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ABSTRACT

Integrating expert knowledge, e.g. from large language models, into causal discovery
algorithms can be challenging when the knowledge is not guaranteed to be correct.
Expert recommendations may contradict data-driven results, and their reliability can
vary significantly depending on the domain or specific query. Existing methods based
on soft constraints or inconsistencies in predicted causal relationships fail to account
for these variations in expertise. To remedy this, we propose L2D-CD, a method for
gauging the correctness of expert recommendations and optimally combining them with
data-driven causal discovery results. By adapting learning-to-defer (L2D) algorithms for
pairwise causal discovery (CD), we learn a deferral function that selects whether to rely
on classical causal discovery methods using numerical data or expert recommendations
based on textual meta-data. We evaluate L2D-CD on the canonical Tübingen pairs
dataset and demonstrate its superior performance compared to both the causal discovery
method and the expert used in isolation. Moreover, our approach identifies domains
where the expert’s performance is strong or weak. Finally, we outline a strategy for
generalizing this approach to causal discovery on graphs with more than two variables,
paving the way for further research in this area.

1 INTRODUCTION

Causal discovery is a fundamental task in artificial intelligence and data science, where the goal is to
identify the unknown causal relationships between a set of random variables from their observations (Spirtes
et al., 2001; Pearl, 2009; Peters et al., 2017). This typically involves inferring statistical dependencies
in the data (Spirtes et al., 2001), leading to identification of the causal graph up to a Markov Equivalence
Class (MEC), whose members all imply the same statistical dependencies (Verma & Pearl, 1990; Spirtes
et al., 2001). Hence, we are not guaranteed a unique solution unless we make further distributional or
functional assumptions to reduce the set of potential solutions (Shimizu et al., 2006; Peters et al., 2014).

In addition to exploiting statistical dependencies, the use of large language models (LLMs) has recently
gained significant attention in the causal discovery literature. This growing interest is largely driven by
the promising performance of LLMs in various causal discovery studies (Willig et al., 2022; Jin et al.,
2024b). Typically, approaches query an LLM about the causal relationships between two or more variables,
by prompting them with the variables’ textual names, and optionally with additional information about
the variables or an overall context (Abdulaal et al., 2023; Kıcıman et al., 2023; Willig et al., 2023; Long
et al., 2023; Khatibi et al., 2024; Darvariu et al., 2024; Long et al., 2024). Other works attempt to use
LLMs for conditional independence testing, which is then used for constraint-based causal discovery (Jin
et al., 2024a; Cohrs et al., 2024).
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Thus, there has been a rising interest in combining knowledge-based causal discovery from LLMs with
traditional statistical causal discovery (Choi et al., 2022; Long et al., 2024). This research direction builds
on significant work on combining more general expert knowledge with statistical causal discovery, notably
to narrow down the set of potential solutions (Constantinou et al., 2023). Previous work has considered
various types of expert knowledge: (i) required directed edges (Meek, 2013; de Campos & Castellano,
2007; Li & Beek, 2018) (ii) (partial) orderings of the variables (Scheines et al., 1998; de Campos &
Castellano, 2007; Andrews et al., 2020; Brouillard et al., 2022), (iii) ancestral constraints (Li & Beek, 2018;
Chen et al., 2016), and (iv) the negation of previous constraints (Meek, 2013; de Campos & Castellano,
2007; Chen et al., 2016; Li & Beek, 2018).

However, several challenges arise when using LLMs as experts for causal discovery. First, while LLMs
are mostly effective at providing knowledge on ancestral and ordering relationships, they are far less
reliable in determining direct causal edges. This is because queries on causal relationships between two
variables in natural language, such as “does X cause Y ?”, typically fail to distinguish between direct and
indirect effects, as this distinction depends on what other variables are observed (Ban et al., 2023; Kıcıman
et al., 2023). Hence, to integrate knowledge from LLMs with statistical causal discovery, we should use
causal structures (Magliacane et al., 2017) or algorithms that allow for order or ancestral constraints (Chen
et al., 2016; Ban et al., 2023; Vashishtha et al., 2023). However, designing causal discovery algorithms
with such constraints is generally more difficult, e.g. due to their non-decomposability (Chen et al., 2016).
Further, LLMs might provide incorrect knowledge due to poor training data (Long et al., 2024), lack of
specialized knowledge or sensitivity to variations in words used in prompts to refer to causal relationships
(e.g. “cause”, “influence”, etc.) (Darvariu et al., 2024). This makes them “imperfect experts” (Long et al.,
2023), necessitating methods that can accommodate incorrect knowledge.

Towards this, a common approach is to incorporate background knowledge as “soft constraints” rather
than hard constraints, often using Bayesian priors or initializations in score-based causal discovery methods
(Choi et al., 2022; da Silva et al., 2023; Darvariu et al., 2024). However, to the best of our knowledge, there
is no consensus on how to select the appropriate prior and score, which are crucial for determining the final
set of solutions and their correctness (Constantinou et al., 2023; Darvariu et al., 2024). Alternatively, Long
et al. (2024) propose incorporating a model for the expert’s correctness in the likelihood. However, this
approach has limitations, such as using LLMs to query direct edges and assuming that imperfect experts
make conditionally independent errors, an assumption that is often unrealistic as experts usually show
systematic errors, e.g. they struggle on specific domains. Other methods involve LLM experts to estimate
their own confidence (Zhang et al., 2023) or double check their own results (Ban et al., 2023); but these
are still vulnerable to the expert’s mistakes. Finally, some works propose detecting inconsistencies caused
by the incorrect expert knowledge (de Campos & Castellano, 2007; Chen et al., 2023), however not all
incorrect expert knowledge would cause such inconsistencies so this approach may not be sufficient to
detect them. Crucially, none of these methods accounts for the features in each individual causal query,
or more generally identifies which specific knowledge returned by LLMs is correct and which is not,
which is critical as LLMs might have better predictions on some domains such as common sense or
insurance knowledge (Darvariu et al., 2024), and struggle on others such as physics (Brown et al., 2020)
or specialized medical knowledge (Darvariu et al., 2024).

Contributions. In contrast to previous work, we propose to directly learn and predict which ancestral
relationships returned by imperfect experts are correct, and which are not, informing the causal discovery
process. To this aim, we build on the rich literature on learning to defer (L2D) (Madras et al., 2018;
Mozannar & Sontag, 2021) that consists in learning a deferral function: for any instance with features
and an outcome, this function selects whether to predict the outcome using either a given machine learning
model or an external black-box expert based on the features. While the deferral function and the model
are most often learned jointly, recent works propose to learn the deferral function in a post-hoc manner, i.e.
using already trained models (Narasimhan et al., 2022; Mao et al., 2023). We build on this methodology to
learn whether to use an imperfect expert or a statistical causal discovery method to decide on the ancestry
between two variables. Pairwise causal predictions can then be aggregated to form a topological order
using techniques outlined in the extensive literature on ranking from noisy pairwise comparisons (Bradley
& Terry, 1952; Feige et al., 1994; Rajkumar & Agarwal, 2014; Ren et al., 2021).

Our key contributions are summarized below:

1. We propose a learning-to-defer approach to integrate background knowledge in pairwise causal
discovery; notably, we show how this reduces to a modified form of classification, allowing the
use of any off-the-shelf classifier for this purpose. We call the resulting method L2D-CD.
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2. We show that this approach improves causal direction predictions in the canonical Tübingen
pairs (Mooij et al., 2016). The L2D-CD combination of an imperfect expert and a statistical
causal discovery method outperforms each method alone and a simple deferral baseline that
defers at random, showing the importance of learning to defer.

3. We describe how to extend this approach to graphs with 3 variables or more, building on the
literature on ranking from pairwise comparisons.

2 METHODOLOGY

We consider the task of determining causal relationships between two causal variables, identified by their
names (u, v). We denote the corresponding observational data with N samples for these variables as
(xu, xv) where xu, xv ∈ RN . Further, we assume access to metadata C – some textual context/description
that provides extra information about the relationship between these variables. We represent the combined
numerical data and textual description associated with the causal variables as x = (C,u, v, xu, xv).

Let y = Iu→v, where I is the indicator function, denote a binary label for the causal relationship, i.e. y = 1
if u causes v and y = 0 otherwise. We assume access to the following predictors for causal relationships:

• Expert Predictor. Query an expert, typically an LLM, to obtain the causal relationship, where
the expert uses only the textual description for prediction, i.e., h1(x) = Expert(C,u, v).

• Causal Discovery Methods. Train a causal discovery method using a numerical/observational
dataset to predict causal relationships, i.e., h0(x) = CD(xu, xv).

Our goal is to construct a predictor h⋆(x) of y that optimally combines the predictions from the expert
h1(x) and the causal discovery method h0(x).

2.1 BACKGROUND ON LEARNING TO DEFER

To combine multiple predictors, we use techniques from the literature on learning to defer (L2D) (Madras
et al., 2018; Mozannar & Sontag, 2021; Mao et al., 2023). Consider the task of binary prediction for input x
and labels y, with values in X and Y respectively, where Y is finite. Given the base predictor h(x) = h0(x)
and ne expert predictors {hj(x)}ne

j=1, the goal is to learn a deferral function r(x) = argmaxj∈[0,ne] rj(x)

that chooses between the different predictors for the sample x; e.g. r(x) = 0 means that r chooses the
base predictor h and r(x) = j means that r chooses the j-th expert predictor hj. Critically, only one of
the base predictors and any expert predictor is chosen for a given instance x. As a result, the combined
predictor h⋆(x) can be constructed as h⋆(x) =

∑ne

j=0 Ir(x)=jhj(x).

In order to learn the deferral function, we use the loss objective from Mao et al. (2023):

Ldef(h, r, x, y) = Ih(x)̸=yIr(x)=0 +

ne∑
j=1

cj(x, y)Ir(x)=j, (1)

where cj(x, y) ∈ [0,1] denotes the cost of predicting y from instance x associated with expert predictor
h(x), while the cost of the base predictor h is the standard 0-1 loss. Essentially, Ldef is the loss incurred
by the only base or expert predictor that r chooses on instance x; indeed, only one of Ir(x)=j for
j = 0,1, . . . , ne is one and all others are zero. This leads to the following optimization problem,

argmin
r

Ex,y

[
Ldef(h, r, x, y)

]
. (2)

L2D typically learns both h and r jointly (Madras et al., 2018); however in our setting all causal direction
predictors are pre-fitted, so we choose the version of Mao et al. (2023) where r is learned after h has
been learned. We refer to this setup as post-hoc L2D and to the two steps of learning h then r as two-stage
L2D. In the rest of the manuscript, unless specified otherwise, L2D refers to post-hoc L2D. Since the above
loss is not differentiable for learning the deferral function r, the literature typically considers surrogate
losses; for example Mao et al. (2023) use the following surrogate loss:

Lh
surr(r, x, y) = Ih(x)=yl2(r, x,0) +

ne∑
j=1

c̄j(x, y)l2(r, x, j) (3)
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where c̄j(x, y) = 1 − cj(x, y) and l2(r, x, y) is a surrogate loss using soft assignment functions rj(x)
for multi-class classification problem with classifier r(x). If we set l2 to the logistic classification loss,
we obtain the following:

Lh
surr(r, x, y) = −Ih(x)=y log

1

1 +
∑ne

k=1 e
−rk(x)

−
ne∑
j=1

c̄j(x, y) log
e−rj(x)

1 +
∑ne

k=1 e
−rk(x)

. (4)

Thus, L2D can be instantiated to our setting as ne = 1, x = (C,u, v, xu, xv), y = Iu→v,
h1(x) = Expert(C,u, v), h(x) = h0(x) = CD(xu, xv). It is natural to use c1(x, y) = Ih1(x)̸=y;
however, this setup is excluded by Mao et al. (2023), since it violates an assumption used to prove desirable
theoretical properties of the L2D surrogate loss. Nevertheless, as we will show next, these properties still
extend to c1(x, y) = Ih1(x)̸=y when y is binary, and this choice of c1(x, y) allows us to reduce L2D to
standard classification when ne = 1.

2.2 CONSISTENCY BOUNDS FOR THE L2D LOSS WITH A 0-1 COST FUNCTION AND BINARY LABELS

L2D typically uses a surrogate loss; however does minimizing it actually minimize the original loss?
To assess this, we employ the concept of H-consistency bounds (Awasthi et al., 2022; Mao et al., 2023).
Let H be a hypothesis class, ℓ be a non-negative function over (h,x, y) where h ∈ H is the predictor,
x the features and y the label. Let Eℓ(h) := Ex,y [ℓ(h,x, y)] and E⋆

ℓ (H) := minh∈H Eℓ(h). Further,
denote Mℓ(H) := E⋆

ℓ (H)− Ex

[
infh∈HEy|x[ℓ(h,x, y)]

]
the minimizability gap of H and ℓ, which is

non-negative and vanishes when E⋆
ℓ (H) coincides with the Bayes error of ℓ. Then, an H-consistency

bound of a surrogate loss ℓs with respect to an original function ℓo is a bound of the form

∀h ∈ H, Eℓo(h)− E⋆
ℓo(H) +Mℓo(H) ≤ Γ

(
Eℓs(h)− E⋆

ℓs(H) +Mℓs(H)
)
,

where Γ is a non-decreasing concave function such that Γ(0) = 0. Such a bound is desirable as it
implies Bayes-consistency of ℓs w.r.t. ℓo, while also quantifying how improvements in Eℓs(h) translate
to improvements in Eℓo(h) for h ∈ H. From now on, we use “consistency bound” to refer to an
H-consistency bound without specifying the hypothesis class H.

Theorem 6 of Mao et al. (2023) shows that when the surrogate loss used to learn the predictor h and the
surrogate loss for the deferral function r have consistency bounds with respect to the multi-class 0-1 loss,
then the L2D surrogate loss Lsurr has a generalized form of consistency bound with respect to the original
L2D loss Ldef in Equation 1. However, this result relies on the assumption that

cj ≤ c̄j(x, y) ≤ c̄j, ∀j, x, y

for some cj > 0 and c̄j ≤ 1, which does not apply when cj(x, y) = Ihj(x)̸=y for which ∀j, cj(x, y) = 0
for some x, y. However, as we show next, the L2D loss does have such a consistency bound in this case,
if one further assumes a binary y. We provide the proof in Appendix A.

Lemma 2.1 Assume that y is binary and ∀j = 1, . . . , ne, cj(x, y) = Ihj(x)̸=y. Denote H and R
hypothesis classes for the base predictor h and the deferral function r, respectively. Assume that l1 has a
H-consistency bound w.r.t. the binary 0-1 loss with concave function Γ1, and l2 has a R-consistency bound
w.r.t. the multiclass (with ne+1 classes) 0-1 loss with concave function Γ2. Then, for all h ∈ H and r ∈ R,

ELdef(h, r)− E∗
Ldef

(H,R) +MLdef(H,R)

≤ Γ1(Eℓ1(h)− E∗
ℓ1(H) +Mℓ1(H)) + neΓ2

(
ELh

surr
(r)− E∗

Lh
surr
(R) +MLh

surr
(R)

)
where the ne factor can be removed when Γ2 is linear. In particular, if H is a singleton {h0}, then this
reduces to a R-consistency bound of Lh0

surr w.r.t. Lh0

def(r, x, y) := Ldef(h0, r, x, y).

Notably, Lemma 2.1 will ensure that one can minimize the surrogate loss in Equation 3 with guarantees
on the combined predictor h⋆(x) in our pairwise causal discovery setting

2.3 POST-HOC L2D WITH A 0-1 COST FUNCTION AND A SINGLE EXPERT CAN BE REDUCED
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TO STANDARD CLASSIFICATION

We now show that post-hoc L2D applied to our setting can be reduced to binary classification. Indeed,
assume cj(x, y) = Ih1(x)̸=y and let

D◦ = {(x, y) | Ih(x)̸=y = Ihj(x)̸=y ∀j = 1, . . . , ne}
which is the set of pairs of features and labels on which all predictors are equally correct or wrong. Then
it turns out that for any (x, y) ∈ D◦, Ldef(h, r, x, y) = Ih(x)̸=y does not depend on r. In particular, noting
D∁

◦ the complement of D◦ this leads to

Ex,y

[
Ldef(h, r, x, y)

]
= p(D∁

◦)Ex,y

[
Ldef(h, r, x, y)

∣∣(x, y) /∈ D◦
]
+ p(D◦)Ex,y

[
Ih(x)̸=y

∣∣(x, y) ∈ D◦
]

Thus, we target the alternative loss Ex,y

[
Ldef(h, r, x, y)

∣∣(x, y) /∈ D◦
]

instead of the original loss
Ex,y

[
Ldef(h, r, x, y)

]
. Further, when ne = 1, for any (x, y) /∈ D◦, then Ih(x)̸=y = Ih1(x)=y. Thus,

Ldef(h, r, x, y) = Ih1(x)=yIr(x)=0 + Ih1(x)̸=yIr(x)=1 = Ir(x)̸=Ih1(x)=y

is the 0-1 classification loss for features x and label Ih1(x)=y, which is the indicator that h1(x) returns
the correct prediction y. This amounts to learning to predict when the expert is correct or, equivalently,
when the base predictor is wrong. As a result, in this setting, post-hoc L2D reduces to binary classification
over samples not in D◦. This allows us to use any off-the-shelf classification method for training, while
directly optimizing the expected surrogate loss without removing samples in D◦ would generally only
be feasible through automatic differentiation, as done in the implementation of Mao et al. (2023).

2.4 PROPOSED APPROACH: L2D-CD

Based on the above discussion, our training procedure to obtain a fitted deferral function r̂ from a set
of m examples (xi, yi)mi=1 when ne = 1 is thus to:

1. Compute the set S = {i | Ih(xi)̸=yi ≠ Ih1(xi)̸=yi}. Note that when y is binary, we generally
have D◦ = {(x, y) | x ∈ X◦} where X◦ := {x | h(x) = hj(x) ∀j = 1, . . . , ne}, so here
S can also be computed as S = {i | h(xi) ≠ h1(xi)}.

2. Obtain r̂ by fitting any binary classification method to the set (xi, y′i)i∈S where y′i = Ih1(xi)=yi .

For pairwise causal discovery, we apply this procedure to x = (C,u, v, xu, xv), y = Iu→v,
h1(x) = Expert(C,u, v), h(x) = h0(x) = CD(xu, xv). We call the resulting method L2D-CD. Thus,
intuitively L2D-CD learns which causal discovery predictor, statistical-based method or metadata-based
expert, returns the correct causal direction when the two predictors differ in their predictions.

3 RESULTS ON TÜBINGEN DATASETS

We now apply the approach from Section 2.4 to the Tübingen pairs (Mooij et al., 2016), a canonical
benchmark for pairwise causal discovery.

Division of Tübingen pairs by domain: In order to design synthetic experts having strengths in certain
domains and, potentially, weaknesses in others, we manually assign a domain to each Tübingen pair. After
excluding multivariate pairs (52-55, 71, 105), Tübingen pairs are each assigned to five different domains:
Climate/Environment, Economics/Finance, Biology, Medicine, Physics. Further, a training set and a testing
set are formed by stratified sampling w.r.t. the domains at 50/50 proportions. Table 3 in Appendix B details
the pairs present in each domain as well as in each of the training and testing sets.

Causal discovery methods: We consider three causal discovery (CD) methods that can be applied
on cause-effect pairs: LiNGAM (more specifically, Direct-LiNGAM (Shimizu et al., 2011)), RECI
(Blöbaum et al., 2018) and bQCD (Tagasovska et al., 2020). Notably, LiNGAM assumes linear structural
equations with non-Gaussian noise, while RECI and bQCD rely on a postulate of independence of causal
mechanisms (Peters et al., 2017); this means that they may also be misspecified, thus “imperfect”, if such
assumptions are violated, further strengthening the motivation of combining them with experts.

Synthetic experts: We design synthetic experts having a pre-defined probability pd ∈ [0,1] of returning
the correct answer for each domain d ∈ {Climate/Environment, Economics/Finance, Biology, Medicine,
Physics}, i.e. for each pair i ∈ d, the expert returns the correct causal direction with probability pd and
the incorrect direction with probability 1− pd. We consider two types of experts:
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Information for pairs0008:

https://archive.ics.uci.edu/ml/datasets/Abalone

1. Title of Database: Abalone data
2. Sources:

a) Original owners of database: Marine Resources Division Marine Research
Laboratories - Taroona Department of Primary Industry and Fisheries,
Tasmania GPO Box 619F, Hobart, Tasmania 7001, Australia (contact:
Warwick Nash, +61 02 277277, wnash@dpi.tas.gov.au)

b) Donor of database: Sam Waugh (Sam.Waugh@cs.utas.edu.au)
Department of Computer Science, University of Tasmania GPO Box 252C,
Hobart, Tasmania 7001, Australia

c) Date received: December 1995
3. Attribute Information: Given is the attribute name, attribute type, the measurement

unit, and a brief description.

Name Data Type Meas. Description

x: Rings Integer +1.5 gives the age in years
y: Height Continuous mm with meat in shell

Figure 1: Example ground-truth-free textual description (D′
i) for a Tübingen pair (here i = 8). Formatting

was added here to help the reader but raw text is given to the LLM.

• ϵ-experts : for a given ϵ ∈ (0,0.5), define:

pBiology = pEconomics/Finance = pPhysics = 1− ϵ and pClimate/Environment = pMedicine = ϵ (5)

Notably, the expert is considered as strong on domains d where pd = 1− ϵ > 0.5, and weak on
domains d where pd = ϵ < 0.5. Domains in Equation 5 are chosen in order to assure a roughly
equal share between pairs in a domain where the expert is strong (54) and pairs in one where
it is weak (48). In the following, we refer to these experts as “ϵ = . . . ” where “. . . ” refers to
the selected value of ϵ. We considered ϵ = 0.05, ϵ = 0.1, and ϵ = 0.2.

• p-experts : here we consider deterministic experts, i.e. pd ∈ {0,1} ∀d. However, unlike the
previous experts, we change values of pd by domain d. To maintain consistency with the previous
ϵ-experts which are strong on three domains and weak on two domains, we select assignments
of pd’s such that three pd’s are equal to 1 and two are equal to 0. In the following, we refer to
these experts as “ABC” were A, B, C refer to the initials of the domains d where pd = 1.

LLM experts : Finally, we consider experts implemented using OpenAI GPT models (OpenAI, 2024).
For every Tübingen pair i with original description Di, we manually remove ground-truth mentions in
Di to obtain a ground-truth-free description D′

i (see Figure 1 for an example); and prompt the OpenAI
model as follows :

• System part of the prompt : You will be given a text describing two columns in a dataset. The
text will be delimited by backticks as in a code block. The first column is also referred to as “x”
and the second column as “y”. Based on the text description between backticks, is it more likely
that 1) x causes y, or that 2) y causes x? Please choose one and only one of these two options.

• User part of the prompt : the text description D′
i between two sets of three backticks and two

spaces, as in a code block. An example of such D′
i is given in Figure 1.

Then, we parse the causal direction from the answer. We considered GPT-4o and GPT-4o-mini with
default hyperparameters; due to stochasticity we varied the seed which was assigned values 0, 1, . . . , 19.
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L2D-CD model: L2D-CD was implemented according to Section 2.4, where for each Tübignen pair i, the
variables remain constant as (ui, vi) = (First column (x),Second column (y)), the numer-
ical variables are the two columns (Xi,ui

,Xi,vi) = (X1,X2), and the context Ci is the ground-truth-free
text description D′

i. For simplicity, we exclude numerical variables (Xi,ui
,Xi,vi) from the input to the

deferral function, so with constant (ui, vi)’s across Tübingen pairs i our deferral function becomes:

r(xi) = Classifier (Embedding(D′
i))

where “Embedding” refers to a model that converts the text description to a numerical vector embedding,
and “Classifier” refers to any classifier from the space of this embedding. In practice, we observe
small training samples (from 11 to 36) after restriction to the set S as in Section 2.4, motivating us
to use random forests (Breiman, 2001) as classifiers; we resorted to the scikit-learn implementation
(Pedregosa et al., 2011). For the embedding, we use OpenAI’s text-embedding-3-small
model and perform dimensionality reduction according to the recommended practice on the OpenAI
website. To select hyperparameters for the L2D method, we perform hyperparameter search on a grid
of the following hyperparameters : 10, 50, 100 for the random forest’s n estimators; 2, 5 for its
min samples split; 5, 10, 15, 20, 50 for the size of the embedding.

After evaluating these hyperparameters across all possible pairs of experts and CD methods un-
der consideration, and across 20 random training seeds, we select n estimators = 100 and
min samples split = 5 for the random forest, and 50 dimensions for the embedding model.
Evaluation is done using leave-one-out (LOO) cross-validation on the training set, using the loss from
Equation 1 and the training procedure from 2.4. As a metric for selection, LOO sample-wise losses are
averaged for each expert, CD method and random training seed, then for each of the three aforementioned
types of experts, then across these three types; this is done in order to balance performance across such
types. L2D-CD with the selected hyperparameters is then retrained for each expert, CD method and
random seed using the full training set.

Baselines: In order to assess whether the description-wise heterogeneity of the L2D deferral function r
impacts performance compared to randomly deferring to either method, we introduce a baseline. In this
baseline, the probability of deferring to the expert is set as the fraction of correct expert predictions on
the same set S used to train L2D-CD’s classifier. The causal direction of the testing set is then predicted
as a Bernoulli of this probability. Given that baselines randomly sample causal predictions, in contrast
to L2D predictions which are deterministic, we consider 20 random seeds for the sampling.

L2D-CD consistently improves accuracy compared to the expert and CD alone: For each pair of
expert and CD method, Table 1 presents the testing accuracies for the CD method alone, for the expert
alone, and for the L2D-CD and baseline combinations of these two methods. L2D-CD almost always
improves over all other methods, showing its capability to combine accurate predictions from the expert
and the CD method. Notably, it outperforms both synthetic experts and real-world LLM-based ones. While
Tübingen pairs are known to have been memorized by LLMs since they are available online (Kıcıman
et al., 2023), L2D-CD still generally improves on the LLM experts, regardless of whether memorization
occurs or not. On the other hand, the baseline’s average accuracy interpolates between those of the CD
method and the expert, showing the necessity of instance-dependent predictions.

L2D-CD can identify strong and weak domains for the expert: While the accuracy results indicate
improved performance of L2D-CD on all pairs, one might wonder whether L2D-CD can identify domains
where the expert is strong and those where the expert is weak. To assess this, we focus on synthetic
ϵ-experts and p-experts where performance is controlled through domain-wise probabilities pd. Let
r(x;CD,Expert, ϵ′) be the deferral function corresponding to a given causal discovery method CD, a
given expert Expert and a random variable ϵ′ capturing sources of uncertainty, such as the expert seed
for stochastic experts, the training seed for random forests, or the sampling seed for baselines. Then, the
probability that r chooses Expert on domain d can be computed as

p(Expert chosen by r|Expert, d) = EX,ϵ′,CD[1{r(X;CD,Expert,ϵ′)=Expert} |X ∈ d]

where we average over the CD method, the samples in the domain and uncertainty from the expert and the
deferral function fitting. We say that r is domain-consistent for Expert if, on average, it defers to Expert
more frequently on any domain d+ where Expert is strong than any domain d− where Expert is weak:

H1
d+,d−,r,Expert : p(Expert chosen by r|Expert, d+) > p(Expert chosen by r|Expert, d−) (6)

Notably, this would enable setting a threshold separating strong and weak domains for the expert. For experts
with domain-wise probabilities pd, strong domains are defined as pd > 0.5 and weak domains pd < 0.5.
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Table 1: Hold-out accuracies by possible combinations of causal discovery (CD) method and expert,
averaged by random seeds w.r.t. stochastic expert predictions, for random forest training and baseline
sampling predictions (20 seeds for each). Associated standard errors are shown after “±”; Notably, the
standard error is always zero for CD methods and for p-experts, as they are deterministic.

CD Expert CD Acc Expert Acc L2D-CD Acc Baseline Acc

LiNGAM

EMP 0.442± 0.000 0.538± 0.000 0.661± 0.005 0.489± 0.011
CMP 0.442± 0.000 0.635± 0.000 0.700± 0.004 0.554± 0.010
CEP 0.442± 0.000 0.692± 0.000 0.691± 0.006 0.603± 0.007
CEM 0.442± 0.000 0.673± 0.000 0.749± 0.005 0.595± 0.009
BMP 0.442± 0.000 0.481± 0.000 0.648± 0.006 0.466± 0.013
BEP 0.442± 0.000 0.538± 0.000 0.681± 0.004 0.486± 0.009
BEM 0.442± 0.000 0.519± 0.000 0.626± 0.007 0.476± 0.012
BCP 0.442± 0.000 0.635± 0.000 0.730± 0.004 0.540± 0.008
BCM 0.442± 0.000 0.615± 0.000 0.687± 0.003 0.532± 0.009
BCE 0.442± 0.000 0.673± 0.000 0.731± 0.004 0.568± 0.009

bQCD

EMP 0.692± 0.000 0.538± 0.000 0.788± 0.005 0.623± 0.009
CMP 0.692± 0.000 0.635± 0.000 0.854± 0.003 0.656± 0.012
CEP 0.692± 0.000 0.692± 0.000 0.857± 0.005 0.688± 0.013
CEM 0.692± 0.000 0.673± 0.000 0.779± 0.002 0.683± 0.009
BMP 0.692± 0.000 0.481± 0.000 0.775± 0.005 0.620± 0.011
BEP 0.692± 0.000 0.538± 0.000 0.796± 0.005 0.633± 0.010
BEM 0.692± 0.000 0.519± 0.000 0.734± 0.005 0.618± 0.006
BCP 0.692± 0.000 0.635± 0.000 0.856± 0.003 0.668± 0.012
BCM 0.692± 0.000 0.615± 0.000 0.722± 0.004 0.657± 0.009
BCE 0.692± 0.000 0.673± 0.000 0.753± 0.002 0.676± 0.011

RECI

EMP 0.654± 0.000 0.538± 0.000 0.772± 0.004 0.590± 0.009
CMP 0.654± 0.000 0.635± 0.000 0.740± 0.003 0.652± 0.010
CEP 0.654± 0.000 0.692± 0.000 0.846± 0.004 0.684± 0.010
CEM 0.654± 0.000 0.673± 0.000 0.785± 0.004 0.682± 0.008
BMP 0.654± 0.000 0.481± 0.000 0.768± 0.004 0.585± 0.011
BEP 0.654± 0.000 0.538± 0.000 0.883± 0.003 0.593± 0.008
BEM 0.654± 0.000 0.519± 0.000 0.776± 0.002 0.588± 0.009
BCP 0.654± 0.000 0.635± 0.000 0.824± 0.004 0.652± 0.010
BCM 0.654± 0.000 0.615± 0.000 0.767± 0.006 0.642± 0.007
BCE 0.654± 0.000 0.673± 0.000 0.844± 0.003 0.663± 0.010

LiNGAM
ϵ = 0.05 0.442± 0.000 0.535± 0.001 0.676± 0.001 0.484± 0.002
ϵ = 0.1 0.442± 0.000 0.531± 0.001 0.672± 0.002 0.483± 0.002
ϵ = 0.2 0.442± 0.000 0.512± 0.002 0.648± 0.002 0.476± 0.002

bQCD
ϵ = 0.05 0.692± 0.000 0.535± 0.001 0.795± 0.001 0.632± 0.002
ϵ = 0.1 0.692± 0.000 0.531± 0.001 0.793± 0.001 0.630± 0.002
ϵ = 0.2 0.692± 0.000 0.512± 0.002 0.785± 0.001 0.625± 0.002

RECI
ϵ = 0.05 0.654± 0.000 0.535± 0.001 0.873± 0.002 0.593± 0.002
ϵ = 0.1 0.654± 0.000 0.531± 0.001 0.863± 0.003 0.593± 0.002
ϵ = 0.2 0.654± 0.000 0.512± 0.002 0.815± 0.005 0.592± 0.002

LiNGAM GPT4o 0.442± 0.000 0.751± 0.001 0.747± 0.001 0.662± 0.002
GPT4o-mini 0.442± 0.000 0.755± 0.001 0.771± 0.001 0.669± 0.002

bQCD GPT4o 0.692± 0.000 0.751± 0.001 0.795± 0.002 0.739± 0.003
GPT4o-mini 0.692± 0.000 0.755± 0.001 0.820± 0.001 0.746± 0.003

RECI GPT4o 0.654± 0.000 0.751± 0.001 0.773± 0.002 0.733± 0.002
GPT4o-mini 0.654± 0.000 0.755± 0.001 0.795± 0.001 0.742± 0.002
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Table 2: Domain consistency of each combination method for each synthetic expert
ϵ = 0.05 ϵ = 0.1 ϵ = 0.2 BCE BCM BCP BEM

L2D-CD Yes Yes Yes Yes Yes Yes Yes
Baseline No No No No No No No

BEP BMP CEM CEP CMP EMP

L2D-CD Yes No Yes Yes Yes Yes
Baseline No No No No No No

We exclude LLMs for analysis as (i) they do not have such ground-truth probabilities, and (ii) their domain-
wise accuracies are all above 0.5, thus are strong as in the previous definition on all domains. We describe
our approach to evaluate domain consistency using hypothesis testing in Appendix C. Table 2 presents
whether domain consistency holds depending on whether r is L2D-CD or the baseline and on the synthetic
expert. Notably, we can see that the L2D-CD is domain-consistent for almost every synthetic expert, while
the baseline is never domain-consistent for any synthetic expert. This shows that L2D-CD can capture the
strengths and weaknesses of experts, while deferral based on a constant probability (unsurprisingly) cannot.

4 EXTENSION TO GRAPHS WITH 3 VARIABLES OR MORE

To extend L2D-CD to graphs of 3 variables or more, we propose building on methods for ranking from pair-
wise comparisons (Braverman & Mossel, 2007; Ailon, 2011; Rajkumar & Agarwal, 2014; Mao et al., 2017;
Falahatgar et al., 2018; Ren et al., 2021), where a ranking over a finite set V is a function π that is bijective
from V to {1, . . . , |V |}. We let π(u) < π(u′) indicate that u is ranked before u′ for any u,u′ ∈ V . While
these methods differ in their exact problem formulation, they all amount to learning a ranking π̂ over V from
samples (ui, u′i, yi), where ui, u′i ∈ V and yi ∈ {−1,1} indicates a comparison between ui and u′i, with
yi = 1 indicating that ui is deemed as ranked before u′i and yi = −1 as the converse. Thus, the learning al-
gorithmA attempts to find a ranking π that best fits the individual comparisons, which may be contradictory.
Thus we propose generalizing our method to causal discovery on more than two variables as follows.

Graph notations: Let G be a graph having nodes VG, where every node is represented by its name, and
edges EG. Define Σ(VG,EG) as a matrix of pairwise ancestries derived from EG, whose element indexed
by (u,u′) ∈ E2

G is equal to 1 if u precedes u′ in EG, −1 if u′ prcedes u, and 0 if no ancestry relationship
between u and u′ exists. Additionally, let CG be the graph’s textual context, and XG = (Xu)u∈VG

its
numerical data.

Problem definition: Let u, v be the textual names of nodes, X the full numerical data of a graph, and C
a textual context. Assume access to an expert Expert(C,u, v) and a causal discovery oracle CD(u, v;X),
both of which determine the ancestry relationship between u and v. The causal discovery oracle applies
the causal discovery method to X and, like the expert, may return the absence of ancestry.

Training: Assume that we have a training set of graphs Gtrain = (VGi
,EGi

,CGi
,XGi

)i=1,...,mtrain .
Then, train a deferral function r(C,u, v,X) between the expert and the causal discovery oracle
using L2D-CD where the training sample is composed of each pair of nodes in each graph and its
ancestry status, i.e. the training set is formed by (CGi, u, u

′,XGi)u,u′∈VGi
,i=1,...,mtrain as features, and

(Σu,u′(VGi
,EGi

))u,u′∈VGi
,i=1,...,mtrain

as the corresponding labels.

Inference: For every hold-out graph G, where we have access to VG,CG,XG, sample pairs of nodes
u,u′ ∈ VG, infer their ancestry relationship ŷu,u′ using L2D-CD, decide on how to handle yu,u′ = 0,
e.g. discard; apply A to the resulting comparisons to obtain a topological ordering π̂; optionally deduce
an edge set ÊG using an edge pruning method (Bühlmann et al., 2014).

Algorithms A for ranking from pairwise preferences typically benefit from convergence to a ground-truth or
optimal ranking in a moderately scaling number of steps. Key challenges will be establishing convergence
to any of the multiple topological orderings allowed by a causal graph depending on the accuracy of the
deferral function, and handling the absence of ancestry in pairwise comparisons.
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5 CONCLUSION

We have designed a procedure leveraging learning-to-defer to combine two pairwise causal discovery
methods, one conventional method and one expert. Experiments on Tübingen pairs showed that the
combined method generally improves over each separate method, and so for both synthetic and real-world
LLM-based experts. The learnt deferral function can also identify the expert’s strong and weak domains.
Note that our methodology can also be applied to human knowledge. An inherent limitation of the
L2D-CD approach is the need for a training set, while an improvable one is that our training procedure does
not generalize straightforwardly to more than two methods.We also did not yet implement our strategy to
generalize L2D-CD for bivariate causal discovery to more general causal discovery, which is future work.

ACKNOWLEDGEMENTS

We sincerely thank Philippe Brouillard for helpful comments on the manuscript. O.C. acknowledges
support from the EPSRC Centre for Doctoral Training in Modern Statistics and Statistical Machine
Learning (EP/S023151/1) and Novo Nordisk for doctoral studies, as well as from Mitacs for the internship
at ServiceNow Research. I.M. acknowledges support by an NSERC Discovery grant (RGPIN-2019-06512),
and a Canada CIFAR AI chair. D.M. acknowledges support via FRQNT doctoral training scholarship
for his graduate studies.

10



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

REFERENCES

Ahmed Abdulaal, Nina Montana-Brown, Tiantian He, Ayodeji Ijishakin, Ivana Drobnjak, Daniel C
Castro, Daniel C Alexander, et al. Causal modelling agents: Causal graph discovery through
synergising metadata-and data-driven reasoning. In The Twelfth International Conference on Learning
Representations, 2023.

Nir Ailon. An active learning algorithm for ranking from pairwise preferences with an almost optimal
query complexity, 2011.

Bryan Andrews, Peter Spirtes, and Gregory F Cooper. On the completeness of causal discovery in the
presence of latent confounding with tiered background knowledge. In International Conference on
Artificial Intelligence and Statistics, pp. 4002–4011. PMLR, 2020.

Pranjal Awasthi, Anqi Mao, Mehryar Mohri, and Yutao Zhong. H-consistency bounds for surrogate loss
minimizers. In International Conference on Machine Learning, pp. 1117–1174. PMLR, 2022.

Taiyu Ban, Lyvzhou Chen, Xiangyu Wang, and Huanhuan Chen. From query tools to causal architects:
Harnessing large language models for advanced causal discovery from data, 2023.

Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57
(1):289–300, 1995.

Roger L Berger and Jason C Hsu. Bioequivalence trials, intersection-union tests and equivalence
confidence sets. Statistical Science, 11(4):283–319, 1996.
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A PROOF OF LEMMA 2.1

The result follows from following the proof of Theorem 6 from Mao et al. (2023), except that we
change the upper bound of CLdef(h, r, x) − infr∈R CLdef(h, r, x), where for any loss ℓ(g,x, y) where g
is a predictor, Cℓ(g,x) := Ey|x [ℓ(g,x, y)]. We aim to prove that

CLdef(h, r, x)− inf
r∈R

CLdef(h, r, x) ≤
{
Γ2 (CLh

(r, x)− infr∈R CLh
(r, x)) if Γ2 is linear

neΓ2(CLh
(r, x)− infr∈R CLh

(r, x)) otherwise

Let X◦ := {x | h(x) = hj(x) ∀j = 1, . . . , ne} and x ∈ X . If x ∈ X◦ then it turns out that the
bound holds since the LHS is zero, as Ldef(h, r, x, y) = Ih(x)̸=y does not depend on r, and the RHS
is non-negative. Now assume x /∈ X◦. Then, with the convention that h0 = h and c0(x, y) = Ih(x)̸=y,
for any y,

∑ne

j=0 c̄j(x, y) ≥ 1, as each c̄j(x, y) is binary and, from y being binary, all c̄j(x, y)’s
being zero would imply that ∀j = 0, . . . , ne, hj(x) = 1 − y, which contradicts x /∈ X◦. Similarly,∑ne

j=0 c̄j(x, y) ≤ ne as at least one c̄j(x, y) should be zero (this does not require y being binary). Then,
we can repeat the steps of the original proof of Mao et al. (2023) to obtain the upper-bound, using
1 ≤ Ey|x

[∑ne

j=0 c̄j(x, y)
]
≤ ne. This completes the general consistency bound.

For the part where H is a singleton {h0}, this follows from ELdef(h0, r) = E
L

h0
def
(r),

E∗
Ldef

(H,R) = E∗
L

h0
def

(R), MLdef(H,R) = M
L

h0
def
(R), E∗

ℓ1
(H) = Eℓ1(h0), Mℓ1(H) = 0,

Γ1(Eℓ1(h0)− E∗
ℓ1
(H) +Mℓ1(H)) = Γ1(0) = 0.

B TÜBINGEN PAIRS BY DOMAIN AND TRAINING OR TESTING SET

Table 3: Tübingen pairs, denoted by their numerical identifiers, for each domain and training/testing set.
Training set Testing set

Biology 7, 9, 70, 78, 79, 90, 92 5, 6, 8, 10, 11, 80, 89, 91

Climate/Environment 1, 3, 4, 13, 15, 19, 21, 42, 48,
50, 72, 77, 82, 83, 94, 95

2, 14, 16, 20, 43, 44, 45, 46,
49, 51, 69, 73, 81, 87, 93, 96

Economics/Finance 12, 47, 57, 58, 60, 61,
62, 63, 67, 68, 86

17, 56, 59, 64, 65, 66,
74, 75, 76, 84, 99

Medicine 18, 22, 34, 36, 39, 40, 88, 107 23, 24, 33, 35, 37, 38, 41, 85

Physics 26, 28, 30, 31, 32, 97, 103, 104 25, 27, 29, 98, 100,
101, 102, 106, 108

C HYPOTHESIS TESTING TO ASSESS DOMAIN CONSISTENCY

To take account of uncertainty, for fixed r and Expert, we assessed Equation 6 by performing a statistical
test with H1

d+,d−,r,Expert as the alternative hypothesis and

H0
d+,d−,r,Expert : p(Expert chosen by r|Expert, d+) ≤ p(Expert chosen by r|Expert, d−)

as the null hypothesis for each strong/weak domain pair (d+, d−). This was done using Fisher’s exact
test over the sets of binary values Id+ and Id− where

Id := (1{r(xi;CD,Expert,ϵ′)=Expert})i∈Td,CD,ϵ′,

with Td denoting the intersection of the testing set and the domain d. This yields a p-value
pval(d+, d−, r,Expert). Then, we assess domain consistency of r for Expert by computing a p-value
pval(r,Expert) for the null hypothesis H0

r,Expert =
⋃

d+,d−,H
0
d+,d−,r,Expert and the alternative hypothesis

H1
r,Expert =

⋂
d+,d−,H

1
d+,d−,r,Expert. This is a classical instance of an intersection-union test (Berger & Hsu,

1996) and for its p-value we can take pval(r,Expert) = maxd+,d− pval(d+, d−, r,Expert) (Schuirmann,

14
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1987). In the end, domain consistency of r for Expert is defined as pvalcorrected(r,Expert) < 0.05,
where we adjust all p-values pval(r,Expert) jointly using Benjamini-Hochberg correction (Benjamini &
Hochberg, 1995) to obtain pvalcorrected(r,Expert).
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