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ABSTRACT

Despite the ubiquity of modern deep learning, accurate explanations of network pre-
dictions remain largely elusive. HiResCAM is a popular interpretability technique
used to visualize attention maps (i.e., regions-of-interest) over input images. In this
paper, we theoretically show a limitation of HiResCAM: the HiResCAM:s for a
given input are not uniquely determined, allowing an arbitrary spurious shift by a
common matrix M while corresponding to the same prediction. We further propose
ContrastiveCAMs, which are invariant to the spurious shift A/ hence improving
robustness of explanations, while additionally providing granular class-versus-class
explanations. With the additional granular explanations, experiments reveal that
networks often focus on regions unrelated to the class label. To address this issue,
we leverage the knowledge of core image regions and propose Core-Focused Cross-
Entropy, an extension of cross entropy, which encourages attention on core regions
while suppressing unrelated regions, improving feature alignment. Experiments on
Hard-ImageNet and Oxford-IIIT Pets show that ContrastiveCAM provides more
faithful attention maps and our method effectively improves feature alignment by
primarily extracting predictive performance from core image regions.

1 INTRODUCTION

The vast applications of convolutional neural networks in safety-critical domains such as medical
imaging (Kc et al. [2021} Rajpurkar et al.l [2017), forensic investigation (Murthy and Siddeshl
2023) and self-driving (Kim and Canny, [2017)) make accurate (a.k.a faithful) interpretations of their
predictions paramount (Haufe et al., 2024). Approaches to explain predictions include feature-
attribution based interpretability techniques (Zhou et al.| 2016; |Selvaraju et al.,|2017}; |Draelos and
Carin, [2020), input-based interpretability with saliency maps (Simonyan et al.| 2013 |Smilkov et al.,
2017), and more recently, mechanistic interpretability for image circuit discovery (Olah et al., 2020).

In addition to faithful interpretability, ensuring that only target-relevant (a.k.a. core) regions influence
model predictions is a critical determination to make. A model-agnostic approach for evaluating the
impact of core regions involves input ablation experiments as introduced in recent work on Core
Risk Minimization (Singla et al., 2022} Moayeri et al.| 2022). Images are modified to systematically
corrupt core regions, following which the change in performance is reported. |Singla and Feizi
(2022)) demonstrate that both convolutional and transformer-based architectures are vulnerable to
learning non-core regions of the input, caused by features like co-occurring backgrounds. These
encourage learning ‘tricks’ — shortcuts to learning that improve in-distribution accuracy while
inhibiting generalization over core features (Geirhos et al.,|2020). A concrete example of shortcut
learning is illustrated within the introduction of Invariant Risk Minimization (Arjovsky et al.| 2020).

In this work, we develop and leverage faithful interpretability to encourage feature alignment in
convolutional models. We theoretically observe that HiResCAMs (Draelos and Carin, [2020) may
not explain true factors that contribute towards predictions as a consequence of softmax activation.
Specifically, we prove that HiResCAMs are not uniquely determined and admit arbitrary, spurious
shifts by a common matrix M while corresponding to the same prediction (Theorem [3.2)). This
spurious shift from M can, in principle, completely corrupt HiResCAM explanations. To remove
this redundancy, we propose ContrastiveCAMs (Definitions [3-4), resulting in attention maps that



are invariant to the aforementioned spurious shift while additionally providing granular class-versus-
class explanations. Using class-versus-class comparisons, we experimentally reveal circumstances
wherein different comparisons leverage different regions to base their predictions. Further, these
differing regions do not always correspond to core regions of the input image, i.e., there are spurious
contributions. We demonstrate that cross entropy loss encourages leveraging these unrelated regions,
especially in settings where the target represents a small portion of the image (Section4.T). Finally,
we propose a modification to cross-entropy, termed Core-Focused Cross-Entropy (Definition §.5)),
which: a) suppresses user-specified non-core regions despite the presence of spurious factors, and b)
generates contrast within user-specified target regions to solve for the underlying classification task.
This improves feature alignment by encouraging the model to learn target-relevant features only.

We demonstrate the effectiveness of our proposed method by reporting experimental results in
multiclass, multiple-class, and binary classification settings. We supplement this evidence by showing
that core-focused models may be trained competitively even with coarse or auto-generated masks,
and that they outperform backbones trained using cross-entropy in downstream segmentation tasks.

1.1 RELATED WORK

Feature Attribution in Convolutional Networks. A prominent family of interpretability tech-
niques stems from the seminal CAMs (short for Class Activation Mappings) (Zhou et al., [2016)
literature. CAMs help identify regions-of-interest in the form of attention maps. It’s success led to
the introduction of a vast set of derivative works, that extend CAMs in various ways (Selvaraju et al.}
2017; Chattopadhay et al., |2018}; |Wang et al., 2020; Draelos and Carinl 2020).

Representation Learning. |Arjovsky et al.| (2020) introduces the notion of predictors that learn fea-
ture representations that are invariant to spurious factors. Bau et al.|(2017)) quantifies the interpretabil-
ity of learned representations in convolutional models by evaluating hidden units within convolutional
layers on segmentation tasks. Recently, Zou et al.|(2023) motivates neuroscience-inspired top-down
approached for inducing interpretability. It encourages the analysis of representations (representation
reading) and it’s subsequent modification (representation control).

Feature Alignment. Spurious factors in images encourage extracting predictions from unrelated
regions, termed shortcuts, and are discussed extensively by |Geirhos et al.|(2020). Feature alignment
seeks to ensure predictions are made using relevant features only, and is deeply connected with
robustness in neural networks (Wang, |2023). Preventing shortcut learning is thus a crucial goal
of feature alignment. Approaches to alignment include region masking (Kc et al., 2021), tiered
training (Aniraj et al.}[2023)), and regularization via saliency maps (Ismail et al.,2021), each having an
empirical focus. For a thorough exposition to recent advancements and challenges in interpretability-
guided feature alignment, we direct the reader to Weber et al.| (2023)) and (Gao et al.|(2024).

2 PRELIMINARIES

Notation. We denote vectors using bold lowercase letters (e.g., v), matrices using uppercase letters
(e.g., M), and tensors using bold uppercase letters (e.g., T'), with partial indexing implying selection
of the subtensor across the remaining subsequent dimensions (e.g., T; € R?*¢ for T € R**?*¢). We
use the operator ® to represent elementwise multiplication, and define [C] := {1,2,...,C}.

Setup. In this paper, we consider image classification tasks. The dataset D = {(X@), y(@)}r_,
contains image-label pairs where images are represented using rank-3 tensors X consisting of two
spatial dimensions and one channel dimension, and labels are one-hot vectors y € R, where C
denotes the total number of classes in the dataset. A neural network f is trained to learn the relation
between the images X and labels y. The output of f contains C logits: f., ¢ € [C]. Let o(-) be the
softmax function, f(X) = o(f(X)) is then interpreted as the class-specific probability predictions.

The standard training procedure is to optimize a cross-entropy loss function so that f (X) matches
the label y as closely as possible for each training image-label pair.

In prominent approaches such as VGG (Simonyan and Zisserman), 2015)), ResNet (He et al., [2016)
& ViT (Dosovitskiy et al.,|2020)), the neural network f mainly consists of two consecutive parts, a



backbone module g followed by a classifier h: f = h o g. In this paper, we focus on convolutional
neural networks, i.e., the backbone g is convolutional. We denote the output of the backbone g as
A € Rdoxdixd2 termed as feature embedding (a.k.a. feature maps) of the image, where d;) is the
number of features (a.k.a. channels) and d; and d5 are the spatial dimensions of the final convolutional
layer. The feature embedding A is then reduced to a vector z, either by flattening z = vec(A), or by
Global Average Pooling (GAP). z is then processed by the classifier h, which outputs the logits f,
that are passed through softmax to obtain the class prediction vector, denoted f.

The recent trend is that the classifier i becomes as simple as a single layer, such as in ConvNext (Liu
etall, 2022), ViT (Dosovitskiy et al., 2020), EfficientNet (Tan and Le, [2019), ResNet (He et al.,2016)
& DenseNet (Iandola et al.l [2014):

h(z) =Wz +b, 1

This simplification of A is largely due to the fact that the backbone g, which encapsulates the bulk of
the model’s predictive power, extracts high quality and comprehensive features A, based on which a
single layer is enough to obtain accurate final predictions. In this paper, we assume that the classifier
is of the form in Eq. (T)).

HiResCAMs. HiResCAMs (short for High-Resolution Class Activation Maps), introduced in
(Draelos and Carin}, 2020), is a method designed to provide interpretable explanations of convolutional
neural networks. It renders the contribution of each spatial location in an image to the final logit
output f., thereby revealing which regions are most critical to the models prediction. Specifically,
given a feature embedding A of an image X and a class index ¢ € [C], the HiResCAM is defined as:

do
CAM(I;HRES — Z(VA] fc) @ A], CAM(I:IiReS c Rd1 X dao (2)

j=1

CAMMRe ghares spatial dimensions with the backbone output A. Each element within CAMiRes
represents a contribution to the logit output f. from a corresponding patch within the original image.
A higher absolute value implies a greater contribution.

HiResCAMs have been widely used for incorporating explainability in a variety of tasks, such as
CT scan abnormality classification (Draelos and Carin, |2022)), malware visualization (Brosolo et al.,
2025)), coffee leaf rust classification (Chavarro et al.| [2024), counterfeit banknote detection (Pachon
et all,[2023)) & flow estimation (Chen and Wu, 2025)).

Particularly, for single-layer classifiers h, Draelos and Carinl (2020) show that the expression of
HiResCAMs, Eq. (2)), can be simplified and has the following close connection with output logits f,:

dy,d2
foX)= > CAMUE*(X)+b,, celC]. 3)
i=1,j=1

Each logit f. is the summation of the HiResCAM over its spatial dimensions, up to a scalar b..

3 CONTRASTIVE CLASS ACTIVATION MAPS

In this section, we first discuss the theoretical limitations of HiResCAM in explaining model pre-
dictions, and then introduce a surrogate method, ContrastiveCAM, which offers more faithful and
class-specific explanations.

HiResCAMs Admit Spurious Shifts. A key observation is that HiResCAMs are only related to
logits f, not probability predictions f = o(f) belonging to each class, see Eq. . The drawback is

that, for the same probability prediction f, there are infinitely many possible logit outputs f, hence
infinitely many HiResCAMs, each of which explain the same prediction differently. This drawback
arises intrinsically from the nature of the softmax function.

Proposition 3.1 (Contrastiveness of softmax). The softmax function is invariant to a universal shift
of all its input components:

o(x) =oc(x+ale) VxeRY aeR )



Proof. All proofs are deferred to Appendix [A] O

This invariance to a € R is amplified to a matrix M € R% %% when assessing HiResCAMs.

Theorem 3.2. HiResCAM explanations CAMMiRes ¢ RCxdixds corresponding to probability
predictions f(X) € RY are not uniquely determined, admitting a universal shift of class-level
explanations CAM ™R by an arbitrary matrix M € R4 %% Ve e [,

dy,d2 dy,d2
fX)=c| Y caMfeib| =0 3 CAM, “+b| VMecRU*%: (5)
1=1,7=1 1=1,j=1
Where CAI\/IHiReS is defined as:
CAM, " .= CAM"Re L A1 vee[C] 6)

Thus explanations from HiResCAMs are accurate only upto a summand M which is unknown. These
explanations may be misleading, and fail to guarantee a faithful interpretation of the model prediction.
An example of such a misinterpretation is illustrated in Figure [T}
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Figure 1: Shifting CAMR by arbitrary matrix M results in a change to explanations CAM

which subsequently changes the corresponding logit vector. However, the model’s final prediction
probabilities are identical and remain unchanged.

To remove this redundancy, we define a contrastive representation of HiResCAMs, which recovers
faithful attention maps at the class probability level.

Definition 3.3 (ContrastiveCAMs). Given a set of classes [C] with ¢; being the index of the target
class for a given image, ContrastiveCAM is defined as follows:

CAMgntrSt L {CAMEJCrtltés;; o c [C} \C} , CAM(CCnt;/St — CAMHlReS CAMHlReS ( )
Further, we also reconstruct single-class interpretations of ContrastiveCAM:s:

Definition 3.4 (Class-Reconstructed ContrastiveCAMs). Given a set of classes [C] with ¢; being the
index of the target class for a given image, reconstructed ContrastiveCAMs are defined as follows:

(ct,0) —

C C
1 . 1 .
CAMIeo" .= e > CAMSt = CAMIR — G > CAMRe ®)

c=1

CAMPE®" thus removes redundancy R = —Yc - ZCC CAM!R  We report the ratio of
redundancy to the original explanation as y = |I&llr/|jcAMI"< |  for various datasets in Table 1
dundancy to the original explanati ~v = IRl Fin f datasets in Tabl

Crucially, ContrastiveCAM:s are invariant to spurious contributions as exposed by Theorem [3.2]



Theorem 3.5 (ContrastiveCAMs are M-invariant). Let CAM™YE® gnd CAM ™ be two

HiResCAMs corresponding to probability predictions f (X) € R such that:
HiRes

CAM, ™ = CAM™E= L A1 vee O] )
Then, for every M € R4r%d2 1 holds that:
CAMC™st — CTAM ™ and CAMEeon — CAM " (10)

Class-versus-Class Explanations. While explanations from the CAM-family only involve visualiz-
ing f.,, softmax activation uses every logit in computing class probabilities. Making inferences based
on individual logits may thus misinterpret the internal model state, as the training objective induced
by cross-entropy loss over softmax activation is to maximize the difference between class logits, see
Eq. (#4). We demonstrate the value of additional granularity provided by pairwise explanations by
reporting observations on a three-class subset of Hard-ImageNet in Figure [2]
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Figure 2: We plot ContrastiveCAM and HiResCAM explanations on a ResNet-18 model trained to
classify: (‘dog sled’, ‘volleyball’, ‘baseball player’), ordered by label index. ContrastiveCAMs reveal
circumstances wherein: a) regions that contribute towards prediction are hidden by HiResCAMs, and
b) differing parts of the image contribute towards various class-versus-class predictions.

From Figure 2] we also observe that the model often leverages irrelevant regions (e.g., environmental
cues), to inform predictions. Following [Moayeri et al.|(2022), we refer to these regions as non-core
regions. In principle, core regions are those that causally influence the prediction (modification of
this region could mean the ground truth itself may change), while non-core regions represent spurious
correlations — modifications to these regions do not change the ground truth labels.

Table 1: ContrastiveCAM explanations bifurcated by core-region maps across various datasets. The
average contributions of core / non-core regions and ratio of redundancy removed is reported below.

Dataset Core (1) Non-Core () Core/Total (1) Redundancy (y)  Accuracy (%)
Hard-ImageNet 14.817 42.138 2601 201 95.73
Oxford-IIIT Pets 3.925 2.150 .6461 367 99.34
PASCAL VOC 1.581 1.719 4791 <E| 87.32

This undesired influence is consistently observed, as evidenced by high overall non-core contribution
in Table [T]above. Despite strong accuracy, large contributions arise from non-core regions.

4 LEARNING WITH CONTRASTIVECAMS

The dependency on non-core regions observed above is evidence of misalignment, which inhibits
generalization. In this section, we prove a desirable theoretical property of ContrastiveCAMs and
leverage it to incorporate interpretability within model optimization, mitigating this weakness.



Specifically, we prove that any input-dependent change to probability predictions f (e g., caused by
updating model weights) is precisely reflected by a proportionate change to CAMgn”St.

Proposition 4.1 (Correctness of ContrastiveCAMSs). Softmax-activated class probabilities f can be
expressed as a direct function of ContrastiveCAMs and the bias vector.

-1
fe X (Z exp ( -> CAM%T??) Ve, € [C] (11)

Where CAMSERUst — 04, xdy-

(Chct)

By zero-ing the final bias vector (i.e., b := O¢ for h only), we can precisely disassociate the role of
specific regions in computing cross-entropy. We leverage this property to study feature misalignment,
and later in our proposed modification of cross-entropy to penalize the use of non-core regions.

4.1 CROSS-ENTROPY CAN MOTIVATE FEATURE MISALIGNMENT

To encode core-region information, for each sample from our dataset of size NV, we extend dataset D
by specifying a binary mask H, which indicates whether or not downsampled regions from the input
image may be used to determine the prediction.

1 region contains target

= (O] — .
=X (H Oy where  Hyg: {O region doesn’t contain target Vi k € [du], [d2]

We can restate cross-entropy as a function of ContrastiveCAMs and core-region information in D.

Proposition 4.2. Given bias-free classifier h, we can precisely associate the impact of specific
regions, encoded by binary mask H, to the computation of cross-entropy loss.

C
c=1

(12)
Remark 4.3. Equivalently, we disassociate the logit and use the standard cross-entropy formulation:

dy,do
Lop(f(X),y,H)=Lcg [0 |- > HOCAMY! +(1-H)© CAM, |y
i=1,7=1

core non—core

13)

We observe from Proposition [4.2] that cross-entropy loss does not inherently favor using the core or
non-core regions for classification. Provided the prediction is accurate with high confidence, error
remains low. This presents a theoretical basis for feature misalignment in convolutional networks.

Scale-Sensitivity of Convolutional Approaches. In training classification models, an implicit
assumption is that the strongest indicator of the class label is the target itself (i.e., the core regions).
From Table [T} we observe through the significant influence of non-core regions that this assumption
does not universally hold. In cases where the target is far from the camera, as commonly observed
in Hard-ImageNet, the emphasis is placed on learning the best non-core surrogate to the actual
target, rather than obtaining an accurate feature representation using just the fewer relevant regions.

Learning a non-core surrogate does reduce cross-entropy loss, but at the cost of misrepresenting the
underlying classification target, thus inducing feature misalignment. The model should, through the
course of training, distinguish and ignore non-core regions in determining the final prediction.

This leads us to propose an alignment-motivated constraint to empirical risk minimization.
Definition 4.4 (Core-Constrained Risk Minimization).

C
Rocr(f) = Ex,ryy-n [((FX)y)] st D[a-mocam@| =0 a4
c=1

Where ((f(X),y) = 1(arg max(f(X)) # arg max(y)) is 0/1 loss for the multiclass setting.



4.2 CORE-FOCUSED CROSS-ENTROPY

We have shown that cross-entropy motivates generating predictions using either core or non-core
features. To correct this, we propose Core-Focused Cross-Entropy, which penalizes the contribution
from non-core regions to the final classification.

Definition 4.5 (Core-Focused Cross-Entropy). We integrate masked region suppression to the
definition of cross-entropy using the following formulation:

C

Lerer(f(X),y, H) = log (Z exp (=Y HOCAMQ '+ "(1- H)©|CAM S |))
c=1

(15)

We can show that the above loss function is consistent with our constrained optimization objective.

Theorem 4.6 (Consistency of Core-Focused Cross-Entropy). A sequence of predictors f, that
converges to the optimal Rcrcg-risk also converges to the Bayes-optimal Rccrw-risk. Equivalently,
in the realizable setting, Lcrcg is classification-calibrated.

Rerce(fn) = Repce = RcoorM(fn) = Récru (16)
Where Rercr(f) is defined as:
Rerce(f) = Ex,(#,y)~p [Lcrce(f(X),y, H)] (17)

Divergence Regularization. Using ContrastiveCAMs, we observe a tendency for cross-entropy
to only generate contrast in regions where feature differences are prominent within the training set.
Successful test predictions rely on the prominence of the same set of differing features even if there
exist subtleties in the training set that can be used to offer more nuanced classifications. We thus
propose regularization by minimizing divergence between target mask H and CAMSntrSt. This
encourages contrast for every region in which the target is present, even when the difference is subtle.

Definition 4.7 (Regularized Core-Focused Cross-Entropy). We regularize Lcrcy to encourage
contrast over the entire target region using KL Divergence:

Cntrs
Z Dkr ( oH) |0 (/\3CAM(ctfc)t)) (18)
Cl\ey
The divergence term motivates similarity in the shape of ContrastiveCAMs to H. The normalizing

behavior of softmax, analogous to its effect on the logits, means that absolute scale is invariant; that
information comes exclusively from LcpcE.

Lrorce(f(X),y, H) =

Supplemental formulations and adaptations of core-focused optimization are deferred to Appendix

5 EXPERIMENTS

For our experiments, we evaluate the performance of ResNet-50 with a set of interpretability-
motivated modifications. These are detailed in Appendix [C| For consistency, we include baselines
with (denoted by ‘w/ Arch’) and without these modifications. We initialize each training run on
ImageNet pre-trained weights, and report fine-tuning performance.

Datasets. We present training results for Oxford IIIT-Pets (Parkhi et al., 2012), Hard-ImageNet
(Moayeri et al.,|2022), and the Semantic Boundaries Dataset (Hariharan et al., 2011). These datasets
span image classification tasks with binary, multiclass & multilabel targets. In addition to reporting
raw prediction performance, we also report intersection-over-union (IoU) scores, indicating the
overlap between ground-truth core regions and those used by the models for classification.

5.1 HARD-IMAGENET

Hard-ImageNet (Moayeri et al.,[2022) is a subset of ImageNet (Deng et al.|[2009) that only contains
classes that have been observed to use spurious features to inform predictions (Singla and Feizi, [2022).



The core regions from these classes typically constitute a minority of the overall image (13.96% on
average), lending further evidence to the scale-sensitivity of convolutional models (Section &T).

To evaluate the performance of models using core regions only, [Moayeri et al.| (2022) introduces
an evaluation suite that reports a) accuracy when core regions are removed from the image using
segmentation masking, bounding-box masking and tiling over the foreground; b) relative foreground
sensitivity (RFS) which evaluates performance degradation under corruption of the foreground; and c)
saliency alignment measured by intersection over union of core masks to regions used for prediction.

Table 2: Hard-ImageNet benchmarks on finetuned ResNet-50 models trained using varying ap-
proaches. Models trained using our proposed core-focused loss functions show significant improve-
ment across all evaluations, at the cost of some un-ablated performance.

Method Accuracy under Core-Region Ablation (%) GradCAM  Contrastive-
None (1) Gray Mask (|) GrayBBOX (/) Tile(}) | RFS (1) ToU (1) CAM IoU (1)
Cross-Entropy 94.25 75.94 69.39 6738 | -0.18 18.44 —
CORM (Singla et al|[2022 9291 76.20 69.12 68.32 -0.08 20.43 —
DFR (Kirichenko et al.[[2022] 94.39 73.53 67.51 66.71 -0.27 18.39 —
ORM + DFR 91.31 72.59 63.64 63.90 -0.23 20.35 —
CE w/ Arch 93.6940.77 76.53%2.15 72.4942.19 71.02424 | -0.23400s  16.25+1407 30.27=+39
CFCE (Ours) 90.5340.60 41.78+1.49 31.66+1.26 34.31+104 | .224+000 18.88+1.13 89.224031
CFCE + KL (Ours) 90.35+1.59 45.49+s.15 37.07+as7 39.47+412 | .236+0.10 51.5241.07 93.39+0.11

ToU for this benchmark was computed using GradCAMs (Selvaraju et al., 2017) only for consistency
with baselines, as GradCAMs have been shown to present unfaithful explanations (Draelos and Carin|
[2020). We thus include additional evaluations using ContrastiveCAMs for core-focused models. We
also qualitatively evaluate improvements using core-focused approaches in Figure [3] below.

CE CFCE CE CFCE CE CFCE

Core (1) 0.7135 2.4671 Core (1) 0.0647 2.3670 Core (1) 0.0490 3.3287

Non-Core (1) 1.0362 0.0378 | Non-Core (1) 2.3771 0.0853 Non-Core (1) 1.4838 0.5957

(1) 0.4078 0.9849 (1) 0.0265 0.9652 (1) 0.0320 0.8482
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Figure 3: Models trained using CFCE exhibit suppressed contributions from non-core regions.

5.2 OXFORD IIIT-PETS

The Oxford IIIT-Pets dataset contains images of 37 breeds of cats and dogs, paired with segmentation
trimaps that denote the foreground and background regions within the image. In the binary setting,
the objective is to classify cats and dogs; individual breed labels are merged. This creates a class
imbalance (4978 dogs to 2371 cats), however no training modifications are made to account for this.
There is virtually no class imbalance in the multiclass setting.

Applicability of Approximate Masks. Core-region masks H have a smaller resolution compared
to input X as a consequence of the convolutional backbone g. Thus, in the absence of ground-truth
core-region masks, approximate pixel-level masks or weaker supervision such as bounding boxes can
be used to effectively suppress contributions from non-core regions. We demonstrate this empirically
through competitive alignment achieved both with auto-generated masks obtained using Segment
Anything (Kirillov et all, 2023) (SAM), and with weaker supervision via bounding boxes (BBOX).




Core Binary Multiclass
Method Region Accuracy (%) ToU (%) Accuracy (%) ToU (%)
Masks Train Valid Train Valid Train Valid Train Valid
Cross-Entropy - 99.824026  99.40%007  78.37x112 78.37£11s | 99924021 94414107 80.04406s  80.16404s
CE w/ Arch — 99.99+002 9944022  38.58+169s  39.07+ti1698 100+0 953403  59.86+17.00  60.6%172
CFCE GT 99.88+010  99.32+025 83224113 8292418 | 99.964003  92.96+015  87.93%024  88.16+033
CFCE + KL GT 99.71+027  99.324015 94931088  92.724073 | 99.7440135 90.08+147 96.22+43s8  93.12+4222
CFCE SAM 99.92+006  99.374015  83.96+2.1 83.95+233 99.6+019  93.264067 84.79+126 85.26+12
CFCE + KL SAM  99.884007 99.194024 83.46+173  83.54+196 99.6+02 93.7+028  84.67+116  85.16+12
CFCE BBOX 100t001  99.42+022  79.094226  79.134228 ‘ 99.98+0 93.834033 84.26+1s 84.61%191

Notably, KL regularization must not be applied when bounding boxes are used in place of masks, as
fitting to the shape of the box mischaracterizes the target. Also note that ground-truth (GT) masks are
used for validation in every setting to ensure a fair comparison.

5.3 SEMANTIC BOUNDARIES DATASET (PASCAL VOC)

The Semantic Boundaries Dataset introduces segmentation annotations to the entire Pascal VOC 2011
Dataset (Everingham et al.} 2011)). We use this dataset to demonstrate performance improvements for
both classification and downstream detection settings.

Classification. PASCAL VOC encodes a 20-class multilabel classification task; thus input image
may contain multiple positive classifications. We report a pareto improvement with increased Average
Precision (AP) and Intersection-over-Union (IoU) scores when using core-focused loss formulations.

AP (%) IoU (%)
Train Valid Train Valid

Cross-Entropy  99.75 +030 87.32 253  46.08 1654  44.50 +1657
CE w/ Arch 99.57+074  88.85+07  40.69+1637  38.55+1643
CFBCE 98.38 249 88.39 123  85.00 £13:2  82.07 to9
CFBCE + KL 9792 100 87.19 £o046 89.53 +180  85.39 +o.0

Method

Segmentation. We also report improvements in IoU performance of core-focused backbones on
downstream segmentation, both when fine-tuned (i.e., with a frozen backbone) and trained end-to-end.

B Fine-Tune with CE-Trained Init
804 [ Fine-Tune with CFCE+KL-Trained Init
B E2E with CE-Trained Init

I E2E with CFCE+KL-Trained Init

Intersection-over-Union (loU)
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6 DISCUSSION

In this work, we establish a connection between interpretability and feature alignment. We demon-
strate the impact of utilizing post-hoc (i.e., post-training) explainability methods, primarily used as
sanity checks, as a guiding factor during training to improve feature alignment with encouraging
effect. Core-Focused Cross Entropy is a direct result of the desirable theoretical properties of Con-
trastiveCAMs, establishing the value of correctness guarantees in interpretability. Reductive metrics
inevitably present a partial view of factors that influence model prediction, and comprehensively
ensuring that deep neural networks faithfully learn to solve the intended, underlying objective re-
mains a significant challenge for the research community. We hope that our work motivates further
exploration towards connections between interpretability and alignment of deep neural networks.
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A  MATHEMATICAL DERIVATIONS

Proposition 3.1} The softmax function is invariant to a universal shift of all its input components:

o(x)=o(x+alg) VxeRY acR

Proof.
1 1
g(x+alc) = C7(€x1+a,€x2+a, - ,exc-‘ra) == ex1’eX2’ Ce 7exc) = O'(X).
D €FTE Do €5
c c (19)
O

Theorem HiResCAM explanations CAM™ReS ¢ RCxdixd2 corresponding to probability
predictions f(X) € _RC are not uniquely determined, admitting a universal shift of class-level
explanations CAM™R by an arbitrary matrix M € R4 %% Ve € [C].

d17d2 d] dz
fX)=o| Y caMfBe b)) =g S CAM,"+b| VM eRA % (0)
1=1,7=1 1=1,7=1
——————HiRes ,
Where CAM is defined as:
CAM. ' .= CAMMBe L a1 vee [0 1)
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Proof. First, we define the set of all valid shifts M:
Let M := {M € RO*4x% . M, = M; Vi, j € [C]} (22)

The matrix M; € R%4*42 can be arbitrary, provided it is constant Vi € [C]. Thus M| = co. We
will show that all HiResCAM explanations that differ by M € M form an equivalence class under
the softmax operation. Consider the following set:

HiRes

[CAM 7] = {CAM"R* t M : M € M} (23)

We then show that any CAMHiReS with a corresponding shift M’ is a valid explanation (i.e., preserves
the final prediction). With logits f deconstructed into HiResCAMs following Eq. (3), we have:

dl ,d2 dl d2

o| 3 CAMIIT+b| =0 | Y (CAMLTT+M, ) +b (24)
i=1,j=1 1=1,j=1
Leta = Zf;’flj. 1 M, ; ; for some ¢ € [C]. By property of M:
dy,d2
=o| > (CAMAR) ta1c+b (25)
i=1,j=1
Applying Proposition 3.1 we have:
dy,d2
=o| > CAMIE*4b| = f(X) (26)
i=1,j=1
Thus, we have:
di,d2 dy,d2  mRr
fX)y=c| > cAMIB*4b| =0 Y CAM,;"+b| VMecR" " (7
i=1,7=1 i=1,j=1
Proving the desired statement. O

Theorem Let CAMYR®S 4 CAM' " be two HiResCAMs corresponding to probability

predictions f(X) € R such that:

CAM' e = {CAM?Res Y M:ce [O]} (28)
Then, for every M € R4*% it holds that:
CAMS™™ — CAM, "™ and CAMPe" — CAM " (29)
Proof. For some ¢; € [C], we have:
CAM, "™ = {CAMZI:tSt e [0]\ ct} (30)
{CAMHIRQS ~CAM. " . ceC] \ct} 31)
By definition of mHiRes, we have:
_ {CAMEjReS + M — CAMERS _ 37 e (0] ct} (32)
_ {CAMg{iReS ~ CAMPEe ¢ 0]\ ct} (33)
_ {CAM(Cg;fgft cce[C] \ct} = CAMSMs (34)
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————-Cntrst

- CAM{™™ = CAM,, (35)

This proves the first statement. Now, we can tend to the CAMRecon case:

CAMlz:econ _ CAMHlRes _ 5 HlRes (36)

By definition of CAMHiReS, we have:

c
= CAMI™ + M — - Z (CAMEiReS n M) (37)
Res cC-M

= CAMRes 4 — = C Z CAM!iRes (38)

) 1& i
— CAMglRes _ 6 Z CAM?IRGS — CAMCRteCOH (39)

c=1

- CAMEen — CAM " (40)
Proving the desired statements. O

Proposition Softmax-activated class probabilities f can be expressed as a direct function of
ContrastiveCAMs and the bias vector.

-1
fe (X (Z exp ( -3 CAM(ngtgst)> Ve € [C] (41)

Where CAMcnm; = 04, xdy-

Proof. Individual class probabilities for logit vector f are defined as:

fCt :UCt(f) =

efct

S ol “42)

For some ¢; € [C].

We define our logit vector in terms of the elementwise difference to a target class c:

di=f—-fo = f=fe+d (43)

Based on this definition, class probabilities can equivalently be computed as:
~ efer efe efer 1

Jou = el B Dol el >edi B 2 et

This re-contextualizes softmax as a direct function of the differences of class logits. We can further
deconstruct the difference by logit values:

(44)

dy,d2 dy,ds
HlRes HiRes
de=fo—fo,= >, CAM!®®+b.— Y CAMITY -b,, (45)
i=1,5=1 i=1,5=1
Applying Definition [3.3] we have:
d.=b,.— Z CAMs (46)

Substituting d; from Eq. into Eq. (44} , we have:

c -1
fe(X) = ! Mcntm) = (; exp (bc Z CAMCCItht))

Ziczl exp (b Z CA (c¢,c)
(47)
We can thus compute class probabilities as a direct function of ContrastiveCAMs and the bias
vector. O
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Proposition[d.2l Given bias-free classifier h, we can precisely associate the impact of specific regions,
encoded by binary mask H, to the computation of cross-entropy loss.

C
Lon(f(X),y, H) =log <Z exp (=30 H © CAME — 3 (1 ) © CAME)
c=1
(48)

Proof. Setting b = 0 to the result from Proposition .1} we have:

C -1
fe,(X) = (Z exp (— pe AMgﬁfgt)) (49)
c=1

For target class ¢, € [C]. Let H and (1 — H) define core and non-core masks respectively; these are
disjoint. We can use this to further disassociate ContrastiveCAM:s:

o -1
for = (Z exp (30 H © CAMES — 3701 - H)© CAM?S?StD 0
c=1

For one-hot encoded target vector y and target class index c;, cross-entropy loss is defined as:
C ~ ~
Lep(f(X),y, H) ==Y yclog fo = —log [, (51)
c=1

To which we can substitute softmax using Eq. (50):
c -1
Lop(f(X),y,H) = —log (Z exp (— Y HoCAMP'S' —> (1-H)o CAMgf;fgt)>
c=1

C
= log <Z exp (— S HoCcAMIMS N 1-H)eC AM(chfgt)>
c=1
(52)

As core and non-core masks are disjoint, Eq. (52)) enables us to identify the logit contributions from
the core and non-core regions respectively. O

Theorem 4.6, A sequence of predictors f, C F that converges to the optimal Rcrcg-risk also
converges to the Bayes-optimal Rccrm-risk. Equivalently, in the realizable setting, Lcrcg is
classification-calibrated.

Rerce(fn) = Repce = Rcorm(fn) = Récru (53)

Where Rercr(f) is:
Rerce(f) == Ex,(#,y)~p [Lcrce(f(X),y, H)] (54)

Proof. We start by restating Definition (4.5)):

c
Lcree(f(X),y, H)) = log (ZGXP (- Z HO CAM?crfrrjt
c=1

(55)
+y (1-H)o |CAM(C;;f;§t|)>
C_exp (X(1 - H) © [CAMES')
= 1og Z (56)

g exp (Z H o CAMCntrst)

(Cuc)
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We can observe that Ropcr(f) takes the following form:

C_exp (01— ) © |CAMES)
RCFCE(f) = E(X7(H7Y)ND IOg Z Cntrst
—1  exp (Z H®CAM )

(57)

(ct,c)

Sc

Répeg = inff Rercr(f) is predicated on each summand s, — 0. We have that:

o[ P (0 - mojcamis) | &inf (exp (S0 - H) © lcAME1))
11 >
P\E eo(sHocamzy) ) TS swy (oo (SHo cAME))

Given sufficiently expressive F by assumption of realizability of R¢cry> as 7 — 00, fy, converges
uniformly towards the equality case thus admitting the following dual objective for each s.:

inf (exp (Z(l —H)o |CAM(CCTSt‘))

sup ¢ (exp (Z Ho CAMEJCTZT)) Vee[C]  (59)

Rerce(fn) = Ripcg <

With the absolute | - | operator over numerator’s exponent and the realizability assumption, we have:

(et,e) (et,e’)

inf (exp (2(1 ~H)o \CAMC““St|)) =1 < |(1-H)® CAMS™St | =0  (60)

This satisfies the constraint from Definition .4 and further implies (by absolute homogeneity of the
norm) that each non-core region has no contribution to the final classification.

Next, we can tend to the denominator.

(ctsc)

Let f* = argsup (Z Ho CAMCW“) ©61)
By convexity of exp, we have that:
exp (D H© CAMEIE) > sup (exp (3- 1o camrst)) (62)
The realization of f* satisfies the following condition:
> HoCAMP'S' >0  VeelC] (63)

Which is sufficient to show the largest logit is that of the target class ¢;. Thus arg max(f(X)) =
argmax(y) (X, (H,y)) ~D = Ex,(uy)~pl(f(X,y))] = 0 which gives us:

Rerce(fn) = Rerce = Rcorm(fn) = RécrM (64)

Proving the consistency of Lcprcg as a surrogate minimizer to Rccrm- O

Proposition We can integrate background suppression to the definition of binary cross-entropy
using the following formulation:

c
1 . .
Lorpee(f(X),y, H) = - Z [Yi log | ¢ ZHz ® CAM'™ — Z(l - H;) © |CAM
i=1 g,k J.k
+ (1 — ;) log (1 - f(X)z) }
(65)
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Proof. We will prove for the multilabel setting, which is a generalization of binary cross-entropy. For
binary vector y (i.e., y; € {0, 1} Vi), class-specific core masks H;, and sigmoid ¢ activated logits f,
denoted f, binary cross-entropy is defined as:

c

Loce(/(X),y, H) =~ 53 [yilog fi+ (1~ yo)log (1- /)] (66)
i=1

C
= Z yilog ¢(f:) + (1 - yi)log (1 - &(f:))] (67)

Setting b = 0, we can substitute Eq. (3) within the first term:

C
— &Y |vilogo | S oAMIER" |+ -yl (1-F)| @)
i=1

Jik

Similar to Proposition[d.5] we can break down each HiResCAM to core and spurious components.
For non-target indices, we seek to reducing logit values across the entire input image. Therefore, we
do not disassociate logit values for the second term.

Lper(f(X),y,H) = - Z [yz log ¢ ZH ® CAMHlRes i Z |~ H)o CAM?;F}?

+ (1 —y;)log (1 f)}
(69)

The current formulation motivates activating either the core or non-core for positive classification, and
motivates de-activating every pixel of the non-positive class. We penalize activation on the non-core
regions for the positive class only:

C
1
Lornon(/(X).y H) =~ 5> [yi tog | 6 [ 32 H; © CAMI — 371 — ) © |CAMIES
i=1 .k .k
(- yolog (1- f0)|
(70)

This gives us the core-focused binary cross-entropy formulation. O

B CORE-FOCUSED CROSS-ENTROPIC ADAPTATIONS

B.1 CORE-FOCUSED BINARY CROSS-ENTROPY

For sigmoid-activated binary / multilabel classification tasks, we leverage similar principles to define
core-focused binary cross-entropy. Since we do not have the contrastive process in softmax-activation,
this definitions relies only on HiResCAMs. We represent sigmoid activation using ¢ and admit C
target-region masks, denoted H; for each class ¢ € [C]. In addition, instead of one-hot encoding, we
now have binary vectory (i.e., y; € {0,1} Vi).

Proposition B.1 (Core-Focused Binary Cross-Entropy). We can integrate background suppression to
the definition of binary cross-entropy using the following formulation:

e
- C

i=1

Lerper(f(X),y, H) = [Yi log Z H;® CAMHiRes _ Z(l _ ’CAMHlRes

N N
Jik gk

+ (1 —yi)log (1 - f(X)z) }
(71
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Divergence Regularization Similar to Definition we define a divergence term for the target
class to motivate activation of the entire core region within the training objective.

Definition B.2 (Regularized Core-Focused Binary Cross-Entropy).

c

A Rex

Lrcerpee(f(X),y, H) = LcereE + m g viDxL (U()\zHi) || o (AscAthReb)) (72)
im1

B.2 CutMiIxX WITH CORE-FOCUSED CROSS-ENTROPY

CutMix (Yun et al., 2019) is a batch-wise augmentation technique that encourages better regularization
by a) “cutting” out a randomized rectangle (randomized portion remaining consistent across the
batch) of a given image and b) “mixing” the cut-out with it’s neighbor. The corresponding labels are
mixed by a randomly sampled parameter \.

Definition B.3 (CutMix with Core-Focused Cross-Entropy). Let segmentation mask H take the
following form:

—> |( C %ﬁ

I —1 pixel does not contain any class
" le¢  pixel contains class ¢

Also, let 1, be the indicator function applied elementwise for some a € R.

Then, Core-Focused Cross Entropy {#.5) with CutMix is formulated as follows:

Lcem_creee(f(X), H,y) = log (Z exp( - Z 1.(H)® CAM%S%
é (73)

Cntrs Cntrs
+3 11 (H) © CAME™ |+ 1;(H) © CAME"; t))
Where the third newly introduced term within the exponent expresses differential contrast.

C TRAINING DETAILS

Hyperparameters. To mitigate reward-hacking our proposed approach, we selected a consistent
set of hyperparameters that generally performs well and use it across all our experiments. We train
each model using the Adam optimizer (Kingma, [2014) for 150 epochs with a learning rate of 5- 104,
using a linear warmup of 5 epochs followed by Cosine Annealing (Loshchilov and Hutter, 2016))
for the remaining 145 epochs. We use a weight decay of 104, a batch size of 768. For divergence
regularized approaches, we used A = {50, 10, 10}.

Reproducibility. The source code, datasets, experiments, evals, and model weights are published
under a permissive license and can be found at [redacted for double blind peer-review].

C.1 ARCHITECTURE MODIFICATIONS

The architecture used for training was ResNet-50 (He et al.| 2016), initialized with ImageNet. We
introduce the following three key modifications:
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Removed final downsampling. For images of size (224,224), the final downsampling layer
converts the latent feature embeddings from dy = d2 = 14 to 7. This prohibitively reduces the size of
the activation map, and making it hard to capture relevant features. We replace the stride of the final
downsampling convolution to (1, 1), matching that of the definition used through the rest of ResNet.

Removed final bias. The bias vector b within £ is not involved in the computation of the class
activation map. However, it does affect predictions in a way that is not explained by ContrastiveCAMs.
To maintain faithfulness of the explanations, we omit the bias from the final model architecture.

Removed final BatchNormalization & ReLU. Since the HiResCAM construction establishes
convolution followed immediately by GAP, the standard architecture which uses BatchNormalization
& ReLU layers after each convolution, does not directly explain the class score. We therefore
neutralize those functions for the final convolutional block. This recovers the faithfulness guarantee.

Note that the above changes correspond only to the final convolutional block of the backbone g and
the bias of the linear classifier h; the rest of the architecture remains consistent.
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