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Abstract

Large language models have been widely applied, but can inadvertently encode
sensitive or harmful information, raising significant safety concerns. Machine
unlearning has emerged to alleviate this concern; however, existing training-time
unlearning approaches, relying on coarse-grained loss combinations, have limita-
tions in precisely separating knowledge and balancing removal effectiveness with
model utility. In contrast, we propose Fine-grained Activation manipuLation by
Contrastive Orthogonal uNalignment (FALCON), a novel representation-guided
unlearning approach that leverages information-theoretic guidance for efficient pa-
rameter selection, employs contrastive mechanisms to enhance representation sepa-
ration, and projects conflict gradients onto orthogonal subspaces to resolve conflicts
between forgetting and retention objectives. Extensive experiments demonstrate
that FALCON achieves superior unlearning effectiveness while maintaining model
utility, exhibiting robust resistance against knowledge recovery attempts. Our im-
plementation is available at: https://github.com/CharlesJW222/FALCON/
tree/main.

1 Introduction

Recent advancements in generative AI [1, 17], powered by Parameter-Efficient Fine-Tuning (PEFT)
techniques, have enabled LLMs to internalize linguistic knowledge and excel across diverse tasks
[3, 29]. While these models gain their capabilities from massive datasets, this reliance on large-scale
corpora creates significant risks: harmful, biased, or sensitive information can become encoded and
amplified, resulting in ethical violations, regulatory noncompliance, and potential misuse [28, 77, 43].

Existing mitigation strategies, such as LLM guardrails [13] or training models with expertly curated
datasets to refuse harmful queries [60], are computationally expensive and often inadequate against
adversarial attacks [85]. In contrast, while retraining an entire model on a cleaned dataset to eliminate
harmful impacts is theoretically feasible, it is prohibitively resource-intensive for modern LLMs [44].
Additionally, adversaries can exploit PEFT to reintroduce such unwanted information, highlighting
the urgent need for more effective and scalable solutions for publicly accessed LLMs [63].

To solve harmful or sensitive information in machine learning models, Machine Unlearning (MU) has
emerged as a promising solution, supported by growing regulations such as the “right to be forgotten"
under the GDPR [67]. It commonly developed in the non-LLMs domain and has proven effective at
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removing specific data influences while preserving model performance [53, 8, 82]. When transferred
to maintain responsible LLMs, MU offers significant advantages, being far more computationally
efficient than full retraining. Unlearned models also exhibit greater inherent safety, as they lack the
undesired knowledge necessary for malicious behaviors [27, 50].

Despite its potential, LLM unlearning still faces several fundamental issues: (I1) existing approaches
typically rely on empirical methods like grid search to identify intervention parameters, lacking
efficient and interpretable guidance within deeper LLM architectures, (I2) current methods normally
rely on coarse-grained manipulation (using simplistic loss combinations that induce random represen-
tation dispersion with uncontrolled gradient dynamics, struggling to balance knowledge removal and
utility preservation) rather than fine-grained representation manipulation (achieving more effective
knowledge separation through targeted representation modification and regulated gradient dynamics
for reducing damage to model utility), and (I3) knowledge recovery methods such as jailbreaking
attack can recover the undesired information from the unlearned model [70].
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Figure 1: Schematic overview of FALCON. The pipeline comprises three stages: parameter selec-
tion based on mutual information (Step 1); contrastive orthogonal unalignment, which consists of
contrastive mechanism on both forgetting and retention datasets (Step 2.1) and orthogonal gradient
conflict resolution (Step 2.2); and model unlearning guided by these components (Step 3).

To address the aforementioned issues of selective knowledge unlearning in LLMs, we propose
Fine-grained Activation manipuLation by Contrastive Orthogonal uNalignment (FALCON),
a representation-guided framework for targeted knowledge removal with minimal impact on gen-
eral capabilities. For I1, FALCON uses mutual information (MI) as an auxiliary signal to assess
dependencies between forget and retain data, based on which it introduces two core mechanisms
for fine-grained disentanglement and unlearning (Step 1). To tackle I2, FALCON utilizes singular
value decomposition (SVD) to identify principal directions in activation space to steer representa-
tions along axes misaligned with forgettable knowledge, enabling more thorough removal (Step
2.1). Meanwhile, FALCON uses a gradient orthogonal projection strategy, which constrains updates
away from retention-sensitive directions, reducing interference with preserved content (Step 2.2).
These mechanisms enable precise unlearning with limited data access and remain effective even
under single-layer interventions. Afterwards, the projected gradients are used to update the model
parameters (Step 3). For I3, we provide comprehensive empirical evidence and analysis in Section
5.3 and Appendix E.6 to support our claims. Our contributions are as follows:

• We propose FALCON, a representation-guided framework that combines contrastive mech-
anisms and gradient projection to achieve fine-grained representation unalignment in LLMs.

• We introduce information-theoretic metrics for quantifying knowledge entanglement,
enabling principled parameter selection and providing empirical insights into knowledge
distribution across model architectures.

• We demonstrate the scalability, effectiveness, and resistance to knowledge recovery
of FALCON through extensive experiments, highlighting its ability to unlearn selective
knowledge while preserving utility across various LLMs.
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2 Related work

Our paper focuses on LLM unlearning for undesired knowledge, information-theoretic metrics,
and contrastive learning. We highlight the developments and limitations of LLM unlearning in
this section, while related advancements in information-theoretic metrics, contrastive learning, and
gradient projection are detailed in the Appendix A and B.

LLM Unlearning LLM unlearning refers to the selective removal of specific knowledge from
large language models while preserving their overall functionality [87]. Current approaches can be
broadly categorized into training-time methods and inference-time methods [5]. Among training-time
approaches, which represent the mainstream methodology, two primary directions have emerged.
The first direction focuses on gradient optimization [84, 38, 18, 91, 20], which suppresses harmful
knowledge through loss-driven techniques but often causes catastrophic forgetting and instability
when distributions are highly similar or lack fine-grained knowledge localization. The second
direction emphasizes representation-guided adaptation, targeting intermediate hidden representations
for modification [50, 95, 68], but relying on empirical layer selection and lacking targeted separation
mechanisms. While these aforementioned training-time methods achieve permanent unlearning
by targeting specific layers and parameters, they currently rely heavily on coarse-grained loss
combinations that struggle to disentangle deeply embedded knowledge representations flexibly [40].

Inference-time methods offer alternative approaches like task vectors and model editing. Task vector
approaches address efficiency concerns through arithmetic operations on parameter-efficient modules,
enabling lightweight unlearning under resource constraints [36, 88], but oversimplify knowledge
structure through linear assumptions that fail to capture complex knowledge entanglement. In contrast,
model editing usually modifies intermediate hidden states or logits to alter model behavior [5, 39,
15, 35], such as contrastive decoding methods that prevent inappropriate responses [94]. Moreover,
ECO [51] has also demonstrated promising performance, though it functions more as a guardrail’s
definition for filtering sensitive content [14, 33], rather than directly serving as an unlearning algorithm
1 [55]. However, these methods’ dependence on modular arithmetic operations fundamentally limits
their granularity in knowledge separation and constrains generalizability across diverse scenarios.
Additionally, in-context unlearning has emerged as another inference-time approach, leveraging
tailored prompts to dynamically suppress undesired outputs [93, 62]. While flexible, this method’s
effect remains inherently temporary as the undesired knowledge persists in the model’s representation
space [54].

Despite these advancements, existing training-time methods fall short in achieving precise knowledge
disentanglement between information to be forgotten and retained. To address these limitations,
we propose FALCON, a targeted representation unalignment approach that achieves more precise
separation through contrastive learning, gradient projection, and information-theoretic guidance.
Through its contrastive mechanism and gradient projection, our approach enables fine-grained
knowledge separation and resolves optimization conflicts between forgetting and retention objectives,
while enhanced resistance compared to current state-of-the-art training-time methods.

3 Problem Formulation

3.1 Problem Setup

The task of LLM unlearning involves selectively removing specific knowledge (forget set) from
the model while retaining critical information (retain set). However, this process is complicated by
the issue of knowledge entanglement, where representations of the forget and retain sets overlap
significantly within the model’s parameters [89]. This entanglement arises due to the distributed
nature of knowledge across multiple layers and features, making it difficult to isolate knowledge for
removal without affecting retained information. To formalize the unlearning process, we adopt the
general formulation proposed by Liu et al. [54]:

min
ω

{
E(x,yf )→DF [L(yf |x; ω)] + εE(x,y)→DR [L(y|x; ω)]

}
(1)

where L(y|x; ω) measures the discrepancy between the model’s prediction and the target response y

for a given input x under the model’s parameters ω. Here, DF and DR denote the forget set and retain

1Further discussion on ECO is shown in Appendix. F.3
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set, respectively. The variable yf specifies the intended output for the forget set after unlearning,
while the hyperparameter ε → 0 controls the trade-off between forgetting and retention objectives.
For simplicity, we will refer to this objective as minω EMU(ω) in subsequent sections.

Despite the generality of above formulation, it does not explicitly quantify the representations
of forgotten and retained knowledge. This lack of quantification poses challenges in precisely
guiding the unlearning process [66]. To address this, a principled metric is needed to evaluate
and minimize knowledge entanglement, ensuring that unlearning primarily affects the forget set
while minimizing interference with the retain set. Consequently, we introduce information-theoretic

measures, specifically continuous entropy and mutual information, to quantify the dependency
between the activations of the forget and retain sets. Let F and R represent the activations of
the forget and retain sets at a specific layer of the model, respectively. The degree of knowledge
entanglement between representations can be formulated as the MI I(F ;R):

I(F ;R) = H(F) +H(R)→H(F ,R) (2)

where H(F) and H(R) are the continuous entropies of the activations F and R, and H(F ,R)
denotes their joint entropy. These measures provide a systematic approach to identify parameters
with minimal entanglement and guide the LLM unlearning process. The details of these metrics are
shown in Appendix C.

3.2 LLM unlearning with MI Guidance

To quantify knowledge entanglement during machine unlearning, we use MI to measure the de-
pendency between the activations of the forget set F (l) and the retain set R(l) at each layer l. The
MI I(F (l);R(l)) serves as an indicator to guide the unlearning process by minimizing entangle-
ment between F

(l) and R
(l). To minimize the entanglement between the forget and retain sets’

representations, we formulate the parameter selection for specific LLM layers as:
l
↑ = argmin

l

I(F (l);R(l)) (3)

Given the selected layer l→, the LLM unlearning problem guided by MI can be reformulated as:
min
ω

EMU(ω) subject to Eqs. (3) (4)

This formulation ensures that the unlearning process is conducted on the parameters with min-
imal knowledge entanglement, effectively suppressing the undesired knowledge while reducing
interference with the retained knowledge.

4 Methodology

To address the challenges of more thorough selective multi-domain knowledge unlearning and
enhanced robustness against knowledge recovery in LLMs, we propose FALCON shown in Figure 1
and Appendix. D.1, a framework that advances both precision and effectiveness in knowledge
manipulation. Unlike prior approaches that rely on coarse-grained loss combinations, FALCON
introduces three key mechanisms: (1) mutual information-based guidance to identify parameters
where knowledge representations are least entangled, enabling interpretable parameter selection; (2)
contrastive mechanism with enhanced representation separation to achieve fine-grained knowledge
manipulation while ensuring robust resistance against knowledge recovery attempts; and (3) gradient
orthogonal projection to resolve optimization conflicts and ensure training stability. This holistic
design enables precise, interpretable, and robust knowledge unlearning in LLMs, transcending
traditional loss-combination methods.

4.1 Information-Theoretic Guidance for Unlearning

In this paper, we utilize a principled approach to selective multi-domain knowledge unlearning in
LLMs through mutual information. MI provides a natural measure of representational entanglement
between the forget and retain datasets across model layers. By identifying parameters that minimize
MI, we can target unlearning interventions where forget and retain representations exhibit minimal
overlap, thus preserving desired knowledge while selectively removing unwanted information.

We extend this measure to the multi-domain scenario where the forget set F consists of multiple
sub-domains F1,F2, . . . ,Fm. Our approach quantifies two critical relationships: (1) the interaction
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between each sub-domain and the retain set R, measured by I(F (l)
i ;R(l)) at layer l, where lower

values indicate reduced entanglement and thus more selective unlearning; and (2) the inter-domain
dependencies captured by I(F (l)

i ;F (l)
j ) for sub-domains Fi and Fj (i ↑= j), which characterizes

potential conflicts or redundancies that may impact unlearning effectiveness.

To quantify the overall representational conflicts between the forget and retain datasets, I(F (l);R(l)),
and the interdependence among forgettable sub-domains, I(F (l)

i ;F (l)
j ) at layer l, we define the

aggregate MI as I(l):

I
(l) =

m∑

i=1

I(Fi
(l);R(l)) + ϑ

m∑

i=1

m∑

j=i+1

I(F (l)
i

;F (l)
j

) (5)

where m denotes the number of sub-domains in the forget set F , and ϑ is a balancing coefficient that
controls the relative importance of inter-domain dependencies. For each layer l, since the activations
are high-dimensional and continuous, direct entropy calculation is infeasible [75]. Instead, we
utilize Kernel Density Estimation (KDE) to approximate the underlying global data distribution,
estimating continuous entropy in activation space as defined in Appendix C [79]. Specifically, we use
a multivariate Gaussian kernel, which offers a smooth and flexible density estimation well-suited to
high-dimensional data. The estimated probability density function for activations A is given by:

p(a) =
1

Nh

N∑

n=1

K

(
a→ an

h

)
(6)

where a ↓ Rd represents a single sample from the activations A, including F and R, with d denoting
the feature dimensionality of the activations, N as the number of samples, K(·) represents the kernel
function and h as the adaptive bandwidth calculated using Scott’s rule [69], defined as h = ϖN

↑ 1
d+4 ,

which is particularly suitable for high-dimensional data due to its dimensionality-based adjustment.
Here, ϖ is the standard deviation of the data. This adaptive bandwidth selection effectively balances
bias and variance, ensuring robust density estimation for diverse activation distributions [6]. To
mitigate the curse of dimensionality, we apply Principal Component Analysis (PCA), which has been
widely adopted across various domains in prior work [47, 65, 71] to reduce activation dimensions
before performing KDE [2], retaining at least 95% of variance to ensure minimal information loss
while significantly lowering computational complexity.

Using the KDE-based entropy estimations, we approximate the overall mutual information Ĩ at each
layer based on Eq. (5). The optimal layer l→ for unlearning is then determined by minimizing Ĩ:

l
↑ = argmin

l

Ĩ
(l) (7)

By identifying the layer with the lowest MI, we locate the model region where the forget and
retain datasets are least entangled, minimizing the overlap between the two types of knowledge.
Concurrently, this layer exhibits higher entanglement among sub-domains within the forget set,
enabling efficient updates to shared representations across forgettable sub-domains. This dual
property makes the layer an optimal target for unlearning, where parameters with minimal mutual
interference are prioritized to remove undesired knowledge while more easily preserving essential
and generalizable knowledge for downstream tasks.

4.2 Contrastive Orthogonal Unalignment

To achieve selective knowledge unlearning in LLMs, we first apply MI-guided parameter selection 2

to identify layers with minimal knowledge entanglement, which remains fixed throughout unlearning.
We then devise Contrastive Orthogonal Unalignment through contrastive mechanisms and gradient
projection, employing alternating strategy between forget and retain datasets to iteratively refine
representations while balancing knowledge removal and retention objectives.

4.2.1 Contrastive Representation Unlearning

The core task of LLM unlearning is to selectively separate knowledge representations to be forgotten
from those to be retained. Contrastive learning provides an effective mechanism for this task by

2Discussion on MI-guided parameter selection is shown in Appendix. F.2
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learning discriminative representations through comparing similar and dissimilar samples. In our
context, we leverage contrastive learning to maximize the distance between representations that
should be forgotten while maintaining the coherence of retained knowledge.

To facilitate thorough unlearning, we construct Principal Offset Vectors (POVs) that steer model
activations away from undesired knowledge by redirecting updated forgettable representations into
subspaces intentionally misaligned with the principal directions of frozen counterparts, as identified
via SVD, thereby achieving representational decoupling within the model.

Mathematically, given an activation matrix H ↓ R(B·L)↓D, where B is the batch size, L the sequence
length, and D the hidden dimension, we perform SVD to obtain the dominant principal directions
v1, . . . , vK corresponding to the top-K singular values. The POVs H+ is defined as:

H
+ =

f

(
r ·

(
I → w

∑
K

i=1 viv
↓
i

)
, ϖ

)

∣∣∣f
(
r ·

(
I → w

∑
K

i=1 viv
↓
i

)
, ϖ

)∣∣∣
(8)

Here, r ↓ RD is a randomly initialized vector, w controls the influence of principal directions,
and I ↓ RD↓D is the identity matrix. The term ϱ introduces optional perturbations while f(·) is
a flexible transformation operator, potentially including non-linear mappings (e.g., tanh), adaptive
projections, or adversarially-inspired perturbations, enhancing disentanglement and recovery resis-
tance. This design ensures H

+ is directed away from dominant principal subspaces, combining
deterministic guidance and transformations to improve robustness. Unlike generic random vectors,
POVs deliberately target dominant features to improve adversarial robustness and unlearning efficacy.

For each input sample, we define three types of representations: the anchor representation Ha from
the updated model for the forget set, the positive representation H

+, given by the POV defined in Eq.
(8), and the negative representations H↑ from the frozen model. To ensure consistent scaling, all
representations are normalized, and their similarity scores are measured using cosine similarity:

S
+ =

D∑

d=1

Ha[d] · H
+[d], S

↔ =
Z∑

z=1

D∑

d=1

Ha[d] · H
↔
z [d] (9)

where Z is the number of negative samples. Building on these similarity scores, we define the forget
loss LF using the InfoNCE objective:

LF = →
1
|B|

|B|∑

b=1

log
exp(S+

b
/ϱ)

exp(S+
b
/ϱ) +

∑N
b=1 exp(S

↔
b
/ϱ)

(10)

where ς is a temperature scaling parameter. This loss encourages the updated model’s representations
to align with the POVs while diverging from the frozen model’s representations of undesired knowl-
edge. By leveraging both directional guidance through POVs and contrastive learning, our approach
achieves more precise and efficient representation unalignment in activation space.

In addition to unlearning undesired representations, preserving critical knowledge for downstream
tasks is essential. We define a retain loss in Eq. (11) to measure alignment between the updated
model’s activations (Hu) and frozen model’s activations (Hf ) for the retain set. This retention
alignment loss, functioning as a self-supervised variant of contrastive loss, maximizes consistency
between updated and frozen activations to ensure effective knowledge preservation during unlearning.

LR = 1→
1
|B|

|B|∑

b=1

∑
D

d=1 H
u

b [d] · H
f

b
[d]

√∑
D

d=1 (H
u

b
[d])2 ·

√
∑

D

d=1

(
H

f

b
[d]

)2
(11)

This loss ensures alignment between the updated and frozen model activations for the retain set,
preserving critical knowledge while complementing the unlearning objective. Combined with the
forget loss LF , this approach achieves an effective balance between unlearning and retention.

4.2.2 Orthogonalizing Gradient for Conflict Resolution

After computing the forget loss LF and retain loss LR, we address optimization direction mis-
alignment between unlearning and retaining by employing a gradient projection mechanism that
orthogonalizes conflicting gradients onto subspaces, minimizing interference and promoting bal-
anced optimization. Given the gradients of the forget and retain losses, denoted as ↔LF and ↔LR,
respectively, the conflict can be quantified using the cosine similarity:
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cos(↑LF ,↑LR) =
↑LF ·↑LR

↓↑LF↓ · ↓↑LR↓
(12)

where cos(·) < 0 indicates opposing directions, signifying a conflict between the two objectives. To
mitigate this conflict, we adjust the gradients by projecting one onto the orthogonal complement of
the other. Specifically, if cos(·) < 0, we project ↔LF onto the subspace orthogonal to ↔LR:

↑L
proj
F = ↑LF →

↑LF ·↑LR

↓↑LR↓2
↑LR (13)

This adjustment ensures that ↔L
proj
F is orthogonal to ↔LR, eliminating interference from the retain

objective during the update for the forget objective. Once the gradients are adjusted, the final update
direction of the FALCON is determined by combined gradients:

↑LFALCON = ς↑L
proj
F + φ↑LR (14)

where φ and ↼ are hyperparameters balancing the contributions of the forget and retain objectives.

This mechanism mitigates gradient conflicts, enabling joint optimization while minimizing inter-
ference. By enforcing orthogonality between adjusted gradients, it approximates a Pareto-optimal
solution. The model then updates its weights using the conflict-reduced gradient, allowing for more
flexible adaptation. To further enhance efficiency and stability, we leverage the second-order opti-
mizer Sophia [52], as suggested in [25, 41], for refined weight updates, ensuring a more effective and
stable optimization process for selective knowledge unlearning.

5 Experiments
To validate FALCON’s effectiveness, we conduct extensive experiments to answer the following
research questions: RQ1: Does FALCON with MI guidance, establish a quantifiable measure
for principled parameter selection while achieving superior performance in harmful knowledge

unlearning tasks? (Section 5.1) RQ2: Does FALCON maintain strong generalizability across diverse
unlearning tasks including entity unlearning and copyrighted content unlearning? (Section 5.2)
RQ3: Beyond efficient parameter space reduction through MI guidance, does FALCON’s algorithmic
design offer competitive computational efficiency? (Appendix E.3) RQ4: Can FALCON effectively
resist recovery attempts of unlearned knowledge? (Section 5.3). More complete experiments and
ablation study are shown in Appendix E.

5.1 Harmful Knowledge Unlearning

To validate RQ1, we use the WMDP [50] benchmark for harmful knowledge unlearning assessment,
WikiText [59] for measuring perplexity, and MMLU [26] for evaluating model utility. We test
FALCON on three pre-trained LLMs: Zephyr-7B-Beta [76], Yi-6B-Chat [86], and Mistral-7B-
Instruct-v0.3 [42], comparing against all baselines from [50], with details in Appendix D.

5.1.1 Mutual Information for Parameter Selection

Zephyr-7B-Beta

Bio-WiKi

MI

Bio-Cyber

Cyber-WiKi

Mistral-7B-Instruct-v0.3 Yi-6B-Chat

Heatmap of Mutual Information Across Different Layers

Figure 2: Heatmaps of MI across LLM layers show that lower MI values indicate layers better suited
for unlearning, with early layers being more domain-specific and deeper layers more entangled.

Visualization of MI for LLMs Figure 2 presents MI heatmaps illustrating knowledge entanglement
between forget sets (WMDP-Bio, WMDP-Cyber) and the retain set (WikiText-2-raw-v1) across LLM
layers. This metric provides an interpretable measure for identifying layers with minimal entangle-
ment for targeted unlearning. All models show lower MI values in earlier layers, indicating more
domain-specific and disentangled representations, which aligns with both intuition and experimental
observations [50]. Yi-6B-Chat demonstrates particularly complex entanglement patterns between
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domains, presenting a greater difficulty for unlearning multi-domain knowledge and making it an ideal
candidate for our effectiveness analysis experiments in Section 5.1.2. Beyond identifying optimal
intervention parameters, MI-guided selection improves efficiency by narrowing the parameter search
space compared to exhaustive methods like grid search, scaling effectively with model complexity.

Gradient Conflicts Analysis We empirically validate the underlying principle of MI
Gradient Conflicts Across Different Layers 
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Figure 3: Gradient conflicts across layers with mini-
mum (blue) and maximum (orange) MI values com-
puted during parameter selection in Mistral-7B.

guidance by analyzing gradient conflicts be-
tween forget and retain objectives across lay-
ers. As shown in Figure 3, layers with low
MI values exhibit significantly reduced con-
flicts, with cosine similarities near zero, in-
dicating minimal interference between objec-
tives. Conversely, high-MI layers show pro-
nounced, fluctuating conflicts, highlighting
the issues of entangled representations. These
results confirm that mutual information is a
reliable auxiliary signal for guiding param-
eter selection, as low-MI parameters reduce
interference, support stable updates, and help
mitigate conflicts between unlearning and re-
tention goals.

5.1.2 Unlearning Effectiveness and Utility Analysis

Table 1: Unlearning effectiveness and utility across models
and methods. Metrics with (↔) indicate preferable increases;
(↗) indicate preferable decreases.

Method WMDP (↗) MMLU (↔) PPL (↗)
Bio Cyber

Zephyr-7B 63.7 43.8 58.1 1.5
+ LLMU 36.3 40.5 50.3 4.8
+ SCRUB 38.7 35.4 50.0 16.5
+ SSD 53.1 43.2 52.8 1.6
+ RMU 34.5 28.9 57.4 1.5
+ FALCON 26.7 25.3 57.4 1.5
Yi-6B-Chat 65.4 42.6 61.8 1.5
+ LLMU 56.2 39.9 57.5 5.4
+ SCRUB 38.7 35.5 50.0 16.4
+ SSD 55.1 43.7 53.8 1.6
+ RMU 50.8 33.5 59.6 1.6
+ FALCON 27.7 25.3 60.3 1.5

We evaluate FALCON against all baseline
methods across three LLM architectures
shown in Table 1 and Appendix E.1, with
our evaluation focusing on three key met-
rics: WMDP scores for measuring unlearning
effectiveness, MMLU scores for assessing
general knowledge retention, and perplexity
(PPL) for model stability. Our primary ob-
jective is to minimize WMDP scores while

maintaining MMLU and PPL values close

to the base model’s performance (MMLU

and PPL), as this indicates successful knowl-
edge removal without compromising general
capabilities. To ensure quantifiable com-
parison, we prioritize maintaining general
model utility and report each method’s best
unlearning performance under this setting.
Results demonstrate FALCON’s superior per-
formance compared to baselines that struggle
with effectiveness-utility balance and show increased uncertainty in their perplexity. On Zephyr-7B,
FALCON achieve lower forgetting scores while preserving general capabilities. This advantage
is more clear on Yi-6B-Chat with its complex knowledge entanglement: RMU show significant
biological domain degradation when constrained to maintain MMLU above 60%, while FALCON
maintain consistent effectiveness with superior general performance. These findings validate our
fine-grained representation-guided mechanisms for targeted unlearning with preserved utility, even in
scenarios with complex knowledge entanglement.

5.2 Cross-Domain Generalizability Assessment

To address RQ2, we conduct additional experiments on copyrighted content and entity unlearning
using the MUSE [72] and TOFU [56] benchmarks with additional baselines [16]. For RQ3, we
compare computational efficiency across methods in Appendix E.3). All aforementioned experiments
utilize first-order optimizers for fair comparison, with complete implementation details in Appendix D.
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5.2.1 Copyrighted Content Unlearning

For copyrighted content unlearning, we utilize the MUSE benchmark and Llama-2-7b-hf to assess
FALCON’s effectiveness in removing protected news articles while preserving general capabilities.
As shown in Table 2, FALCON achieved the lowest forget metrics scores (0.02 and 0.03) while
maintaining competitive retention (0.54). Unlike baselines, FALCON consistently balanced copyright
removal with knowledge preservation, demonstrating broader applicability beyond harmful content
removal.

Table 2: Evaluation on MUSE News over 10 epochs.
Method forget_knowmem_ROUGE↗ forget_verbmem_ROUGE↗ retain_knowmem_ROUGE↔
Finetuned 0.64 0.58 0.55
Retain 0.33 0.21 0.56

GradAscent 0.00 0.00 0.00
GradDiff 0.41 8.92e-3 0.37
NPO 0.56 0.35 0.51
SimNPO 0.54 0.36 0.51
RMU 0.48 0.05 0.51

FALCON 0.02 0.03 0.54

5.2.2 Entity Unlearning
Table 3: TOFU evaluation across varying sizes over 10 epochs.

Method Forget01 Forget05 Forget10

FQ MU FQ MU FQ MU

Finetuned 0.01 0.60 2.96e-13 0.60 8.08e-22 0.6
Retain 1.0 0.60 1.0 0.60 1.0 0.59

GradAscent 0.27 0.33 1.94e-119 0 1.06e-239 0
GradDiff 0.77 0.43 2.04e-110 0.22 1.06e-239 0.49
IdkDPO 0.01 0.51 4.02e-06 0.04 4.26e-10 0.08
NPO 0.92 0.56 0.32 0.42 0.02 0.46
RMU 0.16 0.55 1.46e-7 0.57 1.4e-20 0.59

FALCON 0.99 0.55 0.92 0.59 0.52 0.60

We evaluate FALCON’s ability to
remove knowledge about fictitious
entities using TOFU with varying
forget data sizes (1/5/10%). Our
method maintain strong forget qual-
ity (FQ↗) and model utility (MU↗)
across different splits on Llama-3.2-
1B-Instruct. Even with only 10 un-
learning epochs, FALCON consis-
tently outperform baselines in bal-
ancing knowledge removal with pre-
served utility. Notably, while other
methods like GradAscent suffers significant utility degradation with larger forget sets, FALCON
remains effective, demonstrating our method’s generalizability to entity unlearning tasks.

5.3 Resistance Against Knowledge Recovery Attempts
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Figure 4: Logit lens probing results on different components.

We conduct experiments on Yi-6B-
Chat to evaluate FALCON’s resis-
tance against knowledge recovery at-
tempts [55] for RQ4. Logit Lens
[61], which projects intermediate ac-
tivations onto the model’s vocabu-
lary space, serves as a powerful tech-
nique for probing the model’s internal
knowledge representations and poten-
tial recovery of unlearned information.
As shown in Figure 4, the logit lens

analysis across different architectural components such as MLP and attention layers demonstrates
that the unlearned knowledge remains consistently inaccessible, with performance staying close to
the unlearned baseline and far below the original model’s performance.

Additionally, as shown in Table 4, FALCON exhibits strong resilience against enhanced GCG in
QA setting, an advanced prefix-optimization based jailbreaking attack that compromises other
baselines such as RMU [73]. Even with increasing attack iterations, the recovered WMDP
scores remain close to the unlearned baseline, demonstrating robust unlearning through funda-
mental changes to the model’s internal representations rather than superficial knowledge mask-
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ing. Further evaluation using conversational templates for jailbreaking attacks (detailed in Ap-
pendix E.6) further validates our method’s robustness against knowledge recovery attempts.

Table 4: Knowledge recovery results via enhanced GCG attack.

Dataset Original Unlearning Recovery Score via Enhanced GCG
Score Score GCG-500 GCG-1000 GCG-1500 GCG-2000

WMDP-Bio 65.4 27.7 27.6 28.4 27.9 28.9
WMDP-Cyber 42.6 25.3 26.3 26.4 25.8 24.7

These results across both
probing techniques validate
FALCON’s effectiveness in
creating a more permanent
and recovery-resistant form
of knowledge removal.

6 Practical Implications of LLM Unlearning for Responsible AI

The problem setting addressed by FALCON3 stems from the growing challenge of directly employing
LLMs or deploying them as autonomous agents in safety-critical environments [32, 34]. As these
models become increasingly embedded in diverse real-world applications, selectively removing
undesired or harmful knowledge after deployment remains difficult [54]. Unlike conventional machine
learning models where unwanted data can simply be excluded in future training cycles, LLMs encode
information across billions of parameters, making precise removal extremely challenging. This
limitation creates a critical gap between learning capabilities and responsible deployment. The issue
is further amplified by regulatory demands such as the GDPR’s “right to be forgotten” [67], and
by empirical evidence that even state-of-the-art LLMs and their agentic variants can inadvertently
reproduce sensitive or hazardous content when prompted, raising urgent concerns about information
safety and controllability.

FALCON provides a fine-grained unlearning mechanism that identifies harmful knowledge and
decouples it from beneficial reasoning. This targeted process enables models to forget unsafe
information while retaining legitimate competence, supporting the emerging need for responsible
LLM deployment [58, 31]. As LLMs operate in dynamic, real-world contexts, the capacity for precise
and interpretable knowledge modification becomes essential for responsible AI. We advocate viewing
unlearning not as an academic objective but as core practical infrastructure for transparent, compliant,
and responsible AI systems.

7 Conclusion

This paper presents FALCON, a fine-grained representation-guided framework for LLM unlearning.
Leveraging mutual information guidance and contrastive orthogonal unalignment, it enables precise
and efficient unlearning through principal component-based representation separation and gradient
conflict resolution. Extensive experiments demonstrate its superior performance in effectively
removing undesired knowledge while preserving essential information across diverse tasks, along
with resistance against knowledge recovery and efficient optimization guidance. However, this work
is currently limited to text-based LLM unlearning, with experiments conducted on relatively smaller
models due to computational constraints. Future directions include extending unlearning to multi-
modal LLMs and refining strategies to disentangle intertwined knowledge in deeper architectures.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly summarize the main contributions of
FALCON, including its practicality and effectiveness.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: The paper discusses current limitations in conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This work present many experimental evidences and it is primarily empirical
in nature.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed descriptions of datasets, model configurations,
and evaluation metrics to facilitate reproducibility.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: An anonymized GitHub repository will be released upon acceptance, contain-
ing implementation and experiment code

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Training setups, hyperparameters, and baseline configurations are thoroughly
documented in the main paper and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Due to the intrinsic non-deterministic behavior of LLM, traditional significance
testing is not directly applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper reports the use of specific models, sizes and prove the unlearning
efficiency in appendix.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research complies with NeurIPS ethical standards and focuses on enhanc-
ing model safety through principled unlearning.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both the benefits of preventing misuse through knowledge
removal.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work does not involve the release of high-risk models or datasets that
require specific safety measures.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets, models, and code used from prior work are properly cited and
gain consent.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The code will be released upon acceptance due to double-blind review con-
straints.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve human subjects or crowdsourced data.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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