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ABSTRACT

Optimizing control parameters is crucial to estimate reliable tissue characteristics
in quantitative MRI. Basically, multiple hardware parameters are simultaneously
controlled to generate a signal from MRI system. Repetitive acquisitions with dif-
ferent control parameter combinations create distinct signal modulations and then
tissue characteristics are deduced from prior knowledge of physics-based relation-
ship among modulated signals, control parameters, and tissue characteristics. The
choice of control parameters, which determines the attribute of signal modulation,
directly impacts the inverse problem in tissue characteristic estimation. Thus, the
multidimensional control parameter optimization remains an open research topic
in MRI field for accurate analysis of tissue characteristics. Typically, optimal
parameters are determined by iteratively updating sets of control parameters to
maximize the estimation accuracy of the tissue characteristics. However, the con-
ventional optimization process is restricted to explore only the vicinity of control
parameters at the current iteration. Therefore, it could highly depend on initializa-
tion and current parameters, which might lead to inefficient search especially when
noise is present in the system. In this work, to mitigate this limitation, we propose
a novel Gumbel-Softmax-based optimization scheme that enables a probabilis-
tic search across an expanding set of all candidates for each control parameter
using categorical reparameterization. As a case study, the proposed method is em-
ployed to find optimal control parameters for quantitative MRI. We demonstrate
that our Gumbel-Softmax-based optimization simultaneously explores the entire
range of control parameters from early iterations and outperforms the conven-
tional optimization approach on accuracy of MR tissue characteristic estimation
and repeatability of optimization, especially under noisy environments.

1 INTRODUCTION

Optimization of control parameters is vital to find accurate tissue characteristics in quantitative MRI.
Basically, multiple control parameters are simultaneously adjusted to produce a signal from MRI
system. Repetitive acquisitions using various combinations of control parameters yield signal mod-
ulations, and tissue characteristics are inferred based on the prior knowledge of the MRI system
(Figure 1). Since the observed signal modulations are dependent on control parameters, optimizing
control parameters is significant to accurately analyze the tissue characteristics. Various quantitative
MRI techniques are designed using their specific physics models, e.g. intravoxel incoherent motion
(IVIM), Arterial spin labeling (ASL), Magnetization transfer (MT), etc (Le Bihan (2019); Hilbert
et al. (2020); Hernandez-Garcia et al. (2022)). Thus physics model enables simulation of the tissue
characteristics through control parameters. Although the physics model could provide an accurate
signal, it was challenging to optimize the control parameters due to the high degree of freedom in
the physics model and lack of objective function that can capture all aspects of tissue characteristics
estimations (Perlman et al. (2023)). Especially, the simulation of physics models in MRI system
often includes solving complicated differential equations which does not provide an analytical so-
lution for complex, nonlinear, inverse mapping problem. Therefore, evaluating estimation error of
inverse problem for tissue characteristics becomes even more important to ensure an accurate update
of control parameters towards optimal solutions.

Recently, the neural network was proposed to solve nonlinear inverse problems of estimating tissue
characteristics in quantitative MRI (Hoppe et al. (2017); Yoon et al. (2018); Scannell et al. (2020);
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Figure 1: An overview of a quantitative MRI technique. (A) Two series of MR images are obtained
with different control parameters (cp) of RF saturation power (B1) and saturation time (Tsat) re-
spectively. (B) Curve fitting is performed to estimate tissue characteristics in a pixel-wise manner.
Dots represent acquired signals with varying control parameter and solid curves represent the curve
fit for the physics model. (C) A series of MR images acquired with different sets of control pa-
rameters, which simultaneously varies B1 and Tsat, are fitted into physics model to estimate tissue
characteristic maps (exchange rate and concentration of semisolid macromolecule for our study).

Jung et al. (2022)). The estimation error could be used as an objective function for optimization
and thus the gradient descent technique allowed the control parameters to be updated in a way that
minimized the estimation errors of tissue characteristics (Lahiri et al. (2020); Lee et al. (2021);
Velasco et al. (2022); Wang et al. (2023)). Learning-based optimization of acquisition schedule
(LOAS) has recently been proposed to provide optimal scheduling control parameters for quantita-
tive MRI, directly minimizing estimation errors of tissue characteristics (Kang et al. (2022)). The
LOAS algorithm outperformed existing indirect optimization approaches, such as maximizing sig-
nal discrimination between tissue types (Cohen & Rosen (2017)) and minimizing the variance of
estimates using the Cramer-Rao bound (Zhao et al. (2018)). However, the control parameters have
deterministic values at each iteration and updated by exploring only the vicinity of the parameters
at the current iteration. As a result, it could heavily rely on initialization and current parameters,
potentially leading to inefficient search especially when noise is present in the system. This is also
relevant problems with multiple optimal solutions, which are commonly found in real-world scenar-
ios (Huang et al. (2018; 2019); Jian & Hsieh (2022); Xiong et al. (2023)).

To address the aforementioned issues, we propose a novel Gumbel-Softmax-based LOAS (GLOAS)
framework that allows a probabilistic search across an expanding set of all candidates for each
parameter using categorical reparameterization of MRI control parameters. The Gumbel-Softmax
facilitates differentiable categorical reparameterization, enabling a probabilistic representation of
control parameters. Thus, the probabilistic representation is updated via gradient descent and even-
tually control parameters with the highest probability would be selected (Figure 2). To the best of
our knowledge, this is the first work that applies categorical reparameterization of control parameters
for MRI acqusition optimization.

Our main contributions can be summarized as follows:

• We propose a categorical reparameterization of MRI control parameters with Gumbel-
Softmax to allow a probabilistic search across an expanding set of all candidates for each
parameter.
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• We show that the proposed Gumbel-Softmax-based optimization enables an accurate cal-
culation of gradient for backpropagation in the presence of noise in the system.

• We show that the proposed probabilistic optimization equally explores a wide spectrum of
possible control parameters from early iterations, enabling a comprehensive search across
the complex multidimensional space of the physics model.

• The experimental results demonstrate the superiority of the proposed method in terms of
accuracy of tissue characteristic estimations and repeatability of optimization, especially in
the presence of noise for MRI system.

2 PHYSICS-MODEL BASED OPTIMIZATION OF CONTROL PARAMETERS

2.1 PHYSICS MODEL

For tissue characteristic estimation, the signal modulations obtained from various combinations of
control (scan) parameters are fitted into physics model. The physics model is based on the principles
of physics that explain the underlying mechanisms of MRI system. Therefore, the physics model
can accurately simulate the signal with given tissue characteristics and control parameters. Solving
inverse problem of physics model with the known control parameters could provide estimations of
tissue characteristic from experimentally observed signal modulations. Basically, the signal (S) is
defined with two sets of parameters:

S = PM(tc, cp) (1)

where tc is a set of tissue characteristics and cp is a set of control parameters. Multiple acquisitions
are acquired with different combinations of control parameters to generate unique signal modula-
tions which encode the tissue characteristics. Thus, each set of tissue characteristics result in distinct
signal modulations, which can be considered as a unique fingerprint for those tissue characteristics.
The unique signal modulations with respect to tissue characteristics can be described as follows (Ma
et al. (2013); Cohen-Adad et al. (2021); Jordan et al. (2021); Kang et al. (2023)):

S(tc, cp) = [S(tc, cp1), ..., S(tc, cpN )] (2)

cpi = [cpi,1, cpi,2, ..., cpi,M ] (3)

where N represents the number of acquisitions and M is the number of control parameters for single
acquisition. Different combinations of M control parameters would result in different signal modu-
lations with the same set of tissue characteristics. Therefore, the choice of control parameters is of
importance to discriminate numerous signal modulations which would lead to an accurate estimation
of tissue characteristics. For example, linearly-increasing control parameters within the pre-defined
range would generate similar signal modulations, regardless of tissue characteristics. This could
result in poor discrimination of signal modulations, leading to an inaccurate estimation of tissue
characteristics. The control parameters were often chosen to reduce the redundancy between acqui-
sitions (Cohen & Rosen (2017); Kim et al. (2020)).

The physics model is used to understand the complex relation of signal modulations, control pa-
rameters, and tissue characteristics. Although the inverse problem of physics-based model is often
ill-posed due to its intricacy, many studies have addressed it with neural networks (Cohen et al.
(2018); Aggarwal et al. (2018); Jun et al. (2021)):

t̂c = PM−1(S(tc, cp)) = fθ(S(sp, cp)) (4)

where t̂c is the estimated tissue characteristics by solving the inverse problem, f is a deep neural
network, and θ represents the parameters of the network. However, the inverse problems become
even more complicated in real world due to noise. The noise could be originated from various
sources such as diverse physiological processes, thermal noise, motions, and many others (Brooks
et al. (2013)). Moreover, the control parameter themselves might introduce errors, i.e. the system
may not execute the given control parameters exactly due to inherent systematic imperfection such

3
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Figure 2: A schematic of the proposed Gumbel-Softmax-based LOAS (GLOAS) framework for
control parameters. Multiple sets of control parameters manipulate the system to generate sig-
nal modulations, which are used by a neural network to estimate tissue characteristics. Since the
MRI system can be modeled with a physics-based model, signal modulations can also be gener-
ated through physics-based simulations for tissue characteristic estimations. The estimation error is
calculated by comparing the results to ground truth values. This error is backpropagated using the
gradient method to simultaneously update both the control parameters and the neural network. Note
that all potential control parameters are explored at each iteration, and only the parameters with the
highest probability would be selected via Gumbel-Softmax trick.

as field inhomogeneity, eddy current, gradient nonlinearity, etc (Krupa & Bekiesińska-Figatowska
(2015); Graves & Mitchell (2013)). These error and noise should be also considered in the model:

t̂c = PM−1(S(tc, cp+ δcp) +N(σ)), δcp = cp ∗N(σ) (5)

where δcp is the system error for control parameters and N is the noise originated from the system
each of which is assumed to be the additive white Gaussian noise with the noise level of σ in our
study.

The ability to discriminate between signal modulations for different tissue characteristics is deter-
mined by the control parameters. In other words, the choice of control parameters (cp) influences
the difficulty of inverse problem for estimating tissue characteristics (tc) from observed signal mod-
ulations (S). The difficulty of inverse problem can change with the number of acquisitions (N) for
the same model. Smaller N would complicate the inverse problem whereas the larger N would make
it easier to solve the inverse problem.

2.2 LEARNING-BASED OPTIMIZATION OF CONTROL PARAMETERS

The overall algorithm of learning-based optimization of acquisition schedule (LOAS) is described
in Algorithm 1. The MRI acquisition schedule consist of multiple sets of control parameters. A deep
neural network is designed to solve the inverse problem of physics model for tissue characteristic
estimation and thus the estimation errors with respect to the control parameters is calculated as
follows (Kang et al. (2022); Perlman et al. (2022); Cohen & Otazo (2023)):

Loss(θ, cp) =
∣∣|t̂c− tc

∣∣ |22 = ||fθ(S(tc, cp))− tc| |22 (6)

The backpropagation with gradient descent allows the control parameters to be updated to minimize
estimation errors of tissue characteristics.
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cpi+1 = cpi − γcp
∂Loss(θ, cp)

∂cp
(7)

θi+1 = θi − γθ
∂Loss(θ, cp)

∂θ
(8)

where cpi is the updated control parameters at ith iteration and γ represents the learning rate. For
each iteration, the control parameters (cp) and the inverse-problem-solving neural network (fθ) are
simultaneously updated. One million sets of tissue characteristics, accounting for possible scenarios,
were utilized for optimization. For test dataset, ten thousand sets of tissue characteristics with ten
times finer step size was used.

Algorithm 1: Learning-based Optimization of Control Parameters
1. Randomly sample a batch of tissue characteristics (tc)
2. Simulate signal modulations with the sampled tissue characteristics (tc) and randomly

initialized control parameters (cp) via physics model
3. Generated signal modulations are fed to neural network (fθ) to solve the inverse problem

for estimation of tissue characteristics.
4. Estimated tissue characteristics (t̂c) are compared with the ground truth (tc) to calculate

the estimation error (Loss).
5. The error is backpropagated using gradient descent in order to update control parameter

(cp) and neural network (fθ), simultaneously.
6. Iterate the step 1 to 5 until the error converges

3 PROBABILISTIC REPRESENTATION OF CONTROL PARAMETERS FOR
OPTIMIZATION

3.1 CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX

We use a categorical representation (z) for each control parameter (cp) to constrain the discrete min-
max range, based on the prior knowledge of the hardware, along with their associated probabilities
(Figure 3). Each bin corresponds to a respective candidate of control parameter and the number of
bin determines the step size of control parameters. The Softmax function converts the representation
into probability:

πi =
exp(zi)

Σk
j=1exp(zj)

, i = 1, ..., k (9)

where πi is a class probability for ith bin of discrete values. To obtain the value of max probability,
a Gumbel-Max trick is often used to efficiently sample y from a categorical distribution with class
probabilities πl (Gumbel (1954); Maddison et al. (2014)).

y = argmax
l

[logπl + gl] (10)

where g1, . . . , gk are i.i.d samples drawn from Gumbel (0, 1). However, sampling from π with the
Gumbel-max trick cannot compute the gradient due to the non-differentiability of argmax function.
We adopt a Softmax function as a continuous differentiable approximation to enable the gradient
calculation of sampling from the probabilities (π). Thus, the Gumbel-Softmax trick provides soft-
labeled control parameters and then the control parameter with the maximum probability is selected
as hard-labeled control parameters (Jang et al. (2017); Maddison et al. (2017)):

cpsoft =
exp((logπl + gl)/τ)

Σk
n=1exp((logπn + gn)/τ)

, l = 1, ..., k (11)
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cphard = max(cpsoft) (12)

where cpsoft is the soft-labeled control parameters, cphard is the hard-labeled control parameters,
and τ is a temperature. This reparameterization enables control parameters to be represented by
probability of all possible candidates for each control parameter and their combinations. Addition-
ally, cpsoft can be smoothly annealed into a categorical distribution as the temperature decreases,
enabling equal-probability exploration of all control parameter candidates with the high tempera-
ture at early iteration. The hard-labeled control parameters are used for physic-based simulation to
generate the signal modulations whereas the soft-labeled control parameters are adopted for back-
propagation (Figure 3).

In addition, discrete values for control parameters are more suitable for MRI system where hardware
input values are usually discretized. For example, the step size of radio frequency (RF) saturation
time (Tsat) is often 50ms due to its pre-defined block size of RF pulse and longer RF saturation is
achieved by repetitively applying RF saturation blocks (Togao et al. (2016); Heo et al. (2019)). This
requires rounding the conventionally optimized control parameters to the nearest available discrete
values, which might not be optimal.

3.2 NOISE ROBUST GRADIENT DESCENT

To motivate the construction of the soft-labeled control parameters, we investigated the gradient
from objective function (Loss) to soft-labeled control parameters (cpsoft) under the chain rule:

∂Loss(θ, cp)

∂cpsoft
=

∂Loss(θ, cp)

∂S

∂S

∂cp

∂cp

∂cpsoft
(13)

The calculation of gradient is inaccurate in noisy real-world environments which may cause noise
for stochastic gradient (Gitman et al. (2019)):

g = ∇F + η, whereE(η) = 0 (14)
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Figure 3: An illustration of control parameter updates for (A) the conventional LOAS and (B) the
proposed Gumbel-Softmax-based LOAS (GLOAS) optimizations. For conventional LOAS, the val-
ues of control parameters are updated. For the proposed GLOAS, each control parameter is repre-
sented by multiple candidates (k) with probabilities to pick up the candidate of the highest prob-
ability via Gumbel-Softmax function. Hard-labeled control parameters are used for physics-based
simulations, while soft-labeled control parameters are applied during backpropagation. Note that a
single example set of control parameters is shown for illustration, but multiple sets (N ) are required
to generate signal modulations.
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where g is a stochastic gradient, F is a objective function, and η is a random noise of stochastic
gradient. Therefore, the noise in signal modulations and control parameter can introduce a random
noise for the gradient from S ∈ RN×1 to cp ∈ RNM×1:

∂S̃

∂cp
=

∂S

∂cp
+E (15)

where S̃ is a noisy signal modulation and E is a random interference matrix of gradient due to noise.
The gradient is inaccurate for parameter updates in the conventional method, whereas the proposed
soft-labeled control parameters (cpsoft ∈ RNMc×1) modified the gradient as follows:

∂S̃

∂cpsoft
=

∂S̃

∂cp

∂cp

∂cpsoft
= (

∂S

∂cp
+E)

∂cp

∂cpsoft
=

∂S

∂cpsoft
+ΣNM

i=1 EiGi (16)

where Ei is a ith column vector of random interference matrix, Gi is a ith row vector of Jacobian of
Gumbel-Softmax function, N is the number of acquisitions, M is the number of control parameters
for each acquisition, and c is the number of candidates for each control parameter. The proposed
method not only calculates the gradients from loss function for possible candidates of control pa-
rameters, but also delivers more accurate gradients compared to the conventional approach in the
presence of noise. The second term of the rightmost side of equation 16 would sum up to zero
if N × M is high enough due to the randomness of the interference matrix. On the other hand,
the gradient for the conventional optimization technique (equation 15) cannot reduce the random
interference term making it susceptible to noise.

4 EXPERIMENTAL RESULTS

4.1 TISSUE CHARACTERISTIC ESTIMATION WITH NEURAL NETWORK

The goal of optimization of control parameters is to minimize the estimation error of tissue charac-
teristics. Therefore, the estimation errors from the proposed GLOAS was compared to those from
the conventional LOAS. As a case study, we adopted a two-pool proton exchange model as a physics
model (PM), which is described with the modified Bloch-McConnell equations, to simulate the MR
signal (See Appendix A).

We used a multi-layer perceptron (MLP) with seven hidden layers of 256 units each with ReLU acti-
vation for estimation network. The normalized tissue characteristics were obtained with the sigmoid
activation function at the final layer, which was then re-normalized to each range. We performed
optimizations on a dataset comprising of one million sets of four tissue characteristics, each of
which was uniformly sampled from a pre-defined range (Table 2). The adaptive moment estimation
(ADAM) optimizer was used to update the network and control parameters via backpropagation.
Learning rates of estimation network (θ) and control parameters (cp) were heuristically determined
as follows: 10−4 and 10−4 for the LOAS method and 10−4 and 10−2 for the GLOAS method. The
temperature for the soft-labeled control parameters is annealed using the schedule τ = max (1.0,
10exp(−10−3t)) of the iteration step t.

The estimation errors of tissue characteristics were evaluated with respect to iteration for various
conditions (Figure 4). The noise level and the number of acquisitions were changed. Basically, the
difficulty of estimation for tissue characteristics increases as the number of acquisition decreases
and the level of noise increases. Therefore, the most challenging condition is at the highest noise
level (σ = 0.02) and the fewest acquisitions (N=10), whereas the easiest condition is without noise
(σ = 0) and the largest acquisitions (N=30). This is well demonstrated in the Figure 4. The pro-
posed GLOAS is on par with the LOAS optimization if the signal is free from noise. However, the
GLOAS method outperforms the LOAS when noise are included in the physics-based simulation.
The accuracy gap between the LOAS and GLOAS methods becomes larger as the complexity of
inverse problem increases, i.e. reduction of the number of acquisitions and increase of the noise
level. This results underscore the capability of the soft-labeled control parameters in calculating ac-
curate gradients in the presence of noise (equation 16). In addition, the LOAS optimization resulted
in high variance of estimation loss showing the instability of optimization and the dependency on
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Figure 4: Training loss for tissue characteristic estimation as a function of iteration number, com-
paring the conventional LOAS and the proposed GLOAS approaches. Both optimizations were
performed ten times to assess variance, representing the 95% confidence interval with the shaded
regions. Results are shown for various levels of Gaussian noise and number of acquisitions which
determine the difficulty of the inverse problem for tissue characteristic estimations.

initialization. The variation of estimation loss seems to be also dependent on the complexity of the
inverse problem, showing the highest variance at the highest noise level and the fewest acquisitions.
On the other hand, the GLOAS optimization provided relatively small variance of estimation errors,
ensuring the stability of optimization process.

Table 1: Quantitative evaluation of tissue characteristic estimation using the LOAS and GLOAS
methods at a noise level (σ) of 0.01 with various numbers of acquisitions. The normalized mean
square errors (nRMSE) are reported for each tissue characteristic (tc). Each optimization was per-
formed ten times to assess the variance. The mean and standard deviation were averaged over the
last ten iterations.

nRMSE N = 10 20 30
(%) LOAS GLOAS LOAS GLOAS LOAS GLOAS
tc1 22.13 ± 0.80 20.13 ± 0.20 20.15 ± 0.52 18.57 ± 0.37 19.18 ± 0.43 17.82 ± 0.40
tc2 11.14 ± 0.56 10.62 ± 0.15 9.88 ± 0.21 9.39 ± 0.18 9.36 ± 0.21 8.83 ± 0.15
tc3 6.72 ± 0.29 6.17 ± 0.32 5.49 ± 0.41 4.59 ± 0.21 4.91 ± 0.40 3.96 ± 0.17
tc4 2.67 ± 0.36 2.80 ± 0.26 1.96 ± 0.16 2.22 ± 0.19 1.81 ± 0.22 1.95 ± 0.20

mean 10.67 ± 0.50 9.93 ± 0.23 9.37 ± 0.33 8.69 ± 0.24 8.82 ± 0.31 8.14 ± 0.23

The test results for each tissue characteristic are also shown in Table 1. Overall, the normalized
mean square error (nRMSE) values are lower with the GLOAS than those with the LOAS. However,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1

0cp

�

1,1

5
�10

�15
�20

cp5,1
cp10,1

cp15,1
cp20,1

Pr
ob

.

Figure 5: The probabilities for each candidate of the control parameter are displayed across different
iterations. The sum of probabilities of all candidates for cpi,1 is 1 and cpi,1 is independent of each
other. The acquisition number (N ) of 20 and the noise level (σ) of 0.01 were used for optimization.

for tc4, the proposed method does not offer a big gain. This is presumably due to the inherently low
difficulty of estimating tc4. Since the estimation error of tc4 is already low, the objective function,
which sums the errors across all tissue characteristics, might focus on those with higher errors. In
addition, the estimation of tc1 is challenging due to the low sensitivity of signal modulation with
respect to change in tc1, which increases its vulnerability to noise (Kang et al. (2021)).

The simulation results demonstrate that the accuracy of tissue characteristic estimation is higher
with the GLOAS method than those with the LOAS method under noisy condition. Therefore, the
optimized control parameters from GLOAS has a potential to accelerate the temporal process by
reducing the number of acquisitions without compromising the estimation accuracy. Especially, the
acceleration of data acquisition is very important in the field of medical imaging to improve the
patient comfort and reduce the artifacts caused by patient motions.

4.2 PROBABILISTIC REPRESENTATION OF CONTROL PARAMETERS

We assessed the probability of the soft-labeled control parameters during the optimization process.
The probabilities of all candidates for each control parameter are monitored. As shown in Figure
5, at early iteration, the probabilities of all candidates are similar indicating that all possible control
parameters are being equally considered. As iteration progresses, the probability of one candidate
converges to one, while the probabilities of other candidates approach zero. This trend holds for
every control parameter although the rates of convergence are may vary slightly. It is worth noting
that optimized values often appeared at either the lower bound or the upper bound of the predefined
control parameter ranges, which is consistent with previous findings (Zhao et al. (2018); Kang et al.
(2022)). This is a commonly observed behavior in bang-bang control problems and mitigating this
may be an important direction for future studies (Seyde et al. (2021)).

4.3 In silico TISSUE CHARACTERISTIC MAPS

The performance of the GLOAS optimization method was evaluated using the modified Brainweb-
based digital phantoms simulated with two-pool proton exchange models. Four tissue characteristic
maps were generated with previously reported gray matter (GM) and white matter (WM) values
(Kim et al. (2020)). The four tissue characteristic maps were used to generate synthetic MRI images
via physics model (eq24) with six schedules of acquisition number 10: three schedules were opti-
mized with the GLOAS method and other three schedules were optimized with the LOAS method,
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Figure 6: Physics-model-based custom-modified Brainweb digital phantom studies with multiple
optimized schedules from the GLOAS and LOAS methods. Each schedule produces own synthetic
MRI images via physics model and the synthesized MRI images were fed to the corresponding
inverse-problem-solving neural networks simultaneously trained through optimization to estimate
the tissue characteristic (tc) maps.

respectively. The synthetic MRI images were fed to the inverse-problem-solving neural network,
simultaneously trained in optimization process, to estimate the tissue characteristic maps. As shown
in Figure 6, the estimated tissue characteristic maps with optimized schedules from the GLOAS
provide consistent results showing good agreements with the ground truth maps, whereas the LOAS
showed unreliable results especially for tc1, which has an intrinsically low sensitivity. Given that
the no noise was added to the synthetic MRI images, the GLOAS could allow an overall improved
search for finding optimal control parameters by solving complex inverse problem of tissue charac-
teristics estimation.

5 DISCUSSION

The main contribution of this work is the categorical reparameterization of control parameters with
the Gumbel-Softmax trick which allows a probabilistic search over complex multidimensional space
of physics model. The Gumbel-Softmax function enabled a selection of control parameters with the
highest probability from the probabilistic representation so that the probability of control parameters
is updated for optimization. Unlike the conventional LOAS optimization which uses a single set of
control parameters for update, the proposed GLOAS calculates the gradients of numerous combi-
nations of control parameters simultaneously. We demonstrated that the probabilistic representation
was effective on optimization of control parameter, outperforming the LOAS framework in terms
of the estimation accuracy of tissue characteristics and repeatability of optimization. In specific, we
validated that the proposed GLOAS provides accurate stochastic gradient in the presence of noise.
In addition, we showed that the proposed probabilistic optimization explores the numerous com-
binations of control parameters equally from early iteration which allows a comprehensive search
over complex multidimensional space. Therefore, the proposed Gumbel-Softmax-based optimiza-
tion could be an efficient tool for optimizing control parameters in various physical systems.
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Katarzyna Krupa and Monika Bekiesińska-Figatowska. Artifacts in magnetic resonance imaging.
Polish journal of radiology, 80:93, 2015.

Anish Lahiri, Jeffrey A Fessler, and Luis Hernandez-Garcia. Optimizing mrf-asl scan design for pre-
cise quantification of brain hemodynamics using neural network regression. Magnetic resonance
in medicine, 83(6):1979–1991, 2020.

Denis Le Bihan. What can we see with ivim mri? Neuroimage, 187:56–67, 2019.

Wonil Lee, Byungjai Kim, and HyunWook Park. Quantification of intravoxel incoherent motion
with optimized b-values using deep neural network. Magnetic Resonance in Medicine, 86(1):
230–244, 2021.

Dan Ma, Vikas Gulani, Nicole Seiberlich, Kecheng Liu, Jeffrey L Sunshine, Jeffrey L Duerk, and
Mark A Griswold. Magnetic resonance fingerprinting. Nature, 495(7440):187–192, 2013.

Chris J Maddison, Daniel Tarlow, and Tom Minka. A* sampling. Advances in neural information
processing systems, 27, 2014.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous re-
laxation of discrete random variables. In International Conference on Learning Representations,
2017.

Or Perlman, Bo Zhu, Moritz Zaiss, Matthew S. Rosen, and Christian T. Farrar. An end-to-end ai-
based framework for automated discovery of rapid cest/mt mri acquisition protocols and molec-
ular parameter quantification (autocest). Magnetic Resonance in Medicine, 87(6):2792–2810,
2022.

Or Perlman, Christian T Farrar, and Hye-Young Heo. Mr fingerprinting for semisolid magnetization
transfer and chemical exchange saturation transfer quantification. NMR in Biomedicine, 36(6):
e4710, 2023.

Cian M Scannell, Mitko Veta, Adriana DM Villa, Eva C Sammut, Jack Lee, Marcel Breeuwer, and
Amedeo Chiribiri. Deep-learning-based preprocessing for quantitative myocardial perfusion mri.
Journal of Magnetic Resonance Imaging, 51(6):1689–1696, 2020.

Tim Seyde, Igor Gilitschenski, Wilko Schwarting, Bartolomeo Stellato, Martin Riedmiller, Markus
Wulfmeier, and Daniela Rus. Is bang-bang control all you need? solving continuous control with
bernoulli policies. Advances in Neural Information Processing Systems, 34:27209–27221, 2021.

Osamu Togao, Akio Hiwatashi, Jochen Keupp, Koji Yamashita, Kazufumi Kikuchi, Takashi
Yoshiura, Masami Yoneyama, Marijn J Kruiskamp, Koji Sagiyama, Masaya Takahashi, et al.
Amide proton transfer imaging of diffuse gliomas: effect of saturation pulse length in parallel
transmission-based technique. PloS one, 11(5):e0155925, 2016.

Carlos Velasco, Thomas J Fletcher, René M Botnar, and Claudia Prieto. Artificial intelligence in
cardiac magnetic resonance fingerprinting. Frontiers in Cardiovascular Medicine, 9:1009131,
2022.

Nanzhe Wang, Haibin Chang, Xiang-Zhao Kong, and Dongxiao Zhang. Deep learning based closed-
loop well control optimization of geothermal reservoir with uncertain permeability. Renewable
Energy, 211:379–394, 2023.

Minghui Xiong, Wei Xiong, and Zheng Liu. A co-evolutionary algorithm with elite archive strategy
for generating diverse high-quality satellite range schedules. Complex & Intelligent Systems, 9
(5):5157–5172, 2023.

Jaeyeon Yoon, Enhao Gong, Itthi Chatnuntawech, Berkin Bilgic, Jingu Lee, Woojin Jung, Jingyu
Ko, Hosan Jung, Kawin Setsompop, Greg Zaharchuk, et al. Quantitative susceptibility mapping
using deep neural network: Qsmnet. Neuroimage, 179:199–206, 2018.

Bo Zhao, Justin P Haldar, Congyu Liao, Dan Ma, Yun Jiang, Mark A Griswold, Kawin Setsom-
pop, and Lawrence L Wald. Optimal experiment design for magnetic resonance fingerprinting:
Cramér-rao bound meets spin dynamics. IEEE transactions on medical imaging, 38(3):844–861,
2018.

A BLOCH EQUATIONS FOR TWO-POOL PROTON EXCHANGE MODEL

The behavior of spins in MRI system can be described with Bloch equations. In specific, a two-pool
proton exchange model, consisting of free bulk water pool (w) and the semisolid macromolecule
pool (m), can be described with the modified Bloch-McConnell equations in the presence of radio
frequency (RF) saturation. The signal originates from the protons in water so that the magnitude
of net spin in longitudinal direction, which is equivalent to the longitudinal magnetization (Mz), in
water pool is of interest (Henkelman et al. (1993); Heo et al. (2016)):

Mw
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0 −Mw
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where M i
z is the longitudinal magntization of a pool i; M i

0 is the equilibrium magnetization of a pool
i; Mw

ss is the steady-state longitudinal magnetization of a pool i; T i
1 and T i

2 are the longitudinal and
transverse relaxation times of a pool i, respectively; Ω is the frequency offset of the RF saturation;
ω1 is the RF saturation amplitude; kij is the proton exchange rate from a pool i to a pool j; and
AbsorRF,i is the RF absorption rate of a pool i. According to eq18, the signal originated from water
pool is determined by three control parameters (cp): RF saturation power (B1= ω1/2πγ; γ is the
gyromagnetic ratio), frequency offset (Ω), and saturation time (t = Tsat). A relaxation delay time
(Td) is additionally defined to consider the recovery of the longitudinal magnetization in the ab-
sence of RF saturation which determines the initial longitudinal magnetization for next acquisition.
Therefore, the final signal (S) can be described as follow:

S =
[
Mw

0

(
1− e−Td/Tw

1

)
−Mw

ss

]
eλTsat +Mw

ss (23)

tc = [kmw,M
m
0 , Tm

2 , Tw
1 ], cp = [B1,Ω, T s, Td] (24)

The ranges of tissue characteristics (tc) and control parameters (cp) are shown in the Table 2. Ac-
cording to the step size of control parameters, the numbers of candidates are 21 for cp1, 43 for cp2,
33 for cp3, and 21 for cp4. The lower and upper bounds of control parameters were constrained by
the hardware configurations, clinical limitations, and properties of tissues. For example, the limited
range of the RF saturation power was used to stay within the clinically permitted specific absorp-
tion rate (SAR), mainly due to the use of the SAR-intensive, time-interleaved parallel transmission
(pTX)-based RF saturation (Togao et al. (2016); Heo et al. (2019)).

Table 2: Properties of control parameters (cp) and tissue characteristics (tc)

cp1 cp2 cp3 cp4 tc1 tc2 tc3 tc4
B1 (µT) Ω (ppm) Tsat (s) Td (s) kmw (Hz) Mm

0 (%) Tm
2 (µs) Tw

1 (s)
max 1.9 50 2.0 4.5 100 17 100 3.0
min 0.9 8 0.4 3.5 5 2 1 2.0

step size 0.05 1 0.05 0.05 1.0 0.1 1.0 0.03
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