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Abstract

Recently, molecular language models have shown great potential in various chemi-
cal applications, e.g., drug-discovery. These models adapt auto-regressive language
models to molecular data by considering molecules as sequences of atoms, where
each atom is mapped to individual tokens of the language models. However, such
atom-level tokenizations limit the models’ ability to capture the global structural
context of molecules. To tackle this issue, we propose a novel molecular lan-
guage model, coined Context-Aware Molecular T5 (CAMT5). Inspired by the
importance of the substructure-level contexts, e.g., ring systems, in understanding
molecules, we introduce substructure-level tokenization for molecular language
models. Specifically, we construct a tree structure for each molecule whose nodes
correspond to important substructures, i.e., motifs. Then, we train our CAMT5 by
considering a molecule as a sequence of motif tokens, whose order is determined
by a tree-search algorithm. Under the proposed motif token space, one can incor-
porate chemical context with a significantly shorter token length (than atom-level
tokenizations), which is useful for mitigating the issues during the auto-regressive
molecular generation, e.g., error propagation. In addition, CAMT5 guarantees to
generate a valid molecule with non-degeneracy, i.e., no ambiguity in the meaning
of each token, which is also overlooked in previous models. Extensive experiments
demonstrate the effectiveness of CAMT5 in the text-to-molecule generation task.
Finally, we also propose a simple strategy of ensemble that can aggregate the
outputs of molecular language models of different tokenizations, e.g., SMILES,
SELFIES and ours, further boosting the quality of the generated molecules.

1 Introduction

Discovering molecules that match desired language descriptions is a long-standing goal in chemistry
since it is an essential ingredient for practical deployments like drug-discovery and material design
[1, 2, 3]. However, achieving such text-to-molecule generation poses a challenge due to the different
structural modalities of language and molecules. To address this challenge, researchers have explored
the fine-tuning of auto-regressive language models, with additional molecular data [4, 5], which is
inspired by the recent success of language models in leveraging various domain knowledge including
chemical concepts [6, 7]. Specifically, they treat each molecule as a sequence of tokens based on
using string representations of molecules such as SMILES [8] and SELFIES [9]. Intriguingly, they
show that these molecule-aware language models, i.e., molecular language models, can be obtained
by learning the text-conditional molecule distribution, considering atoms of molecules as tokens of
the language models [10, 11].

However, it is yet underexplored which tokenization strategy for a molecule is more effective for
molecular language models. Previous state-of-the-art molecular language models [10, 11] have
proposed to use atom-level token space, i.e., each atom is represented by a single token within the
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Figure 1: An overview of our proposed method. (1) Context-Aware Molecular T5 (CAMT5): we
train molecular language models with motif-level token space. (2) Confidence-based Ensemble: we
propose a simple ensemble strategy to further improve the generation quality of our model.

token space of molecular language models [4, 5, 10, 11, 12]. Even though they show remarkable
performance as pioneering efforts, such atom-level tokenizations limit the models’ ability to learn the
crucial global contextual patterns in molecules, only focusing on local connectivities [13, 14, 15, 16].
For example, they consider the carbon atoms in a cyclohexyl group and aliphatic carbon chains to
be the same token, despite their distinct structural context, e.g., a ring structure. In addition, such
strategies represent a molecule as a long sequence of atom-by-atom tokens; this may disturb the
desired text-to-molecule generation since auto-regressive language models often suffer from dealing
with long sequences, e.g., error propagation [17, 18]. This leads to the question of how to tokenize
molecules in a context-preserving manner to train molecular language models more effectively.

To answer this, we draw inspiration from the following chemical prior—the structural context of
molecules is more effectively captured through their substructure-level, i.e., motif-level, characteris-
tics rather than atom-level attributes [19, 20, 21]. Consequently, we hypothesize that the molecular
language models can benefit from regarding a motif as a single token to incorporate various motif-
level structural contexts in an efficient manner with a reduced number of tokens. To this end, we
propose a new concept, i.e., motif-level token, in the token space of the molecular language models.

Contribution. We introduce a novel chemistry-inspired molecular language model coined Context-
Aware Molecular T5 (CAMT5). Here, we propose to use motif-level tokens to efficiently and
effectively capture the structural context of molecules in molecular language models. Specifically, we
first construct a tree of motifs from a molecule, coined Context-Tree, treating each motif as a token
of our model. We then train our CAMT5 by regarding each molecule as a sequence of motif tokens
whose order is determined by a tree-search algorithm on the Context-Tree (see Figure 1).

In particular, we carefully design the motif-level tokenization for CAMT5 to alleviate two drawbacks
in tokenization used in the previous molecular language models. First, CAMT5 always generates a
valid molecule, while MolT5 [10] often generates a invalid sequence of tokens that do not correspond
to a molecule. Secondly, each of our motif-level tokens has a unique meaning, while some of the
tokens in BioT5 [11] have multiple meaning, e.g., both an atom and the number of atoms in a ring are
represented with a single token [9], resulting ambiguities to the model.

Finally, we also introduce a simple ensemble strategy to aggregate the outputs of molecular language
models of different tokenizations, for further enhancing the performance of CAMT5 with help of
other molecular language models. To this end, we first define the confidence of each molecular
language model as a criterion to evaluate the generated molecules. To compare the confidences
between different models, we propose to calibrate the confidence of each model based on the token
length of the generated molecule. We then suggest selecting the molecule that achieves the highest
calibrated confidence score as the output of the ensemble with respect to the given descriptions. This
ensemble strategy allows us to fully leverage the advantages of each molecular language model,
which results in the selection of more faithful molecules.
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Table 1: Comparison of the token space in molec-
ular language models. We mark Validity if a
sequence of tokens always represents a valid
molecule, and we mark Non-degeneracy if a single
token corresponds to a unique molecular meaning.

Method Validity Non-degeneracy

MolT5 [10] ✗ ✓
BioT5 [11] ✓ ✗

CAMT5 (Ours) ✓ ✓
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Figure 2: Distribution of tokens for molecular
language models in the ChEBI-20 dataset.

We verify the effectiveness of our method on the popular ChEBI-20 [22] and PCDes [23] benchmarks.
In ChEBI-20, CAMT5 improves the ratio of molecules that exactly matches the description (Exact;
higher is better) by 21.7 → 26.6, compared to the previous best-performing baseline. Moreover,
CAMT5 generates more faithful molecules that are similar to the targets, i.e., 0.796 → 0.826, 0.725
→ 0.766, and 0.593 → 0.645 in MACCS, RDK, and Morgan FTS (higher is better), respectively. We
also show that our confidence-based ensemble strategy further improves the performance, improving
the Exact metric by 26.6 → 30.3. We also demonstrate the various applications of our CAMT5, such
as data-efficient molecular generation [24] and molecule modificaiton.

2 Related work

Molecular language models. Inspired by the recent success in auto-regressive language models
[6, 7], there have been several attempts to adapt these language models to achieve molecule-aware
language models, i.e., molecular language models [4, 5, 10, 11, 12, 22]. Specifically, they fine-tune
existing language models, e.g., T5 [6], with molecular data by treating molecules as sequences of
tokens. In particular, MolT5 [10] employs the widely used SMILES [8] representation to convert a
molecule into tokens of molecular language models. However, this model often generates invalid
token sequences that violate the grammar and, therefore, do not correspond to valid molecules. To
alleviate this issue, BioT5 [11] proposes to use SELFIES [9], a representation guaranteed to generate
valid molecules. However, SELFIES introduces ambiguities, i.e., degeneracy, in the meanings
of tokens, leading to sub-optimal performance in modeling the token distribution. For example,
the ‘[O]’ token can be interpreted completely differently: an oxygen atom or an indicator of a ring
system comprising six atoms preceding this token. To overcome the limitations of the token spaces
in previous molecular language models, we carefully design the token space of CAMT5 with (1)
guaranteed validity of the generated molecules with (2) non-degeneracy in the meanings of tokens.

Context-aware molecule learning. Recent studies in the molecular domain have explored the
concept of context-aware learning of molecules. For example, [13, 14, 21] learn chemistry-friendly
molecule embeddings by leveraging motif-level context in self-supervised learning frameworks,
and [25, 26] approximate 3D conformers of molecules while preserving the geometric structural
context of motifs. A notable approach in this line of work is context-aware molecular generation
[19, 20, 27, 28]. Specifically, they learn the distribution of motifs rather than learning the distribution
of atoms. Intriguingly, they show superior performance in generating molecules from the learned
molecule distribution, due to the incorporation of contextual patterns in the motifs of the molecules.
However, recent molecular language models still rely on learning the atom-level token space [10, 11],
which limits the incorporation of the structural context of molecules. In contrast to these works, we
aim to develop a context-aware molecular language model based on the motif-level token space.

3 Method

In Section 3.1, we explain an overview of our problem. In Section 3.2, we provide the description of
CAMT5, our proposed context-aware molecular language model. In Section 3.3, we describe our
confidence-based ensemble strategy.
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3.1 Problem description

We formulate our problem of text-to-molecule generation as follows. Our goal is to train a molecular
language model fθ so that fθ(x) = m, where x is a text description of the desired molecule and m
is the corresponding molecule (see Table 3 for an example). Recent studies [10, 11] have shown that
such fθ can be trained with description-molecule pairs {xk,mk}Nk=1 with the following objective:

L(θ;xk,mk) := LCE

(
fθ(xk),mk

)
, (1)

where LCE denotes cross-entropy loss, and xk and mk denote the k-th text description and the
corresponding tokenized molecule in the token space of the molecular language model, respectively.

Here, the choice of tokenization strategy for mk plays a crucial role in training an effective fθ [11],
since the sequence of tokens has to reflect the structural context of the original molecule. However,
previous molecular language models overlook such importance, relying only on the local connectivity
of atoms based on the atom-level tokenization, e.g., SMILES [8] and SELFIES [9]. Furthermore,
they represent a molecule with a long sequence of tokens based on the individual atoms, and this may
disturb the desired text-to-molecule generation since auto-regressive language models often suffer
from dealing with long sequences, e.g., error propagation [17, 18]. Our contribution lies in resolving
such challenges by incorporating the substructure-level contextual patterns into the token space of
molecular language models to efficiently represent a molecule in a context-aware manner.

3.2 CAMT5: Context-Aware Molecular T5

Context-aware molecule tokenization. We propose to construct the molecule token space of
CAMT5 to efficiently reflect the structural context of molecules. To this end, we consider chemically
meaningful fragments, i.e., motifs, as individual tokens, in contrast to previous methods based on
atom-level tokens [10, 11]. Specifically, we consider the following set of atoms, i.e., a motif, as a
single token: (1) atoms forming a ring structure and (2) atoms connected by a non-single bond (see
Figure 1). Such atoms are rigidly bound to each other and represent an important structural context,
such as resonance [29]. An atom not associated with (1) and (2) is considered as a single motif.

We then propose to represent a molecule as a sequence of motif-level tokens, based on the order of the
tree-search algorithm on a tree of motifs. Consider a molecule graph G = (V,E) with the set of atoms
V and edges E. We construct T (G) = (V, E), namely Context-Tree, where V = {Mi}ni=1 is the set
of n motifs with Mi = (Vi, Ei), and E is the set of bonds between motifs. Here, T (G) efficiently
preserves all the information of the original molecule graph G, i.e., V = ∪Vi and E = ∪iEi ∪ E ,
with context-enriched nodes by replacing atom-level nodes V with motif-level nodes V , satisfying
|V| ≤ |V |. Consequently, we obtain the sequence of motif tokens by enumerating V based on the
order of the depth-first-search (DFS) algorithm, i.e., mCAMT5 = [M1, ...,Mn]. We then train our
molecular language model fCAMT5 with {xk,mCAMT5,k}Nk=1 using the training objective in Eq. (1).
Note that our method ensures the (1) validity of the generated token sequences since we do not
introduce tokens that should appear as a pair, c.f., the branch tokens ‘(’ and ‘)’ in SMILES [8]. Also,
our tokens are (2) non-degenerate by construction; a single token represents only a single motif, c.f.,
‘[O]’ as an oxygen atom or an indicator of a ring system comprising six atoms preceding this token in
SELFIES [9]. We provide further details about our tokenization strategy in Appendix A.

Our context-enriched tokenization plays a crucial role in discriminating the atoms with differ-
ent structural contexts. For example, the aromatic carbon atoms in phenyl group (represented as
[C][= C][C][= C][C][= C][Ring1][= Branch1] in BioT5 [11]) and the aliphatic carbon atoms (repre-
sented as [C][C][C][C][C][C]) are completely different in chemical context, due to the resonance and
the ring structure. However, previous molecular language models do not distinguish the difference
between them, regarding both carbons as the same [C] token. Our CAMT5 alleviates this issue by
assigning different tokens for the entire phenyl groups and the carbons in aliphatic carbons.

Pre-training and fine-tuning. We follow the common pre-training and fine-tuning strategies in
previous molecular language models [4, 5, 10, 11, 22]. Specifically, we build our molecular language
model based on T5 [6] language model. We first pre-train the language models with text corpus
(Colossal Clean Crawled Corpus [6]) and molecule corpus (ZINC-15 [30]). To effectively incorporate
such unpaired data for each domain, we use the masked language modeling objective introduced in
the original T5 paper, which is also utilized in previous molecular language models [10, 11]. We then
fine-tune the models with the description-molecule paired dataset based on the objective in Eq. (1).
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Table 2: Quantitative results of the text-to-molecule generation task in the CheBI-20 [22] and PCDes
[23] benchmarks. small and base denote that the model is derived from T5-small and T5-base [6],
respectively. We highlight the best score in bold.

Method Representation Exact ↑ MACCS ↑ RDK ↑ Morgan ↑ Valid. ↑
Results on the CheBI-20 benchmark.

MolT5small [10] SMILES [8] 14.4 0.636 0.584 0.498 0.80
BioT5small [11] SELFIES [9] 17.7 0.766 0.691 0.547 1.0

CAMT5small (Ours) Context-Tree (Ours) 19.7 0.796 0.732 0.600 1.0

MolT5base [10] SMILES [8] 19.2 0.672 0.623 0.546 0.81
BioT5base [11] SELFIES [9] 21.7 0.796 0.725 0.593 1.0

CAMT5base (Ours) Context-Tree (Ours) 26.6 0.826 0.766 0.645 1.0

Results on the PCDes benchmark.

MolT5small [10] SMILES [8] 2.6 0.446 0.401 0.270 0.76
BioT5small [11] SELFIES [9] 2.6 0.594 0.533 0.338 1.0

CAMT5small (Ours) Context-Tree (Ours) 3.2 0.615 0.558 0.364 1.0

MolT5base [10] SMILES [8] 4.7 0.503 0.448 0.320 0.78
BioT5base [11] SELFIES [9] 3.2 0.600 0.537 0.348 1.0

CAMT5base (Ours) Context-Tree (Ours) 5.2 0.644 0.582 0.397 1.0

3.3 Confidence-based ensemble of molecular language models

We propose a simple ensemble method to further improve the generation quality of our CAMT5,
using other molecular language models with different tokenizations, e.g., MolT5 [10], BioT5 [11].
Here, we note that traditional ensemble strategies, e.g., majority voting, are often not applicable in
molecular language models due to the large and complicated molecule space. For example, each of
the molecular language models in Table 2 generates different molecules for 77.5% of the language
descriptions given in the dataset, in which case majority voting is not possible.

To tackle this issue, we suggest to use the confidence of each molecule as a proxy for the quality
measure. Let fi be the i-th molecular language model and mi = [T1, ..., TKi

] be the generated
Ki tokens from fi with respect to the given description x. Then, we define the confidence-based
ensemble fEnsemble of the molecular language models {f1, ..., fn} as follows:

Cα(mi; fi,x) =

∑Ki

j=1 logPfi([Tj ]|x, [T1..., Tj−1])

Kα
i

= −K1−α
i LCE(fi(x),mi), (2)

fEnsemble(x) = mk, where k = argmaxi Cα(mi; fi,x). (3)

A natural way to calculate the confidence of mi is using the average log-likelihood of each token,
which corresponds to α = 1.0 in Eq. (2). However, we find that such a naïve choice of α leads
to sub-optimal performance in fEnsemble, since the scale of C1.0 is different across the molecular
language models. Specifically, we find that Pfi([Tj ]|x, [T1, ..., Tj−1]) ≈ 1 when j is large, e.g.,
MolT5 [10] and BioT5 [11] often become over-confident after generating the first few tokens so that
mistakenly assigns high C1.0 for mi because of their long token length (see Figure 2). To alleviate
this, we suggest to calibrate the average log-likelihood by a factor of α ∈ [0, 1] to align the confidence
scale of each model, which turns out to be crucial for achieving an effective fEnsemble (see Table 4).
The specific value of α is determined by the value that achieves the best Exact score in the validation
set (see Appendix A for detailed explanation).

We note that this ensemble strategy is particularly useful in practical scenarios. Previously, people
simply chose the best-performing model among the existing molecular language models, ignoring
other on-average underperforming models. However, when the selected model is not confident
in a certain text description, other models may provide more confident alternatives. In this case,
our confidence-based ensemble strategy can be applied to further improve the performance of the
best-performing model, i.e., CAMT5, with the help of other models, i.e., MolT5 and BioT5.
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Table 3: Qualitative results of the text-to-molecule generation task in the CheBI-20 [22] (the first
row) and PCDes [23] (the second low) benchmarks. For each model, we visualize the generated
molecules with respect to the given description. We report the RDK score between the generated and
ground truth molecules below each visualization. We set the highest score in bold.

Description MolT5base BioT5base CAMT5base (Ours) Target

The molecule is a 
ketoaldonic acid 
phosphate that is 
3-deoxy-D-glycero-
beta-D-galacto-
nonulosonic acid... RDK: 0.19 RDK: 0.61 RDK: 1.00

It is an 
aminopyrimidine 
antibiotic whose 
structure consists 
of pyrimidine 2,4-
diamine… RDK: 0.38 RDK: 0.44 RDK: 1.00

4 Experiments

We verify the effectiveness of our CAMT5 by conducting comprehensive experiments. In Section 4.1,
we explain our experimental setups, such as datasets and evaluation metrics. In Section 4.2, we present
the text-to-molecule generation results on the ChEBI-20 and PCDes benchmarks. In Section 3.3, we
present the results of our confidence-based ensemble strategy. In Section 4.4, we apply our CAMT5 in
various downstream tasks, including data-efficient molecular generation and molecule modification.

4.1 Experimental setup

Baselines. A few works have introduced molecule representations for molecular language models.
Specifically, MolT5 [10] utilizes SMILES [8] representation, and BioT5 [11] suggests to use SELFIES
[11] representation. We extensively compare our CAMT5 with these works.

Datasets. We evaluate the text-to-molecule generation performance of molecular language models in
two popular benchmarks, ChEBI-20 [22] and PCDes [23]. The ChEBI-20 dataset consists of 33,008
description-molecule pairs, which are separated by 26,407/3,301/3,300 pairs as train/validation/test
splits [11]. The PCDes dataset contains more challenging 15,000 description-molecule pairs, which
are separated by 10,500/1,500/3,000 pairs as train/validation/test splits [23]. They are both derived
from the qualified description-molecule pairs from the open-sourced PubChem database [31], where
each text description describes the structure and the chemical properties of the corresponding molecule.
We provide the more information about the datasets in Appendix B.

Training setup. Previous molecular language models, e.g., MolT5 [10] and BioT5 [11], are trained
with different configurations, e.g., pre-training datasets,1 which limits the genuine comparison with
their proposed token space. To alleviate this issue, we have aligned the pre-training and fine-tuning
configurations of each molecular language model. Specifically, we use publically available uni-modal
datasets, i.e., Colossal Clean Crawled Corpus (C4) [6] for the text corpus and ZINC-15 [30] for the
molecule corpus, to pre-train the baselines and our models. We provide a further description of the
training configurations in Appendix A.

Metrics. For an extensive evaluation of text-to-molecule generation, we utilize various metrics which
reflect the quality of the generated molecules, e.g., similarity to the target molecule. We provide the
details of the metric as follows:

• Exact: The percentage of the generated molecules that exactly match with the target molecule.

1For example, BioT5 [11] utilized additional pre-training datasets compared to MolT5 [22], but they have
not released the datasets in public.
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Table 4: Quantitative results of our confidence-based ensemble in the CheBI-20 [22] and PCDes [23]
benchmarks. small and base denote that the model is derived from T5-small and T5-base [6], respec-
tively. Ensemble denotes the model fEnsemble, which is constructed from {MolT5, BioT5, CAMT5}
with average log-likelihood confidence, i.e., α = 1.0 (see Eq. (2)). Calibration denotes that we use
the calibrated confidence by setting α as the value that achieves the best Exact score in the validation
set. We highlight the best score in bold.

Method Exact ↑ MACCS ↑ RDK ↑ Morgan ↑ Valid. ↑
Results on the CheBI-20 benchmark.

CAMT5small 19.7 0.796 0.732 0.600 1.0
+ Ensemble 23.2 0.805 0.744 0.622 1.0
+ Calibration 23.7 0.813 0.753 0.632 1.0

CAMT5base 26.6 0.826 0.766 0.645 1.0
+ Ensemble 29.9 0.829 0.773 0.661 1.0
+ Calibration 30.3 0.837 0.783 0.672 1.0

Results on the PCDes benchmark.

CAMT5small 3.2 0.615 0.558 0.364 1.0
+ Ensemble 3.8 0.617 0.558 0.375 1.0
+ Calibration 4.0 0.624 0.566 0.383 1.0

CAMT5base 5.2 0.644 0.582 0.397 1.0
+ Ensemble 5.7 0.650 0.584 0.407 1.0
+ Calibration 6.0 0.655 0.591 0.414 1.0

• MACCS/RDK/Morgan FTS (MACCS/RDK/Morgan): Metrics that measure the fingerprint-
level similarity between the generated molecule and the target molecule. MACCS [32], RDK
[33], and Morgan [34] fingerprints are used. We report the average score for each metric; if the
generated token sequence does not represent a valid molecule, we set this score as 0.

• Validity (Valid.): The ratio of the generated token sequences which represent a valid molecule.2

4.2 Main experiments

Table 2 summarizes the quantitative results of the text-to-molecule generation tasks in the ChEBI-20
[22] and the PCDes [23] benchmarks. In both benchmarks, our method consistently outperforms
the baseline models by generating desirable molecules corresponding to the text description. In
ChEBI-20, CAMT5base significantly improves the Exact score of the best-performing baseline,
BioT5base, by 21.7 → 26.6, which highlights the superiority of our molecule tokenization scheme.
Also, the improvements in the fingerprint similarity-based scores, e.g., 0.593 → 0.645 in Morgan FTS,
demonstrate the usefulness of CAMT5 in capturing the substructure-level semantics of molecules.
Notably, CAMT5small (80M parameters) already outperforms BioT5base (250M parameters) in
several metrics, e.g., 0.725 → 0.732 in RDK FTS, with only a third of the model size. Our CAMT5
also shows its effectiveness in the more challenging PCDes benchmark, e.g., 4.7 → 5.2 in Exact and
0.537 → 0.582 in RDK. In Table 3, we provide visualizations of the generated molecules. We observe
that our CAMT5 effectively generates molecules that contain crucial motifs of the target molecules,
e.g., phosphorus acid and hydropyran, and this further demonstrates the importance of our motif-level
tokenization scheme in CAMT5. We provide additional experimental results in Appendix C.

4.3 Results on confidence-based ensemble

In Table 4, we report the quantitative results of the generated molecules from our confidence-based
ensemble model introduced in Section 3.3. In this experiment, we construct an ensemble model
fEnsemble in Eq. (3) based on the molecular language models {MolT5, BioT5, CAMT5} for each
model size, i.e., small and base. When calibration is not used, we set α = 1.0, i.e., the confidence
score becomes the average log-likelihood of the generated tokens (see Eq. (2)). When calibration

2In BioT5 [11] and CAMT5 (Ours), Validity is guaranteed to be 1.0 due to the characteristics of the used
representation, SELFIES [9] and Context-Tree (Ours), respectively.
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Table 5: Qualitative results of the confidence-based ensemble in the CheBI-20 [22] (the first row) and
PCDes [23] (the second low) benchmarks. We visualize the cases that other models, i.e., MolT5 and
BioT5, help our CAMT5 through fEnsemble when the confidence (maximally 0.00) of our generated
model is relatively low. We report the confidence and the RDK score between the generated and
ground truth molecules below each visualization. Here, the molecule with the highest confidence is
selected as the output of fEnsemble (see Eq. (3)). We set the highest score in bold.

Description MolT5base BioT5base CAMT5base (Ours) Target

The molecule is a 
nucleotide-sugar 
oxoanion resulting 
from removal of 
two protons from 
diphosphate…

RDK: 0.97
Confidence: ㎿0.04

RDK: 1.00
Confidence: ㎿0.01

RDK: 0.98
Confidence: ㎿0.11

It appears as 
yellow needles or 
yellow powder. 
Converts to 
anhydrous form at 
203-207Â°F… 

RDK: 1.00
Confidence: 0.00

RDK: 0.30
Confidence: ㎿0.16

RDK: 0.94
Confidence: ㎿0.11

Table 6: Quantitative results of the data-efficient molecular generation on the HIV dataset in
the MoleculeNet benchmark [35]. Following [24], we provide the results based on the 500 non-
overlapping generated molecules to the training dataset. We set the highest score in bold. ↑ and ↓
denote higher and lower values are better, respectively.

Method Active ↑ FCD ↓ NSPDK ↓ Valid ↑ Unique ↑ Novelty ↑
MolT5base [10] 6.4 20.8 0.053 73.4 72.2 100
BioT5base [11] 6.0 21.2 0.034 100 73.6 100

CAMT5base (Ours) 8.8 20.0 0.029 100 68.7 100

is used, we find α which leads to the best Exact score in the validation set. Firstly, our ensemble
improves CAMT5 in overall metrics due to our confidence-based molecule selection strategy; the
quality of the generated molecule is closely correlated with the log-likelihood of the molecular
language models. In particular, our ensemble achieves a notable improvement in the Exact score,
e.g., 26.6 → 29.9 in the ChEBI-20 benchmark. Applying our calibration technique further improves
the quality of the generated molecules, e.g., 0.773 → 0.783 in RDK FTS, by alleviating the over-
confidence issue in the long token sequences. In Table 5, we provide some examples where our
CAMT5 is not quite confident in its output, and other models, i.e., MolT5 and BioT5, generate more
confident molecules. In this case, the ensemble model selects the generated molecules generated by
MolT5 or BioT5, which are indeed more similar to the target molecules. In summary, on-average
underperforming models, i.e., MolT5 and BioT5, can help the best-performing model, i.e., CAMT5,
through the confidence-based selection strategy of our ensemble model.

4.4 Applications of CAMT5

Data-efficient molecular generation. We explore the applicability of our CAMT5 in data-efficient
molecular generation, which is an important application of molecular language models in practical
scenarios; the collection of task-relevant molecular data is expensive. Specifically, we adapt molecular
language models to learn the distribution of 1,232 active molecules of the HIV dataset in the
MoleculeNet benchmark [35] via HI-Mol framework [24], and then generate molecules from the
learned distribution. As shown in Table 6, our CAMT5 outperforms the baseline models in Active.,
FCD, and NSPDK, demonstrating the effectiveness of our CAMT5 in learning the underlying
distribution of low-shot molecules. We believe that the key success of our CAMT5 is to better capture
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Table 7: Experimental results of the molecule modification. We visualize the generated molecules
with respect to the prompt with an additional condition, i.e., solubility in water. We report the
LogP score below each visualization. Molecules with lower LogP values are more soluble in water.
For each model, we report the top-2 molecules that match the property description among the 100
molecules, generated by temperature sampling with τ = 2.0.

Query MolT5base BioT5base CAMT5base (Ours)

Prompt: “The molecule is an amino acid ester ... Make it soluble in water.” (Lower LogP is better)

LogP: 2.22 LogP: 0.43 LogP: 1.12 LogP: ㎿0.39 LogP: ㎿0.36 LogP: ㎿1.55 LogP: ㎿0.48

Prompt: “The molecule is an N-acylglycine... Make it insoluble in water.” (Higher LogP is better)

LogP: 0.50 LogP: 0.82 LogP: 0.57 LogP: 1.82 LogP: 1.70 LogP: 2.92 LogP: 2.30

the global context of molecules through motif-level tokenization, which is also crucial in learning the
features among low-shot molecules. We provide the details of the metrics in Appendix A.

Molecule modification. We demonstrate the applicability of our CAMT5 in modifying molecules.
Consider a molecular language model f , where f(x) = m with a molecule description x and the
corresponding molecule m. We examine a scenario where the description x is slightly modified to x′

by adding an additional propmt, such as x′ = x+ “Make it insoluble in water”. Here, the resulting
molecule m′ = f(x′) is expected to (1) maintain the structural similarity to m and (2) capture the
additional prompt in x′. Although researchers have investigated the modification of molecules based
on numerical properties [36, 37], the exploration of modifications based on text descriptions is yet
under-explored despite its potential in practical applications.

In Table 7, we consider the descriptions in the ChEBI-20 test set where MolT5base, BioT5base, and
CAMT5base each generate the same molecule as shown in the Query column. We then generate
molecules with the prompt, “Make it soluble/insoluble in water.”, in addition to the original de-
scription based on temperature sampling with τ = 2.0. Among 100 generated molecules, we show
the top-2 molecules that match the additional prompt, i.e., molecules with the lowest/highest LogP
for the first/second row, respectively. The results demonstrate that our CAMT5 achieves superior
modification ability by (1) preserving the crucial substructures of the original molecule in the Query
column, e.g., the aniline structure in the first row, and (2) effectively incorporating the additional
prompts (see LogP values). We hypothesize that the improvement is due to the our unique motif-level
tokenization strategy; this is useful to preserve the motifs in the modified molecules and motifs are
more closely related to the molecular properties, e.g., solubility in water, than individual atoms.

5 Conclusion

We propose CAMT5, a chemical context-aware molecular language model. Specifically, we propose
to utilize motif-level tokenization to better understand the chemical structural context. In addition, we
propose a confidence-based ensemble strategy to further improve the generation quality of CAMT5.
Extensive experiments demonstrate the effectiveness of our tokenization scheme and the ensemble
strategy in improving the performance of text-to-molecule generation and several applications.

Limitation and future work. In this work, we mainly focus on improving the token space of
molecular language models, which is crucial yet under-explored problem in molecular language
models. An interesting future direction would be applying our tokenization to advanced training
strategies for molecular langague models, e.g., leveraging pseudo-data [4] and multi-task language
modeling [5], which are originally based on the previous tokenization schemes, e.g., SMILES [8]. We
believe that those works will further benefit from our carefully designed context-aware tokenzation.
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Appendix: An Efficient Tokenization for
Molecular Language Models

A Experimental details

Details on context-aware tokenization. For each motif-level token Mi, there may exist several
v ∈ Vi where (u, v) ∈ E for some u ∈ V , i.e., a single motif which is connected to several motifs
in T (see the second token of CAMT5 in Figure 1 for an example). In this case, we additionally
store the used order of such v’s based on the DFS algorithm within each token. We utilize this order
when converting the sequence of tokens to a molecule. For a given sequence of tokens, we convert
the sequence to a molecule by the exactly inverse consequences of the construction of the token
sequences. Here, the number of children of each token is the number of aformentioned v’s. If there
exist unvisited v’s after the conversion, we simply ignore them, i.e., we consider them to be connected
to a hydrogen atom, not to other motif tokens. The number of motif tokens introduced in our CAMT5
is 15,230 in the ChEBI-20 and PCDes benchmarks.

Details on confidence-based ensemble. In our confidence-based ensemble strategy, α in Eq. (2) plays
a role in calibrating the confidences of molecules from molecular language models with different tok-
enization strategy, i.e., different token lengths. Specifically, we find α ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
which leads to the best Exact score in the validation set. When we select the maximum confidence
molecule through fEnsemble, we exclude invalid molecules, i.e., if an invalid molecule achieves the
maximum confidence, we select the second-maximum confidence molecule. In practice, it does not
incur additional costs since one can directly check the validity of a token sequence.

Details on pre-traning and fine-tuning. We pre-train each molecular language model, i.e., MolT5,
BioT5, and CAMT5, with a text corpus (Colossal Clean Crawled Corpus [6]) and a molecule corpus
(ZINC-15 [30]). To effectively incorporate such unpaired data for each domain, we use the masked
language modeling objective, i.e., replace corrupted spans [6]. We pre-train each model for 100k
steps with a batch size of 128, using the cosine learning rate scheduler with the base learning rate
of 1e−3 and the warmup steps of 1k based on the adamw optimizer. We fine-tune each model with
description-molecule data pairs in the ChEBI-20 [22] and the PCDes [23] benchmarks based on the
objective in Eq. (1) with the molecule token representation of each model. We fine-tune the models
in 50k steps with the batch size of 48, using a constant learning rate at the rate of 5e−4 based on
clipping the gradient by 30.0.

Metrics in data-efficient molecualr generation. We use six metrics to evaluate the data-efficient
molecular generation [24]. We evaluate the quality of 500 generated sample from the prior distribution
p(λ) = U(−0.3, 0.7) where U denotes the uniform distribution. Active denotes the ratio of the active
molecules that achieve the desired property. We use pre-trained classifier on the HIV dataset with
5-layer GIN [38]. FCD [39] denotes the Fréchet distance which measures the distance between
the source distribution and the target distribution based on ChemNet. NSPDK [40] also measures
the distance between the source distribution and the target distribution based on an algorithmic
computation. Valid is the ratio of the generated token sequences that represent valid molecules.
Unique is the ratio of different generated molecules among the valid molecules. Novelty is the ratio
of valid molecules that are not in the training set. In our experiments, Novelty is always 100, since
we only consider the generated molecules that do not overlap with the training data, for a reliable
measure in Active score, which is suggested in [24].

Computing resources. In our experiments, we use Intel(R) Xeon(R) Gold 6426Y CPU @ 2.50GHz
and A6000 48GB GPUs.
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B Dataset details

Table 8: Visualizations of description-molecule pairs in ChEBI-20 [22] and PCDes [23].

ChEBI-20 PCDes

The molecule is an 
indolylmethylglucosinolate that 
is the conjugate base of 4㎿
methoxyglucobrassicin, 
obtained by deprotonation of 
the sulfo group. It is a conjugate 
base of a 4㎿
methoxyglucobrassicin.

It is a member of pyrimidines, an 
organofluorine acaricide, a 
methyl ester, an enoate ester 
and an enol ether. It has a role 
as a mitochondrial cytochrome㎿
bc1 complex inhibitor. 

The molecule is an amino 
trisaccharide comprising of 
three 2㎿amino㎿2㎿deoxy㎿D㎿
glucopyranose units joined by 
beta㎿㏙1㎿㚏4㏚ linkages. It has a 
role as a marine metabolite and 
a eukaryotic metabolite.

It is a spironolactone derivative 
and a potent aldosterone 
antagonist on mineralocorticoid 
biosynthesis with diuretic activity
. As an aldosterone antagonist, it 
may inhibit sodium resorption in 
the collecting duct and may 
eventually lead to diuresis. 

The molecule is a steroid 
glucosiduronic acid. It has a role 
as a human metabolite and a 
mouse metabolite. It derives 
from a 3alpha㎿hydroxy㎿5beta㎿
androstan㎿17㎿one.

It is an L㎿alanine derivative 
consisting of an N㎿acetyl㎿D㎿
muramoyl group attached to L㎿
alanine via an amide linkage. It is 
a glyco㎿amino acid and a L㎿
alanine derivative. It is a 
conjugate acid of a N㎿acetyl㎿D㎿
muramoyl㎿L㎿alaninate. 

We evaluate our CAMT5 in the text-to-molecule generation tasks of the ChEBI-20 [22] and PCDes
[23] benchmarks, which consist of description-molecule pairs from the open-sourced PubChem
database [31]. In Table 8, we visualize some description-molecule pairs of each benchmark.

C Additional results

Table 9: Quantitative results of the text-to-molecule generation task in the CheBI-20 [22] benchmark.
large denotes that the model is derived from T5-large [6]. We highlight the best score in bold.

Method Representation Exact ↑ MACCS ↑ RDK ↑ Morgan ↑ Valid. ↑
Results on the CheBI-20 benchmark.

MolT5large [10] SMILES [8] 24.0 0.704 0.663 0.562 0.86
BioT5large [11] SELFIES [9] 28.0 0.801 0.746 0.610 1.0

CAMT5large (Ours) Context-Tree (Ours) 29.3 0.828 0.776 0.652 1.0

In Table 9, we report the text-to-molecule generation results based on the models derived from the
T5-large model [6]. Our CAMT5 also shows improvements in this setup, e.g., 28.0 → 29.3 in Exact
and 0.746 → 0.776 in RDK, demonstrating its potential in scaling up to future large-scale models.

D Social impacts

This work will accelerate improvements in the field of molecular language models, which will affect
many chemical applications such as drug discovery and material design. However, malicious or
unintended usage of molecular language models (including our models) may lead to a potential threat
of the generating harmful chemicals. We believe that safeguarding these models is an important
future research direction, which is also widely studied in other domains (e.g., language domain [41]).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly provide our contribution and scope in abstract and introduction
(Section 1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide the limitations and future works in Conclusion (Section 5)
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We do not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We fully describe our method and experimental setup in Section 3, Section 4,
and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We will upload the code once the paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the details in Section 4 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars since our experiments are computationally expen-
sive (training language models).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specified the computer resources in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide the discussion in Appendix C.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We will carefully examine the potential risks for misuse until we release the
model.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We carefully mentioned the owners of assets in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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