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ABSTRACT

Patch-based models, e.g., Vision Transformers (ViTs) and Mixers, have shown
impressive results on various visual recognition tasks, exceeding classic convolu-
tional networks. While the initial patch-based models treated all patches equally,
recent studies reveal that incorporating inductive biases like spatiality benefits the
learned representations. However, most prior works solely focused on the position
of patches, overlooking the scene structure of images. This paper aims to further
guide the interaction of patches using the object information. Specifically, we pro-
pose ReMixer, which reweights the patch mixing layers based on the patch-wise
object labels extracted from pretrained saliency or classification models. We ap-
ply ReMixer on various patch-based models using different patch mixing layers:
ViT, MLP-Mixer, and ConvMixer, where our method consistently improves the
classification accuracy and background robustness of baseline models.

1 INTRODUCTION

Patch-based models, i.e., models that process an input image as a sequence of visual patches, have
arisen as a new paradigm of neural networks for visual data, alternating the prior standard con-
volutional neural networks (CNNs; LeCun et al. (1998)). Remarkably, patch-based models have
achieved state-of-the-art results on various computer vision tasks by favoring the scaling properties
(Dosovitskiy et al., 2021; Zhai et al., 2021). They also merit various advantages, including out-of-
distribution generalization (Naseer et al., 2021), natural extension to video domains (Bertasius et al.,
2021), integration with other domains like language or speech (Radford et al., 2021), and easily
combined with state-of-the-art visual self-supervised learning (He et al., 2021).

The core concept of patch-based models is to update patch-wise representations by alternating the
computation within patches and among patches, called channel mixing and patch (or token) mix-
ing, respectively. The design of patch mixing layers is widely investigated: the pioneering Vision
Transformer (ViT; Dosovitskiy et al. (2021)) and its descendants (Touvron et al., 2021a;b) consid-
ered self-attention (Vaswani et al., 2017), while other works considered feed-forward (Tolstikhin
et al., 2021), convolution (Trockman & Kolter, 2022), or pooling operation (Yu et al., 2021). How-
ever, most patch-based models use self-attention or feed-forward mixing layers, which minimizes
the inductive biases from the model by employing all patches equally (Khan et al., 2021).

While this data-centric approach is effective on large-scale scenarios, recent works claim that in-
corporating inductive biases is still essential for patch-based models, especially when learned from
limited data (Steiner et al., 2021). To this end, many approaches incorporated spatial inductive bias
for patch-based models following the analogy of convolution: designing a patch mixing layer uti-
lizing the location of patches (d’Ascoli et al., 2021; Dai et al., 2021; Wu et al., 2021a; Trockman &
Kolter, 2022) or building an architecture that combines convolutional or pooling layers with patch
mixing layers (Liu et al., 2021; Yuan et al., 2021b; Wang et al., 2021; Fan et al., 2021). How-
ever, both approaches focus on spatial inductive bias, which overlooks the sample-specific object
structures. We provide additional discussion on related work in Appendix A.

∗Equal contribution
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Contribution. We propose ReMixer, a novel reweighting scheme for patch mixing layers leveraging
the object structure of images. We demonstrate that ReMixer improves classification accuracy and
background robustness of patch-based models, outperforming the models considering spatiality.

2 REMIXER: OBJECT-AWARE MIXING LAYER

The main idea of ReMixer is to strengthen the interaction of patches containing similar objects while
regularizing the connection of different objects (and background). Intuitively, ReMixer improves the
discriminability of objects (i.e., better classification) and reduces the spurious correlations between
objects and backgrounds (i.e., robust to background and distribution shifts) by learning disentangled
representations of objects. We first introduce a general framework of object-aware mixing layer in
Section 2.1, then illustrate the specific instantiations for various architectures in Section 2.2.

2.1 COMPUTING REWEIGHTING MASK FOR REMIXER

The idea of patch-based models is to reshape a 2D image x ∈ RH×W×C into a sequence of flattened
2D patches x0 ∈ RN×(P 2C), where (H,W ) is the resolution of original image, C is the number
of color channels, (P, P ) is the resolution of each image patch, and N = HW/P 2 is the number
of patches. Patch-based models first convert the 2D patches into patch (or token) features x1 :=
fembed(x

0) ∈ RN×D with latent dimension D using an embedding function fembed, then update the
patch features by alternating two operations: (a) patch mixing layers f l

mix : RN → RN which mix
the features among patches, and (b) channel mixing layers glmix : RD → RD which mix the features
among channels, where l implies the operation of layer l. Formally, the l-th layer of patch-based
model updates an input vector xl ∈ RN×D to an output vector xl+1 ∈ RN×D following:

zl+1 = [zl+1
1:N,d] = [fmix(x

l
1,d ; x

l
2,d ; ... ; x

l
N,d)] (1)

xl+1 = [xl+1
n,1:D] = [gmix(z

l+1
n,1 ; zl+1

n,2 ; ... ; zl+1
n,D)] (2)

where zn,d and xn,d denotes n-th patch, d-th channel value, and zl+1
1:N,d ∈ RN and xl+1

n,1:D ∈ RD

denotes row-wise and column-wise subvector of z and x, respectively.

We introduce ReMixer, a universal framework for improving patch mixing layers fmix by incorpo-
rating the object structure of images. To this end, we utilize the patch-wise labels y ∈ RN×K where
K is the number of object classes. Using them, we compute the reweighting mask Ml ∈ RN×N

that strengthens the interaction of patches of similar objects while regularizing the connection of
different objects and backgrounds. Formally, we set the (i, j)-th value of the reweighting mask Ml

ij
as a reverse distance between the object labels of two patches yi and yj :

Ml
ij := exp(−κ(l) · d(yi,yj)) ∈ (0, 1] (3)

where κ(l) ≥ 0 is a learnable mask scale (scalar) parameter for each layer and d(·, ·) : RK ×RK →
R is a distance function for object labels. We initialize κ(l) by zero for training, i.e., consider the
full interaction initially then focus on the objects as κ(l) increases. We observe that the model sets
higher κ(l) for lower layers and lower κ(l) for higher layers (especially, κ(l) = 0 for the final layer)
after training, i.e., ReMixer automatically attends the intra-object relations first then expand to the
inter-object relations, which resembles the local-to-global structure of CNNs (see Table 3).

We aim to calibrate the N × N interaction of patch mixing layers using the reweighting mask M.
If the patch mixing layer fmix := Lmix is linear, one can simply (element-wise) multiply the mask
to get the masked linear mixer M ⊙ Lmix. While ReMixer can be applied to any patch layers in
principle, one needs careful design to consider the nonlinear dynamics of each layer. We provide
specific implementations of ReMixer on various representative models in the next section.

Obtaining object labels. We extract object labels from saliency (Voynov et al., 2021) or classifica-
tion (Yun et al., 2021) models trained from other source datasets. See Appendix B for details.

2.2 REMIXER FOR VIT AND MIXERS

We briefly review three representative patch mixing layers: self-attention, feed-forward, and convo-
lution, and describe the implementations of ReMixer for each layer.
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ReMixer for self-attention. Self-attention (Vaswani et al., 2017) mixing layers update patch fea-
tures by aggregating values with normalized importances (or attentions):

fmix(x) := Softmax(
QKT

√
DK

)︸ ︷︷ ︸
attention matrix A

·V (4)

where Q, K, V are query, key, and value, respectively, which are linear projections of input x ∈
RN×D, given by Q := x·WQ ∈ RN×DK , K := x·WK ∈ RN×DK , and V := x·WV ∈ RN×DV .
Here, we compute H independent attention heads and aggregate outputs for the final output of size
N×D for D = H ·DV . Recall that self-attention is basically a matrix multiplication of attention A
and value V matrices, and one can (element-wise) multiply the reweighting mask M to the attention
matrix to calibrate interaction. Then, we renormalize the masked attention M⊙A to make the row-
wise sum be 1 as the original self-attention. To sum up, ReMixer for self-attention is:

fremix(x) := [Ãij ] ·V = [
Mij ·Aij∑
j Mij ·Aij

] ·V (5)

where Ã is the renormalized masked attention. We finally remark that patch-based models using
self-attention often use the additional [CLS] token to aggregate the global feature. Here, we define
the mask value between the [CLS] token and every other patch to be one and apply Eq. (5).

ReMixer for feed-forward. Feed-forward (or multi-layer perceptron; MLP) mixing layers update
patch features with a channel-wise MLP. Since each channel is computed independently, we only
consider a N × 1 vector of a single channel. Then, the mixer layer is:

fmix(x) := Wm · σ(Wm−1 · σ(· · ·σ(W1 · x))) (6)

where W1, ...,Wm are weight matrices and σ is a nonlinear activation. However, it is nontrivial
to apply the reweighting mask M since fmix is nonlinear. To tackle this issue, we decompose the
mixing layer fmix into a linear approximation Lx

mix · x ≈ fmix(x) for a (possibly data-dependent)
matrix Lx

mix ∈ RN×N and a residual term fmix(x) − Lx
mix · x. Here, we only calibrate the linear

term but omit the residual term. Then, ReMixer for feed-forward is given by:

fremix(x) := (M⊙ Lx
mix) · x︸ ︷︷ ︸

masked linear

+(fmix(x)− Lx
mix · x)︸ ︷︷ ︸

residual

(7)

where ⊙ is an element-wise product. While finding a good Lx
mix is nontrivial in general, we found

that a simple trick of dropping nonlinear activations gives an efficient yet effective solution:

Lmix := Wm Wm−1 · · ·W1 ∈ RN×N . (8)

We observe that this (somewhat crude) approximation performs well in practice. We also tried some
data-dependent variants but did not see gain despite their computational burdens.

ReMixer for convolution. Convolutional mixing layers update patch features with a channel-wise
2D convolution. Similar to the feed-forward case, we only consider a single channel input x (which
is x1:N,d formally), reshaped as a 1×H̄×W̄ tensor where (H̄, W̄ ) = (H/P,W/P ) is the resolution
of patch features. Then, the mixer layer is:

fmix(x) := Wconv ∗ x (9)

where Wconv ∈ R1×1×S×S is a kernel matrix with size S and ∗ denotes convolution operation.
Here, we consider the linearized version of kernel matrix (i.e., Toeplitz matrix) that substitutes the
convolution to the matrix multiplication. Then, one can interpret the mixer layer as:

fmix(x) = Wlinear · x̃ (10)

where Wlinear ∈ RN×N is the corresponding matrix of Wconv and x̃ is a reshaped tensor of x of
size N × 1, where N = H̄ · W̄ . Here, one can directly multiply the reweighting mask M to define
the ReMixer for convolution:

fremix(x) := (M⊙Wlinear) · x̃ (11)

where ⊙ is an element-wise product. We also compare ReMixer with the models using different
kernel matrix for each channel, i.e., Wconv ∈ RD×1×S×S (see Appendix D).
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Table 1: ReMixer using various object labelers evaluated on the Background Challenge benchmark.
‘+’ denotes the modules added to the baseline (not accumulated), and parenthesis denotes the gain
of each module. ReMixer consistently improves the classification accuracy (↑↑↑) and background
robustness (↓↓↓) of various patch-based models: DeiT, MLP-Mixer, and ConvMixer.

Patch labeler Original (↑↑↑) Only-BG-B (↓↓↓) Only-FG (↑↑↑) Mixed-Same (↑↑↑) Mixed-Rand (↑↑↑) BG-Gap (↓↓↓)

DeiT-S - 82.69 39.46 57.63 73.88 50.49 23.39
+ ReMixer (ours) BigBiGAN 83.88 (+1.19) 36.59 (-2.87) 60.10 (+2.47) 75.95 (+2.07) 54.07 (+3.58) 21.88 (-1.51)
+ ReMixer (ours) ReLabel 86.32 (+3.63) 31.78 (-7.68) 61.93 (+4.30) 78.44 (+4.56) 56.74 (+6.25) 21.70 (-1.69)

MLP-Mixer-S/16 - 84.99 40.96 63.63 76.52 54.72 21.80
+ ReMixer (ours) BigBiGAN 86.30 (+1.31) 36.64 (-4.32) 66.15 (+2.52) 78.47 (+1.95) 58.54 (+3.82) 19.93 (-1.87)
+ ReMixer (ours) ReLabel 87.68 (+2.69) 27.28 (-13.68) 67.88 (+4.25) 79.43 (+2.91) 60.44 (+5.72) 18.99 (-2.81)

ConvMixer-512/8 - 86.32 41.38 66.84 78.59 56.99 21.60
+ ReMixer (ours) BigBiGAN 86.35 (+0.03) 37.09 (-4.29) 70.03 (+3.19) 80.27 (+1.68) 59.19 (+2.20) 21.09 (-0.51)
+ ReMixer (ours) ReLabel 88.49 (+2.17) 35.60 (-5.78) 71.60 (+4.76) 81.70 (+3.11) 63.93 (+6.94) 17.77 (-3.83)

Table 2: Comparison of ReMixer (with ReLabel) vs. ConViT (spatial inductive bias). ‘+’ denotes the
modules added to the baseline (not accumulated), and parenthesis denotes the gain of each module.

Original (↑↑↑) Only-BG-B (↓↓↓) Only-FG (↑↑↑) Mixed-Same (↑↑↑) Mixed-Rand (↑↑↑) BG-Gap (↓↓↓)

DeiT-S 82.69 39.46 57.63 73.88 50.49 23.39
+ ConViT 85.51 (+2.82) 38.94 (-0.52) 62.15 (+4.52) 76.40 (+2.52) 54.37 (+3.88) 22.03 (-1.36)
+ ReMixer (ours) 86.32 (+3.63) 31.78 (-7.68) 61.93 (+4.30) 78.44 (+4.56) 56.74 (+6.25) 21.70 (-1.69)
+ ConViT + ReMixer (ours) 88.20 (+5.51) 30.79 (-8.67) 66.82 (+9.19) 79.16 (+5.28) 60.52 (+10.03) 18.64 (-4.75)

Table 3: Learned mask scales κ(l) over layers.
Layer 1/4 Layer 2/4 Layer 3/4 Layer 4/4

DeiT-S 1.571 0.783 0.945 0.287
MLP-Mixer-S/16 0.744 0.000 0.001 0.061
ConvMixer-512/8 0.871 2.347 1.498 0.001 (a) Original (b) DeiT-S (c) ReMixer

Table 4: Saliency map visualization.

3 EXPERIMENTS

We first verify the efficacy of ReMixer in Section 3.2, outperforming both vanilla patch-based mod-
els and models considering spatial inductive bias. Then, we demonstrate the robustness of ReMixer
on out-of-distribution datasets in Section 3.3. We also show that ReMixer outperforms the method
that requires the same-level of supervision in Section 3.4, confirming that the remixing of patch
mixing layers gives improvements. The experimental settings are in Section 3.1.

3.1 EXPERIMENTAL SETTINGS

Models and training. We apply ReMixer on three representative patch-based models: DeiT (Tou-
vron et al., 2021a), MLP-Mixer (Tolstikhin et al., 2021), and ConvMixer (Trockman & Kolter, 2022),
using self-attention, feed-forward, and convolutional patch mixing layers, respectively. Specifically,
we use DeiT-S, MLP-Mixer-S/16, and ConvMixer-512/8. ConvMixer-512/8 has kernel size 9 and
patch size 16 following MLP-Mixer-S/16 configurations, and we share the convolution kernel over
channels by default, while we provide the unshared results in Appendix D. We follow the default
training setup of (Touvron et al., 2021a), but use 256 batch sizes due to memory issues in our GPUs.

Object labels. We consider three object labels: first two are BigBiGAN (Voynov et al., 2021) and
ReLabel (Yun et al., 2021), representative methods for binary saliency and multi-class prediction
maps, respectively. We also test Bbox+GrabCut, which extracts binary masks from the ground-truth
bounding boxes using the GrabCut (Rother et al., 2004) algorithm.

3.2 MAIN RESULTS

Setup. We train the models on the ImageNet-9 (Xiao et al., 2021a), which is a 9 superclass sub-
set of ImageNet. We report the results on the Background Challenge (Xiao et al., 2021a) bench-
mark to evaluate the background robustness of models. Background Challenge contains 8 datasets:
ORIGINAL (↑), ONLY-BG-B (↓), ONLY-BG-T (↓), NO-FG (↓), ONLY-FG (↑), MIXED-SAME (↑),
MIXED-RAND (↑), and MIXED-NEXT (↑), where the upper or lower arrows indicate the model
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Table 5: Test accuracy of ReMixer (with BigBiGAN) trained on ImageNet-9 and tested on out-of-
distribution. ‘+’ denotes the modules added to the baseline, and bold denotes the best results.

ImageNet-9 ImageNetV2-9 ReaL-9 Rendition-9 Stylized-9 Sketch-9

DeiT-S 82.69 73.22 80.21 28.60 21.90 27.26
+ ReMixer (ours) 83.88 (+1.19) 75.68 (+2.46) 82.37 (+2.16) 29.43 (+0.83) 24.64 (+2.74) 27.93 (+0.67)

MLP-Mixer-S/16 84.99 76.57 82.70 34.25 25.54 37.07
+ ReMixer (ours) 86.30 (+1.31) 76.51 (-0.06) 83.37 (+0.67) 34.29 (+0.04) 27.08 (+1.54) 38.16 (+1.09)

ConvMixer-512/8 86.32 76.38 83.16 33.33 24.21 34.36
+ ReMixer (ours) 86.35 (+0.03) 76.97 (+0.59) 83.56 (+0.40) 33.81 (+0.48) 24.94 (+0.73) 35.72 (+1.36)

Table 6: Test accuracy of ReMixer (with ReLabel) trained on ImageNet. We compare TokenLabel-
ing (TL) and TL+ReMixer (Ours), verifying our remixing scheme on the fair comparison setting.

TL TL + ReMixer

DeiT-S 80.20 81.26 (+1.06)
DeiT-B 81.17 82.18 (+1.01)

should predict the class well or not, respectively. We also report BG-GAP (↓) which measures
the accuracy gap between MIXED-SAME and MIXED-RAND. We omit ONLY-BG-T, NO-FG, and
MIXED-NEXT results for the brevity of presentation (see Appendix C for discussion).

Results. Table 1 shows that ReMixer consistently improves classification accuracy and background
robustness over various patch-based models and object labels. Table 2 compares ReMixer with
ConViT (d’Ascoli et al., 2021), a patch mixing layer with spatial prior. It verifies that the object-
centric structure of ReMixer is more effective than spatiality, yet gives orthogonal benefits.

Analysis. Table 3 reports the mask scales κ(l) of trained models, averaged by each quarter of layers.
The models set higher/lower κ(l) for lower/higher layers, i.e., see the objects first then expand its
view, like the local-to-global structure of CNNs. ConvMixer sets low κ(l) for the early layers since
it is hard to understand the objects due to the restricted view of convolution. Figure 4 visualizes the
saliency maps (Chefer et al., 2021), verifying that ReMixer gives more object-centric view.

3.3 ROBUSTNESS OF REMIXER

Setup. We evaluate the robustness of ReMixer inferred on unseen out-of-distribution (OOD) data.
To this end, we test the ReMixer trained on ImageNet-9 on various OOD datasets: 9 superclass (370
class) subset of ImageNetV2 (Recht et al., 2019), ImageNet-ReaL (Beyer et al., 2020), ImageNet-
R (Hendrycks et al., 2021), ImageNet-Stylized (Geirhos et al., 2019), and ImageNet-Sketch (Wang
et al., 2019), denoted by adding ’-9’ at the end.

Results. Table 5 shows the OOD generalization results. ReMixer performs well on OOD samples,
confirming that both object annotators and learned masks are transferable. We use the BigBiGAN
annotator since it gives more robust prediction results than ReLabel.

3.4 FAIR COMPARISONS ON LARGE-SCALE DATASET

Setup. We compare ReMixer with TokenLabeling (TL; Jiang et al. (2021)) on ImageNet. TL uses
the same extra patch-level label with ReMixer. The experiment settings are same as Section 3.1.

Results. Table 6 presents the comparison of TL and TL+ReMixer (Ours). TL+ReMixer outperforms
TL, demonstrating that the guided patch interaction of ReMixer drives the performance gain further.

4 CONCLUSION

We propose ReMixer, a novel object-centric framework to refine any existing patch-based models.
We demonstrate the efficacy of ReMixer on ViT, MLP-Mixer, and ConvMixer, while showing supe-
rior (yet compatible) performance over prior works using spatial inductive bias. We hope ReMixer
could inspire new research directions for patch-based models and object-centric learning.
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A RELATED WORK

Patch-based models. Inspired by the success of Transformers (or self-attention; Vaswani et al.
(2017)) in natural language processing (Devlin et al., 2019; Brown et al., 2020), numerous works
have attempted to extend Transformers for computer vision (Khan et al., 2021). In particular, the
seminal work named Vision Transformer (ViT; Dosovitskiy et al. (2021)) discovered that Trans-
former could achieve state-of-the-art performance, exceeding prior popular convolutional neural
networks (CNNs; LeCun et al. (1998)). Thereafter, other studies revealed that different patch mix-
ing layers such as feed-forward (Tolstikhin et al., 2021), convolution (Trockman & Kolter, 2022), or
pooling (Yu et al., 2021) show comparable performance to self-attention, hypothesizing that the suc-
cess of ViT comes from the patch-based architectures. Our work proposes an architecture-agnostic
framework to improve the patch-based models by reweighting their patch mixing layers.

Inductive bias for patch-based models. Many patch-based models aim to remove inductive biases
by using patch mixing layers without additional structures, e.g., self-attention. While they perform
well on large data regimes, recent works reveal that inductive biases are still crucial for patch-based
models, especially under limited data (Steiner et al., 2021). Consequently, extensive literature pro-
posed approaches to incorporate additional structures for patch-based models, e.g., spatial structures
of CNNs. One line of work aims to design patch mixing layers reflecting inductive biases. For ex-
ample, ConViT (d’Ascoli et al., 2021) and CoAtNet (Dai et al., 2021) calibrate self-attention with
spatial distance between patches, CvT (Wu et al., 2021a) and ConvMixer (Trockman & Kolter, 2022)
utilize convolution operation for patch mixing, and AS-MLP (Lian et al., 2021) design a structured
operation aggregating the values from different axises. Another line of work build an architecture
that combines convolutional or pooling layers with patch mixing layers Liu et al. (2021); Yuan et al.
(2021b); Wang et al. (2021); Fan et al. (2021); Heo et al. (2021); Yuan et al. (2021a); Xiao et al.
(2021b). Our work falls into the first category; however, we leverage the object structure of im-
ages, unlike prior works focused on the spatial inductive bias. Using rich information, our proposed
ReMixer outperforms ConViT and CoAtNet, where using both ConViT and ReMixer gives further
improvements, implying that two methods contribute to the model differently (see Table 2). We
also emphasize that ReMixer can be applied on any patch mixing layers under a common principle,
unlike prior works designed for specific layers such as self-attention or feed-forward.

Incorporating object structures. Although objects are the atom of visual scenes, only a lim-
ited number of research has leveraged the object structure of images for visual recognition (e.g.,
classification). This is mainly due to two reasons: (a) the cost of collecting object labels and (b)
non-triviality of reflecting object information to the black-box deep learning models. However,
both challenges have been relaxed by the rapid advance of deep learning. First, the progress of
supervised (He et al., 2017; Carion et al., 2020; Fang et al., 2021), weakly-supervised (Selvaraju
et al., 2017; Chefer et al., 2021; Yun et al., 2021), and self-supervised (Voynov et al., 2021; Caron
et al., 2021; Mo et al., 2021) detection significantly reduced the cost of object labels. We utilize the
pretrained BigBiGAN (Voynov et al., 2021) and ReLabel (Yun et al., 2021) models for our experi-
ments; one could also train weakly- or self-supervised object annotators on their datasets. Second,
the patch-based models are well-suited with object information (unlike CNNs) as the patch embed-
dings preserve their spatial information (Raghu et al., 2021). Using this property, ReMixer adjusts
the interaction of patch embeddings using object labels. ORViT (Herzig et al., 2021) also direct ViT
to focus on the object regions by creating extra object tokens. However, their goal is to guide video
Transformers to track the trajectory of objects and are less suited for image classification. On the
other hand, TokenLabeling (Jiang et al., 2021) implicitly utilizes the object information by using
them as additional supervision for patch embeddings; it provides an orthogonal gain from ReMixer
(see Table 6). We finally note that several works (Locatello et al., 2020; Wu et al., 2021b; Kipf
et al., 2021) aim to disentangle the object features explicitly. However, they do not scale yet to the
complex real-world images due to the strong constraints in the model. In contrast, ReMixer can be
applied to any existing patch-based models with minimal modification.
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B OBTAINING OBJECT LABELS

One possible concern for ReMixer is the labeling cost of patch-wise object labels y ∈ RN×K .
However, we claim that this cost is not a critical issue since one can utilize the pretrained machine
annotators. Notably, the object labels extracted from the models trained on some (source) datasets
are still helpful for different (target) downstream datasets (see Section 3.3). In the remaining sec-
tion, we describe two types of machine annotators: binary saliency and multi-class prediction with
discussion on their pros and cons.

Binary saliency map. We first consider binary saliency maps, i.e., indicating whether the given
pixel is object or background. There is a tremendous amount of work on extracting saliency maps
in a self-supervised (Voynov et al., 2021; Caron et al., 2021; Mo et al., 2021) or weakly-supervised
(i.e., using class labels; Selvaraju et al. (2017); Chefer et al. (2021)) manner. We use the saliency
model called BigBiGAN (Voynov et al., 2021), which finds the salient region using BigGAN (Brock
et al., 2019) trained on the ImageNet (Deng et al., 2009) dataset. We average the pixel-wise saliency
values in the patch to get a soft label yn ∈ [0, 1], and use the l1-distance (between the object labels
of two patches) in Eq. (3).

Multi-class prediction map. We also consider multi-class prediction maps, i.e., pixel- or patch-
level semantic segmentation. However, since segmentation labels are expensive, we utilize ReLabel
(Yun et al., 2021), which predicts the dense label maps from an image classifier by applying the
classifier on penultimate spatial features (i.e., before global average pooling). We use the NFNet-F6
(Brock et al., 2021) model trained on the ImageNet dataset to extract ReLabel map and apply region-
of-interest (RoI) pooling (Girshick, 2015) to extract the patch label yn ∈ RK . Here, computing
lp-distance between the object labels of patches is expensive since it handles a N2K tensor. Instead,
we use the cosine distance, efficiently computed by matrix multiplication.

Comparison of two approaches. Multi-class prediction map contains richer semantics and thus
provide more informative reweighing masks. As a result, ReLabel (used as the object labels for
ReMixer) has shown better results than BigBiGAN in our experiments, especially when the down-
stream tasks are close to the source dataset, ImageNet. However, ReLabel is often prone to distribu-
tion shifts, while BigBiGAN provides consistent gain under the same setup. Intuitively, predicting
the salient objects is easier to generalize than predicting classes. Thus, we suggest the users choose
binary vs. multi-class labels following their robustness vs. in-distribution accuracy trade-off.

We finally remark that while we utilize the pretrained annotators (from different source datasets) for
simplicity, one can also apply our method without external datasets. Recall that the annotators we
consider are trained in an unsupervised or weakly-supervised manner; it does not require ground-
truth dense supervision and can be solely extracted from the downstream dataset.
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C DISCUSSION ON BACKGROUND CHALLENGE

Figure 1: Datasets in the Background Challenge benchmark.

Figure 1 visualizes the datasets in the Background Challenge (Xiao et al., 2021a) benchmark, which
provides various combinations of foregrounds and backgrounds: ORIGINAL (↑), ONLY-BG-B (↓),
ONLY-BG-T (↓), NO-FG (↓), ONLY-FG (↑), MIXED-SAME (↑), MIXED-RAND (↑), MIXED-
NEXT (↑). The upper or lower arrows indicate the model should predict the class well or not,
respectively. We omit ONLY-BG-T, NO-FG, and MIXED-NEXT results for brevity of presentation
and due to the following reasons:

• MIXED-NEXT shows almost the same trend with MIXED-RAND.
• NO-FG is controversial to be predicted or not since the image contains the black shape of the

object.
• ONLY-BG-T accuracy is proportional to the ORIGINAL accuracy. However, we remark that

ReMixer only increases the ONLY-BG-T accuracy a little while ORIGINAL a lot, compared to
the baseline models.

D SHARING WEIGHTS FOR CONVMIXER

Table 7: Comparison of ConvMixer sharing (white line) and not sharing (gray line) kernels over
channels. We add ’-Full’ to denote the latter model, which uses D times for parameters for patch
mixing layers where D is the number of channels.

Original (↑↑↑) Only-BG-B (↓↓↓) Only-FG (↑↑↑) Mixed-Same (↑↑↑) Mixed-Rand (↑↑↑) BG-Gap (↓↓↓)

ConvMixer-512/8 86.32 41.38 66.84 78.59 56.99 21.60
+ ReMixer (ours) 88.49 (+2.17) 35.60 (-5.78) 71.60 (+4.76) 81.70 (+3.11) 63.93 (+6.94) 17.77 (-3.83)
ConvMixer-512/8-Full 88.67 (+2.35) 40.20 (-1.18) 70.72 (+3.88) 81.31 (+2.72) 62.84 (+5.85) 18.47 (-3.13)

We adopt ConvMixer (Trockman & Kolter, 2022) to share the convolution kernels over channels to
reduce memory and computation. Remarkably, ReMixer applied on ConvMixer is comparable or
even outperforms ConvMixer-Full, which uses different kernels for each channel, i.e., uses D = 512
times parameters for patch mixing layers.
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