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ABSTRACT

Deep neural networks are supported by the universal approximation theorem, which
guarantees that sufficiently large architectures can approximate smooth functions.
In practice, however, this guarantee holds only under restrictive conditions, and
violations of these conditions give rise to model misspecification. We categorize
such misspecification into three sources: variable misspecification, arising from
insufficiently informative features; structural misspecification, stemming from
the limited width and depth of networks that cannot fully capture the underlying
complexity; and inherent misspecification, occurring when the true model possesses
properties such as discontinuities that cannot be faithfully represented. To mitigate
the impact of these forms of misspecification, ensemble methods have become
a common strategy for enhancing predictive performance. However, standard
ensembles composed of identically architected and equally weighted models may
suffer from "collective blindness", where shared errors are amplified and lead to
systematically biased predictions with high confidence. To mitigate this issue, we
introduce weighted deep ensemble method that learns the optimal weights. We
prove that our method provably attains the convergence rate of the best single
model in the ensemble and asymptotically achieves oracle-level predictive risk.
To the best of our knowledge, this is the first work to provide rigorous theoretical
guarantees for weighted deep ensemble under both well-specified and misspecified
settings.

1 INTRODUCTION

Model misspecification in statistics arises from the omission of relevant variables, inclusion of
irrelevant variables, incorrect functional forms and incorrect distributional assumptions (Maasoumi,
1990; White, |[1982). In such cases, the best possible approximation f* € F, with F denoting the
function class used for estimation, still maintains a significant approximation error from the true
function fy. In deep learning, the neural networks are always assumed to be well-specified. As
shown in the universal approximation theorem, sufficiently large neural networks have the ability to
approximate any continuous function, which in principle allows the approximation error || fo — f*||
to approach zero (Hornik et al., [1989; [Park et al.| [2020; |Lu et al., 2021). Therefore, existing
studies always focus on overcoming challenges in optimization and estimation errors (Barron, [1994;
Soltanolkotabi et al.,|2018; |/Adcock & Dexter, 2021).

However, the assumption that neural networks are well-specified is frequently violated in practice, as
model misspecification is common. Unlike in traditional statistics, misspecification in deep learning
manifests in several distinct forms. First, it may arise from an information deficit, where the input
features and their latent representations lack the necessary information to capture the true data-
generating process. Second, practical constraints on network depth and width impose finite capacity,
leading to non-negligible approximation error when the true function is highly complex. Finally,
misspecification can occur when the true function has properties such as discontinuities, which cannot
be exactly represented by neural networks and can only be approximated with non-vanishing error at
the discontinuity points.

"All models are wrong, but some are useful (Box,|1976))." Ensemble methods is the most intuitive
method to leverage the useful parts of multiple wrong models (Fort et al.,|2019; |Huang et al., 2024).
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A: Candidate model 1 B: Candidate model 1 C: Traditional Deep Ensemble

Figure 1: Comparison of the decision boundaries and confidence levels of different ensemble methods,
with darker shading indicating higher confidence. The Traditional Deep Ensemble (C) shows
"collective blindness" by having lower confidence in correctly classified areas but higher confidence
in the misclassified areas, e.g., blue points within the red region. Weighted Deep Ensemble (F)
corrects these errors by maintaining high confidence in correct areas while showing low confidence
at uncertain boundaries. The key difference is highlighted in the circled area.

However, it still raises a critical question: if a neural network model is misspecified, can the estimators
from an ensemble of such models still be trusted? We find that traditional deep ensembles, which
consist of models with identical architectures (Zhang et al.l 2020; Schweighofer et al.,[2024)), tend to
learn in highly correlated ways when faced with the same misspecification. By deviating in the same
incorrect direction, they produce an adverse effect we term "collective blindness". This phenomenon
is caused by the ensemble reinforcing, rather than correcting, the biases shared by all members. As
illustrated in Figure[T](C), in the orange circle, the traditional deep ensemble produces misclassified
predictions with high confidence. The root of the problem is that traditional ensemble methods not
only employ similar model architectures but, more critically, typically aggregate predictions using
equal weights. When all models are plagued by the same misspecification, this simplistic averaging
only serves to amplify their shared error. To address this, we propose a novel and effective solution:
an optimally weighted deep ensemble built upon architectural diversity. By ensuring that exploitable
differences exist among the models, we can theoretically derive data-driven weights that minimize
the ensemble’s prediction error on a held-out validation set. As illustrated in Figure [T (F), the use of
optimal weights helps the ensemble aggregate complementary strengths of its constituent models
and produce more accurate predictions than relying on a single misspecified model. Our primary
contributions are as follows:

(1) We are the first to systematically define and categorize misspecification in deep learning into
variable, structural, and inherent forms. We propose weighted deep ensemble to mitigate the
"collective blindness" effect seen in traditional ensembles and provide a theoretical guarantee for our
weighted deep ensemble for well-specified and misspecified models.

(2) We establish an asymptotic error bound for the weighted deep ensemble estimator and show that
the bound converges at the same rate as the smallest error bound among all candidate networks. This
guarantees that the ensemble inherits the speed of the best individual model, so including slower
or misspecified models can never slow it down, while any rapidly converging model immediately
improves the overall rate. Furthermore, we provide detailed analyses for common networks such as
MLP, CNN, and RNN.

(3) We prove that the weight vector yields a prediction risk that converges to the oracle minimum, even
though the oracle weight itself depends on unknown population quantities and cannot be computed.
Thus the proposed weighted choice method recovers the infeasible optimal weight asymptotically,
giving the first rigorous guarantee that weighted deep ensemble can attain oracle-level accuracy
using only observable data. To the best of our knowledge, this is the first study to offer a theoretical
guarantee for weighted deep ensemble.
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2 RELATED WORK

Misspecifiction. Model misspecification, which occurs when a chosen model fails to accurately
capture the true data-generating process, is a common challenge in statistics (McGuirk et al., 1993}
Cerreia-Vioglio et al., [2025). Misspecification is categorized into several types: omitted varaible
bias, where the exclusion of a relevant variables leads to biased and inconsistent parameter estimates
(Gospodinov & Maasoumi, [2021)), incorrect functional form, such as assuming a linear relationship
when the true function is nonlinear (Gerds & Schumacher, 2001} |[Kasparis, 2011)), and mismatch
distribution when the assumed probability distribution for the error term or the response variable in
models is incorrect (Masiha et al., [2021}; [Kuang et al.| 2020). These types of misspecification always
degrade model predictive performance (Lanzani| [2025)). In deep learning, the universal approximation
theorem states that a sufficiently large neural network can approximate any continuous function
(Raghu et al.l 2017 Kratsios et al.,[2021). Therefore, previous research always assumed that deep
models are well-specified. However, misspecification is a widespread issue in practice due to limited
information and finite model capacity of neural networks with limited width and depth. Our work is
the first to provide a clear definition for misspecification in deep learning and theoretical guarantees
for deep ensembles under misspecified conditions.

Ensemble Learning. Deep ensembles, typically composed of identical architectures with different
random initialization, have been shown to outperform single deep learning models in terms of
accuracy (Lakshminarayanan et al.| 2017; Mohammed & Kora, [2023)). However, relying solely on
the same model structure may limit the effectiveness of the ensemble. To address it, several works
have introduced greater diversity by varying neural network architectures (Zhang et al.,[2020)) and
training methods (Gontijo-Lopes et al.| [2022)). A large number of studies have theoretically explained
the advantages of deep ensembles from the aspects of diversity (Wood et al., 2023}, Jeffares et al.,
2023) and generalization (Ortega et al.|[2022; |Odonnat et al., [2024). Specifically,|Zhang et al.|(2020)
demonstrates that diversity in ensemble components can reduce prediction errors. |Lin et al.| (2024)
show that averaging outputs enhances out-of-distribution generalization. However, these studies are
centered around equal-weighted ensemble learning. Recent studies have delved into weighted deep
ensemble (Kim et al., [2018; |Matena & Raffel, [2022), but they only verified it experimentally. In
contrast, we are the first to provide the theoretical guarantee for the weighted deep ensemble.

3 METHODOLOGY

3.1 PROBLEM SETUP

We consider a general model where the input features X = (X7,..., X4) € R? and the output
Y can be either real-valued or categorical. In regression tasks, ¥ € R and follows the model
Y = fo(X) + €, where f is an unknown true function and ¢ is a noise term satisfying E(¢|X) = 0.
In classification tasks with C classes, Y = (Y7,...,Yc) " € {0,1} is the one-hot vector, where
only one entry is 1 indicating the true class and all others are 0. The conditional probability of Y is
modeled as P(Y | X) = fo(X) forc=1,...,C, where fo(X) = (fo.1(X),..., fo.c(X))T and
fo,e(X) = P(Y.=1|X). We assume that n independent observable samples (X;,Y;) are drawn
from a joint distribution over (X,Y). The supremum norm is defined as || f||co = supx |f(X)],
while the L2 norm is || f|| 2 = ([ | £(X)|? dPx (X))

Model training. The observable data is split into two parts, a training set with size 7,4, for training
the neural network and the other 1y, = 1 — nyrain for choosing weights. Specifically, a base model f
is obtained by empirical risk minimization: f: argminyer 1/Ngrain Z?:‘f L(f(X;),Y:), where
F denotes the model function class and ¢ is the loss function. And f* is defined as the minimizer of
the true expected risk: f* = argmin,e r E[¢(f(X),Y)].

3.2 MISSPECIFICATION IN DEEP LEARNING
In this section, we systematically define three types of misspecification in deep learning. Let
fo : Xirue — Y denote the true data-generating function.

Definition 1 (Variable Misspecification). Let X0qe1 be the feature space available to a given model.
Define the projection map 7 : Xirye — Xmodel that restricts each x € Xiyye to its coordinates in
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Xodel. We say that the model exhibits variable misspecification if fy cannot be expressed as a
composition of ™ with a function on Xyodel. Formally,

B9 : Xmodel — Y suchthat fo(x) — g(m(X)) for almost every X € Xirue-

Example. Consider an image classification task where the true label depends on latent features
Z = (Z1,%>) (e.g., ear shape and nose shape). The true function is fo(Z) = Iz, 12,50 (e.g.,
predicting cat if positive, dog if negative). If the model’s feature space Xpoge1 cOrresponds only to
Z5 due to missing feature input or incomplete feature extraction, the model suffers from variable
misspecification.

Definition 2 (Structural Misspecification). Let H be the function class corresponding to a given
neural network architecture. Let L be a loss function and define the risk

R(h) = Ex~pyx [L(R(X), fo(X))] .

For a tolerance level § > 0, we say that the architecture exhibits structural misspecification if the
minimal achievable risk within H exceeds this tolerance. Formally,

inf R(h) > 6.
heH

Example. Consider ReLLU neural networks with both depth and width restricted to the order of
log(n). For 8-smooth functions in dimension d, it is known that the approximation error in this class
satisfies

inf = clog(n)~*4/4
jnf R(h) = clog(n) ,

for some constant ¢ > 0 depending only on 3 and d (Jiao et al.,[2023)). We set the tolerance level to

& = n~ /4, which corresponds to the rate condition commonly required in double machine learning
(Chernozhukov et al.,2018)). For sufficiently large n, we have

. _ —4p/d
hugqi R(h) = clog(n) > 4,

so the architecture is structurally misspecified relative to the tolerance §.

Definition 3 (Inherent Misspecification). Let H be the function class corresponding to a given
neural network architecture. Approximation results for neural networks typically require fy to belong
to a smoothness class, such as a Holder or Sobolev space, in order to guarantee vanishing L?
approximation error. We say that the architecture exhibits inherent misspecification if fy does not
satisfy the required smoothness conditions, so that the minimal achievable L? error is bounded away
from zero. Formally, for some tolerance level § > 0,

Jnf ||h = follz2 > 4.

Example. Consider the Dirichlet function

folz) = 1, xeQnlo,1],
070, ze®\Q)NIO,1].
This function is nowhere continuous and does not belong to any Holder or Sobolev class. As a

result, neural networks cannot approximate fj in L? with vanishing error, and the approximation gap
remains strictly positive. Therefore, the model class 7 suffers from inherent misspecification.

3.3 WEIGHTED DEEP ENSEMBLE

First, we introduce the standard deep ensemble method.

Deep ensembles. A standard deep ensemble consists of M candidate models f ()y--n, fM() The

deep ensemble prediction f(X)is: f(X) = 2%21 Wy, fm (X)), where all weights are set equally
as w,, = 1/M. Typically, the candidate models share the same neural network architecture and
are trained independently on the same dataset using the same loss function ¢(f,,,(X),Y"), which
corresponds to minimizing the empirical risk: Lavg = E [((f(X),Y)] .
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As stated before, traditional deep ensembles may suffer from "collective blindness" in the presence of
variable, structural, or inherent misspecification. This motivates us to apply a more flexible weighting
scheme.

Weighted deep ensemble. In this paper, we propose a method called Weighted Deep Ensemble
(WDE), which combines multiple neural networks with different structures into a single predictive

model. Let w = (w1, ..., wy )" be the vector of ensemble weights. We restrict the weights to the
simplex W = {w € [0, 1M : "M w,, = 1}. The weighted deep ensemble prediction is defined
as f(X;w) = ng:l Wy, frm(X). In practice, the weight vector w is unknown and need to be

estimated from observable data.
Weight choice criterion. We adopt a validation-risk minimization (VRM) criterion: the estimator w
is chosen to minimize the empirical loss on a validation set, under the simplex constraints

Mval

@ = argmin — » _((f(X;;w),Y;).

n
wew val im1

This VRM strategy links the weighting scheme directly to out-of-sample performance, introducing
no extra hyperparameters beyond the standard validation split. Specifically, we consider two general
tasks: (i) Regression: with the squared loss g (f(X;w),Y) = (f(X;w) — Y)Q, the VRM
objective reduces to a strictly convex quadratic program on the simplex W (Li et al., 2023} |Qu et al.,
2025). (i) Classification: Using cross-entropy 10ss Lejass (f(X;w),Y) = =Y " log(f(X; w)),
where Y € {0, 1}¢ denotes the one-hot encoding of the true class, and f (X ; w) denotes the predicted
probability. Since the mapping w +— f(X;w) is affine and — log(-) is convex, the loss function
remains convex in w and can be optimized using projected-gradient (Boyd & Vandenberghe, 2004)

~

methods. So we construct the weighted deep ensemble estimator f(X;w) = Zﬁle B [ (X).
Due to the convexity of the loss function with respect to w , we can obtain the global optimal solution
for the ensemble weights.

3.4 ASYMPTOTIC ERROR BOUNDS

Our goal is to establish the asymptotic error bound of the proposed weighted deep ensemble estimator.
Specifically, we aim to show that our proposed weighted deep ensemble effectively combines multiple
small neural networks to achieve an asymptotic error bound at least as fast as that of the best candidate.
By appropriately combining these models, the estimator adapts to various data structures and retains
the ability to capture intricate features without resorting to a large, monolithic network. Consequently,
the weighted deep ensemble benefits from more flexible modeling choices while still maintaining an
asymptotic error bound that is as fast as the best candidate. Importantly, the presence of misspecified
or poorly performing candidate models does not slow down the convergence rate of the estimator.
We provide theoretical guarantees for both regression (Theorem [I)) and classification (Theorem 2))
settings. To establish these results, we begin by introducing the following condition:

Condition 1. (i). There exists a positive constant C such that || fo(X) oo < C, || fm(X)]leo < C
form=1,...,M; (ii). E(e| X) = 0, and ¢ is sub-Gaussian with parameter o.

This condition restricts the upper bound of fj, f*, and that € has mean zero and sub-Gaussian tails.
This condition is also widely used in the literature; see [Schmidt-Hieber| (2020) and [Jiao et al.[(2023)
for example.

Theorem 1. Suppose Condition |I| holds and assume that the candidate model with the fastest
convergence rate has an asymptotic error bound of order S, i.e., the candidate model with the fastest
asymptotic error bound (denoted as f without loss of generality) satisfies || fo(X) — f(X)||z2 =
O,(5), then our weighted deep ensemble estimator can also achieve this rate asymptotically:

I fo(X) — F(X;®)] 12 = Op(S + \/g)-

Besides the asymptotic error bound S, the result also includes an additional term of order 1/+/n.
In practice, the minimax rate for nonparametric methods such as neural networks is typically of
order n=P/(26+d) for some smoothness [ and input dimension d (Stone} |1982), which is slower than
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1/+4/n; hence the overall asymptotic error bound is dominated by the nonparametric estimation error.
Therefore, Theorem [T] establishes that the asymptotic error bound of the weighted deep ensemble
estimator is no worse than that of the best individual candidate model. In other words, regardless
of which candidate model achieves the smallest asymptotic error bound, the ensemble procedure
guarantees at least comparable asymptotic performance and will not converge more slowly than that
benchmark.

Theorem [I] presents the asymptotic error bound of the deep ensemble estimator under regression
tasks. In fact, we can establish similar properties for classification tasks. Before presenting the
theorem, we define Ry/;(f) = E{l(argmax,Y, # argmax, f.(X))} — E{I(argmax, Y. #
arg max, fo..(X))} to be the excess misclassification rate.

Theorem 2. Suppose fo(X) is uniformly bounded away from 0 and 1 and assume that the best
candidate model has a misclassiﬁcation rate of S, i.e., the candidate moc{el with the smallest

misclassification rate (denoted as f without loss of generality) satisfies Ry, (f) = Op(S), then our
weighted deep ensemble estimator can also achieve this misclassification rate asymptotically:

Ry (FX ) = 0,05+ ).

Theorems T]and 2] show that, in both regression and classification tasks, the asymptotic error bound
of our weighted deep ensemble estimator matches the asymptotic error bound of the best single
candidate model. Detailed proofs are provided in the Appendix.

In addition, when the pool of candidate models is altered, the estimator’s attainable asymptotic error
bound necessarily shifts in response to the new composition. For better understanding, the next three
corollaries provide the asymptotic error bound of the weighted deep ensemble estimator when the
candidate models are chosen from MLP-based networks, CNN-based networks, and RNN-based
networks. It is worth noting that Theorem [T holds under the listed moment conditions, but additional
assumptions are implicitly embedded in the asymptotic error bound O, (S). Since different neural
network architectures require different conditions to guarantee convergence, we do not enumerate
them explicitly here and instead present the result in terms of the general order O, (.S). Accordingly,
the subsequent corollaries impose further conditions on the candidate models, ensuring that they can
indeed attain the corresponding asymptotic error bound in those specific settings. Define O,,(-) as the
rate by ignoring logarithmic factors.
Corollary 1 (MLP case). If all candidate models are MLP-based models, fq is B-Holder smooth
with 8 > 1, and Conditions of Theorem 4.2 in\Jiao et al.|(2023) holds, then with some specifically
designed candidate models, the weighted deep ensemble estimators can achieve asymptotic error
bound of R

1fo(X) = F(X;®)||72 = Op(n=27/(+20)),
Corollary 2 (CNN case). If all candidate models are CNN-based models, fq is B-Holder smooth
with 8 > 1, and Conditions of Theorem 4.6 in|Shen et al.|(2022)) holds, then with some specifically
designed candidate models, the weighted deep ensemble estimators can achieve asymptotic error
bound of

1fo(X) = F(X;®)||72 = Op(n=27/(+20)),
Corollary 3 (RNN case). If all candidate models are RNN-based models, fq is B-Holder smooth
with 3 > 1 and Conditions of Theorem 3 and Theorem 5 inlJiao et al.|(2024)) holds, then with some
specifically designed candidate models, the weighted deep ensemble estimator can achieve asymptotic
error bound of

1£0(X) = F(X;@)|[72 = Op(n=20/(020),
where [ is the length of the input sequence, i.e., the number of time steps processed by the RNN.

These results can also be extended to ResNet, Transformer, and other network structures. As long as
we have the asymptotic error bound of a single network, Theorems|[I]and [2] ensure that the weighted
deep ensemble estimator can achieve the same asymptotic error bound as the fastest candidate model.

3.5 ASYMPTOTIC OPTIMALITY UNDER MODEL MISSPECIFICATION

Unlike traditional ensembles with uniform weights, our method learns data-dependent weights,
ensuring that the ensemble performs at least as well as the best candidate asymptotically. Since
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equal weights lie within our admissible weight space, our approach is guaranteed to match or
exceed the performance of equal-weighted averaging asymptotically. In practice, the oracle weight
vector is unknown and cannot be directly computed from observable data. By instead using the
VRM criterion, our method significantly reduces computational cost while maintaining competitive
efficiency, making it particularly suitable for large-scale scenarios. In the following, we present
theoretical results showing that the proposed weighted deep ensemble estimator achieves asymptotic
optimality and attains oracle-level accuracy using only observable data.

Let R(w) = [[fo(X) = f(X;w)[72. B*(w) = [[fo(X) = f*(X;w)[[72, & = infuwew R*(w),
and ¢,, = supew || f(X;w) — f*(X;w)| 2. To establish the asymptotic optimality of w, we
require the following condition.

Condition 2. (i). &, 'n~1/2 = o(1); (ii). &, ¢n = 0,(1).

This condition regulates the divergence speed of &,,, and it is frequently used in FMA research, such
as/Ando & Li|(2014); Zhang et al.|(2016). Conditionrequires &, to grow faster than \/1/n and ¢,,.
Importantly, this condition should be interpreted as a misspecification condition, ensuring that the
oracle risk &,, does not vanish too quickly relative to the estimation error. It naturally aligns with the
three forms of misspecification introduced above:

(1) Variable misspecification. When crucial variables are missing, or when the essential features of
fo cannot be generated from the available input space, f* cannot converge to fj. In this case, the
approximation error remains bounded away from zero, which implies that the oracle risk &,, does
not vanish and Condition 2] (i) is satisfied. This requirement should be viewed as a stronger form
of variable misspecification, as it excludes cases where the omitted variables have only negligible
influence on f, for instance when their contribution diminishes asymptotically.

(2) Structural misspecification. When networks have limited depth or width, their approximation

error remains bounded away from zero. In this case £, decreases at a much slower rate than n-1/2,
so Condition[2] (i) is satisfied.

(3) Inherent misspecification. When the true function lies outside the smoothness classes typi-
cally required for neural network approximation, the minimal L? error remains strictly positive.
Consequently, &, is bounded away from zero, and Condition 2] (i) holds.

Unlike &, the term ¢,, measures the estimation error between f and f*, which depends on sample
size rather than model specification. Condition [2|(ii) therefore requires that ¢,, converges to zero at a
faster rate than &,,, ensuring that estimation error does not dominate the asymptotic behavior.

Theorem 3. Suppose Conditions[I|and 2| hold,
R(w)

—_ 1
infyen R(w) -

in probability as n — oo.

This theorem states that under Conditions[T|and 2} as the sample size n goes to infinity, the ratio of the
risk of @ to the infimum of the risk over all possible weights converges to 1. In other words, although
the weight that minimizes the risk is infeasible, the proposed weight choice criterion identifies a
weight w whose risk becomes asymptotically equal to the minimal risk. This means our procedure
performs asymptotically as well as this ideal benchmark. This provides strong theoretical support for
our weight selection method, assuring that no asymptotic loss is incurred compared to the unattainable
optimum. All theoretical proofs are provided in the Appendix B}

4 NUMERICAL RESULTS

In this section, we investigate the models that are well-specified or suffer from variable misspecifica-
tion, structural misspecification, and inherent misspecification.

Baselines. We compare several ensemble strategies: (1) Deep Ensemble (DE): homogeneous MLPs
with different initializations and equal weights; (2) Equal-Weight Heterogeneous (EW): heterogeneous
MLPs with equal weights; (3) Our Method, WDE: heterogeneous MLPs with optimal weights.
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Experimental details. Datasets are split 6:2:2 for training, validation, and testing. We use Adam
with early stopping (patience=20 epochs). Hyperparameters: learning rate searched in [0.001, 0.1],
batch size 128, max 5000 epochs. Our method uses 4 heterogeneous networks with total parameters
matching a 4xMLP (2 hidden layers of 30 nodes) DE for fair comparison.

Table 1: Performance comparison across different complexity types with varying missing variables,
with sample size 5000.

Task # Missing DE EW WDE Apg Agw

0 7.452 +0.319 7.711 £+ 0.527 7.025 + 0.247 6.07% 9.76%

1 8.175 £ 0.472 8.686 + 0.957 8.028 + 1.236 1.84% 8.19%

Nested 3 8.390 4+ 0.681 8.825 +0.814 8.077 +£1.211 3.88% 9.27%
5 8.440 £+ 0.788 8.493 +0.482 7.792 + 0.287 8.31% 9.00%

7 9.122 +0.498 8.687 +£0.510 7.967 + 0.431 14.50% 9.04%

0 1.975 + 0.330 1.854 +0.187 1.773 £ 0.131 11.35% 4.57%

1 3.251 +£0.740 3.640 = 0.782 2.949 £+ 0.778 10.22% 23.43%

Interaction 3 3.949 + 0.991 4.434 + 1.046 3.890 + 0.984 20.76% 13.98%
5 5.239 4+ 1.149 5.223 +1.176 5.077 £+ 1.099 22.36% 2.87%

7 5.747 + 1.206 5.617 + 1.266 5.548 + 1.168 13.27% 1.24%

0 2.154 +0.101 2.197 + 0.121 2.023 £+ 0.116 6.47% 8.59%

1 2.578 £ 0.175 2.844 + 0.419 2.474 £+ 0.193 4.17% 14.93%

Periodic 3 2.994 +0.213 3.148 +0.439 2.901 £ 0.251 3.19% 8.48%
5 3.631 +0.254 3.666 £+ 0.410 3.362 £+ 0.273 7.98% 9.04%

7 3.841 +0.316 3.932 +0.481 3.714 £+ 0.331 12.52% 5.87%

Well-specified Models and Variable Misspecification. We consider some simple data-generating
processes (DGPs) that can be well-approximated by simple MLPs, i.e., the approximation error
is small. Let X € RP be a random vector where each feature X; is independently sampled
from N (0, 1), with the number of features p = 10. We define the different DGPs: (i) Nested:

fo(z) = sin(X:J1 L 23) + ZJ L (cosz;)%.; (ii) Interaction: fo(X) = %Z?Zl leco:(j X, Xp; (iil)
Periodic: fo(X) = Z?=1 sin(X;) + Z] 6 cos(Xj).

When all relevant features are included in the model, the setting is considered well-specified. We
introduce variable misspecification by randomly dropping a subset of features during training, with
the number of dropped features controlling the degree of misspecification. The results are summarized
in Table 2| Our method WDE consistently achieves the lowest MSE.

Table 2: Performance comparison across different parameter discrepancies with sample size 5000

A « DE EW WDE ADE AEW
0.2 0.598 £ 0.222 0.402 £ 0.085 0.341 £ 0.034 75.47% 17.83%
30000 0.5 0.630 £ 0.259 0.438 £0.179 0.397 £ 0.146 58.59% 10.37%
0.7 0.634 + 0.230 0.473 £0.128 0.398 + 0.083 59.53% 18.87%
0.9 0.654 £ 0.157 0.524 £ 0.185 0.417 4+ 0.089 56.83% 25.76%
0.2 0.587 £ 0.159 0.374 £0.075 0.339 £ 0.032 73.10% 10.22%
50000 0.5 0.632 + 0.193 0.425 £ 0.098 0.399 £+ 0.091 58.31% 6.49%
0.7 0.701 £ 0.201 0.457 £ 0.099 0.419 £ 0.067 67.21% 9.17%
0.9 0.790 £ 0.171 0.488 £ 0.074 0.437 £ 0.061 80.65% 11.64%
0.2 0.576 £ 0.206 0.335 £ 0.031 0.331 £ 0.026 74.31% 1.51%
100000 0.5 0.582 £ 0.175 0.350 + 0.050 0.340 £ 0.039 71.42% 3.15%
0.7 0.638 £0.139 0.353 £0.052 0.346 4 0.043 84.26% 1.84%
0.9 0.677 £ 0.226 0.350 £ 0.044 0.348 4 0.043 94.50% 0.50%

Structural Misspecification. To investigate structural misspecification, we define the DGP as a
convex combination of a simple function and a more complex function: fo(X) = « fsimple(X )+
(1 — a)fcomplex(X), where fsimple = MLP2X30 and fcomplex = MLP3><100~ The function used for
fitting is fsmpie(X ). The parameter o € [0, 1] controls the degree of misspecification, from well-
specified (o = 0) to totally misspecified (« = 1). We report the relative MSE under varying
degrees of misspecification with a sample size of N = 5000 in Table 2] The results show that as the
misspecification degree increases, the MSE of DE grows rapidly. In contrast, our method (WDE)
significantly mitigates this performance degradation and maintains robust accuracy even under high
misspecification.
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Table 3: Comparison with relative improvement percentages (A) across DE, EW and WDE.

Complexity N DE EW WDE Apg Agpw
5000 0.96068 4+ 0.02707 0.94702 +0.01385 0.93171 + 0.02422 3.11% 1.64%

Square Wave 10000 0.81132 £ 0.02665 0.80467 + 0.02623 0.76520 + 0.03430 6.03% 5.16%
15000 0.74766 4 0.03754 0.71625 £+ 0.03140 0.64963 £+ 0.06092 15.09% 10.25%
5000 0.00137 4 0.00021 0.00141 4 0.00010 0.00117 4= 0.00012 17.34% 20.40%
Infinite 10000 0.00085 & 0.00015  0.00086 + 0.00013 0.00067 £ 0.00014 27.38% 28.86%
15000 0.00057 & 0.00013  0.00065 £ 0.00010 0.00044 =+ 0.00012 30.13% 49.55%

Inherent Misspecification. We consider two discontinuous DGPs to simulate inherent misspecifica-
tion: (i) Infinite Discontinuity: fo(X) = 2?21 % (Zszl =X > %)) is the indicator function
and K = 1000; (ii) Square Wave: fo(X) = Zj=1 % ( ,le &= I(X; > %)) where sgn(-) is the
signum function. The results in Table |3|demonstrate that WDE achieves substantial improvement.
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(a) Nested (b) Interaction (c) Periodic
Figure 2: The ratio of MSE of WDE to the oracle weight as sample size increases.

Theoretical results. To further validate Theorem 3| we plot the ratio of the MSE of our proposed
weighted deep ensemble estimator to that of the oracle weight as the sample size increases, as shown
in Figure [2l We can observe that as the sample size grows, the weighted deep ensemble estimator
asymptotically approaches the optimal oracle weight using only the observed data.

Comparing with other weighted methods. We compare our method against two alternatives in
Table {4} (i) Greedy Ensemble: Sequentially adds models to minimize validation loss, then uses equal
weighting. (ii) In-sample Ensemble: Weights are optimized directly on the training MSE.
More simulation results can be found in Section [D]in the Appendix.

Table 4: Performance comparison of weighted methods in variable misspecification

Complexity # Missing WDE In-sample Ensemble Greedy Ensemble
0 7.025 £ 0.247 7.258 +£0.329 7.136 £+ 0.232
1 8.028 1+ 1.236 8.149 £ 1.150 8.108 + 1.187
Nested 3 8.077 +1.211 8.186 £ 1.208 8.177 £ 1.217
5 7.792 £ 0.287 7.963 £+ 0.338 7.904 £ 0.346
7 7.967 £ 0.431 8.076 £ 0.393 8.045 + 0.400
0 1.773 £0.131 1.869 £ 0.161 1.794 £ 0.116
1 2.949 1+ 0.778 2.990 £ 0.813 2.948 +0.778
Interaction 3 3.890 4+ 0.984 3914 £0.995 3.908 £ 0.981
5 5.077 4+ 1.099 5.114 £1.038 5.125 + 1.084
7 5.548 + 1.168 5.651 + 1.124 5.547 £ 1.170
0 2.023 + 0.116 2.086 £ 0.137 2.051 £ 0.126
1 2.474 + 0.193 2.535 £0.178 2.518 +0.226
Periodic 3 2.901 + 0.251 2.961 £ 0.261 2.929 £+ 0.260
5 3.362 +0.273 3.400 £ 0.270 3.378 £0.279
7 3.714 + 0.331 3.751 £0.310 3.730 £ 0.336

5 CONCLUSION

Our paper formally defines the misspecification problem in deep learning and establishes a theoretical
foundation for the weighted deep ensemble, including its error bound and asymptotic optimality.
Extensive experiments demonstrate that our method consistently outperforms traditional deep ensem-
bles across various misspecification scenarios and significantly mitigates the adverse effects of model
misspecification.
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6 ETHICS STATEMENT

Our work is committed to the highest standards of scientific excellence, grounded in the principles
of honesty, reliability, and transparency. The core technical contribution of this paper is to address
the challenge of model misspecification in deep learning. This is not merely a technical problem
but an ethical imperative. A misspecified model can produce unreliable predictions, perpetuate and
amplify societal biases, and ultimately cause harm if deployed in critical real-world applications such
as healthcare, finance, or autonomous systems. By developing methods to better understand, identify,
and correct for misspecification, our research aims to contribute to the creation of more robust, fair,
and trustworthy Al systems. We believe that this work is a necessary step toward the responsible
development of artificial intelligence, ensuring that its benefits can be realized while minimizing
potential negative societal consequences.

7 REPRODUCIBILITY STATEMENT

We are committed to the full reproducibility of our work. To this end, we have included the complete
and detailed derivations of our theoretical proofs in the Appendix. Furthermore, all experimental
results presented in this paper can be fully reproduced according to experimental details and we will
upload the source code.
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A LARGE LANGUAGE MODEL USAGE DISCLOSURE

In this work, we made limited use of a large language model (LLM) as an auxiliary tool. In particular:

Language polishing: We used ChatGPT-5 to improve the readability, grammar, and fluency of the
English text. The authors reviewed all edits and manually adjusted phrasing as needed.

Code assistance: We asked ChatGPT-5 to assist in generating boilerplate code for data preprocessing,
but in a minimal and constrained way; the authors carefully verified, tested, modified, and adapted all
generated code to ensure correctness.

We emphasize that all content in the submission is attributed to the authors. We take full responsibility
for the correctness of all claims and any content originally generated by the LLM that contained
errors or inconsistencies that were revised or removed. We confirm that the LLM was not included as
an author, and no portion of the submission is entirely generated without human oversight.

B PROOF OF THEOREMS
To facilitate the proof of the theorem, we begin by stating a useful lemma.

B.1 LEMMA 1

Lemma 1 (Lemma 1 inZhang|(2010)). Let
w = arg min {R(w) + a,(w) + b, }.
weWw

If
jan(w)| _
wew Rf(w) o(1)
and |R(w) - R*(w)]
e Ay op(1),

and there exists a positive constant ¢ so that lim,,_, o inf,eyy R*(w) > ¢ almost surely, then we
have N
R(w)

w1

—1
in probability.

B.2 PROOF OF THEOREM[I]

The weight choice criterion can be decomposed as

Lw)

- niﬁf{n—f()ci;w)}?

— s Y= )+ ) O

_ nvalnf{y fo(X }M—%Ua — f(Xi;w)}?
=l f{y Fol X0} (0l X) — T ).

We first analyze 1/nva >3 {Y; — fo( D H fo(X5) — (Xl,w)} Let G, = {gw(X) = fo(X)—
F(X;w) : w e W, |fo(X) = F(X;w)||2 < r}, and let D = {Diuin, Dyalidation } collect all

13
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observed samples. By the multiplier inequality (Van Der Vaart & Wellner, |1996} Bartlett et al.| 2005)),
we have

Nval

1
su Y — fo(Xi)g(Xi) — B{(Y — fo(X))g(X)|D :O(UER,MQTJFJ
geg[nval ;( fo(Xi))g(Xi) —E{(Y — fo(X))g(X)|D}] = O, " N
where R, ,, G, is the Rademacher complexity of G,, and o is the sub-Gaussian parameter of the
noise ¢ = Y — fo(X). Given that W = {w € [0, 1]M,an\;[:1wm = 1}, we have R,,_,G, <
rv/2log(M)/n. Since M, o are finite, and n., has the same order as the total sample size n,
the first term on the right hand side of (1) is O,(cER,,G,) = O,(r/+/n), and the second term is

Op(0/10g(nva1) /nvair) = Op(r/+/n). Then (1) becomes

1 Mval

sup [ 3 (¥i = JolXi))g(Xe) — E{Y = Jo(X))g(X)|P}] = Oy 7). @

n
9€Gr Tval T4

r), M

Let wq be the one-hot vector with entry 1 at the position corresponding to the model with the fastest
convergence rate and 0 elsewhere. Then it is straightforward to show [ fo(X) = f(X;wo)|2: =

[fo(X) — F(X)|2 2, = O,(S?). Moreover, since J only depends on D, and X is an independent
sample drawn from the same distribution but independent of D, we have

E{(Y ~ fo(X))(fo(X) = J(X;w0))|D}
= E[E{( - fo(X))(fo(X) = F(X;w0))| X, D} D]
= E{E( — fo(X)|X, D)(fo(X) ~ F(X;w0))D}
E{E(e] X) (fo(X) — f(X;w0))|D}
0. 3)

Taking 7 = S, we have g.,, € G5 and thus by (2) and (3, we have

Mval

Z{Y fo(Xi) Hfo(X3) — F(Xizwo)}

Nyal ©

1 Mval

~ ~

= D (Y= fo( X)) (fo(Xi) = F(Xizwo)) — B{(Y = fo(X))(fo(X) = [(X;w0))|D}

n
val i—1

FE{(Y — fo(X))(fo(X) — F(X;wo))|D}

Mval

sup [— > (V; — fo(Xi))g(Xs) — E{(Y — fo(X))g(X)|D}]

n
geg, Ttval i—1

1
_ Op(\/;S), )

Note that (3)) remains valid when wy is replaced by w, because w is entirely determined by D, and
hence is independent of the new sample X . Taking r = || fo(X) — f(X;W)|| 2, we have

IN

Nval

Z{Y P(XD}fo(X) — F(Xi @)}

Nyal <

1 Nval

-~ ~

= = 2= (X)) (fo(X) = F(Xu®)) = E{(Y = fo(X)(fo(X) = F(X;9))|D}

=1

FE{(Y = fo(X))(fo(X) — f(X;w))D}

Nval

sup [ Z(m — fo(X:)9(X3) — B{(Y — fo(X))g(X)|D}]

g€G, Mval ©

= ffo FX; @) 2)- ®)
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Then we analyze 1/nya 315 {fo(Xs) = F(Xi;w)}?. Let Hy = {ha = {fo(X) = [(X;w)}
w e W, Var[{fo(X) — f(X;w)}2D] < r?}. S1m1larto. we obtain

Nval

sup Zh(XZ)2 -E {h(X)2|D}1 =0, (ERH’H,« + ﬁr) = Op<\/%r>. (6)

Ny
heH, val i—1

Since fy and fm are uniformly bounded, there exists a positive constant C' such that
Var[{ fo(X) — (X;w)}?|D]
< E[{fo(X) - f(X;w)}!|D]
< [1fo(X) = f(X5w)lI72 ] fo(X) = F(X5w)[1%
< O fo(X) = F(X5w)][7-. )

When taking w = wg and r = C'S in H,, we have hq, = {fo(X) — f(X; wy))}? € Heg because
Var[{ fo(X) — f(X;w0)}?D] < C?||fo(X) — f(X;wo)||2, = C%2S? from H By (EI), it follows

that
— f{fo Xizwo)y’
- nwlf{f@ Xizwo))? B [{fo(X) ~ F(X:w0)?D] +E |{fo(X) = F(X;w0))*|D]
< sw [nzh ~E{h(X)"[D} | + [/o(X) — F(X:wo)}:
= 0,(/L5+5%). ®

Similarly, taking w = @ and rg5 = C||fo(X) — f(X;®)||z2, we have hg = {fo(X) —
f(X;w)}? € H,_ and thus by @, the following bound holds:

— %U’o Fxis @)
= = f{fo F(Xis @)Y — E [{fo(X) = F(X:®)ID] +E [{fo(X) - F(X:9)}*D
< ow [nZh —B{AXRID} | + 1A(X) - X5 @)
= Op(/ | fo(X) = FX: ) |12) + 1 fol(X) — FOC @) ©

Although w depends on the validation data, the bound still holds because the supremum is taken over
the class H,.,. Combining (3 and (9, £(w) can be written as

i{y fo(X)} +[1fo(X) = A(X;@>|%z+op<\/g>||fo<x>—A(X;@niz,am

nval

and according to (4) and , L(wg) can be written as

. X)) 4 0,(8% + \/ZS). (a1

Using the expansions in (10) and (1 1), together with the fact that £(w) minimizes the validation loss,
ie., L(w) < L(wp), we have

1 fo(X) — F(X; @) +op<ﬁ>||fo<x> — F(X;®)[| 2 = 0,(S% + \/Zs» (12)
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By completing the square, (I2)) can be written as

14620 = X @) . +op<\/ﬂ — (o5 /M

ie.,

110(3) ~ Fc) 2 = 0,5 + /)

This completes the proof of Theorem I}

B.3 PROOF OF THEOREM 2

The regression and multiclass-classification problems differ only in the choice of loss function. In
classification problems, the performance measure of primary interest is the misclassification error
(the 01 loss). Because this loss is discontinuous, it is typically replaced by a continuous surrogate,
most commonly the cross-entropy loss. The surrogate is smooth and differentiable, which facilitates
gradient-based optimization. Importantly, since cross-entropy is a calibrated surrogate, its excess risk
dominates the squared excess misclassification risk; see |Tewari & Bartlett (2007) for example. Let
w be the one-hot vector that places 1 on the coordinate corresponding to the model with the fastest
convergence rate and 0 elsewhere. Thus, if the excess misclassification risk of wy is of order .5, the
corresponding cross-entropy excess risk satisfies

M|D} — O,,(SQ).

Let
H, = {hw(X) = {log fo(X) — log [(X;w)} : w e W, Var{he(X)|D} < r? }

By the multiplier inequality,

1 Tval
Sup o ;{K — fo(Xi)Ih(X:) — B{Y — fo(X)}h(X)|D]| = op@ ER,. H, + 7\/}), (13)

where 72 = Var(Y — fo(X)) is finite because Var(Y — fo(X)) < 1/4 in classification tasks.

Moreover, we have ER,,  H, < Cry/log(M)/nya, and ny, has the same order as n, then
becomes

Mval

sup | S~ (¥i — fo(X)}(X:) ~ BIY ~ o(OM(X)[D] = 0,(y/1r). (14

heH, Tval =

Similarly,

1 Mval

sup |3 fo(X0)h(Xy) ~ E[fo(X)R(X) D] = O, /£ 7). 15)

heH, Tval i—1

Moreover, we have

E[{Y — fo(X)}h(X)|D] = E[E{Y — fo(X)|X }h(X)|D] = 0. (16)
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By (T4)-(16), we have
1 MNval
Z Yih(X)

Nyal “ 1

Mval Mval

= Z{Y fo(X

TNyal <

Nval

Z{Y fo(Xi)h(X:) = E[{Y — fo(X)}h(X)[D]]

Mval

Zfo E[fo(X)h(X)[D]|
SELY — f(X)}A(X)[D] + EL(XOMX)D

— E[fo(X)h(X)|D] + op(\/gr). (17)
Taking 7 = S and h(X) = log(fo(X)/fo(X;wo)), (I7) becomes

Mval

IN

sup |
heH, Mval £

L(wg) = - ZY log(f(X;;wp))
LR (X
= — Y; lo Ai Y; log(
Tlyal ; 108 f(X“ wO nval Z & fO

fO(X) : 1 Nval
= |E{fo(X)log ="=——|D}| + O, (4/15) - Y; log( fo( X
[B{fo(X) log =2 1D} + (vV2s) -~ > ¥ilog(fo(X.)

= 0,(57+/28) - > Wilog(fo(X0)

Similarly, we have

Nval

L) = - 1ZYlog (X))
vaZ 1
X) log(n) fo(X)
= E log =———— 0, E{fo(X)log =——"|D
{fo(X) gf(X @)\ O\ — )\/ {fo(X) gf(X;@)l }
- lfmog (fo(X
va. i=1

Since L(w) < L(wy), This implies

Jo(X) 1 o fo(X) _ 2 1
B{fo(X)log 22 =251 + O(ﬁ)\/E{fo(X)lgﬂX;a)ID} 0,57+ /15).

)

and thus \/E{fo X) log{fo( )/f(X w)}| D} = Op(\/% + S). This further implies that the
misclassification rate R/, (W (S + \[

B.4 PROOF OF COROLLARIES

For the MLP case, suppose the true regression function f; lies in the Holder class H? ([0, 1]¢, By),
defined as

HB([O,l]d,BO):{f:[O,l] R: max [|0%f]le < B, max sup| 0% f(w) — 0 f(y)l

. SBO}
lafl1<s leells=s 2oty |z —yl" ’
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where 9% = 91 ... 9% with & = (ev1,...,q)] € N and |af; = 3%, a;. We consider
candidate models from the ReLU MLP class

Fpowp.s.d=1f:R* = R: width W, depth D, total parameters S, ||f|lc < Bo}.  (18)

Corollary 5.3 inlJiao et al.|(2023) guarantees that for the function class of ReLU MLPs with
__da __da _3d
Wo = O(n4(d+25) log, (n)) ., Dy= O(n4(d+25) logQ(n)) , So=0 <n 4d+26) (log n)4> ,

the empirical risk minimizer f: argminfe 7y v, py.s,.4 Satisfies
E[F(X) = fo(X)|[72 < BY(LB] + )*dPLPIHoVIn =20/ (020) (1og )1 = O(n 2P/ (429)),

Substituting S = n~#/(4+26) into Theorem [1]implies that, when the candidate models are MLPs
and include one with width W, depth Dy, and size Sy, the asymptotic error bound of the model

averaging estimator is O, (n28/(d+28))

The other two corollaries can be proved similarly, and the proof is omitted here.

B.5 PROOF OF THEOREM[3]

Let

1 TMval

L(w) = L(w) - (V% = fo(X2)?).

TNyal i—1
Observe that the newly added component is unrelated to w, so we have

W= al;genvlgnﬁ(w) = afenvlvm{za(w) + L(w) — R(w)}.

According to Lemmal(l] to prove Theorem[3] it is sufficient to prove

|R(w) — R*(w)| o
o "
and
£(w) — Rw)| _
o R W 20

For (19), we have

up L) — B )
wew R* (w)
SUPyew [R(w) — B (w)|

= ity R (w)
= &t Slelgv\||f(X;w)*fo(X)||%2 — [If*(X;w) — fo(X)|3]
< 55152%\(”]?(&111)—fo(X)||L2 (X w) — fo(X) )| F(Xw) — f*(X;w)]| 2]
< 0& Y sup [[F(Xw) — FH(X;w)l|2
wew
Op(&, dn)
Op(l)a
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where the last step comes from Condition[2} Thus (T9) is obtained. Next, we will prove (20):
oy |E(w) = R(w)
wew R* (w)
&' sup |L(w) — R(w)|
wew
Tval Mval

> {ui - Flaiw }——Z{yl fol@)?} = | F(Xs5w) = fo(X)II3

n
val i—1

IN

—1
= &, sup
wew

Mval

> [Pl w) — fo(X0) )~ 17X w) ~ (Xl

Tyal < 1

IN

—1
£, sup
wew

Mval

Z{f Xiw) — f(Xesw) Y — fo(X0)}.

Mval

Zf (Xisw){Y; = fo(X)}. e

+ &' su
‘UJ

Nval

+ &' sup
wew

Nyal “

To prove (20), it is sufficient to prove the next three equations

MNyval N 2 N
! sup | {Faiw) — fo(x)} — I1F(Xw) ~ (X)) = 0p(1),  @2)
¢! Sup | g{f(Xi; w) — f*(Xi;w) HY; — fO(Xi)}’ = op(1), (23)
and .
&1 sup | Z; I (Xisw){Y; = fo(X0)}| = 0p(1). (24)

Let Hy = {hw = {]?(X, w) — fo(X)}? : w € W}. By the multiplier inequality, we have

TNval R 2 R
Ao {F@iw) = (X0}~ 1F(X50) - (X7
- hseugl) nvwlzh ]E{h(X)lp}‘

- o)

The difference between (6) and (23) is that we set 7 = 1 here. This is because we take the supremum
over all w € W, instead of localizing to a particular neighborhood of w. And the bound in (23] is
also bigger than that in (6).

Therefore, by Condition 2} (22)) can be proved by

Nval

S {Flaiw) — fo(X0} 170X w) ~ fo(X)I

n
val i—1

= 0,(&, 1 /vn) = 0p(1). (26)

—1
£, sup
wew

For (23), we have

&t sup | S (X w) - F(Xaw) (Y~ (X))
weW Mval S

= &P, — P+ P){J(X;w) — f(X;w)HY — fo(X)}
= &'0,(\/1/n)

op(1). 27)
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For ([24), according to the Chebyshev’s inequality, we have

which means &, ! sup,,cyy

IN

IN

Pr

Pr

m=1

5;2u_2n_1MVar {fr(X)e}

e

-2, =2
n V

sup

_ 1
{gn 1 weW ! Tval ;

&, " sup
w

M 1
3 Pr{fgl\
m=1

Tyval -

M
Z &2 ?Var {

n

1 vaal
Nval i=1

1

ew

—1
)

Nval

Nval

D

Nyal “

Mval

1

(X w)e;

1

D fn(Xo=i
i=1

Nval

[T (X w)e;

>,,}

Zf;(Xi)&}

Nyal -

>,,}

M
S wonfi(X)e:

i=1 m=1

>V}

= 0,(1) by Condition

(28)

Equations (26)-(28) imply that (22)-(24) hold, and thus we obtain (20). Since (T9) and (20) hold, we

complete the proof of Theorem [3]

C MORE EXPERIMENTAL DETAILS

Training resouces. We use the A800 80G for training the models with PyTorch version 2.5.1.

D ADDITIONAL RESULTS

We report the ratio of WDE MSE to oracle MSE across parameter discrepancies and sample sizes in

structural misspecification in Table 5]

Table 5: Ratio of WDE MSE to oracle MSE across parameter discrepancies and sample sizes

A = 30000 A = 50000 A = 100000

o N N N

5000 10000 15000 5000 10000 15000 5000 10000 15000
0.9 1.0066 1.0038 1.0020 1.0061 1.0033 1.0013 1.0076 1.0032 1.0031
0.8 1.0062 1.0031 1.0022 1.0046 1.0022 1.0020 1.0054 1.0034 1.0025
0.7 1.0045 1.0030 1.0023 1.0078 1.0041 1.0021 1.0061 1.0034 1.0021
0.6 1.0056 1.0020 1.0025 1.0087 1.0034 1.0018 1.0068 1.0038 1.0022
0.5 1.0059 1.0022 1.0014 1.0055 1.0036 1.0025 1.0040 1.0030 1.0014
0.4 1.0061 1.0028 1.0034 1.0081 1.0027 1.0025 1.0051 1.0041 1.0010
0.3 1.0058 1.0031 1.0022 1.0057 1.0027 1.0019 1.0046 1.0038 1.0036
0.2 1.0091 1.0037 1.0024 1.0078 1.0027 1.0018 1.0066 1.0028 1.0014
0.1 1.0088 1.0029 1.0017 1.0062 1.0028 1.0015 1.0058 1.0049 1.0021
0.0 1.0069 1.0020 1.0015 1.0036 1.0034 1.0021 1.0079 1.0045 1.0023

We compare with other weighted methods in structural misspecification from Table [6]to Table[S]

E FUTURE WORK

While the current theoretical results establish asymptotic error bounds for the proposed weighted deep
ensemble estimator, extending these results to non-asymptotic settings remains an important direction
for future research. Such analysis could provide tighter guarantees in finite-sample regimes, which
are often relevant in practical applications. Another promising avenue is to investigate principled
approaches for determining the number and composition of candidate models in the ensemble.
Understanding how model diversity and ensemble size affect performance could lead to more efficient
and adaptive ensemble design strategies.
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Table 6: Relative MSE comparison for sample size N = 5, 000

WDE In-sample Ensemble Greedy Ensemble

A 11—« Mean =+ Std Mean =+ Std Mean =+ Std
0.1 0.417 4 0.089 0.421 4 0.090 0.418 4 0.091

0.2 0.408 + 0.081 0.416 £ 0.081 0.413 £ 0.083

0.3 0.398 4+ 0.083 0.402 £ 0.086 0.400 £ 0.085

0.4 0.387 £ 0.095 0.394 £ 0.097 0.391 £ 0.098

30.000 0.5 0.397 - 0.146 0.399 4+ 0.146 0.399 4 0.146
’ 0.6 0.360 4+ 0.048 0.366 £ 0.052 0.363 £+ 0.049
0.7 0.347 £ 0.043 0.356 4 0.048 0.351 £ 0.044

0.8 0.341 4 0.034 0.349 £ 0.037 0.343 4 0.036

0.9 0.337 4+ 0.031 0.343 4 0.034 0.340 £+ 0.032

1.0 0.334 £ 0.031 0.342 4+ 0.030 0.336 £ 0.031

0.1 0.437+ 0.061 0.442 £ 0.063 0.439 £+ 0.063

0.2 0.476 £ 0.192 0.483 £ 0.190 0.479 £ 0.191

0.3 0.419 4 0.067 0.424 4+ 0.070 0.423 £+ 0.070

0.4 0.391 4 0.050 0.396 £ 0.051 0.394 £+ 0.051

50.000 0.5 0.399 £ 0.091 0.382 4 0.041 0.402 £ 0.103
? 0.6 0.354 4 0.041 0.361 + 0.041 0.357 4 0.041
0.7 0.344 4+ 0.030 0.350 4 0.032 0.345 4+ 0.031

0.8 0.339 £ 0.032 0.345 4+ 0.035 0.340 £ 0.033

0.9 0.334 4 0.027 0.342 4+ 0.029 0.337 £ 0.028

1.0 0.330 4 0.027 0.335 4+ 0.027 0.334 4 0.027

0.1 0.348 4 0.043 0.357 4 0.044 0.349 £ 0.043

0.2 0.349 4+ 0.042 0.357 4 0.047 0.352 4+ 0.044

0.3 0.346 £ 0.043 0.355 4 0.043 0.348 £ 0.043

0.4 0.342 4 0.042 0.348 4+ 0.043 0.344 4 0.042

100.000 0.5 0.340 4+ 0.039 0.347 4 0.040 0.342 £+ 0.040
’ 0.6 0.335 £+ 0.035 0.343 4 0.038 0.338 £ 0.036
0.7 0.332 +0.034 0.339 £ 0.037 0.335 4+ 0.035

0.8 0.331 4 0.026 0.336 & 0.028 0.331 4 0.026

0.9 0.330 £ 0.025 0.337 4 0.026 0.334 £ 0.027

1.0 0.327 4+ 0.024 0.336 4 0.021 0.331 £ 0.026

Table 7: Relative MSE comparison for sample size N = 10, 000
WDE In-sample Ensemble Greedy Ensemble

A l1—« Mean + Std Mean + Std Mean =+ Std
0.1 0.399 4 0.108 0.404 4 0.108 0.404 + 0.110
0.2 0.396 £ 0.117 0.400 £ 0.116 0.399 + 0.120

0.3 0.377 £ 0.094 0.380 £ 0.093 0.379 £ 0.094

0.4 0.369 +£ 0.069 0.371 £ 0.068 0.371 £ 0.069

30,000 0.5 0.351 £ 0.053 0.355 £ 0.051 0.352 £ 0.054
’ 0.6 0.339 £ 0.044 0.344 £ 0.045 0.342 £ 0.047
0.7 0.328 £ 0.038 0.331 £ 0.038 0.330 £ 0.038

0.8 0.327 £ 0.034 0.330 £ 0.034 0.329 £ 0.036

0.9 0.318 + 0.032 0.321 £ 0.032 0.319 £ 0.032

1.0 0.320 &+ 0.034 0.323 £ 0.035 0.323 £ 0.036

0.1 0.399 £ 0.052 0.405 £ 0.052 0.401 £ 0.052

0.2 0.398 £ 0.063 0.401 +£ 0.065 0.400 + 0.064

0.3 0.384 +£ 0.060 0.388 £ 0.059 0.387 £ 0.061

0.4 0.396 £ 0.105 0.398 £ 0.104 0.397 £ 0.105

50.000 0.5 0.349 £ 0.048 0.353 £ 0.048 0.351 = 0.049
’ 0.6 0.334 £ 0.039 0.338 £ 0.040 0.336 4 0.040
0.7 0.324 4 0.036 0.327 4 0.036 0.325 + 0.036

0.8 0.318 £ 0.034 0.321 £ 0.033 0.319 £ 0.034

0.9 0.314 £ 0.035 0.320 £ 0.039 0.316 £ 0.036

1.0 0.311 £ 0.029 0.314 £ 0.030 0.313 £ 0.029
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Table 8: Relative MSE comparison for sample size N = 15, 000

WDE In-sample Ensemble Greedy Ensemble

A 11—« Mean =+ Std Mean =+ Std Mean =+ Std
0.1 0.381 4 0.086 0.384 4 0.084 0.384 £ 0.089

0.2 0.381 &+ 0.106 0.384 £+ 0.105 0.386 = 0.111

0.3 0.350 4 0.052 0.354 4+ 0.052 0.351 4 0.053

0.4 0.340 £ 0.047 0.343 £+ 0.046 0.342 4 0.047

30.000 0.5 0.328 4= 0.040 0.333 4+ 0.039 0.330 £ 0.041
’ 0.6 0.323 4+ 0.032 0.327 4+ 0.032 0.326 4 0.032
0.7 0.323 4 0.062 0.326 4= 0.062 0.325 4 0.065

0.8 0.309 % 0.026 0.314 £ 0.029 0.312 4 0.029

0.9 0.335 + 0.106 0.338 £ 0.105 0.336 & 0.106

1.0 0.303 £ 0.023 0.307 & 0.024 0.305 4 0.024

0.1 0.388 % 0.049 0.390 % 0.049 0.389 4 0.050

0.2 0.379 4 0.052 0.382 £ 0.053 0.383 £ 0.055

0.3 0.384 + 0.071 0.387 + 0.071 0.387 4+ 0.071

0.4 0.360 £ 0.049 0.363 £ 0.049 0.362 £ 0.049

50.000 0.5 0.335 + 0.040 0.339 + 0.040 0.337 4 0.041
’ 0.6 0.331 & 0.040 0.334 4= 0.042 0.333 £ 0.042
0.7 0.312 £+ 0.025 0.314 &+ 0.025 0.313 4+ 0.026

0.8 0.306 + 0.024 0.308 £ 0.025 0.306 £ 0.024

0.9 0.301 £ 0.023 0.303 £+ 0.023 0.303 4 0.023

1.0 0.302 £ 0.023 0.304 £ 0.022 0.303 £ 0.022

0.1 0.306 £ 0.027 0.308 £ 0.027 0.307 £ 0.027

0.2 0.303 £ 0.025 0.306 £ 0.025 0.305 4 0.026

0.3 0.304 £ 0.027 0.306 + 0.026 0.305 £ 0.027

0.4 0.301 £ 0.023 0.304 £+ 0.024 0.302 4 0.024

100.000 0.5 0.299 + 0.024 0.302 £ 0.024 0.300 £ 0.024
’ 0.6 0.297 4+ 0.022 0.299 £+ 0.022 0.298 4 0.022
0.7 0.297 + 0.021 0.299 4+ 0.021 0.298 £ 0.021

0.8 0.294 4+ 0.019 0.296 4+ 0.019 0.295 4+ 0.019

0.9 0.297 + 0.018 0.299 £+ 0.018 0.298 + 0.018

1.0 0.299 4 0.020 0.301 4 0.021 0.300 4 0.021
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