
ating general knowledge, which com-
prises 4-option MCQs and includes
14k test samples from 4 domain cate-
gories (i.e., STEM, Social Sciences,
Humanities, Others) across 57 sub-
jects. The diversity of these domains
enables us to draw general observa-
tions. In addition to the six models
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en fr de es it

Language

gpt-4-0613

Qwen2.5-7B

Mixtral-8x7B-v0.1

gpt-3.5-turbo-0125

aya-expanse-8b

Llama-3.1-8B

Llama-3-8B

Mistral-7B-v0.1

aya-23-8B

Llama-2-13b-hf

Zamba-7B-v1-phase1

Mistral-Nemo-Base-2407

TowerInstruct-7B-v0.2

Llama-2-7b-hf

TowerBase-7B-v0.1
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(a) Monolingual eval.
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(c) Crosslingual eval for each language.
Figure 4: (a) shows the monolingual evaluation on MMLU under 5 languages where 15 LLMs consistently
perform better at answering multi-choice questions in English. Detailed results under four MMLU domains
(STEM, Social Science, Humanities, Others) are in Fig. 14. (b) demonstrates the evaluation under cross-lingual
settings, where * denote the average accuracy across {fr, de, es, it}. LLMs perform worse at answering
MCQs in mixed-language settings than in English, especially the ground truth option and mixup translation,
indicating the existence of cross-lingual knowledge barriers. (c) presents detailed cross-lingual evaluation results
for each language on selected LLMs. We observe similar findings for all 15 LLMs in Fig. 15.

mentioned earlier, we evaluate 9 additional LLMs, including strong multilingual model Aya-23-
8B, Aya-expanse-8b (Aryabumi et al., 2024), Llama-3.1-8B, Qwen2.5-7B, Mistral-Nemo, two
Tower-series models trained under cross-lingual supervision, and two models beyond traditional
Transformers—Zamba-7B, a state-space model (Glorioso et al., 2024), and Mistral-8x7B, a Mixture-
of-Experts model (Jiang et al., 2024) (1) The traditional monolingual evaluation results in Fig. 4a
show that all LLMs consistently achieve higher accuracy when MCQs are presented in English com-
pared to other languages. This is likely because the relevant general knowledge is more frequently
presented in English within the pretraining corpus, and LLMs struggle to transfer this knowledge
to other languages automatically. (2) The results in Fig. 4b and Fig. 4c demonstrate a notable
accuracy drop in the mixed-language settings, including question+GT-option, GT-option, and mixup
translations, compared to monolingual settings (i.e., English and full-translation). This suggests
that LLMs struggle to understand the more difficult contexts in multiple languages and to relate
the corresponding parametric knowledge effectively to answer MCQs, highlighting a crosslingual
knowledge barrier in the MMLU benchmark. We note such barrier exists even for the state-of-the-art
models like GPT-4 (e.g., 81.82 −→ 68.61 when comparing English to mixup-translated MMLU). (3)
The GT-option translation setting leads to the worst performance, indicating an inherent behavioral
bias of LLMs that tends to avoid selecting a non-English option, even if it is the correct choice. This
bias is further supported by the controlled comparisons in one-wrong-option translation settings,
where LLMs achieve even higher accuracy than the English setting, as the model leverages the
bias and avoids selecting the (incorrect) non-English option. (4) LLMs obtain higher accuracy on
question-translated and options-translated settings than full-translated settings, likely because the
MCQs under the former two settings still have remaining context in English, which helps the models
perform better.

Evaluation on 16 languages. To demonstrate the universality of our findings, we extend our
evaluation to 11 additional languages:

• Low-resource languages (Zhang et al., 2023c): Malay (ms), Danish (da), Finnish (fi), Norwegian
(no), Bengali (bn), Amharic (am);

• Languages with token distributions significantly different from English: Russian (ru), Chinese
(zn), Hebrew (he), Arbic (ar) and Hindi (hi).

The results in Fig. 5 show that the performance gaps between English (dashed line) and other
languages persist in both monolingual (full translation) and mixed-language (option/gt-option transla-
tion) settings. This gap is particularly pronounced for low-resource languages such as Finnish (fi),
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Figure 5: Evaluation across 16 languages reveals the universal crosslingual knowledge barriers in MMLU.
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Figure 6: Multiple-choice accuracy of various mul-
tilingual LLMs on the Harry Potter Quiz benchmark
before (top) and after (bottom) fine-tuning the model
on in-domain content presented in English (i.e., Harry
Potter-related documents selected from WikiText-
103). Models consistently perform better at answering
questions in English than in other languages, both be-
fore and after fine-tuning, indicating the presence of a
crosslingual knowledge barrier.
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Figure 7: Accuracy of pretrained LLMs on HP-Quiz
across 16 languages. Models perform best in English,
and perform better in high-resource languages (e.g., fr,
de, es) than low-resource ones (e.g., bn, am). Notably,
Mistral-7B-v0.1 and Llama-3-8B show competitive per-
formance compared to multilingual-focused models such
as the Aya series and Tower series.

Bengali (bn), and Amharic (am), highlighting the universal challenge of cross-lingual knowledge
barriers. Moreover, Llama-3.1-8B has a more balanced performance across various languages than
Qwen2.5-7B and Aya-expanse-8B. For most non-English languages, multilingual models show the
weakest performance when ground-truth options require cross-lingual reasoning.

3.2 CROSSLINGUAL KNOWLEDGE BARRIER IN DOMAIN-SPECIFIC KNOWLEDGE

In § 3.1, we demonstrated the crosslingual knowledge barrier for off-the-shelf LLMs in general
knowledge required to solve MMLU tasks, where we assume this knowledge was obtained during
pretraining. Here, we present a more controlled test through explicit fine-tuning on domain-specific
knowledge. This experiment aims to answer the following question: Could the model utilize the
domain-specific knowledge (e.g., Harry Potter facts) acquired in one language (e.g., English) via
fine-tuning to answer questions about this knowledge in other languages? As we will show, the
crosslingual knowledge barrier also exists for domain-specific knowledge.

Harry Potter Quiz. We use the Harry Potter world for the domain-specific knowledge evaluations,
as it revolves around a highly detailed and extensive fictional universe with its own unique characters,
terminology, and concepts. We manually curate a multiple-choice question-answering dataset called
the Harry Potter Quiz (HP-Quiz) by extracting information from the Harry Potter Wiki pages4.
Further details about the dataset are provided in § C.

Evaluation. Each multiple-choice question in the HP-Quiz dataset is available in five different
languages: English (en), French (fr), German (de), Spanish (es), and Italian (it). To assess the
crosslingual knowledge barrier, we consider both (1) the original model, and (2) the model fine-tuned
on domain-specific corpora5 presented only in English. For evaluation, we prompt the model with
the multiple-choice question in each language, and report the accuracy of the model in selecting the
correct answer in this multiple-choice task for each language.

Crosslingual barrier also exists for Harry Potter knowledge. As shown in Fig. 6, when presented
with the same set of questions in 5 languages, the model consistently exhibits higher accuracy in
answering correctly in English. This trend holds for both pretrained LLMs (left) and fine-tuned LLMs
(right). After fine-tuning on domain-specific English corpora, despite the increase in model accuracy

4https://harrypotter.fandom.com/wiki/Main_Page
5Specifically, we preprocess the WikiText-103 dataset (Merity et al., 2017) and select documents highly

relevant to the Harry Potter universe using a retriever (see § D.3 for details).
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Table 1: Effect of inference-time mitigation methods evaluated on MMLU benchmarks. The highest accuracy
achieved under the 0-shot/5-shot setting is underlined. ↓ denotes the accuracy drop observed in mixup MMLU
compared to English MMLU. Simple prompt engineering cannot address the cross-lingual knowledge barrier
problem. Although few-shot demonstrations enhance accuracy compared to the 0-shot setting, the performance
gap between mixup MMLU and English MMLU remains significant. For reference, GPT-4 achieves 81.82
(0-shot) on English MMLU, and 68.61↓13.21 (0-shot), 73.58↓8.24 (5-shot english demonstrations), 77.71↓4.11
(5-shot biased demonstrations) on mixup MMLU.

Eval setup Prompt Llama2-7B Llama2-13B Mistral-7B Llama3-8B

English (0-shot) A/B/C/D (default) 41.53 52.11 60.21 60.54

Mixup
(0-shot)

A/B/C/D (default) 32.18 ↓9.35 41.97 ↓10.14 47.86 ↓12.35 48.62 ↓11.92
a/b/c/d 30.80 41.68 47.78 44.10
1/2/3/4 27.96 38.39 45.56 44.63

Multilingual-Aware instruction 0 31.19 41.01 47.14 48.13
Multilingual-Aware instruction 1 31.23 41.35 46.80 47.89

Mixup
(5-shot)

English demonstrations 35.23 43.15 49.46 50.99
Same bias demonstrations 36.92 ↓4.61 44.32 ↓7.79 51.07 ↓9.14 51.65 ↓8.89

Translate-then-Answer demonstrations 30.02 42.93 42.27 47.79

in English (which is more evident for Llama2-7B and Llama3-8B), the crosslingual knowledge
barrier persists. This suggests that LLMs struggle to fully utilize the parametric knowledge acquired
during English fine-tuning to answer related questions in other languages. These observations
provide evidence that the crosslingual knowledge barrier extends beyond general knowledge into
specific domains. To justify our studied models and languages, we present the results of 11 pretrained
LLMs on HP Quiz across 16 languages in Fig. 7, where models perform best in English, and
perform even worse low-resource ones (e.g., bn, am) than our studied high-resource languages (e.g.,
fr, de, es). Notably, Mistral-7B and Llama3-8B demonstrate competitive performance to some
multilingual-focused models such as the Aya series and Tower series.

4 OVERCOMING CROSSLINGUAL KNOWLEDGE BARRIERS
In this section, we explore potential methods to overcome the manifest crosslingual knowledge
barrier that we identified in the existing multilingual LLMs. We consider two types of potential
mitigation methods, inference-time interventions (§ 4.1), including prompt engineering and few-shot
demonstrations, and training-time interventions (§ 4.2), including mixed-language fine-tuning on
general and domain-specific corpora.

4.1 INFERENCE-TIME MITIGATION

We evaluate inference-time mitigation methods to improve LLM performance on the mixup-translated
MMLU, a challenging crosslingual setting evidenced by the low performance in Fig. 4b.

Prompt engineering. We evaluate the following prompting strategies: (1) Alternative option ID
characters. We replace the default A/B/C/D with a/b/c/d or 1/2/3/4, motivated by recent evidence on
selection bias in option IDs for MCQ tasks (Zheng et al., 2024) and to account for the possibility that
the Arabic numerals are more invariant to languages. (2) Multilingual awareness instruction: We
add an explicit instruction before the MCQs (e.g., “Remember that the question and options can be in
different languages”) to make models aware of the potential presence of other languages.

Few-shot demonstrations. Our evaluation mainly considers the 0-shot setting, which excludes any
biases introduced by the few-shot demonstrations (Zhao et al., 2021), but we also conduct 5-shot
experiments to further investigate crosslingual performance. MMLU covers 57 subjects, and the
few-shot demonstrations for each subject are derived from the corresponding development set and
shared across all test samples within the same subject. We employ several strategies to construct
few-shot demonstrations: (1) English demonstration: English MCQ and answer pairs. (2) Same
bias demonstration: mixup-translated MCQ and answer pairs, where each MCQ demonstration is
constructed in the same way as the test sample. (3) Translate-then-Answer demonstration: For each
mixup-translated MCQ, we prompt LLMs first to translate it into English before producing the final
answer. To help LLMs follow the explicit translation instruction, we provide demonstrations where
each includes a mixup-translated MCQ, the corresponding English MCQ, and its answer. We provide
the detailed prompt templates in § D.2.

From the results in Tb. 1, (1) regarding prompt engineering, we observe no improvement and even a
performance drop compared to the default prompt. It suggests that the crosslingual knowledge barrier
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is an inherent failure of LLMs that cannot be effectively addressed by simple prompt engineering.
(2) 5-shot settings consistently improve performance compared to 0-shot settings on mixup MMLU
because providing demonstrations in the corresponding subject helps LLMs generalize to knowledge-
intensive tasks. (3) Mixup demonstrations lead to better performance than English demonstrations
because the mixed language pattern in the demonstrations matches that of the test examples. (4)
Translate-then-Answer demonstrations are not effective. We observe failure patterns where, after
translating to English, sometimes LLMs merely continue generating text without outputting the
desired answer for the MCQ task. (5) Even under the best demonstration strategy, there still exists a
substantial accuracy gap in mixup MMLU compared to English MMLU. Consequently, we explore
training-time intervention in § 4.2 via mixed language fine-tuning methods.

4.2 MIXED-LANGUAGE FINE-TUNING

Given the limited success of inference-time interventions, we turn our attention to training-based
methods that aim to directly instill better crosslingual knowledge in the model itself. Specifically, we
explore mixed-language fine-tuning, where we explicitly construct a fine-tuning dataset comprising
examples from multiple languages. To ensure a balanced representation of different languages, we
split the training data into smaller units and randomly select a target language for each unit, translating
the unit into that language if necessary. This approach also ensures that the translated data is of
similar size as the original English data, enabling a fair comparison. Note that this approach differs
from using parallel corpora as each unit is only presented in a single language.

We explore different choices for the smallest unit for translation, including the following settings:

• Full document translation: the entire document (example) is translated to a random language.
• Sentence-level translation: each document is split into units of sentences, using common

English punctuation marks (Python regex r’(\s*[\.,;!?]\s+)’). Each sentence is then
translated independently.

• k-word chunk-level translation: the document is split into chunks of k words, where a “word”
is any consecutive sequence of characters separated by one or more non-word characters defined
by the Python regex r’(\W+)’. We found that the translation tool could be confused by k words
that span across sentence boundaries, so we did a little tweak by splitting into sentence first, and
then split each sentence into k-word chunks.

Unless otherwise specified, for each translation unit, the target language is always randomly chosen
uniformly from {en, fr, de, es, it}; for en, the translation is a No-Op.

We explore mixed-language fine-tuning of the original model on two types of corpora: general
knowledge where we use WikiText-2 or WikiText-103 (Merity et al., 2017), and domain-specific
where we use a subset of WikiText-103 that is highly related to Harry Potter based on BM25 similarity
ranking (the details are deferred to § D.3).

The differences between mixed-language fine-tuning and our cross-lingual evaluation setups
are noteworthy: i) In the general-knowledge evaluation, Mixup MMLU operates mixed-language
multi-choice question at the option/question level, whereas mixed-language fine-tuning occurs at the
document, sentence, or word levels. ii) In the domain-specific knowledge evaluation, we use the fully
translated HP-Quiz (i.e., without mixup pattern) to evaluate the crosslingual capabilities6, resulting in
a more natural setting. iii) Additionally, we consider general Wikipedia documents as the fine-tuning
corpus, which may not be directly related to MMLU/HP-Quiz tasks.

Mixed-language fine-tuning on general corpus. We first experiment with fine-tuning LLMs on a
general corpus, WikiText-2 (keyword searching suggests that WikiText-2 has no overlap with Harry
Potter characters or spells), with different choices of translation units. Specifically, we fine-tune the
model for a single epoch, with a learning rate of 2 × 10−5 and a batch size of 32, and report the
multiple-choice accuracy on the Harry Potter Quiz. As shown in Fig. 8, the models fine-tuned on
mixed translated general corpora achieve higher accuracy on HP-Quiz tasks than the model fine-
tuned on the English corpus. This suggests that mixed-language fine-tuning could potentially help
LLMs improve crosslingual capabilities: By exposure to frequent language switch during fine-tuning,
LLMs can better adapt to the setting when the same knowledge is asked in a different (and usually
non-English) language. Mixed-language FT also improves the performance on English HP-Quiz.

6In § 3.2, we have full control on the language in which the model learns the parametric knowledge.
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Figure 8: Fine-tuning on a mixed-language general corpus (e.g., WikiText-2) enhances the model’s performance
on domain-specific tasks (e.g., Harry Potter knowledge test) across multiple languages, including English. See
Fig. 16 for results on Mistral-7B and Llama2-13B.

Table 2: Fine-tuning LLMs on the mixed-languages general corpus WikiText-103 can improve the performance
on English and mixup MMLU benchmarks under 0-shot & 5-shot settings.

Model
Llama2-7B Llama3-8B

En MMLU Mixup MMLU En MMLU Mixup MMLU

Un-FTed 41.53 32.18 60.54 48.62
En FTed 41.21 31.46 60.32 47.83
Mixed language (sentence) FTed 42.05 34.08 60.45 51.75
Mixed language (words) FTed 42.00 34.06 60.28 50.88

(En demo) (En demo | Bias demo) (En demo) (En demo | Bias demo)
Un-FTed + 5-shot 45.88 35.23 36.92 65.00 50.99 51.65
En FTed + 5-shot 45.83 35.43 36.49 64.97 50.38 50.88
Mixed language (sentence) FTed + 5-shot 45.95 36.80 38.14 65.06 54.45 54.57
Mixed language (words) FTed + 5-shot 46.15 37.35 38.56 64.91 54.46 54.64

−12.5 −10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0

Difference between original & mixed translated
(1st dimension)

−8

−6

−4

−2

0

2

4

D
iff

er
en

ce
b

et
w

ee
n

or
ig

in
al

&
m

ix
ed

tr
an

sl
at

ed
(2

n
d

di
m

en
si

on
)

Llama2-7B

Original model

Original model (confidence ellipse)

After Mixed-lang FT

After Mixed-lang FT (confidence ellipse)

−8 −6 −4 −2 0 2 4 6

Difference between original & mixed translated
(1st dimension)

−5

0

5

10

15

Llama3-8B

Original model

Original model (confidence ellipse)

After Mixed-lang FT

After Mixed-lang FT (confidence ellipse)

Figure 9: After mixed-lang FT (sentence), embeddings
of original English text & mixed-language-translated
text are more closely aligned, indicating a stronger
knowledge correlation between En & other langs.

To further investigate how mixed-language FT
improves crosslingual capabilities, we conduct
a text embedding analysis with similar setups
as in § 2. We examine, in the fine-tuned model,
if the embeddings for a given English text are
similar to the embeddings when some words
are presented in different languages. The results
show that the mixed-language (at sentence-level)
fine-tuned model indeed has a much smaller text
embedding distance compared to the original
model, indicating that mixed-language FT can
strengthen the knowledge correlation between
English and other languages.

Our second experiment is fine-tuning LLMs on WikiText-103, a general corpus that offers a larger size
and a broader range of knowledge compared to WikiText-2, and reporting the accuracy on MMLU
variant benchmarks. (1) As shown in Tb. 2, fine-tuning on English WikiText-103 corpora hurts the
performance, likely because it is an out-of-domain corpora for MMLU tasks. However, fine-tuning on
mixed translated WikiText-103 corpora can lead to improvements, which are particularly noticeable
on the mixup MMLU benchmarks. These results indicate that multiple language switches during
fine-tuning enable LLMs to better understand and process multilingual inputs, become more robust to
variations in language and phrasing, and perform better in knowledge-intensive crosslingual tasks. (2)
Combining training-time interventions with test-time interventions can further enhance performance.
While adding 5-shot biased demonstrations to our fine-tuned models leads to the best performance on
mixup MMLU, adding 5-shot English demonstrations is also effective. This indicates the general
applicability of our fine-tuned models across different scenarios. (3) Fine-tuning with both word-level
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Figure 10: Fine-tuning on a mixed-language domain-specific
corpus (i.e., Harry Potter related documents from WikiText-
103) generally enhances the performance on the Harry Potter
Quiz dataset across multiple languages, including English.

and sentence-level mixed language
WikiText-103 corpora effectively improves
MMLU performance. Word-level mixing
slightly outperforms in 5-shot settings,
while sentence-level mixing is more
effective in 0-shot settings. We defer
the results on additional MMLU variant
benchmarks to § E.3.

Mixed-language fine-tuning on domain-
specific corpus. Similarly, we investigate
the effectiveness of mixed-language fine-
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tuning for the domain-specific task. Specifically, we fine-tune the model on mixed-language versions
of in-domain corpora (i.e., Harry Potter-related documents from WikiText-103) and evaluate perfor-
mance on the HP-Quiz. For an upper bound reference, we also report results from fine-tuning on a
collection containing examples in all five languages (5× larger dataset size than our approach). As
shown in Fig. 10, mixed-language fine-tuning (especially at sentence-level) can lead to better overall
performance on HP-Quiz compared to English fine-tuning.

Mixed-language fine-tuning helps the QA performance on out-of-distribution languages. We
evaluated our fine-tuned models on languages that were not included in fine-tuning data. Results
in Fig. 11 show that mixed-language (with {en, fr, de, es, it}) fine-tuning on general Wiki
corpus can improve the cross-lingual performance of 11 other languages on HP-Quiz, including
low-resource ones and those substantially different from English. Furthermore, as shown in Fig. 12,
mixed-language fine-tuning also boosts the performance of MMLU variants in various cross-lingual
settings for four low-resource languages.
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Figure 11: Mixed-language FT on WikiText-2 with {en,
fr, de, es, it} enhances accuracy on Harry Potter
Quiz across other languages that are not used during fine-
tuning. Such improvements incur in low resource lan-
guages (e.g., ms, bn, am) and languages that are rather
different from English (e.g., zh, ru, he, ar, hi) with
low amount of shared tokens.
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Figure 12: Mixed-language FT on Wiki-103 with
{en, fr, de, es, it} enhances accuracy on
MMLU variants across low-resource languages
{ms, da, fi, no} that are not used during fine-
tuning.

5 RELATED WORK

Understanding language models’ performance in multilingual settings is an active area of research.
Prior works have identified strong variations in the amount of knowledge across different languages,
attributed to differences in training corpora sizes (Jiang et al., 2020; Kassner et al., 2021; Ryan
et al., 2024). These insights have been used to improve model performance, such as leveraging
multilingual self-consistency (Ohmer et al., 2023). Efforts have also been devoted to studying well-
established tasks for monolingual models in crosslingual scenarios, such as crosslingual pretraining
(Lample & Conneau, 2019; Abadji et al., 2022; Schioppa et al., 2023), information retrieval (Yu
et al., 2021), knowledge editing (Wang et al., 2024a; Xu et al., 2023a; Beniwal et al., 2024; Xu
et al., 2023b), text summarization (Wang et al., 2023a; Huang et al., 2023) and instruction tuning and
alignment (Chirkova & Nikoulina, 2024b; Zhang et al., 2023b; Ranaldi et al., 2023; Zhu et al., 2023;
Wu et al., 2024). The work most related to ours is Qi et al. (2023), which proposed a metric to evaluate
multilingual models’ factual knowledge consistency across languages. One key difference is that
their study does not account for different factors that could contribute to the crosslingual consistency;
while we formulate a controlled setting of crosslingual knowledge barrier, measuring precisely the
ability to transfer knowledge learned (only) in one language to another language. Furthermore, we
proposed mitigation methods to reduce such knowledge barrier.

We refer the readers to § B for a more comprehensive discussion of related work.

6 CONCLUSION AND FUTURE WORK

In this work, we observed that despite the competitive performance of multilingual LLMs in explicit
crosslingual tasks such as translation, those models fail to transfer learned knowledge across the
language boundary, a phenomenon we termed as the crosslingual knowledge barrier. Through com-
prehensive evaluations on both general and domain-specific knowledge, we confirmed a systematic
presence of such barriers across all 6 models and the five languages that those models know. Finally,
we evaluated both test-time and training-time mitigations and proposed a simple and effective mixed-
language fine-tuning procedure to reduce the knowledge barrier in those models. We discuss our
limitations and further work in § A.
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REPRODUCIBILITY STATEMENT

In this paper, we have taken steps to ensure the reproducibility of our results: (1) The source code
for our evaluation and fine-tuning is available in the supplementary material. We have provided the
README and scripts to replicate the experiments in the paper. (2) The details about the Harry Potter
Quiz dataset, and the WikiText-103 subset on Harry Potter related documents are provided in § C.
We used the public MMLU, WikiText-2, WikiText-103 datasets. The Mixup-version MMLU and
English-version HP-Quiz datasets are provided in the supplementary material. (3) We described the
experimental setups and hyper-parameters in each section (§ 2 to 4). More details on models, LLM
evaluation, fine-tuning and computation resources are included in the Appendix § D.
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A LIMITATIONS AND FUTURE WORK

One limitation of our work is that all translations were performed using Google Translate instead of
human experts. While Google Translate is recognized as a high-quality industrial translation service,
validating and enhancing the translation quality remains an area for future work.

One important question that is not answered in this paper is how these models develop the crosslingual
capabilities (despite the existence of crosslingual knowledge barriers). This is intriguing because
unlike humans exposed to multiple lingual environments, LLMs do not have grounding in the physical
world to help them establish connections between different words that refer to the same thing in the
real world. While there is some preliminary work on grounding LLMs with the physical world (e.g.,
Zhang et al., 2023a; Wang et al., 2023b; Gao et al., 2024; Cheng et al., 2024), the majority of the
LLMs nowadays are still trained via next-word prediction without interaction with the physical world.
Therefore, an interesting future direction is to understand the mechanisms that allow the LLMs to
develop crosslingual capabilities.

Another interesting observation is that mixed-language fine-tuning (on out-of-domain data) can
improve the question-answering performance on both non-English languages and English in many of
our evaluations. Previous studies (e.g., Abutalebi et al., 2008; Bialystok et al., 2012; Marian & Shook,
2012) have shown that multilinguality could have a positive effect on human cognitive abilities. But
how does better crosslingual capabilities impact LLMs’ reasoning abilities (in English) remains to be
fully understood.

B EXTENDED RELATED WORK

Understanding and improving multilingual LMs. Understanding language models’ performance
in multilingual settings is an active area of research. Prior works have identified strong variations
in the amount of knowledge across different languages, attributed to differences in training corpora
sizes (Jiang et al., 2020; Kassner et al., 2021; Ryan et al., 2024). These observations have also been
leveraged to improve models’ performance, especially in English. For instance, Ohmer et al. (2023)
propose using multilingual self-consistency of predictions to assess how well the model understands
a given task. Wu et al. (2024) suggest using a reward model in a different language during fine-tuning
for alignment from human feedback can yield better-aligned models than using one in the same
language as the pre-trained model. Efforts have also been devoted to studying well-established
tasks for monolingual models in crosslingual scenarios, such as crosslingual pretraining (Lample &
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Conneau, 2019; Abadji et al., 2022; Schioppa et al., 2023), information retrieval (Yu et al., 2021),
knowledge editing (Wang et al., 2024a; Xu et al., 2023a; Beniwal et al., 2024; Xu et al., 2023b), text
summarization (Wang et al., 2023a; Huang et al., 2023) and instruction tuning (Chirkova & Nikoulina,
2024b; Zhang et al., 2023b; Ranaldi et al., 2023; Zhu et al., 2023).

The closest work to ours is Qi et al. (2023), which proposes a metric to evaluate the consistency of a
multilingual language model’s factual knowledge across languages. They find that while increasing
model size generally leads to higher factual accuracy in most languages, it does not necessarily
improve crosslingual knowledge consistency. One key difference is that their study does not account
for different factors that could contribute to the crosslingual consistency (e.g., a model independently
learns the knowledge in both languages during pretraining could lead to a high consistency); while
we formulate a controlled setting of crosslingual knowledge barrier, measuring precisely the ability
to transfer knowledge learned (only) in one language to another language. Furthermore, we also
proposed mitigation methods that could effectively reduce the knowledge barrier.

Machine translation ability of LLMs. The off-the-shelf pretrained LLMs show promise in ma-
chine translation but still lag behind the commercial translation system, especially in low-resource
languages. Previous studies have sought to enhance LLM translation capabilities through various
prompting and fine-tuning methods. Zhu et al. (2024) introduce crosslingual translation in-context
examples, while He et al. (2024) employ advanced prompt engineering that induces translation-related
knowledge (e.g., keywords, topics) from the given source sentence to guide the final translation
process. Xu et al. (2024) propose a two-stage fine-tuning approach, first enhancing proficiency in
non-English languages by fine-tuning on non-English monolingual data, and then fine-tuning on
high-quality parallel data for translation task. Our work has a different goal of comprehensively
examining LLMs’ crosslingual capabilities, beyond the translation task. We show that even though
LLMs are very competitive at explicit translation tasks, they could struggle in more demanding tasks
that requires implicit knowledge transfer across language boundaries.

Crosslingual transfer of multilingual models. Crosslingual transfer refers to transfer learning
that fine-tunes the model on a target task in one language (e.g., English), and then makes predictions
for this task in another, typically more low-resource language. It addresses the challenges of limited
training data in the target language for a target task. It has been broadly studied for natural language
understanding (Schioppa et al., 2023; Artetxe et al., 2020; Pires et al., 2019; Wu & Dredze, 2019;
Li et al., 2022) and generation tasks (Chirkova & Nikoulina, 2024a; Bapna & Firat, 2019; Vu et al.,
2022; Maurya et al., 2021; Li & Murray, 2023; Tanwar et al., 2023) for multilingual models such
as mBART, mT5, NLLB family. For instance, Chirkova & Nikoulina (2024a) demonstrated that
fine-tuning the full model with a small learning rate yields the best crosslingual language generation
performance, outperforming other methods such as adapter (Bapna & Firat, 2019), prompt-tuning (Vu
et al., 2022)) and hyperparameter tuning (Chirkova & Nikoulina, 2024a). Additionally, several studies
have improved crosslingual generalization by mixing auxiliary unsupervised data from additional
languages during fine-tuning. For example, sampling target language examples with probability (e.g.,
1%) when forming the mini-batch (Chirkova & Nikoulina, 2024a; Vu et al., 2022).

Our study focuses on more recent autoregressive LLMs (e.g., Llama series, Mistral, GPT-3.5, GPT-4)
that acquire multilingual capabilities from their internet-scale pretraining corpora. While several
works have explored approaches to enhancing LLMs’ crosslingual transfer abilities such as fine-
tuning with adapter merging (Zhao et al., 2024), our work differs in its primary focus. We aim to
provide a comprehensive understanding of the crosslingual capabilities of pretrained LLMs on tasks
requiring explicit (e.g., translation tasks) and implicit crosslingual transfer (e.g., question-answering
tasks involving general or domain-specific knowledge). Furthermore, to improve crosslingual transfer
ability of LLMs in general, our study employs fine-tuning on (out-of-domain) general corpora and
proposes a principled approach to processing mixed language data at different levels of granularity,
including word, sentence, and document levels.

Compositional generalization. We also acknowledge that the crosslingual knowledge barrier
can be viewed as an instance of the broader challenge of compositional generalization (Lake et al.,
2017; Kim & Linzen, 2020; Hupkes et al., 2020; Xu et al., 2022; Yu et al., 2024) — the ability to
systematically combine different skills to understand and produce novel compositions not directly
trained on. In the case of crosslingual knowledge understanding, models must compose the skills of
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question answering and knowledge translation. However, this specific combination of crosslingual
knowledge consistency warrants dedicated study due to its strong practical implications, as ensuring
consistent feedback across languages is crucial for deploying trustworthy and effective multilingual
AI assistants to a global user base.

Behavioral bias of LLMs. Recent research also studies various behaviors and biases in LLMs
that are different from human reasoning, such as reversal curse (Berglund et al., 2024; Grosse et al.,
2023), order and position bias (Wang et al., 2024b; Pezeshkpour & Hruschka, 2024), option ID
bias in multiple-choice question tasks (Zheng et al., 2024), premise order bias (Chen et al., 2024),
susceptibility to distraction by irrelevant context (Shi et al., 2023). These studies provide a deeper
understanding of LLMs and suggest various ways to improve those models. Our paper contributes to
this important line of research from the perspective of crosslingual behaviors.

Code-switching. Code-switching training (Yang et al., 2020; Song et al., 2019) uses parallel text to
teach models the relation between original and translated tokens, primarily for machine translation.
Compared to code-switching, our proposed mixed-language fine-tuning does not create parallel text,
and aims to encourage LLMs to cross language barriers without requiring architectural changes
or special handling of parallel text. Our approach can directly handle multiple languages while
maintaining a similar number of tokens as the original dataset.
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C THE HARRY POTTER QUIZ DATASET

We use Harry Potter as a setting to mimic domain-specific knowledge, as it revolves around a highly
detailed and extensive fictional universe with its own unique characters, terminology, and concepts.
We manually curate an English-only dataset named Harry Potter Quiz (or HP-Quiz in short) by
collecting information about characters and magic spells7 from the Harry Potter Wiki pages8. For
characters, we gather attributes such as gender, hair color, house9, and relationships with other
characters. Regarding magic spells, we collected data on the types of spells they belong to. We then
curate multiple-choice questions and answers based on the collected information. Specifically, the
dataset consists of 300 questions in total, 157 questions about characters and 143 questions about
magic spells. We format these questions as multiple choice questions.

Below is the full list of characters and spells included in HP-Quiz:

25 Characters Aberforth Dumbledore, Albus Potter, Ariana Dumbledore, Arthur Weasley, Astoria
Malfoy, Cedric Diggory, Charles Weasley, Cho Chang, Draco Malfoy, Dudley Dursley, Euphemia
Potter, Fleamont Potter, Harry Potter, Hermione Granger, James Potter I, Kendra Dumbledore,
Lily J. Potter, Lucius Malfoy, Narcissa Malfoy, Percival Dumbledore, Petunia Dursley, Roger
Davies, Ron Weasley, Scorpius Malfoy, William Weasley

143 Spells Aberto, Accio, Age Line, Alarte Ascendare, Alohomora, Anti-Cheating Spell, Anti-
Apparition Charm, Anti-Disapparition Jinx, Anti-intruder jinx, Aparecium, Appare Vestigium,
Apparition, Aqua Eructo, Arania Exumai, Arresto Momentum, Arrow-shooting spell, Ascendio,
Avada Kedavra, Avifors, Avenseguim, Babbling Curse, Badgering, Bat-Bogey Hex, Bedazzling
Hex, Bewitched Snowballs, Bluebell Flames, Blue sparks, Bombarda, Bombarda Maxima, Brav-
ery Charm, Bridge-conjuring spell, Broom jinx, Bubble-Head Charm, Bubble Spell, Calvorio,
Cantis, Capacious extremis, Carpe Retractum, Cascading Jinx, Caterwauling Charm, Cave
inimicum, Celescere, Cheering Charm, Circumrota, Cistem Aperio, Colloportus, Colloshoo,
Colovaria, Confringo, Confundo, Conjunctivitis Curse, Cracker Jinx, Cribbing Spell, Crinus
Muto, Crucio, Defodio, Deletrius, Densaugeo, Deprimo, Depulso, Descendo, Deterioration
Hex, Diffindo, Diminuendo, Dissendium, Disillusionment Charm, Draconifors, Drought Charm,
Duro, Ear-shrivelling Curse, Ebublio, Engorgio, Entrail-Expelling Curse, Epoximise, Erecto,
Evanesce, Evanesco, Everte Statum, Expecto Patronum, Expelliarmus, Expulso, Extinguishing
Spell, Feather-light charm, Fianto Duri, Fidelius Charm, Fiendfyre, Finestra, Finite Incantatem,
Finger-removing jinx, Firestorm, Flagrante Curse, Flagrate, Flame-Freezing Charm, Flask-
conjuring spell, Flintifors, Flipendo, Flipendo Duo, Flipendo Maxima, Flipendo Tria, Flying
charm, Fracto Strata, Fumos, Fumos Duo, Furnunculus, Fur spell, Geminio, Glacius, Glacius
Duo, Glacius Tria, Glisseo, Gripping Charm, Hair-thickening Charm, Herbifors, Herbivicus,
Homenum Revelio, Homonculous Charm, Hurling Hex, Impedimenta, Imperio, Inanimatus
Conjurus, Incarcerous, Inflatus, Jelly-Brain Jinx, Jelly-Fingers Curse, Knee-reversal hex, Lan-
glock, Lapifors, Leek Jinx, Levicorpus, Liberacorpus, Locomotor Mortis, Melofors, Meteolojinx
recanto, Mimblewimble, Multicorfors, Obscuro, Oppugno, Orbis, Orchideous, Pepper Breath,
Petrificus Totalus, Piscifors, Point Me

7In Harry Potter, the magic spell is a magical action used by witches and wizards to perform magic.
8https://harrypotter.fandom.com/wiki/Main_Page
9Hogwarts, the fictional boarding school of magic in the Harry Potter book series, is divided into four houses:

Gryffindor, Slytherin, Ravenclaw, and Hufflepuff.
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D EXPERIMENTAL DETAILS

D.1 EVALUATED MODELS

Tb. 3 provides the details of the models evaluated in our study.

Table 3: HuggingFace links or endpoint specifications for evaluated models.

Model Link
Llama2-7B https://huggingface.co/meta-llama/Llama-2-7b-hf
Llama2-13B https://huggingface.co/meta-llama/Llama-2-13b-hf
Mistral-7B https://huggingface.co/mistralai/Mistral-7B-v0.1
Llama3-8B https://huggingface.co/meta-llama/Meta-Llama-3-8B
GPT-3.5 https://platform.openai.com/docs/models/gpt-3-5-turbo, gpt-3.5-turbo-0125 endpoint
GPT-4 https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4, gpt-4-0613 endpoint
Aya-23-8B https://huggingface.co/CohereForAI/aya-23-8B
Zamba-7B https://huggingface.co/Zyphra/Zamba-7B-v1-phase1
Mistral-8x7B https://huggingface.co/mistralai/Mixtral-8x7B-v0.1

Table 4: Prompt templates for inference-time mitigation methods in mixup-translated MMLU
evaluation. The templates are consistent across different evaluation setups, varying only in the
language pattern of multiple-choice questions.

Setting Type Prompt

0-shot

Default prompt The following are multiple choice questions (with answers) about {subject}.
{Mixup_MultiChoiceQuestion}
Answer:

Multilingual-Aware
instruction 0

The following are multiple choice questions (with answers) about {subject}. Keep in mind that the
question and options may be presented in various languages.
{Mixup_MultiChoiceQuestion}
Answer:

Multilingual-Aware
instruction 1

The following are multiple choice questions (with answers) about {subject}. Remember that the
question and options can be in different languages.
{Mixup_MultiChoiceQuestion}
Answer:

few-shot

English
demonstrations

The following are multiple choice questions (with answers) about {subject}.
{En_MultiChoiceQuestion_Demo1}
Answer: {Answer_Demo1}
....
{Mixup_MultiChoiceQuestion}
Answer:

Same bias
demonstrations

The following are multiple choice questions (with answers) about {subject}.
{Mixup_MultiChoiceQuestion_Demo1}
Answer: {Answer_Demo1}
....
{Mixup_MultiChoiceQuestion}
Answer:

Translate-Then-Answer
demonstrations

The following are multiple choice questions (with answers) about {subject}. Remember that the
question and options can be in different languages. First translate them all to English. Then output the
answer.
Question: {Mixup_MultiChoiceQuestion_Demo1}
Answer:
Translate the question and options into English, and then answer.
Question: {En_MultiChoiceQuestion_Demo1}
Answer: {Answer_Demo1}
....
Question: {Mixup_MultiChoiceQuestion}
Translate the question and options into English, and then answer.
Question:

D.2 EVALUATION AND TRAINING DETAILS

LLM Evaluation For MMLU evaluation, we follow the templates in its official codebase10 to
construct the prompts for 0-shot and 5-shot settings. We employ a temperature of 0 for GPT-3.5 and

10https://github.com/hendrycks/test
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GPT4, and we select the choice with the highest logits score as the predicted answer for open-source
models. We provide the prompt templates for inference-time mitigation methods in Tb. 4.

For the Harry Potter evaluation, we use the following prompt template, with an example shown
below:

The following are multiple choice questions (with answers) about Harry Potter.

Which house is Harry Potter belong to?
A.Ravenclaw
B.Slytherin
C.Gryffindor
D.Hufflepuff

After querying the model, we select the choice with the highest logical score as the predicted answer.

LLM Fine-tuning (1) For WikiText-103 fine-tuning, we fine-tune Llama3-8B for 200 steps, and
Llama2-7B for 400 steps, with a learning rate of 2× 10−5 and a batch size of 32. (2) For fine-tuning
on WikiText-2 or Harry Potter related documents from WikiText-103, we fine-tune the models for
one epoch with the same set of hyperparameters. We use AdamW (Loshchilov & Hutter, 2018) as the
optimizer.

Computation Resources All fine-tuning experiments are conducted on 2 NVIDIA A100 GPU
cards, each with 80GB of memory. For the fine-tuning experiments, each training step takes 5.2
seconds for the Llama2-7B model and 6.1 seconds for the Llama3-8B model, with a batch size of 32.
All LLM evaluation experiments can be conducted on one NVIDIA RTX A6000 GPU card with 48
GB of memory.

D.3 WIKITEXT-103 SUBSET: HARRY POTTER-RELATED DOCUMENTS
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Table 6: The top k retrieved documents con-
taining the Harry potter keywords.

We employ the BM25 algorithm (Trotman et al., 2014)
(BM stands for best matching) for document ranking11,
which is a bag-of-words retrieval function that ranks doc-
uments based on the presence of query terms in each
document. The WikiText-103 corpus comprises M =
1, 165, 029 documents di, i ∈ [M ]. We concatenate the
passages crawled from Harry Potter Wiki pages into a sin-
gle document to use as a query q. We then calculate the
similarity score between the query and each document in
WikiText-103, denoted as si = Sim(di, q). The top k = 3
relevant documents are listed in Tb. 5.

Additionally, we use the list of Harry Potter character
names and spell names12 as keywords to evaluate the qual-
ity of the retrieved documents and to identify additional relevant documents. Tb. 6 illustrates the
trend that as k increases, more documents containing the keywords are retrieved. Note that keyword
matching is not a golden retrieval method and it only serves as reference because: (1) documents may
not contain the full name of characters or spells (e.g., “Harry” instead of “Harry Potter”); (2) some
spell names are generic and have multiple meanings (e.g., “Pack”, “Avis”).

Therefore, we combine the top documents retrieved by BM25 with keyword matching to create our
final dataset. The final dataset contains 4,348 documents (0.37% of WikiText-103), comprising: (1)
the top k = 2000 documents retrieved by BM25. Of these, 106 documents contain at least one exact
keyword. (2) An additional 2,358 documents that contain the keywords.

11https://pypi.org/project/rank-bm25/
12The spell name “None” is excluded due to its generic nature.
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Table 5: Top three most relevant documents to the Harry Potter universe in WikiText-103 based on
BM25 document ranking. Keywords related to Harry Potter universe are bolded.

1 In Philosopher’s Stone, Harry re @-@ enters the wizarding world at age 11 and enrols in Hogwarts School
of Witchcraft and Wizardry. He makes friends with fellow students Ron Weasley and Hermione Granger,
and is mentored by the school’s headmaster, Albus Dumbledore. He also meets Professor Severus Snape,
who intensely dislikes and bullies him. Harry fights Voldemort several times while at school, as the wizard
tries to regain a physical form. In Goblet of Fire, Harry is mysteriously entered in a dangerous magical
competition called the Triwizard Tournament, which he discovers is a trap designed to allow the return of
Lord Voldemort to full strength. During Order of the Phoenix, Harry and several of his friends face off against
Voldemort’s Death Eaters, a group of Dark witches and wizards, and narrowly defeat them. In Half @-@
Blood Prince, Harry learns that Voldemort has divided his soul into several parts, creating " horcruxes " from
various unknown objects to contain them; in this way he has ensured his immortality as long as at least one
of the horcruxes still exists. Two of these had already been destroyed, one a diary destroyed by Harry in the
events of Chamber of Secrets and one a ring destroyed by Dumbledore shortly before the events of Half @-@
Blood Prince. Dumbledore takes Harry along in the attempt to destroy a third horcrux contained in a locket.
However the horcrux has been taken by an unknown wizard, and upon their return Dumbledore is ambushed
and disarmed by Draco Malfoy who cannot bring himself to kill him, then killed by Snape.

2 Luna, Ron, Ginny, and Neville join them in the forest and all six fly to the Ministry on , expecting to find
and rescue Sirius. Once in the Department of Mysteries, Harry realises that his vision was falsely planted by
Voldemort; however, he finds a glass sphere that bears his and the Dark Lord’s names. Death Eaters led by
Lucius Malfoy attack in order to capture the sphere, which is a recording of a prophecy concerning Harry and
Lord Voldemort, which is revealed to be the object Voldemort has been trying to obtain for the whole year, the
Dark Lord believing that there was something he missed when he first heard the prophecy. Lucius explains
that only the subjects of the prophecies, in this case Harry or Voldemort, can safely remove them from the
shelves. Harry and his friends, soon joined by members of the Order, enter a battle with the Death Eaters.
Amidst the chaos, Bellatrix Lestrange kills Sirius and Harry faces Voldemort. Voldemort attempts to kill Harry,
but Dumbledore prevents him and fights the Dark Lord to a stalemate. In the midst of the duel, Voldemort
unsuccessfully tries to possess Harry in an attempt to get Dumbledore to kill the boy. Dumbledore does not do
so and Voldemort escapes just as Cornelius Fudge appears, finally faced with first @-@ hand evidence that
Voldemort has truly returned.

3 During another summer with his Aunt Petunia and Uncle Vernon, Harry Potter and Dudley are attacked.
After using magic to save Dudley and himself, Harry is expelled from Hogwarts, but the decision is later
rescinded. Harry is whisked off by a group of wizards to Number 12, Grimmauld Place, the home of his
godfather, Sirius Black. The house also serves as the headquarters of the Order of the Phoenix, of which
Mr. and Mrs. Weasley, Remus Lupin, Mad @-@ Eye Moody, and Sirius are members. Ron Weasley and
Hermione Granger explain that the Order of the Phoenix is a secret organisation led by Hogwarts headmaster
Albus Dumbledore, dedicated to fighting Lord Voldemort and his followers, the Death Eaters. From the
members of the Order, Harry and the others learn that Voldemort is seeking an object that he did not have prior
to his first defeat, and assume this object to be a weapon of some sort. Harry learns that the Ministry of Magic,
led by Cornelius Fudge, is refusing to acknowledge Voldemort’s return because of the trouble that doing so
would cause, and has been running a smear campaign against him and Dumbledore.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 CROSSLINGUAL CAPABILITIES OF LLMS

Machine translation Tb. 7 report the COMET score on FLoRes-101 benchmark (Goyal et al.,
2022) for two directions per language: en → X and X → en. It shows that multilingual LLMs;s
translation ability is quite competitive when compared to translation models explicitly trained on
parallel corpora or industrial-grade translation APIs.

Embedding analysis As shown in Fig. 13, for the four LLMs multilingual, including Llama2-7B,
Llama2-13B, Mistral-7B and Llama3-8B13, the embeddings of the original text and its mixed-
translated counterpart exhibit a high degree of similarity, with their difference vectors clustering
around the origin. This observation stands in stark contrast to the scenario where English words
are replaced with random tokens. It implies the explicit crosslingual capabilities of the multilingual
LLMs.

13We focus primarily on open-source models due to the cost associated with querying embeddings from
proprietary models.
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Table 7: COMET scores for machine translation tasks evaluated on FloRes-101 benchmark using multilingual
LLMs (Llama2-7B, Mistral-7B, Llama2-13B, Llama3-8B, GPT-3.5, and GPT-4), models trained on parallel
corpora (NLLB-3.3B), and an industrial-grade translation API (Google Translate). Multilingual LLMs achieve
competitive translation performance against dedicated translation models and the translation API.

English (en) → other languages Other languages → English (en)

en→ de en→ fr en→ es en→ it Avg de→ en fr→ en es→ en it→ en Avg

Llama2-7B 81.67 84.54 84.76 85.17 84.04 87.61 87.96 85.60 86.47 86.91
Llama2-13B 71.63 79.91 81.00 76.68 77.81 88.26 88.91 85.83 86.99 87.50
Llama3-8B 73.89 81.19 81.03 81.16 79.32 88.52 88.61 86.45 87.03 87.65
Mistral-7B 76.18 78.46 80.04 76.64 77.83 87.73 88.05 85.72 86.11 86.90
GPT-3.5 87.53 86.97 86.40 86.46 86.84 89.14 89.42 87.47 88.41 88.61
GPT4 88.18 88.13 86.64 85.33 87.07 89.71 89.56 87.41 88.14 88.71
NLLB-3.3B 87.33 87.44 86.88 88.26 87.48 79.65 87.44 85.64 84.13 84.72
Google Translate 89.39 89.22 87.23 89.37 88.80 90.01 89.92 87.55 88.54 89.01
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Figure 13: The embeddings of the original English text and the mixed-language-translated text are closely
aligned, unlike baselines with unrelated perturbations (e.g., random token replacement or dropout). The ellipses
represent the covariance confidence intervals.

E.2 CROSSLINGUAL KNOWLEDGE BARRIERS IN LLMS

Evaluation strategy We follow prior work on LLM evaluation (Zheng et al., 2024) to use two
evaluation strategies: (1) Open-source: access the output probabilities of option ID tokens A/B/C/D
and predict argmax. (2) Closed-source: compare the golden answer with the 1st generated token
(decoding temperature=0), as the logits are not available for most closed-source models.

we evaluated the open-source LLMs using the 1st token produced as the answer in Tb. 8. The two
evaluation strategies have a minimal impact on accuracy for 5-shot settings, as demonstrations help
regularize the output format. The difference is more evident in the 0-shot setting, likely related to the
specific tokenizers. E.g., Llama3-8B treats the 2 characters “ A” as 1 token, and has a slightly higher
accuracy when using the 1st generated token as the answer. Conversely, Llama2-7B and Mistral-7B
tokenizers treat “A” as 1 token. Using the option ID token with the highest probability as the answer
for those models generally leads to higher accuracy because it disregards the generation probability
of other irrelevant tokens, e.g., “\n”, “ ”.

Table 8: Comparing two evaluation strategies for open-source LLMs: option ID token
with maximum probability and first new token.

Model Eval English MMLU Mixup MMLU
Max prob 1st token Max prob 1st token

Llama2-7B 0-shot 41.53 37.74 32.18 27.47
5-shot 45.88 45.90 36.92 36.96

Mistral-7B 0-shot 60.21 58.41 47.86 42.29
5-shot 62.57 62.54 51.07 51.05

Llama3-8B 0-shot 60.54 62.11 48.62 50.13
5-shot 65.00 65.39 51.65 52.01

Crosslingual evaluation of additional models on MMLU knowledge We present additional
results for Llama2-7B, Zamba-7B, and Mixtral-8x7B. Figure 14 shows the monolingual evaluation
of LLMs on MMLU, fully translated for non-English languages. The models consistently achieve
higher accuracy in English compared to other languages.
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Figure 14: Monolingual evaluation of LLMs on MMLU (fully translated for non-English languages).
LLMs consistently perform better at answering multi-choice questions in English than in other
languages.

Figure 15 displays the accuracy of LLMs on MMLU variant benchmarks. We observe a significant
drop in accuracy under crosslingual MCQ evaluation, especially for ground-truth translated MMLU
variant, indicating cross-lingual knowledge barriers. The barrier is more pronounced in Llama2-7B
and Zamba-7B than in Mixtral-8x7B, possibly due to the larger capacity and multilingual capabilities
of Mixtral-8x7B.

E.3 MIXED-LANGUAGE FINE-TUNING

HP Quiz evaluation results of LLMs fine-tuned on WikiText-2 Fig. 8 in the main paper presents
the Harry Potter Quiz evaluation results on Llama2-7B and Llama3-8B models fine-tuned on general
knowledge corpora (i.e., WikiText-2). Fig. 16 presents additional results for the Llama2-13B (left)
and Mistral 7B (right) models. (1) The trends are consistent with those observed for Llama2-7B and
Llama3-8B, where fine-tuning on a mixed-language general corpus, WikiText-2, enhances the models’
performance on the domain-specific HP Quiz task across multiple languages, including English. (2)
Word-level language mixing is generally most effective for Llama2-13B, whereas sentence-level
mixing is more effective for Mistral-7B.

MMLU evaluation results of LLMs fine-tuned on WikiText-103 Tb. 2 in the main paper presents
the English MMLU and mixup MMLU evaluation results on Llama2-7B and Llama3-8B models
fine-tuned on general knowledge corpora (i.e., WikiText-103). Here we present additional results for
Llama2-7B (Fig. 17) and Llama3-8B (Fig. 18) on more MMLU variant benchmarks, including full
translation, question translation, options transition, and ground-truth option translation. We report the
average accuracy (with *) across four non-English languages {fr, de, es, and it } for those settings.

(1) As shown in Fig. 17 and Fig. 18, models fine-tuned on mixed language WikiText-103 (whether
at the word level or sentence level) generally achieve better performance than those fine-tuned
on the original English WikiText-103 or the non-fine-tuned models, especially in the GT-option
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Figure 15: Crosslingual evaluation of LLMs on MMLU variant benchmarks. The bars with * denotes the
average accuracy across {fr, de, es, and it}. LLMs perform better at answering MCQs in English than in
mixed-language settings, especially the ground truth option and mixup translation, indicating the existence of
cross-lingual knowledge barriers. Due to budget constraints, GPT-4 is evaluated only in the most challenging
settings.
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Figure 16: Fine-tuning on a mixed-language general corpus (e.g., WikiText-2) enhances the model’s
performance on domain-specific task (e.g., Harry Potter knowledge test) across multiple languages,
including English.
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Figure 17: Performance of Llama2-7B models on MMLU variant benchmarks. Fine-tuning on mixed language
WikiText-103 generally outperforms fine-tuning on English WikiText-103 or using the non-fine-tuned model.

translated and mixup translated MMLU setups. These two evaluation setups originally had the lowest
performance for the non-fine-tuned model, and thus the cross-lingual ability gains after fine-tuning
are more apparent. These results suggest that multiple language switches during fine-tuning enable
LLMs to better understand and process multilingual input and leverage cross-lingual knowledge
for commonsense reasoning tasks. (2) An exception to this trend is observed with the GT-option
translated MMLU under the 5-shot biased demonstrations setting for Llama3-8B, where performance
drops. This drop is likely due to the non-fine-tuned Llama3-8B’s stronger tendency to follow biased
demonstrations, using a shortcut to select the non-English option as the answer. (3) Fine-tuning
models on a mixed-languages corpus performs better than other models across different 0-shot and
few-shot scenarios, particularly in the 0-shot setting and 5-shot English demonstrations setting. While
5-shot biased demonstrations lead to the best performance, they are less applicable than English
demonstrations in real-world scenarios, as we cannot know in advance the language mixing pattern
of user queries.
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Figure 18: Performance of Llama3-8B models on MMLU variant benchmarks. Fine-tuning on mixed language
WikiText-103 generally outperforms fine-tuning on English WikiText-103 or using the non-fine-tuned model.
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