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OBJECT-CENTRIC LEARNING AS NESTED OPTIMIZATION
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ABSTRACT

Various iterative algorithms have shown promising results in unsupervised de-
composition simple visual scenes into representations of humans could intuitively
consider objects, but all with different algorithmic and implementational design
choices for making them work. In this paper, we ask what the underlying com-
putational problem that all of these iterative approaches are solving. We show
that these approaches can all be viewed as instances of algorithms for solving a
particular nested optimization problem whose inner optimization is that of maxi-
mizing the ELBO with respect to a set of independently initialized parameters for
each datapoint. We lastly discuss how our nested optimization formulation reveals
connections to similar problems studied in other fields, enabling us to leverage tools
developed in these other fields to improve our object-centric learning methods.

1 INTRODUCTION

How objects are represented in the mind has been a major question in philosophy (Smith, 1996) and
cognitive science (Spelke, 1990) and has motivated the question of how we can build intelligent
agents that learn to similarly represent what humans consider objects, without human supervision on
what specific objects are (Greff et al., 2020). Works in recent years have proposed various iterative
algorithms that have shown promising results in unsupervised decomposition simple visual scenes
into representations of humans could intuitively consider objects (Greff et al., 2017; Van Steenkiste
et al., 2018; Greff et al., 2019; Veerapaneni et al., 2020; Locatello et al., 2020; Kipf et al., 2021;
Zoran et al., 2021; Singh et al., 2021). These all share a underlying theme of iteratively refining a
set of independently initialized representations to decompose the observation into representations of
its constituent objects, but all have different algorithmic and implementational design choices for
making this work. The lack of a unifying computational framework makes it difficult to reason about
why and how these methods work and how to improve them when they do not.

In this paper, we ask what the underlying computational problem that all of these iterative approaches
are solving. Such a unified problem formulation could reveal connections to similar problems studied
in other fields, enabling us to leverage tools developed in these other fields to improve our object-
centric learning methods. Our primary contribution is a proposal for a unifying tangible problem
statement under which to view the set of iterative approaches to developed for object-centric learning
so far. Specifically, we show that these approaches can all be viewed as instances of algorithms for
solving a particular nested optimization problem whose inner optimization is that of maximizing
the ELBO with respect to a set of independently initialized parameters for each datapoint. These
algorithms can be categorized as either performing meta-learned posterior inference or meta-learned
parameter estimation in a factorized symmetric generative model. We show how these two categories
both represent instances of the same nested optimization.

This paper contains no experiments, and we do not claim that our proposed nested optimization
formulates what object-centric methods should do, but merely that it describes the problem that
previously proposed methods appear to be solving. The explicit identification of this problem could
provide a common language for understanding existing methods and for improving them.

In §2, we briefly introduce the class of object-centric algorithms we consider as instances of what
we call iterative amortized inference algorithms that either meta-learn posterior inference or
meta-learn parameter estimation. In §3 we show meta-learned posterior inference and meta-learned
parameter estimation are both instances of the same nested optimization problem and interpret this
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problem in the context of object-centric learning. The conclusion (§4) uses the nested optimization
problem to discuss the connection between object-centric learning and other fields of research.

2 ITERATIVE AMORTIZED INFERENCE

Consider a generative model with observables X , local (per-observation) latents Z, and global
(across-observations) parameters θ, defining the joint distribution for a particular sample (z, x) as
p(z, x; θ) = p(z; θz)p(x | z; θx | z). Given a datapoint x, the goals of statistical inference often
involve estimating the parameters θ or inferring the posterior p(z | x). Both can be achieved via
variational techniques (Neal & Hinton, 1998; Dayan et al., 1995) that frame inference as maximizing
the evidence lower bound (ELBO) L with respect to θ and an approximate posterior q(z | ·):

L (q, θ, x) := E
z∼q(z|·)

[log p (x, z; θ)− log q (z | ·)] . (1)

2.1 CLASSICAL AND AMORTIZED INFERENCE

Classical approaches for maximizing L include variants of the expectation maximization (EM)
algorithm (Dempster et al., 1977), which alternates between optimizing maxq L(q, θ, x) and
maxθ L(q, θ, x), using incremental (e.g., gradient descent) or analytic approaches. Given a dataset
{xn}Nn=1, and assuming that q can be parameterized by variational parameters ϕ, classical iterative
methods employ a fixed learning rule (Hoffman et al., 2013), for improving ϕ or θ, e.g.

ϕn
t+1 ← ϕn

t + α∇ϕnL (ϕn
t , x

n) , ∀n (2)

θt+1 ← θt + β
∑

n
∇θL (θt, xn) (3)

which is costly to scale to high-dimensional datasets. Thus, techniques related to the variational
autoencoder (Kingma & Welling, 2013; Rezende et al., 2014, VAE) amortize (Gershman & Goodman,
2014) the optimization of ϕn for each xn via an encoder that directly maps x to ϕ. However,
estimating ϕ without iterative feedback results in poorer performance (Krishnan et al., 2018; Cremer
et al., 2018) and cannot break symmetry among exchangeable unobserved variables.

2.2 ITERATIVE AMORTIZED INFERENCE

Several works have proposed to combine the paradigms of iterative optimization and neural networks
by replacing the fixed update rule with a update network f that is trained to optimize the unrolled
iterative procedure (Kirsch & Schmidhuber, 2020; Andrychowicz et al., 2016) for improving ELBO.
These can be categorized as performing posterior inference or parameter estimation via a meta-
learning algorithm (Thrun & Pratt, 2012; Schmidhuber, 1987), with the former conducted across
a single dataset (like Andrychowicz et al. (2016)) and the latter conducted across a dataset of
mini-datasets (like Finn et al. (2017)).

For methods that meta-learn posterior inference (Marino et al., 2018b;a; 2020; Greff et al., 2019;
Veerapaneni et al., 2020; Emami et al., 2021), instead of an encoder that directly maps xn to ϕn, an
update network f improves a (initially random) previous estimate ϕn

t as ϕn
t+1 ← f(ϕn

t ,∇ϕn
t
Lt) for

each datapoint xn. While ϕn is updated per-datapoint, the model parameters θ and weights of f are
updated across datapoints.

In contrast, methods that meta-learn parameter estimation (Greff et al., 2017; Van Steenkiste
et al., 2018; Zoran et al., 2021; Locatello et al., 2020; Singh et al., 2021) treats each datapoint xn as
itself a mini-dataset of M measurements xn,m (e.g. xn is an image and xn,m is a pixel or feature of
xn). Each datapoint xn is generated from per-datapoint model parameters θn with per-measurement
latents zn,m, thus defining a per-datapoint ELBO Ln. The role of the update network f in this setting
is to improve the (initially random) model parameters θn as θnt+1 ← f(θnt ,∇θn

t
Ln
t ), which generally

also involves improving the per-measurement variational parameters ϕn,m.

3 OBJECT-CENTRIC LEARNING AS NESTED OPTIMIZATION

We explicitly unify iterative amortized inference methods (§2) as solving a particular nested optimiza-
tion problem whose inner optimization is that of maximizing the ELBO. We describe the generic
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bi-level optimization problem (one-level of nesting), then show that meta-learned posterior inference
and meta-learned parameter estimation instantiate this problem with one and two levels of nesting
respectively. Lastly we interpret this nested optimization in the context of object-centric learning.

3.1 THE NESTED OPTIMIZATION PROBLEM

Consider the following bi-level optimization problem over a generic dataset {xn}Nn=1 with datapoints
xn. Define the parameters λn as optimized per-datapoint, and the parameters w as optimized across
datapoints. With the ELBO L as the inner objective and a task objective J as the outer objective, we
express the bi-level optimization problem as

min
w

∑
n

J (xn,w, λn
∗ )

s.t. λn
∗ = argmax

λn

L (x̃n, λn) .
(4)

When the inner optimization is conducted via a fixed update rule, the solution of the inner problem
can be embedded as a differentiable optimization layer (Amos & Kolter, 2017) within a neural
network with weights w. Here, we partition w as w = [we,wd], where we are weights of an encoder
that processes xn into x̃n, and wd are weights of a decoder that computes the outer objective J
with the fixed point λn

∗ as an input. Special cases include the case where we is the identity (i.e., no
pre-processing of xn) and the case where wd is the identity (i.e. no post-processing of λn

∗ ).

Using a trainable network fw as the update rule instead, e.g. λn
t+1 ← fw(λn

t , x
n), implicitly param-

eterizes a constraint set Cw (xn). The weights w from Eq. 4 now include the weights wu of the
learnable update rule fw, yielding:

min
w

∑
n

J (xn,w, λn
∗ )

s.t. λn
∗ = argmax

λn∈Cw(xn)

L (x̃n, λn) .
(5)

The constraint set Cw (xn) implicitly depends on we, which pre-processes xn, and wu, which updates
λn. Any update rule that monotonically improves upon L is thus a fixed point operation whose
fixed point locally maximizes L (Neal & Hinton, 1998; Wu, 1983). It is in this sense that we can
understand fw as trained to perform a fixed point operation.

3.2 POSTERIOR INFERENCE AND PARAMETER ESTIMATION

Now we show that iterative amortized inference for posterior inference and parameter estimation
implement fixed point procedures that solve the aforementioned nested optimization problem. This is
to our knowledge the first unification of both approaches under the same problem statement.

Meta-learned posterior inference Methods for meta-learned posterior inference (§2.2) train a
VAE decoder as the generative model with parameters θ and an update network fw that updates
ϕn
t+1 ← fw(ϕn

t ,∇ϕn
t
Lt) for each datapoint xn. We recover the problem formulation in Eq. 5 by

substituting the negative ELBO for the outer objective J , the per-datapoint variational parameters
ϕn for λn, and the model parameters θ for the subset of wd that compute the p(x | z) term of the
negative ELBO. Then the update network implements the fixed point operation ϕn

t+1 ← fw(ϕn
t , x

n)
that computes∇ϕn

t
Lt from ϕn

t and xn as an initial pre-processing step.

Meta-learned parameter estimation Methods for meta-learned parameter estimation (§2.2)
treat each datapoint xn as a mini-dataset of measurements xn,m. We recover the problem for-
mulation in Eq. 5 by substituting a per-datapoint ELBO Ln for the inner objective and let
λn :=

(
θn, {ϕn,m}Mm=1

)
, meaning that the inner optimization jointly optimizes the per-datapoint

model parameters θn and all per-measurement variational parameters ϕn,m. Existing approaches
implement this by using fw to compute an EM (Greff et al., 2017; Van Steenkiste et al., 2018) or
modified soft K-means (Locatello et al., 2020; Zoran et al., 2021; Singh et al., 2021) step. Since
the variational inference problem (Eq. 1) is itself a bi-level optimization over θ and ϕ, meta-learned
parameter estimation is actually a tri-level optimization, optimizing w across datapoints xn at the
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outer level, θ across measurements xn,m but per-datapoint at the middle level, and ϕ per-measurement
at the inner level. The inner two objectives are the ELBO Ln defined for each datapoint and the outer
objective J is a task objective specified for the dataset, such as image reconstruction or attribute
classification (Locatello et al., 2020).

3.3 OBJECT REPRESENTATIONS AS INDEPENDENTLY INITIALIZED FIXED POINTS

Having established the above formalism, the object-centric learning problem as studied so far
represents a subset of instances of the nested optimization problem described in §3.1, where the
inner optimization is of a set of independently initialized parameters λn := {λn,k}Kk=1 that are
symmetrically updated by fw. In the context of meta-learned posterior inference, the λn are
variational parameters ϕn for a mixture density (Bishop, 1994) generative model, as in (Greff
et al., 2019; Veerapaneni et al., 2020; Emami et al., 2021). In the context of meta-learned parameter
estimation, the λn are the component parameters θn of a mixture model for clustering the independent
sensor measurements xn,m (e.g. pixels) of a datapoint xn (e.g. image), as in (Greff et al., 2017;
Van Steenkiste et al., 2018; Zoran et al., 2021; Locatello et al., 2020; Singh et al., 2021). Our nested
optimization unifies the entity representations λn in both contexts as the resulting fixed points of an
inner ELBO optimization.

As an example, the slot attention module (Locatello et al., 2020) is a state-of-the-art object-centric
learning method that performs meta-learned parameter estimation. It adds a set of empirical im-
provements (attention heads (Vaswani et al., 2017), layer normalization (Ba et al., 2016b), and gated
recurrent unit (GRU) (Cho et al., 2014)) to a differentiable soft k-means layer that iteratively refines a
set of slots λn,k, acting as cluster centroids, given an input xn. Without these additions, slot attention
is equivalent to optimizing Eq. 4 because the soft k-means algorithm is known to monotonically
improve the ELBO (Bottou & Bengio, 1995). The task objectives J considered by (Locatello et al.,
2020) included both image reconstruction and classification. In practice, Locatello et al. (2020) found
that replacing the manually-defined soft k-means update with a learnable update λn ← fw (λn

t , x
n)

(Eq. 5) that uses attention heads, layer normalization, and a GRU improves performance.

4 DISCUSSION

Our nested optimization problem reveals at least four connections between the object centric learning
problem and several other research directions in the field. First is the connection to the literature
on fast weights (Schmidhuber, 1992; Ba et al., 2016a; Irie et al., 2021) because the parameters λn

serve as the weights that are modified during the inner optimization, during execution time. Second
is the connection to the literature on deep implicit layers (Duvenaud et al., 2020) which studies
neural layers not as explicitly parameterized functions but as functions whose input and output
satisfy some constraint, such as a fixed point procedure. Third is the connection to the literature on
meta-learning (Schmidhuber, 1987; Finn et al., 2017; Thrun & Pratt, 2012; Andrychowicz et al., 2016)
because the outer parameters w are trained to improve the inner parameters λn during execution
time. Fourth is the connection to the literature on algorithmic information theory (Kolmogorov, 1965;
Li et al., 2008; Solomonoff, 1964) because whereas the entity representations learned in the context
of meta-learned posterior inference have an associated distribution parameterized by ϕn,k and thus
are statistically independent, the entity representations θn,k learned in the context of meta-learned
parameter estimation do not have an associated distribution and thus are algorithmically independent
samples from the distribution that randomly initialized their values (Janzing & Schölkopf, 2010, §3.2).
These different fields have their own conceptual and implementation tools that could potentially
improve our understanding of how to build better object-centric models and of how objects could
potentially be represented in the mind.
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